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. Abstract

E: The process of effectively coordinating and controlling resources during a mil-

R itary engagement is known as battle management/command, control, and communi-
" cations (BM/C3). One key task of BM/C3 is allocating weapons to destroy targets.
. The focus of this research is on developing parallel methods to achieve fast and cost

v effective assignment of weapons to targets. Using the sequential Hungarian method

4 for solving the assignment problem as a basis, this report presents the development

& and relative performance comparison of four paralle] assignment algorithms imple-

: mented on the Intel iPSC hypercube computer.

:- o The first approach partitions the problem space into smaller, independent sub-
» problems and assigns each to a processing node in the hypercube. The second and
third approaches also partition the problem space, but they assign each partition to a

' o group of processing nodes. Each group is controlled by a separate node which further

. subdivides the partition among members of the group. In the second approach, the

‘fq control node acts as an arbitrator to eliminate the redundant assignment of weapons

N to targets by idling redundantly allocated weapons. The third approach eliminates

ko redundant weapon allocations by selecting the least costly redundant allocations and

; directing additional processing to reallocate the more costly weapons. The fourth

. approach is a parallel implementation of the Hungarian algorithm, where certain

& - subtasks are performed in parallel. This approach produces an optimal assignment
instead of the sub-optimal assignment generally obtained using either of the three

:. heuristic approaches.

: - The relative performance of the four approaches is compared by varying the
: ) number of weapons and targets, the number of processors used, and the size of the

; problem partitions. The first and second approaches produce assignment solutions

:':: significantly faster than the baseline sequential methods. The third and fourth ap-
v

> xii
«
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proaches yield slower solutions, but are faster than sequential methods of assignment.
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IMPLEMENTATION AND PERFORMANCE ANALYSIS
OF PARALLEL ASSIGNMENT ALGORITHMS
ON A HYPERCUBE COMPUTER

1. Introduction

Parallel processing is a method of computation that exploits the concurrent
events that occur in the solution of many different problems [HwB84]. Parallel com-
puters employing multiple processors exploit these concurrent events by assigning
each event to a different processor for simultaneous processing. The results of these
parallel computations are combined to form a solution to the overall problem [Hil87].
Parallel processing is presently the subject of intense research and development. The
main reason for the increased interest in parallel processing is the wider availability
of parallel multiprocessor computers [Fre86). Improved technology in the areas of
VLSI (Very Large Scale Integration) circuits, high speed communications, and hard-
ware packaging have combined to make these parallel computers more reliable and

much less expensive [Sei85, Den86, Fre86).

Recent software implementations have shown that significant reductions in
processing times are possible using parallel processing [Qui87]. Many of these im-
plementations involve large scale problems in areas such as fluid dynamics [EbB86).
high energy physics [Fox84], partial differential equation solutions {SaN85], statisti-
cal mechanics [FoO84], image processing [MuA87], and several other areas that were
previously not feasible because of the excessive processing times required when using
single-processor computers. Faster solutions to these large scale problems appeal to
many researchers in government and industry because they allow more accurate and

extensive modeling of complex processes during the development and design phases
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of new systems. One particular government organization with a keen interest in the
increased processing speeds provided by parallel processing is the Strategic Defense
Initiative Organization (SDIO) [AdW85, Lin85, BoR85).

1.1 SDI And Parallel Computing

The Strategic Defense Initiative (SDI) was launched by President Reagan in
a televised speech on March 23, 1983. In this speech, he challenged scientists and
engineers to work to render nuclear weapons “impotent and obsolete.” He proposed
a research and development program to determine if a “smart” system of nonnuclear
defense could effectively knock out incoming offensive ballistic missiles before they
detonate over our country [Rea83]. If all dollar amounts are adjusted to today’s
value, the SDI is potentially the most expensive research and development program
ever attempted and far more expensive than the Manhatten Project which produced

the atomic bomb [AdF85).

