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1. Executive Summary

This report describes the research in continuous speech recognition performed under
Contract No. N00014-85-C-0279. The contract period ran from January 17, 1985 through

January 16. 1988.

The general goal of this work has been to develop methods for improved performance in
large vocabulary continuous speech recognition. Our research into developing robust, high-
performance continuous speech recognition systems for large-vocabulary complex tasks, such as
battle management, has focused on the development of accurate mathematical models for the
different phonemes that occur in English. The research performed in this project has been in
three general areas: Hidden Markov Models, Stochastic Segment Modeling, and Rapid Speaker
Adaptation algorithms.

It is well-known that the acoustic realization of phonemes are affected significantly by the
surrounding phonetic context. This effect is known as coarticulation. Attempts to model these
effects in the past have mainly centered on using speech units larger than the phoneme, such as
the syllable or word. In this work, we developed a new technique for modeling context-
dependent phonetic units of speech, which allows more accurate modeling of the coarticulation
effects in speech. The work is based on robust Hidden Markov Models (HMIVl) of phonemes in
context. That is, the method allows the statistical models of the phonemes to be conditioned on
any degree of context that is most useful. In particular, we have used models conditioned on the

immediate phonetic context as well as the word in which the phoneme appears. The results of
this work in phonetic modeling has been incorporated in BYBLOS, the BBN continuous speech
recognition system, which has demonstrated word recognition accuracy of 98.5% for a 1000-
word task and a perplexity (branching factor) of 10, a word accuracy of 93% for a perplexity of

50, and 75%c for a perplexity of 1000.

In addition to our work on HMM models of speech, we have developed a new model called
the Stochastic Segment Model, which models each phoneme as a whole unit (in contrast to the
HMM model, which models each part of the phoneme independently). We expect the segment
model to result in a more accurate representation of the time variations in speech. Our
preliminary work on the segment model shows that in some cases it achieves significantly better
recognition accuracy than the HMM model.

Most of our work had been in speaker-dependent mode, waich utilizes 300 to 600 sentences
for training the system on a speaker's voice (equivalent to 15 to 30 minutes of continuous
speech). In an effort to minimize the amount of training for a new speaker, we have started work
on developing speaker adaptation methods that require only 10 to 40 sentences from the new
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speaker. The method that we have developed uses a few sentences to transform a well-trained

HMM model from a single prototype speaker so that it can model the speech of the new speaker.
We have shown that, using this new method, the word recognition error rate is about twice the

error rate in speaker-dependent mode.

In Section 2 of this report we describe our work on a Robust Model of Phonetic

Coarticulation, and provide results for this model within the BYBLOS system. We present our
work on the Stochastic Segment model in Section 3, and in Section 4, we describe our work in
Rapid Speaker Adaptation.

2
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2. Robust Model of Phonetic Coarticulation

The largest area of our work to date is our work on Hidden Markov models. We have
developed a comprehensive mathematical model of phonetic coarticulation in continuous speech.
In this section we provide the motivation for a coarticulation model, define a particular model
that seems to fit what we know of coarticulation, and present the results of several speech
recognition experiments that show the model to be quite useful.

2.1 Model of Phonetic Coarticulation

Hidden Markov Models (HMMs) have been shown to provide an effective statistical
formalism for speech recognition. They have been used to model whole words in both
isolated [1] and continuous [21 speech recognition. They have also been used to model
phonemes for continuous speech recognition [2, 3, 4]. The Hidden Markov Model has two
important advantages over many other models for speech. First, it provides a well-defined
structural model for variability in both time and in frequency (spectral variation), both of which
occur in speech. Second, once the structure of the models are specified, the parameters of the
models can be estimated automatically with a large amount of speech data using the forward-
backward or Baum-Welch algorithm [51.

It is generally assumed that large-vocabulary continuous speech recognition systems should
be phonetically based. That is, each word in the lexicon is decomposed into phoneme subunits,
each of which is modeled separately. The use of a phonetic model makes it easy to model
phonological variation both within and across words. It also makes it possible for a new speaker

to use the system without first saying all the words in the lexicon

It is well known that phonemes are affected significantly by adjacent phonemes in a process
known as coarticulation. To obtain high recognition accuracy it is important to model phonetic
coarticulation as well as possible. To explain our model for coarticulation, we must first define

some terms.

Figure 1 illustrates several different levels of representation for speech. The figure
illustrates the levels of words, phonemes, allophones, allophone mo('els. and analyzed speech
parameters. The phrase shown is "grey whales". The purpose of speech recognition is to
determine the sequence of words corresponding to an observed utterance. We often decompose
words into sequences of basic speech sounds or phonemes, to try to reduce the problem of
modelling many words to the problem of modelling a smaller number of units. We observe that

3
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these basic units exhibit systematic acoustic variation as a function of their phonetic
environment. To capture this systematic variation we must first define context-dependent
allophones or variants of each phoneme. An allophone is defined as any variant of a phoneme,
which may be statistically different from other allophones of that phoneme. We have shown
allophones defined by the preceding and following contexts. We will often use the terms "left"
and "right" instead of "preceding" and "following". At the bottom of the figure is shown a
schematic of the formant tracks corresponding to a single utterance of the phrase. This (or any
other) parametric representation of the spoken speech will be different for each utterance of the
phrase. Therefore, we need statistical models to represent the likely acoustic realizations
(phones) for each allophone. While many different statistical models are available, we have
chosen to use hidden Markov models as our basic allophone model for the reasons given
previously.

As illustrated in the figure. the coarticulation effects bridge all the phoneme boundaries. If
we allow the coarticulatory dependency of each speech unit to extend beyond its duration, then
we can model any amount of dependency that we wish. For example, in the illustration shown,
we have modeled the effect of each phoneme on its immediate neighbors. This idea of
context-dependent units is key to the modeling of coarticulation.

Figure 2 illustrates the HMM that we use to model a phoneme. The circles represent states
of the model. We define st to be the state of the Markov process at time t. At each time. t. we
also have an observed spectral envelope model, expressed as a vector, xt. With each state, i. is
associated a probability distribution function (pdf)

b(x) = P(Xtls t = i) i=1,2,3 (1

for the observed spectral vector, xt, given that the process is in state i at time t. Since the process
is Markov, the pdfs do not depend on t. In our implementation, we use discrete pdfs for the
vector x. First, a portion of the training speech for a speaker is analyzed and then used to
determine a codebook of spectral templates using a clustering algorithm [6]. Then, for any
spectral envelope model vector, x, using vector quantization (VQ) we search the codebook for
the template vector that is closest. The index of the closest vector. vr then defines a bin of a
discrete probability distribution. The pdfs in our HUMEs. then, have a probability for each of the

possible bins:

bi(v) =p(vt=klst = i); i=1,2,3; for all k (2)

For each allowed transition (indicated by the arrows in Figure 2) we have a transition probability

a i = P (St =i1st-1 = ) (3)

the probability of state i being followed by state j. While the relation is not direct, we find it

useful to think of the states as corresponding to the beginning, middle, and end of a phoneme.

5
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"Left" "Middle" "Right"

Figure 2: Hidden Markov Model of a Phoneme. States 1, 2, and 3 are assumed to
correspond approximately to the left, middle, and right portion of a phoneme.

6
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Next, we discuss the issues of training set size and robustness that arise with the use of large
numbers of models.

2.1.1 Training Problem

For any units with context-dependency larger than the phoneme, we will have a training
problem. While some of the contexts may occur frequently, many will not occur with sufficient
frequency to estimate a robust acoustic model. In fact, large numbers of the possible contexts

will not occur at all in any particular set of training speech.

A simple solution would be to use the most detailed .ontext-dependent model with a
sufficient number of training samples. For example, let us say we want a model for the /eV in
"whales". If the word whales has appeared a few times, we would use the model of /e/ that
depended on the word whales. If not, we might use a model of all /ey/ that are preceded by /w/
and followed by /1/ (as in "away late"). If this context did not occur, then we could fall back to a
model dependent on the left or right context alone (as in "wait" or "tail"). Or if nothing else, we
could resort to the context-independent model derived from all /e/ phoneme tokens. This
algorithm for choosing the model, however, does not make optimal use of the training data, and
does not properly account for coarticulatory phenomena. To solve this problem, we must
examine more closely how coarticulation interacts with our model for a phoneme.

