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SUBJECT: Pershing II Follow-On Test: Size Reduced by Sequential
Analysis

-

By memorandum of 30 August 1982 (Reference 1), the Under
Secretary of the Army tasked the service to "review our
[operational test] methodology, to include considerations of
mathematical rigor, risks, planning horizon, costs, and
operational matters.” In discussion of this matter with the
author, he further elaborated the objectives:

- g - .
o R Y.

- s

! a) Minimize cost of testing over the program life. Monitor
! all test results, 1nc1ud1ng those of components as well as of the
system, to minimize "no-tests" and to save on full-up tests. Use

. sequential analysis to further pare requirements - -for missile
4 flights.
¥
N b) Criteria of test adequacy should be no more severe than

those of other services (e.g., Minuteman, Poseidon).

- -

c) Challenge the necessity for an annual update.

iy d) Consider whether testing, maintenance float, and reload
i were independent requirements as opposed to multiple missions for
the same inventory of missiles.

§ The task was passed to the Army Research Office (Research
Triangle, NC) which manages the business of the Army's Mathematics
K Steering Committee (Dr. Jagdish Chandra, Chairman), supporting

mathematical research of relevance to the Army and the
improvements in mathematical methods employed in the Army's
d research and study agencies.

{ The work summarized here is composed of contributions of

X several statisticians whose aid was solicited by the AMSC: Dr.

) Michael Woodroofe (University of Michigan)*, Dr. Nozer
Singpurwalla (George Washington University), and Dr. Robert Launer
(Army Research Office), as well as the author of this report.
Others have provided informal comments and criticisms. An early

[ version of this paper, prior to the author's knowledge of this

other research, was presented as a talk at a conference of Army

mathematicians (Reference 2).

TR

n # At Rutgers University during the course of this research.
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x Chapter I
i, The Problem

A

"

-

“ Two documents combined set forth the guidance the Joint

N Chiefs of Staff have provided to the military services regarding
v the conduct and reporting of tests of certain systems. For the
b Army only the Pershing Missile system is covered (Pershing I and
;i. Ia, and now Pershing II).

'f In a memorandum of 1975 (Reference 3), the Joint Chief of

Staff directed that numerical confidence statements should be

v based on WSEG Report 92C (Reference 4), an extract of which is at
Y Appendix C. "The goal of a test program should be to allow

b; detection of a minimum change of X percent at the Y percent

210 confidence level." * It suggests, by way of example, the use of
N Fisher's Exact Test to demonstrate success or failure in meeting
° this criterion,

A

o References 3 and 4 have just been superseded. The revisions
) (References 5 and 6) eliminate an ambiguity and add considerations
5 not previously called for and not discussed here except to note

< that the criteria to be applied to Pershing II are now less

’ demanding than those applied to strategic systems. Fisher's Exact
) Test is still countenanced.

B |

A

! This use of this criterion appeared to the author to lack a
W sound statistical justification, and attempts to patch it up were
unsuccessful. Appeal to a number of practicing statisticians
within and outside the Army supported my challenge to Fisher's

-
a
-
XL

s Exact Test (FET) in its application to Pershing reliability

o tracking. No one was contesting the ability of the FET to provide
f estimates of the probability that two samples, which have yielded
g pass-fail data, come from the same parent population, though

'i Kendall and Stuart (Reference 7), do condemn its use for small

e samples.

h With such an error apparently arising from an application of
4 the methods of the "frequency" school of statistics, the obvious
;j alternative was to try the methods of the "Bayesian" school.

° There are many expositions of methods based on the use of

k7 Bayes' Theorem, the most recent of which--"Bayesian Reliability

§ Analysis" by Martz and Waller--(Reference 8) I shall quote at

9 intervals. Among the works arguing for the adoption of Bayesian

g methods, the following are noteworthy:

h.

;& * X and Y are classified numbers.
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Raiffa and Schlaifer - Applied Statistical Decision Theory
(Reference 9) with a very complete description of the method of
conjugate prior distributions.

Lty
"
k~§ Jaynes E.T., "Prior Probabilities" (IEEE Transactions on
A System Science and Cybernetics, September 1968) (Reference 10).
&ﬁ‘ Deduction from the principles of maximum entropy and invariance
r\ under certain group transformations leads directly to the Beta
Yy distribution as conjugate prior to a Bernoulli process; indeed to
A."_")
Kn (W WS-t Nn-g~{
dP(psm. )= 7 (- dp /B (so-9d .\
D

v wvhere s is the number of successes in n trials observed as the

- basis for estimating p. This removes some of the "ad hoc" or
s "mathematically convenient"” color of conjugate priors when relying
2h%) on Raiffa and Schlaifer.

0
: Martz and Waller perhaps epitomize the case best:
1:; "There are several benefits in using Bayesian methods in
N reliability. First of all, it is important to recognize that all
'Qf statistical inferential theories, whether sampling theory,

\ Bayesian, likelihood, or otherwise, require some degree of

;;f subjectivity in their use. Sampling theory requires assumptions
0,

concerning such things as a sampling model, confidence

b coefficient, which estimator to use, and so on. For example, a
R sampling theory analysis proceeds as if it were believed a priori
- that the data were exactly [exponentially] distributed, that each

. observation had exactly the same mean life 6, and that each

p observation was distributed exactly independently of every other
j sample observation. The Bayesian method provides a satisfactory
iy way of explicitly introducing and organizing assumptions regarding

| prior knowledge or ignorance. These assumptions lead via Bayes'
theorem to posterior inferences, that is, inference obtained once
&r the data have been incorporated into the analysis, about the

o reliability parameter(s) of interest. Bayes' theorem provides a
simple, error-free truism for incorporating the prior information,

S The engineering judgment and prior knowledge are brought out into
ol the open and are there for everyone to see instead of being

’ quietly hidden. The engineer usually appreciates this opportunity
35 to divulge such prior information in a formalized way."

'f

o. The authors I commend are not, on philosophical matters, in
- complete agreement, and the authors (and critics) of the methods
X proposed in this paper have their differences, some of which

§~‘ become important as we proceed.
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Suffice it to say that the Bayesian approach requires a more
careful statement of the problem, to include in particular the
prior distribution function, costs and risks: matters which the
frequentists collapse into the confidence limits o and .
If there is indeed a legitimate uncertainty in (the form of) the
prior distribution, that uncertainty must surely propagate into an
uncertainty in the predictions for the process. In some cases
results can be shown to be insensitive to the prior, and thus a
convergence of Bayesian and frequentist answers occurs; but
lacking such invariance, the frequentists are hard pressed to
prove they have solved the right problem.

Having said this, I must confess that for some purposes we
shall employ the frequentist approach, primarily because a full
Bayesian solution has not been worked out,

Section 1. Literal Interpretation of JCS Guidance:

". . . annual . . . detection of a minimum reliability change

of X percent at the Y percent confidence level."

A "change" in something means that its previous value has
been defined. It would appear that an evaluation of the results
of the first year's Follow-on-Test (FOT) is to be compared to that
of the Operational Test (the base-1line)(OT), and the evaluations
of subsequent FOTs are to be compared to the evaluations made a
year ago. The tests being of something less than the full combat
mode of the system, projection to combat capability is to be made;
thus while test results are to be reported, they are to be
interpreted as well, This interpretation is surely to be based on
all prior knowledge of system performance; i.e., all prior testing
as well as that most recently at hand, "weighted" (one might say)
by expert judgment of the relevance of older tests and analysis.

In the case of Pershing II, we shall have an inventory of
missiles produced over a period of time and expected to be in
service for a longer period. From the point of view of
homogeneity, the inventory may need to be divided into two or more
blocks, based on the significance of any changes in the production
process during the run. When they are subjected to (annual) test,
missiles will be of different ages as well from different blocks;
so serial number and age may influence reliability at the time of
testing or use in combat., It is clear, then, that in treating of
a "change" in reliability, we are dealing with ar uncertain base.
Options which are open to us include:

a) Computing a "best" estimate from the OT firings, and
treating it as the exact value of the reliability at that time of
all the inventory.




3
"-:_:
‘\-'r‘\
Al b) Computing as in (a), but associating an uncertainty
‘ (standard deviation) to it also, to describe the uncertain
S reference point.
!
;Lb In either case, the results of each subsequent (annual) test
549 would be compared to this as standard.
?" c¢) Computing as in (b), but then modifying the estimates
i using the results of subsequent tests (more trials, more
-, successes, more failures). There are extremes in this process
;:j which are to be avoided:
1Ny '
:\’ (i) This modification might consist of using only the
: previous year's results as indication of the remaining inventory.
NG (ii) This modification might consist of accumulating
3{ the results of all prior tests, without regard to the aging effect
il or block modifications.
o
i Judgment is clearly needed. Limiting the criterion to the
- smallness of the latest annual change (with small samples in the
ﬁ. two cases) could result in a dangerous accumulation of change over
4 the system life. On the other hand, where no statistically
.;( significant change has been detected, it would be reasonable to
e add one year's results to the results of the whole prior test
;o series of a homogeneous block in estimating the average value at,
% say, the average age of the tested articles. It is probably not
%;, possible to specify in advance the details of the critical results
3&: to be reported. What is more important is that analyses be
o conducted to discover what are the constant and what are the
A variable components of the system reliability. Finally, detection
) of a trend should make it possible to forecast when the results of
e that trend will no longer be tolerable, and so signal the degree
s‘j of urgency with which management should act to correct the trend.
v
oy d) This brings us to the question of the frequency of
'¥$ reporting the results of testing and analysis. The current
® practice is an annual report which probably has its roots in
£l adminstrative cycles. The technical problems which reporting
}ﬁ communicates to management are probably of two sorts: 1long-term
R aging with gradual deterioration, ("one-hoss shay" syndrome) and
uh catastrophic failures. The latter tend to announce their presence
e in consistent repetitions of particular failure modes, and so call
9. for out-of-cycle action no matter what the standard interval
W between reports. The former, on the other hand, are evidence of
ad‘ problems only slowly exacerbating, and so allow a more leisurely
'« pace of administrative response., Alternatives to the present
eﬁ annual cycle are proposed below, for situations in which no
. guarantee of a clear bright green light or red light is available
®.. annually: (i) A guarantee can be given of a low likelihood of
N having to wait more than, say, 16 months for such a signal, along
fb with the provision of a technical review of all failures showing
RN any repetitions of mode. (ii) Administratively, skipping one
:3. year's report may be simpler,
"'.
L X
1
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AN These options will be explored in one or more places in the
" mathematical sections to follow,
(R
;‘{ Two assumptions have immediately to be disposed of:

o
gty
g:: 1) Because Fisher's Exact Test is mentioned in JCS
QJT guidance, its use is correct and mandatory.
t
,-2 Fisher's Exact Test is an enumeration of all possible
A - relative outcomes in two series of pass-fail tests, subject to the
NN restraints that the numbers of tests in each series be fixed and
N the combined number of successes also. It yields the probability
.ﬁf that the articles tested in the two series were drawn from the

same population--one with a fixed probability of pass., If the

K* total number of successes is not controlled, the results of
' FET admit of this interpretation only in the limit of large
"ﬁ samples. Given that the probability of success could be different
R in the two populations, it is sometimes claimed that FET can be
Aty used to estimate the probability that they differ by prescribed
® amounts. This claim is unwarranted. The JCS could be faulted for
= suggesting the test, but they did not underwrite the extended use
NG as in the Army's methodology. (See Kendall and Stuart; also
HA Chapter III),.
o
s 2) We can know the reliability of an object.
e We shall never know the "true" as-manufactured reliability of
N the components of the Pershing system, and much of such knowledge
'$y as we do gain will come at the expense of tactical inventory. It
5:; may be that, for the purposes of designing tests of operational
b reliability, we need not know this a priori probability with any
) great accuracy; and so methods which treat it as known for this
Ny purpose may be satisfactory. This does not justify the assumption
ﬁ ; when analyzing the results of actual tests.
A«
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Section 2. Mathematical Preliminaries

Bayes' Theorem: The Need for a Prior Distribution

Essential to much of what follows is Bayes' Theorem, sketched
here as background. The conditional probability of an event B,
given that another event A has occurred, is symbolized and defined

by
P (A,B)
PN

where P(A) (=# 0) is the marginal probability of event A, and
P(A,B) is the probability of joint occurrence of A and B. One may
also speak of P(A/B) = P(A,B)/P(B) with similar meanings and
limits, leading to

P(ria) P(r) = P(nI8) P(v) 1.3

Given that B can occur in n ways Bi (i=1,2,...,n) one of which
always occurs with A, we may sum expressions like Eq. 1.3 for the
entire set of events Bi '

Py 2, P@iUIAY=2,;P(AIBIP(B)=P() 14

os the multiplier of P{A) is equal to 1, having encompassed all
possible pairings. If P(A) # 0, we have Bayes' Theorem:

, P(AIB) PRB)) L5
P )= 5
A P(A1B)YP(RY

Suppose now that events Bi are logically (causally) prior to
event A. Then P(Bi) is called the prior distribution of
Bi, P(A/Bi) the likelihood of A, given Bi, P(A) the marginal
distribution of A, and P(Bi/A) the posterior distribution of Bi.
Bayes' Theorem, given in symbols by Eq.l.5, may then be stated in

words:

P(Bla) = 1.2

Posterior Distribution = Prior Distribution X Likelihood (Functién)
Marginal Distribution

(This argument holds for both discrete and continuous distributions
of probability.)

Likelihood functions are a familiar staple of probability
theory, being forecasts of the frequency of chance events A based on
presumptions about certain prior events or conditions (a die that is
unbiased, the "normal" distribution of errors, half-life of a knowr
radioactive substance). Marginal distributions then are forecasts of

~v‘.,r~r~t ,‘-(. . rﬁ' T T T - et a A -k ~m - . . .
A A ¢ " roc L T e e e TR
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the results of experiments. Bayes' Theorem tells us that inferences
about the events Bi which lead to a marginal distribution cannot be
derived from the likelihood function alone, but require knowledge of
the prior distribution P(Bi) as well. 1In the context of our task, we
need to know more than the results of a set of missile firings to
infer the reliability of the missile.

Other requirements of a Bayesian analysis will be discussed as
the issues arise.

Section 3. Illustration of an Analysis in Accord with JCS
Guidelines

We assume that the missiles and associated ground equipment used
in an annual test do come from a homogeneous population, and that the
several tests within that year are statistically independent. We
assume further that the reliability p is definable, and then may
assert that were we to know p, the probabllity of s,/ successes and f
failures in n,/ trials (nl' = s1' + f1') would be by Bernoulli's
formula (a likelihood function):

V\/ 3,' -C" n\ _ \'\"
(s'.’)? (- Where <g>: SE3N

From component testing, comparison with similar systems,
comparison with other products of the same manufacturer, engineering
analysis, we should develop an estimate of p and a measure of our
confidence in that estimate. Methods exist, e.g. that of Maximum
Entropy (Reference 10), for constructing from this information a
function with the properties of a probability distribution--a prior
distribution. Constraints of reasonableness and mathematical
convenience come into the selection process. With limited
information at hand, there may be no unique solution. The analyst is
free to try several priors and to observe the sensitivity of answers
to such variations.

Given a likelihood function, there can generally be found a
"conjugate" prior function (so-called because it marries
mathematically to the likelihood function); properly a class of such
functions, dependent on a limited number of parameters to distinguish
members of the class. Conjugate to the Bernoulli's distribution is
the Beta distribution, written

dP (50,8 =5 (1- *'ap /BGEA) \o
}
vhev-e SP AP (so,6)=1y B (s,)g\ = P%ng‘zgio) )

awnd U (“» =0-)! Lor noan \'\A—QSW .
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o Different sets of the parameters s, and fo give rise to functions

e whose graphs are variously peaked at some locale within the limits of
§ 0 to 1, are relatively flat, are J-shaped and strongly peaked at 0 or
¢§ 1], or are even U-shaped and strongly peaked at both 0 and 1. It is a
';}- rich set of functions,
Lol
P

: ) Taking the product of dP(sg¢,fp) with the Bernoulli function, we
w4 get
W / / 4!

AN n S, +Se— ! v+ Lo /
.r:- <Sll > P ° (‘— PB A? ' _B(go,'co> \‘-l
:!‘la '
% which when integrated over the range of 0O to 1 gives
..:‘.

."-\.' _ ,

. / S,z S°+S"

N ", S, & /‘5 Se £ Lohev !

