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SUMMARY

A theoretical and experimental investigation of an
Impulsively-started uniform flow, decelerating at
specified rates, about two-dimensional cambered plates
with included angles of 120, 180, and 240 degrees has
been carried out.

The results have shown that:

l. For a given camber, the drag coefficients prior
to the onset of deceleration are nearly identical. The
drag coefficients after the onset of deceleration are
simply shifted in time by an amount equal to the
difference between the durations of their steady states.

2. For the Models A (120 degree camber) and B (180
degree camber), the drag coefficient decreases rapidly at
the onset of deceleration, goes through zero near the
middle of the deceleration period, and through a negative
value at the end of the deceleration period. Then, the
drag coefficient gradually decreases to zero.

3. For the Models A and B, the flow separates at
the sharp edges right from the start and remains there
throughout the rest of the motion. Two, highly stable,
symmetrical, primary vortices form and continue to grow
during the periods of initial acceleration and subsequent
steady fluid motion. The regions of secondary flow near
the rear edges of the camber are quite small. During the
period of deceleration, the vortices move towards the
camber, develop three-dimensional instabilities, and give
rise to oppositely-signed circulation at the edges of the
camber. Subsequently, the vortices continue to move
sideways and the force acting on the camber reduces to
zero as the vortices are diffused by both molecular and
turbulent diffusien.

4. For the Model C (240 degree camber), the initial
rise in the drag coefficient 1is followed by a sharp
decrease and then by a rise to a larger maximum.
Subsequently, the drag coefficient decreases rapidly at
the onset of deceleration, goes through zero near the
middle of the deceleration period, and through a
relatively small (negative) minimum value at the end of
the deceleration period.

5. For the Model C, the flow does not separate
immediately at the sharp edges of the camber. The
separation begins at the bottom stagnation point and
leads to the formation and growth of two small vortices.
Subsequently, these vortices move towards the rear of the
camber (the time at which the drag coefficient decreases
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sharply) and the separation points move rapidly to the
edges of the camber. Then two large primary vortices
develop and quickly swallow the two small ones. As in
the case of the Models A and B, the vortices become three
dimensional during the period of flow deceleration.

6. For all models, the occurrence of a negative
drag force during the second half of the deceleration
period is thought to be one of the major reasons for the
inception of the parachute collapse.

7. The discrete vortex model developed in the
present investigation can be used to predict the
characteristics of time-dependent flows about cambered
plates with relatively small included angles (e.g., 120
deg.). The predictions of the model and the drag
coefficient in particular, become poorer, particularly in
the later stages of a decelerating flow, as the camber
angle increases. This is attributed to three primary
reasons: occurrence of rear-face separation, development
of three-dimensional instabilities in the vortices, and
the effects of molecular and turbulent diffusion. '

8. The evolution of the wake is remarkably similar
(including the formation of the secondary vortices at the
sharp edges) to that obtained in flow visualization
experiments.

9. The dréé coefficient calculated through the
integration of the instantaneous pressure distribution
agrees more closely with that obtained experimentally.

10. The development of negative differential
pressures near the central region of the camber is
thought to be primarily responsible for the inception of
the partial collapse of a parachute at high rates of
deceleration. This phenomenon takes place even when the
total drag force acting on the parachute is still
positive. Extensive analysis and small scale experiments
coupled with few judiciously selected field tests may
help to arrive at practically and phenomenologically
. sound parachute designs.
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DECELERATING FLOW ABOUT CAMBERED PLATES

1 INTRODUCTION TO EXPERIMENTS

The determination of the deployment sequence of an
axisymmetric porous parachute and the wunsteady

aerodynamic loads acting on it presents a very complex

|
SRRV I ] o o0 = v o o o of St S of g6 BN IV Qb e T 0 PSS

coupled problen. The development of an analytical or
numerical model which takes into account the effects of
porosity, gaps, and variable opening schemes would allow
numerical experiments on a large class of parachutes,
reduce the number of the expensive field tests to a few
judiciously selected ones, and enable the designer to
calculate the time history of the fall of the parachute
and the strength required to survive the aerodynamic
loads. However, the development of such a model is
hampered by a number of difficulties, the most important
one being the lack of controlled laboratory experiments.
It is 1in 1light of the foregoing that one acquires a
greater appreciation of the difficulties associated with
the solution of the aforementioned coupled problem and of
the ingenious approximations introduced into the early

models during the past two decades.
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The previous models for parachute loads are based by
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and large on empirical assumptions (see e.g., McVey 1972;
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, !
Heinrich and Saari 1978; Cockrell 1987). They iely on Q
the observation that families of parachutes open in a E_ﬂ'-

characteristics length and seem to have aerodynamic

o

properties that relate well to the projected area of the

= T oo
P 2

N

parachute. The apparent mass is assumed to be a function
of the projected area only and is not a function of the
prevailing flow characteristics. The vortex sheet
analysis was wused by Klimas (1977) to derive the
acceleration-independent apparent mass coefficient for

arbitrary-shaped axisymmetric surfaces. Muramoto and

b T T [ A O he LL RE N

Garrard (1984) used a continuous-source model to predict

the steady-state drag of ribbon parachutes. These i
&

e

analyses did not, however, deal with the evolution of the g
1

unsteady wake and its interaction with the canopy. E
L&

It is in view of the foregoing that an experimental l

>,

study of the separated time-dependent flow about two- ﬁ
dimensional rigid cambered plates was undertaken. ﬁ
o!

Clearly, the flow about a rigid cambered plate is k
A

]

considerably simpler than that about a porous, ‘e
b5

axisymmetric, and flexible parachute and the experimental - ﬂ
data, regardless of the degree of their agreement with L]
-

corresponding analyses, may not have direct relevance to ﬁ
by

the practical problem under consideration. But the %
object of this investigation was the understanding of the %
-’:

evolution of the wake wunder controlled laboratory Q
conditions rather than to provide a design tool. It is 3
3
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hoped that an investigation of this type will reveal the
underlying physics of the phenomenon (particularly that
of the parachufe collapse), help to interpret the full-
scale results and will provide inspiration for the
development of suitable numerical models with which the
dynamics of axisymmetric, porous, and flexible parachute

canopies can be investigated.

2 EXPERIMENTAL EQUIPMENT AND PROCEDURES
2.1 Vertical Water Tunnel

The experiments were conducted in a 17 ft (5.2 m)
high, 2 ft by . ft (0.61 m x 0.61 m) cross-section
vertical water tunnel (see Fig. 1). A quick-release
valve located at the base of the tunnel is used to create
an impulsively-started flow of desired velocity history.
A partial drawing of the mushroom-like seating surface of
the quick release valve is shown in Fig. 2.