The overall system architecture of the SDI system is envisioned as one of sev-
eral defensive layers corresponding to the different phases that occur in the trajectory
of a ballistic missile. Those phases are the boost phase, the midcourse phase, and
the reentry or terminal phase [DrF85]. Within each defensive layer, computers will
use information gathered from sensors to detect, classify, and track potential tar-
gets. Using this information and predefined engagement strategies, weapons will be
assigned to destroy certain high-threat targets. After firing on assigned targets. the
effectiveness of the weapons would be evaluated and used to make future weapon
engagement decisions. The combination of all of these processes is known as battle

management/command, control and communication or BM/C3 [SeD85, Lin85].

Many prominent scientists argue that the realization of a reliable defense sys-
tem of the magnitude that will be required by the SDI is not possible [Lin85. Par&5,
Noz86]. Although development in the areas of laser beam, particle beam, and kinetic

energy weapons is still in the beginning stages, preliminary results are promising.
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e, A major issue with these weapons is providing them sufficient energy for effective
R operation when they are deployed in space [AdF85). Development of the BM/C3
" system is the area of most concern. During a full-scale missile attack, hundreds of
» thousands of interrelated decisions will need to be made about how to most effec-
B o tively utilize available defensive weapons. These complex decisions must be made
within milliseconds of each other in order to deploy defensive weapons in a timely
] manner. Because time and complexity constraints make them humanly impossible.
, these decisions must be made with the assistance of fast and reliable computers using
intelligent software. For example, if the enemy launched 1400 missiles in an attack.

then more than 10 enemy missile kills per second would be needed to destroy most of

e A

the missiles shortly after they were launched [AdW85]. Development of the millions

¢

of lines of error-free software code and the computer systems to flawlessly execute
the software to accomplish these BM/C3 tasks is viewed as impossible by Parnas

[Par85]. The magnitude and complexity of BM/C3 software prompted Lieutenant

e =

General James A. Abrahamson, director of the SDIO, to state in an interview that
. the “incredible software problem” of the battle management system is “the challenge
of all time” [Chr85]. The SDIC is now actively conducting research in many areas

, on how to meet the challenge of developing a viable battle management system.

An area of particular interest is the development of fast and reliable BM/C3

i computer systems for controlling weapons, sensors, and other equipment that will
¥ comprise the SDI system [AdW85]. One concern is the computation time that a
A single-processor computer might require to control and coordinate all of the activ-
v ities within a defensive layer. The basic computational speed of a single proces-
sor is limited by internal signal propagation delays and is not expected to exceed

& 1 GFLOPS (Giga-Floating Point Operations Per Second) with current circuit tech-
nology [Den86]. Estimates of the computational speed required for some BM/C3

tasks are more than 10 GFLOPS [AdW85]. One way researchers believe faster

computations will be possible is to develop system architectures that utilize parallel-
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processors [SeD85). The defensive layer could then be divided into relatively inde-
pendent regions. Each region would be assigned to a separate set of processors within
the multiprocessor computer to coordinate and evaluate activities within that region.
When combined with efficient software developed especially for parallel-processors.
the overall computations could be completed in a time much shorter than that achiev-
able with a single-processor computer {San87]. The ideal speed increase or speedup
of a parallel-processor with n processors over a single-processor computer is n. In
some cases, greater than n speedup can be achieved by utilizing certain paralle] al-
gorithms. The possibility of ideal or better speedups with parallel computers creates
the potential for meeting or exceeding the predicted computational requirements of

the proposed BM/C3 system.

1.2 The Assignment Problem

One of the critical BM/C3 tasks is the assignment of weapons to targets.
Situations similar to the problem of assigning weapons to targets frequently occur
in other areas such as operations research, logistics management, and even in a
computer’s internal management of its resources. Typically, there exists a number
of resources available to be allocated to a number of requesters. In most cases,
there are more requesters than there are resources. In cases such as these, decisions
must be made as to which requesters are allocated resources and which requesters are
denied resources. The problem is generally known in the literature as the assignment
problem and usually involves allocating available resources to competing requesters
in such a way as to maximize some measure of profit or award. or to minimize some

measure of penalty {Kuh55, Chu57, Kur62].