- Q

0~* (5.’>B( " '3 ( = °> ‘(‘\=‘C°+-(\'

0
o the marginal distribution of s;' given B(s,,fy) as prior. The ratio
‘o of Eqs. 1.6 and 1.7 gives the posterior distribution of p for .s,' and
s f,' observed:

IJ
St £
£ (Y ap /BG4 \
-
j explaining my notation and revealing the meaning of conjugation.
¥
:;Q From a prior distribution B(sg,f,), and a likelihood function
\:iz for a test of a sample of size n,', we have created a function which,
Q} as a posterior distribution from that experiment. is logically the
vy prior when testing a second sample of size ny' This process can be
o repeated ad libitum, making sample 1 refer to a11 prior information
" and sample 2 the latest test.
)
N
W
o
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Now the JCS asks to know the probability that the reliability of
sample 2 (and by inference that of the population from which it was
drawn) is less than a certain fraction k (o < k < 1)of the

reliability estimate p of sample 1. If the evidentiary basis for

this answer lies entirely in the test of n2' items, then we may

assume instead a uniform prior distribution, drop the primes on n2',
s2', and £2' and represent this probability by

P(Q?‘) = gkh

S =

o
v (- p) e [B(s4)

C

which we then integrate over the distribution of pl to get the
probability that p2 < kpl: '

P k)= 4 0 Pl ar B 1A

The probability that p2>kpl is just 1 minus this result.
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As an aid to understanding the generality of this result,
consider the case where pl = rl x r3 and p2=r2 x r3 where r3 is a
reliability factor not subject to degradation but just as much
subject to discovery as rl and r2. Within the framework of Beta-
function priors, we might be led to the posterior distribution:

dP= KY‘\SN <l~ Y‘.\g‘- | oo (l— f»\g"-‘ r:"-'(\- “J%-‘é«‘ Av;é\vs \.\\O

where s3(f3) is the total number of observed successes (failures) of
the subsystems described by r3. For any values of r3 and k between O
and 1, P(p2 < kpl) = P(r2 < krl). When the latter function is given
by integrating Eq.1.10 first over r3 from O to 1, it is clear that
the result is the same as though r3 = 1 (i.e., it can be ignored).
Thus using the criterion p2 £ kpl we cam be freed of any concern
about reliability factors common to pl and p2. I would assert that
this is a good reason to employ this criterion in preference to the
one described next.

The JCS guidance has not always been interpreted as speaking to
a proportional reduction in reliability; sometimes it has been
interpreted as measuring a reduction of, say, 100d percentage points¥

Instead of Eq. 1.9 we would then use

P(p-0)= I (e n s /B 60

L\ P(- P\{'—‘{ Lp-t-f"‘ (v} -'épiép
B (Sz ,'(A S(\ ?S"l (" '?SF\-‘C&\-:

awd (\)(?,S?-A}: .\

(While we have strayed from the neatness of conjugate functions, by
reason of the incomplete integrals, we still have a consistent
method. Similar expressions will be found in Reference 8, p. 271.)

# Indeed, the latest revision of the JCS guidance (Reference 5)
mandates this form of the criterion.
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. Eqs. 1.9 and 1.11 give mathematical meaning to the JCS guidance.
If at the chosen confidence level it is deemed that there has been no
- significant change in the reliability between samples 1 and 2, then

> sample 2 should be merged with sample 1 in preparation for the next
" year's testing. Other criteria should be examined also (e.g.,
N probability that there has been no significant departure from a
j{f nominal value), but that does not refute the translation into
Y mathematics of the JCS guidelines.
-
:-ﬁ At this point I note that much of the historical course of
;}: development of mathematics has been devoted to a search for solutions
s requiring a minimum of actual manipulation of numbers. The
o approximations used by statisticians are simply good examples of
this. The ready availability today of powerful computers reduces the
v need to employ approximations which may be questionable in particular
o~ cases, Most of the calculations to be described here have been
R carried out on a programmable hand calculator (HP-41) or home
Y computer (Apple, Commodore, etc.). Accordingly, the reader need not
5 5 be concerned with an apparent intractibility of the formulas. They
r'y could be evaluated in the field by the troops of a Pershing fire
e unit.
e

)

There are two matters of concern: the prior distribution and

07

0 limits to the size of Sample 1. I have already discussed problems
R with the prior distribution. One assertion made is that with
. increase in the size of the data base it can become misleadingly

” narrow, ignoring "unknown-unknowns." A different way of saying this
{: is that tests performed sufficiently long ago may be irrelevant in
o describing the present state of the missile inventory; the meaning

of this argument is that a larger annual test size is needed to
compensate for stale data in Sample 1. The question of test size
will be the subject of the following chapters. Of course, if there
is no evidence of a change in reliability over the years, there is no
reason to purge old data,

Section 4. Optimum Test Size

In order to determine the number of missiles which must be
procured in the next few years to support a test program through a
long period of service life, one must have an estimate of the average
annual consumption in testing. To get this estimate, especially if
it be glorified by a phase like "optimum test size," one must know
what questions the tests are supposed to answer and how frequently.
This in turn means "getting into the skull" of the JCS. We must
assume that first of all there is sufficient reason to conduct the
tests, even at the risk of compromise of properly-classified
information., We know that there will be a finite inventory, and that
testing reduces that inventory, whether or not it be formally divided
into tactical and non-tactical portions. We can then ask the

"'J-‘)'l""' . 3% 3% 1% W W W LW N P - ) '\-.’.‘\‘\\'\.‘»\ , gy » AN " LN T
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™ question: how does the result of an additional test change our
§ perception of the system reliability, and so of the sufficiency of
B the lesser inventory of missiles to conduct a military mission should
S it be committed to combat at a future date? Possible answers are
‘(} discussed in Chapter V. As there are circumstances under which the
N answer is insensitive to the size of the inventory, we shall spend
IS more time considering the case where inventory for test has no
f) tactical mission.
N
1‘& A long string of heads or tails when flipping pennies is not
o, impossible or even incredible; but after some number, one is entitled
°§: to wonder if the coin is biased., Similarly, when testing a missile
A which is alleged to have high reliability, a string of failures--even
a short one--challenges the presumption; contrariwise, a long string
M of successes tends to be uninformative. In either case there is a
;ﬁ: practical limit to the value of the additional information in an
N outcome merely extending such a string.
N
';' To address this problem we shall invoke the discipline of
A0 Sequential Analysis, to include Sequential Probability Ratio Tests
3\; and test series truncation. Much of this is "old hat", having been
W4 developed in World War II, most notably by Abraham Wald (Reference
Wy 11) working on military problems, and largely standardized by now.
¢ It has recently been reported that the methods were independently
. developed simultaneously by Alan Turing while working at Bletchley
‘ég Hall to crack the German ENIGMA codes (Reference 12). More
,&g importantly there is recent substantive new work not yet "codified"
,ﬁq in text books, Two applications of sequential analysis to the
b Pershing missile test problem will be presented: one by Nozer
ot Singpurwalla and Robert Launer (Chapter III) and one by Michael
) Woodroofe (Chapter IV)., While aspects of the treatment will appear
rots more "frequentist" than Bayesian, both evolve into completely
\j Bayesian solutions. In this paper I shall extract from their work,
e and comment on it as appropriate. The author of this memorandum is
';{ not by profession a statistician, and so requests that the original
Wy researchers not be blamed for errors in translating their work into
® this format.
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Chapter III

LGS

Launer and Singpurwalla's Proposal

Py
X

! ~.‘1JL-" /l

The following submission by Launer and Singpurwalla is the
. product of over a year of research by the authors, initiated and
Aol guided in discussions with the writer of this note. I believe it
j%‘ successfully addresses the problem placed before the authors. Note
" that all the appendices to this article are to be found at Appendix

R E.

" ot
-

As the numerical example in the following exposition employs

W fictitious data and arbitrary values of the parameters o , (<3 and‘c
hﬁQ the numerical results should not be taken as applicable to the

00 Pershing II problem. The dependencies and the savings from

A sequential analysis are however clearly indicated, the penalty when

! tests are batched, and the potential for squeezing information out of
o small samples. The next chapter reports further steps toward savings
through careful test design.
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A MONITORING THE RELIABILITY OF PERSHING 11 MISSILES--
"

’").n A CRITIQUE OF THE CURRENT METHODOLOGY AND A SUGGESTED

N ’ COMBINED BAYESIAN-SAMPLE THEORETIC APPROACH +

. .

v

i

[V

o by -

:;l

‘_0::' Robert Launer*

L2tk Nozer D. Singpurwalla*#* -

ol '

A

o ‘

w0 1. INTRODUCTION, TEST REQUIREMENTS, AND ASSUMPTIONS

=

'y T

. The reliability of the Pershing Il missile arsenal is an unknown
chy : .
-r": parameter which presumably could change over time. To monitor the re-
¢
j,:: liability, and also to ascertain the amount of change in reliability,
o if any, a sample of n Pershing II missiles is chosen from the ar-
o ’
N senal every year, and each missile fired to observe its success or fail-
o

)
:!:'é ure. The testing is destructive, and the arsenal inventory is not
;"i.): replenis}{ed. Thus, it is highly desirable to reduce the number of test
" —_
A
:,.‘. missiles fired year after year. Also, if possible, it is desirable to
[ .

el have the total number of missiles fired per year be a multiple of three--
®
:;.;'2 that is, 3, 6, 9, etc. A stated requiremgnt with respect to the year by
I‘“ X

:'.n:: year detection of change in reliability is that a change of 8 should
l"

l“ .

o be detected with a probability of m or more. Since the test data are
|"
R

o .
E.\ + The authors' appendices are incorporated in this paper as Appendix E. DW
X .
3V * U.S. Army Research Office, Research Triangle, N.C.
** George Washington University, School of Engineering
: and Applied Science, Washington, D.C.
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ésp. of a pass-fail nature, a correct probability model for describing them

is the binomial.

” Our goal is to determine a sample size and a decision criterion
that will satisfy the above requirement, and minimize the total amount
) of testing. Since each missile is expensive to produce and test, there

oy is a keen desire to incorporate into the analysis all knowledge that is

available, both, from the previous tests and engineering experience.

Thus a Bayesian point of view is natural here.

S

w8

N ‘
_f:x
o 2. CRITIQUE OF PRESENT METHODOLOGY

o
2N Based on our reading of the pertinent literature that has been
s

:jﬁ made available to us, and our discussions with several people familiar
‘v N

LNy

~" with the test, it is our understanding that the current methodology for

analyzing the Pershing II data is based on Fisher's exact test, hence-

forth FET. We claim that this technique is inappropriate for the situa-

tion described above. Furthermore, a modified version of the FET which
has been used in similar situations is not appropriate, either. Whereas
the FET can be used to detect the equality or otherwise of two binomial

populations, it is not designed to detect a specified difference between

the two binomial parameters in question. Furthermore, FET does not ad-

dress the key question of sample size selection, and thus fails to ans-

wer the main question posed by our problem. A choice of the sample size

should be based on an assumed or target value of the reliability, and

Y

this is nowhere apparent in the test.

W

Given a sample size and the test results from this sample, the

L FET can give us the "p values" for deciding upon the difference or

|
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$§§ otherwise of the two binomial populations in question, and this may be
-VLk the sole motivation for using this test here.
s v .
g
4
:’:; | 3. THE COMBINED BAYESIAN-SAMPLE THEORETIC
e APPROACH PROPOSED HERE
é;f Our proposed approach addresses the issues posed before, and
“;g attempts to do this in an economical manner with respect to sample size.
bl Since reliability changes over time, we introduce an index t ,
‘2} ! where t =1,2,... ; thus t =1 denotes the first year of testing,
:i t = 2 denotes the second year of testing, and so on. Let n_ denote
%‘} the number of missiles to be tested in time period t ; n, is the
\ ¢ (unknown) sample size, one of our decision variables. Let x_ denote
3
'» the number of missiles that fire successfully in time period t ;
Ko
. note that 0 < X, < n. .
T: . Let p_ be the chance that any missile fired at t will fire
ﬂq . successfully, or its propensity to do so. Since P, is unknown to us,
'3 we express our uncertainty about it by a probability distribution, say
;% g(pt | previous failure data, if any, and H) . Thus P, is treated as
‘} an unknown parameter, and the vertical line in g(+) denotes conditioned
: upon or given, and H denotes our background information about P, -
ﬁ If we have no previous failure data, then g(pt l H) denotes our prior
? distribution for pt ; otherwise g(- l *) denotes our posterior
4 distribution.
g If for each time period t we judge the missiles in the arsenal
‘2 to be exchapgeable (we have here finite exchangeability), then it is

appropriate to assume that given P, the probability of observing x,

4 % J—
U ! 060 ) ~ 3 - )
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successful firings in a sample of size n, is a binomial distribution;
that is,

n_-x

nt xt t t
(1r- pt) (1)

ses i firings =
P{xt successes in n ngs | pt} x, P,

The choice of the sample size n, is based on the following sample
theoretic arguments for testing hypotheses about pt .

1f Py the chance that a missile is fired successfully at time
t , is large, then the number of failures in a sample of size n. would

tend to be small. Given an n, and having specified a p_, let x*

t t

be the largest integer for which the chance of observing x: or fewer
successes is small, say a ; that i;,

xk

T nt j nt_j
P{x* or fewer successes in n I p. .} = 2 p, (1 -p) £a .
c t t® s {g] ¢ t
(2)

If p, were to change to p,_ - A, with A large, then the num-~

t
ber of failures in a sample of size n, would tend to be large; if A
were small, the number of failures in n, would tend to be small. Thus,

for some small number g ,

P(x: or fewer successes in n _ firings | (p, - D)}

*t (o, ; n -3 3)
‘jZo (p, - B (L -p_+8) > 1-8.
=0 {1

If in (2) and (3) we assume that P, » O, B, and A are the
only known quantities, then (2) and (3) can be simultaneously solved to
obtain an n, and x: . Once this is done, (2) can be used to test the
null hypoéhesis that the reliability of the missile arsenal at time ¢t




is Py > with a Type I error o . This is done by acccpting (rejecting)
the null hypothesis whenever X >() x: , where X, is the total number
of successfully fired missiles in a sample of size n, . If a= .25

and B = .25, then (3) assures us that n, and x: are suitable for
detecting the desired changes in reliability. Note that (3) describes

the power of the test as specified by (2), for changing values of 4 .

If the null hypothesis is accepted, we conclude that the reliability of
the missile arsenal at time t is P, -
In our case P, is not specified, as it is an unknown parameter
which is liable to change over time. What we have instead is
i. a prior distribution for P, at time (t-1) , say
g(pt t (nl’xl)’ (nzsxz): ceey (nt"l,xt-l)’ H) s T 22 and
glp, | 1) ;
1i. a posterior distribution for P, at time t , say
g(pt | (nl,xl), ceey (nt,xc), H), for t21.

Thus, if we uncondition on P, » (2) and (3) would become

X x: n un -j
I | & ela-p) " ) Hydp, <
o | P (l-p, 8(p, | (myu%)s wvny (mp_yux ), Jdp, € a ,
0}

1 xx .
t nt i nt-J
f ) pt(l-pt) glp, | Hydp, € @ , for t=1; (&)
o =0 U3
1 x: 'nt 5 nt~j
f jZO j (p -8)" (1-p +8) g(pc| (myaxy)senes (o yux4)s H)dp,
A \

21-8, for t 22,
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5
! and

&
(' y X [n n_-j

’ . Z

’b ) Yo -a)la-p +a) € glp, [H)dp, 21 -8B, for t =1,
' . t t 1 1

n =0 L3

‘ (5)
oy

! In order to obtain the pair (nt,x:) , for t 21, we need to

"y

'J solve (4) and (5) simultaneously. Note that a solution to (4) and (5)

B : would depend on our choice of g(ptl *) . I1f for example, g(ptl *) is
173

a member of the family of beta density functions, then (4) and (5) would :
v
‘~: ¢ involve incomplete beta functions and would call for numerical methods
> |
)
‘:: for solving them. A method for undertaking this is described in Appendix
)
A. A computer code for 1mp1ementing the method of Appendix A is given in

ﬁ: Appendix B. An example using the above is in Section 5.

if As an alternative to the above, and one which is easy to imple-

; ment, we replace Pe in (2) and (3) by St » the modal value of

Kre

1' )

5; g(p, | (nl’xl)’ cany (nt-l’xt—l)’ H) . The modal value is the most

:ﬁ : likely value of P, > given all the previous data, and is determined by

[

~ the prior distribution g(pt | (nl,xl), vy (nt-l’xt-l)’ H) . The

N

K> . .

gh posterior distribution g(pt | (nl,xl), cees (nt,xt), H) represents our
)

n best assessment of the arsenal reliability at time ¢t , given all the

data up to and including that obtained at t . 1Its model value ﬁt

could be used as a single number which describes pt . In the next sec-

W
i
" tion, we discuss an implementation of the above alternative procedure.
¢
Ko An implementation of the main procedure follows along similar lines,
b
.. with the exception that in computing the pair (nt,x:) p, 1is not
::‘ replaced by the modal value of its prior distribution.
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N 3.1 Assessing Our Uncertainty about Agt__and Procedure Implementation

( Since p, can take values between O and 1, a convenient but

v
,S§§ | flexible way for us to express our uncertainty about pt is via the
f&gs family of beta density functions on (0,1). Thus,
;:) 1. We start off our assessment and monitoring procedure by
g ~ assigning a prior distribution for P, » say g(pll Y,6,H) ,
E%:, which for the two unknown parameters Y > 0 and &§ > 0 is

" a beta density function
f2s T(y+8)  y-1 5-1 |
3\,:-:{ 8, | Y:8,1) = pedregy by -7, 0<p <1 ()
,;T' The modal value of the above density ié
o ~ y-1
:j-' Py = y+86-2
o
::ﬁ Clearly, Py best describes in the form of a single number
. Gf our assessment of 51 , prior to testing at time t =1 .
;é}? Furthermore, 51 is also to be used for determining the pair
+¥;; . n, and xi » for testing at time ¢t =1 .
f{: 2. We thus replace P, by ;1 in (2) and (3), and simultane-
E%Z ously solve these to obtain n1 and xI . [In Appendix A
:T:; we discuss how to obtain ny and xf without using 51 ,
~::.: and by directly solving (4) and (5).]
3$§f 3. We take a sample of size nl and test these to determine xl .
‘zf the number of missiles that fire successfully. If X, >(<) xi .
E?t we accept (reject) the hypothesis that the reliability of the
';sﬁ missile arsenal at time 1 {is ;1 .
’i;% 4., If we accept the above hypothesis, then we update our opinions
v. N
L)
SQS
Ay

%
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about Py in light of n and x via the posterior

1 1
distribution g(pl] (nl,xl), H) . The modal value of this
posterior distribution is

~

Y+x1—l
P1=W__6:n;__2':
and this number best summarizes our assessment of pl after
testing at time 1. VWe now go to step 5.
If the aforementioned hypothesis is rejected, our choice of
Y and 6§ needs to be revised. This should be done follow-
ing a more detailed analyfis about p1 ,l-We then go back to
stage 1.
The posterior distribution g(pll (nl,xl), H) now serves as
the prior distribution for p, , and its modal value 61 is
set equal to 52 + Thus

Y+xl~l
p2=m]'.:2"
and P, is now replaced by 52 in (2) and (3), which are
solved for n, and x5 . [In Appendix A we discuss how to
obtain n, and xg by directly solving (4) and (5).]
We now repeat the steps 3 through 6, gnd continue the above

procedure. Thus, at time (t-1) we have

5 } ; } Yy + xl + X, + ... + xt_1 7
t-1 t Y+6+"1+n2+"'+“t-12

as our single best assessment of the reliability of the arse-

nal at time (t-1), after observing the results of the test at

IUROOUNONO0
18t Mt
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time (t-1) . It also represents our choice for Py in

equations (2) and (3), for determining the sample size n,
and the decision variable x: .