2.1.2 Comlbined Model

Both experience and reason tell us that the coarticulatory effect of an adjacent phoneme is
greatest in the part of the phoneme closest to that adjacent phoneme. For example, a phoneme to
the left will have the most effect on the left part (state 1) of a phoneme, and the least effect on
the right part (state 3). To account for both the nature of coarticulation and the requirements for
robust statistical models, we use a combined context model as shown in the following example:

7
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Example:
Model for levi in "whales"

A

p(Ilev in whales) = , p(-%w e' 1)
+ ., P(xIw'
+ X3 P _( el )
+ X4 p(xl el
+ k5 Pt_,[ el in whales)

- = fl# Occurrences, State)

5

A

That is, the combined model, p, is a linear combination of the various context-dependent
models. The weight vector, X, depends on the state of the phoneme model (left, middle, right),
and the amount of training for each model. The sum of the weights, X, from any node is 1.
During forward-backward training the models are kept separate. Prior to recognition, the models
for a state can be combined into a single pdf to save computation. Thus, during recognition, the
HMM is of the same complexity as a single unconditioned model.

To summarize, we have argued that we can model coarticulation effects by the use of
context-dependent models of phonemes. Furthemiore, to avoid the lack of robustness due to
insufficient amounts of training, we can smooth these detailed context-dependent models with
well trained context-independent models. The amount of the smoothing depends on both the

location of the HMM state in the phoneme, and the amount of training available for that
particular context.

2.2 Experiments iith Combined Context Model

Below we describe a succession of experiments designed to demonstrate the effectiveness
of the coarticulation model proposed above.

8
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2.2.1 E-set Problem

The "E-set" is the set of nine letters of the English alphabet that rhyme with E. They are B.
C, D, E, G, P, T, V, Z. They provide a few interesting problems for speech recognition. First,
since they differ phonetically in only one phoneme, they require minimal pair distinctions.
Second. since most of the duration of each utterance is the i/ phoneme, one has to be careful that
random statistical variation in this region does not dominate in the total discrimination score.
Third, the models for the consonants do not depend on phonetic context, since they always
appear preceded by silence (in isolated speech), and followed by /i/. The /i/ phoneme, however.
appears with 9 different left contexts.

Recognition experiments were performed for a single speaker using three different models:
context-independent (phoneme), left-context only, and a combined model. For each case, the
system was alternately trained with 1, 4, 10, and 20 tokens per letter. The recognition was
performed using a best-first stack search. The results [71 show that the context-dependent model
performance increases significantly from 61% correct with one token per letter to 97% with 20
tokens per letter, while the context-independent model performance only varies from 79% to
93%. Thus, for small amounts of training, the context-independent model is better than the
context-dependent models; for large amounts, vice versa. The combined model, with weights
based on the number of tokens and the state within the model, is generally better than either
model by itself, with performance ranging from 82% correct with one token to 97% with 20
tokens.

2.2.2 Continuous Phonetic Recognition

In this section, we describe experiments on continuous phonetic recognition, using the same
techniques for modeling coarticulation. The analysis methods were the same as for the previous
experiments with the following exceptions. The clustering and vector quantization of the speech
used several different size codebooks, from 64 to 512. A simple variable-frame-rate (VFR)
algorithm was used to reduce the computation somewhat. Strings of up to 3 identical vector
codes were compressed to I observation. (This simple variable frame rate scheme was found not
to affect performance.) Training sets of 5 minutes and 25 minutes were used.

In general, the models that are derived from a combination of the phoneme model and
either the left or right context-dependent model resulted in significantly better performance than
either the context-independent phoneme model or the left-context model alone. The system that
used a combination of models dependent on left and right context simultaneously did not
improve penormance any further. A careful examination of the results showed that including
either left context or right context produced similar answers.

9
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The performance improves with a finer spectral resolution in the VQ codebook, as long as
the training set is sufficiently large. With only five minutes of training, performance improved
as the number of spectral templates increased from 64 to 256. However, for the combined
model, the performance dropped when the number increased to 512 spectral templates,
presumably due to insufficient training data for each pdf. As the amount of training was
increased to 25 minutes. the performance improved most for those systems that used combined
models and a large number of spectra. In particular, the combined phoneme+left+right context
model, with 256 spectra and 25 minutes training, cut the errors in half (81% correct) relative to
the context-independent (phoneme) model alone (62%).

2.2.3 Coarticulatory Effects in a Word Recognition System

In this section, we extend the coarticulation model to the problem of continuous large-
vocabulary word recognition. In our phonetic recognition experiments we have observed that

the improvement in performance due to using left- or right-dependent models of phonemes
instead of context-independent models is smaller when the test vocabulary is different from the
training vocabulary, even though the contexts in the test set had occurred frequently in the
training set. We hypothesized that contexts beyond the immediate phonetic contexts are
important and affect recognition results. This might explain why speech recognition systems
that model whole words typically outperform those that use a phoneme model, as long as the
anount of training for each word is sufficient and the effects between words are not severe.
However, word-based systems cannot easily take into account word boundary effects and are not
easily extensible to vocabularies of thousands of words. The problem then is to model phonemes
in context to maximize recognition performance on a particular large vocabulary, especially
when not all the words in the vocabulary appear often enough in the training set to allow the

estimation of robust models.

To extend our model of coarticulation to the word level, we need only include a word-
dependent model of the phoneme with any other models that we choose to use. We also must
expand our dictionary pronunciations to permit modeling of the desired context.

Database

The vocabulary used in this study was from a 334-word electronic mail task. The task has a
fairly rich structure and allows many different types of questions and commands, such as:

- Print all messages from Smith on the Dover.

" Which messages have I deleted since yesterday?

" Has Jones replied to my last message?

10I
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A total of 400 different sentences were generated covering 250 words of the vocabulary.
The sentences were each recorded by three male speakers and one female speaker in sessions of
100 sentences, separated by a few days. The first three sessions were designated as training data,
and the last as test material. The total duration of the training material was thus about 15
minutes for each speaker. The test material used in the experiments below included 30 of the
test sentences, with a total of 187 word tokens covering 80 different words.

A dictionary of phonetic pronunciations was constructed for this 334-word vocabulary
without listening to either the training or test material, but by trying to account for the most
frequent phonological variations for each word. The average number of different pronunciations
per word was 2. Word boundary phonological variations were not included. (In a separate
experiment, each word was allowed only one pronunciation. The recognition accuracy was
slightly higher than with multiple pronunciations. We have not fully explained this result, and
are not sure whether it will carry over to very large vocabulary experiments.)

Analysis

The sentences were read directly into a close talking microphone in a natural but deliberate
style in a quiet office enviromnent. As before, some of the training data was used with a
~ieui.g ...gor.ithm. to produce a representative set of Mel-Frequency Cepstral Coefficient

(MFCC) vectors. However, in this case we used a k-means clustering, which was found to result
in slightly better performance than the nonuniform binary clustering procedure. These
experiments were performed using a codebook size of 256 MFCC templates. We used the
simple VFR algorithm described above to save computation.

Training

To obtain the necessary initial estimate for the probability distribution function for each
state of the phonetic HMM we use a bootstrapping technique. A separate passage (5 minutes of
speech of a different vocabulary) spoken by one of the male talkers is carefully labeled.
indicating the beginning frame of each phoneme, The hand-labeled speech is then quantized
using the VQ codebook for each particular talker in the experiment. Normalized histograms of
the observed vector-quantized spectra for each phoneme are computed from the labeled data to
form an initial estimate of the pdf for the phoneme for that talker. All the pdfs for the different
states in the HMM for a phoneme are set to this initial estimate. Finally, all the pdfs for the
context-dependent models of a phoneme are set equal to the single, context-independent model
of that phoneme. This bootstrapping technique of using a single talker's speech as an initial
estimate for all talkers seems to work quite well for both male and female talkers.

We have also used a second bootstrapping technique that gives approximately the same
performance without any manual labeling effort. We start from a flat initial estimate for each
phoneme, and train the system using context-independent models only until convergence. Then,

11
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these models form the initial estimate for the context-dependent models, which are then trained
further. This second method requires more computation, because of the need for two training
sequences, but makes no assumptions about the nature of the acoustic environment, or the
availability of manually labeled speech.

