Ordnance Gelatin for Ballistic Studies: Detrimental Effect of Excess Heat Used in Gelatin Preparation

Martin L. Fackler, MD
and
John A. Malinowski, BS

Division of Military Trauma Research

December 1967

LETTERMAN ARMY INSTITUTE OF RESEARCH
PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129
Title: Ordnance Gelatin for Ballistic Studies: Detrimental Effect of Excess Heat Used in Gelatin Preparation

Authors: COL Martin L. Fackler, M.D., and SGT John A. Malinowski, J.S.

Type of Report: N/A

Time Covered: FROM TO

Date of Report: July 1987

Page Count: 15

COSATI Codes: Tissue simulant, ballistic injury, gelatin

Abstract:

Most users of ordnance gelatin for ballistics studies are apparently unaware of the detrimental effects on this tissue simulant's properties caused by excess heating in reconstitution of the gelatin powder. Material published by the Gelatin Manufacturers Institute of America, Inc., states that heating gelatin above 40°C can be detrimental to its properties. The manufacturer of type 250 A Ordnance Gelatin does not include directions for preparation with the gelatin powder. Directions that can be obtained by contacting the manufacturer fail to give any recommendations on the amount of heat applied during gelatin preparation and do not mention the detrimental effects of excess heat. These oversights are corrected in the revised set of directions included in this paper.

Distribution/Availability:

This document has been approved for public release and sale. Unlimited.

Monitoring Organization: US Army Medical Research and Development Command

Address: Fort Detrick, Frederick, MD 21701-5012

Source of Funding Numbers:*

PROGRAM ELEMENT NO.

62772A

PROJECT NO.

3S162772

TASK NO.

AC 109

Abstract Security Classification: UNCLASSIFIED

Responsible Individual:

COL Martin L. Fackler

Telephone: (415) 561-5817

Office Symbol: SGRE-UL-MT
ABSTRACT

Most users of ordnance gelatin for ballistics studies are apparently unaware of the detrimental effects on this tissue simulant's properties caused by excess heating in reconstitution of the gelatin powder. Material published by the Gelatin Manufacturers Institute of America, Inc., states that heating gelatin above 40°C can be detrimental to its properties. The manufacturer of type 250 A Ordnance Gelatin does not include directions for preparation with the gelatin powder. Directions that can be obtained by contacting the manufacturer fail to give any recommendations on the amount of heat applied during gelatin preparation and do not mention the detrimental effects of excess heat. These oversights are corrected in the revised set of directions included in this paper.
The Gelatin Manufacturers Institute of America, Inc., cautions that "Gelatin's most useful properties, gel strength and viscosity, are gradually weakened on prolonged heating in solution above about 40°C" (1). We became aware of excess heat's deleterious effect when we inadvertently heated one batch of type 250 A Ordnance Gelatin to 70-80°C during preparation. After this gelatin was removed from the molds it was found to be much softer than previous batches. We contacted Kind and Knox Division of Knox Gelatine, Inc. (Sioux City, Iowa), manufacturer of the 250 A Ordnance Gelatin. They told us that heating gelatin to over 40°C during its preparation is likely to ruin the very properties that make it so useful as a tissue simulant. They sent us their directions for reconstituting the Ordnance Gelatin powder, which do recommend "always start with cold water."

The overwhelming majority of users to whom we have posed the question tell us they start with boiling water in reconstituting their gelatin powder. We suspect that, because the manufacturer did not provide directions with the gelatin powder, the users assumed that they should prepare the ordnance gelatin as they prepare Jell-o®, that is, with boiling water.

We have reproduced below the directions furnished (on request) by Kind and Knox Division of Knox Gelatine, Inc. We have added, in upper case letters, cautions that we feel need to be observed to assure uniformity of gelatin blocks and the quantities of gelatin and water used to make a 10% gelatin solution (2). In direction 5, in which the application of heat is mentioned, no limitation was included. Obviously one is needed and we have added it.
General Procedures for Reconstituting Gelatin

1. Always start with cold water 45-50° F (7-10° C).

2. Always add the powdered gelatin to the water. Never pour water into gelatin. 1000 GM GELATIN, 9000 ML WATER (THIS GIVES A 10% SOLUTION)

3. Agitate (by stirring) a bare minimum just to wet all particles (avoid violent agitation to prevent entrainment of large quantities of air).

4. Let stand in refrigerator for 2 hours to hydrate all gelatin particles.

5. Heat the container in a hot water bath or double cooker, and again stir gently until all gelatin is in solution and evenly dispersed throughout the container. DO NOT HEAT OVER 104°F (40°C)! Do not stir rapidly, to prevent entrainment of air.

6. Pour into molds, set in refrigerator or cold water bath 45-50° F (7-10° C) until firmly set. (Overnight for best results)

7. AFTER REMOVAL FROM MOLDS, STORE IN REFRIGERATOR AT 39°F (4°C) IN AIRTIGHT PLASTIC BAGS. DO NOT USE BLOCKS UNTIL AT LEAST 36 HOURS HAVE ELAPSED FROM THE TIME GELATIN WAS Poured INTO MOLDS.
General notes:

1. Gelatin is insoluble in cold water.

2. Final concentration will depend on desired firmness of block.

3. Firmness of block will increase with time in cold water bath, up to 24-30 hours.

4. Blocks may be reused simply by heating to melting temperature then rechilling as in original procedure.

5. ADD 5 ML PROPIONIC ACID (PURE STOCK SOLUTION OBTAINED FROM FISHER SCIENTIFIC, FAIR LAWN, NJ) PER LITER TO INHIBIT MOLD (OPTIONAL).

