Preparation and Characterization of ZrO$_2$ Stabilized with Ru(IV) and La(III)

by

Y-C. Long, Z-D. Zhang, K. Dwight and A. Wold

Prepared for Publication in

MATERIALS RESEARCH BULLETIN

Brown University
Department of Chemistry
Providence, RI 02912

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited
Preparation and Characterization of ZrO₂ Stabilized with Ru(IV) and La(III)

Y. C. Tong, Z-D. Zhang, K. Dwight and A. Wold

Prepared for and released on behalf of Materials Research Bulletin

Ru(IV) oxide, dispersed on oxide supports such as TiO₂, SiO₂ and ZrO₂, are known to show Fischer-Tropsch activity. Little is known about the catalyst-support interactions which must play an important role in the catalytic activity of dispersed ruthenium oxide. The strength of catalytic support interaction may be directly related to the stability of the dispersed catalyst towards reduction. Hence, solid solutions of Ru(IV)/ZrO₂ have been prepared, and the resulting stability of Ru(IV) toward reduction with hydrogen was measured and compared with that of bulk RuO₂. The observed increase in stability toward reduction was related to interaction between RuO₂ and ZrO₂. The introduction of a small amount of La₂O₃ with the ZrO₂ produced further stabilization of the Ru(IV) toward reduction.
PREPARATION AND CHARACTERIZATION OF ZrO$_2$ STABILIZED WITH Ru(IV) AND La(III)

Y-C. Long, Z-D. Zhang, K. Dwight and A. Nold*
Department of Chemistry, Brown University, Providence, RI 02912

ABSTRACT

Ruthenium oxide, dispersed on oxide supports such as TiO$_2$, SiO$_2$ and ZrO$_2$, are known to show Fischer-Tropsch activity. Little is known about the catalyst-support interactions which must play an important role in the catalytic activity of dispersed ruthenium oxide. The strength of catalytic support interaction may be directly related to the stability of the dispersed catalyst towards reduction. Hence, solid solutions of Ru(IV)/ZrO$_2$ have been prepared, and the resulting stability of Ru(IV) toward reduction with hydrogen was measured and compared with that of bulk RuO$_2$. The observed increase in stability toward reduction was related to interaction between RuO$_2$ and ZrO$_2$. The introduction of a small amount of La$_2$O$_3$ with the ZrO$_2$ produced further stabilization of the Ru(IV) toward reduction.

MATERIALS INDEX: Ruthenium oxide/zirconium oxide solid solution; ruthenium oxide/(lanthanum oxide/zirconium oxide) solid solution

Introduction

In order to determine the stability of dispersed ruthenium oxide on ZrO$_2$, it is first necessary to investigate the properties of solid solutions containing Ru(IV) oxide. Such studies would result in optimizing the conditions necessary for the use of this catalyst in Fischer-Tropsch conversions of carbon monoxide to either hydrocarbons or alcohols. Solid solutions of ZrO$_2$ and various metal ions have been widely investigated. Collins and Ferguson (1) reported the formation of monoclinic phases when Cr$^{3+}$ reacts to form solid solutions with Fe$_2$O$_3$, SnO$_2$ and Cr$_2$O$_3$. Stocker and Collongues (2) prepared cubic solid solutions of ZrO$_2$ with MnO ($M = Mg, Ni, Cd, Zn, Fe, Mn$) and MgO ($M = Fe, Mn, Cr, Al, V$). Recently, Nu (3) indicated that a tetragonal phase formed between Cr$_2$O$_3$ and ZrO$_2$ with less than 7.5 mole percent Cr$_2$O$_3$ and changed to cubic when the chromium content was above this level. There have been additional studies concerning the preparation and characterization of a series of cubic ZrO$_2$ solid solutions stabilized by Rh(III) (4), Fe(II) and Fe(III) (5), and Ni(III) (6) which were prepared by double decomposition of the nitrates. In all of these recent studies (3-6), a tetragonal form of ZrO$_2$ was first stabilized by the introduction of metal ions and transformed to the cubic form of ZrO$_2$ as the concentration of these ions was increased.
Despite the fact that ruthenium oxide shows a high catalytic activity in Fischer-Tropsch reactions (7), very little has appeared concerning the preparation and stabilization of ruthenium(IV) oxide under reducing conditions. A number of other transition metals have been shown to be stabilized when reacted with zirconium oxide. Hence this study of solid solutions between RuO$_2$ and ZrO$_2$ was undertaken. Such studies are essential in order to optimize the conditions necessary for the conversion of carbon monoxide to useful fuels.