The 15 minutes of training data per talker is transcribed with the sequence of words spoken
(no time labels and no phonetic labels). The training data is then processed with five passes of
the Forward-Backward algorithm, which is normally sufficient for convergence. In the cases
where context-dependent models of the phonemes are used, the training algorithm maintains
separate models for each observed phonetic context. The numbers of different acoustic models
found in the training set were: 50 context-independent, 500 left- or right-context dependent, and
1600 word-dependent models.

Prior to recognition, word models are precomputed for each word in the vocabulary from
the appropriate phoneme-in-context models with weights depending on the number of
occurrences of each model and the position within the phoneme (as used in training).

Recognition

[he recognition algorithm used was a time-synchronous approximate procedure developed
under the Multiple Knowledge Sources contract within the Strategic Computing Program. No
grammar was used, thus making the branching factor equal to the vocabulary size (334). The
recognized sequence of words was then compared automatically to the correct answer to
determine the percentage of correct, deleted and inserted words. Word substitutions and
deletions are tabulated as errors, while insertions are counted separately.

We present results for several different context models. As described in the previous
section, the results were produced for the following set of conditions: 3 speakers. speaker-
dependent, 334-word lexicon, electronic mail task, no grammar, 15 minutes of training, and 30
test utterances totaling 187 words. Table 1 gives a detailed description of the various system
configurations for the different experiments.

Figure 3 shows the word recognition accuracy for each coarticulation model (identified
below the graph). The left and right axes show the percentage of words correct and percent error
correspondingly. This performance measure only takes into account substitution and deletion
errors. Therefore, the percentage insertion errors (i.e. the number of extra words divided by the
number of words spoken) is given directly above each label. For each coarticulation model, the
performance is indicated for each male speaker by a filled circle. The average performance
across speakers is indicated by the horizontal line. Finally, the single triangle for system PH+W
indicates the recognition performance for the female talker. For this best system, the word
recognition accuracy, averaged across the four speakers, was 90%.

12
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System Name Word models are constructed using:

PH Context-indepenent phoneme models

W Only word-dependent phoneme models, regardless of whether
training is sufficient for the word

PH+W Linear interpolation of context-independent and word-
dependent phoneme models

PH+L+R Linear interpolation of context-independent, left-context-1
dependent and right-context-dependent phoneme models.

PH+L+R+W Linear interpolation of context-independent, left-context-
dependent, right-context-dependent, and word-dependent phoneme
models.

Table I: Different System Configurations for Word Recognition.

From the results given above, we make the following observations. First, the systems that
model coarticulatory effects clearly result in better recognition performance. For example,

system W achieves significantly better performance than system PH. Note that in this
experiment, while not all vocabulary words were in the training set, all words in the 30 test

sentences were observed at least once in the training. Although some words are poorly trained,
the overall performance is improved. Note that for larger vocabularies, many words would not
occur in training, making this system (W) inappropriate; a system that uses a subword context-

dependent model will be necessary. Second, the systems that use less detailed models to smooth
the highly context-dependent models result in higher accuracy and fewer insertions than those
that attempt to use the context-dependent model by itself. For example, system PH+W
outperforms system W. Third, the range in performance across the three speakers (17%) is large

for the context-independent (PH) system. We conjecture that this is due to a difference in the
degree of coarticulation present. However, the range in performance for the context-dependent
systems (4-6%) is greatly reduced - a desirable attribute. We believe this behavior is due to the
fact that these systems are better able to model the coarticulation present.

As a side note, we tried combining all four models (PH+L+R+W) in a single experiment,
but found that performance did not improve over the PH+W system. We presume that this is due
to the fact that most words in the test set were well trained.

13
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Figure 3: Word Recognition Accuracy using different coarticulation models.
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2.2.4 Recognition With a Grammar

Our next goal was to show that the coarticulation model improves recognition accuracy in a
complete continuous speech recognition system. We constructed a deterministic granunar for
the electronic mail task using an extended context free notation. The rules were compiled into a
finite-state network. The Test Set Perplexity [4] of the grammar was 31.

Table 2 compares the recognition accuracy for coarticulation models PH and PH+W. The
table gives both the word accuracy 'percentage of words correctly recognized) and the sentence
accuracy (percentage of sentences recognized exactly correct with no insertions, substitutions, or
deletions). The results are averaged across the 3 male and I female speakers. As seen, system
PH+W, has about one fourth the word errors, and less than one third the sentence errors of
system PH. The word recognition accuracy with a grammar was 98.8%, averaged over the four
speakers. The sentence recognition accuracy was over 90%.

Context ! Word AccuracY Sentence Accuracy

PH 94.7 7c 66.4%

PH+W 98.817c 90.2%

Table 2: Recognition results with a grammar.

2.2.5 Conclusion

We have presented a fornalism for modeling coarticulatory effects in a robust way. The
formalism uses detailed context-dependent models of phonemes smoothed by more robust
context-independent models, with weights that depend on the amount of training of each model
and the location within the phoneme. Thus, the phonetic modeling in the recognition system is
not tied to any particular level of context, such as the diphone or syllable. It attempts to use the
information in the training data to the extent possible. Comparative results have been compiled
for four different tasks: Isolated E-set recognition, continuous phonetic recognition, continuous
word recognition, and continuous speech recognition using a grammar. The speaker-dependent
recognition accuracies for these four problems were: E-set: 97%, phoneme recognition: 81%,
continuous speech word recognition (no granunar): 90%, and continuous speech recognition
with a grammar (text-set perplexity of 31 ): 98.8%. In all cases, the benefit of using the robust
coarticulation model over the simple context-independent phonetic model was a reduction of the
error rate by at least a factor of two and often more.

15
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2.3 BYBLOS System Recognition Results

The algorithms developed under this contract were used in the BYBLOS speech recognition
system developed under the Strategic Computing program. In this section we present
recognition results for the BYBLOS system. In all cases, the system used the rohust
coarticulation model described in the previous section. We performed experinents on three
different databases: the 334-word electronic mail task, a 350-word subset of the resource
management task, and the 1000-word resource management task-domain database collected at
Texas Instruments (TI) and at BBN. For each task, a deterministic grammar was constructed
using an extended context free notation. The rules were compiled into a finite-state network. To
do this, we disallowed infinite recursion. Each arc in this network represents a word and each
path through the network represents a valid sentence in the language. We measured the
complexity of the network by computing the Test Set Perplexity on an independent set of
sentences. First, each sentence in a test set is parsed by the grammar. Then we compute the
geometric mean of the number of possible words at each node of the grammar, sampled over the
test set. While the perplexity of a language does not take into account the acoustic confusability
of the competing words, we feel that the Test Set Perplexity measure is still a good rough
measure of task difficulty.

The recognition algorithm used was the same time-synchronous as before, with the
modification that each word-arc could only be followed by those word-arcs allowed by the
grammar. While the computation for a large granmnar would increase proportionally with the
number of arcs in the grammar, we found that it was possible to prune most of the path' using a
bean search, without any loss in performance.

Table 3 shows recognition results for several different tasks. For each task, we indicate the
source of the database (how many male and female speakers, and whether recorded at BBN or at
TI) and the perplexity of the grammar used. For each case, we also show the performance
without a grammar (indicated by a grammar with I node). Finally, we give the number of nodes
and arcs in the grammar.

We draw the following general conclusions from the results in the table. First, the
recognition results for the case of no grammar vary between 65% and 90% correct depending on
the vocabulary size and the population of speakers. These results, we feel, are unsurpassed in the
literature. The recognition results with various grammars vary quite predictably as a function of
the perplexity. Generally, the percent word error is approximately predicted by the formula:

%error = 0.5 x perplexir.0 5
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Task Perple iy # Noics Arcs Speakers % Accuracy

3 334 334 3M, 1F 93.0

Word 15 min.