8. Suppose that at time ¢t , we test nt items, observe R
successes, and based on this result, reject the null hypothe-
sis that Py = St = ﬁt-l . Then we conclude that the reli-~
ability of the arsenal has changed from its previous value
6t-l . When this happens, we investigate the cause for this

change, choose some new values, say Y' and &' , and

by

estimate Pe ;

Y'+xt—l
Py = y'+6'+nt—2 :

We now continue as before, bearing in mind that the previous

e (n,,x cee b are no more appropriate for
date (n;,x), > (1%, 1) pprop
" inclusion in our assessment process.
An alternative to the beta prier which has properties of rebustness
is currently under investigation. However, there 1s no assurance that

the alternative prior will be void of computational difficulties.

3.2 Sequential Sampling to Reduce the Amount of Testing

At any stage t , given an n, and x: , a further reduction

-
.l

in the amount of missiles tested can be achieved if the testing is done

t‘.r("

oS

14

sequentially, one {tem at a time. Specifically, we would test one item

"» l"l,

iy

at a time, and stop the test as soon as X, the number of successes is

( larger than x: .  Thus, ideally, the number of missiles tested could be

ek
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as few as x: + 1 ; this implies

mum of missiles tested would of course be no greater than

10

a saving of n

t

ERACS afh MAS ane AR AT R abh st 438 g BT s
Y -

- x: ~ 1 . The maxi-

n . The
t .

resulting sample size, that is the number of missiles actually tested

at each stage is known as a curtailed sample.

For the above scheme, giv

en p_ we can compute E(ntlpt) the

expected number of missiles tested using standard arguments-~these are

shown later. However, since P,

is not known,

we average out pt

with respect to its prior distribution to obtain E(nt) , the un-

conditional expectation of the number of missiles tested at each stage

under the sequentially taken curtailed sample.

This 1s shown below.

Given n and x* , the probability that n_ = x , when a

t

sequential sampling scheme is used is

t

x-1 ) n -x}¥ x-(nt-x*)
(l—p)t p , n - x* < x < x*
t t t =
n_~-x*1
CCJ
[ x-1 )
pln =x]p.} = n_-x* —(n_-x*)
t t ekl _ t 't x (nt x¥
knt xX lj (1 pt) P,
( x~1
+ x-x*-1 x:+1
x—xg-l (l—pt) P, , x¥<x<mn .

In order to obtain P{nt=x} s wWe average out the above by g(ptl') »

where

glp |*) =

N AT AT AT AT AT A
N A AT AT AT s

I (v46) Y-1 §-1
TOTE) Pr (1-py)
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When the above is done, we have

ey
Ly

x-1 F(x-nt+x:+y)T(nt-x:+6)

P
» ¥
™ 'f

I'(y+5)
F(y)T (%)

n —xt-l T (y+8+4x)

Y

t
W,
oy

x-1 T (y+6) F(x—nt+x:+y) (nt—x€+6)
r(y)r(s) T (y+8+x)

p[nt=X] =

;-

Y
rn

F(Y'HS) (x:+l+Y)I‘(x—x*t—1+6)
T(y)T(6) T (y+5+x)

.'—t
LAk
]
]
Y
[l 3
Pt

i
A

for x: <x<n_,

from which E(nt) can be computed. The above formula can also be used
L ¥

]

",

X

to plot a3 histogram of the various values of n, o, for each stage t .

If the sequential tests are to be done in batches of 3 rather

O
'ﬁ?;5ﬁﬂ£5;J‘

than te%ting a single item at a time, the savings in the number of items

-

tested will be less. However, this is still better than compulsarily

2L

B testing all the n, items. We do not have a general formula like (9)
-

g% above to compute the expected sample size. The calculations will have
)

to be done on an enumerative basis. These are shown in Appendix C.
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4., CO-MENTS ON THE PROPOSED APPROACH

The proposed approach is a combination of sarple theory and
Bayesian statistics. The former is uséd to deternmine the sample size,
and the latter is used for inference about P, - One may express reser-
vations about a procedure in which two philosophical viewpoints are used
simultaneously. However, upon closer examination of the approach, such
a concern should be dispelled, since the sample theory approach is not
used for making inferences about Pe s it is used for choosing a sample
size. The selection of the sample size after averaging éut P, with
respect to its distribution g(ptl *) , see equations (4) and (5), makes

our analysis fall under the category of what is known as pre-posterior

analysis, a perfectly legitimate device within the Bayesian paradigm
{cf. Box (1982)]).

The monitoring of pt is done within the Bayesian framework,
and besides "coherence'" it has the advantage of inducing economy by
virtue of the fact that all our relevant previous data are incorporated
into the analysis. Furthermore, it allows the incorporation of any

engineering or judgmental knowledge that we may have about the missiles

into our analysis -- this is do&e via the parameters Y and & or

vy' and &' , etc.

o5
o
i

’
%

i

5. APPLICATIONS TO DATA

o

r:::, .

L Our proposed approach is designed to specify a sample size for
-

Hj testing at each stage, and thus its effectiveness cannot be fully ap-
RS

b, preciated if we apply it to existing data. However, we shall apply it
7
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to some given (sanitized) success failure data to demonstrate the fact
that the computations of Appendix A can be undertaken, and to compare
the results of our main procedure and the simplified alternative, de-
scribed in Section 3.1. In Table 1, we présent the given success fail-
ure data, our Bayesian estimate of the mode of pt at each stage using
a uniform prior distribution at stage O updated at successive stages
using failure data, and the values of x: and Nt using the main pro-
cedure and the alternative.
A few facts emerge from an examination of Table 1.
1. A large number of items to be tested is Ealled for, when
the prior is uniform, witﬁ mode .5 . |
2. The number of items to be tested is the smallest when the
mode of P, is closest to 1, namely, at .9 .
3. The number.of items to be tested under the main procedure
is always equal to or larger than that under the alternate
procedure. This is because the alternate procedure puts all
the probability mass at the mode, whereas the main procedure
disperses the probability mass over ([0,1] , with a concen-

tration at the mode.

3.1 Results of Curtailed Sequential Sampling

The sequential sampling approach discussed in Section 3.2 was

b

applied to the data and the results of Table 1. The n, and the x:

L

R

values considered were those given by the "alternative procedure"; this

b

procedure ‘gave us smaller values of the n_'s than the main procedure.
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Results for Main Procedure and Alternative, Using Sanitized

TABLE 1

Data, and Assuming a Uniform Prior at Stage O

— T S = —'-'—-_[:—' TTERIEE R S T —= o= ==
Computed Values of x* and n
t t
Data
Stige :?de Main Procedure { Alt. Procedure
Py
Success | Failure * n x

Xt t xt D¢

0 .500 2 29 5 17
1 6 0 .875 8 13 .. 9 13
2 11 1 .900 | 10 14 8 11
3 11 1 .906 11 15 8 11
4 11 - 1 . 909 8 11 8 11
5 9 3 .875 9 13 9 13
6 9 3 .853 10 15 8 12
7 8 4 .825 9 14 9 14
8 4 0 .833 11 17 9 14
9 3 2 .820 10 16 9 14
10 9 0 .837 10 15 9 14
11 8 1 .841 10 15 10 15
12 7 2 .836 10 15 .9 14
13 9 0 .848 10 15 8 12
14 7 1 .850 10 15 8 12
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Al n
;\,:'é The expected sample sizes when testing is sequential, in batches
O .
0 .of 3 as well as one item at a time, were computcd. These are shown
,l.r'.
LY in Table 2. The advantage of testi’.ng one item at a time is clear
-\._,Q
NN from an inspection of columns 2 and 3 of Table 2.
ASAY
:‘: We also note the overall reduction in sample size using the approach
)
O\ of this paper. The expected sample size can be as small as 9.
Y
:'j The detailed calculations leading us to Columns 2 and 3 of
B
‘5’- . . :
W Table 2 are given in Appendix C.

e
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‘;S; i 6. PROPOSED FUTURE WORK

TN

":‘f An objectionable feature of: the proposed procedure, from a
:f Bayes.ian point of view, is the testing of hypotheses about f)t

_:_.-:’: using the decision variables x: , £t =1,2,... . The proper Bayesian
Al

Al

way to study this problem would be via a Kalman filter model which

- .

1]
2
.

contains two unknown states of nature, P, and m o where m_  denotes

1

the drift in P, * The Kalman filter would not only have the ability

hS

TS

-ty G
Pt
L N

.

')~ to monitor the reliability of the arsenal, but would also provide us
}' with a vehicle for predicting the future arsenal reliability. The
N

E;'_ following are our ideas on how a Kalman filter model for this problem
.ﬂ' can be developed.

KN

Let Yt denote some transform of xt/nt ,» and one which makes

.-f;.%

Yt approximately normal. The observation equation for the Kalman

-

" filter model would be
L1
‘V'.' +
q
, where Yl't is a disturbance term with mean 0 and variance oit .
X
‘,;.:f We can postulate the following as system equations:
ol ~
% L]
’
‘-*: = +
A% pt mt th » and
I. )'
. - + .
"3 Me Pe-1 T Y3p
A
e ~
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TABLE 2
Expected Sample Size for Curtailed Sequential Sampling in Batches of

Size 3 and Size 1.

Stage Expected Sampleﬂgg;;- Expected Sample Size

t for Batch Size 3 for Batch Size 1 x: n

0 11.84 10.91 5 17

1 12.03 10.66 9 13

2 10.29 : ) 9.45 8 11

3 10.37 9.51 ' 8 1

4 10.40 . 9.54 8 11

5 12.28 11.08 9 13

6 11.07 10.16 8 12

7 12.84 - 11.74 9 14

8 12.79 11.69 9 14

9 12.87 11.78 9 14

10 12.78 11.67 9 14

11 13.59 12.72 10 15

12 12.78 11.68 9 14

33 13 11.14 10.22 8 12

~.; 14 11.14 10.21 8 | 12
W

Y,

o~ - ;JJJ)J‘J‘.L'IQ“‘%”"J.’
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In the above equations, we are saying that p the unknown state of

t
nat&re, consists of a low frequency drift term mt » which represents

a smooth variat?on in P, > and Yop which is a high frequency compo-
nent that represents drastic changes in P, - We assume that th is
a normal variate with mean 0 and variance Ogt . The drift term is
assumed constant, except for slight disturbances in it; these are
described by Y3t , which is also assumed normal with mean 0 and vari-
ance Oq, -
The Kalman filter solution wouid result in uncertainty statements
about P, and mos via their distribution functions. These, of course,
would be conditioned on (nl,xl), cedd (nt,xt) . Large values of m
would indicate a drift in the arsenal reliability, and so m could be
used to monitor the change in the arsenal reliability,.

It appears that the Kalman filter solution would have several
advantages over the proposed approach. The problem of choosing n, in
the context of a Kalman filter is an open question, and this calls for
some basic research, assuming that this has not been done before.

A third possible direction for future research is the development
of a sequential procedure for testing the missiles. A sequential proce-

dure employing Bayesian considerations may add a further dimension to

this problem.

M‘&«m%ﬁmﬁ




Chapter 1V
Woodroofe's Proposal

The proposals of Michael Woodroofe are not yet formally
documented, but are contained in a series of letters and lecture
notes (References 13~17). In this chapter I shall mostly quote from
this material with the author's permission, noting that any published
versions may differ markedly from those given here. I accept
responsibility, however, for the accuracy of the material quoted and
the interpretations and extensions of it.

All of the calculations described in this chapter were carried
out by Dr. Woodroofe and/or myself. I have programmed most of them
for an HP-41C, and listings are given in Appendix D. Instructions
and copies on magnetic cards are available. Dr. Woodroofe has used
an Apple computer,

Section 1. (Extract from Reference 1l4).
The Truncated Sequential Probability Ratio Test.

Illustration with a sequential test of the type of savings
which are possible and the loss of information which results from the
savings. Note that the process starts with the conventional
Uniformly Most Powerful test, to be terminated when a specific number
Sn of failures has been observed; or when, out of a planned test of
size n, the number of observed successes assures that the number of
failures cannot reach Sn; or after n tests if not terminated earlier,
The choice of n is at this time arbitrary; the value 12 was used in
the example to permit comparison to the Pershing test program, past
and planned.
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"':; _ /We start with a discussion of/ the problem of sequentially testing
¢, /such that/ that a failure probability does not exceed a given level. I wi
illustrate the type of savings which are possible and the loss of infor-
‘.'\-‘.: mation which result from the savings with a specific example.
. 4 : '
RS let X, , .. X be l.l.d.“random variables which take the values
B 1 and O wlt’\ probabl‘%tles P and q= l-p, where 0<pc<1, Is
' unknown; and consider the problem of testing
,.*- ) H . < .15 .
N ( ° P13
r-
, Let S, =X, +... +X , Clckcl2,
W, Then the (UMP) test which rejects H_ If and only if S .'> & has power
function ° 12 =
150 N8
W 3 N2\ k n-k
e (M 8 (p) =1~ I " LA , 0O<pcl.
:I‘:': k=0
~ .
") Of course, it may not be necessary to take all 12 observations to determi
whether S, > 4 . The test may be curtailed at time
>, , t, = min{k > 1: Sk_>_‘0 or Skik-S) .
V,:' :
Then
o 12 4
-1 “k-k
(2)E(t)-t'k()pq
U
% | PTO" ke \3
AN
~
o 12 k-1 9 vk‘9 .
®. *Zka)qp y O0<pc<
18 k=9
A
w®
\:_':
-
" .
'(- * Identically and Independently Distributed.
",' *%* Uniformly Most Powerful.
v
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(J . Is the expected sample size of the curtalled test.

s

Selected values of BO(P) ‘and Ep(to) are listed in columns 2
and 4 of Table 1 below.

ﬁ;j Observe that the type | error probabllity Is .0922 when p = .15 an

‘ the type |l error probability Is .2253 when p = .k,

| tried to construct a truncated version of the SPRT whose power
funct lon matched B° as closely as possible. Wald's approximations

allow one to match the power function at two points. | plicked .15 and
.40. Wald's approximations then give formulas for the upper and lower
stopping boundarles in the (k, Sk) plane. These are listed In columns
2 and 3 of Table 2. There are two problems with these boundaries: Wald'
approximations tend to overestimate the error probabilities; and | wanted
the test to take at most 12 observations. After some experimentation
with formulas (3) and (4) below, | was led to the upper and lower
boundarles listed in columns 4 and 5 of Table 2.

Thus, | considered the sequential test which takes
t = min{k > 1: S, <a or Sklbk)

observations and rejects Ho if and only Iif St 2-bt » where a, and

bk are as In Table 2.