In order to prevent distortion of the force
measurements, the water side profile of the mushroom
valve has been especially designed to ensure continuous
undisturbed flow past the seat while the valve is in open
position. As shown in Fig. 2, when the valve is closed,
it is in the fully open position. It seats against an
0’ ring inserted on the bottom of the seating surface so
that no 1leakage 1is present prior to initiating fluid

motion.
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The vertical position of the mushroom valve is
controlled by a three-way valve mounted beneath the
tunnel (Fig. 3). The stem extends downward from the

mushroom valve and is directly coupled to the control

valve piston assembly. Compressed air is provided to the 5:
two air chambers in the upper part of the valve. Two E
computer-controlled two-way valves in the air supply line E
control the motion of the mushroom-shaped valve and, S
therefore, the flow itself. f

Upon opening the air supply valves, the differential §

g

Ot b WL L, ot e in din T AN e o Rt I oo e e st A PR INL IS T R e dacns S

pressure between the two air chambers in the upper part
of the control valve initiates motion of the piston,
rapidly opening the mushroom valve. Thus, the flow is
initiated and the fluid drains out into a reservoir
beneath the tunnel. Subsequent valve motion is regulated
by the vertical motion of the piston in the lower part of
the control valve, the viscosity of oil in the 1liquid
chamber, and the differential pressure between the two
chambers. The area of the opening (and consequently the
amount of resistanc=2 which the piston encounters) between
the 1liquid chamkel~ and the upper air chamber can be
varied by opening or closing the dual ports in the piston

(Fig. 4). O0il viscosity and supply air pressure can also

.
N

be adjusted. -
These adjustments allow constant velocities at :

t

desired rates (maximum 2 ft/s) to be obtained. Following :5
5

~
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the rapid initial opening, which accelerates the flow in
about 0.1 seconds, the mushroom-shaped valve may be
either closed at a desired rate through the use of the
computer-controlled air valves, so as to achieve a
desired rate of flow deceleration, or maintained steady

so as to achieve a continuous steady flow.

2.2 Test Bodies

Three circular arcs of radius 1.5 in. (3.80 cm),
length 24.5 in. (62.2 cm), and included angles of 120
deg. (Model A), 180 deg. (Model B), and 240 deg. (Model
C) were used in the experiments (see Fig. 5). The edges
of the cambered plates were first cut razor sharp and
then gently rounded with sand paper.

Each end of a model was terminated with a 0.25 in.
(6.4 mm) long, 3 in. (7.62 cm) diameter circular section
(part of the original pipe from which the model was cut
out). These end sections served several purposes.
First, they prevented the distortion of the cambered
plates during their manufacture. Second, they provided a
clear view of the flow for visualization and photography
when imbedded rigidly in a plexiglass window (however,
and unavoidably, this circle shows in the pictures).
Third, they enabled the measurement of the drag force
when fitted with circular metal discs (aluminum mounts).

In this case, the end sections were placed in special
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housings cut out of the plexiglass window. The 1length .
and the diameter of the housing were such that there was o

a gap of approximately 0.04 in. (1 mm) between the

housing and the end section. Each metal disc was
attached to a circular rod which, in turn, was attached
to the self-aligning bearing of the force transducer (see
Fig. 6). The flow side of the metal discs were flush
with the tunnel walls, i.e., there was no obstruction to
the flow before it reached the cambered test plate.

These will be described in more detail later.

2.3 Velocity, Acceleration, and Force Measurements

Rl bt S0 0, T o g SRTSLBIEL T T o LT LA

Coowy

Velocity was determined both from the derivative of

the elevation-time record and from the integration of the

L

instantaneous acceleration. A ten foot 1long platinum

v 'o"'!‘1

wire, placed vertically in the tunnel and mounted away

—
* o

from the walls, provides water level indication to a data X

acquisition system (amplifiers, analog/digital data Q
converter, computer, and recorder assembly). Prior to é
conducting any experiments, impulsive flow was initiated ﬁ
several times to check the operation of the system. E

Adjustments to the quick release valve control system
were made, as necessary, to ensure the repeatability of
the desired variation in velocity. - B

Acceleration of the falling 1liquid column was 3

measured by means of a differential pressure transducer. g
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Two pressure taps, placed on the tunnel wall two feet
(0.61 m) apart and vertically above each other, were
connected to the pressure transducer. The acceleration
was then directly calculated from du/dt = p/(2 ) where

p is the differential pressure and is the density of
water. The hydrostatic part of the differential pressure
was nulled out during the balancing of the carrier
amplifiers. The instantaneous velocity was then
calculated through the numerical integration of the
instantaneous acceleration. The velocities obtained from
the two methods noted above agreed with each other within
3 percent.

Two shear-force gages of 10 kg capacity (with an
over-load capacity of 100 percent) were used to measure
the instantaneous drag force acting on the test bodies
(see Fig. 6). Special housings were built for each gage
so that they could be mounted on the tunnel wall at each
end of the test body. The bellows protecting the strain
gages were filled with Dow Corning RTV coating for water
proofing and then the ends of the bellows were sealed air
tight. These gages as well as the platinum wire and .the
differential pressure transducer were recalibrated at the
start and at the end of each test day. No change was
ever encountered during the entire series of tests.

One end of each test body was mounted in a self-

aligning bearing (see Fig. 6) whose housing was connected
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to the force transducer. This allowed the test body to
be freely mounted and accurately aligned. The other end
of the test body was connected to the other force gage
with a male-female coupling and a pin which allowed

rotation only in the vertical plane. The angular

Y aii T o go g g G5 SN SN B ot § G WY ol G N JE S 4 B N e &

N

position of the coupling was adjusted so as to make the

sharp edges of the model align in a horizontal plane in

both the x- and y-directions.

