Title: NAVAL C³ DISTRIBUTED TACTICAL DECISIONMAKING

Performing Organization Name and Address: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA. 02139

Report Date: Jan. 22, 1988

Number of Pages: 1425

Abstract: Progress on eight research problems addressing distributed tactical decisionmaking is described.
QUARTERLY TECHNICAL REPORT
for the period
1 October 1987 to 31 December 1987
for
NAVAL C³ DISTRIBUTED TACTICAL DECISION MAKING
Contract Number N00014-84-K-0519
Work Unit NR 649-003

Submitted to:
Dr. N. Gerr, Code 1111SP (3 copies)
Dr. H. L. Hawkins, Code 1111SP
Dr. R. Madan, Code 414
Dr. W. R. Vaughan, Jr.
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Submitted by:
Michael Athans
Alexander H. Levis
January 22, 1988
NAVAL C³ DISTRIBUTED TACTICAL DECISIONMAKING

1. PROJECT OBJECTIVES

The objective of the research is to address analytical and computational issues that arise in the modeling, analysis and design of distributed tactical decisionmaking. The research plan has been organized into two highly interrelated research areas:

(a) Distributed Tactical Decision Processes;
(b) Distributed Organization Design.

The focus of the first area is the development of methodologies, models, theories and algorithms directed toward the derivation of superior tactical decision, coordination, and communication strategies of distributed agents in fixed organizational structures. The framework for this research is normative.

The focus of the second area is the development of a quantitative methodology for the evaluation and comparison of alternative organizational structures or architectures. The organizations considered consist of human decisionmakers with bounded rationality who are supported by C³ systems. The organizations function in a hostile environment where the tempo of operations is fast; consequently, the organizations must be able to respond to events in a timely manner. The framework for this research is descriptive.

2. STATEMENT OF WORK

The research program has been organized into seven technical tasks -- four that address primarily the theme of distributed tactical decision processes and three that address the design of distributed organizations. An eighth task addresses the integration of the results. They are:

2.1 Real Time Situation Assessment: Static hypothesis testing, the effect of human constraints and the impact of asynchronous processing on situation assessment tasks will be explored.

2.2 Real Time Resource Allocation: Specific research topics include the use of algebraic structures for distributed decision problems, aggregate solution techniques and coordination.
2.3 **Impact of Informational Discrepancy:** The effect on distributed decisionmaking of different tactical information being available to different decisionmakers will be explored. The development of an agent model, the modeling of disagreement, and the formulation of coordination strategies to minimize disagreement are specific research issues within this task.

2.4 **Constrained Distributed Problem Solving:** The agent model will be extended to reflect human decisionmaking limitations such as specialization, limited decision authority, and limited local computational resources. Goal decomposition models will be introduced to derive local agent optimization criteria. This research will be focused on the formulation of optimization problems and their solution.

2.5 **Evaluation of Alternative Organizational Architectures:** This task will address analytical and computational issues that arise in the construction of the generalized performance-workload locus. This locus is used to describe the performance characteristics of a decisionmaking organization and the workload of individual decisionmakers.

2.6 **Asynchronous Protocols:** The use of asynchronous protocols in improving the timeliness of the organization's response is the main objective of this task. The tradeoff between timeliness and other performance measures will be investigated.

2.7 **Information Support Structures:** In this task, the effect of the C³ system on organizational performance and on the decisionmaker's workload will be studied.

2.8 **Integration of Results:** A final, eighth task, is included in which the various analytical and computational results will be interpreted in the context of organizational bounded rationality.

3. STATUS REPORT

In the context of the first seven tasks outlined in Section 2, a number of specific research problems have been formulated and are being addressed by graduate research assistants under the supervision of project faculty and staff. Research problems which were completed prior to or were not active during this last quarter have not been included in the report.
3.1 DISTRIBUTED TEAM HYPOTHESIS TESTING WITH EXPENSIVE COMMUNICATIONS

Background: In Command-Control-and-Communication (C³) systems multiple hypothesis testing problems abound in the surveillance area. Targets must be detected and their attributes must be established; this involves target discrimination and identification. Some target attributes, such as location, are best observed by sensors such as radar. More uncertain target locations are obtained by passive sensors, such as sonar or IR sensors. However, target identity information requires other types of sensors (such as ESM receivers, IR signature analysis, human intelligence etc). As a consequence in order to accurate locate and identify a specific target out of a possibly large potential population (including false targets) one must design a detection and discrimination system which involves the fusing of information from several different sensors generating possibly specialized information about the target. These sensors may be collocated on a platform (say a ship in a Naval battle group) or be physically dispersed as well (ESM receivers exist in every ship, aircraft, and submarine). The communication of information among this diverse sensor family may be difficult (because of EMCON restrictions) and is vulnerable to enemy countermeasure actions (physical destruction and jamming). It is this class of problems that motivates our research agenda.

To put it another way the fusion of information derived from dispersed sensors and decision nodes requires communication. To discourage nonessential communication we would like to put a price on each transmitted bit. In this manner, extensive communications would occur only if the decision warrants them.

Research Goals: We are conducting research on distributed multiple hypothesis testing using several decision-makers, and teams of decision-makers, with distinct private information and limited communications. This is the simplest possible non-trivial distributed decision problem, whose centralized counterpart is well understood and straightforward to compute. The goal of this research is to unify our previous research in situation assessment, distributed hypothesis testing, and impact of informational discrepancy; and to extend the methodology, mathematical theory and computational algorithms so that we can synthesize and study more complex organizational structures. The solution of this class of basic research problems will have impact in structuring the distributed architectures necessary for the detection, discrimination, identification and classification of attributes of several targets (or events) by a collection of distinct sensors (or
On dispersed human observers.

The objective of the distributed organization will be the resolution of several possible hypotheses based on many uncertain measurements. Each hypothesis will be characterized by several attributes. Each attribute will have a different degree of observability to different decision makers or teams of decision makers; in this manner, we shall model different specialization expertise associated with the detection and resolution of different phenomena. Since each hypothesis will have several attributes, it follows that in order to reliably confirm or reject a particular hypothesis, two or more decision-makers (or two or more teams of decision-makers) will have to pool and fuse their knowledge.

Extensive and unnecessary communication among the decision-makers will be discouraged by explicitly assigning costs to certain types of communication. In this manner, we shall seek to understand and isolate which communications are truly vital in the organizational performance; the very problem formulation will discourage communications whose impact upon performance is minimal. Quantitative tradeoffs will be sought.

We stress that we shall strive to design distributed organizational architectures in which teams of teams of decision-makers interact. For example, a team may consist of a primary decision-maker together with a consulting decision-maker -- the paradigm used by Papastavrou and Athans.

The methodology that we plan to employ will be mathematical in nature. To the extent possible we shall formulate the problems as mathematical optimization problems. Thus, we seek normative solution concepts. To the extent that human bounded rationality constraints are available, these will be incorporated in the mathematical problem formulation. In this case, the nature of the results will correspond to what is commonly referred to as normative/descriptive solutions. Therefore, we visualize a dual benefit of our basic research results. From a purely mathematical point of view, the research will yield nontrivial advances to the distributed hypothesis-testing problem; an very difficult problem from a mathematical point of view. From a psychological perspective, we hope that the normative results will suggest counterintuitive behavioral patterns of -- even perfectly rational -- decision-makers operating in a distributed tactical decision-making environment; these will set the stage for designing empirical studies and experiments and point to key variables that should be observed, recorded and analyzed by cognitive scientists. From a military C³ viewpoint, the results will be useful in structuring distributed architectures for the
surveillance/discrimination function.

Progress during the past quarter: In the past quarter we completed the investigation of the problem of ternary hypothesis testing by a team of two cooperating decision makers; communication between the two decision-makers is costly and consists of a finite alphabet. The problem is to distinguish among three different hypotheses. Each decision-maker obtains an uncertain measurement of the true hypothesis. The so-called primary decision-maker has the option of making the final team decision, or consulting, at a cost, the consulting decision-maker. The consulting decision-maker is constrained to provide information using a ternary alphabet. The team objective is to minimize the probability of error together with the communications cost (if any). Mr. Papastavrou, under the supervision of Prof. Athans, has derived all necessary equations. However, due to the severe complexity of these equations, we decided not to write the necessary software for their solution at the present time.