The assignment problem can be solved in many different ways. The brute force
method would be to enumerate all the possible ways resources could be allocated to
requesters and then choose the combination that provides the best allocation. This

method might work well for a very small number of resources and requesters, but for
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any realistically sized system, the time required to enumerate all of the possibilities

would be prohibitive. For example, if there were only 20 resources and 20 requesters,
the number of different resource-to-requester assignments would be 20! or 2.433 x
10'® [Chu57). This difficult problem has been recognized by mathematicians and
computer scientists who have developed algorithms that provide more time efficient

methods of arriving at the best, or very close to the best, allocation of resources.

Research on developing algorithms to solve the assignment problem has a long
history. Von Neumann, who is considered the inventor of the conventional single-
processor computers used today, experimented with the computational advantages
of using linear programming techniques to solve the assignment problem [Kuh55].
Several others have also conducted research, developed algorithms, and devised soft-
ware implementations to achieve faster and more efficient methods of solving the
assignment problem [ Mun57, Kur62, LaM69, SrT72, SrT73, Hat75, Hun83, McG83.
MaN86]. The techniques involved with many of these research efforts are similar and

involve linear programming, graph theory, and set theory.
1.3 Research Objectives

Although algorithms have been developed to solve the assignment problem. all
of them have been implemented as sequential processes. Because these algorithms
are sequential in nature, they are easily implemented on sequential, single-processor
computers. Unfortunately, algorithms that solve the assignment problem in a parallel
processing environment have not yet been developed. Given the potential speedups
possible with parallel computers, it would seem advantageous for the battle manage-
ment portion of the SDI system to use a parallelized version of one of these sequen-
tial algorithms to perform the weapon-target assignment task. This research first
investigates the techniques for mapping algorithms onto parallel-processors. Then,
sequential assignment algorithms are analyzed to select a candidate for paralleliza

tion.
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The primary objective of this thesis investigation is implementation of assign-
b ey ment algorithms on a parallel multiprocessor computer. After successful implemen-
N tation, the performance of the parallel algorithms is analyzed. In this analysis,
E particular attention is focused on the effects of inter-processor communications, load
. balancing among processors, execution times, and machine size to problem size re-
: * lationships. The parallel computer used for the implementations is the Intel iPSC
8 (Intel Personal Super Computer) multiprocessor system which is described in detail
1: in Chapter 2.
j o
1.4 Scope

‘g In this study, the problem of assigning weapons to targets in a parallel pro-
‘ “ cessing environment is the primary focus. For this reason, exact details of the battle
E management system such as how the individual targets are detected and tracked:
z the specifics of particular weapons; the operation and sensitivity of sensor devices:
. v and the three-dimensional and rotational characteristics of weapon-to-target geom-
N etry are not addressed. These factors are accounted for to a certain degree by using
:_\: techniques described in Section 1.6 (Assumptions). However, the concepts that are
A . explored in this study should contribute to the research and development of future
8 battle management systems. The specific steps of this research are as follows:
. 1. First, techniques for partitioning and mapping sequential algorithms onto
- . parallel computer architectures are researched. From the candidate techniques, one
‘. is chosen that best matches the loosely coupled architecture of the Intel hypercube.

2. The study continues by locating efficient sequential algorithms that solve
3 the assignment problem. These algorithms are evaluated to determine which ones,
‘ if any, lend themselves to parallel implementation.
: 3. Using the chosen algorithm and mapping technique, weapon-target assign-
' ment programs are designed and then implemented using the parallel “('" program-
.
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ming language supported by the Intel iPSC. A top-down, structured approach to

software development is used to minimize the time required for implementation.

4. The implementations are tested on the Intel hypercube machine using differ-
ent numbers of processors and varying processor configurations. The performance is
measured with varying numbers of weapons and potential targets to generate ample

data for analysis and comparison of the different implementations.