Prior to and at the end of each test day,
calibration of the force gages was conducted in both air
and water. Known loads of up :o0 10 kg were placed at the
mid-length of each body. Note that the shear-force gages
do not require that the load be placed exactly in the
middle of the body. The amplifier-recorder attenuation
settings were adjusted and compared for each different

load to ensure linearity, consistency, and repeatability.

e o G G G R G it Pl b B ik AR S SR e e A A o P O W ool G G NI

Following the completion of the load calibrations in air,
the tunnel was filled with water to its full operational
height and the calibrations were repeated in order to
make sure that the slight expansion of the tunnel and the
hydrostatic loading of the force gages did not affect the

calibration. A simple remote control arm was used to

PTTNCRI R N S aerg W @ @ _A_Aa .~ gum

place or remove the loads from the model. The net weight
as well as the buoyant force acting on each load were

known prior to the calibrations. As will be noted later,

el b o U U B¥ L2

the same remote arm was used to pour dye in the model for

purposes of flow visualization.
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Figures 7 through 9 show sample traces of elevation,
acceleration and force for the Models A, B, and C,
respectively. The polarity of the force traces in Figs.
8 and 9 has been reversed relative to that of Fig. 7. |
The small oscillations in the elevation, acceleration and i
force traces are due to the fact that the data have not :
been filtered.

Following the initial rise in acceleration due to
the impulsive start of the motion, the fluid reaches a
constant velocity and then decelerates rapidly. The
duration of the period of constant velocity and the shape

and magnitude of the deceleration are dictated by the

initial setting of the control valves.
A typical test run lasted about 2 seconds. Each

model was tested approximately hundred times for various

durations of the initial steady flow and magnitudes and .
shapes of the subsequent deceleration. At least three ;
runs were conducted at each velocity and deceleration
setting. Thus, three hundred elevation, acceleration,
and force traces, similar to those shown in Figs. 7

through 9, were obtained for each model. ‘

2.4 Flow Visualization
The fluid motion was visualized with dye and beads
and recorded on video tapes. A plane of light across the

camber was provided through slits approximately one foot
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2]

Be TR N R N TR eV SVt e 0g¥ ettt RS Rt Rt g Nt A TV g ¥ s ST i iy Sl T o N g O A RN SR B YT 0 N Vg A A0 0 S %y B T N S B U O AT AT



VI PP I NI L L A S e A el P 8 I 4 @O e I el il SN A U NN NS N @ e el S S S @ A
-

Neta”

!

\1‘_ '.-\..~

g %

%

s N e m T AT 4R S A

! N.vfw Q" | I”I.r = |
i (o an | =~ ; e S n
g N . == G | :
L8 O O _ | T == S | £ _
il el | N | ge
m_ tagifd | _ /_r/_ |l g~ g
pl sl _ _ o .
e | DI e S I :
} - — 18] f,
ah [ _ _..TT _ ...Ir-.. ) 0 M .\H
i | | | | T- _ P A ’OL .-L
il : _ \.\ ) . Pt g u :
1 | P | b | § AU 8 5
i | 3 1 & .M
: ) | i 8 g '
1 | wn o g
o Y ._...u_ = m Mw ..u
A s | ar 2 :
, ! | - R nM o
‘ A RN . n._“ _ } | _ [ p --,
: ) h ¢
b - . : _ N md .
i . .._1| H Py m .\
i \ | = _ o - :
00 R T4 R i — _ _ . ,
. \ _ o= Y *
B 174 S Y | 4=} s Z, ® ;
-Lllll.ml .._.._Illlil 2
\ <N e~ =i 2
| I e AR P _ =
! - il
I | || g
e pe i 1

NOILVAATA HOTIVHATAOOW A0H04

L i e e Y A WESEE I A AT I o TR LY

L& ek



(3 ant v gy S gt G0 N .0 aau oy g i

L

-
(@]

ot

< \ .

> N 7

é == oo=Cobe® St off sttt e I e 1o8es o5

A}
ST P g0 1B L an P I o o7 g o8 gu page b LU L NS T danlh T ot A gie o i S5 55 daml B TR, o Sy S sty 4

o :-|I [ ¥ W, -...I'P': Rt '1‘_“ .-"‘l._-ﬁ'-ui.-—r
N i
= ¥ L -
— _— il E— 4 )
X = §
~ B - ¢
S — — a"...--'\. "“-1-‘-‘\"'-—‘- E
— - f 1 N
L I :
T 1. o, = = ;'_ A,
k M [ R
N i :

-
L=
|

TIME (50 mm = 1 s)

P i & & i I

Fig. 9 Sample Elevation, Acceleration,
and Force Traces for Model C

29

= A X% 5 w = _®W)- q_v_ =

R R R N G G LR TR AR AT I 0 P PR IS NS I I IR I IO S A L A R L LA R A T LG S A AL RATA NS ALy £



A RV VM R VLR S P -

B T R o VS g p— Y o OSSR W Y T

long, cut into the front and rear walls of the tunnel.
Shadow boxes were attached externally to the tunnel (see
Fig. 1) into which were mounted high intensity lights.

In one series of tests, fluorescent dye was used for
flow visualization. A small amount of salt was added to
the dye to make it slightly heavier than water. After
insuring that the water in the tunnel was calm, the dye
mixture was poured slowly into the camber through the use
of the remote control arm. The mixture stayed in the

camber prior to the commencement of the experiment.

In another series of experiments, neutrally-buoyant, -

fluorescent, polystyrene beads were dropped into the
filled tunnel from directly over the plane of 1light.
After allowing the beads to slowly sink down to the level
of the camber, while continuing to add more, the quick
release valve was tripped to initiate the flow for the
already running video system. Also recorded on the video
tape was the time in seconds and 1/100 seconds. The
timer was started few seconds prior to the inception of
the flow. However, both the time differences between
successive frames and the actual time from the inception
of the motion can be determined easily from the pictures.

Figure 10 shows the evolution of flow about the
Model A for a particular acceleration-deceleration
history. Figures 11 and 12 show similar examples of the

flow development for the Models B and C, respectively.

30

|

T TR A R R I e N Tt W DA SRR N0 S5 L C AT L N LR L L LS LR BRI 0 AN L VRS R Ui LS SRS UL 1S ' Ve AN T A P 0



MW WA RWE VB W W LS WY Wt IAN e e -

Fig.

10 Evolution of Flow about the Model A
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Fig. 10 Evolution of Flow about the Model A (Continued)
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Fig. 11 Evolution of Flow about the Model B (Continued)

3

La e
LN

L NPT MRt CRC Y \'-‘.'1’.5_-.";‘.“"'&) g % 1 CON ﬂ': J.-:A e )" -."— \_‘ “ )'J.‘ .'- ,AN.}F'r:F Y '-_"\-_'\ 5.11\..!\ RN.F - ' .‘q. ‘s ' ' ~ \.J' '.I'%.’.'I 2 '..' '-.) V.2 f‘



D e e e e e e Bt F N WP SN P P ot s T SR B & |

. ann L APE SES S Tl Y Y o G PRl s iy aul g

»

P S Sl

e CC Y P P "W 0.0 N v X T T E"

Co mit 20 &

YL o

-

PP VA e et DS 1

3 ,p&

! 't;-h :mn‘s’.t; f

Fig. 11 Evolution of Flow about the MoZel B (continued)

38

Y TS S YA S

e |

. o, -
a® " &

TR 5.0 A AN T P T i N T S S M S A S A IS A R A A A SR T L TR Y ST T IF B LTS LD P L S I o ¥ S



Fig.