- The power function and expected sample size may be easily computed.
Let '

fk“vp)- nﬁswd rf > k}

for k=0, ... , 11 ,J=0,1,2, ..., and 0<p=< 1. Then the
power function and expected sample size are
1

) B(p) = kEI fea (b le @) " p
and
12 :
@ Ep(t) - kfl k{f, (b1, p) p+ £ _ (a, pla)

for 0 < p< 1l . Thus, one need only compute the values of fk ; and this
. Is easy in view of the Initlal conditlons, f (0,p) = 1 and
) fo(J,p) =0 for J ¢ 0, and the recursion

(5) . U0.p) = [p F_(=1,p) +a £ | U,P] Hay <) <by)

PP,
-..‘ b
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e M\for k=1, ... ,12,)J=0,1,2, ... ,ad 0<p<l . Here I
(RS denotes the Indicator of A.
T
-\ The power function and expected sample size may be computed from
0 (3), (4), and (5). Selected values are listed in columns 3 and 5 of
Table 1.
‘O
T Observe that the power functions Bo and B differ by at most
) .0103 for the values computed. This Is © much better than | had _
) expected when | began the exercise. Observe also that the expected |
Ny sample size of the modified SPRT is substantially smaller than that of | {
@ the curtalled test when p is small.
ot
2‘_5 After the test has been performed, one may set confidence limits
~5 0 for p by using the relatlionship between tests and confidence intervals.
-\.j Order the possible outcomes In a clockwise manner, as in column 1
e of Table 3. For each r , C < r <1, one may test the hypothesls
1' N < >
! Kr. p2r
o
:-_; as follows: the acceptance region A(r) of the test consists of an
i initial segment of outcomes, In the order of Table 3; one includes
'3 . precisely enough outcomes to make
:‘i P (A(r) ) > .90 .
v Then, after the test has been performed, an upper confidence bound p
' for p may be obtained from the relation
® « '
7 | p<p  IFF (£,5) € Alp) .
0..‘
::" _ This is essentlally the approach of Siegmund (1978, Biometrika), but
:n:: substitutes exact calculatlions for his approximations.
A
.‘. | list some approximate 75% upper confidence bounds for p In Table
P These were obtalned by llinear interpolation with formulas like (3).
',t: To the extent that the modified sequential test takes fewer observa-
\-‘j tions than the curtailed test, one may expect less accurate estinfation of
e
' P.
S
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"-'i; Table 1: Power Functlons and Expected Sample Sizes
)
;:"‘l, ’
i -
:!:?f« T B_(p) B(p) £ (1) £ (1)
T .05 .0022 .0022 9.47 6.93
:;I:i R .0256 . 0251 © 9,92 7.85
. .
bl .15 .0922 . 0899 10.23 8.62
" .20 .2054 .200k 10. 40 3.13
IR
2 .25 .3512 3434 10.31 9.35
B : .
b .30 .5075 4978 10.02 9.30
~
. .40 7747 L7644 9.00 _ 8.57
i .50 - .9270 .9204 7.77 7.42
v
\:',:: Here: Column 1 Is computed from (1), column 2 from (3), column 3
K. from (2), and column 4 from 4. ' :
®
S
.r:::?
»s
..'.rl .
o Table 2: Upper and Lower Stopping Boundarles in the (k, S:k) Plane
A.,:. The SPRT Modifled
N * *
‘.
- k " by % b
A
‘\‘)‘ ] -1 2 -] 3
% 2 ! 3 -1 3
o
j:.; 3 -1 3 -1 -3
e b -1 3 -1 L
o 5 0 3 -1 L
b 6 0 :. 0 4
K .
g 7 0 1, 0 .
"::l.. 8 ] !l 0 h
b S b 4 1 4
: 10 1 5 1 L
-
o 11 ] 5 2 L
0 12 2 5 3 4
X
"
i Here columns 2 and 3 are from Wald's approximatlons; columns 4 and .5
'1 are ad hoc approximatlons.
'o::.o
@
o
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Table 3: Approximate 75% Upper Confldence Bounds

Outcome Confldence Bound

t St

.9
.70

.6
.55
.5
U5
42
39
.34
.29
.21

J(‘-
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)
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Comment, by DLW:

As indicated in Chapter II1I, expectations of ? and E can be
cornputed based on a prior probability distribution. Closed-form
colutions exist for “o and Ep(to) for a Beta prior, among others.
For “(p), and Ep(t), numerical integration is necessary. Other
indices derived from the fk(j,p) in manners like that for [oor E(t)
can also be meaningfully be averaged over a prior distribution. As
Fp(t) has here a narrow range of variation, its expectation value
will not be very sensitive to the choice of the prior distribution.
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v Section 2. (Extract from Reference 15),

) cection <.
; To clarify some of the points raised in Secticn I, Woodroofe
\ provided a more extensive treatment of the development of the limits
: on observed successes and failures at which the test is terminated.
i It begins with the method described by Wald (op. cit.) and then
K continues with a procedure, somewhat judgmental, for modifying those
:j boundaries to reduce the expected size of the test while retaining
B its power.
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O 1) Testing Hy: 8 > .15 is the same as testing 6' =1 -6 < .85, If

A you want to have

%

. Pg{decide 8' > .85} < qp for 6' <..85

: ard

: Pgldecide €' < .85} < ay  for all 8' > 8' > .85,

Kl ‘,me,_-eqoandnlaresnalland.85<ei<1,thenyoucammotsinplymvetsethe
) roles of zero and 1 in the test described in my earlier letter. A néw test
! must be constructed. See (2) below. -

: ~In L?Ecticﬁ_ﬂ @ was the probability of a system failure.

~ 2)- Far testing Ho: 6 < 6g at level ag with type II error at most a)

b when 8 > 63, where 0 < 89 < 83 < 1 are specified, -the SPRI' continuves sampling

as long as

y .

: 1/A< Lp <B o (*)
.y, . . '

q vhere B = (1-a))/ag, A = (l-aga), and L is the likelihood ratio. One finds
;’

q
10.
N

N
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exp {815, - n 4p)

I l‘.
'
£)

]

where

. o——

log 8)(1-8g) - log 65(1-6))

AP
>
st
1

L ] - o e w v
w

ag = log (1-8g) - log (1-8))

‘Wi and o S, = x1+,';.+xn, n> 1.

.&,
'\

Since S, are integez: valued, eguation (*) may be rewritten

L4

L5
TR

,-.E an < Sp<bp

:;*. . o .

@ a = I %-l(nao - log A)

o ( - o - C..

= b= { %-l(mo +1og B)) +1

;.:.E where [x] is the greatest integer which is less than or. equal to x.

% - Suppose now that one wants the test to be truncated at M say. Then one
J wants boundaries a, and by, 1 € n <'M. What I did in the example was the

'!; following. let ay and by be such that

s v)" ’ g . -»

2& ay < 3y =b, -1land b, < b, ,

“ say two integers near the middle of the interval from a, to b,. Then let

U ' - - e

;‘:c': an max {anl a'M (M ﬂ)}

."

'J ' . ‘

o~ N fo; n < M. - This gives a first approximation to the boundary. 1In the examp

e I then computed the power function of the sequential test with boundaries a

; ’;: and by, and compared it with the power function of the fixed sample size tes

11y I then changed a few of the boundary points to get better agreement between
. the two power functions. The adjustments were minor and tended to make the

o Y ( continuation region fatter. |

M) .

f’ The reason that you can't pin me down on the adjustments is that it isJ

trial and error operation.

ORI
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(N (3) 1In the example,
R -
l _.‘ : Pe{t—‘k,sk = bk} = fk—i“’k - 1;8) B
ol :

:\“ al’d
[ Pgl{t=k,S) = ay)} = fx-y(ax;8)+ (1-8)
N

At - . syses .

V) Then Pg{¥; » x} is the sum of these probabilities over all pairs (k,ax) and
3y (k,bx) for which ax/k > x or by/k ? x.

Cal

3.: 4) For inverse sampling there is just one boundary. For curtailed
“ . sampling, there are two. Let

q

' tt = min{k > 1: Sk > 4)

o

A a:ﬁ —
ol

A

N t~ = min{k > 1: k- Sk > 9}

® A ) -
7 Then Eg(t¥) = 4/8
a0 , and B8 (t™) = 9/(1-8)
00 C
¢ The stopping time for the curtailed fixed sample size test is

P

;:S-J' tp = min(tt,t")

'::'_: o -

e + So Eg(tp) < min{Eg(t*),+Eg(t™)}

D, : . -

Y When 6 = .15, Eg(t™) = 10.6.
N The formulas for Eg(t*) and Eg(t™) hold for all 6; 0 < 8 < 1.
I A

W .

o . 5) I think of the boundaries as a modified S.P.R.T. In the

® example, they were similar to the curtailed fixed sample size test, but
.\,_’, sufficiently different to reduce the expected sample size by about 1 over the
" .:ﬁ range of interest. - i )
KL
S 64) The calculations in my letter to Launer are for fixed 6.. To do
(h <

r . a Bayesian calculation, one would average them over 8 values

¢"'\.‘<

1},, . -
:,'-;: - The formulas which I gave for computing the power and expected sample
,» implicitly assume that that the boundaries ap and b, are non-decreasing in n.
"'u""‘ ’
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Section 3 (Extract from Reference 16).

s )
N

» 7

The Truncated SPRT, Aggregated over Several Tests.

t’l"f.'

)ﬁ)"

Derivation of a conservative estimate of the probability
that in 10 years of testing, at 12 missiles planned for expenditure
each year, no more than, say 100, will be needed using the proposed
stopping rules,
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il N : This is to explain how savings in expected sample size may be
t "! *  translated into savings of units which must be purchased prior to the
,_! * experimentation. For definiteness, I illustrate the method with the - —
g truncated SPRT, which is described in' / Section I/ ~ =~ 77" 7
e ' i o T
gt ! In particular, recall the computation of
.‘~.’i . .
R O £(k,3;p) = PR(T>k,Sx=3),
;:Is. wheré p denotes the true failure probability, Sk denotes the number of
-Z;:.: ' failures after k units have been tested, and t denotes the stopping time.
o From this, one gets v ) :
A4S ‘ ‘ N 'S . A
D) G(k;p) = Pr(T<k) =1 - Ij=0 £(k,3;p)
.-‘ . . k]
SV and  g(k;p) = Pr(T=k) = G(X;p) - G(k-1;p)
N . -
A . fork=1,...,12and 0 < p < L.
SO .. . .
[ ) Suppose that the truncated SPRr is run n times, say once each year
] for n years, where n is a positive integer. Then there will be a .sequence
P}l /P Of unobservable true failure probabilities and a sequence tj,...,%
A of random sample sizes. - Here I regard pP)r--.,Pp as unknown paraméters, and
.,jf: suppose that tj,...,t, are independent random variables for which
Y
@.- Pr(ti=k) = g(X;p;)
d':
o
N then the calculations described below are valid, if the conditional distri-

bution of tj,...,t, given pj,...,p, is as just described.

fork =1,...,12and i =1,...,n. If Plr-+- P are really random variables1
1
\
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" Let T denotc the total number of units used during the tests,

- ;:- Then the distribution of .T is n.equized.. The disti-ibution of T is the

- convolution of the individual distributions of t),...,t;. This depends

) on P)re+- Py in a complicated manner, but it is possible to find the sharp
o bound which is valid for all possible choices of pj,...,p,. That is, it is

possible to find a function H for which

 Pr(1<k) > H(X)

Shhiy

for all X =1,...,12n and all possible choices of pP},.../Pp.

408 . I descrijbe the derivation below, ‘

N E"E»e values of H are included in Table 2 in the special case that
Y > = 10. ObserVe that then ’

'"ae

?’-". | Pr(T > 105) < .054

o for all pjs---+Pp- THC bound is reasonably sharp, since Pr(T>105) = .050
.i::: when all Of pl'."’pn are equa-l to .27.

o

While the bound is sharp, the approach is conservative, since it
ignores data from previous years and assumes the worst possible values for
PyreeeePpe 1f an independent verification is required for each year, then
some of this conservatism may be unavoidable.

20

The derivation of the bound uses the notion of stochastic dominance.
1f X and Y are random variables with distribution functions F and G, then Y
i{s said to be stochastically larger than X if and only if G(z) < F(z) for

&~

l.\,f'}
e

s all z. If X and X' arc independent random variables and Y and Y' are
"o independent random variables and if Y and Y' are individually stochastically
- larger *s% X and X', then Y+Y' is stochastically larger than X+X' (as is
o easily verified); and this result extends from two sumands to several.

® To apply this result, let
+

)
X k) = min G(k;p)

!?.::: G(k) 24
o where the minimum extends over 0 < p < 1. Then, for any choice of pjs...,Ppr
the distribution of T is stochastically dominated by the sum of n independent
°. random variables having common distribution function G. Computing G is
";f, straightforward. For k < 6, the minimum is attained when p = 0 and G(k) = 0.
o For k > 6, 1 computed G(k:p).for a grid of p values and took the minimum over
‘o this grid. The values are listed in Table 1. I used a grid width of .0l.
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TABLE 1. Values of G(k;p)

p XK= 6 7 8 9 10 11

.24 .2313  .2590 .2966 .5032 .5556 .7723

.25 .2222  .2535 .2955 .4967 15537 .7685

.26 .2144  .2496 .2962 .4923 .5538 .7661

.27 .2081 .2474 .2987 .4900 .5559  :7651

.28 .2032  :2468 .3030 :4897 .5599  .7654

.29 .1996 .2477 .3088 .4914 ' .5657  .7669

.30 .1974 .2501 .3163 .4949 .5731 .7696

.31 11964 .2540 .3252 .5002 .5819 .7735

.32 .1967 .2593 .3356 .5072 .5922 .7783

.33 .1981 .2659 .3472 .5156 .6036 .7840

.34

.35

o 5 c a e £ )

Minimm .1964 .2468 .2955 .4897 .5537 .7651 (e
Mean and St dev ¥ =9.4528 -0 = 2.1992

L= 2 (a+becads es £)

& = - (lz««)&-ﬁ«tu.ﬁ. a- (104q)d - @+e)e - G+7) b— (7+¢)
Notes: G(12;p) = 1 for all 0 < p < 1; the minimum is zero for k < S5; y and o
are the standard deviation of the minimizing distribution.
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100
101
102
103
104
105
106
107
108
109
110
111
112
113

114

115
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TMLE 2 L

1 - H(k)

. 2026
. 1622
.1273
.0978
.0734
.0537
.0382
.0263
.0175
.0112
.0069
.0040'
.0022
.0012
.0006

.0002

Values of H

H(k) - H(k-1)

.0460
.0404
.0349
.0295
.0244
.0197
.0155
.0118
.0088
.0063
.0043
.0029
.0018
' .0011
.0006

.0003
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Comments by DW:

Let g(k) = G(k)-G(k-1). 4.1
A1)

Then d(n,z) = zzf 2% (n-k) 4.2
k= o

is a generating function of the distribution g(k). The generating
function for the dominant of m years' test results is then

— - nm
D@)m\fkc\(n,‘é\f = ?4;' Z—jé_j Sey, 4.3

and the dominant of the probability that a specific number J of tests

can be forgone is given by the coefficient dJ of zJ in the expansion
of D(n,m).

In our example n=12, and the g(k) for k < 6 are all

zeros. Sample data are given in Table 3. So, for m=10,

D Q?‘""\ = 4.4 o
E)(nz.) -*236() + 21 CSC‘OX < :23 3(93 + 2% 3@;)*2(8(7\ +Eé%(b—\

- (%(u%‘o “+ o7 %(“\[‘-‘)(l,ﬁc\ — e

R R R A




Do TABLE 3

g(k)
P = .85 P=.75
Batch Size Batch Size

k . 1 3 1 3

D 12 .2349 .5103 .0940 4433
Lo 11 2114 0 .1258 0

10 L0640 0 .2235 0
L1942 .2933 .1694 .3604
.0487 0 .0361 0
.0504 0 .1549 N 0
.1964 .1964 .1963 : .1963
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R In Woodroofe's notation

o~ dy=H(om-T) = S CLERED]

" , _

i;f In particular, in our case, -

< |- k(na)=[a ()

S A= Hzo) - W (a) = |- H(Ha % (12)

;}i is the dominant of the probability that all 120 are required (none
< can be foregone). It follows that

-~

e J,

¢y 2 & = \- \—\(‘mn—-(—j”)

3

\ L}

i& ts the dominant of the probability that at most J can be forgone; the
’{h: generating function for eJ is .
N am

A - 7T - : -

X F(oym)= 22 @3 = D(omd /(-2),

9 >

i{§ The calculation of the dJ or eJ presents no difficulty except
-ﬁi possibly in the control of round-off errors for J large. Sample

]}, results are given in Tables 4 and 5 partly repeating material-in
K Table 2, with differences presumazbly due to differences in accuracy
i between our computers.
.
X ! In actual conduct of Follow-on Tests, three failures in a row,
?:f: or two with an identifiable cause, would be sufficient justification
R for halting the test until the problem were (identified and) fixed.
O There would then remain some number of missiles from that year's

D) allocation available for intensive investigation of the fault and for
s demonstration of remediation. It is not clear that any additional
ﬁ& missiles would need to be allocated to those missions, as they could
‘W serve the FOT mission at the same time.