E-Mail 31 600 4.000 98.8

350 350 350 2 Males 92.5

Word
Resource fo B

30 7.000 30,000 99.2
Management

~~~2 rv .'-B B N) 8:.

1,'000 1 1,000

1.0001.000 3M,1 F(TI) 65.9

Word

Resour:e BBN 98.6
50 1.000 1.000

f1, anagement
TI 89.T

BBN 99.7
10 7.000 70,000

TI 
97.8

Table 3: Continuous speech recognition results with grammars.
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or the word error rate is approximately equal to one-half the square root of the perplexity.

The accuracy for the BBN speakers appears to be a consistently higher than'for the database
collected at TI. While the number of speakers tested is relatively small, we believe that the
difference in results between the BBN and TI speakers is largely due to the fact that the BBN
speakers were more motivated and spoke more carefully than the speakers at TI.

2.4 Summar%

We have described a comprehensive model for phonetic coarticulation and showed that it
improves recognition accuracy for several phonetic recognition and word recognition tasks. In
general, the error rate for the robust coarticulation model was less than half the error rate for the
context-independent model alone. We have demonstrated that when the algorithms developed
under this contract were applied to the speech recognition system developed under Strategic
Computing. they resulted in high recognition accuracy on several tasks. using seeral different
databases.
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3. Stochastic Segment Modeling

Although the HMMvI approach has been used successfully [4, 8, 9], its recognition
performance at present is not sufficiently accurate for high-perplexity continuous speech
recognition. Recently, we began investigating a novel approach, called stochastic segment
modeling, with the goal of improving phonetic modeling. The motivation for looking at speech
on a segmental level, rather than on a frame-by-frame basis as in HNL'vlis that we can better
capture the spectral/temporal relationship over the duration of a phoneme. Evidence of the
importance of spectral correlation over the duration of a segment can be found in the success of
segment-based vocoding systems [101.

A speech "segment" is a variable-length sequence of feature vectors, where the features

might be, for example, cepstral coefficients. The stochastic segment model is defined on a fixed-
length representation of the observed segment, which is obtained by a time-warping (or
resampling) transformation. The stochastic segment model is a multivariate Gaussian density

function for the resampled representation of a segment. The recognition algorithm chooses the
phoneme sequence that maximizes a match score on the resampled segments. The training
algorithm iterates between two steps: first, the maximum probability phonetic segmentation of
the input speech is obtained, then maximum likelihood density estimates of the segment models

are derived.

This section is organized as follows. First, we introduce the segment model followed by a

description of the segment-based recognition algorithm, then the training algorithm. Finally, we
present experimental results for phoneme and word recognition, comparing the results to HMM
recognition results for the same tasks.

3.1 Stochastic Segment Model

In this section, we define the stochastic segment model for an observed sequence of speech
frames X = [t 2 ... XL], where \j is a k-dimensional feature vector. We can think of this
observation as a variable-length realization of an underlying fixed-length spectral trajectory

Y = 1Y1 Y2..m. where the duration of X is variable due to variation in speaking rate. Given
X, we define the fixed-length representation Y = XTL where the L x m matrix TL, called the
resampling transformation, represents a time-warping. The segment Y, called a resampled
segment, is an m-long sequence of k-dimensional vectors (or a k x m matrix). The stochastic
segment model for each phoneme a is based on the resampled segment Y and is a conditional
probability density function p(YI(x). The density p(YIlt) is assumed to be multivariate Gaussian
which is a kn-dimensional model for the entire fixed-length segment Y.
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3.1.1 Resampling Transformations

The resampling transformation TL is an L x m matrix used to transform an L-length
observed segment X into an m-length resampled segment Y. We considered several different
variable- to fixed-length transformations, concentrating on transformations which had previously
been evaluated in the segment vocoder [101. The best recognition results are obtained using
linear time sampling without interpolation. Linear time sampling involves choosing m uniformly
spaced times at which to sample the segment trajectory. Sampling without interpolation refers to
choosing the nearest observation in time to the sample point, rather than interpolating to find a
value at the sample point.

Figure 4: Observed input segment (o) and corresponding resampled segment (x). The
two axes correspond to two cepstral coefficients.

Figure 4 shows an input segment with duration six in two-dimensional space (denoted by o)
and the corresponding resampled Y (with m = 4) using linear time warping without interpolation
(denoted by x). The resampling transformation in this case is:

1000
0000

T= 0100
0010
0000
0001
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3.1.2 Probabilistic Model

As already mentioned, the segment model is a multivariate Gaussian based on the
resampled segment Y, p(Nlco). Recall that resampled segments are kn-dimensional, where k is

the number of spectral features per sample and rn is the number of samples. In this work,

typically k-14 and m=10. Consequently, the segment model has 140 dimensions. Because of

insufficient training, we cannot estimate the full phoneme-dependent covariance matrix, so ve

must make some simplifying assumptions about the structure of the problem. For the

experiments reported here, we assume that the m samples of the resampled segment are

independent of each other, which gives a block diagonal covariance structure for Y, where each

block in the segment covariance matrix corresponds to the k x k covariance of a sample. The log

of the conditional probability of a segment Y given phoneme c can then be expressed as

In [p('l cc)] I ln[pj(yjl~x)], (4)

j= t

where p py lc) is a k-dimensional multivariate Gaussian model for the j-th sample in the segment.

The block-diagonal structure saves a factor of m in storage and a factor of rn- in computation.

The disadvantage of this approach is that the assumption of independence is not valid,

particularly if resampling does not use interpolation where adjacent samples may be identical. In

the future, with more training data, we hope to relax this assumption. It is likely that more

detailed probabilistic models, such as Gaussian mixture models [Il] and context-dependent
(conditional) models [8, 9], will yield better recognition results than the simple Gaussian model.

However, due to larger training requirements we did not pursue these models in this work.

3.1.3 Properties of the Segment Model

There are several aspects of the stochastic segment model which are useful properties for a

speech recognition system. First, the transformation TL, which maps the variable-length

observation to a fixed-length segment, can be designed to constrain the temporal structure of a
phoneme model so that all portions of the model are used in the recognition. We conjecture that

the fixed transformation will provide a better model of phoneme temporal/spectral structure than

either HMM or DTW. Second, the segment model is a joint representation of the phoneme, so

the model can capture correlation structure on a segmental level. In HMM, frames are assumed

independent given the state sequence. In the segment modei, no assumptions of independence

are necessary, though the model of Y given by Equation 4 is based on the assumption of sample
independence because of limited training data in this study. The model is potentially more

general than the special case of (4). Lastly, by using a segment model we can compute segment

level features for phoneme recognition. In other words, the segment model provides a good

structure for incorporating acoustic-phonetic features in a statistical (rather than rule-based)
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recognition system. For example, one might want to measure and incorporate formant frequency
or energy differences over a segment.

3.2 Recognition Algorithm

In this section, we describe the recognition algorithm. First, we consider the case when the
input is phonetically hand-segmented. Then, we generalize to automatic recognition. that is.
joint segmentation and recognition of continuous speech.

When the segmentation of the input is known, we consider a single segment X
independently of neighboring segments. The input segment X is resampled as segment Y. The

A
recognition algorithm is then to find the phoneme a that maximizes p(YIoa):

A
c=arg max In [p( I a)p( )] (5)

a

where ln[p(YIa)] is given by Equation 4. This decision rule is equivalent to a maximum a-
posteriori rule.

In an automatic recognition system, it is necessary to find the segmentation as well as to
recognize the phonemes. In this case, we hypothesize all possible segmentations of the input,
and for each hypothesized segmentation s of the input into n segments we choose the sequence

A
of phonemes a that maximizes:

n
J(s)=X L(i) (6)

i=1I
A AIn1[P( Y I loCI )p(( oi]+1C

where L(i) is the duration of the i-th segment, Yi is the resampled segment corresponding to the
A

i-th segment in s, and oh is the phoneme that maximizes p(Yilct)p(cO. The cost C is adjusted to
control the segment rate. An efficient solution to joint segmentation and recognition is
implemented using a dynamic programming algorithm. The unoptimized algorithm for finding