12

Evolution of Flow about the Model C
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Fig. 12 Evolution of Flow abcut the Model C (Continued)
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Fig.

12

Evolution of Flow about the Model C (Continued)
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The time shown in the lower right-hand corner of each
frame is in seconds and 1/100 seconds. Time zero does
not correspond to the inception of flow. In Figs. 10
through 12, the flow is started at times 4.40 (the first
frame), 2.41 (the third frame), and 1.81 (second frame),

respectively.

3 DISCUSSION OF EXPERIMENTAL RESULTS

The results will be discussed first in terms of the
representative force data and then in terms of the
evolution of the wake.

The drag coefficient is defined as
Cq = 2F/(pLWUZ)

where L and W represent, respectively, the length (2 ft
or 0.61 m in this investigation) and the projected width
of a model. U, is the steady flow velocity prior to the
onset of deceleration. Note that for.the models A and B,
the projected wi@th is equal to the distance between the
sharp edges of the model, i.e., W = 2.6 in. for the Model
A and W = 3.0 in for the Model B. However, for the Model
C, the projected width is still 3.0 in., i.e., the
diameter of the generating circle. The drag coefficient

is plotted as a function of the dimensionless time T* =
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Uot/c where t is the time and c 1is the radius of the

camber, (¢ = 1.5 in. in the experimants).

3.1 Model A

Figure 13 shows a comparison of the drag
coefficients for the Model A for various periods of the
initial steady flow, prior to the onset of deceleration.
These data are reduced from force-time records similar to
those shown in Fig. 7. Several important facts may be
deduced from a perusal of Figs. 7, 10 and 13.

The drag coefficients prior to the onset of
deceleration are nearly identical. The drag coefficients
after the onset of deceleration are simply shifted in
time by an amount equal to the difference between the
durations of their steady-states. In other words, the
force acting on Model A is not materially affected by the
duration of the ambient steady flow within the range of
the parameters encountered in the present study (the
Reynolds number defined as Re = U,W/v ranged from
approximately 20,000 to 50,000).

Considering a particular run in Fig. 13, one
observes that the drag coefficient rises rapidly to a
value of about 4.5 (due to the rapid accumulation of
vorticity in the growing vortices) and then begins to
decrease as the vortices develop under the influence of a

constant ambient velocity. Subsequently, Cyq approaches a

4%
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constant value of about 2 (for runs with longer periods
of steady ambient flow) prior to the onset of
deceleration. For a flat plate normal to a steady flow,
the drag coefficient 1is nearly equal to 2 and is
independent of the Reynolds number. However, the
similarity of the two drag coefficients cannot be taken

too seriously. There are fundamental kinematical and

AANYSINS L ITELLE NP 22 2L 22 3™ O]

=5

dynamical differences in the wakes of the two flows.

The drag coefficient decreases rapidly at the onset

A

ot

of deceleration, goes through zero near the middle of the

.
£ ot L

deceleration period, and through its minimum (negative)

ok

value at the end of the deceleration period (see Fig. 7).

Pl and

-
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Subsequently, Cgq gradually decreases to zero. The

s
x_s

\r"l,.:‘.ﬁl... r

occurrence of a negative drag during the second half of

the deceleration period is of fundamental importance and e
may be regarded as the cause of the inception of the 3
collawse of a parachute. A deeper understanding of the é
relationship between these two phenomena, however, &
requires further detailed investigation. §

Figure 10 shows a sample sequence of the pictures ;:r
depicting the growth and motion of vortices behind the %
Model A (no attempt has been made to select the frames at %
equal time intervals). In these pictures, the ‘circle’ :
is the 1/4 in. long end piece, imbedded in the plexiglass %

Y
.,

window, as noted in Section 2.2.
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It is clear from the first few frames that the flow
separates immediately at the sharp edges of the camber
and gives rise to two symmetrical vortices. The regions
of secondary separation near the rear edges of the camber
(see e.g., the 12th frame) are quite small. The vortices
continue to grow until the onset of deceleration (at
about the 15th frame). Subsequently, the vortices move
upward and sideways (see e.g., the 24th frame). It is
important to note that the separation points remain at
the edges of the camber throughout the deceleration
period.

One additional observation is worth noting. The
video pictures of the vortices along their span have
shown that the vortices cease to remain rectilinear,
particularly during the period of flow deceleration, and
acquire highly complex but continuous spiralling forms.
This is in spite of the fact that the model and the
starting flow were both made as two-dimensional as one
can possibly make them. Thus, the relatively small drag
force measufed during the deceleration period is an
integrated average of the effects of this three-
dimensional instability on the pressure distribution.

It has been known for quite sometime that the three-
dimensional vortex dynamics plays an important role in
fluid mechanics. Even if the vortices are shed from the

body in a two-dimensional manner, three-dimensional
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vortex instabilities distort the filament and the
spanwise coherence of the pressure distribution,
particularly when the flow is subjected to deceleration
or when the vortex filaments are forced to return to
their creator. The distortion of the vortex filament
changes the core structure and gives rise to a self-
induction velocity. The consequences of these changes
are not yet calculable. However, it is rather fortunate
that during the acceleration period the vortices grow
rapidly and move away from the body and this seems either
to prevent or delay the onset of the three-dimensional

instability.

3.2 Model B
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Figure 14 shows a representative plot of the

v
-vw

variation of the drag coefficient with T*. This figure
is obtained from force-time records similar to those
shown in Fig. 8. The comparison of the drag coefficients
for the Model B, for various periods of the initial

steady flow, also have shown that the drag coefficients

i Lol PP s B el by i AP, ks - R sie oo B

a1y

prior to the onset of deceleration are nearly identical
(the additional data are not shown in Fig. 14 for sake of

clarity). As in the case of the Model A, the drag

P g A R

coefficients after the onset of deceleration are simply

shifted in time by an amount equal to the difference

BATEA P P

between the durations of their steady-states. In other
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words, the force acting on Model B is not materially

affected by the duration of the ambient steady flow

| B N TS aof U 9 O Qb

within the range of the parameters encountered in the
present investigation.
As in the case of the Model A, the drag coefficient

decreases rapidly at the onset of deceleration, goes

N S A 45 ol A G AN W &

through zero near the middle of the deceleration period,

and through its minimum (negative) value at the end of

| S ot o st o0 1

the deceleration period (see Fig. 8). Subsequently, Cq
gradually decreases to zero.
Figure 11 shows a sample sequence of the pictures

depicting the growth and motion of vortices behind the

PLUSE RS ol o o b e G0 o S5

Model B (no attempt has been made to select the frames at

equal time intervals). In these pictures, the ’‘circle’ .

is again the 1/4 in. long end piece, imbedded in the

o XY

plexiglass window, as noted in Section 2.2.

