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INTRODUCTION 5

Ultrasonic velocities have been used to study residual stresses in metals '§
for many years. The linear relationship between these two quantities, the .

(]

stress acoustic constant, can be expressed in terms of second- and third-order ’%
elastic constants. The problem is that the sound velocity of a metal is also ﬁ
affected by plastic deformation and crystalline orientation. If one deals with -”
a polycrystalline material of sufficiently small grain size with random orien- E$
tation, the velocity measurement averages the dependence on orientation. Thus, 'z
one is still left with the effects of plastic deformation. g:

Plastic deformation can change the sound velocity and the stress acoustic ’%
constant. In a practical situation, when one tries to measure residual stresses :4

via shear waves, the effect of plastic deformation cannot be taken into account

because the amount of plastic deformation is not known a priori, and also '

¢
3
because the change of velocity with plastic deformation is not available. 1In *
addition, one does not know how these quantities are affected by plastic defor- by
- -f‘-
mation in compression versus plastic deformation in tension. Eﬁ’
Y
In this work, we have studied the acoustoelastic constants for shear and 5$
longitudinal waves obtained in tension and compression, and the effect of -
-l
>
-
plastic deformation in tension and compression on these constants. We have also S
"
2.
investigated the effect of plastic deformation on the velocities. The specimen by
used was a bar of ASTM 4340 steel which had been hot-rolled. The bar was -
S
austenitized, quenched, and tempered to a hardness of Rc 31. The measurements :*
o
were accomplished by continuous monitoring of ultrasonic time delays and of {;
transverse and longitudinal strains during the four-point bending experiment %
'
R
through elastic and plastic regions of deformation. e
'3
M
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)
]
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N
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THEORETICAL CONSIDERATIONS '-
Elastic and Plastic Deformation of Rectangular Bars :\:
Assuming uniaxial stress ogg and ideal elastic-plastic behavior, the yield _ i
condition for a narrow curved beam is gg = t g4, With 0o taken as the yield :-"
strength in compression and tension. Yielding begins at the extreme fibers y = ; ::
t h/2, where y is the distance from the neutral axis, and h is the height of the o
beam. With increasing load, the elastic-plastic interface moves inward. The 'E:
central portion of the beam -n € y € n remains in the elastic state with the ) é
stress given by :
Gg = 09 Y/n = EY/Rg (1) %‘

where E is the modulus of elasticity and Ry is the radius of curvature of the .':i
beam. Stresses in the two plastic regions are given by 0g = * 0, and independ- '
ent of the strain € = y/Rq. g:!
Ouring unloading, the plastic region reverts to the elastic state and the *
radius of curvature increases to a value R. The stresses are given by :
g = Ey/R (2) EE

for -n €y € n and “
B

og = E[y/R - (y¥n)/Ro] (3) oy

where the ¥ sign pertains to the regions y > n and y < -n, respectively. )“
The bending moment due to stress distributions of Egs. (2) and (3), which :(

must be balanced by the applied moment, is given by :
A&

h/2 Ebhs 1 1 n n N

M(R) = [ ggby dy = -==- [- - == (1-3 - + 4(-)?)] (4) ol

-h/2 12 R Rg h h PN

where b is the width of the beam. Equations (2) through (4) can also be used _{}
for the loading cycle by setting R = R, and for the purely elastic case by addi- ’
tionally setting n = h/2. ':'

i

'f‘




Equation (4) predicts a linear dependence of 1/R on the applied load during

Fad
o

unloading. This result is predicated on the assumption that the stress-strain y 3
relations of Eqs. (2) and (3) are linear (E = constant). Thus, experimental :n
verification of Eq. (4) can serve as a check to which extent this assumption is ag
warranted. ﬁﬁ
In analyzing ultrasonic velocity changes, knowledge of all three principal ;ﬂ
stresses is required. However, stresses in the direction perpendicular to the “:‘
uniaxial stress can be neglected here since they are expected to be small. :if
Boundary conditions require these stresses to be zero on the respective perpen- ;2
dicular surfaces. Furthermore, the condition of plane stress, while not '.S
strictly applicable, leads to the compatibility equation "
T

o9 = op 4 r ::" = op + (Rey) ::" (5) {E‘:

il

Since 0. disappears for y = t h/2, it follows from Eq. (5) that lar/ag I N h/2R fii
x 1072 for the conditions of the present experiment. ﬁ
Velocity Changes Due to Elastic and Plastic Deformation E
Hughes and Kelly (ref 1) have derived expressions for the velocities of K%i
ultrasonic waves in elastically stressed solids using Murnaghan's theory of 2
finite deformations. The velocities depend on the triaxial finite strains ¢; géi
through the Lame® or second-order elastic constants A and u, and the third-order 2'*
constants 1, m, and n. :fi
For propagation along the 1-axis, the three solutions corresponding to iﬁi
longitudinal waves and transverse waves po]arizeq along the 2- and 3-axis, fi
respectively, are I;f
1p. S. Hughes and J. L. Kelly, "Second Order Elastic Deformation of Solids," Eﬁ

Phys. Rev., Vol. 92, 1953, p. 1145.