the best sequence of segment models to the input is described roughly by the pseudocode given
below

for end time = 4 to Number of frames

/* score from frame 0 to end time
(
best_score [end time] = 0
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/* consider input segments 4 to 50 frames ending at end time *1
for begintime = end time - 4 to endtime - 50 by -1

/* find best segment model between begintime and endtime */
(
time warpinput (begintime,end time, time warped input)
maxprob-seg = 0
for iseg = 1 to Number of segmentmodels
logprob = log p (timewarped-input I segment[iseg])
if (log_prob > maxyprobseg) then
maxprobseg = logprob
bestseg = iseg

/* score of 1 to begin time + begin time to end-time */
best begin end score = best score[begintime]

+ maxprob seg * (end time - begin-time)

if (bestbeginend score > best score[end time]) then
{ best score[end time] = best_beginend score

best-start time[endtime] = begintime
best seg_ending[end_time] = best seg

}
I

Note that for joint segmentation and recognition, it is necessary to weight the segment
probability by the duration of the segment, so that longer segments contribute proportionately
higher scores to the match score J(.) of the whole sequence.

3.3 Training Algorithm

In this section, we present the training algorithm for estimating the segment models from
continuous speech. We assume that the phonetic transcription of the training data is known and
that we have an initial Gaussian model po(Yct) for all phonemes. (Phonetic transcriptions can be
generated automatically from the word sequence that corresponds to the speech by using a word
pronunciation dictionary.) We assume that the phonetic sequence a has length n. The algorithm
comprises two steps: automatic segmentation and parameter estimation. The algorithm
maximizes the log likelihood of the optimal segmentation for the phonetic transcription, where
the log likelihood of a segmentation s is given by:

N
ls)=Y y n[P(Yiloxi)P(OcQ) (7)

i=12
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where Yi is the resampled segment that corresponds to the i-th segment in the segmentation s and
ctt is the i-th phoneme in the sequence x. With t = 0, the iterative algorithm is given by:

1. Find the segmentation st of the training data that maximizes I(st) for the given
transcription and the current probability densities {pt(Ylx) 1.

2. Find the maximum likelihood estimate for the densities (pt+,(YIct)I of all
phonemes, using the segmentation st.

3. t <- t + 1 and go to Step I

Both steps of the algorithm are guaranteed to increase (st) with t. If there are at least two
different observations of every phoneme, then the probability of the sequence is bounded.

Hence, the iterative training algorithm converges to a local optimum. Step I is implemented as a
dynamic programming search whose complexity is linear with the number of phonetic models
N. Step 2 is the usual sample mean and sample covariance maximum likelihood estimates for
Gaussian densities.

3.4 Experimental Results

In this section we will present results for a phoneme recognition task, as well as word
recognition results for a segment-based recognition system and an HMM-based svstern All
experiments use ni = 10 samples per segment and k = 14 mel-frequency cepstral coefficients per
sample. These values are based on work in segment quantization [121, and limited
experimentation confirmed that these values represent a reasonable compromise between
complexity and performance. Speech is sanpled at 20 kHz, and analyzed every 10 ms with a 20
ms Hamming window.

3.4.1 Phoneme Recognition

The database used for phoneme recognition is approximately five minutes of continuous

speech from a single speaker. The test set contains 270 phonemes. Both the test set and the
training set are hand-labelled and segmented, using a 61 symbol phonetic alphabet. In counting
errors, an 'AX' (schwa) recognized as 'IX' (fronted schwa) is considered acceptably correct, as
is an 'URT' (unreleased T) recognized as a 'T'. All recognition rates presented represent
"acceptably correct" recognition rates. The acceptable recognition rate is typically 6% to 8%
higher than the strictly correct recognition rate.
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Phoneme recognition results for three different cases are given in Table 4. The results
illustrate a small degradation in performance due to moving from recognition based on manually
segmented data to automatic recognition. Using automatic training does not degrade
performance any further.

Training Test % %
Segmentation Segmentation Recognition Insertion

Manual Manual 78.5 0.0

Manual Automatic 74.4 10.0

Automatic j Automatic 73.7 7.8

Table 4: Recognition results using manually segmented speech and automatically
segmented speech.

We also experimented with using an additional segmental feature to the cepstral
parameters: sample duration which requires knowledge of the hypothesized duration of the
segment. Using joint segmentation and recognition with hand-segmented training data,
performance improved from 74.4% to 75.9% as a result of using the duration feature.

For reference, a discrete hidden Markov model with 3 states/phoneme and using a
codebook with 256 entries has 62% phonetic recognition rate with 12% insertions. The HNMNI
recognition performance on this database is higher when phoneme models are conditioned on left
context, 75% correct with 12% insertions [81. In the latter case, 600 left-context phonetic
models are used in the HMM system while 61 phonetic models are used in the stochastic
segment model.

3.4.2 %%ord Recognition

The segment-based word recognition system consists of a dictionary of phoneme
pronunciation networks and a collection of segment phoneme models. A word model is built h
concatenating phoneme models according to the pronunciation network. The recognition
algorithm is simply a dynamic programming search (Viterbi decoding) of all possible word
sequences. For the results in this paper, we assume that words are independent and equally
probable; there is no grammar (statistical or deterministic) associated with recognition. Within
each word, we find the best phoneme segmentation for that word, where the phoneme sequence
is constrained by the word pronunciation network.

For continuous speech word recognition, we used a 350 word vocabulary, speaker-
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dependent database based on an electronic mail task. We present results for three different male
speakers. Fifteen minutes of speech was used for training the 61 phoneme models for each
speaker, from which the word models were then built. An additional 30 sentences (187 words)
are used for recognition. Analysis parameters are the same as for the previous database. Again,
"acceptable" error rates are reported here, where in this case, homophones such as "two" and "to"
are considered acceptable errors. Since we do not use a grammar, homophones are
indistinguishable.

The initial segment models are obtained on training from segmentations given by a discrete
hidden Markov model recognition system. The results after one pass of training of the segment
model for the three speakers are summarized in Table 5. The HMNM recognition results are also
given for comparison. For the HMM results, five passes of the forward-backward training
algorithm are performed. The segment phoneme system outperforms the phoneme-based HNEM,
system, reducing the error rate by one third (including insertions). However, the segment
phoneme system does not quite match the HMM context model system. This suggests that
context-dependent segment models might be useful. Note that in the earlier phoneme results, the
segment system matched the performance of HMM models conditioned on left context only.
Here we give results for HMM models conditioned on both left and right context. The HMM, I
system with context models conditioned on both left and right context uses 2000 models, or
thirty times the number used by the segment system.

Segment- HINI- HMI-OP

Speaker PH PH PH-LE-RI

RS 87/5.3 85/10.2 90/1. 1

FK 83/2.1 75/5.4 88/2.7

AW 78/3.7 68/7.5 86/3.7

Average 83/3.7 76/7.7 88/2.5

Table 5: Word recognition/insertion rates for three speakers for the segment phoneme
system and for two HNMM systems: phoneme models and phoneme models conditioned
on the left and right context.

26



Report No. 6725 BBN Laboratories Incorporated

3.5 Conclusion

To summarize, we feel that the segment model offers the potential for large improvements
in speaker-dependent acoustic modeling of phonemes in continuous speech. Our initial results
demonstrate the potential of the approach. Of course, a practical system requires automatic
training and recognition, which we demonstrated to perform close to the hand-segmented case at
the cost of a few insertions. For comparison, the automatic segment system reduces the word
error rate by one third over an HMM system on a 350-word continuous speech recognition task.

27
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4. Rapid Speaker Adaptation

To achieve the high recognition accuracy presented in previous sections. each speaker read
300 training sentences or about 15 minutes of training speech. Some speech recognition
applications have a need for a new speaker to begin using the system with reasonable accuracy
without investing a long tine to train the system on their voice. However, as we will see belo,
the speaker-dependent performance degrades dramatically when the amount of training speech is
reduced using the standard training procedure. A different training procedure is needed if we are
to have robust and rapid speaker adaptation with only a few training sentences. The purpose of
speaker adaptation is to yield acceptable recognition performance even for speakers who have
not provided enough speech to train the HMMs. Since our goal is to achieve the highest