R 1

It is clear from the first few frames that the flow

;

separates immediately at the sharp edges of the camber z
' ¢

and gives rise to two symmetrical vortices. The regions 3
of secondary separation near the rear edges of the camber i
(see e.g., the 9th frame) are somewhat larger than those ?
b

of the Model A. The vortices continue to grow until the E
onset of deceleration (at about the 16th frame). b
Subsequently, the vortices move upward and sideways (see S
.

e.g., the 20th frame) while the separation points remain ),
>

at the edges of the camber. h
3

3
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The video pictures of the vortices along their span

e T U P

e - W e

have also shown that the vortices cease to remain
rectilinear, as in the case of the Model A, particularly
during the period of flow deceleration, and acquire
highly complex but continuous spiralling forms. Thus,
the relatively small drag force measured during the
deceleration period is, in fact, an integrated, spanwise

averaged, three-dimensional pressure distribution.

3.3 Model C
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Figure 15 shows a representative plot of the
variation of the drag coefficient with T*. This figure
is obtained from force-time records similar to those
shown in Fig. 9. The comparison of the drag coefficients
for the Model C, for various periods of the initial

steady flow, also have shown that the drag coefficients

B . B RN - & B @ > G

prior to the onset of deceleration are nearly identical.
Furthermore, the drag coefficients after the onset of
deceleration are simply shifted in time by an amount
equal to the difference between the durations of their

steady-states. 1In other words, the force acting on Model

ST e R PRI T O e R—————

C is not materially affected by the duration of the
ambient steady flow within the range of the parameters

encountered in the present investigation.

P g

Unlike the previous cases, however, the initial rise

in the drag coefficient is followed first by a sharp
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decrease and then by a rise to a larger maximum.
Subsequently, the drag coefficient decreases rapidly at
the onset of deceleration, goes through zero near the
middle of the deceleration period, and through a
relatively small minimum (negative) value at the end of
the deceleration period (see Fig. 9). Subsequently, Cg
gradually decreases to zero.

Figure 12 shows a sample sequence of the pictures
depicting the growth and motion of vortices behind the
Model C. It is clear from the first few frames that the
flow does not separate immediately at the sharp edges of
the camber as in the previous two cases. The sepafation
begins at the bottom stagnation point (see the 4th and
5th frames) and leads to the formation and growth of two
small vortices (see the frames 7-12). The initial rise
of the drag is partly due to the acceleration of the flow
and partly due to the formation of these two small
vortices. Subsequently, these vortices move towards the
rear of the camber (the fime at which the drag decreases
sharply) and the separation points nove rapidly to the
edges of the camber (see frames 13 and 14). There is a
time period during which there are four vortices in the
wake (the two small vortices and the two larger vortices,
resulting from the separation at the sharp edges), (see
Frames 12-1i6). Subsequently, the small scale vortices

are overtaken by or merge with the larger ones (see
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frames 20-21). This merging takes place in a very short

time (in about 0.03 seconds). The remaining vortices grow

rapidly and give rise to two relatively large regions of

secondary separation near the rear edges of the camber

(see e.g., the 24th frame). The vortices continue to

grow until the onset of deceleration (at about the 25th

T s Ad

frame). Subsequently, the vortices move upward and

sideways (see e.g., the 29th frame). It is important to

By W«

note that separation during the period of deceleration
occurs not only at the sharp edges but also at the
downstream face of the camber (at about 30 degrees
downstream from the edges) partly due to the presence of
the large after body (240 degree arc) and partly due to
the large velocities induced on it.

The video pictures of the vortices along their span
have also shown that the vortices cease to remain
rectilinear, as in the case of the Models A and B,
particularly during the period of flow deceleration, and
acquire highly éomplex but continuous spiralling forms.
Thus, the relatively small drag force measured during the
deceleration period is an integrated, spanwise averaged,

complex, three-dimensional pressure distribution.
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DISCRETE VORTEX MODEL OF UNSTEADY FLOW

ABOUT TWO-DIMENSIONAL CAMBERED PLATES
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4. INTRODUCTION TO ANALYSIS

-
-

By

4.1 Separated Flows
The separated flow about bluff bodies has been
almost completely unyielding to both analysis and

numerical simulation for a number of mathematical reasons

AT TN CK LA WO s

and fundamental fluid dynamic phenomena. Separation

gives rise tc the formation of free shear layers which é
roll up into vortex rings or counter-rotating vortices. E
They, 1in turn, interact with each other, with the g
counter-sign vorticity generated at the base of the body, E
and with the motion of often unknown separation points. ?
The wake becomes unsteady even for a steady ambient flow é
and the problem of the determination of the ﬁ

characteristics of the wake becomes coupled to the

AL,

. N

conditions prevailing upstream of the separation points.

3
Evidently, viscosity modifies radically the inviscid ﬁ

")
flow, which, in this case, cannot serve even as a first 'i
approximation to the actual flow. The boundary layer 5
equations are not applicable beyond the separation points E
and are, therefore, of limited use in bluff-body flow E
problems. E;

“ "r
B

o S W TR K W,

The separated unsteady flow situations involving

wake return, as in the case of a decelerating or
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oscillating body, are an order of magnitude more complex
than those where the vortices continuously move away from
the body. The net effect of the wake return is twofold.
Firstly, the proximity of the large vortices dramatically
affects the boundary layer, outer flow, pressure
distribution, and the generation and survival rate of the
new vorticity. Secondly, the vortices not only give rise
to additional separation points and/or additional
vortices, but also strongly affect the motion of the
primary vortices. These effects are further compounded
by the diffusion and decay of vortices and by the three-
dimensional nature of the flow.