Mr. Papastavrou and Professor Athans have initiated the investigation of a class of distributed decision problems originally analyzed by L. Ekchian in his Ph.D. thesis (1983). Consider the problem of binary hypothesis testing by two decision makers (DMs) connected in tandem. The "upstream" DM communicates his conclusion to the "downstream" DM who then blends his measurement with the "upstream" decision, and generates the final decision for the team. The quality of each DM can be quantified by his receiver operating characteristic (ROC) curve. Dominance of the ROC curves can be used to indicate that a particular DM is clearly better than the other one. Ekchian had posed the (reasonable) conjecture that the better DM should be the downstream one. We have been able to verify this conjecture for a class of gaussian problems, and we are attempting to either prove the conjecture in general, or construct a counter-example. This line of inquiry is important because it would point out how relative expertise of DMs should impact organizational design.

Mr. Pothiawala and Professor Athans have also examined the above problem under the assumption that the upstream DM is allowed to communicate with more than two bits his tentative decision to the downstream DM. We seek to understand the value of each additional bit of communicated information to the overall improvement of the distributed team objective (e.g. the weighted probability of error).

Documentation: We have started a paper on the binary hypothesis testing problem for presentation at the upcoming JDL C2 Symposium in June 1988. An abstract has been submitted.
3.2 DISTRIBUTED HYPOTHESIS TESTING WITH MANY AGENTS

Background: The goal of this research project is to develop a better understanding of the nature of the optimal messages to be transmitted to a central command station (or fusion center) by a set of agents (or sensors) who receive different information on their environment. In particular, we are interested in solutions of this problem which are tractable from the computational point of view. Progress in this direction has been made by studying the case of a large number of agents. Normative/prescriptive solutions are sought.

Problem Statement: Let H_0 and H_1 be two alternative hypotheses on the state of the environment and let there be N agents (e.g. intelligent sensors) who possess some stochastic information related to the state of the environment. In particular, we assume that each agent i observes a random variable y_i with known conditional distribution $P(y_i|H_j)$, $j = 0, 1$, given either hypothesis. We assume that all agents have information of the same quality, that is, the random variables are identically distributed. Each agent transmits a binary message to a central fusion center, based on his information y_i. The fusion center then takes into account all messages it has received to declare hypothesis H_0 or H_1 true. The problem consists of determining the optimal strategies of the agents as far as their choice of message is concerned. This problem has been long recognized as a prototype problem in team decision theory: It is simple enough so that analysis may be feasible, but also rich enough to allow nontrivial insights into optimal team decision making under uncertainty.

Results: This problem has been studied by Prof. J. Tsitsiklis. Past results [1-2] can be summarized as follows: Under the assumption that the random variables y_i are conditionally independent (given either hypothesis), it is known that each agent should choose his message based on a likelihood ratio test. Nevertheless, we have constructed examples which show that even though there is a perfect symmetry in the problem, it is optimal to have different agents use different thresholds in their likelihood ratio tests. This is an unfortunate situation, because it severely complicates the numerical solution of the problem (that is, the explicit computation of the decision threshold of each agent). Still, we have shown that in the limit, as the number of agents becomes large, it is asymptotically optimal to have each agent use the same threshold. Furthermore, there is a simple effective computational procedure for evaluating this single optimal
threshold.

We have also shown that if each agent is to transmit K-valued, as opposed to binary messages, then still each agent should use the same decision rule, when the number of agents is large. Unfortunately, however, the computation of this particular decision rule becomes increasingly harder as K increases.

We have also investigated the case of M-ary (M > 2) hypothesis testing and constructed examples showing that it is better to have different agents use different decision rules, even in the limit as N→∞. Nevertheless, we have shown that the optimal set of decision rules is not completely arbitrary. In particular, it is optimal to partition the set of agents into at most M(M-1)/2 groups and, for each group, each agent should use the same decision rule. The decision rule corresponding to each group and the proportion of the agents assigned to each group may be determined by solving a linear programming problem, at least in the case where the set of possible observations by each agent is finite.

Finally, results have been obtained which cover the Neyman-Pearson (as opposed to Bayesian) version of the problem, in the case of M=2 hypothesis. The asymptotically optimal solution has been found and involves the Kullback-Liebler information distance.

Currently, research is being carried out by Prof. J. Tsitsiklis and a graduate student, Mr. George Polychronopoulos, and involves the following two directions.

(a) We have considered a class of symmetric detection problems in which given any hypothesis H_i, each sensor has probability ε of making an observation indicating that some other hypothesis H_j is true. A simple numerical procedure has been found which completely solves this problem. Furthermore, a closed form formula for the optimal decision rules has been found for the case where the "noise intensity" ε is very small.

(b) In the context of the above symmetric problem we have posed problems of the following type: "Is it preferable to have N sensors each one transmitting D bits, or N/K sensors, each one transmitting KD bits? A complete solution has been found. The formulation represents a fundamental design problem in the design of distributed sensor systems.
We have also conducted research which addresses the issue of the validity of asymptotic considerations, when the number of agents N is moderate ($N=5$), with encouraging results.

The above results will be reported in the Masters thesis of Mr. Polychronopoulos (expected in the spring of 1988) and on a subsequent journal paper.

Documention

3.3 COMMUNICATION REQUIREMENTS OF DIVISIONALIZED ORGANIZATIONS

Background: In typical organizations, the overall performance cannot be evaluated simply in terms of the performance of each subdivision, as there may be nontrivial coupling effects between distinct subdivisions. These couplings have to be taken explicitly into account; one way of doing so is to assign to the decisionmaker associated with the operation of each division a cost function which reflects the coupling of his own division with the remaining divisions. Still, there is some freedom in such a procedure: For any two divisions A and B it may be the responsibility of either decisionmaker A or decisionmaker B to ensure that the interaction does not deteriorate the performance of the organization. Of course, the decisionmaker in charge of those interactions needs to be informed about the actions of the other decisionmaker. This leads to the following problem. Given a divisionalized organization and an associated organizational cost function, assign cost functions to each division of the organization so that the following two goals are met:

a) the costs due to the interaction between different divisions are fully accounted for by the subcosts of each division;
b) the communication interface requirements between different divisions are small.

In order to assess the communication requirements of a particular assignment of costs to divisions, we take the view that the decisionmakers may be modeled as boundedly rational
individuals, that their decision-making process consists of a sequence of adjustments of their decisions in a direction of decreasing costs, while exchanging their tentative decisions with other decisionmakers who have an interest in those decisions. We then require that there are enough communications so that this iterative process converges to an organizationally optimal set of decisions.

Problem Statement: Consider an organization with N divisions and an associated cost function $J(x_1, \ldots, x_N)$, where x_i is the set of decisions taken at the i-th division. Alternatively, x_i may be viewed as the mode of operation of the i-th division. The objective is to have the organization operating at a set of decisions (x_1, \ldots, x_N) which are globally optimal, in the sense that they minimize the organizational cost J. We associate with each division a decisionmaker DM_i, who is in charge of adjusting the decision variables x_i. We model the decisionmakers as "boundedly rational" individuals; mathematically, this is translated to the assumption that each decisionmaker will slowly and iteratively adjust his decisions in a direction which reduces the organizational costs. Furthermore, each decisionmaker does so based only on partial knowledge of the organizational cost, together with messages received from other decisionmakers.

Consider a partition $J(x_1, \ldots, x_N) = \sum_{i=1}^{N} J^i(x_1, \ldots, x_N)$ of the organizational cost. Each subcost J^i reflects the cost incurred to the i-th division and in principle should depend primarily on x_i and only on a few of the remaining x_j's. We then postulate that the decisionmakers adjust their decisions by means of the following process (algorithm):

(a) DM_i keeps a vector x with his estimates of the current decision x_k of the other decisionmakers; also a vector λ with estimates of $\lambda^k = \partial J^i / \partial x_i$, for $k \neq i$. (Notice that this partial derivative may be interpreted as DM_i's perception of how his decisions affect the costs incurred to the other divisions.