performance possible, we focus on developing speaker adaptation procedures which operate on a
set of known sentences from a new speaker (supervised training). These sentences (adaptation
speech) are processed before the new speaker begins to use the system.

The approach that we have taken in our work is to normalize well-trained models from a
"prototype" speaker to model the speech of the new speaker. The adaptation requires only a few
sentences (referred to as "adaptation speech") from the new speaker.

Below we define a probabilistic spectral mapping from one speaker to another. Then, we
present two different methods for estimating the spectral mapping between speakers. With each
method. we present experimental results.

4.1 Probabilistic Mapping

In this section, we describe our basic approach for solving the speaker adaptation problem.
We concentrate on methods which transforn well-trained HMMs from a prototype speaker to
model a new speaker using a probability transformation matrix.

We start with a set of well-trained speaker-dependent phonetic HMNLM models derived from
a large sample of speech from a prototype speaker. We assume we are given a small sample of
known speech from a new speaker (input speaker). The essential idea is to modify the prototype
HMM parameters using a constrained transformation to model the input speech of the new
speaker.

Here we present the basis for the probabilistic transformation and show it to be equivalent
to an expanded HMM model for each state of the original HMM. The transformation is
generalized to be partially dependent on the particular phoneme.
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Discrete Hidden Markov Models

For each state of a discrete HMM, we have a discrete probability density function (pdf)
defined over a fixed set, N, of spectral templates. For example, in the BYBLOS system we

typically use a vector quantization (VQ) codebook of size N=256 [6]. The index of the closest
template is referred to below as the "quantized spectrum". We can view the discrete pdf for each

state s as a probability row vector

p(s) = [p(kils). p(kIs).,p(ks)j. (8)

where p(k1 ls) is the probability of spectral template k, at state s of the HMM model.

Mapping From Prototype to New Speaker

If we define a quantized spectrum for the prototype speaker as kV 1 <i<N, where i is the
index of the spectral template and a quantized spectrum for the new speaker as k' ', 1 <j<N, then

we denote the probability that the new speaker will produce quantized spectrum k' , given that
the prototype speaker produced spectrum k, as p(k'jlk i) for all i, j.

We can rewrite the probability for specLrum k' given a particular state s of the HINMM as

N
p(k')Is) = p, P(kils) p(k')ki,s) (9)

i=1I

If we assume that the probability of k' given k is independent of s, then

N
p(k'Is) = , p(kils) p(k'.Ik i ) (10)

'= I

The set of probabilities p(ky k,) for all i andj form an NxN matrix T that can be interpreted

as a probabilistic transformation from one speaker's spectral space to another's. We can then

compute the discrete pdf p'(s) at state s for the new speaker as the product of the row vector p(s)

and the matrLx T.

p'(s) = p(s) T; T = p(k'j1 k) ll

Expanded HMM Formulation

The probabilistic transformation can also be described in terms of an expanded HMM

model for the state. Figure 5a shows a single state of the HMM for a new speaker. It contains a

single discrete probability vector, p'(s). Figure 5b shows an expanded model in which the single
state is replace by N parallel paths. The transition probability for path i is p~kls), the probability
of the quantized spectrum ki, given the same state s for the prototype speaker. The discrete pdf

on that path is p(k'Ik), which corresponds to row i of the transformation matrix.

Careful inspection of the figure will reveal that the probability of any new-speaker

spectrum k' for the expanded HMM shown is a summation of the jth probability over all N
paths, as given in (10). Therefore, Figure 5a represents the left side of equation (11), while
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a)
(3t(S)

b)

p~k. 's)

p(k('~N' 7k'l

Figire 5: Expanded HNEM. a) single state of the HMM. b) expanded model separating

prototype pdf and transformation matrix.

figure 5b represents the right side. Once the matrix has been determined, we can replace the
expanded HMM by the single pdf resulting from the vector-matrix multiplication in ( lb.

Phoneme-Dependent Transformation

The independence assumption in (10) above assumes that a single probabilitic spectral
mapping will transforni the speech of one speaker to that of another. Ho\, ever, w'e know that
some of the differences between speakers cannot be modeled this simply. We can define a
phoneme-dependent mapping:

N
p(k' Is) = Yj p(kls) p(k' Ik.Q(s)) (12)

1=1

where 0(s) specifies the equivalence class of states in models that represent the same phoneme as
s. Since the amount of training speech from the new speaker will be small, we could not hope to
have enough samples of each phoneme to estimate a reliable mapping for all phonemes.
Therefore. we interpolate the phoneme-dependent transformation matrix with the
phoneme-independent transformation matrix. The weight for the combination depends on the
number of observed frames of the particular phoneme. This for those phonemes that occur
several times in the adaptation speech. the transformation will depend mostly on that particular
phoneme.
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4.2 Estimation of Transformation \Iatrik

We have shown above that the transfonnation matrix can be explained as an expanded

HMNIM for each state of the model for the new speaker. Therefore, it would seem reasonable to

use the forward-backward algorithin to estimate the transfomation matrix while keeping the

prototype pdf fixed. This algorithi, and the corresponding experiental result, are gi'\en

belo.

4.2.1 Ilethod

The algorithm begin,, with a VQ codebook and well-trained contex-dependent and

conlte.t-itdct'lctr pdfs derived from a prototype speaker. A small number of sentences are

read b) the new speaker The new iadaptation) speech is quantized using the prototype speaker's

VQ codebook. (This step may be a source of reduced performance, and will be discussed further

below. I Then. w e use a modification of the standard forward-back w ard algorithm to estimate the

phe )Cmc-dpCh'nrl and phu ncmL'- ith'pendent transfomiat ion matrices,.

To save computation and storage we use !)'ws. the compact HMM in Figure 5a. to compute

the partial (oa and 3) terms in the fornard-backw ard algorithm. The forward-backward "count"

are added to a separate count matrix. (Tvo methods for computing the counts are defined at the

end of this subsection.) Since we have no L priori transformation matrix, we must pro,,ide an

initial estimate. To minimize computation %\e use an identity natrix for the first trans,fornation

(that is, we just use the prototype pdf as is). However, when we compute the counts in the first

pass, the transformation matrix is a constant value of I/N. After the first pass, the sane matrix is

used both for forw ard-backward partial terms and for computing the counts. At the end of each

pass through the adaptation data, each row of the count matrix, which corresponds to L?(.k"lk,) (the

transfomation given one prototype spectrum k1 . is rescaled so it sums to 1. This nomalized

count matrix then becomes the new probabilistic transformation matrix. After the final pass we

transforn all the prototype models using ( I I

Computing Counts - Method 1:

For each alignment of a state with an observed quantized spectrum, k'(t=k'., the prototype

pdf vector p(s) is multiplied by column j of the transforation matrix p(k i)k), I <i<. This

vector product is multiplied by the constants Ct_I(S-l) and ,(s) (shown in Figure 5b) and then

accumulated in column I of the count matrix. x,- (S-I ) is the probability of the observed spectra

from frames I through t-I given the models up to but not including state s. f3(s) is the

probability of the observed spectra from the end of the sentence back to time t+l given the

models after state s. This method corresponds to the standard (maximum likelihood) forward-

backward algorithm for the HMM shown in Figure 5b.
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Computing Counts - Method 2:

Method 2 is siuilar to Method 1. with the exception that the prototype pdf vector is

multiplied by the constants cys) and Pt(s) (shown in Figure 5b) and then added to the

corresponding column of the count matrix. That is, the counts are computed as the prohabtlit% of

heine in state s at time r tines the prototype pdf. We found that only one pass of the algorithni

is necessas-r for Method 2, making it preferable in terms of computation. We also found that thi,

method results in lightly better performnce than Method L. Therefore all results quoted helo%%

are for Method 2.

4,2.2 [xperiment,

Database

We have performed experiments on a 350-word subset of a naval database retrieval task

SFCCBMPt. The task has a fairly rich structure and allows many different types of questions and

commands. The prototype speaker recorded 400 sentences in 4 sessions of 100 sentences each.

separated by a few days. The f-irst three sessions were designated as training data, and the last a,

test mat:.rial At an average of 3 seconds per sentence, the total duration of the training material

, as thus thout 15 minutes for the prototype speaker.

Each of h ne% speakers then recorded a subset of the training sentences and. in a ,eparate
,e,,son. the 1 00 te-t sentence,. The 6 speakers inicluded one female, one non-native ,[ear one

experienced speadker, and three inexperienced speakers.

We onstructed a dictionary of phonetic pronunciations for the vocabulary without l istenine

to either the training or test material. With very few exceptions, only one pronunciation ,aas