The existing finite difference and finite element
methods cannot yet treat the high Reynolds number flows
with sufficient accuracy for a number of reasons. The
finite difference schemes require a very fine grid, a
turbulence model, and a very large computer memory. It
seems that the modelling of the turbulent stresses in the
wake, particularly in time-dependent flows will be the
major source of difficulty in ~all future calculations.
Whether or not it will ever be practical to apply the
finite difference and finite element methods to high
Reynolds number flows is unknown. The inherent
difficulties are certainly significant enough to warrant

exploring other solution methods.
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Certain separated time-dependent flows may be
simulated through the use of the discrete vortex model
(DVM) . The free shear layers which emanate from the
sides of the body are represented by an assembly of
discrete vortices. The strength of the elemental
vortices are determined through the use of the Kutta
condition. The use of a suitable convection scheme
enables one to march in time and to calculate the
evolution of the wake, the velocity and pressure
distributions, and the 1ift and drag forces acting on the
body. The work described herein deals with the
application of the DVM to decelerating flow about two-

dimensional cambered plates.

4.2 Flow About Parachutes: The Genesis of the Problem
The determination of the deployment sequence of an
axisymmetric porous parachute and the unsteady
aerodynamic loads acting on it presents a very complex
coupled problem. The development of an analytical or
numerical model which takes into account the effects of
porosity, gaps, and variable opening schemes would allow
numerical experiments on a large class of parachutes,
reduce the number of the expensive field tests to a few
judiciously selected ones, and enable the designer to
calculate the time history of the fall of the parachute

and the strength required to survive the aerodynamic
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loads. However, the development of such a model is
hampered by a number of difficulties. In fact, it has
become evident that finite-difference or finite-element
solutions of complex, unsteady, separated, three-

dimensional flows at high Reynolds numbers will not be

1 ™™ ™ ™ W R WL X E R W W)

possible before few decades, even for rigid bodies. 1In

CCLUr

recent years, the vortex methods have been gaining

PAd =t bl

momentum because they offer a true alternative to Navier-

Stokes solutions (with a suitable closure model for
turbulence). However, the vortex methods (often one
method per paper) have not yet become a reliable tool
which could be used to make predictions rather than to
mimic the observations and measurements through suitable
assumptions and fine tuning. In fact, the method has
been both used and abused by many investigators. It is
in light of the foregoing that one acquires a greater
appreciation of the difficulties associated with the
solution of the aforementioned coupled problem and of the
ingenious approximations introduced into the early models
during the past two decades.

The previous models for parachute loads are based by
and large on empirical assumptions (see e.g., Heinrich
and Saari 1978; McVey 1972; Cockrell 1987). They rely on
the observation that families of parachutes open in a
characteristics 1length and seem to have aerodynamic

properties that relate well to the projected area of the
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parachute. The apparent mass is assumed to be a function
of the projected area only and is not a function of the
prevailing flow characteristics. The vortex sheet
analysis was used by Klimas (1977) to derive the
acceleration-independent apparent mass coefficient for
arbitrary-shaped axisymmetric surfaces. Muramoto and
Garrard (1984) used a continuous-source model to predict
the steady-state drag of ribbon parachutes. These
analyses did not, however, deal with the evolution of the
unsteady wake and its interaction with the canopy.

It is in view of the foregoing that a fundamental
study of the separated time-dependent flow about two-
dimensional rigid cambered plates were undertaken.
Clearly, the flow about a rigid cambered plate is
considerably simpler than that about a porous,
axisymmetric, and flexible parachute and the results,
regardless of the degree of their agreement with
corresponding experiments, may not have direct relevance
to the practical problem under consideration. But the
object of this investigation was the understanding of the
evolution of the wake under controlled conditions rather
than to provide a design tool. It is hoped that an
investigation of this type will reveal the underlying
physics of the phenomenon (particularly that of the
parachute collapse), help to interpret the full-scale

results and will provide inspiration for the development

39
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of more general vortex models with which the dynamics of
axisymmetric, porous, and flexible parachute canopies can
be investigated. Efforts directed towards the
development of a general numerical model, driven by the
ever-present pressures of practical considerations, are
deemed somewhat premature. Such efforts will have to
face not only the problem itself but also the
deficiencies of the vortex models and attempt to address
to both of them simultaneously. The model presented
herein removes the ambiguities associated with the use of
the discrete vortex model and provides results which are
for the cambers of smaller included angle in excellent

agreement with those obtained experimentally.
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5 ANALYSIS
§.1 Transformations and the Complex Velocity Potential

The calculation of the velocity of any one of thz
vortices and the force acting on the body requires a
conformal transformation (in which the camber becomes a
circle), a complex-veloclity potential representing the
vortices, their images, and the two-dimensional
irrotational flow around the body, and the use of the
generalized Blasius theorem.

The flow in the circle plane may be transformed to
that about a cambered plate through the use of two
successive transformations, one from § plane to the ¢&°
plane and the other from the t° plane to the 2z plane.
These are given by (see Fig.16)

z = G’-jf

o

, and (°= (+m (1)
S

Combining the two, one has a direct transformation

from the ¢ plane to the z plane as

-

z=0+m - — 2
o (2)
It iIs easy to show that the camber in the 2z plane is a
circular arc.
The y-axis in the z plane passes through the tips of

the camber. It is advantageous to locate the origin of
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Flg. 16 Circle and Physical Planes
the coordinate axes at the geometric center of the

camber, i.e., at the center of the circle part of which

represents the camber.

This 1s easily accomplished by

shifting the origin of the coordinate axes by

.
m-—1

Z, = (3)

m

where z; is the x coordinate of the origin of the circle
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in the z plane. Thus, one has N

e

, @

b* o, ]

z=§+m—r_._ + 1z, thhz°= -z, (4) ¥

=T m Ry

. which transforms the circle in Filg. 16a to the physical :Z'

37

plane in Fig. 16d. Table 1 summarizes the relationship

-
1.5

between m, 2z,, the included angle of the camber, b, and

»
v x K

v p .
o

the radius of the camber.