- '{i,.,_.
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PoV1] = A + 2 + (22+A)0 + (4m+dr+10u)eq (6)
2 1

Povi2 = 4 + (A+m)O + 4ueq + 2uep - 5 nes (1)
2 1

Povi3 = M + (A+m)@ + 4ueq + 2ue3z - -2- ) (8)

Here, py is the initial density and 6 = €1 + €2 + €3.

Johnson (refs 2,3) has generalized these results to include the effects of
plastic deformation using two approaches. His first approach (ref 2) leads to
the addition of a term which depends on the plastic deformations, eg, to each of

the Eqs. (6) through (8). The resulting velocities may be written as

2 2
Povil,p = (A+2u)4eh + povig (9)
Povi 2¢P+2€B) + povs 10
ov12,p = H(2€1+2€2) + povy2 (10)
o 2 _ p p 2
oV13,p = H(2€1+2€3) + poVvi3 (11)

Johnson's second approach (ref 3) leads to a set of equations which are
formally identical to Egs. (6) through (8), but with the additional proviso that
all coefficients in these equations are now functions of the plastic defor-
mation. This approach then predicts that velocity changes observed during
plastic deformation are correlated with changes in the second- and third-order
elastic constants. In both approaches, the €; still represent the elastic
strains.

If we make the additional assumption of plastic incompressibility, Egs. (6)

through (11) can be rewritten in terms of relative velocity changes.

£G. C. Johnson, "Acoustoelastic Theory for Elastic-Plastic Materials," J.
Acoust. Soc. Am., Vol. 70, 1981, p. 591.

36. C. Johnson, "The Effect of Plastic Deformation on the Acoustoelastic
Response of Metals," J. Appl. Mech., Vol. 50, 1983, p. 689.

S ot S bt




Specializing for the case of uniaxial strain along the 2-axis and setting €1,3 =

-VeEy = -[A/(2A+21)]€, we can combine the various theories into the following :f
)
set of equations }
avi1 R mA A2 '
=== 2 @] + ---=------- (2-2A- -- - --)ey (12) i
Vol (A+2u) (A+u) Boou h
avy2 1 ( nA) (13) :-.
—m-= = Q9 4 --=--- A+2u+m+ --)e 13 )
vos 27 2(a) 'l s
A
avia 1 A+p £
-=-- = Q3 + -—----- (m=-2A- --- n)ejz (14)
Vos 2(A+u) 2u 7
Here, v,1 and vog are the longitudinal and shear velocity in the absence of ‘ ‘
finite stresses. The coefficients @;jj are zero during elastic loading and ?
constant for elastic unloading after plastic deformation. 1In Johnson's first -
approach (ref 2), we have aj = a3 = -eg, a2 = eg/z, and all the elastic N
s
constants remain unchanged. In Johnson's second approach (ref 3), 2aqq = .
(AA+24u)/(A+2u) and 2a97 = 2a13 = Au/u. 1, m, and n can also change during <
I‘
plastic deformation. N
)
h\
By following the velocity changes through the elastic-plastic and then the N
plastic-elastic transition, the elastic constants 1, m, and n can be determined .
before and after plastic deformation, and their changes can be correlated via :,
=
~Y
the elastic strain €; to observed velocity changes during plastic deformation. ~
)
Thus, some definite statements about the various theories may be possible. s
o
¢G. C. Johnson, "Acoustoelastic Theory for Elastic-Plastic Materials," J. o
Acoust. Soc. Am., Vol. 70, 1981, p. 591. !
3G. C. Johnson, "The Effect of Plastic Deformation on the Acoustoelastic )
Response of Metals,” J. Appl. Mech., Vol. 50, 1983, p. 689, e
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EXPERIMENTAL DETAILS o
The specimen used was a 36-inch long rectangular bar of width b = 0.9077 25'

inch and height h = 1.95 inches, made from ASTM 4340 steel which had been hot- g
rolled. The bar was austenitized, quenched, and tempered to a hardness of Rc ?.
31. The bar was subjected to four-point bending. The support and the load were gs
supplied vertically through roller bearings, 30-1/4 and 9-9/16 inches apart, N

respectively. Longitudinal strain was measured at the top and bottom face of

"

LS
/ Co)
LI
X

the bar and also at five positions evenly spaced across the height of the bar.