Experimental

Samples of members of the system Ru(IV)/ZrO$_2$ were prepared to give compositions containing 5, 10 and 15 atomic percent Ru(IV). Calculated quantities of Ru(NO)(NO$_3$)$_3$ and ZrO(NO$_3$)$_2$ were dissolved in water. The solution then was dried at 150°C for 12 hours and predecomposed at 550°C for 24 hours in order to drive off nitrogen oxides, and then allowed to cool to room temperature.

Ternary oxide samples of La$_2$O$_3$, RuO$_2$ and ZrO$_2$ were prepared by decomposing the required mixture of ruthenium nitrosyl nitrate Ru(NO)(NO$_3$)$_3$, lanthanum nitrate, and zirconyl nitrate ZrO(NO$_3$)$_2$. The triple salt was decomposed by the same procedure as described above except that the samples were finally heated at 850°C for 24 hours.

In order to make certain of the proper decomposition conditions, temperature programmed decompositions of both the double salt of ruthenium nitrosyl nitrate and zirconyl nitrate, and the triple salt of lanthanum nitrate, ruthenium nitrosyl nitrate, and zirconyl nitrate were carried out in a Cahn System 113 thermal balance. Both the double salt and the triple salt were dissolved in water and dried at 150°C for 12 hours. The partially decomposed products were then decomposed under a predried oxygen atmosphere at a flow rate of 60 cc/min. The samples were heated to 1000°C at a rate of 100°C/hr.

Temperature programmed reductions (TPR) of ruthenium-containing samples were carried out using the same balance. Before reduction was started, the sample was preheated in dry oxygen up to 600°C in order to drive off any adsorbed water. After the sample was allowed to cool to room temperature, the gas was changed from oxygen to a 85%Ar/15%H$_2$ mixture predried over P$_2$O$_5$. The flow rate over a 25 mg sample was 60 cc/min. The temperature was then increased to 600°C at a rate of 50°C/hr. For the system of La(III) - Ru(IV) - ZrO$_2$ the reduction was carried out to 1000°C.

Characterization of the Products

X-ray powder diffraction patterns of the samples were obtained using a Philips diffractometer and monochromated high intensity CuKα1 radiation of 1.5405 Å. Polycrystalline samples were analyzed by X-ray diffraction. Full scans were recorded at a speed of 0.3°/min and slow scans at a speed of 0.03°/min. The lattice parameters were determined by a least squares refinement of the observed peak positions by a computer program which corrected for the systematic errors inherent in the measurement.
Results and Discussion

Samples of the system Ru(IV)/ZrO₂ were prepared by double decomposition of Ru(NO)(NO₃)₃ and ZrO(NO₃)₂. A previous study (8) has indicated that the nitrates decompose completely at 900°C. In this study, however, complete decomposition occurred at 350°C. Therefore, the samples were heated at 350°C for 24 hours. Compositions of Ru(IV)/ZrO₂ up to 10 atomic percent ruthenium crystallized in the tetragonal system. These phases were stable in air up to 900°C. At 900°C, x-ray analysis indicated the formation of monoclinic ZrO₂. Because of poor crystallinity, the cell parameters of the tetragonal phases up to 10 atomic percent ruthenium appeared to remain constant with a = 5.17 Å and c = 5.16 Å. In order to determine whether the ruthenium oxide actually reacted to form a solid solution with ZrO₂, temperature programmed reduction of each sample was carried out. The results of these studies are shown in Fig. 1. It can readily be seen that there is stabilization of the ruthenium toward hydrogen reduction, and this must be related to an interaction between RuO₂ and ZrO₂. The temperature programmed reduction of the 15 mole percent ruthenium oxide sample shown in Fig. 1 indicates a two-step reduction. The first plateau is achieved by the reduction of unreacted excess RuO₂ and the second step is due to the gradual reduction of the stabilized RuO₂. This is also consistent with the appearance of diffraction lines due to excess RuO₂ in the x-ray pattern of the 15% RuO₂/ZrO₂ sample.