>
y

e 1 RSSO SN R IR | e, %2 0 e Ny i o g g s, BLERFLIMLVES i I £ Al €

Table 1 Summary of the parametric relationships

m ze 2 b R=1l/m
cos60 = 0.5 -1 120 0.866 2
cos45 = 0.707 0 180 0.707 /2
cos30 = 0.866 1//3 240 0.5 2//3

5N

L

e

The complex potential function w in the circle plane

L

L

g

(see Fig. 16a) which describes a uniform flow U (assumed L
to be time-dependent) with a doublet at the origin to "-
simulate the cylinder, Ty clockwise-rotating vortices ;
(called qg-vortices), ) R counter-clockwise-rotating '—-
o

>

vortices (called p-vortices), and the images of all the -‘_:
. s
p- and g-vortices in the circle plane may be written as :;
]

5

5N
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S g o Wl )

=-U@G+—) + =PLng = &) = =P LnG - =) "
W= -U( z ) = n(§ = Gop) - o 2
)

)

m ir iy ¢ il b

+ Z_BPLU(Q = () = Z—p Ln(§ = =) — —ILn(§ - C-Oq) N
k:l?'n Ckp k=12n c-kp 2R g

r :N

. : L

il 2 Rl R .
—DiLn@G - =) - L —=Ln(@ = § ) + L= nGG =) 5 3

2n Soq k=127 Em hq ! ;?

r

L
>

in which I, and &,, represent respectively the strength
and location of the k-th p-vortex, I'iq and Crq the

strength and location of the k-th g-vortex, and c¢ the

N ST

radius of the cylinder; an overbar indicates a complex

e
conjugate. The need for the separate identification of g
the p- and g-vortices and for the singling out of one of §

e

the vortices in each shear layer (namely, I'.;, and I.,..

the nascent vortices) will become apparent later.

AP el o Ny

"

§.2 Complex Velocities of Vortices

w
o

.

S LA S AT T Y]

The convection of the vortices and the calculation
of the forces acting on the body require the evaluation
of the velocities at the vortex «centers. For the
velocitlies in the circle plane this reduces to
subtracting from Eq. {5) the complex potential

corresponding to the vortex for which the velocity

I‘l'_'

P

components are to be determined and evaluating the

2

T

- =
a3
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e S

derivative of the remaining terms at C = Cx . To
determine the velocities in the physical plane, however,
one has to subtract (i /2W)Ln{(z - 2«.) from Eq. (5) or,

in terms of §, the terms (see e.g., Sarpkaya 1967, 1975)

-
Y

xrk
o

il
Ln(§ = ¢)+ :n" Lnl1 (6)

T (§+m)(C, +m)
It should be noted that the first term in Eq. (6) is the
complex function corresponding to the k-th vortex in the
Z plane. The second term appears merely as a consequence
of the transformation used.

The above procedure may be generalized as follows.
Consider the potential function for a single vortex in
the physical plane and ignore, for the time being, the
multiplier in front of the 1logarithmic term (i.e.,

ir', /2TT). Then one has

Ln(z = 2,) = Lo[ §) = A¢,)] withz = RQ) (7)

Equation (7) may be written as

fg) — fS,)

8
(- ¢ (8)

Ln(z=2z)=Ln(§—¢)+ Ln

Evidently, the first term on the right hand side of Eq.

(8) represents the vortex in the circle plane. Let us
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now examine the derivative of the second term with

respect to z. One has, 1

dw, 1d [5=/3 \|/RO-RE) | & (9)
dz |dl § = 5 S -5 dz

where dz/dgz = £'{(z]}). In the neighborhood of 7, the

function f(7) may be expanded as follows,

B N_A A e e e S Wl B U Sy W H ol T T NG W B B e —— A ——— -

RN (Sl L
[0 - ML) = G=4)FE) + ——2 () +.. (10
Thus, one has
aw,_ . 12F(g) |1
& B | o -rQ) |FO (1)

%
or

awo_ ()

z " T (12)

Thus, the complex velocity in the physical plane reduces

" A" R E T A P O C O T IV LV _w_a_a_&_ a5 ooy

to
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N " s "y T ™M RN X

~ Q@
: d ir 1 ir £() 8
- 1 = - ema— - g - 0 I
u, + v, 7 [ W(E) = }n (€ =8)] fol” = 0 (13) ;:
1 . g = §V 2.
K
:
in which for a p-vortex ;‘)‘
, 1
b

i = +- = ( 14)
¢
and t
s 2b* ;s
r(':kp)— (":kp+ m)3 ( l 5 ) :
)
I
The last term in Eq. (13) reduces to :'.:;
) ;

_ ir__kp (-b~)(L-kn + m) (16]

m (G * m)* + b*J?

This resul)* could have been deduced directly from Eq.

Cooe e e | ot & i s Y S A0 BB copny 4 Juu 200 J

(6). However, the generalization of the method enables

S

one to apply Eq. (13) to any vortex for any

"

transformation between the circle and the physical plane.

O o ]
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5.3 Kutta Condition
The fact that the flow separates tangentially with a
finite velocity at the edges of the plate (Kutta

condition) may be expressed by requiring

dw
— =0 at { = =-m=ib (17)

dg

Thus, inserting Eq. (5) in Eq. (17), one has

. il e 1r0q R ’

5 =& R U ¢

Zn Sl (‘.Op C-l—c-' = t Oq gl—_——

4 w

m : m I
T ﬂ-Lp 1 | i TI.‘I.H l.. _ ‘
S oy (o) S \nma o
" T " 7
Thp Ty

=Ull= =3 =), (18)
"

Equation (18) may be decomposed into two parts as

LYY A SR AV 1 _

2n \& = op g

(19)

where the terms containing the strength of the nascent

vortices represent the velocity. induced at the tip of the
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camber by the nascent vortices and the term 1in
parenthesis the velocity at the tip due to all other
vortices (and thelr images), the doublet at the center of
the circle in the [ plane and the ambient velocity.

) Equation (19) represents two coupled equations for
the strengths and positions of the nascent vortices.
Thus, the solution of the said gquantities does, in
general, require an 1iteration. However, this iteration

may be avoided by noting that the velocity induced by a

PRCAN gt gl s o0 0 P P T s el % £ PR Sl i P P < AT PR U0 pa ' B I

nascent vortex at the opposite tip 1s very small and

2L RS

certainly negligible. Thus, Eq. {(19) for one of the

nascent vortices may be reduced to

y v
s

~

. 3
—l-liq : - ] < +(—u°+ivo)=0 (20) t;'
2 ;t- C-Oq C-i h

4 §0q P

¥ Tt
J

A similar expression may be written for the other nascent

(%" a0

vortex. The use of the Kutta condition, as expressed by u
Eq. (20), will be explained further later following the §
discussion of the tip velocity. It suffices to note that E
all nascent vortices satisfying the Kutta condition do :i

not vyield either the same ¢tip velocity or the same -
velocity distribution in the neighborhood of the tip.

There are, in fact, certain preferred positions for the

PRI

-
FRv I |

nascent vortices which vield physically realistic
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velocity distributions near the ¢tips of the cambered
plate. These nascent vortex positions will be discussed

later.

