An axisymmetric jet flow facility with a laser fluorescence flow visualization system has been developed. Advanced techniques in nonlinear optics and spectroscopy are being used to track oxygen molecules for velocity measurements. Similar techniques are being used to determine the distribution of energy states of oxygen molecules for temperature measurements. Density can also be measured by observing the direct light scattering from both oxygen and nitrogen. The great advantage of these techniques is they are non-obtrusive, instantaneous, two-dimensional and require no seeding of the flow with foreign material.
The equipment that was purchased under this grant has been used to build a new laboratory for flow diagnostics. An axisymmetric jet flow facility was constructed. This facility is capable of operating over a wide range of stagnation pressures with various gases including air. The ejector can be routed through a high flow rate Stokes pump or directly to the atmosphere to permit a wide variation of the downstream pressure. The test section is enclosed by four high-quality UV optical windows for flow field diagnostics. This facility was built using money from the DOD-URIP Grant and an additional $80,000 from Princeton University. The facility is currently operating in the subsonic regime up to approximately Mach 1. New nozzles are under construction which will operate at Mach 2 and at Mach 2.87. This latter Mach number corresponds to that of the flow facility at the Princeton Gas Dynamics Laboratory and will allow us to configure diagnostic systems for that flow facility.

The remainder of the DOD-URIP Grant funds were used to purchase state-of-the-art laser systems, a high-sensitivity ultraviolet camera, and timing and data acquisition equipment to do flow field diagnostics research. Four technical papers, six conference presentations, and one report have so far been generated from the work in this laboratory. In essence, this equipment has allowed us to develop new methods for instantaneously measuring velocity, temperature, and density in high-speed air flows. Advanced techniques in nonlinear optics and spectroscopy are being used to track oxygen molecules for velocity measurements. Similar techniques are used to determine the distribution of energy states of oxygen molecules for temperature measurements. Density is measured by observing direct light scattering from both oxygen and nitrogen. The great advantage of these techniques is that they are instantaneous, two-dimensional, and require no seeding of foreign material. The final piece of equipment for this laboratory, an intensified ultraviolet camera system, arrived at the end of January 1988. That camera now enables us to simultaneously measure velocity and density profiles in a Mach 1 axisymmetric free jet. Work is continuing with the objective of developing velocity, density, and temperature measuring capabilities in the vicinity of Mach 3.
PUBLICATIONS

REPORTS

PRESENTATIONS

END
DATE
FILMED
6-88
DTIC