(b) Once in a while DM_i updates his decision using the rule $x_i := x_i = \sum_{k=1}^{N} \lambda^k$, ($\gamma$ is a small
positive scalar) which is just the usual gradient algorithm.
(c) Once in a while DM\textsubscript{i} transmit his current decision to other decisionmakers.
(d) Other decisionmakers reply to DM\textsubscript{i}, by sending an updated value of the partial derivative $\partial j^k/\partial x_i$.

It is not hard to see that for the above procedure to work it is not necessary that all DM’s communicate to each other. In particular, if the subcost J_i depends only on x_i, for i, there would be no need for any communication whatsoever. The required communications are in fact determined by the sparsity structure of the Hessian matrix of the subcost functions J_i. Recall now that all that is given is the original cost function J; we therefore, have freedom in choosing the J_i’s and we should be able to do this in a way that introduces minimal communication requirements; that is, we want to minimize the number of pairs of decisionmakers who need to communicate to each other.

Progress to Date: A graduate student, C. Lee, supervised Prof. J. Tsitsiklis, undertook the task of formulating the problem of finding partitions that minimize the number of pairs of DM’s who need to communicate to each other, as the topic of his SM research. It was realized that with a naive formulation the optimal allocation of responsibilities, imposing minimal communication requirements, corresponds to the centralization of authority. Thus, in order to obtain more realistic and meaningful problems we did incorporate a constraint requiring that no agent should be overloaded. A number of results have been obtained for a class of combinatorial problems, corresponding to the problem of optimal organizational design, under limited communications. In particular certain cases were solved; other cases have been successfully reformulated as linear network flow or assignment problems, for which efficient algorithms are known, and finally, some cases were shown to be intractable combinatorial problems (NP-complete).

This line of research is now essentially complete. Most results have been reported in the Masters thesis of Mr. C. Lee [1]. A journal paper will be prepared in the next few months covering both the philosophical and the technical aspects of this work.

Documentation:

3.4 COMMUNICATION COMPLEXITY IN DISTRIBUTED PROBLEM SOLVING

Background: The objective of this research effort is to quantify the minimal amount of information that has to be exchanged in an organization, subject to the requirement that a certain goal is accomplished, such as the minimization of an organizational cost function. The problem becomes interesting and relevant under the assumption that no member of the organization "knows" the entire function being minimized, but rather each agent has knowledge of only a piece of the cost function. A normative/prescriptive solution is sought.

Problem Formulation: Let \(f \) and \(g \) be convex function of \(n \) variables. Suppose that each one of two agents (or decisionmakers) knows the function \(f \) (respectively \(g \)), in the sense that he is able to compute instantly any quantities associated with this function. The two agents are to exchange a number of binary messages until they are able to determine a point \(x \) such that \(f(x) + g(x) \) comes within \(\epsilon \) of the minimum of \(f+g \), where \(\epsilon \) is some prespecified accuracy. The objective is to determine the minimum number of such messages that have to be exchanged, as a function of \(\epsilon \) and to determine communication protocols which use no more messages than the minimum amount required.

Results: Several variations of this problem have been studied and solved by Professor J. Tsitsiklis and a graduate student Zhi-Quan Luo. Results have been reported in [1].

An interesting qualitative feature of the communication-optimal algorithms discovered thus far is the following: It is optimal to transmit aggregate information (the most significant bits of the gradient of the function optimized) in the beginning; then, as the optimum is approached more refined information should be transferred. This very intuitive result seems to correspond to realistic situations in human decisionmaking.

More recently, we have considered a new formulation in which the messages are real-valued, rather than discrete. A prototype problem is to assume that each one of two agents knows a \(n \times n \) matrix \(A_i, i=1,2 \). The objective is to compute a particular entry of \((A_1+A_2)^{-1} \). This problem arises, for example in distributed optimization of a cost function of the form \(x'A_1x+x'A_2x+x'b \).
An obvious solution is for agent 1 to transmit all of the entries of A_1 to agent 2 who then performs the required computations. This scheme requires n^2 communications. We have succeeded in showing that there exists no method which will do with fewer than $O(n^2)$ communications. That is information must be centralized. On the technical side, we have restricted to communication protocols which are smooth rational functions of the original data A_1, A_2. (Otherwise n^2 numbers could have been coded in a single real number). The proof of our result uses novel techniques and makes use of certain results in algebraic geometry.

Documentation:

3.5 DISTRIBUTED ORGANIZATION DESIGN

Background: The bounded rationality of human decisionmakers and the complexities of the tasks they must perform mandate the formation of organizations. Organizational architectures distribute the decisionmaking workload among the members: different architectures impose different individual loads and result in different organizational performance. Two measures of organizational performance are accuracy and timeliness. The first measure of performance addresses in part the quality of the organization's response. The second measure reflects the fact that in tactical decisionmaking when a response is generated is also significant: the ability of an organization to carry out tasks in a timely manner is a determinant factor of effectiveness.

The scope of work was divided into three tasks:

(a) Evaluation of Alternative Organizational Architectures;
(b) Asynchronous Protocols; and
(c) Information Support Structures.

During this year, the research effort has been organized around three foci. In the first one, we
continue to work on the development of analytical and algorithmic tools for the analysis and design of organizations. In the second, we are integrating the results obtained thus far through the development of a workstation for the design and analysis of alternative organizational architectures. Finally, the experimental program, initiated last year with the objective of collecting data necessary to calibrate the models and evaluate different architectures for distributed decisionmaking, has been continuing and is expanding.

3.5.1 Design and Evaluation of Alternative Organizational Architectures.

In order to design an organization that meets some performance requirements, we need to be able to do the following:

(a) Articulate the requirements in qualitative and quantitative terms;
(b) Generate candidate architectures that meet some of the requirements;
(c) Evaluate the candidate organizations with respect to the remaining requirements;
(d) Modify the designs so as to improve the effectiveness of the organization;

The generalized Performance Workload locus has been used as the means for expressing both the requirements that the organization designer must meet and the performance characteristics of any specific design. Consider an organization with \(N \) decisionmakers. Then the Performance Workload space is an \(N+2 \) dimensional space in which two of the dimensions correspond to the measures of the organization's performance (say, accuracy and timeliness) and the remaining \(N \) dimensions correspond to the measure of the workload of each individual decisionmaker. Two loci can be defined. First, the Requirements locus is the set of points in this \(N+2 \) dimensional space that satisfy the performance and workload requirements associated with the task to be performed by the organization. The second, the System locus, is the set of points that are achievable by a particular design. The design problem can then be conceptualized as the reshaping and repositioning of the System locus in the Performance Workload space so that the requirements are met.

Three thesis projects were completed during this period. The individual problem statements and a description of the results follow:
Modeling and Evaluation of Variable Structure Organizations

Problem Statement: Develop a methodology for modeling and analyzing classes of variable-structure organizations, i.e., organizations where the interactions between decision makers can change. These organizations, named VDMO from now on, can be classified according to what factors trigger the change. Three types have been defined:

- **Type 1 Variability**: The VDMO adapts the structure of its interactions to the input it processes.
- **Type 2 Variability**: The VDMO adapts the structure of its interactions to changes in the environment in which it functions.
- **Type 3 Variability**: The VDMO adapts the structure of its interactions to changes in its own components. For instance, it can reconfigure itself to perform its task when its resource availability has changed.

In both Type 2 and 3 VDMOs, the issue of the detection by the organization that a change has occurred has not been addressed. These three types of variability can exist concurrently in a given organization; however, for their analysis and for the evaluation of their effects on system performance, they have been treated separately.

Progress to Date: This problem was addressed by Jean-Marc Monguillet under the supervision of Dr. A. H. Levis. The focus of the research effort has been the modeling and analysis of variable structure organizations using Predicate Transition Nets.

The System Effectiveness Analysis methodology has been extended to account for variable structure organizations. A Measure of Effectiveness has been proposed for each type of variable DMO. A mathematical formulation for the computation of that MOE has been established.