5.4 Tip Velocity

According to the Kutta condition the tangential

I e L et Sud Sl b i & it B ol il G S0 o A s~ e

velocity at the ¢tip 1is finite. The purpose of the

following is to determine this finite velocity. It may
be determined either through the use of 1l'Hopital's rule
or through the use of a more general expression which \is
valid for all other transformations.

The velocity at the tip is given by

dW dW d¢ -
522;'57_- at z, =z = 2ib (21)

For an arbitrary point z, Eq. (4) vields,

I e sk Th ] S su e gt SR E PR oun £ an o of S So T < Saght S8 )

a1 J/ib
—_—= =k = (22)
dz 2 Wz =z, g

3°x% 8 TmTs

In general, one may write Eq. (22) as

dg

dz

(23)

1 (z = z)
2 T 2z - z) + 4b°

LIS A ol b @8 & Rt 2T F0s

LI

or multiplying both sides with-#(z-zg), one has,

.
A &A%
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&
f2) = (z=2)""? —

dz
(24)
1 zZ =2
= — (Z -Z)Uzi ( o) ]
2 t 2z =(z % 2ib)
Thus, for 2. = 2, + 2ib, one has
Ld 1 —
f(zl)=(z—zl)l'd-;- =-2—~/1b (25)

or

&  Jb o 28(z)
iz 2J/lz-z) §-¢ (26)

Expanding dw/d ¢ in the neighborhcod of %., one has

dW

A I A R (27

Combining Egqs. (26) and (27) one finally has,

dw dw X
== 2= [*(Z) (28)
dz dg-

Z='Zl

Noting that for the case under consideration f?(z.) =

ib/4, one has,

n
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dw| 4w (ib)
dz | 47 2 jot

=z,

Equation (29) vyvields the desired finite tip velocitles. -
It 1s easy to show that it may be obtained directly from

Eq. (21) through the use of 1'Hopital's rule.

5.5 Time-Dependent Forces

The force acting on the body in the physical plane
may be calculated either through the use of the pressure !
distribution or through the use of the rate of change of

impulse.

Bernoulli's equation for unsteady flow 1s given by

S P v,2 2

ov 30
(_}).L_+__l_)-(__2-+._'~’_)-57.ds=f‘(t) §200
p 2 ot

(9]

1

where the indices indicate two points on the body in the

A e w s

physical plane. Since there is no pressure drop across

the shear layer and since the integral term in Egq. ({30)

op St am e a Ww

is zero at the tip (l.e., ds = 0), one has

v, V'
f(t) = _%_ - fé— (31)
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where V.; and V.. represent the tangential velocities on
the upstream and cownstream faces of the ¢tip. It |is
important to note that f£(t) in Eq. (31} is also the time
rate of change of circulation, l1.e., the rate at which
vorticity is shed into the wake from the tip of the
cambered plate.

The normalized form of Bernoulli's equation between

any two points then becomes

— ds (32)

The integration of the differential pressure between the
upstream and downstream faces of the camber yields the
force components in the x and y directions, 1.e., the
drag and 1ift forces.

The force acting on the body can also ke calculated

through the rate of change of impulse. It is given by

2

. m G,
F=anpc?U (1 = =) + 5 [, (2, = 2, (33)
which may be written as
o el o e e o s
- 1=.Tt — —-— _)
a PO, M 2 (34)
¢ d Fk
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in which U, 1is the reference velocity; ﬁ, the rate of
deceleration of flow and 2z = f( ¢&,), 1.e., the
transformation given by Eq. {(4). Equation (34) may also
be deduced directly from the generalized Blasius
equation. It is 1important to note that the force
calculated from Egq. (34) includes the effect of the rate
of change of clirculation between two successive time
steps. Thus, it may be smaller or larger (depending on
the sign of I') than the force calculated through the
integration of the instantaneous differential pressure
[Eq. (32)]. This 1is because of the fact that the
instantaneous pressure depends only on the prevaliling
flow conditions and does not account for the rate of
change of total circulation between successive time
steps. In the calculations to follow U, and ¢ are taken

as unity for sake of simplicity.

5.6 Method of Calculation

The use of the discrete vortex model (DVM) requires
certain decisions to be made regarding the flux of
vorticity; 1introduction of the  nascent vortices; the
convection, cancellation and combination of all other
vortices; and the time interval to be used 1in the
creation and convection of the vortices. Even though

some subjective decisions are required in the selection
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{

of the proper values and procedures (which makes one &‘
]

’;\,'

application of DVM differ from another), it is important o
that the basic and experimentally observed facts are not EE
.‘

contradicted, the numerical procedure used to implement g§
=)

the method is stable, and that the results do not tﬁ
critically depend on the magnitude of disposable N
[P

t:‘:)

parameters introduced. e
The methods used in the past in the determination of SE

»

the rate of vorticity may be roughly classifled into two §;
l,\‘

broad categories. The first of these involves the use of ,ﬁ
h\-

varlable nascent vortex positions (see e.g., Sarpkaya %ﬂ
1968, 1975) and the second the use of fixed nascent gﬁ
Y

vortex positions (see e.g., Clements 1973-1975). &
The method of fixed positions involves the selection %

3

4

of a suitable fixed point in the flow near the separation :
:\.)

point and the use of the velccity U, at that point to :ﬁ
r\J

calculate the rate at which vorticity is shed into the éj
wake from -
Jl

u.:\

cr 1 0 -

ft 2 ¢ (33) b

2

e

gy

In this method the positions of the nascent vortices are &j
>

the c¢ruclilal parameters. The previous applications of &

Pare

L)
1

this method did not examine the effect of the position of

h"’

v

the nascent vortices on the veiocity distribution in the
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neighborhood of the separation point. Only the distance
of the fixed point to the body was varied and bracketed
between two subjective limits by comparing the calculated
results with those obtained experimentally. In this
method no interaction 1is allowed between the shed
vortices and the amplitude of oscillation of the point or
the time of appearance of the nascent vortices.
Furthermore, the time interval is chosen more or 1less
arbitrarily (Klya and Arie 1977) {repeating a few
calculations with a single program with only the time
step changed and also by referring to the results of the
previous {investigations). Thus, the velocltles at the
outer edges of the shear layers are only indirectly
related to the strength of the nascent vortices and the
fixed time interval. Evidently, the velocitlies in the
inner and outer edges of the shear layers, the time
interval, the strength and position of the nascent
vortices, and the Kutta condition are interdependent and
that both the position of the nascent vortices and the
time interval can<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>