chwen for each ,. ord.

The sentence,, were read directly into a close-talking microphone 'in a natural but deliberate

,,tyle in a quiet office environment. The speech was lowpass filtered at 10 kHz and ,amipled at

20 kHz. Fourteen Mel-frequency cepstral coefficients (MFCC) were computed every 10 ms on a

2ms analysis windo-w%. One half of the training speech of the prototype speaker ,a., u,,ed to

derive a speaker-dependent VQ codebook. Then all the recorded speech for all speaker,, wa

quantized using this codebook.

Training

The 15 minutes of speech from the prototype speaker was used, together with the phonetic

dictionary, to estimate context-dependent and conte.xt-independent phonetic models. The speech

models for the new test speakers were computed in two ways: Speaker-Dependent training and

Speaker adaptation. In addition to these two models for the new speaker. we also performed
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control experiments using the prototype speaker's models without any change. These unaltered
models are designated as "Cross-Speaker" models. Prior to recognition, the phonetic models
were combined and concatenated into word models to facilitate the word recognition process.

Recognition

We used the time-synchronous search procedure described in [8] to find the mot likel

sequence of words for each test sentence. Recognition experiments were performed hoth with

and without a grammar. When no grammar was used, the effective branching factor was equal

to the vocabulary size (350). The grammar used had a Maximum Perplexity [131 of 30 and an
estimated Perplexity [4] of 20 (measured on a test set). The recognized sequence of word" was

then compared automatically to the correct answer to determine the percentage of errors of each

type: substitutions, deletions, and insertions.

We use an error measure that reflects all three types of errors in a single number. The

percent error is given by

%error = 100 substitutions + deletions + insertions (13)

total words + insertions

The word accuracy is then defined as 100 - %'error. Note that this definition is different from the

percent correct words.

4.2.3 Results

Figure 6 below shows the recognition error as a function of the amount of training speech

(on a log scale) for both training conditions. For reference, the results using the Cross-Speaker

models are also shown. Some of the conditions that did not seem to warrant extensive testing

(e.g., 15 second speaker-dependent training) were evaluated using a subset of the speakers.
More critical results (e.g., 15 second speaker adaptation) were evaluated using all 6 speakers.

The recognition error varied less with the duration of speech for speaker adaptation than for

speaker-dependent training - particularly when a grammar was used. The error rate with 15

seconds of adaptation speech was about the same as achieved by the speaker-dependent training

method with 6 to 10 minutes of training speech. In particular, when a grammar was used, the
word recognition error with only 15 seconds of adaptation speech from each speaker was 4%

(97% correct words with 1% insertions.)

Detail vs Robustness

We can see from the results with and without a grammar that the speaker transformation

seems to be much more successful when a grammar is used. That is, the error decreased by a
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Figure 6: Speaker-Dependent Training vs adaptation.
Speaker-Dependent Training (O); Speaker adaptation (a ). Cross-Speaker Results () i.

The solid line indicates accuracy with a grammar: the dashed line indicates no grammar.

bigger factor (from speaker-dependent training to the adaptation algorithm) % hen a gramlmlar wa,

used than when no gramm"ar was used.

When no grammar is used in speech recognition it is important that the models be sharply
tuned to make fine distinctions. Occassional errors will result from a finely tuned model that
was inadequately trained. In contrast, we assume that when a grammar is used the number of

words allowed at each point is small relative to the vocabulary size. In this case it is less likely

that fine phonetic distinctions will be necessary. To get very high perfomiance, it becomes more
important that the correct word never get a very low score.

We have observed that the pdfs resulting from the speaker adaptation procedure are

typically broader than those resulting from speaker-dependent training. We surmise that this

effect, combined with the appropriate spectral mapping between the speakers, accounts for the
large improvement in accuracy when a grammar is used.

Source of Errors

We performed a series of experiments on one speaker in an effort to deten-nine whether the

major source of errors is the duration of adaptation of speech, the adaptation procedure itself, or
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the fact that the VQ codebook of the prototype speaker is used for the new speaker. We present
the recognition results (using no grarnmar) in Table 6 below

Condition (1c error

15 min spkr-dependent training 16%
Prototype VQ codebook 2 4 ( '

15 rain adaptat ion1 27' :

5 min adaptation 3()l

2 min adaptation 33c

Table 6: Source of Recognition Errors.
Each line changes one experimental condition.

As we see in the table, the largest increase in word error is the result of u ing a VQ
codebook that was not designed for the new speaker. Our next step. therefore, will be to derive a
codebook for the new speaker from a combination of the new speech and the prototype speaker's
codebook. This expanded codebook will form the basis for the normalized pdf models.

Results with Larger Granunars

More recently, we have performed limited experiments with a grammar that has higher
perplexity than the grammar used in the experiments described above. The high-perple\ivt
granimar was based on the 1000-word Resource Management task. Startinz , ith a lo\\-
perplexity Sentence Pattern Gramar, we allowed all word pairs that could occur resultirI. iII
what we call the First Order Grammar. with a perplexity of 50. This granmar %'as ued In
several speaker-dependent recognition experiments. The recognition error ranged from 71 (for
TI speakers) to 3% (for a BBN speaker other than the prototype speaker). Limited experiment,
were run on this grammar using phonetic models adapted from a prototype speaker to another
The recognition error went up to 35-40% for the TI speakers and to 18%c for the BBN speaker.
This represents a 5-fold increase in the error rate from the speaker-dependent to the speaker-
adapted models. This is in contrast to the factor of 2 that we observed with the more restricted
grammars. This shows that this speaker adaptation technique is not oreserving the ability to make
the fine phonetic distinctions necessary for more complex grammars. Below, we present another
method for estimating the speaker transformation matrix that results in improved perormance for
grammars with high perplexity.
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4.3 Estimation of Matrix using Text-Dependent Alignment

As described above, one of the sources of degradation of the algorithm is due to the fact
that we quantize the new speaker's speech using the prototype speaker's VQ codebook. This
causes increased spectral quantization error of the new speaker's spectral parameters. In
addition, many spectra from the prototype speaker's codebook are not typically observed in the
adaptation speech from the input speaker, thus causing those columns of the transformation
matrix to be empty and the estimated probability of those spectra to be zero in all the pdfs.

In this section we describe an improved procedure for estimating the pdf transformation
matrix. T. First we present the method. Then we describe a set of experiments comparing
several different methods for estimating the transformation matrix.

4.3.1 Method

Making speaker-dependent codebooks from limited speech

One solution to the VQ error mentioned above is to make a speaker-dependent codebook
from the adaptation speech itself. Experinents show that a codebook made from 10 adaptation
sentences is able to cover the feature space of future input speech and quantize future input
speech with small distortion. On an independent test set, the VQ error is much less (equivalent
to using 2 bits more) than that using the prototype speaker's codebook. The problem of empty
columns in the matrix is eliminated, since the quantized adaptation speech uses all of the bins in
the codebooks.

We also considered an algorithm of Shikano er a/. [14] for adapting the prototype speaker's
codebook to the new speaker. The use of this algorithm both as a method for determining the
codebook for the new speaker and in combination with the our probabilistic spectral mapping
algorithm will be discussed further below.

Our next problem is to find a procedure to compute a reliable spectral mapping between
speech samples quantized by two independent codebooks.

Computing a mapping between spectra

Instead of aligning quantized spectra to prototype models, here we align the adaptation
speech with a set of the same sentences spoken by the prototype speaker. That is, the alignment
is performed text-dependently. We align the cepstral coefficients of the matched utterances
directly with a dynamic time warping (DTW) algorithm using Euclidean distance.

Next we quantize the adaptation speech from both the input and prototype speakers using
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their respective speaker-dependent codebooks. and obtain a correspondence between sequences

of aligned quantized spectra. To estimate p(k'1 Ik,) we count the co-occurrences of the actual
quantized spectra for each of the frames in the adaptation sentences. The result is a co-
occurrence matrix N, where each element Nii is the number of co-occurrences of prototype

spectrum k'I and k. Then we normalize the rows of N to form the probability' matrix T.