AR

Transverse strain was measured at the top and bottom face of the bar. Four

\.‘.

1/4-inch diameter shear transducers were mounted with their centers 3/16-inch E"
from the upper and lower edge of the bar, with polarization along the length and E_
the height of the bar. In addition, two 3/8-inch diameter longitudinal trans- !»
-4

ducers were placed with their centers 1/4-inch from the top and bottom edge. ;q
However, only one of the longitudinal transducers retained its bond throughout EE
the entire experiment. A1l transducers operated at 5 MHz. gn
The load was typically varied in 1250-1b. steps, up to a maximum value of E?'
21,250 1bs. At each load, strain gage readings were taken and corrected for Ei‘
transverse sensitivity. Ultrasonic time increments relative to the unstressed g:
state were measured by observing the time shift of the third transverse and the %E,
sixth longitudinal echo on an oscilloscope using the 20 nsec/cm sweeprate. E;f
2.

o8

RESULTS AND DISCUSSION E;i
Figure 1 shows the load versus the inverse of the radius of curvature as 537
determined from a linear fit to the longitudinal strain gage readings. The Ef
modulus of elasticity derived from the linear region during loading up to 10,000 Eﬁ
1bs. is E = 29.99 x 10* 1b./in.? = 20.68 x 10%* pbar. This is in close agreement E{
e

with the value E = u(3A+2u)/(A+u) = 20.61 x 10 bar obtained using A = 11.03 x

R W "(\*"’SJ""N"\(“’*"-*-r'iai ﬁjlf"-*"f'- .',..._-I r-"



i ll""l""

-y~

10® bar and u = 7.99 x 10* bar from an earlier experiment on a similar type

steel (ref 4). Thus, we have used these values for A and u in the analysis

In

below. X
As can also be seen in Figure 1, the transition from elastic to plastic r~

t

deformation starts at about 15,000 lbs. During unloading, the bar promptly ﬁf
reverts to the elastic state with approximately the same modulus of elasticity. -
However, deviations from linearity are apparent at small loads, indicating that f;
there is reverse yielding of favorably-oriented grains. Consequently, we have :
i

restricted the data analysis at present to the upper part of the unloading By
)

curve.

( 3

&

The load at minimum radius of curvature can be used to determine the loca- ’

]

F‘_
tion of the elastic-plastic interface from Eq. (4). We find |n |= 0.40 in good ‘N
agreement with residual stress measurements across the bent bar. :
Relative velocity changes were determined in the usual manner from the ;E
relative time increments and the transverse strain, calculated at the detector 3
position from the strain gage readings. They are shown in Figure 2 as a func- ﬁ
tion of longitudinal strain. The result for the shear wave polarized along the -
principal stress direction (bottom) is particularly noteworthy. It shows a o
N,

nearly linear dependence on strain during elastic loading. The corresponding :'
.4
stress scale on the right-hand side is obtained using the value of E given v
above. At 17,500 1bs., a sharp, unusually well-defined change in slope to -
nearly constant velocity occurs, indicating a drastic change in material behav- §
ior, presumably the elastic-plastic transition. During partial unloading, the p
L.

material reverts promptly to the elastic state. -
9
\.:

®W. Scholz and J. Frankel, "Acoustoelastic Effects in Autofrettaged Steel," in: o
Proceedings of the 1985 Ultrasonics International Conference, Butterworth & ]

Co., Guilford, Surrey, UK, 1985, pp. 441-446. .
p
l:‘ |,
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Figure 1. Load versus radius of curvature of the bent bar. Filled-in
and open symbols correspond to loading and unloading cycles,
respectively.
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From the data given in Figure 2 we have extracted acoustoelastic constants
and the third-order elastic constants 1, m, and n with the help of Eqs. (12)

through (14), using values for A and u given above (ref 4). In deriving these

L) .
F constants, we have restricted ourselves to the central region of the elastic {
kX
* loading and the top part of the elastic unloading curve. Results are collected
L
in Table I. Since the systematic errors tend to be self-compensating in the
{
¢ present experiment, the differences in the values for compression and tension =
]
! and before and after plastic deformation are believed to be significant. Stress
X
acoustic constants can be obtained from these acoustoelastic constants by
N
}‘ dividing by E. i
‘ .
TABLE I. ACOUSTOELASTIC CONSTANTS d(Avij/vo1,s)/dez AND THIRD-ORDER ELASTIC !
CONSTANTS IN 10° BAR.
Y
n
> Compression Tension
~
,t ij Load Unload Load Unload
12 -1.641 -1.444 -1.753 -1.815 i
I‘" &
) 13 0.128 0.238 0.000 -0.102
\4
‘ﬂ 12-13 -1.769 -1.682 -1.753 -1.713 , ;
11 0.210 0.305 0.140
-,
-
E. n -75.8 -73.6 -75.4 -74.4
- m -63.3 -56.5 -67.7 -70.4 4
. 1 -36.6 -36.5 -50.9
Cal
”e
v,
.
', “W. Scholz and J. Frankel, "Acoustoelastic Effects in Autofrettaged Steel,"
< in: Proceedings of the 1985 Ultrasonics International Conference, Butterworth
-~ & Co., Guilford, Surrey, UK, 1985, pp. 441-446.
2
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Table I depicts the acoustoelastic constants and 1, m, and n in tension and
compression as well as changes in these constants with plastic deformation. The