ﬁx

b It is a trivial matter to revise the expression for D(n,m) to
®_ treat the case of batched tests: for example, in groups of 3.

T Tables 3-5 compare the results for single and triple tests. For the
:ff data in the example, whatever the number of missiles considered an
\ﬁ adequate inventory for 10 years' testing without batching, about 6-10
,:? more would be required when fired in batches of 3. The analysis in
o Chapter II1 gave a similar result.

Q.

P Up to this point the development has assumed that up to 12

pLrn would, in fact, be exp~nded if necessary to provide the foundation
:2 for an annual confidence estimate. The question now is: why
=

g

>y

v
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- TABLE 4
20N
! P = .85
f :\ Batches of 3
.\.R-: J J
",
::: Singles y e
5 el= O
dJ= e |
‘f)l k o .0012 .001 é
f 1E-7 5.1E~Z |
" f 26 .0081
k. }%8 4.5E-6 5.1E-6 o é
e 118 2.0E=5 S-S . 6
N 117 .0001 0001 ™ 7
: .0001 0002 . ?
s 116 l : | 8
N 115 .000 - 000¢ » 9
2% 114 .0006 0012 . :
¥ 113 0011 0022 o 11
= 12 0018 0040 12
e }11 .0029 - 0069 . 13
. i0o .8322 '0123 .0902 ¥
£ : .02
e ke o o
S 7 0118 0382 . 17
N 186 .0155 0536 :
i, ios .0196 0733 . :
i 04 .0243 0975 L 20
% . .0292 1268
% 103 0342 1609
: : ) .20
o i .0392 2001
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TABLE 5
X P = .75
o
-
3 Singles Batches of 3
A
v dJ= el= dJ eJ J
o k H(k)-H(k-1) 1-H(k)
N
K< 120 SE-11 .0003 .0003 0
N 119 7E-10 1
T 116 6E-9 2
117 3E-8 .0024 .0027 3
> 116 1.4E-7 4
. 115 5.5E-7 5
- 114 2.0E-6 .0100 .0127 6
- 113 5.0E-6 7
N 112 1.4E-5 0 8
() 111 3.0E-5 .0001 .0284 L0411 9
P 110 .0001 .0001 10
N 109 .0002 .0003 11
- 108 .0003 .0006 .0604 L1014 12
N 107 .0005 .0011 13
106 .0010 .0021 14
{ 105 .0016 .0037 .1016 .2031 15
N, 104 .0025 .0062 16
' 103 .0039 .0101 17
‘3 102 .0057 .0159 .1401 .3432 18
K- 101 .0082 .0241 19
B 100 .0113 .0354 20
99 .0152 .0505 .1615 .5047 21
K 98 .0197 .0702 22
- 97 .0248 .0950 23
z 96 .0304 .1255 .1578 24
- 95 .0364 .1618 25
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annually? If an annual series should end without clear resolution,
as indeed it must occasionally according to the current plans what
then? If there is not a clear cause of alarm, there is no need for
alarm.

=y

£,

5 s

e
L AL A

¥

Consider a decision to limit the annual expenditure to 9
missiles, while extending the reporting period to cover 12 missiles
(the current standard) if uncertainty had not been earlier resolved.
In the worst case (all 12-missile series) reports would occur at 16-
month intervals, or 8 reports in 11 years. Were the JCS to accept
biennial reporting as an (occasional) substitute for annual
reporting, this would be a technically simple solution,
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Section 4 (Extract from Reference 17)

A Completely Bayesian Stopping Algorithm

[This is my suggestion for doing a complete Bayesian] decision theoretic
analysis of the stopping problem. On the basis of the preliminary calculations
described below, I estimate that this approach would reduce the number of units
needed for testing by at least one per year over the savings which may be
attained by using a sequential probability ratio test.

The approach requires the specification of a prior distribution and a
loss structure. I suggest a possible form for these quantities below; but
other choices would yield to similar analyvses.

Let p denote the proportion of non-defective items in the population.
Let hj denote a density on the unit interval, O0<p <1; let hg denote the
uniform density on the unit interval; and consider prior densities of the form

(1) g(p) =w hl(p) + (1-W)h0(p),

where 0 < w <1 is a prior parameter. Here h. may be thought of as the
posterior density which resulted from last year's tests, and w is the
probability that p hasn't changed during the past year. If p has changed,
which it may with probability 1-w, then it is assumed to be uniformly
distributed over the interval 0 < p <1, :

Suppose now that one may observe conditionally independent Bernoulli
randon variables Xl""’xk with common success probability p, given p, and let

Sk = Xl+. . .-H(_k

denote the number of successes. Then the posterior distribution of p, given
X.,...,X 1s
1’ 'n

g, () = w hY (p) + (1-w)hy(p)

S k-S
hi(p;k,Sk) < p k(l-p) khi(p)

where h:(p)

k
and - hi(p)dp=1
&
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u ~  Suppose now that a critical level py is given with the following

* properties: if p > pp, then the population contains enough good items; if

. P < pp, then the population no longer contains enough good itens and
corrective action is desirable; and if p is much less than Por then corrective
~ action is necessary. Suppose further that the purpose cf each year's test is
N to decide whether p < pg or p >.py; and define one unit of cost to be the cost
of testing one item. Then the decision problem may be modelled as follows:
the possible decisions are 1 to decided that p < pp and 2 to decide that

p > pp; if one decides that p < pp when, in fact, p »pg, then one loses Cy
units; and if one decides that p > pg, when, in fact, p < pg, then one loses
C2(pg-p) units. Here C) and Cp are positive constants. C) represents the
cost of inspecting the entire system; and the ratio C5/C; is determined by the
relative importance of the two kinds of erors.

=
L) Ll s
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These three elements, the priar distribution, the sampling distributions,
and the loss structure, determine an optimal sampling plan, one which
minimizes the sum of sampling costs and expected loss to due an incorrect
decision. To describe it, first let m denote the maximum number of tests
which oould be conducted in any given year (e.g. m = 12). Next, let

5

. g
JO0e

Li(k,s) CyP(p > p0|Sk=S) + k

DCaCAAD
—_

and LZ(k,S) CZE{ITBX(O,R) - p)lsk = s} + k . - o

-

; for k = 0,...,m and possible values of s. Thus L} and L; denote the
N conditional expected losses for the two decisions, given Xj,...,Xg, plus the.
L cost of observing Xj,...,Xk. If k = 0, then s = 0 and the expectations are
unconditional. If sampling is terminated after kK tests, then it is optimal to
make decision 1 if and only if Lj(k, Sk) < Lo(k, Sk), in which the apected loss
due to taminal decision is

4

Lo(k,Sx)= min{Lj(k,Sk),La(k,Sk}.

o,
u

Ll X AP Rg oL A S

Let p(k,s) = P(Xk41 = 1 | Sk = s)
for k = 1,...,m1 and possible values of s; and define L by

L(m,s) = Lo(m,s)

and L(k,s) = min {Lg(k,s),

T
¥y,
DA

(2) p(k,s)L(k+l,s+1l) + (1-p(k,s}L(k+1l,s)]}

[ for k = 0,...,m1 and possible values of s. Then the optimal sampling plan is
to continue sampling as long as L(k,Sx) < 1g(k,Sk), stopping at time !
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N t = min{k>0:Ly(k,Sy) = L(X,Sx)}.

SN .

"N Here L(k,s) is the minimum expected loss plus sampling cost among all sampling

") plans vhich take at least k obsevations.
ek
}:'.:j If h is a beta density, then it is possible to compute Ly and Ly as sums
oo of products of-pg and (1-pg) times ratios of factorials. I can supply the

e details, if you are interested. Using these explicit expressions, it is
i straightforward to compute L by the backward induction (2); and, once L and

have been computed, it is simple to classify the possible outcomes (k,s) as
',',"._‘.,'.j stopping points, po%nts fqr whic;h Lo(k,s) = L{k,s), or continuation points.

‘,v_"_ Moreover, the stopping points divide th-ewselvg into lower stopping points for
o which Lg(k,s) = Lj(k,s) and upper stopping points for which Lg(k,s) = Ip(k,s).
'C-s.’v If the largest (smallest) lower (upper) stopping point is called ay (resp. by),

3 then

2008 t = min{k>l: S,<a, ar S,> by}
L7 =m : & L
A . )
e and it is optimal to decide that p < py if and only if S¢ < at.
Mo
e The several tables which accompany this letter describe the optimal
Pt sampling plan in a special case in which m = 12, h; is a beta density with
A-j}}j paraneters a = 6 and b = 2, w = 3/4, pgp = 3/4, C} = 60, and Cp = 180. Here the
o ratio C3/C) = 3 equates the seriousness of deciding that p < pg when p > p
‘..:ZC:: with that of deciding that p » py when pg - p = 1/3; and the magnitudes of C;
s and Cy were chosen to make it optimal to take up to about 12 observations.
) 1 believe that this is consistent with the power and sample size requirements
s  discussed earlier. _ __ In a certain sense, these values of C; and Cp are
_::;,'.j implicit in those reguirements.

-

Table 1 lists the boundaries ax and by of the optimal test. These
boundaries are remarkably insensitive to atb. I got nearly the same values

o J?:

® when a = 9 and b = 3. Table 2 lists an ad hoc modification of the optimal

Ky boundaries which takes account of the economies of testing items in groups of
“f‘-’ three. Table 3 gives the posterior probability that p > pg for each possible
:::l. éutcome, using the adhoc boundaries. It clearly exhibits the following

I ' qualitative feature of the test: if the results of the first six tests this
Y, year are consistent with last year's results, then further testing is not

Ly optimal. Table 4 gives the frequentist properties of the adhoc test, the power
e function and expected sample size as a function of p. Observe that the maximum
e expected sample size is substantially smaller than that of the adhoc test; and

recall the crucial role of the maximum in determining the number of itens which
(e must be purchased for testing.
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, TABLE 1: AN OPTIMAL BOUNDARY
( Design Parameters: m=k, a=1, b=2, w=3/4, p=3/4, Cl=60, C2=180
: k ak bk
:
1 1 - -
: 2 0 2
\ 3 0 3
¢ 4 1 4
! 5 2 4
6 2 5
! 7 3 6
8 4 6
9 5 7
N 10 5 7
11 6 8
12 7 .8
TABLE #2: A MODIFIED BOUNDARY
' k ak bk
1 - -
) 2 - -
/! 3 0 3
’ 4 0 4
5 0 5
7 2 6
y 8 3 6
! 9 4 7
10 5 7
\ 11 6 8
Y 12 7 8
K TABLE #3: POSSIBLE QUTCOMES WITH MODIFIED BOUNDARY
!
k Sk P(p=> po)
¢ 3 0 .0251
‘ 6 1 .0084
b 6 2 .0507
7 3 .0813
8 4 L1211
9 5 .1634
11 6 .1185
12 7 .1546
12 8 .3111
¢ 10 7 4543
8 6 .5183
6 5 .6517
3 3 . 7450

*
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o TABLE #4: FREQUENTIST PROPERTIES

BETA MEAN VAR

-
N
! .05 . 9999 3.4575 1.281

.1 .999 3.8288 2.4702
.15 .9983 4.4161 3.5485
X . | .9903 4.8134 - 4.5345
.25 .9788 5.4154 5.43

.3 .9582 5.8102 6.2305
g | .35 L9244 6.3797 6.8348
.40 .8728 6.7887 7.559

.45 . 8000 7.1384 8.1442
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Comments by DW:

..,

With this note Woodroofe completes the transition from Wald's
classic treatment to a Bayesian approach, The use of a prior
probability which is a mix of two hypotheses is in part an attempt to

o address the criticism that priors can become too sharply peaked,

) neglecting the potential staleness of old data. One might still ask
N whether there should be an upper limit to the value of k used in the
N~ prior.

The loss functions included in this section are representative,
rather than my recommendation., The variable called po in the
functions L1 and L2 could have different values in the two cases.
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-7 Chapter V

-
( Other Stopping Criteria
bﬁ A possible argument for small test sizes may arise after all

N missiles have been bought: any test reduces the potential tactical
Ll . g . y . . : .
o inventory. The decision criterion is unfortunately not unique. This
V& chapter discusses a few examples.

\
o Section 1., Utility as a Criterion

‘-‘.:

:j Let 4>(P) 5.£Xé}> be the posterior probability distribution
o of p, given s "equivalent" successes and f "equivalent" failures on
"y

which tc base a prediction. Let U (N,p) be the "utility" of an
inventory of N missiles of reliability p. The estimate of the
utility of the inventory is then

L(NY = JON,p & (pys, e

Now perform a test: N goes to N-1; with probability Py
s goes to s+l; and with probability 1-p, f goes to f+l.

K Y 1
’, .-,: I- "l.{l.{‘.f‘J . h ot o o -‘.151

After the test the utility is

U(nN-1)= S U(N-1, F\\}cb(p',sw, £) =+ ('-\’W(\:',S,%)l&p.

14
i
ﬂ% The criterion is: Is U(N-1)>U(N)?
el
::j Examples of utility functions are:
-
P Np (expected targets killed);
J
= -Np(l-p) (uncertainty is reduced);
.
;§ N-T/P (excess inventory, where T is size of critical
,5 target list);
5q N
[ T(:-l - (l - F) /T] (expected damage);
N
o — _ _w\d
N ‘r[( (\ a?}(\ P\ :‘ (b=largest integer in N/T; a=N/T-b is the
'z fractional part; this reduces to Np for small N, goes to expected
o damage for large N).
2y
-!. Clearly there is a similarity between this method and that in
-7 Secion 4 of the previous chapter.
‘:j Section 2. Information as a Criterion

» Another criterion would be the information the decision maker
[ ] gains from the test about the posterior distribution of p. This
L)

;p would be applicable when no single utility function can be agreed on.
:ﬂ An example is the Kullback-Leibler information measure on two
R probability density functions
4
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Fl and F2 (Reference 18):

i -

(F‘ )F") SF (?) rox CZ AF ’

It can be applied to the current problem by defining Fl1 and F2

ﬁﬂf

o of AL

9,

F AL

-

,ﬂh respectively as the posterior and prior density functions for p.
M
N Shannon's information measure S(F1,F2) is the expectation value of
l'
:H I(F1,F2) over the observed values of success and failures.
[N
To illustrate, we may identify F2 with expression 1.6 from
g Chapter I:
::: S~ £t
o - \ - - .
':: Fi(i’)’ ? (‘ T‘B /B (Sl)‘c\)
1
@
;jg and Fl1 with expression 1.8:
N
A $+$.L ( \‘\'"
RS =)= b I- B(s s, 6 5,)
;;} so that log F1/F2 is
» (
i ED. %(P(nm{’(ﬂf’ L] o3 (1o g
b) BEG UPGrs)l () -
Qoa (I-
s = 4+ S QO + 'g'» { §
5 C+ Sy %eqb °3~" P
>
n
4:: where C is the logarithm of the gamma-function combination in curly
b braces, all independent of p. Noting that

S‘?o‘ Qo:)\) c\? = %&S '?&Q\P

ENE

3
and letting LP(Z P(}) A the logarithmic derivative of the
gamma function, the expression for I(F1,F2) reduces to

. _
< e
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T (F, ’F-,_\) = C - S‘,_{&P(nﬁy/‘) —~ ‘-V(S'-!-S i-— £ {(P(D.H\\) -q’(4\+ (.J}'

Consider now the case:where s2=n2=1 (a single successful trial),
% | (l (. i
T - 02 - U@ (40 -—*~P I+S,)1 -
"5— OSS| '\' ')

In the alternative case wher S2=0,n2=]1 (a single unsuccessful trial)

T.: ch%‘\ - {d/ (1+n) Y (i 932

and the Shannon information is S, .‘.3*’ g,I.F \
— ~

= -~
“‘ Zh\
As this never goes to zero (for finite nl), the cost of this
information must be balanced against the use made of it.