1.5 Assumptions

A number of simplifying assumptions were necessary in order to both limit
the detail of the research to a reasonable level and still allow time for completion.
First, the number and location of pctential targets, along with their relative impor-
tance, are assumed to be available on demand. Likewise, the number and status of
available resources or weapons are also assumed to be immediately available when
requested. Problems associated with detecting and classifying potential targets. and
the details of evaluating the effectiveness of weapons already assigned to targets are
not considered, although simulated results of those functions are supplied as input
data to the programs. Weapons are considered to be reuseable with a finite numt er
of “shots,” and are assignable to one target at a time for a single “shot.” Each
instance of assignment is assumed to be one “snapshot” of the dynamic process of

missiles in some phase of their trajectory.
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Because the main focus of this study is on the implementation of a paral-

Y & lel weapon-target assignment algorithm, an entirely realistic simulation of missile

& 8 X 2 A B

trajectories and distribution patterns of missiles within the different regions is not

attempted. However, plausible missile attack scenarios are generated by an unclas-

sified ballistic missile defense simulation program. These scenarios are used as a
basis for constructing similar data as input to the implementations developed in this
: study. Factors such as space-based weapons platform orbits, rotation of the earth.
Y and plausible nussile trajectories originating from locations in the Soviet Union are

accounted for 1n the simulation program [Odo85].

1.6 Overview of the Thesis

f 2o D D B B

This chapter completes a brief overview of the SDI. parallel computing. and
general assignment problems. The objectives of this research were presented along
with the scope. assumptions. and the general approach to be taken to reach the
stated objectives. The remainder of this thesis develops in detail the steps listed in
; Section 1.5. Chapter 2 begins with a brief survey of the different types of parallel
- computers and then uses the survey as a basis for describing the Intel iPSC parallel
‘ " computer. [t continues with an investigation of the techniques for developing paralle]
software implementations for the Intel iPSC and concludes with a summary of the
techniques selected for use. In Chapter 3, a thorough presentation of assignment
algorithms developed in the past three decades is presented. Then, development of
the parallel assignment algorithm begins by using the techniques selected in Chap-
! ter 2 and any useable portion of the assignment algorithms developed by others in
iy the past. Chapter 4 begins with a detailed definition of the experimental model.
a presentation of the ballistic missile defense (BMD) simulation program and a de-
scription of a method for generating target scenario data using the BMD simulator
as a basis. Chapter 4 continues with a description of the different implementations

of the parallel assignment algorithm. In Chapter 5, the method of testing and data
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acquisition is explained first, followed by a presentation of the results obtained from
performance runs on the Intel iPSC. After presenting the results, detailed analy-
ses of these results are performed. Chapter 6 ends the thesis with conclusions and

recommendations for further study.
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2. Parallel Processing Background

Chapter 1 briefly introduced the subject of parallel processing. This chapter
continues with a more in-depth discussion of parallel processing by first surveying
the different types of parallel-processor architectures and then focusing on a particu-
lar class of architecture known as Multiple Instruction-stream, Multiple Data-stream
(MIMD). Then the history of development, the hardware, and some of the important
features of the Intel iPSC hypercube computer are all presented. Techniques for map-
ping problem solutions onto parallel processor architectures are then investigated.
followed by a discussion of the problems associated with parallel algorithm imple-
mentations. This chapter concludes with a presentation of recent implementations

by others on MIMD parallel-processor computers.

2.1 Parallel Processor Architectures

The Von Neumann machine is a sequential computer consisting of a central
processing unit (CPU), a memory system, and an input/output (I/O) system. In-
structions are accessed from the memory system and executed in the CPU one at a
time. This Von Neumann model of a sequential computer is the underlying architec-
ture of a majority of the conventional computers available today {(EbB86]. Steady
improvements in VLSI technology have allowed this sequential architecture to remain
popular by reducing the signal propagation delays, discussed in Chapter 1, between
the CPU and memory [EbB86]. However, reducing signal propagation delays is be-
coming increasingly more difficult because the physical limits of signal transmission
speed in silicon, the most common fabrication material, is being approached [Den86).
This is one motivation behind the development parallel computer architectures to
achieve faster processing times instead of attempting to speed up sequential Von

Neumann computers.
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A processing element (PE) can be basically defined as a CPU and a local mem-

vy ory unit for storing programs and local data. Parallel computer architectures utilize
a number of processing elements, usually in the form of Von Neumann machines.
that are linked together by an interconnection network. This interconnection net-
work provides a means to either transfer information between the different processing
elements or to allow access to a common data storage area. The following sections

discuss the different types of parallel architectures.