Improving the estimate of the matrix

As described above, this new algorithm uses actual observations of spectra to etimate the
pdf transformation matrix. An obvious way to improve the estimate of the transformation matrix
is to use more adaptation speech. However, for rapid speaker adaptation, we want to minimize
the adaptation material required. Another way to improve the reliability of the transformation
matrix estimate without increasing the adaptation speech is to use repetitions of the adaptation

sentences from the prototype speaker. In other words, we align each sentence in the adaptation
speech repeatedly against several repetitions of that sentence by the prototype speaker.

Using more repetitions of the prototype speech does not increase the phonetic variety in the
adaptation speech, but it does make the spectral mapping more reliable by enlarging the sample
space over which the probabilities in the transformation matrix T are estimated. Experimental
results below show that this procedure does improve the performance significantly.

4.3.2 Experimnents

The Prototype Speaker

In all the adaptation experiments shown below, we use as a prototype the well-trained
HMMs of a single speaker RS. RS is a careful male speaker with a New York dialect. RS
recorded 600 sentences at BBN in a normal office environment. The 600 utterances constituted

about 30 minutes of speech which was used to estimate the HMM parameters for the prototype

models.

The test speaker database

A 1000-word database of continuous speech has been designed and recorded within the
DARPA Strategic Computing Speech Program [15]. This data consists of sentences which are
appropriate in a naval resource management task. A large number of speakers were recorded in
a sound isolated recording booth at Texas Instruments (TI;. We used 4 speakers from the

speaker-dependent portion of this database to test 6 different adaptation procedures. We then
used 8 speakers recorded at TI and 3 additional speakers recorded at BBN to compare the

performance of the new adaptation method with speaker-dependent training.

Adaptation speech
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In the adaptation experiments, we use adaptation speech of duration 30 seconds or 2
minutes. For the 30-second adaptation, we used 10 phonetically balanced sentences recorded
during one of the speaker-dependent training sessions. For 2 minutes adaptation we added 30
more sentences taken from the training data.

Processing of the speech

Both the input and prototype speech %%ere lowpass filtered at 10 kHz and sampled at 20
kHz. 14 mel-frequency cepstral coefficients (MFCC) were computed every 10 ms on a 20 ins

analysis window.

Recognition

All the recognition experiments used a word-pair grammar of perplexity 60. This graimmar
allows all two-word sequences which occur in the task domain definition [15, 161. The
recognized sequence of words was compared automatically to the correct answer to determine
the percentage of word errors of each type: substitutions, deletions, and insertions. We use an

error measure that reflects all three types of errors in a single number. The percent error is given

by

Sword-e''Or = lOOx "s tztuti ms+inse rttons+ deletions
total-numbher- of-input-vwords

Note that it is possible for this error measure to exceed 100%.

4.3.3 Results

We used 4 speakers from the TI database to compare 6 different adaptation procedures. All
the test speakers have different sentence text for their test sets. Figure 7 shows the comparison

of average word error rate using different adaptation algorithms as well as speaker-dependent
training. Below we discuss the performance of each algorithm column by column from left to

right in Figure 7.

Text-Independent Mapping (previous algorithm)

In the leftmost column, we show the performance for our previous algorithm using 30
seconds of adaptation speech. The word error rate is 52%, which is far from acceptable. The
word error rate is about 6 times that of the speaker-dependent perfon-nance (9%) shown in the
rightmost column.

Codebook adaptation

An algorithm that adapts the codebook of the prototype speaker to a new speaker has been
suggested by Shikano et al. [141. The purpose of experiments using codebook adaptation is to
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Fi.,ure 7: Comparison of Different Methods for Estimating the Transformation Matri,

compare the performance of our a.lgorithms with another existing scheme. This method has been
applied in a template-based isolated word recognition system, but here we apply it to an HMNI-
based continuous speech recognition system, In this algorithm we first align the same sentence
spoken by the two different speakers using a DTW algorithm with Euclidean distance between
MFCC vectors as the distance measure. Then we replace the decoded value of each codeword of

the prototype speaker's codebook with the mean of the input spectra that align to that codewvord.
Thus, new speech from the input speaker, when quantized using this modified codebook, will

tend to get the same codewords as the prototype speaker's speech using the prototype speaker's

codebook. Experiments on the 4 speakers show that recognition performance is similar to our

previous algorithm (54% word error).

Combined method

Although the codebook adaptation algorithm alone does not perform adequately, it does

greatly reduce the quantization error for the new speaker. Therefore, we attempted to use the
adapted codebook to quantize the input speech, followed by the original probabilistic text-

independent spectral mapping algorithm. Experimental results obtained using this combined
procedure show that the word error rate has been significantly reduced to 42%. However. it is
still more than 4 times the speaker-dependent error rate.

Text-Dependent Mapping (new algorithm)
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In the fourth column we show the performance of the new algorithm using 30 seconds of

adaptation speech indicated by the circle. The word error rate (32%) was significantly reduced

compared to that of the previous algorithms. Next, we performed some experiments using 2

minutes of adaptation speech. As indicated by the triangle in the fourth column, the word error

rate has been significantly reduced to 20% using more adaptation speech. This rate is about two

times the speaker-dependent error rate.

Repetition of prototype adaptation speech

To confirm the effectiveness of using multiple repetitions of prototype adaptation speech.

we performed a set of experiments using 10 sentences of input speech (30 seconds from the input

speaker) and 100 sentences of prototype speech, which is 10 repetitions of the adaptation

material. The error rate was 26%, as compared with 32% with only I repetition of the 10
sentences.

Session Effect

In all the experiments described above, the adaptation speech was recorded in a different

session than the test speech. Here, we performed experiments using 2 minutes of adaptation

speech from the sane session as the test speech. The error rate was reduced only from 20% to

18% error, which shows that either the diffec-nt sessiuns wcrc very s-milar, or this new

algorithm is not very sensitive to the session effect.

Performance on more speakers

To further evaluate the new method we performed experiments on another 7 speakers (4

from TI and 3 from BBN). We used 2 minutes of input speech from the same session as the test

speech. Table 7 contains the comparison of speaker-adapted and speaker-dependent

perforiance for each of the 11 speakers. The results show that:

1. The performance difference between 2-minute speaker adaptation and speaker-
dependent training are within a factor of two (11.3% versus 7.1%).

2. This algorithm works well for speakers with different dialects than the prototype
speaker.

3. The female speakers' models are adapted very well even though the prototype
speaker is a male.

4. The difference between the performance of speaker-adapted models and speaker-
dependent models is smaller for BBN speakers than ror TI speakers. This could be
due to several differences, including the fact that the prototype speaker was
recorded at BBN.

Future Work

We feel that there are several ways in which the adaptation procedure can be improved.
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2-MINUTE SPEAKER-

SPEAKER RECORDED AT GENDER DIALECT SPEAKER DEPENDENT

ADAPTATION TRAINING

CMR " TI F Southern 13.5 7.1

JWS TI tM, Mid South 20.8 5.6

BEF TI M Mid North 15.7 6.6

RKMvi TI M South 20.3 16.4

TAB TI M Western 7.2 3.2

PGH TI M New England 11.0 6.0

DTD Ti F South 8.6 6.7

DTB Ti M Mid North 9.3 5.4

OK BBN M Mid Atlantic 6.1 6.6

JM BBN M Non-Native 7.6 11.4

FK BBN M Mid North 4.7 3. 5

-AVERAGE ERROR RATE 11.3 7.1

Table 7: Comparion of Recognition Accuracy of Speaker Adaptation using 2 minutes
vs Speaker-Dependent Training using 30 minutes

One simple idea is to have availahle several prototype speakers, in order to choose the one most

appropriate for the neA speaker In one experiment, wve used speaker TAB recorded at TI

(instead of BBN speaker RS) to be the prototype for input speaker PGH. The perfornance \vas

improved from the word error rate of 11% to 87. Thus, the possibilitv of improving

performance by prototype selection remains.

4.3.4 Conclusions

The results above show that the new text-dependent probabilistic spectral mapping

algorithm results in significantly better performance than the previous algorithms, and also

provides recognition performance which is only two times the word error rate for speaker-

dependent training, using 2 minutes of adaptation speech. We believe that further improvement

can be achieved by appropriate prototype selection and using multiple repetitions of prototype

adaptation speech.
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