Then

L4
s 0

I have not yet found a way to apply this criterion to the
Pershing testing problem. .
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3: Conclusion
- I return now to the tasking from the Under Secretary of the
i Army, as given in the opening of this memorandum. The mathematical
t_ methods of sequential analysis proposed here for estimating
. reliability changes possess a rigor not found in the Army's current
e method, and make clear the risks in following their prescription.
_j{ They provide a basis for reducing the size of an annual test and so
N reducing too the cost of a testing program. Indeed, they even
* challenge the need for an annual report, and suggest that the
i interval between reports can be enlarged (e.g., to two years) with no
S increase in risk to management. They do not, however, encompass a
15. variety of other issues which are fundamentally operational in
AN nature: firings to support training, alternate uses of inventory,
\ﬁ system life., These must be the subject of further investigation.
f:, Readers of this report may be disappointed that such very
) different approaches to the stopping problem have been presented in
K the foregoing chapters., I observe that such a seemingly simple
j problem has apparently not been hitherto subject to the scrutiny it
>y deserves, and that it is comforting that two separate investigations
{h have reached similar conclusions.
N I see ultimately more promise in the methods proposed in Chapter
o IV, but would recommend that those of Chapters III and IV be applied
\: to Pershing using the best available data so that a refined test
" program can be determined. In Chapter III is proposed the
’ application, as yet unexplored, of Kalman filtering techniques to
this problem. This research merits monitoring, if not support.
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Unclassified Extract from Reference 4:

K. Revised Guidelines for Use in Evaluating Stategic Ballistic Missile
> Operational Test Programs.

- IDA Study S-364/WSEG Report 92 C, March 1975(S)
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(L) The varioos coaumptions rogwred 0 et U of the copinach 10 cnats i
1 § |
of the dacr coutd be ow Bicd The pootheneties wod crher date precosire sievonod n

Goinving numeiiced pofornoaenee eatin tos fooa the teet o rre hondd b Coodly delimad (o
ench pofonn e gnecere sdenced i b pepaarts The Jows vee i the colialations <hosid

b osunspariscd to peinan veahicatuon of the anaivtizy) cpproech,
I SENSITINVITY AWALYSIS

(I A senditivity znalveis should o ceonducted for cach porfemmioe oofinoe (o

Jodslate vhaahor ine neacnwsd resudls wonid ciateee Signitiesntiv if (he troetiin of test or

data cnoinaies were changed.
F. CONIIDINCE STATEMENTS

(Uy Two types of confidence statements should be provided for ezch performance
factor:

(1) A statistical coniidence bound based upon the gquantity of dzta used in
computing the factor.

(2) A qualitative assessment based upon the quelity of data usad in con*.p'.xlin?,;, the
factor. '

The qualitative assessment should be based upon an appraisal of the validity and apnlicatii-
ity of the test dzta as outlined in Part ] of these guidelines.

(U) The statistical sign.iﬁcance of differences in estimates of performance factors that
is indicated by comparisons of the results of different seis of Operational Test data should
be addressed and statistical confidence statements rcgarding thesc differerces should be
provided. The results of one method for comparing reliability samples is illustrated in Table 4.
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RTINS (oo S8 Dilleroacin
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Beo iy Heirchitii, Sotivien Signifiziice
(Suveress e ¢f (Suecess Dot Scis of Diicronze
nei) Tots Rairu) “Aand B in Relisbili*y1

30730 = 1.0 5 2/5= 4 --.€0 694

10 410 = 49 -.GO 654+

15 S TAR R e
5 3/5= .00 A0 .08

10 6/10 = GO 40 GG+

15 9/16= .09 40 89+
5 4/5= £3 -.20 £5
10 8/10 = .€J -.20 o4
, 15 12/15= .80 20 .97
' 27/30= &0 5 2/5= .40 -.50 97

10 4/10 = 40 .50 .99+

15 6/15= .40 -.50 92+
5 3/5= .60 -.30 .66
10 6/10 = .60 --.30 .85
15 9/15 = .60 -.30 .98
: 5 4/5=.8) -.10 4
10 8/10 = .80 .10 63
; 15 12/15= .80 -10 69
: 5 5/5=1.00 +.10 38
: 10 10/10=1.00 +.10 .£9
i 15 15/15 = 1.00 +10 n
: 24/30 = .80 5 1/5= .20 60 98

3 10 2/10= .20 .60 £9+

! 15 3/15=.20 ~.60 95+
' 5 2/5= .40 - .40 1
10 4/10= .40 --40 .08
15 6/15= 40 -0 .99
5 3/5=.60 20 68
10 6/10= 69 --.20 .80
: 15 9/15= .60 -.20 .85
‘ 5 5/5 = 1.00 +.20 73
R 10 10/10 =1.09 +.20 .85
) 15 15/15= 1.00 +.20 .63

SO
AN 31 ."_",'n-‘-‘ :1\
el e . :'o.u
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Tablde 40870 (i )

Dot Ser £ FAR P S o i Diflcrenze in
- el S ha notizhitity Leved of
Letiobility feh iy Privaeon Sivaiticcnce
(Sacess i'o. of {8z 5 Dtz Sets of Dilferciice
Roto) Tesis liotic) “Aend B in Pelizbility t
g - I
" 21/30 =70 5 1/5= 20 - 50 95

W 10 2019 = 20 50 .99
A 15 3/15=.20 .50 29+
o 5 255 40 50 e

10 4710 = .40 --.30 .

K 15 6/15 = 40 -.20 .99

3 5 3/5= €5 -0 49

-.ﬁ 10 6/10 = .60 --.10 .. .58

N 15 8/15= .60 -.10 .74

e 5 4/5= .60 +.10 - 45

@ 10 8/10 = .€0 +.10 .57

= 15 12/15 = .80 +.10 63

yo 5 /5 =100 +.30 .80

10 10/10 = 1.60 +.30 .05

b 15 15/16 = 1.00 +.30 99
4
J. *The numbear of tests in Data Set “*A™ iz 30 for all cases shown,
':.j 1The values shown (F) are obteined by using Fisher's Exect Test:

o P,
'; P=1- n;j (N1) ( Ny ) (Nl*Nz)
N ves, v s1+sz- S,+Sz

% (_ ¢

x) . x
whers (3 ) vl x-y)}
- ’\
: S .5
LI N
-, 1 2
i : . N,
L) - 5 .
g ¥mox 5,45, vihichever is smaller
v .
Tu Ny = number cf tests in sample set 1
L.

N2 = number of tcsts in somple set 2

(.:‘I

51 « number of successcs in sample set 1

~

52 = number of successes in sample set 2

L3

Sec A Hald, Statisticel Thoory With Eagineering Applications, John Wiley and Sons, Inc., 1960, p. 703.
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ﬁ:: HP-41 Programs
i
W
ts The HP-41 handheld calculator is slow but remarkably powerful.
, For example, a program listing for the standard Fast Fourier
o Transform (FFT) algorithm is no lengthier than that for a FORTRAN
5 version and because of some quirks of the HP-41, the program is in
:ﬁ: some ways more efficient. With a 56-bit word, numerical accuracy is
ljs higher than in most personal computers, and so round-off problems are
Rl slower to arise,
:iﬁ Reported in this appendix are a set of programs written for this
yiu study. Their original purposes were to give or to verify solutions,
o but they have two additional values justifying their inclusion here:
‘ﬁg they demonstrate that the mathematics called upon is not intractible
é and can be packaged small, and they may be useful as is to ot.ers
= working the same or related problems.
ST
-;5 The first group provde solutions to Equations 1.9 and 1.11 and
NN thus can be considered a proper means of getting the answers wrongly
e sought via Fisher's Exact Test. The versions given are lengthy but

o are relatively robust to the accumulation of round-off errors.
Included is the program PII, written to be a model for and to verify

- ‘,-.

:C}. calculations of Singpurwalla and Launer.

N

b;a The second group provide handy means of exploring Woodroofe's
S treatment of sequential analysis., ET provide solutions to Equations

1 and 2 of Chapter III, Sec 1. BND provides Wald's and Woodroofe's
boundaries of the region of test continuation; and MW permits
computation of a number of properties of a test plan defined by BND.

/ ,
AP
5 ! L\

:;Q: LOP computes boundaries using the Bayesian method of Chapter III,

P Sec. 4.
S,

‘ﬁ Not included is a package of routines which manipulate truncated
1A Taylor series and was used to compute the expansion of D(n,m) given
i.% in Eq 4.4. This is available from the author.

o

The memory requirements of an HP-41CV or CX are needed, and if
it is not the CX version, then an Extended Functions module (XF) with
. its Expanded Memory. The occasional use of Synthetic Programming can

A be circumscribed, -~r if the programs are identical to those listed
*ﬁﬁﬁ here, they should run on any version of the HP-41 with adequate
N memory and the XF module.
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o

o

L

o

r JCS+ Implements Eq.1.9 and DA+ Eq.1.11.

% They call for inputs and report the value of the integral as

o "CL=" for Confidence Level. The plus sign means there are no

f subtractions in the algorithm, hence less round-off error.

N

{ PII Implements Eqs.4-6 of Section III.3.

. Entering at LBL A leads to an evaluation of «/ and at LBL® to

_{ evaluation of . Lines 51-62 clear a block of registers, using

;{ program BC in a module called PPC ROM. This can be replaced by

K™, ordinary coding. If Flag 02 is set, then the summation sign in Eq.4

e or 5 is ignored; only a single term is considered. Subroutines 1, 2,

‘ and 13 are the core of algorithm,

o ET

N Solves Egs. 1 anﬂ 2 of Section IV.1.

A y .

LS - ~ & “‘t

« Bo(pd - Z ( >1> G- ¢ and

K- £- de-c. () E~Nvc-! Neca

§

5 £ ()= Z 3t "3? (-7 & Z « (ud) P ("‘r)

: kzN-c«!(

‘ {*C N- c+( Lol Rt at 1

’-‘¢[> 5 ( )(' 5 *(’V’H’X"‘P) . Necee )P

" Calls for N, c, and p (unadjusted values will be used as is).

o

L

i Memory utilization keyed to that in MW: N, ¢, and p in same
registers.

ol

. MW

w -

3 Requires two files in Extended Memory named Am and Bm where m is

oy a number provided in response to query "FILE#?" or is already stored

P in register 19. (Routine BND may have been used to create these

Q files.)

; Start program at line 1 or at LBL E; line one to provide/revise

ﬂ the value of N, the maximum number of tests. At E, provide "p" and

W "FILE#." 1If RAD-DEG selection set to RAD, program computes and
reports G(k) as required by Section IV.3; if set to DEG, this is

K ignored.

l

K, Program reports @ (p), E(t), and a (p) (which in effect

;: interchanges meaning of "reliable" and "unreliable). Sect IV.1.

S,
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LBL B produces output stating "bi/i = cumulative probability of
sufficient failures to halt." Accumulates probability of exit
passing clockwise around boundary. If there are several points on
boundary at N=N max, then these are labeled F. Then program
continues along "a'" boundary.

LBL C does the same as LBL B but counterclockwise,
LOP

To meet the goals of Section IV.4, Computes the boundary
conditions for continued testing, based on the loss functions L1 and
4 L2 (which can have associated with them different criteria Pl and P2,
as well as cost factors Cl and C2).

Program invites all necessary input insertion/revision/
verification, and then constructs a diagram of. the operating space.
To conserve space this pattern is stored as packed binary data (a la
X flags). LBL J provides a visualization of this pattern, for display
or printing (see figures below), This algorithm has also been run on

)

", a Commodore for verification.

:i Routines 6 and 7 support generation of loss functions L; and L3
L If others are chosen, these must be rewritten along with some of

k Routine 2 (lines 57-100).

) BND

R

)

& Develops the boundaries to be used in MW, by Wald's and

; Woodroofe's methods. Input called for: PO, Pl, a, and b (later, m).
a

’ O<PO<P1< 1. Level of test = a, Probability of Type II error = b

' L/

) (P> P1). Ho: p<Lpo. (Section IV.2). M is number of tests.

t

" Lines 1-85: Wald's methods, an' and bn’ reported out.

k) 86-156: Woodroofe's modification.

« 157-END: Subroutine E. Calls for a file number k; then stores
X Woodroofe's boundary numbers an and b, in files

W AKX and BK. If Flag 25 is clear to start, program

o halts if attempt is made to overwrite existing file.
y Set the Flag to permit overwriting.

r) }

q

9

oy

")

L]

)

)

4
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e ALeLBL "JC3 S1eLEL 61 96eLBL 43
( ’ g2 [F 2% 52 RCL @6 97 PCL 11
- @3 -DEL=" 53 STG 67 98 RCL #3
e 84 SF 98 99 YX
\z: 83 . S4eLEL 82 184 ST+ |2
-yi‘ 86 XEQ o8 55 RCL @6 fel RCL @2
>, g7 “Ni=" . 56 RCL 67 16z E
- 28 E 57 - 183 -
99 XEQ &6 58 LASTX 184 RCL 68
59 E 165 +
18eLBL 64 - 166 LASTX
1t =31=- 61 7 187 XEQ 84
12z 52 FIL T {BE 57 {2
13 ZEq ed 63 RiL @7 199 RCL 81
64 - 114 E
1Bl ¢ 65 LASTE $1 -
15 "H2= 66 KCL 69 112 RCL @8
16 3 67 + 113 +
17 XeQ 88 68 7 114 LASTX
69 = 115 XE@ 84
18+LEL I 76 RCL 04 116 ST/ 12
13 -g2=* 71/ 117 =CL="
20 4 72 € 118 FIX 4
21 XEQ 9@ 73 %O 13 119 ARCL 12
74 % 128 AYIEW
22+LBL 18 75 ST+ 13 121 STOP
23 *REL DEG" 76 1SG 87 122 RTN
..::-_: 24 QAVIENW 77 GTG 82
e 25 RCL @8 78 RCL 83 123¢LEL 89
I 26 CHS 79 CHS 124 FIX 8
o 27 E 88 RCL 06 125 FS?C 08
by 28 + 81 - 126 FIX 4
- 29 70 11 82 LRSTA 127 ARCL IND &
A 38 RCL &4 83 f 128 PROMPT
IN 31 E 84 - 129 FS7C 22
L, 3+ 85 138 ST0 INB ¥
: 33 RCL 83 86 RCL 09 131 RTN
V! 34 - 87 RCL 11
L 35 $70 65 85 / 132¢L8L @4
W 36 ST0 86 89 & 133 CHS
:. n 37 LASTX 99 RCL 13 134 XO¥
i 8 € 91 K> 12 135 SIGN
-\ 39 - 9; » 136 X(» L
e 48 STQ 02 93 ST+ 12 137 ST+ ¥
het 41 € 94 156 86 _
yi 42 - 95 GT0 &1 1353¢(BL €5
' 43 RCL 82 139 5272
S 44 + 148 GTO @6
' 45 ST0 83 141 57+ L
W 45 LASTX 142 D5E X
. 47 CHS 143 6T 8%
o 45 RIL 81
,‘:'i. 49 + 144¢LBL 1
Nin 99 570G 18 145 PIN
) 148 &0 L
"? 147 FTY
d 143 BN
;;.
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APPENDIX A
An Algorithm, A Computer Code, and A User's Guide, for

a Bayesian Binomial Hypothesis Testing Procedure

A.1. INTRODUCTION
In the Bayesian binomial hypothesis testing procedure, we need

to find the pair (nt,x:) such that [see Equations (4) and (5)]:

1 x*
S n,-3
f .ZO P @-p) " gle)dp,. < a
o 30 UJ
and
*
A xt nt . nt-.
f _ZO | ey - M @ - p, +4) g(pt)dpt 2 1-8,
a 37U
where

T (y+8) y-1

- -1
g(Pt) = T(Y)T(8) Pt (1 - Pt) .

The above inequalities can be rewritten as:

x¥ \ . .
T (y+8) L LR F(J+'Y)r(nt’J+6)
B (xgony) = ! . (8)
17t I (y)T () 520 [j J F(nt+Y+6)
X"t‘ ( .
_ T e e ) A2, %
3=0 {3 =0
. (94)
" [n-3)
) A" B(A,L; 248, wE)) | > 1-8,
m=0 m
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o _ _
e, B(4,1; r,s) = / pr La- pt)s 1 dp

‘o t t
» A
)
n'*
V) A computer code designed to obtain the smallest values of n,
f
X : x: subject to the two inequalities (8A) and (9A), based on an enumera-
A
e , . . .
) tion procedure discussed next, is obtained.
o ™
N).' 3
}f A.2 DESCRIPTION OF THE ENUMERATION PROCEDURE
q'. »
-:2 The enumeration procedure exploits the fact that both gl(xt,nt)
Lo
+9._¢!
o and gz(x ,0 ) are increasing functions of x_ if n is fixed. The
3 et t t
{G’ procedure starts with some initial value of n,_ , say ng , and finds
\1\~'
S 0 0
T <
*t* the largest X, such that gl(xt,nt) £ a . Once such an X, » say X,
1
! is found, it is guaranteed that the first inequality will be satisfied
S
:;{ for values of X, smaller than xg . The procedure then tries to
~ N
\.‘f\
i find an x,_ smaller than xo such that g,(x_,n ) 21 - B . If such
~T t t 2Vt
D) an xt does not exist, the value of nt is increased by one and the
L
$ procedure starts all over again. As n, increases, the procedure finds
g
.Y
i:ﬁ the smallest values of n and X, satisfying both inequalities. The
AEY
@ flow chart for this enumeration procedure is presented in Figure A.l.
ol
l&&
o
f 1)
K A.3 THE COMPUTER CODE
e
o The program requires certain JCL cards and a user input of some
7o
‘;:Q parameters.
P
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! Figure A.1. Flow chart for

( Initialize NT enumeration
procedure.

>
A

N e

P

[t}
o

' XT
i‘-: 1\

) Compute gy

A

'

| XT = XT+1

NT = NT+1

,“. .,'. -'. fﬂ‘.)‘r.v.‘l_.-..l.A

T e

"> J‘J‘})‘.

ey
-

A

Compute g,

AR NAS

<f Fof Mk

XT = XT-1 > Compute g2 V

Write XT,NT (—e— XT = XT+1 ——t.