2.1.1 Flynn’s Classification of Architectures Flynn classified computer ar-
chitectures into four categories according to the number of instruction and data
streams utilized (Fly66). Those categories, are Single Instruction-stream Single Data-

stream (SISD), Single Instruction-stream Multiple Data-stream (SIMD). Multiple

€

Instruction-stream Single Data-stream (MISD), and Multiple Instruction-stream Mul-
tiple Data-stream (MIMD). The SISD category describes the sequential Von-Neumann
machines. MISD is generally regarded as an impractical classification of a computer
architecture ([HwB84]. The SIMD and MIMD categories describe the architectures of

parallel computers. Representations of these classifications are shown in Figure 2-1.

SIMD machines are generally comprised of a number of simple processing el-
ements statically linked to a central control unit that interprets instructions and
issues commands to the processing elements. Processing in parallel SIMD machines
is usually characterized by identical operations simultaneously performed in lock step
on each element of an array or matrix. The Illiac IV, one of the first SIMD machines
developed in the 1960’s, was used to solve problems in areas such as fluid flow. aero-
dynamics, and meteorology [RiS84]. A recently introduced SIMD computer is the

Connection Machine, which employs 65,536 simple processors [Hil87).

) In contrast to SIMD machines, the individual processors in MIMD machines do
not necessarily perform the same instructions at the same time. Processing elements
are relatively independent and each one may be executing a completely different

program. Different types of MIMD architectures will be discussed in the next section.

e
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Figure 2-1: Flynn's Classifications (a) SISD (b) MISD (c) SIMD (d) MIMD
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2.1.2 Types of MIMD Architectures The MIMD classification of a computer
architecture can be further divided into two sub-classes, based on the memory struc-
ture and the type of interprocessor communications. One sub-class is the shared
memory machine where all individual processing elements have access to a large
global memory which is used to access common data and to pass information be-
tween processors. Shared-memory machines are also known as tightly coupled pro-
cessors because of the degree of interaction between processors imposed by the global

memory [HwB84].

Another sub-class of MIMD computers is the local memory or loosely-coupled
machine. Processors in loosely-coupled machines each possess their own private
memory that is not accessible by the other processors. Information is exchanged
between processors by passing messages through the interconnection network. Pro-
cessors in these machines are generally more independent than those in the shared
memory machines. Loosely-coupled machines derive their name from the reduced
interaction between the individual processors [MuA87]. Many of the commercial

MIMD computers available today are loosely coupled [HwB&84].

2.1.3 The Hypercube Interconnection Network Parallel solutions to certain
problems sometimes require the processors to be configured into a ring, mesh, star.
or tree structure [Fen81]. There are a number of ways to interconnect the processors
in an MIMD multiprocessor computer. One class of interconnection network that
can function as any of the listed configurations is based on the cube interconnection

function [Sei83]. The m cube function can be defined as:

cubei(Pm-1,-..sP1,P0) = Pm—1---Pit1 P; Pi=1-.-P1 Do (2-1)

where 0 <1 < m and P, denotes the complement of p,.

The cube function is the basis for networks such as the multistage cube network
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[McS85], the Boolean n-cube [Pea77], and the hypercube [SaS85]. The hypercube

interconnection scheme has the advantage that if the total number of processors is
N, the maximum number of intermediate links that must be traversed by a message

from one processor in order to communicate with any other processor in the network

is log, N.

The processors in a hypercube interconnection network are linked together
based on the binary representation of the processor’s address. Processors whose
binary addresses differ by only one bit (i.e., the cube function cube; for bit ¢) are
connected. For example, in a three-dimensional cube there are 8 = 23 processors.

These binary addresses can be represented as shown in Table 2-1.

Table 2-1. Processor Binary Addresses

Processor | Address
0 000
001
010
011
100
101
110
111

-~ OO W N

Each processor is connected to three other processors using this scheme. The
resulting structure can be represented by the diagram illustrated in Figure 2-2 where
the labeled nodes represent processors and the lines represent the links between the

processors. Different dimension hypercubes can be formed by following the same

addressing scheme.