6. GELATIN FIRMNESS VARIES GREATLY (INVERSELY) WITH TEMPERATURE OF THE BLOCK. GELATIN TEMPERATURE MUST BE CONSTANT THROUGHOUT EACH BLOCK AND THERE MUST BE NO TEMPERATURE VARIATION BETWEEN BLOCKS. WE SHOOT OUR GELATIN BLOCKS WITHIN 30 MINUTES OF REMOVAL FROM THE REFRIGERATOR. WE MEASURED THE TEMPERATURE 2 CM FROM THE BLOCK SURFACE; IT TAKES 90 MINUTES TO RISE 1°C IN OUR SHOOTING RANGE WHICH IS KEPT AT ABOUT 68°F (20°C).
DISCUSSION

Fortunately, we ruined the aforementioned batch of gelatin in the very beginning of our studies (during the process of calibrating this tissue simulant against living swine muscle [2]), before it could affect any experimental results. However, in comparing results with two other investigators, we found that abnormally large temporary cavities were produced in their gelatin (as seen on high speed cine films), and yet the cracks left in the gelatin were very small. In each case, the erratic results were traced to a gelatin prepared with boiling water rather than with cold water as recommended by Kind and Knox (direction 1, above). The excess heat had weakened the gelatin's strength and it provided less resistance to being displaced by the temporary cavity.

Berlin et al. (3) reported erratic experimental results with gelatin dissolved in water at 85-90°C. They reached the erroneous conclusion that gelatin is not a suitable tissue simulant, obviously unaware that they had degraded their gelatin by the use of excess heat in its preparation. Others report heating their ordnance gelatin to "...at least 65°C..."(4), "...90-95°C..."(5), "...75°C..."(6) in its preparation.

Some investigators, with whom we regularly compare results, produce apparently reliable gelatin despite beginning with water hotter than recommended. The disruption of the gelatin molecules by heat appears to be similar to that seen in "cooking" other proteins, such as preparing food, and is certainly a function of the degree of heat and the length of time the heat is applied. We are not saying that exceeding 40°C, especially if for a short period, disrupts enough gelatin molecules to make a noticeable difference, but we suggest that following the above directions should add some measure of security and margin for error.

It is unfortunate that many experiments have been flawed because the investigator was unaware of excess heat's disruptive effects on gelatin. This paper should provide information to insure uniform gelatin which will yield reliable results in future ballistics experiments.*
On their request, we sent Kind & Knox Division of Knox Gelatine Inc. (Sioux City, Iowa) a letter (on 29 June 1987) calling to their attention the problems outlined in this paper. We strongly recommended that they add to their directions the caution on applying excess heat and that they enclose the modified directions in each cannister of type 250 A Ordnance Gelatin powder.
REFERENCES

OFFICIAL DISTRIBUTION LIST

Commander
US Army Medical Research
& Development Command
ATTN: SORID-RMS (Rev. Maligian)
Fort Detrick, MD 21701-5012

Defense Technical Information Center
ATTN: DITIC/DDAB (2 copies)
Camerson Station
Alexandria, VA 22304-6145

Office of Under Secretary of Defense
Research and Engineering
ATTN: RRT (E&LS), Room 3D129
The Pentagon
Washington, DC 20301-3080

The Surgeon General
ATTN: DASG-TLO
Washington, DC 20310

HQ DA (DASG-ZXA)
WASH DC 20310-2300

Commandant
Academy of Health Sciences
US Army
ATTN: HSH-A-CDM
Fort Sam Houston, TX 78234-6100

Uniformed Services University of
Health Sciences
Office of Grants Management
4501 Jones Bridge Road
Bethesda, MD 20814-4799

US Army Research Office
ATTN: Chemical and Biological
Sciences Division
PO Box 12211
Research Triangle Park, NC 27709-2211

Director
ATTN: SORID-UWZ-L
Walter Reed Army Institute of Research
Washington, DC. 20307-5100

Commander
US Army Medical Research Institute
of Infectious Diseases
ATTN: SORID-UZ-A
Fort Detrick, MD 21701-5011

Commander
US Army Medical Bioengineering Research
and Development Laboratory
ATTN: SORID-UBG-M
Fort Detrick, Bldg 568
Frederick, MD 21701-5010

Commander
US Army Medical Bioengineering
Research & Development Laboratory
ATTN: Library
Fort Detrick, Bldg 568
Frederick, MD 21701-5010

Commander
US Army Research Institute
of Environmental Medicine
ATTN: SORID-UWE-RSA
Kansas Street
Natick, MA 01760-5007

Commander
US Army Research Institute of
Surgical Research
Fort Sam Houston, TX 78234-6200

Commander
US Army Research Institute of
Chemical Defense
ATTN: SORID-UW-AD
Aberdeen Proving Ground, MD 21010-5425

Commander
US Army Medical Research
Laboratory
Fort Rucker, AL 36362-5000

AIR FORCE Office of Scientific
Research (NL)
Building 410, Room A217
Bolling Air Force Base, DC 20332-6448

Commander
USAFSAM/TSZ
Brooks Air Force Base, TX 78235-5000

Head, Biological Sciences Division
OFFICE OF NAVAL RESEARCH
600 North Quincy Street
Arlington, VA 22217-5000

Commander
Naval Medical Command-02
Department of the Navy
Washington, DC 20372-5120

Wellspring Communications
Salem House
P.O. Box 733
Marshall, VA 22115