A part of the system RuO₂/(La₂O₃/ZrO₂) was studied in order to determine the effect of lanthanum oxide on the stabilization of ruthenium(IV) in ZrO₂. Samples of ZrO₂ containing Ru(IV) and La(III) were prepared by decomposing mixtures of nitrates at 850°C for 24 hours. Temperature programmed decomposition studies indicated that decomposition of the mixtures was not complete below this temperature. The concentration of La₂O₃ was kept constant at 5 mole percent relative to that of ZrO₂ since this level of solid solution with ZrO₂ has previously been studied for the system Rh₂O₃/(La₂O₃/ZrO₂). Therefore, the preparations which were studied can best be represented by the general formula: mole% RuO₂/(5 mole% La₂O₃/ZrO₂).

At five mole percent lanthanum oxide, the stabilized cubic structure of ZrO₂ is maintained for ruthenium(IV) oxide loading up to 10 mole percent. The variation in the cell constants with increased ruthenium concentration is shown in Fig. 2. The temperature programmed reduction studies were carried out with the Cahn balance using predried gas, and the results are shown in Fig. 3. It can be seen that 2.5 atomic percent ruthenium loading is completely stable towards reduction up to 800°C; this may be compared to the reduction of bulk RuO₂ at 900°C. The sample at 5 atomic percent ruthenium loading shows that a part of the ruthenium oxide behaves just as RuO₂/ZrO₂ did under reducing conditions. However, the effect of lanthanum on the further stabilization of ruthenium(IV) towards reduction is evident for the compositions containing both 5 and 10 atomic percent ruthenium. Fig. 1 summarizes the change of cell parameters as a function of reduction temperature for each sample studied. It can be seen that there is the reduction of the ruthenium - lanthanum - zirconium oxide samples below 300°C. But at 850°C all of the ruthenium is reduced, and the cell parameters return to that of lanthanum oxide/zirconium oxide not containing ruthenium.
Conclusions

Solid solution of Ru(IV) oxide in ZrO₂ increases the stability towards hydrogen reduction from under 90° to over 200°C. The further addition of 5 mole % of lanthanum(III) oxide significantly increases the stability of dispersed RuO₂ to 800°C. The Fischer-Tropsch process depends upon the presence of oxide as well as reduced metal. Whereas pure RuO₂ is catalytically inactive because of the low temperature at which it can be reduced, it is possible that a proper combination of La₂O₃, RuO₂ and ZrO₂ might result in optimal conversion of carbon monoxide to useful hydrocarbons.

Fig. 1. Variation of relative weight with increasing temperature during temperature programmed reduction (TPR) of RuO₂ and members of the system RuₓZr₁₋ₓO₂ in 85% Ar/15% H₂.
Fig. 2. Change of cell parameter with RuO₂ concentrations in the system RuO₂/(5 mole% La₂O₃/ZrO₂).

Fig. 3. Variation of relative weight with increasing temperature during temperature programmed reduction of RuO₂ and oxides of the system RuO₂/(5 mole% La₂O₃/ZrO₂) at 850°C in H₂.
RuO$_2$(5 mole% La$_2$O$_3$/ZrO$_2$) / \(\mathrm{CD} \) / ZrO$_2$)

5.155

5.150

5.145

5.140

5.135

5.130

0 200 400 600 800 1000

Temperature (°C)

Fig. 4. Cell parameters of members of the system RuO$_2$(5 mole% La$_2$O$_3$/ZrO$_2$) as prepared and after reduction in 85% Ar/15% H$_2$ at 400° and 850° C.

Acknowledgments

This research was supported in part by the Office of Naval Research and Eastman Kodak Company, Rochester, NY. The authors also wish to acknowledge the support of the National Science Foundation for the partial support of K. Dwight and the use of the Materials Research Laboratory at Brown University which is funded by the National Science Foundation.

References

4. Y-C. Zhang, R. Kershaw, K. Dwight and A. Wold. To be published JSSC.
5. S. Davison, R. Kershaw, K. Dwight and A. Wold. To be published JSSC.
END
DATE
FILMED
5-88
DTIC