A modeling methodology has been described providing a representation of DMO's by functions. The main features of that methodology is the decoupling between the pattern of interactions and the identity of decisionmakers, who are modeled by tokens and treated like any other resources. The Predicate Transition Nets formalism has been adapted to allow such representation.

An example illustrating the overall procedure has been developed. It consists of three candidate designs for an air defense task. Each of these candidates is composed of three decisionmakers, namely one Headquarters and two Field Units. Two organizations have a fixed structure, and the
third one is type 1 variable; for some tasks, it adapts the pattern of interactions to a pattern comparable to that of the first fixed structure DMO. For some others, it takes the other pattern. The results of the comparison of these designs are that a particular organizational design cannot be selected in general on the basis of its performance characteristics alone, as presented in the form of a system locus. The Effectiveness of each candidate has to be evaluated quantitatively for each set of mission requirements; then zones can be defined in the requirements space which characterize for each organization the ranges of mission requirements for which it is the most effective. In that particular case, the set of mission requirements for which the variable structure organization has the highest Effectiveness can be computed. It has been shown clearly that a variable structure organization was preferable to the fixed structure ones when the requirements were such that one fixed design was not timely enough, whereas the other was not accurate enough. Type 1 variability provided a compromise between extreme performance of organizations with fixed structure.

Documentation: The thesis of J.-M. Monguillet has been issued as a LIDS report.

Design of Organizations

Objective: Given a feasible organizational architecture, develop a methodology for (a) identifying the functions that must be performed by the organization in order that the task be accomplished, (b) selecting the resources (human, hardware, software) that are required to implement these functions, and (c) integrating these resources - through interactions - so that the system operates effectively.

Progress to Date: This research problem has been investigated by Stamos K. Andreadakis under the supervision of Dr. A. H. Levis. A doctoral thesis has been defended successfully in December and the dissertation is in the final stages of preparation. The results of this task will be reported in the next progress report.
Ontology of the Document:

Documentation:

Performance Evaluation of Organizations with Decision Aids

Problem Statement: Analyze and evaluate the impact of decision aids, i.e., preprocessors and decision support systems, on the effectiveness of decisionmaking and information processing organizations. In particular, investigate the concept of coordination of decisionmakers assisted by those decision aids.

Progress to Date: A Master's Thesis has been completed by Jean-Louis Grevet under the supervision of Dr. A.H. Levis. From a conceptual standpoint, the idea of coordination in decision-making organizations embodies three classes of issues:

- the extent to which the decisionmakers constitute a team.
- the synchronization of the decisionmakers' activities.
- the consistency of the information processed by the different members of the organization.

The latter class of issues is primarily related to the fact that decisionmakers do not necessarily process data that are consistent because they have different geographical or temporal origins: For instance, two different decisionmakers can process data originating from different sensors or different databases as well as data originating from a common database but accessed at different instants.

The work focused on these three of issues:
(a) The concept of team of decision-makers has been clarified. A team of decision-makers is defined as being an organization in which the members:
- have a common goal
- have the same interests and same perception of the environment
- have activities which must be coordinated so that they achieve a higher performance.

Thus, for a task X with probability distribution \(p(X) \) and a cost function \(c(X) \) for the organization, one condition for the organization to be a team is that its members have the same perception of the task, \(p_T(X) \), i.e., the same beliefs about the task, and assign the same cost \(c_T(X) \) to each input, i.e., have the same interests as far as the task is concerned.

The team will account perfectly for the organizational objectives when:

\[
p_T(X) = p(X) \quad \text{and} \quad c_T(X) = c(X)
\]

(b) The issue of synchronization is related to the interactions between the decision-makers that take place during the decision-making process. It is thus a dynamic characteristic of the organization. When a decision-maker \(DM_i \) processes some information, the total processing time of this input for \(DM_i \) consists of two distinct parts:

- the time \(T_t \) during which the decision-maker actually processes the information
- the time \(T_p \) spent by the information in the memory of the decision-maker without being processed.

The time \(T_p \) is the result of two factors:
- information can remain in the memory of the decision-maker until he decides to process it using the relevant algorithm. In this case, the decision-maker processes several pieces of information at the same time. Since a particular algorithm cannot process two inputs at the same time, some inputs will have to remain unprocessed in memory waiting until the relevant algorithm is free.
- Information can also stay in memory because the decision-maker waits to receive a
necessary piece of information from another decisionmaker or a decision support system.

An organization is perfectly synchronized when, for the whole decisionmaking process, the decisionmakers do not have to wait for information that they need in order to process the information that is in memory. The synchronization degrades when the processing of some inputs leads decisionmakers to wait for these data.

Synchronization is an important concept because the processing of information introduces three kinds of biases:

- biases due to the uncertainty embodied in the information processes;
- biases due to the models used; and
- biases due to the value of information when the decisionmaker actually processes it.

If an item of information remains in memory for a long time, the decisionmaker might well attach less value to it when he actually processes it. This could lead to a degradation of the effectiveness of the organization.

(b) The consistency of information refers to whether or not different items of data can be fused together without contraction. It is mission dependent. Data can be inconsistent if they have different geographical or temporal origins: For instance, two different decisionmakers can process data originating from different sensors or different databases as well as data originating from a common database but accessed at different times.

The modeling of decisionmaking processes that require coordination has been completed using the Predicate Transition Nets formalism. The tokens, which are the symbolic information carrier, are identified by three attributes:

- the time of entry in the net, T_n;
- the time of entry in a specific place, T_d;
- the class c assigned to information items by the previous processing stage.

The rule of enablement of transitions is that the tokens in the input places must have the same
attribute T_n. It means that, when decisionmakers interact, they must refer to the same input.

Two measures that can be used for evaluating the coordination in decisionmaking organizations have been defined:

- the degree of information consistency, D.
- the measure of synchronization, S_T.

A simulation program of Predicate Transition Nets has been developed using the Design Open Architecture Development Systems of Meta Software Corp., has been developed. It can be used to get insight in the dynamics of decisionmaking process.

The impact of decision-aids on the coordination of decisionmaking organizations has been assessed using the modeling and evaluation tools described above. A model of a decisionmaker assisted by a decision support system has been proposed. It accounts for the fact that most real systems contain both elements of centralization and decentralization, i.e., the users can share certain resources - centralized databases or mainframes - and access individually other facilities such as intelligent terminals. This modifies the strategy of each decisionmaker who must integrate in his choices the possibility of requesting information from the DSS. Thus, each decisionmaker has three alternatives vis-a-vis the DSS:

- he can ignore it and process the information by himself.
- he can query it and rely totally on the response.
- he can query it and compare the response to his own perception of the issue.

The evaluation of these choices has been carried out on an example, a two-person hierarchical organization.

It has been found that decision-aids can modify the coordination of decisionmaking process by:

- modifying a priority order with which different organization members process the inputs.
- increasing the number of information flow paths with different processing times.

Documentation:

MEETINGS

October 1, 1987: Newport, R.I.

Professors Athans and Tsitsiklis, Dr. Levis and research assistants, S. K. Andreadakis, J. Azzola, V. Jin, J. Kyратzогlou and J. Papastavrou attended the Annual Review of the DTDM program organized by the Office of Naval Research.

October 29, 1987: Kansas City, KS

Dr. Levis attended the 5th Annual Workshop on Command and Control Decision Aiding where he presented one paper and participated in a panel discussion.

November 15, 1987: Oxnard, CA

Dr. Levis attended the meeting of the DOD Technical Groups on Human Factors Engineering and Man-Machine Modeling and delivered an invited paper.

November 25, 1987: San Diego, CA (NOSC)

Dr. Levis attended the Annual Review meeting of the Technical Panel on C^3 of the Joint Directors of Laboratories and presented a review of research on C^3 at MIT/LIDS. He also discussed MIT
work and its relevance for ASW problems with the ASW group at NOSC.

December 8, 1987: Los Angeles, CA

Dr. Levis attended the 26th IEEE Conference on Decision and Control, and participated in a panel on SDI/Battle Management.