5'
45 Stop
W
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A.3.1 Input Specifications

The cards should be arranged in accordance with Figure A.2; each

card will be explained individually.

Job Card and JCL Cards: The standard job card is used and so are

the following JCL cards:
//BEXECEFORG2
//FORT.SYSINBDD
//GO.SYSLIBEDD
//BYBYBODBPYBOSN=GWU . IMSL .V9.DLOAD,DISP=SHR
//GO. SYSINBBBBDDBEBIB*
where the character "P" indicates a blank space. The first two JCL
cards immediately follow the job card. The remaining JCL cards are
placed after the program and just before the input information card.

The fourth JCL card is needed to use the IMSL subroutines on an IBM

machine.

Input Information Card--DEL, SGM, SDEL, ALF, BETA, NT: This card

contains sorted input information, DEL, SGM, and SDEL, which are the
parameters A, Y, and ¢ in Equations (8A) and (9A); ALF and BETA are
the right-hand side parameters o and B 1in these inequalities. These
parameters are specified in format F10.5. The input NT is the initial

value of n selected, and is in I4 format. Usually, this value is ome.

i \ 8N \C
R ) NSO KON iy RTRRRRIRNENRRA] RYRNERANR !

k) \ (1)
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I

}‘-“-
‘:;5:

Input Information Card \

Xy

-
s
o B0 48

JCL Cards

O gt

. e

73

Program

IR
9 JCL Cards

oo Job Card
-.I‘

:g?ﬁ Figure A.2. Card deck structure.

A.3.2 Interpretation of Qutput

The program uses an iterative scheme and evaluates gl(xt,nt)
° and gz(xt,nt) for different values of X, adn n, . On the output,
Wy the values of gl(xt,nt) and gz(xt,nt) are printed as
) FIRST CONST =
Q.- SECOND CONST =
for different values of X, and n .
E?} The solution of the problem, that is, the smallest values of X,

(-’ and n_ satisfying the inequalities (8A) and (9A), are printed in the

f“' t
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1 last line of the output as
W, X = N =
Sample output is presented in Table A.l.
The smallest values of X, and n satisfying the inequalities

(8A) and (9A) are X =10 and N

15 . 1In this example, the values
o of the parameters are A =0.25, vy =106 , § =19, a = 0.10 , and
B = 0.25 . The initial value of n is one.

The listing of the program is given in Appendix B.

’_f::-:

5,
gy v,

(P ) 3,00
o, '}! “' "l .‘5" L) . .l,‘ﬂ pd ‘."'.. . 8 .‘I e .‘l .‘.h. \, . ‘ld‘,!- P ' v .

LOR)
¥ 4%, []

RO
#'4, ‘l‘ XA

o

' i \ N
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w TABLE A.1l
KA Sample Output
Wb
/
)
¢
W FIRST CONST=  ).)9003? XT= C.0 NT= 12
s FIRST CONST=  ).290%¢ XI= 1.0 NT= 12
. FIRSI COiST=  ).)202) Xr= 2.0 ¥T= 12
. FIRST CONST=  3.70002 ¥r= 3.0 NT= 12
: FIRST CONST=  3.20013 KT= 4,0 NT= 12
FIRST CONST=  ).)01353 XI= 5.0 vr= 12
FIKST C7NST= ~,20734 (T=  £.9 NT= 12
FIRST COVST=  )3.23140 ¥r= 7.0 ET= 12
FIRST COV3T=  ).10522 XF= 3.0 NT= 12
N SeCOND CHN3T= 7455275 Y= 7.0 NT= 12
~ FTRST CNIST=  2.20003 £T=  g.n NT= 13
N FIRST CONST=  )3.)30)2 Xr= 1.0 Sr= 13
~ FIRST CONST=  1.230%50 Y= 2.0 NT= 13
1 FTRST CONST=  ),20071 ¥r= 3,0 NT= 13
r CIRST CIN3T=  1.)20)5 X[= 4.0 NT= 13
: FIRST CON3T=  2.30041 YT= 5.0 NT= 13
N FIFSP COYST=  1,.3024L5 ¥T= A, 0 qT= 13
. FIRST C043T=  1.11137 Xr= 7.0 = 13
X TIRST CIN¥3T=  9.,24379 ¥T= 2,0 NT= 13
‘ FIRST CONST=  ).,13250 “T=  a,0 XT= 13
: TTCCND TONST= J.53354 N P vr= 13
FIRST <ONST=  2,29Gu LT= 7.0 NT= 14
" FIRST CO¥3T=  ).220:- iT= 1.6 XT= 14
4 STRST CIV3T=  ).220:) Xr= 2.0 "T= 14
) FIRST COI3T=  3.3207%) XT= 3,0 NT= 14
FIRST CONST=  1.700:2 ¥T= 4.0 NT= 14
; FIRST COINST=  ).33512 Xr'= 5.0 §r= 14
& FIRST CIN3T=  J.2020¢7 ¥T= 5.0 NT= 14
- FTRST C7¥3T=  2.)0410 XT= 7.0 NT= 14
. FIRST COu5T= 7 Y1717 XP= 3.0 NT= 1%
; FIRSE CON3T= 1.03857 XT= 3.0 NT= 14
« FIRST CONST=  1J.16275 YP= 10.0 NT= 14
) SICOND ZINST= ).713135 KT= 9.0 NT= 14
X FIPST CONST=  3,00904 ¥T= 9.9 NT= 15
! FIRST CIIST= .20020 ¥r= 1.0 Mr= 15
. FIRST CIN3T= 1,)02:) Xr= 2.C \r= 15
o FIRST CO4ST=  0,30336 XT= 3.0 NT= 15
« FIRSPT CONZT=  2,206220 ¥T= 4,0 KT= 15
FIRST CONST=  ).)332)u Xtz 5,0 NT= 15
; FIRST CON3T=  3.00025 XT= 6.0 NT= 15
; FIRST CINST= 3.30141 r= 7.0 NT= 15
i, FIRST CIV3T=  ).)0645 X0= 3.0 iT= 15
b, FIRST CON3T=  1.02432 XT= 9.0 NT= 15
i FIRST CONST=  ),"757% XI'= 10.0 yr= 15
R FIRSI CO¥ST= 3.13317 XT= 11.0 sr= 15
32 STCOND CIOHST=  (.7826u KT= An.0 NT= 15
] TFCOID CINSY=  1,.53272 YT= 9.2 NT= 15
) 7= 10.7)3)) =15
R
‘
0
K)

Y
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LIM=1,5
( J=TEST
& // EXEC FORX2
b //FORT.SYSIN DD *
v IMPLICIT REAL*8(A-H,0~2)
v INTEGER IER

READ (5,10) DEL,SGM,SDEL,ALF,BETA,NT
v 10 FORMAT (5F10.5, 14)
BET=1.0-BETA
X1=DEL
X2=1.0
, C WE START THE ALGORITHM BY INITIATING XT AS ZERD
4 Wi=SGM
W2=SDEL
Al=W1
B1=W2
CALL FACTI(A1,B1,SON)
W=SON
11 XT=0.0
WNT=NT
Wh=WNT+SDEL
TA1=SGM
TB1=Wh
CALL FACT2(TA),TB1,TERS)
PAR=TERS
COl=W*PAR
C THIS 1S THE VALUE WHEN XT IS ZERO
C NOW WE COMPUTE THE VALUE G WHEN XT IS OTHER THAN ZERO.
301 IXT=XT
TOT=CO!
IF(XT.EQ.0.0) GO TO 1001
. £O0 1000 1=1,IXT
' Ri=1
pre Pi=WIi+R|
A P2=WhL-R]|
N TA1=P]
11! TB1=P2
CALL FACT2(TA1,TB1,TERS)
P3=WNT+1.0
PL=P3-R|
PS=RI+1.0
Z=(DGAMMA (P3)) / ((DGAMMA (PL) ) * (DGAMMA (P5)))
P=TERS
TOT=TOT+ (P2Z*W)
1000 CONTINUE
1001 G1=TOT
WRITE (6,60) G1,XT,NT
- 60 FORMAT (5X,'FIRST CONST=',F10.5,5X, 'XT="' F§.1,56X, ' NTe', k)
- C SO WE COMPUTED THE VALUE OF FIRST CONSTRAINT
IF(G1.GT.ALF) GO T2 333
IF(XT.EQ.NT) GO 10 3680
XT=XT+1.,0
GO TO 301
333 XT=XT-1.0
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{ LINA=1,5

‘ J=TEST

P // EXEC FORX2

‘ //FORT.SYSIN DD #

! IMPLICIT REAL%8 (A-H,0-2)

¢ INTEGER IER

R READ (5,10) DEL,SGM,SDEL,ALF,BETA,NT

' 10 FORMAT (5F10.5, 14)
BET=1.0-BETA
X1=DEL
" X2=1.0
N C WE START THE ALGORITHM BY INITIATING XT AS ZERO
W1=SGM
W2=SDEL
. Al=W1
Bl=W2
i, CALL FACTI1(A1,B1,SON)
; W=SON
X 11 XT=0.0
WNT=NT
e Wh=WNT+SDEL
. : TA1=SGM
TB1=Wk
CALL FACT2(TA1,TB1,TERS)
PAR=TERS
CO1=WXPAR
C THIS 1S THE VALUE WHEN XT IS ZERO
“ C NOW WE COMPUTE THE VALUE G1 WHEN XT IS OTHER THAN ZERO.
& 301 IXT=XT
i TOT=CO1
) IF(XT.EQ.0.0) GO TO 1001
DO 1000 I=1,IXT
5 Ri=|
! Pi=W1+R!
P, P2=wWi-R1
" TA1=P]
K TB1=P2
CALL FACT2(TA1,TB1,TERS)
P3=WNT+1.0

PL=P3-RI
: P5=RI+1.0
: 2= (DGAMMA (P3)) / ( (DGAMMA (PL) ) * (DGAMMA (P5)))
. P=TERS
TOT=TOT+ (P*Z*W)
« 1000 CONTINUE

1001 G1=TOT

WRITE (6,60) G1,XT,NT
60 FORMAT (5X, 'FIRST CONST=',F10.5,5X,'XT=',F5.1,5X, 'NT=', (L)
C SO WE COMPUTED THE VALUE OF FIRST CONSTRAINT

IF(G1.GT.ALF) GO TO 333
IF(XT.EQ.NT) GO TO 380
XT=XT+1.0
GO TO 301

333 XT=XT-1.0
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IF(XT.LT.0.0) GO TO 999
C OTHERWISE WE GO AND CALCULATE G2
380 Ww=Wik (DEL**WNT)
C NOW COMPUTE THE VALUE WHEN XT 1S ZERO,THAT 1S J IS ZERO.
C WHEN J 1S ZERO L 1S ZERD
C WHEN J 1S ZERO,M GOES FROM ZERD TO NT AND L IS ALWAYS ZERO IN THIS CASE
C FIRST CONSIDER THE CASE WHERE WHEN M {S ZERO
A=W1
B=W2
TA1=W]
TB1=W2
CALL FACT2(TA1,TB1,TERS)
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2, |ER)
Y=TERS
VALO=(P2-P1) %Y
SUM=VALO
C NOW CONSIDER THE CASES WHERE M IS ONE TO NT.
DO 1500 M=1,NT
A=W1
BM=M
BMI1=WNT+1.0
BHA2=WNT-BM+1.0
BM3=BM+1.0
BMCOM=DGAMMA (BM1) / ((DGAMMA (BM2) ) * (DGAMMA (BM3)))
BFAC= (DEL%** (-BM) ) XBMCOM
B=W2+BM
TAl=W]
TB1=B
CALL FACT2(TA1,TB1,TERS)
CALL MDBETA(X1,A,B,P1,1ER)
CALL MDBETA(X2,A,B,P2,IER)
Y=TERS
VAL= (P2-P1) *Y%XBFAC
SUM=SUM+VAL
1500 CONTINUE
JXT=XT
RJSUM=SUM
C IF XT IS ZERO WE HAVE ONLY THE ABOVE TERM
IF(XT.EQ.0.0) GO TO 2001
00 2000 J=1,JXT
C THIS IS THE MOST OUTER SUM
RJ=J \
RJ1=WNT+1.0
RJ2=WNT-RJ+1.0
RJ3=RJ+1.0
COMBJ= (DGAMMA (RJ1)) / ( (DGAMMA (RJ2) ) * (DGAMMA (RJ3)))
C NOW L IS FROM ZERO TO J.AGAIN CONSIDER THE CASE WHERE L IS ZERO
LP= (—]\ b3 N
PL=LP
C NOTE WHEN L IS ZERO M GOES FROM ZERO TO NT-J
LJL=NT-J
IF(LJL.EQ.O0) GO TO 2101
DO 2100 M=1,LJL
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;T' RRM=M

[ RRM1=WNT-RJ+1.0

L RRM2=WNT-RJ-RRM+1.0

or RRM3=RRM+1.0 '

g RCOM= (DGAMMA (RRM1) ) / ( (DGAMMA (RRM2) ) * (DGAMMA (RRM3)))

a0y : FFAC= (DEL** (-RRM) ) *RCOM

a8 A=SGM

3 B=RRM+SDEL

G TAI=A

NN TB1=B

K~ CALL FACT2(TA1,TB1,TERS)

N CALL .MOBETA(X1,A,B,P1,ER)

s CALL MDBETA(X2,A,B,P2,1ER)
Y=TERS

o VALM= (P2-P1) FFAC*Y

; VALO=VALO+VALM

Ky 2100 CONTINUE

] 2101 RLSUM=VALO*PL

L C THIS IS THE VALUE WHEN L IS ZERO

y C NOW WE WANT TO CONSIDER L FROM 1 TO J.THIS 1S THE SECOND SUM

R DO 2500 L=1,J

' RL=L

.",.;

AL RL1=RJ-RL+1.0

YN RL2=RL+1.0

ot COMBL= (DGAMMA (RJ3)) / ((DGAMMA (RL1)) * (DGAMMA (RL2)))
LPL=(=1) %% (J-L)

R FLP=LPL

s § POWER=DEL %% (-RL)

K FACL=F LPXCOMBL*POWER

f‘* C NOW SHOULD CONSIDER M LOOP AGAIN.NOW M S FROM ZERO TO NT-J FOR GIVEN L

O € START WITH MIS ZERO

) A=RL+SGM
B=SDEL

e CALL MDBETA(X1,A,B,P1,IER)

'y CALL MDBETA(X2,A,B,P2,IER)

I TA1=A

R TB1=8

o CALL FACT2(TA),TB1,TERS)

%Y Y=TERS

{2& VAL= (P2-P1) %Y

o RMSUM=VAL

I LL=NT-J

bt IF(LL.EQ.0) GO TO 3001

®. 00 3000 M=1,LL

v RM=M

a RM1=WNT-RJ+1.0

Y RM2=WNT-RJ~-RM+1.0

W RM3=RM+1.0

e COMBM= (DGAMMA (RM1) ) / ( (DGAMMA (RM2) ) * (DGAMMA (RM3)))

N FACM= (DEL#* (-RM) ) % (COMBM)
R A=RL+SGM
- B=RM+SDEL
. CALL MOBETA(X1,A,B,P1,IER)

L;~* CALL MDBETA(X2,A,B,P2, |ER)
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TAI=A