least variability is observed in n which is the only third-order constant that

enters into the often used birefringent expression, Eq. (13) minus Eq. (14).

The differences in the corresponding acoustoelastic constant (Table I) are also
rather minimal.

In the region of plastic deformation, all velocities appear to decrease
with the amount of plastic deformation. From the intercepts of straight line
sections fitted to the data points in Figure 2, relative velocity changes in the
stressed state can be estimated. Using Eq. (3) in conjunction with the value
| n|= 0.40 inch for the elastic-plastic interface, the strain for zero stress at
the transducer position can also be estimated, and the corresponding relative
velocity changes read off from Figure 2. Results are given in Table II. The
observations are in disagreement in magnitude, as well as in relative signs,
with the predictions of Johnson's first approach (ref 2) as discussed in con-
junction with Egs. (12) through (14). Furthermore, they cannot be explained
solely on the basis of changes in texture since for any texture,
Polvii2+vy22+vy3?) has to remain constant, and decreases in some velocities must
be compensated for by increases in others (ref 5).

In Johnson's second approach (ref 3), relative velocity changes during
plastic deformation at 2zero stress are due to changes in A and i, and the dif-

ferences between the stressed and the zero stress values are caused by changes

¢G. C. Johnson, "Acoustoelastic Theory for Elastic-Plastic Materials," J.
Acoust. Soc. Am., Vol. 70, 1981, p. 591.

3G6. C. Johnson, "The Effect of Plastic Deformation on the Acoustoelastic
Response of Metals,"” J. Appl. Mech., Vol. 50, 1983, p. 689.

C. M. sayers, "Ultrasonic Velocities in Anisotropic Polycrystalline
Aggregates,” J. Phys. D: Appl. Phys., Vol. 15, 1982, p. 2157.
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in acoustoelastic response, i.e., changes in 1, m, and n. Table II also lists

values for these differences calculated from Eqs. (12) through (14) with the
acoustoelastic constants from Table I.

TABLE II. RELATIVE VELOCITY CHANGES (Avi/Vos. 1) X 105 DUE TO PLASTIC
DEFORMATION. EXPERIMENT, UNDER STRESS (1); EXPERIMENT, ZERO
STRESS (2); DIFFERENCE (3) = (1) - (2); CALCULATED DIFFERENCE
(4). SEE TEXT FOR DETAILS.

Compression Tension
ij (1) (2) (3) (4) (1) (2) (3) (4)
(12) -1.52 -0.17 -1.35 -0.88 -0.83 -0.89 0.06 -0.27
(13) -0.65 -0.51 -0.14 -0.49 -1.95 -1.52 -0.43 -0.44

(12)-(13) -0.87 0.34] -1.21| -0.39 1.12 0.63 0.49 0.17

(11) -1.23}| -0.98 | -0.25] -0.63

Although the agreement with the experimental differences is not perfect,
the numbers are remarkably close suggesting that there is some basis for
Johnson's second approach (ref 3). It must also be realized that errors of the
experimental differences may be fairly large and that residual texture-induced
velocity changes may also be present. Further work, experimental as well as

theoretical, would clearly be desirable.

CONCLUSION
The present experiment demonstrates that four-point bending of a rec-
tangular beam can be used to determine the acoustoelastic response of ASTM 4340

steel during elastic and plastic deformation in both tension and compression.

3G. C. Johnson, "The Effect of Plastic Deformation on the Acoustoelastic
Response of Metls,” J. Appl. Mech., Vol. 50, 1983, p. 689.
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n
Third-order elastic constants 1, m, and n, derived from these measurements, show )
differences between tension and compression and changes with plastic defor- J
mation. Least affected is the constant n which determines the acoustoelastic 4
Ul
constant for birefringence measurements. The measured velocities decreased with n
"
plastic deformation. Measured relative velocity changes due to plastic defor- Y
mation have been compared with predictions of various theories. x
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