5. RESEARCH PERSONNEL

Prof. Michael Athans, Co-principal investigator
Dr. Alexander H. Levis, Co-principal investigator
Prof. John Tsitsiklis

Mr. Stamatios Andreadakis graduate research assistant (Ph.D)
Ms. Victoria Jin graduate research assistant (Ph.D)
Mr. Jason Papastavrou graduate research assistant (Ph.D)
Mr. Jean-Louis Grevet graduate research assistant (M.S.)
Mr. Jean-Marc Monguillet graduate research assistant (M.S.)
Ms. Anne-Claire Louvet graduate research assistant (M.S.)
Mr. Javid Pothiawala graduate research assistant (M.S.)

6. DOCUMENTATION

6.1 Theses

6.2 Technical Papers

[16] H. P. Hillion and A.H. Levis, "Timed Event-Graph and Performance Evaluation of

Communication Complexity of Convex Optimization

JOHN N. TSITSIFILOS AND ZHI-QUAN LOO

Laboratory for Information and Decision Systems and the Operations Research Center
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

We consider a situation where each of two processors has access to a different convex function \(f \), defined on a common bounded domain. The processors are to exchange a number of binary messages according to some protocol until they find a point in the domain at which \(f \) is minimized within some specified accuracy. Our objective is to determine protocols under which the number of exchanged messages is minimized.

1. Introduction

Let \(\mathcal{F} \) be a set of convex functions defined on the \(n \)-dimensional bounded domain \([0, 1]^n\). Typically, \(\mathcal{F} \) will be defined by imposing certain smoothness conditions on its elements. Given any \(f \in \mathcal{F} \) and \(t \in \mathcal{F} \), let \(R(f, t) \) be the set of all \(x \in [0, 1]^n \) such that \(f(x) \leq t(x) - \epsilon, \forall \epsilon \in [0, 1]^n \).

Let there be two processors, denoted by \(P_1 \) and \(P_2 \). Each processor is given a function \(f \in \mathcal{F} \). Then they start exchanging binary messages, according to some protocol \(\pi \), until processor \(P_i \) determines an element of \(R(f, t) \). Let \(C(f, t; \pi) \) be the total number of messages that are exchanged; this is a function of the particular protocol being employed and we are looking for an optimal one. More precisely, let

\[
C(f, t; \pi) = \sup_{\pi} C(f, t; \pi)
\]
be the communication requirement (in the worst case) of the particular protocol and let

$$C(\tilde{r}; \pi) = \inf_{r \in \Phi} C(r; \pi)$$

be the communication requirement under an optimal protocol, where Φ is the class of all protocols which work properly, for a particular choice of r. The quantity $C(\tilde{r}; \pi)$ may be called the r-communication complexity of the above-defined problem of distributed, approximate, convex optimization.

For the above definition to be precise, we need to be specific regarding the notion of a protocol; that is, we have to specify the set Φ of admissible protocols and this is what we do next. A protocol π consists of

(a) A termination time T;
(b) A collection of functions $M_i : r : [0, 1]^n \rightarrow [0, 1], i = 1, 2, t = 0, 1, 2, \ldots, T - 1$;
(c) A final function $Q : r : [0, 1]^n \rightarrow [0, 1]$.

A protocol corresponds to the following sequence of events. Each processor P_i receives its "input" r and then, at each time t transmits to the other processor $P_{i'}$ a binary message $m(t)$ determined by

$$m(t) = M_i(r), m(0), \ldots, m(T - 1).$$

Thus the message transmitted by a processor depends only on the function f_i known by it, together with all messages it has received in the past. At time T the exchange of messages ceases and processor P_i picks a point in $[0, 1]^n$ according to

$$x = Q_i(f_i, m(0), \ldots, m(T - 1)).$$

The number $C(f_i, f_2; r, \pi)$ of messages transmitted under this protocol is simply $2T$. We define Φ as the set of all protocols with the property that the point x generated by (1.3) belongs to $H(f_i + f_2; r)$, for every $f_1, f_2 \in \mathcal{F}$.

A couple of remarks on our definition of protocols are in order.

(i) We have constrained each processor to transmit exactly one binary message at each stage. This may be wasteful if, for example, a better protocol may be found in which P_i first sends many messages and then $P_{i'}$ transmit its own messages. Nevertheless, the waste that results can be at most a factor of two. Since, in this paper, we study only orders of magnitude, this tissue is unimportant.

(ii) We have assumed that the termination time T is the same for all f_i.
even though for certain "easy" functions the desired result may have been obtained earlier. Again, this is of no concern because we are interested in a worst case analysis.

Related Research

The study of communication complexity was initiated by Abelson (1980) and Yao (1979). Abelson deals with problems of continuous variables, in which an exact result is sought, and allows the messages to be real-valued, subject to a constraint that they are smooth functions of the input. This is a different type of problem from ours, because we are interested in an approximate result and we are assuming binary messages.

Yao (1979) deals with combinatorial problems, in which messages are binary and an exact result is obtained after finitely many stages. This reference has been followed by a substantial amount of research which developed the theory further and also evaluated the communication complexity of selected combinatorial problems (Papadimitriou and Sipser, 1982; Papadimitriou and Tsitsiklis, 1982; Aho et al., 1983; Pang and El Gamal, 1984; Mehlhorn and Schmidt, 1982; Ullman, 1984). The main application of this research has been in VLSI, where communication complexity constrains the amount of information that has to flow from one side of a chip to the other; this in turn determines certain trade-offs on the achievable performance of special-purpose VLSI chips for computing certain functions (Ullman, 1984).

Finally, communication complexity has been also studied for models of asynchronous distributed computation, in which messages may reach their destination after an arbitrary delay (Awerbuch and Gallager, 1985).

The communication complexity of the approximate solution of problems of continuous variables has not been studied before, to the best of our knowledge. However, there exists a large amount of theory on the information requirements for solving (approximately) certain problems such as nonlinear optimization, and numerical integration of differential equations (Nemirovsky and Yudin, 1983; Traub and Woźniakowski, 1980) ("information based complexity"). Here one raises questions such as, How many gradient evaluations are required for an algorithm to find a point which minimizes a convex function within some prespecified accuracy ϵ? We can see that, in this type of research, information flows one way—from a "memory unit" (which knows the function being minimized) to the processor—and this is what makes it different from ours.

Outline

In Section II we establish straightforward lower bounds such as $C(\bar{f}; \epsilon) \geq O(n \log(1/\epsilon))$. In Section III we show that the naive distributed version of ellipsoid-type algorithms leads to protocols with $O(n^2 \log(1/\epsilon)) \log n +$
log(1 ε) communication requirements and we show that this upper bound cannot be improved substantially within a restricted class of protocols. In Sections IV and V we partially close the gap between the above-mentioned upper and lower bounds by presenting protocols with O(n log n) communication requirements for the case n = 1 (Section IV) and with O(n log n log n - log 1 ε) communication requirements for the case of general n (Section V), under certain regularity assumptions on the elements of S. In Section VI, we provide some discussion of possible extensions and questions which remain open.

II. LOWER BOUNDS ON C(1; ε)

Before we prove any lower bounds we start with a fairly trivial lemma whose proof is omitted.

Lemma 2.1. If S ⊆ 1 then C(1; ε) ≤ C(S; ε).

Let S be the set of quadratic functions of the form f(x) = |x - x*|², with x* ∈ [0, 1]n and where ||·|| is the Euclidean norm. Also, let S be the set of functions of the form f(x) = max_{i=1, ..., n} x - x* i, where |x* i| ≤ 1, ∀i.

Proposition 2.2.

(i) C(S; ε) ≥ O(n log n - log 1 ε)

(ii) C(S; ε) ≥ O(n log log 1 ε).

Proof.

(i) Consider a protocol π ∈ P(T) with termination time T and let us study its operation for the special case where f₁ = 0. Let S be the range of the function Q corresponding to that protocol (see Eq. (1.31)), when f₁ = 0. Given that the minimum of f₁ may be anywhere in [0, 1]², S must contain points which come within ε₁² in Euclidean distance from every point in [0, 1]². Now, one needs at least \((Anε₁²)^B\) Euclidean balls of radius ε₁² to cover [0, 1]², where A and B are absolute constants. (This follows by simply taking into account the volume of a ball in n-dimensional space.) Therefore, the cardinality of S is at least \((Anε₁²)^B\). Given that the cardinality of the range of a function is no larger than the cardinality of its domain, it follows that the cardinality of S is no larger than \((Anε₁²)^B\). Therefore, T ≥ O(n log n - log 1 ε), which proves the first part.