2.2 The Intel iPSC Hypercube Computer

The Intel iPSC hypercube computer is used for implementing the parallel as-
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Figure 2-2. Three-Dimension Cube Structure

; signment algorithms developed in Chapters 3 and 4 of this study. An overview of the
h Intel machine and some of its important features is necessary in order to understand

some of the decisions that are made during development of the implementations.

\ 2.2.1 History The origin of the Intel iPSC can be traced back to research

performed at Caltech and the NASA Jet Propulsion Laboratory during 1978-1981
& [Sei&5]. This research formed the basis for an MIMD, local memory. multiproces-
) sor machine that was designed and built primarily as a hardware simulation of a
; computer researchers expect to be able to implement entirely in VLSI in the future.
- However, the excellent performance of the prototype prompted Seitz and his col-

leagues to experiment with solving a variety of computationally-intensive problems.

They nick-named this new machine the Cosmic Cube [Sei85]. The Cosmic Cube was
i later developed into a commercial computer system named the iPSC (Inte] Personal
Super Computer) by the Intel Corporation. Customer shipments of the iPSC began
in February 1985 [Den86). The iPSC is now available to researchers at many centers.

including the Air Force Institute of Technology (AFIT).

PR

‘y

2.2.2 Hardware Organization The Intel iPSC is available in several config-

) urations ranging from a l6-processor. 4-dimension cube up to a 12%-processor. 7-
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dimension cube. In the basic configuration, each processor is built around an Intel
80286 microprocessor, an 80287 numeric coprocessor, and 512K of random access
memory (RAM) [Int86]. Options such as additional memory and vector-processing
capabilities can make the iPSC a very powerful machine for a modest cost when
compared to large supercomputers such as the well known and expensive Cray se-
ries.

The individual processing elements or nodes are interconnected in a hypercube
topology. with communications coprocessors handling the processor-to-processor mes-
sage passing duties. The user develops applications for and communicates with pro-
cessors in the cube through an intermediate host known as the cube manager. The
cube manager is also built around the 80286 microprocessor and 80287 coprocessor.

but has additional memory capacity [Int86)].

2.2.3 Software Development Environment The software development envi-
ronment of the iPSC is based on a derivative of the UNIX operating system known
as the XENIX environment {Int86! The languages supported are parallel versions
of FORTRAN, C, and Lisp. Applications are developed using the cube manager as
a means to compile, debug, and run programs written in these modified languages.
Predefined library functions are used to perform operations such as opening commu-
nications channels between the cube manager or other processors, sending or receiv-
ing either synchronous or asynchronous messages from other processors. controlling
processes running on processors in the cube, and many other functions unique to the
Intel hypercube. A program to simulate the functions of the iPSC hypercube for use
in initial program development is available for other systems running the BSD 4.2
UNIX operating system. However, accurate performance data for applications must

be obtained using the actual Intel iPSC machine.
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2.8 MIMD Mapping Techniques

Much has been written about techniques for developing applications software
for parallel MIMD computers. These techniques are sometimes known as mapping
techniques [Sei85, Fox84]. The most important mapping techniques and some areasx

to be concerned with while developing implementations are covered in this section.

2.3.1 The Basic Approach Many science and engineering problems are nat-
urally divided into concurrent processes [Sei85]. If they are relatively independent.
either one or several of these processes can be assigned to separate nodes or pro-
cessors in a parallel computer for concurrent processing. Then the “intriguing and
...amusing" task of coordinating the computing activities in each processor must be
devised [Sei&5]. Continuing, Seitz says from experience that application formulation
for the multiprocessor Cosmic Cube “has not proved to be very much more difficult
than it is on sequential [single processor] machines.” In many cases. he says paralle]

applications are based on adaptations of well known sequential algorithms.

Fox and Otto maintain that “the main stumbling block to the use of concurrent
processors is the difficulty of formulating algorithms and programs for them.” Thev
go on to say “that concurrent processors are quite easy to use and ...address the
vast majority of computationally intensive problems.” They agree with Seitz when
they say that most computationally demanding problems are not solved by using
complex algorithms, but “rather there is a relatively simple procedure ...that one

must apply to a basic unit ...in a world that consists of a huge number of such

units.”