TB1=B
CALL FACT2(TA1,TB1,TERS)
Y=TERS
VAL= (P2-P1) XF ACMKY
RMSUM=RMSUM+VAL
3000 CONTINUE
3001 RRSUM=RMSUM
C THE MOST INNER LOOP 1S FINISHED.
RLSUM= (FACLXRRSUM) +RLSUM
C THIS IS THE SUM FOR L LOOP
2500 CONTINUE
C L LOOP IS FINISHED
C NOW FINISH J LOOP.THE MOST OUTER LOOP.
RJSUM= (COMBJARLSUM) +RJSUM
2000 CONTINUE
C SO WE EVALUATED G2.
2001 G2=RJSUM#AWW
WRITE (6,61) G2,XT.NT .
61 FORMAT (5X, 'SECOND CONST=',F10.5,5X,'XT=',F5.1,5X, 'NT=", kL)
1F (G2.LT.BET) GO TO 999
777 1F(XT.LT.1.0) GO TO 888
XT=XT-1.0
C CHECK G2 AGAIN.
Ww=Wk (DEL#%XWNT)
C NOW COMPUTE THE VALUE WHEN XT 1S ZERO,THAT (S J 1S ZERO.
C WHEN J 1S ZERO L 1S ZERO.
C WHEN J IS ZERO,M GOES FROM ZERO TO NT AND L IS ALWAYS ZERO IN THIS CASE
C FIRST CONSIDER THE CASE WHERE WHEN M 1S ZERO
A=W
B=W2
CALL MDBETA(X1,A,B,P1,I1ER)
CALL MDBETA(X2,A,B,P2,I1ER)
TA1=A
TB1=B
CALL FACT2(TA),TB1,TERS)
Y=TERS
VALO= (P2-P1) XY
SUM=VALO
C NOW CONSIDER THE CASES WHERE M IS ONE TO NT.
DO 1501 M=1,NT
A=W
BM=M
BM1=WNT+1.0
BM2=WNT-BM+1.0
BM3=BM+1.0
BMCOM=DGAMMA (BM1) / ((DGAMMA (BM2) ) * (DGAMMA (BM3)))
BFAC= (DELX% (~BM) ) xBMCOM
B=W2+8M
TAI=A
TB1=8
CALL FACT2(TA1,TB1,TERS)
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,IER)
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Y=TERS
VAL= (P2-P1) XYXBFAC
SUM=SUM+VAL
1501 CONTINUE
JXT=XT
RJSUM=SUM
C IF XT IS ZERO WE HAVE ONLY THE ABOVE TERM
IF(XT.EQ.0.0) GO TO 2011
DO 5000 J=1,JXT
C THIS IS THE MOST OUTER SUM
RJ=J
RJ1=WNT+1.0
RJ2=WNT-RJ+1.0
RJ3=RJ+1.0
COMBJ= (DGAMMA (RJ1)) / ((DGAMMA (RJ2) ) * (DGAMMA (RJ3)))
C NOW L IS FROM ZERO TO J.AGAIN CONSIDER THE CASE WHERE L 1S ZERO
LP=(-1) x4J .
PL=LP
C NOTE WHEN L 1S ZERO M GOES FROM ZERO TO NT-J
LJL=NT~J
IF (LJL.EQ.O) GO TO 2102
DO 2105 M=1,LJL
RRM=M
RRM1=WNT-RJ+1.0
RRM2=WNT-RJ-RRM+1.0
RRM3=RRM+1.0
RCOM= (DGAMMA (RRM1) ) / ((DGAMMA (RRM2) ) * (DGAMMA (RRM3)))
FFAC= (DEL** (~RRM) ) *XRCOM
A=SGM
B=RRM+SDEL
CALL MDBETA(X1,A,B,P1,!ER)
CALL MDBETA(X2,A,B,P2, IER)
TA1=A
TB1=B
CALL FACT2(TA1,TB1,TERS)
Y=TERS
VALM= (P2-P1) XFFACKY
VALO=VALO+VALM
2105 CONTINUE
2102 RLSUM=VALO%PL
C THIS IS THE VALUE WHEN L IS ZERO
C NOW WANT TO CONSIDER L FROM 1 TO J. THIS IS THE SECOND SUM
D0 2501 L=1,J
RL=L
RLI=RJ-RL+1.0
RL2=RL+1.0
COMBL= (DGAMMA (RJ3)) / ((DGAMMA (RL1)) * (DGAMMA (RL2)))
LPL=(-1) %% (J-L)
FLP=LPL
POWER=DEL*# (-RL)
FACL=FLPACOMBL*POWER
C NOW SHOULD CONSIDER M LOOP AGAIN.NOW M 1S FROM ZERO TO NT-J FOR GIVEN L
C START WITH MIS ZERO.
A=RL+SGM
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B=SDEL
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,I1ER)
TAl=A
TB1=B
CALL FACT2(TA1,TB1,TERS)
Y=TERS .
VAL= (P2-P1) *Y
RMSUM=VAL
LL=NT-J
IF(LL.EQ.O) GO TO 4001
DO LOOO M=1,LL
RM=M
RM1=WNT-RJ+1.0
RM2=WNT-RJ-RM+1.0
RM3=RM+1.0
COMBM= (DGAMMA (RM1)) / ((DGAMMA (RM2) ) * (DGAMMA (RM3) ))
FACM= (DEL#% (-RM) ) * (COMBM)
A=RL+SGM
B=RM+SDEL
CALL MDBETA(X1,A,B,P1,l1ER)
CALL MDBETA(X2,A,B,P2,IER)
TAl=A
TB1=8
CALL FACT2(TA1,TBI1,TERS)
Y=TERS
VAL= (P2-P1) #F ACM#Y
RMSUM=RMSUM+VAL
4L000 CONTINUE
4001 RRSUM=RMSUM
C THE MOST INNER LOOP {S FINISHED.
RLSUM= (FACL*RRSUM) +RLSUM
€ THIS 1S THE SUM FOR L LOOP
2501 CONTINUE
C L LOOP IS FINISHED.
C NOW FINISH J LOOP. THE MOST OUTER LOOP.
RJSUM= (COMBJ#RLSUM) +RJSUM
5000 CONTINUE
C SO WE EVALUATED G2.
2011 G2=RJSUMAWW
WRITE (6,62) G2,X7.NT
62 FORMAT (5X, 'SECOND CONST='F10.5,5X, 'XT=',F5.1,5X, 'NT="', {4)
C CHECK G2 NOW
'F(G2.GE.BET) GO TO 777
XT=XT+1.0
GO To 888
999 NT=NT+1
GO TO N
888 WRITE (6,555) XT,NT
555 FORMAT (10X, *'X=',F10.5,5X, 'N=",14)
sTOP
END
SUBROUTINE FACT1 (A1,B1,SON)
IMPLICIT REAL*8 (A-H,0-2)
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72

73

N
75

C=A1+BI
IF-(A1.LE.57.0.AND.C.LE.57.0) GO TO
C1=C-1.0 :
A2=A1-1.0

B2=B1-1.0

C2=A2+B2

1B=A2+1.0

1C=C2

PAY=C]

DO 42 I=1B,IC

Zi=1

PAY=PAY*ZI

CONTINUE

PAYDA=1.0

JA=B2

DO 43 J=1,JA

vJ=J

PAYDA=PAYDA%VY

CONT INUE

SON=PAY/PAYDA

GO TO 45

SON=DGAMMA (C) / ((DGAMMA (A1)) * (DGAMMA (B1)))
CONT I NUE

RETURN

END

SUBROUT!INE FACT2(TA1,TB1,TERS)
IMPLICIT REAL%B (A-H,0-2)
C=TA1+TB1
IF(TA1.LE.57.0.AND.C.LE.57.0) GO TO N
Cl=C-1.0

A2=TA1-1.0

B2=TB1-1.0

C2=A2+8B2

iB=A2+1.0

1C=C2

PAY=C]

DO 72 I=1B,IC

Zi=|

PAY=PAY*ZI

CONTINUE

PAYDA=1.0

JA=B2

DO 73 J=1,JA

Vi=J

PAYDA=PAYDA*VJ

CONT I NUE

TERS=PAYDA/PAY

GO TO 75

TERS= ((DGAMMA (TA1)) % (DGAMMA (TB1))) / (DGAMMA (C))
CONT INUE

RETURN

END

//G60.SYSLiIB DD
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oot APPENDIX C
o Illustrative Calculation of Expected Sample

N Sizes for Curtailed Sequential Sampling

s C.1. THE CASE OF TESTING ONE ITEM AT A TIME

(s
!

We illustrate this for Stage 0. Here x§ =5, n = 17.

We must have either 6 successes to accept, or 12 failures to

reject
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f—— — p——— p—

- Sy 6
P(n =6|p,] 5] p, = 0.015625

~
P

P[nt=7(nt]
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= 0.0820312

~
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o
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6
} Pc(l‘pc) = 0.046875

A s

P[nt=8|pt]
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P[nt=9|pt] = = 0.109375
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P[nt=10|pt]

o~
i Fof
z

SN

»
-

P[nt=11|pt]

pg(l—pt)6 + [11] (1-p,) 2= 0.1130371

P[nt=12|pt] 11

6 7, (12 _\12
t(l-pt) + [ ] pt(l pt) 0.0968018

P[n.=13[p,] 11

Pln_=14]p ]

n
— —  —
wn -
N
=

6 8, (13) 2, |12 _
P (1-p,)" + [11] p,(1-p,) 0.083313




P[nt=15!pt] =l
P(n =16[p ] = [ﬁf
Pln =17[p ] = |

_ T(y+6)T(8)

[16) pi(l-pt)ll'+ [16] pi(l-pt)lz = 0.0666504

To obtain P[nt=j] s 3§ =6,7,...,17, we average out the above by

using g(ptl') . At Stage 0, y=1, &6=1.
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11

14 6 9 14 3 12
[ ]pt(l-pt) +[ ) pt(l-pt) = 0,0722046

6 10 15) 4 12
] p (1-p )" + [ ] P (1-p)"" = 0.0666504

11

11

E[nt] = 10.91 .

- me e a

=TT T T

pln,=6] = FEod) < 0.1428571
pln.=7) = 6 F‘??ﬁl@i??l) = 0.1071429
pln =8] = 21 IS%%%%%%%;Zl ~ 0.083333
pln,=9] = 56 F‘;?glgig;3) ~ 0.0666667
p(n,=10] = 126 r(gzgigifg?) = 0.0545455
pln,=11] = 252 r‘}tﬁlgii;f) = 0.0454545

: pln =12] = 402 F(}tslgif;?) Fé?&iéf;if) = 0.1103896

4%? pln =13] = 792 F(%%ﬁlgif;;) + 12 r(}%ilgi§§§2) = 0.0989011

» pln,-14] = 1287 LQROULOE) o 79 TQBRILAD) . . 0857143
pln _=15] = 2002 F<¥?$1£ii;§) + 364 r<}t$l£if;§2) = 0.075
pln,=16] = 3003 F(}tglgif2§°) + 1365 r<{:¢l§iﬁg§2) = 0.066176
pln,=17] = 4368 r‘{:gigii;il) + 4368 r‘;:gigif;iz) = 0.0588235
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C.2. THE CASE OF TESTING IN BATCHES OF SIZE 3

Stage 0
pt = 0.5 (l—pt) = 0.5
x} =5 n, = 17

We must have either 6 successes to accept or 12 failures to reject.

Thus, ntc{6,9,12,15.18}

pla_=6lp ] = {6) pi = 0.015625

t 6

pln =9lp,] = [g] pS(1-p) + [;] po(-p )% + (g] po(1-p,)” = 0.2382812

9) 6 4 , [10
p[n=12lp]={}p(l—p)+[] 6,. 3 [ll 6, |6
t t S t t 5 pt(l pt) + 5 pt(l pt)
12 12 _
- {12y 6. 7, (13} 6, 8, [14) 6. .9
pln =15|p ] = (5) p (1-p )" + [s) p (1-p) " + [5) p.(1-p,)
12 12 , (13} 2 12 . {14} 3 12 _
* [11) P (l-p)™" + [11} P, (1-p 7" + (11) p.(1-p,) ~~ = 0.2536621
- _ (15} 5 10 , (15} 4, 11 _
pin,=18lp.] = [15} pll-p + [4) p,(1-p, )"~ = 0.1333008
‘i-'
}:}’ Stage 1
p, = 0.875 (1-p.) = 0.125 [
* = =
x§ 9 n, 13 |

We must have either 10 successes to accept or 4 failures to reject.

Thus, nt€{6,9,12,15} ,

2 4
pln,=6p,] = [f] py(1-p)" + [g]pt(l-pt)s + [g} (l—pt)ﬁ = 0.0029678
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6) 3 4 (1) 4 4, (8) s 4
P[nt=9lpt] = [3) pt(l-pt) + [3) pt(l—pt) + [3) pt(l-pt) = 0.0140249
9
3

10} 10 11) 10 2 _
+ [9] P, (1-p) + [9] p, (1-p,)° = 0.852551

P[nt=12|pt] = {

12) pz(l-pt)B = 0.1291889

p["t=15lpt] =13

Stage 2
Py = 0.9 (l-pt) = 0.1

* = =
xt 8 n, 11

) pecae + [3) slamep® + (5] lamep +

9 10
Py

We must have either 9 successes to accept or 3 failures to reject.

Thus, ntsf3,6,9,12}

pln =3[p,] = {g} (l-pt)3 = 0.001
pln =6[p ] = [3] pt(l—pt)3 + {3) pi(l-pt)3 + [;] pz(l—pt)3 = 0.01485
pln=slp,) = [3] pii-p’ + {;} p2(1-p)> + [3) po-p)” + [

~ _(9) 7, .2 (9} 8,
p[nt—lglpt] = [2] p (1-p)" + [1] p,(1-p,) = 0.5596074

Stage 3

P, = 0.906 1—pt = 0.094

* = -
x¥ 8 T, 11

The same enumeration as in Stage 2.

Stage 4
p, = 0.909 1-pt = 0,091

g] pz = 0.4245426




p, = 0.875 1-p =0.125

* = -
xt 9 n, 13

The same enumeration as in Stage 1.

Stage 6

p, = 0.853 1 -p_ =0.147

8 nt = 12

*
Xt

We must have either 4 failures to reject or 9 successes to accept.

Thus, nte{6,9,12}
pln.=6lp, ] = (2] Pi(l‘Pt)4 + (2] pt(l—pt)5 + [g] (1-pt)6 = 0.0054577
pln,=9lp,] = (g] pi(l'Pc)4 + [;) pi(l—pt)a + [ ) p:(l-pt)“ + [3) pz = 0.2653362

8
3
9] 6 3, (9] .7 2, (9} 8
fn = = - - -
pin =12]p ] [3) p . (1-p )" + [2] P (1-p )" + [1) p.(1-p))

= 0.7292061
Stage 7
pt = 0.825 (l-pt) = 0.175
xg =9 n, = 14

We must have either 10 successes to accept or 5 failures to reject.

Thus, nte{6,9,12,15}

®. (6 5 6 6
Y p[nt=6|pt] = lS] p (1-p)" + [6} (1-p,)" = 0.0008412

‘ 6] 2 5, [7) 3 5, [8) 4 5
B pln,=9p,] = [4] p.(1-p)" + [4) P (1-p)" + [a] P, (1-p)" = 0.0102237
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pln =12|p,] = [

pln =15]p ] = [lf] pol-p )" + {192]

Stage 8
pt
x*
The same enumeration as in
N Stage 9

o
\j' Pt
.{:

n" *
Pl *t
) _;a
! The same enumeration as in
2

e Stage 10

T
i .’:'_ p

J'.'.

g W . t

J X
N
};? The same enumeration as in
el

"

;@ Stage 11

e .

NG p
A t
"‘ LY
, *
M xt
v
..- Ve must have either
Y
5 Thus, n_€(6,9,12,15}

o
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[1,,0) pi(l—pt)5 + {1,‘1) pZ(l-pt)5 + [3]

10
Pe

..
=t

) pto(l-pt)z = 0.6805573

p2(1-p,)° = 0.3083778

= 0.833 (1—pt) = 0.167
=9 n, = 14

Stage 7.

= 0.820 (l-pt) = 0.180
=9 n = 14

Stage 7.

= 0,837 (l—pt) = 0,163
=9 n, = 14

Stage 7.

= 0.841 (l—pt) = 0,159
= 10 n, =15

t

11 successes to accept or 5 failures to reject.
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p[nt=6|pt] - [g] pt(l-pt)5 + [g) (l-pt)6 = 0.0005289

] p2(1-p)> + [Z] p(1-p)> + [2) pe(1-p,)” = 0.0067523
) it (5] st » 1) st « 1) o2
i;) pil(l-p ) = 0.4321114

12) o2 1-p )Y + [12) po(1-p)> + [12) p1% (1-p)? = 0.5606073

p[nt=15|pt] T s t t 9 10
Stage 12
P, = 0.836 (l-pc) = 0.164
k = =
x¥ 9 n, 14

The same enumeration as in Stage 7.

Stage 13
p. = 0.848 (l—pt) = 0.152

* = =
xt 8 n 12

The same enumeration as in Stage 6.

Stage 14
P, = 0.850 (1-p.) = 0.150

X = =
x¥ 8 n, 12

The same enumeration as in Stage 6.

To obtain the E(nt) » We average out the above by using g(ptl-)

We illustrate this for Stage O.
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L _L(#8)  TOHOTS) | |
p[nt 6] THT ) T (Y+6+6) 0.1428571

o1 o TYH9) T (y+6)T (§+1) T (y+6) T (5+2) P(Y+6)F(6+§){] -
pln,=9] =TTy |6 TTqesy t 2 T TG T T T(re0) 0.2571429

. Ty I (y+6) T (5+4) T (y+6)T (5+5) T (y+6)T (646)
pln,=12] = Farcey | 126 ~Tase10) T B2 T T(eAD T 402 =R +5412)

T(NT+12) ] - o, .
+ R D 0.210389

ey L Ty P (y+6)T (Y+7) I (v+6)T (648) T(Y+6) T (§+9)
pln =151 = Tryrey 792 TT(ree13y T 1P TT(vas+IA) + 2002 =7 i5415)

T (Y+1)T(5+12) T(y+2)T(6+12) T(y+3)T(8+12) | _
+ 12 T(y+6+13) + 78 T(y+6+14) + 364 T(YISIIET— 0.2596154
o T(y+S) T (y+5) T (§+10) T(y+OT(HD | < o.125
pln =18] = Fyreay | 3003 “T(yee+is) T 380 TTGHS)

E[nt] = 11.84 .

Similarly, we can obtain E[nt] for other stages.
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