(ii) The proof is almost identical to that of part (i) and is therefore omitted. The only difference is that now [0, 1]² is covered by balls in the supremum norm and O(1 ε²) such balls are necessary and sufficient.

In the proof of Proposition 2.2 we made use of the assumption that the final result is always obtained by processor P₁. Nevertheless, at the cost of minor complications of the proof, the same lower bound may be obtained even if we enlarge the class of allowed protocols so that the processor who computes the final result is not prespecified.
Let \(\mathcal{S}_f \) be the set of all continuously differentiable convex functions \(f \) with the properties
\[
\begin{align*}
L |x - y| &\leq f'(x) - f'(y) x - y \leq ML |x - y|^\gamma, \quad (2.1) \\
f'(z) &\leq ML n^{\gamma'}, \quad \forall z \in [0, 1]^n. \quad (2.2)
\end{align*}
\]
(Note that (2.1) implies that \(M \geq 1 \)). Also, let \(\mathcal{G}_f \) be the set of convex functions which are bounded by \(f \) and satisfy
\[
f(z) - f(y) \geq \frac{1}{2} \max x - y, \quad \forall x, y.
\]

Proposition 2.3.

(i) \(C(\mathcal{S}_f, \mathcal{G}_f) : f \leq O(n \log n + \log 1/n) \).

(ii) \(C(\mathcal{G}_f) : f \geq O(n \log 1/n) \).

Proof. Part (ii) follows from Proposition 2.2 and Lemma 2.1, because \(\mathcal{S}_f \subseteq \mathcal{G}_f \). Part (i) we note that \(\mathcal{S}_f \subseteq \mathcal{G}_f \) and Lemma 2.1 proves the result for \(\mathcal{S}_f \). The result for general \(f \) follows because any \(f \in \mathcal{S}_f \) can be scaled so that it belongs to \(\mathcal{G}_f \). □

III. Naive Upper Bounds

We consider here a straightforward distributed version of the method of the centers of gravity (MCG), which has been shown by Nemirovsky and Yudin (1983) to be an optimal algorithm in the single-processor case, for functions in \(\mathcal{S}_f \), in the sense that it requires a minimal number of gradient evaluations. This method may be viewed as a generalization of the well-known ellipsoid algorithm for linear programming (Papadimitriou and Steiglitz, 1982). We start by describing the uniprocessor version of this method and then analyze the communication requirements of a distributed implementation.

The MCG Algorithm (Nemirovsky and Yudin, 1983, p. 62)

Let \(f \in \mathcal{G}_f \) be a convex function to be minimized with accuracy \(\epsilon \). Let \(G_0 = [0, 1]^n \) and let \(x_0 \) be its center of gravity. At the beginning of the \(k \)th stage of the computation, we assume that we are given a convex set \(G_{k-1} \subseteq [0, 1]^n \) and its center of gravity \(x_{k-1} \). Let \(z_k \) be a scalar and let \(y_k \) be a vector in \(R^n \) with the following properties:
\[
\begin{align*}
(1): \quad z_k + (x_k - x_{k-1}) &\leq f(z) \quad \forall z \in [0, 1]^n; \\
(2): \quad z_k &\geq f(x_k) - (n/2); \\
(3): \quad z_k &\geq f(x_k) - (n/2).
\end{align*}
\]
(Note that if the term \(n/2 \) were absent in condition (ii), we would have \(z_k = \)
Let $a_i = \text{min}_j |x_j|$ and let $G_i = \{ x \in G_{i-1} : \sum_{j=1}^n |x_j| > a_i \}$. The algorithm terminates when the Lebesgue volume of G_i becomes smaller than 2^{-i} and returns a point x_i associated with the smallest value of i encountered so far.

The following facts are quoted from Nemirovsky and Yudin (1983).

1. The volume of G_i is no larger than a^π, where a is an absolute constant smaller than one and independent of the dimension n. Thus a total of \(\log_2(2\pi a^\pi) = O(n \log_2 n)\) stages are sufficient.
2. The result x_i of the algorithm satisfies $\|x - x_i\| < 2^{-i}$, where $x = \text{sup}_{x \in G} \{ x \}$.

Note that $V(f) \leq 1$, for $f = f_1 + f_2, f_1, f_2 \in F$ so that the algorithm indeed produces a result belonging to $B(f; \epsilon)$.

We now consider a distributed implementation of this algorithm. The distributed protocol will consist of stages corresponding to the stages of the MCG algorithm. At the beginning of the kth stage, both processors know the current convex set G_{k-1} and are therefore able to compute its center of gravity x_k. Processor P evaluates $f(x_k)$ and transmits the binary representation of a message $h(i, k)$ satisfying $h(i, k) \in \{ f(x_k) - \epsilon(4^i, i), f(x_k) - \epsilon(8^i) \}$. Clearly, $h(i, k)$ may be chosen so that its binary representation has at most $O(\log_2 n)$ bits. Also, each processor evaluates the gradient g_f of its function f, at x, with components $g_{f, j} = \sum_{i=1}^{\infty} |x_j|$, and transmits the binary representation of messages $v(i, k, j) = x_j - g_{f, j}$ satisfying $v(i, k, j) \leq \epsilon(16n)$. Clearly, the $v(i, k, j)$’s may be chosen so that they can be all transmitted using $O(n \log_2 n) = O(n \log n + n \log_1 n)$ bits.

Next, each processor lets $z_i = h(i, k) - h(2, k)$ and lets y_i be the vector with components $y_{i, j} = v(i, k, j)$. It then follows by some simple algebra that z_i and y_i satisfy the specifications of the MCG algorithm. Finally, each processor determines G_i and its center of gravity x_i, and the algorithm proceeds to its next stage.

We now combine our estimates of the number of stages of the MCG algorithm and of the communication requirements per stage to conclude the following:

Proposition 3.1. \(C(t; e) \leq O(n \log n \log n + \log_2 n)\). In particular, the above-described distributed version of the MCG algorithm stays within this bound.

The upper bound of Proposition 3.1 is quite far from the lower bound of Proposition 2.2. We show next that within a certain class of protocols this upper bound cannot be substantially improved.

We consider protocols which consist of stages. At the kth stage there is a current point $x_k \in [0, 1]^n$ known by both processors. Then, the processors transmit to each other approximate values of f and of the gradient of...
f, all evaluated at \(\lambda \). Using the values of these messages, together with any past common information, they determine the next point \(\lambda_{t+1} \), according to some commonly known rule, and so on. We place one additional restriction: when a processor transmits an approximate value of \(f(\lambda) \) it does so by transmitting a sequence of bits of the binary representation of \(f(\lambda) \) starting from the most significant one and continuing with consecutive less significant bits. (So, for example, a processor is not allowed to transmit the first and the third most significant bits of \(f(\lambda) \), without transmitting the second most significant bit.) The same assumption is made concerning the components of the gradient of \(f \). Finally, we require that the same number of bits of \(f(\lambda) \) and of each component of the gradient of \(f \) get transmitted.

The above restrictions turn out to be quite severe.

Proposition 3.2. There exists a constant \(A \) such that for any protocol \(\pi \in \Pi \) satisfying the above restrictions, there exist \(f_1, f_2 \in \mathbb{R} \) such that \(C(f_1, f_2; \epsilon, \pi) \geq A \epsilon^2 \log(1/\epsilon) \). This is true, even if we restrict \(f_1 \) to be equal to the identically zero function.

