Title: Electronic Structure, Elementary Excitations, Optical and Transport Properties of Semiconductor Superlattices

The following areas have been studied:

1. Collective Charge Density Excitations in Artificially Structured Materials:
 - (a) Intra-and Intersubband Excitations of a Semiconductor Superlattice
 - (b) Plasmon Bands of Periodic Metallic Heterostructures
 - (c) Surface Plasmons in Artificially Structured Solids
 - (d) Raman and Inelastic Electron Energy Loss Spectroscopy due to Collective Charge Density Excitations
 - (e) Plasmon in Quasi Periodic Layered Electron Gas Systems

2. Impurity Levels, Excitons, Phonons, and Magnetic Polarons in Quantum Well Structures

3. The Single Particle Self-Energy in Layered Electron Gas Systems

4. The Quantum Hall Effect

The results appear in 58 publications.
FINAL TECHNICAL REPORT

ARO PROPOSAL NUMBER: 20428-PH

PERIOD COVERED BY REPORT: 1 August '84 - 31 October '87

TITLE OF PROPOSAL: Electronic Structure, Elementary Excitations, Optical and Transport Properties of Semiconductor Superlattices

CONTRACT OR GRANT NUMBER: DAAG29-84-K-0008

NAME OF INSTITUTION: Brown University

AUTHORS OF REPORT: John J. Quinn

LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP DURING THIS REPORTING PERIOD, INCLUDING JOURNAL REFERENCES:

See Attached List

SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED DURING THIS REPORTING PERIOD:

G. Eliasson (Ph.D. completed December 1986)
G. Xia (Ph.D. expected in 1989-90 Academic Year)

Dr. G. Giuliani, Assistant Professor (Research)
Dr. J-W. Wu, Research Associate
Dr. P. Hawrylak, Assistant Professor (Research)
Dr. X-D. Zhu, Assistant Professor (Research)
Dr. G. Eliasson, Research Associate

"Elementary Electronic Excitations at the Surface of a Semiconductor Superlattice and Their Coupling to External Probes", (with G. Giuliani and P. Hawrylak) Proc. of the Trieste Workshop on Dynamic Screening at Surfaces (1986).

"Effect of Inter-Quantum Well Tunneling on the Plasmon Band Structure of a Semiconductor Superlattice", (with X. Zhu, G. Xia, and P. Hawrylak).

Brief Outline of Research Findings:

During the past three years my collaborators and I have studied the following areas:

1) Collective Charge Density Excitations in Artificially Structured Materials

 a) Intra-and Intersubband Excitations of a Semiconductor Superlattice

 b) Plasmon Bands of Periodic Metallic Heterostructures

 c) Surface Plasmons in Artificially Structured Solids

 d) Raman and Inelastic Electron Energy Loss Spectroscopy due to Collective Charge Density Excitations

 e) Plasmon in Quasi Periodic Layered Electron Gas Systems

2) Impurity Levels, Excitons, Phonons, and Magnetic Polarons in Quantum Well Structures

3) The Single Particle Self-Energy in Layered Electron Gas Systems

4) The Quantum Hall Effect

We give a brief description of each of these topics.

1. Collective Charge Density Excitations

 The major portion of our effort has been devoted to understanding the bulk and surface collective charge density excitations in semiconductor superlattices. This work started with the thesis research of my former student, Dr. A. Tselis (Ph.D. -1983), who investigated the self-consistent response of an infinite semiconductor superlattice to an external perturbation of arbitrary space and time dependence. The poles of the response function gave the frequencies of the collective modes as a function of wavevector.
For simple systems in which only the lowest subband of a quantum well was occupied, the modes divide into intrasubband (essentially layered electron gas result) plasmons and intersubband plasmons. The initial work was extended to type II superlattices, superlattices with several occupied subbands, superlattices in which inter-quantum well tunneling occurs, and to magnetic field effects by a number of later collaborators.

Shortly after the Tselis-Quinn work on bulk plasmons in superlattices, Gabriele Giuliani and I investigated the possibility of surface modes of such systems. The novel Giuliani-Quinn surface mode, which is free of Landau damping, was discovered. Later work on bulk and surface modes involved

a) Lateral surfaces (i.e. surfaces which are not perpendicular to the growth direction). Here bands of surface modes are found.

b) Plasmon bands in metallic superlattices

c) Intersubband surface modes

d) The coupling of these modes to external probes via far infrared spectroscopy, Raman scattering, and inelastic energy loss spectroscopy.

The question of plasma modes of a quasi periodic array of two dimensional electron gas layers was studied by Hawrylak and Quinn. For a Fibonacci array, the interesting result that the spectrum is neither localized nor extended, but always in the critical region, was found.

The possibility of amplifying bulk and surface plasmons by application of a drift current was investigated by Hawrylak and Quinn. A patent disclosure was submitted to ARO, but apparently no action was taken.
2. Impurity Levels, Excitons, Phonons and Magnetic Polarons in Quantum Well Structures

The energy of a donor in a GaAs/Al$_x$Ga$_{1-x}$As quantum well was studied as a function of

1) the quantum well depth
2) the quantum well width
3) the position of the donor relative to the center of the quantum well

This work was based on a simple variational wavefunction, and gave results that agreed quite well with much more sophisticated calculations. Of particular interest was the energy of the donor for the case in which the donor is located in the barrier. Similar calculations for excitons were studied.

Phonons in superlattices must have a miniband structure due to the superlattice periodicity. The effect of the phonon miniband structure on polariton modes was investigated. Plasmon-polaritons in degenerate polar materials were also studied. To date there has been no complete treatment of spatial dispersion in these studies.

Magnetic polaron effects in semi-magnetic semiconductors like Mn$_x$Cd$_{1-x}$Te are well known. How the magnetic polaron interaction affects single particle levels and excitons in semimagnetic semiconducting quantum well structures was studied.

The plasma modes mentioned earlier are a manifestation of the change in dynamic screening associated with layered electron gas (LEG) structures. Once the change in dynamic screening is understood, it is interesting to see how this change affects the single particle self-energies. The effective mass, g-factor, and quasi-particle lifetime are all changed from their values in strictly two dimensional or strictly three dimensional electron gas systems. This work has been taken up in the past year, and preliminary results have already been published.
END
DATE
FILMED
5-88
DTIC