Proof. Using an argument similar to Lemma 2.1, it is sufficient to prove the result under the restriction that \(f_1 = 0 \) and under the restriction that \(f_2 \) be differentiable and bounded, together with every component of its derivative, by \(\epsilon^{1/2} \). Using the results of Nemirovsky and Yudin (1983), for processor \(P_1 \) to determine a point which is optimal within \(\epsilon \), it must acquire nontrivial information on the values and the derivatives of \(f_2 \) for at least \(A \epsilon \log(1/\epsilon^{1/2}) \) different points. Note that the \(O(\log(1/\epsilon^{1/2})) \) most significant bits of \(f_2 \) and each component of its derivative, evaluated at any point, are always zero. Thus, for processor \(P_1 \), to obtain nontrivial information at a certain point at least \(O(n \log(1/\epsilon^{1/2})) \) bits have to be transmitted. This leads to a total communication requirement of \(O(n \epsilon^2 \log(1/\epsilon)) = O(\epsilon^2 \log(1/\epsilon)) \), which proves the result.

If we relax the requirement that the same number of bits be transmitted for each component of the gradient, at each stage, then the same proof yields the lower bound \(C(f_1, f_2; \epsilon, \pi) \geq A \epsilon \log(1/\epsilon) \).

IV. AN OPTIMAL ALGORITHM FOR THE ONE-DIMENSIONAL CASE

We prove here a result which closes the gap between upper and lower bounds for the one-dimensional case. The proof consists of the construction of an optimal protocol. We only present the protocol under the assumption that each \(f_i \) is differentiable. The argument is the same in the non-differentiable case, except that each \(f_i \) is to be interpreted as a subgradient.

Proposition 4.1. If \(n = 1 \) then \(C(f; \epsilon) = O(\log(1/\epsilon)) \).
Proof. The protocol consists of consecutive stages. At the beginning of the kth stage, both processors have knowledge of four numbers, \(a_1, b_1, c_1, d_1\), with the following properties:

(i) The interval \([a_1, b_1]\) contains a point \(v^*\) which minimizes \(f_1 - f_2\).

(ii) The derivative of \(f_1\) at any minimizer of \(f_1 - f_2\) and the derivative of \(f_2\) at \([a_1, b_1]\) belong to the interval \([c_1, d_1]\). (Note that the derivative of each \(f_i\) has to be constant on the set of minimizers of \(f_1 - f_2\)).

At the first stage of the algorithm we start with \(a_1 = 0, b_1 = 1, c_1 = -1\), and \(d_1 = 1\). At the kth stage, the processors do the following: processor \(P_i\) transmits a message \(m_{i,k} = 0\) if \((-1)^{i-1} f_i(a_i + b_i) 2^{k} \leq t_i \leq a_i + b_i \leq d_i \); otherwise it transmits \(m_{i,k} = 1\).

If \(m_{i,k} = 0\) and \(m_{i,k+1} = 1\), then \(f_i(a_i + b_i) 2^{k+1} \leq t_i \leq a_i + b_i \leq d_i \). We may then let \(a_{i,k+1} = a_i + b_i \) and leave \(b_i, c_i, d_i\) unchanged. Similarly, if \(m_{i,k} = 1\) and \(m_{i,k+1} = 0\), we let \(b_{i,k+1} = a_i + b_i \) and leave \(a_i, c_i, d_i\) unchanged.

We now consider the case \(m_{i,k} = m_{i,k+1} = 1\). Let \(v^*\) be a minimizer of \(f_1 - f_2\), belonging to \([a_1, b_1]\). If \(v^* \leq (a_i + b_i)/2\), then \(f((a_i + b_i)/2) = f(i (a_i + b_i)/2) < f(v^* + b_i)/2) = f_i(a_i + b_i) 2^{k} \leq t_i \leq a_i + b_i \leq d_i \). In either case, we may let \(b_{i,k+1} = a_i + b_i \) and leave \(a_i, c_i, d_i\) unchanged. Finally, if \(m_{i,k} = m_{i,k+1} = 0\), a similar argument shows that we may let \(a_{i,k+1} = a_i + b_i \) and leave \(b_i, c_i, d_i\) unchanged.

For each of the four cases, we see that \(a_i, b_i, c_i, d_i\) will preserve properties \(m_{i,k}, m_{i,k+1}\) which were postulated earlier. Furthermore, at each stage, either \(b_i = a_i\) or \(d_i = c_i\) is halved. Therefore, after at most \(k = \log 2\) stages, we reach a point where either \(b_i = a_i \geq 2^n\) or \(d_i = c_i \leq 2^n\). If \(b_i = a_i \geq 2^n\), then there exists a minimizer which is within \(2^n\) of \(a_i\); given that the derivative of \(f_1 - f_2\) is bounded by one, it follows that \(f(a_i) + f((a_i + b_i)/2) = f(a_i)/2\) comes within \(2^n\) of the optimum, as desired. Alternatively, if \(d_i = c_i \leq 2^n\), then \(f((a_i + b_i)/2) + f(a_i)/2 \geq 2^n\). It follows that for any \(x \in [0, 1]\), we have \(f((a_i + b_i)/2) \geq f(a_i)/2 \geq 2^n\), which shows that \(f_1 + f_2(a_i + b_i)/2\) comes within \(2^n\) of the optimum.

V. AN ALMOST OPTIMAL PROTOCOL FOR STRONGLY CONVEX PROBLEMS

We consider here the class \(f(x, v)\) of strongly convex functions which was defined in Section III as the set of continuously differentiable convex functions satisfying (2.1)-(2.2). In this section we show that a suitable distributed version of the gradient projection algorithm comes close to the lower bound of Proposition 2.3, within \(O(\log m)\) factor. In particular,
COMMUNICATION COMPLEXITY

for any fixed dimension n, we have a protocol whose dependence on n is optimal.

In the protocol to be considered each processor computes the same sequence $\{x_k\}$ of elements of $[0,1]^t$ according to the iteration

$$x_{k+1} = x_k - \alpha \nabla f_k, \quad x_0 = 0.$$ \hspace{1cm} (5.1)

We use the notation $[y]$ to denote the projection (with respect to the Euclidean metric) of a vector $y \in R^n$ onto the convex set $[0,1]^t$. Also, x is a positive scalar step-size and ∇f_k is an approximation of the gradient of $f_k - f_k$ evaluated at x_k. In particular, we let $x_k = (1 + x + f_k)$ and we require that α, satisfy

$$\alpha = \alpha_k \leq \frac{\mu}{\mu + 1}.$$ \hspace{1cm} (5.2)

where μ is some positive constant, independent of k, belonging to $(0,1)$.

Naturally, we will have to ensure that there is enough communication so that each processor knows x_k at the beginning of the $(k+1)$th stage.

We start by estimating the number of steps required by the above algorithm to come to a small neighborhood of the optimal point. The argument is very similar to the standard proof that the gradient projection algorithm has a linear rate of convergence (Nemirovsky and Yudin. 1983, pp. 258-260) except that we need to take care of the fact that we use α_k instead of the exact gradient e_k. We denote by x_k the unique vector in $[0,1]^t$ which minimizes $f_k - f_k$ over that domain. Uniqueness is a consequence of strict convexity, which follows from strong convexity.

Proposition 5.1. If $t \in \mathbb{R}$, $x \in [0,1]$, α_k satisfy (5.1)-(5.2), if the step-size α_k is small enough, and if e_k is sufficiently close to 1, then there exist $A, B, C > 0$, depending only on M, L, such that

$$f(t) - f(x) \leq A \alpha^{1/2},$$ \hspace{1cm} (5.3)

$$x - x_k \leq B \alpha^{1/2},$$ \hspace{1cm} (5.4)

$$x - x_k \leq C \alpha.$$ \hspace{1cm} (5.5)

Proof. We will prove the result with the following choices of constants: we let $\alpha = 1/M^2, B = 2A, L$, and $C = 2B$. The constants A and α will be fixed later.

We state without proof the following properties of functions in \mathcal{F}_{MC} (Nemirovsky and Yudin. 1983, pp. 254-255):

$$f(t) - f(x) \leq M L, x - x_k.$$ \hspace{1cm} (5.6)
We will be also using the inequality
\[f(x^* + \epsilon) - f(x^*) \leq 0, \quad \forall \epsilon \in [0, 1], \]
which is a necessary and sufficient condition for optimality of \(x^* \).

We continue with the main part of the proof, which proceeds by induction on \(k \). We first show that part (ii) holds for \(k = 0 \). Using the convexity of \(f \), we have
\[f(x^* + \epsilon) - f(x^*) \leq \epsilon \left(f(x^*) - f(x) \right), \quad \forall \epsilon \in [0, 1]. \]

Using (2.2), we see that \(f(x^*) \) is bounded by \(M \). Also, \(x^* - x \) is bounded by \(a \). It follows that \(f(x^*) - f(x^*) = M \epsilon \), as long as \(\epsilon \) is chosen larger than \(M \).

Suppose now that (5.3) is valid for some nonnegative integer \(k \). Using (5.7) and then (5.9) we obtain
\[f(x^* + \epsilon) - f(x^*) = \epsilon \left(f(x^*) - f(x) \right) - \frac{1}{2} \epsilon^2 \left(x^* - x \right). \]

We now use (5.10) and the induction hypothesis to obtain
\[\epsilon \left(f(x^*) - f(x) \right) - \frac{1}{2} \epsilon^2 \left(x^* - x \right) \leq \frac{2}{k} A_{\max}^2 = B_{\max}^2. \]

We have therefore shown that (5.4) is also valid for that particular \(k \). We then use (5.4) and the triangle inequality to obtain
\[\epsilon \left(f(x^*) - f(x) \right) \leq \epsilon \left(x^* - x \right) \leq 2B_{\max}^2. \]

which proves (5.5) for that same value of \(k \).

We now prove (5.5) for \(k = 1 \), which will complete the induction. Using the definition of the projection, \(x \) minimizes \(f(x^*) + x \) over \(x \in [0, 1] \), which is equivalent to minimizing
\[f(x^* + \epsilon, x - x^*) - \frac{1}{2\sigma} \epsilon^2 \]
which completes the proof.
over all \(v \in [0, 1]^n \). Let us use the notation \(J_i(v) \) to denote the expression (5.13) as a function of \(v \). Let \(z = x_i - (1/M) |x^* - x_i| \). Note that \(z \in [0, 1]^n \) because \(x, x^* \) belong to \([0, 1]^n \). Thus, by the minimizing property of \(x_i \), we have
\[
J_i(x_i, \ldots) \leq J_i(z).
\] (5.14)

Now,
\[
J_i(x_i, \ldots) = f(x_i) - (g, x_i - x_i) - \frac{L M}{2} |x_{i+1} - x_i|^2
\]
\[
\leq f(x_i) - (g, x_i - x_i) - \frac{L M}{2} |x_{i+1} - x_i|^2 - g, |x_{i+1} - x_i| \leq J_i(z)
\]
\[
\leq J_i(z) = (g, x^* - x_i) - \frac{L M}{2} |x^* - x_i|^2 + 2B^2/na^2.
\]
\[
\leq f(x_i) - (g, x^* - x_i) - \frac{L M}{2} |x^* - x_i|^2 + 2B^2/na^2.
\]
\[
- |x - x^*| = \frac{1}{M} |x^* - x_i|.
\]
\[
\leq \left(1 - \frac{1}{M}\right) f(x_i) - \frac{1}{M} f(x^* - x_i) + 3B^2/na^2.
\]
\[
= \left(1 - \frac{1}{M}\right) f(x_i) - \frac{1}{M} f(x^*) + 3B^2/na^2.
\]

Here, the first inequality followed from (5.8); the second from the Schwarz inequality; the third from (5.2), (5.12), and the definition of \(J_i(x_i, \ldots) \); the fourth from (5.14). In the equality, we made use of the definition of \(z \) and \(J_i \); and the next step followed from the Schwarz inequality. Then, we used the fact \(M \geq 1 \), (5.2), and (5.11); finally, the last line followed from (5.7). We therefore have, using the induction hypothesis,
\[
f(x_i) - f(x^*) \leq \left(1 - \frac{1}{M}\right) f(x_i) - f(x^*) + 3B^2/na^2
\] (5.15)
\[
= \left(1 - \frac{1}{M}\right) f(x_i) - f(L + 1/n) + 3B^2/na^2 + 3B^2/na^2.
\]
\[
= \left(1 - \frac{1}{M}\right) f(x_i) - f(L + 1/n) + 3B^2/na^2.
\]
The induction will be completed if the right-hand side of (5.15) is smaller than $A \alpha^{-1}$. This is accomplished by taking $\alpha \in (0,1]$ close enough to 1 so that $1 - 1.2 \alpha^{-1}$ and then choosing A large enough so that the term involving A^{-1} is negligible in comparison with the first term in the right-hand side of (5.15). This concludes the proof.

We now return to the distributed protocol. Since $t_i, t_j \in r_\alpha$, it follows that $t_i = t_j \in r_\alpha$. Consequently, Proposition 5.1 applies to $t_i = t_j$ and shows that after $O(\log n) - \log n$ stages, the algorithm (5.1) - (5.2) reaches a point which is within ϵ from optimality.

We now indicate how the protocol may be implemented with $O(\log n)$ bits being communicated at each stage. All we need to do is to make sure that the processors share enough information at each stage to be able to compute a vector v, satisfying (5.2). This is accomplished by letting each processor know a set of scalars $v_i, i = 1, 2, \ldots, n$, such that $v_i, i = 1, 2, \ldots, n$, are the components of $v_i(i)$. We first consider stage $k = 0$. Using (2.2) we see that $v_i(i)$ is bounded by $O(\log n)$ for each i, j. Therefore, it is sufficient to transmit $O(\log n)$ bits to specify each component with accuracy $\alpha = 1$.

Suppose now that $k = 0$ and that quantities $v_i(i)$ with the desired properties have been shared at stage $k = 0$. We have $v_j(i) = v_0(i) + \alpha^{-1} \forall v_i(i) = v_0(i) + \alpha^{-1} \forall v_0(i)$. Here we have made use of (5.8), our hypotheses that $v_i(i)$ satisfies (5.2), and part (ii) of Proposition 5.1. Let us impose the additional requirement that $v_i(i)$ be an integer multiple of α. This requirement does not preclude the attainment of our goal, which is to satisfy inequality (5.2). With this requirement, there are at most $\alpha^{-1} \lfloor \alpha^{-1} \rfloor$ possible choices for $v_i(i)$, and therefore, each processor P may choose $v_i(i)$ as above and transmit its value to the other processor, while communicating only $O(\log n)$ bits for each component i, thus leading to a total of $O(\log n)$ communications per stage. We have thus proved the following result:

Proposition 5.2. For any total M, we have $C_G(n, \alpha; \epsilon) \leq O(\log \alpha \log n = \log n)$.

VI. **POSSIBLE EXTENSIONS AND OPEN QUESTIONS**

1. The protocol of Section V is likely to be far from optimal concerning the dependence on the parameters M and L. The gradient algorithm tends to be inefficient for poorly conditioned problems (large M), as opposed to variations of the conjugate gradient method (Nemirovsky and Yudin, 1983). It remains to be seen whether a suitable approximate version of the conjugate gradient method admits a distributed implementation with low communication requirements as a function of M.
2. For the class \(t \)-gradient methods do not work and the gap between the lower bound of Section II and the upper bound of Section III remains open. We believe that the factor of \(t! \) in the upper bound cannot be reduced. The reason is that any conceivable algorithm would need to consider at least \(O(t) \) log \(t \) points and it is hard to imagine any useful transfer of information concerning the behavior of the function in the vicinity of a point which does not require \(O(t) \) messages. On the other hand, it may be possible to reduce the factor \(\log(1 + t) \) to just \(\log t \) although we do not know how to accomplish this. A related open problem concerns the \(O(\log n) \) gap between Propositions 5.2 and 2.5, for the class \(X \).

3. Some directions along which it is likely that the results can be extended concern the case of \(K = 2 \) processors and the case where the constraints under which the optimization is carried out are not commonly known; for example, we may have a constraint of the form \((x - y)^2 + z^2 \geq 0 \), where each \(x \) is a convex function known by processor \(P \).

References

END
DATE
FILMED
6-88
DTIC