2.8.2 Communications Overhead One of the most common problems asso-
ciated with applications for parallel processing is the minimization of the commu-
nications overhead. The ratio of communications to computations should be ap-
proximately one (unity) [Fox84]. This means that the amount of communications

should not be greater than the computations. An example of communications over-

17




head is when information about a problem subdomain contained in one processor
k@ is needed by another processor working on a different subdomain. Exchange of this
information requires that these processors communicate with each other using the
L interconnection network. This type of communication between processors must be
" kept as low as possible [Fox84). “An important measure of an algorithm’s efficiency
: ... [is] ... the time to move the data™ [HoZ83]. This “time to move the data™ referred

to by Horowitz and Zorat is the communications overhead.

Saltz says there are several techniques that can be used to reduce the commu-
nications overhead. One technique is to reduce the quantity of information to be
communicated by only sending information that is absolutely necessary. Another
method is to reduce the frequency of communications by sending several bits of in-
> formation in each message [SaN85]. Saltz mentions one other method that involves
overlapping communications with processing, which can be accomplished by using
asynchronous message-passing library functions in the Intel iPSC programming en-
> vironment. Another technique for reducing communications overhead, related to
b problem partitioning, involves increasing the size of the subdomain assigned to each
! processor. This absorbs some of the communications that would have been necessary,

Y but also reduces the level of parallelism [SaN85].

2.3.3 Problem Partitioning According to Fox and Otto, the first step in for-
mulating a solution to large problems on a concurrent processor is to partition the
b problem into many parts and assign a different part of the problem to each indi-
\ vidual node or processor. Part of the difficulty with partitioning the large problem
is deciding on the size of the subproblems. If the subproblems are too small, there
¢ is a chance that excessive communications between processors will be necessary to
complete the solution {FoO84]. On the other hand, they say forming larger subprob-

lems tends to reduce the communications overhead and increase the efficiency of the

aw s @V

. computations.
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Cvetanovic has written a paper discussing the effects of problem partitioning
and granularity on multiprocessor performance [Cve87]. She says that as the size of
computations performed on the separate processors decreases, the amount of parallel
computations increases. But because of the increased parallelism. computations are
performed faster and more requests for additional data or communications with other
processors are initiated. As the communications increase, the overall processing slows
down. According to Cvetanovic, the following parameters are likely to have the most

significant effects on multiprocessor performance:

The amount of parallelism inherent in the application of the problem.

The method for decomposing a problem into smaller subproblems.

The method applied to allocate these subproblems to processors.

The grain size of a subproblem executed on each processor.

Cvetanovic concludes that problem partitioning has a strong effect on multipro-
cessor performance. If the subproblem size introduces unacceptable communications
overhead. she suggests two methods for reducing this overhead. The first method is
to increase the capabilities of the interprocessor communications network. This is
seldom possible, so the second method she suggests is more promising. It involves
increasing the subproblem size in order to transform some interprocessor communi-
cations into intraprocessor communications. This transformation effectively reduces

the demands on the communications network and increases overall performance.

2.3.4 Load Balancing Another factor to consider in partitioning a problem
is the “load balancing” [FeK85, FoO84]. Efficiency is increased if all processors are
performing essentially the same computations. The general idea is that the amount
of communications between processors is not as important as the “amount of compu-
tation done per communication” [FoO84]. Fox says that memory requirements per
processor must be equal and fixed in order to ensure the efficiency of the implemen-

tation will not depend on the number of processors in the machine. This restriction
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achieves load balancing of the processors by insuring that no one processor wili

A & perform the bulk of the computations [Fox84].

. 2.8.5 Use of Sequential Algomthms On the use of sequential algorithimns in
X parallel implementations. Fox says that each processor performs essentially the same
computations a single processor computer would perform. The difference is that the

computations are performed on a subdomain of the overall problem. He savs the

PLIS LIl

development of programs to run on the individual processors of a multiprocessor
® computer should be very similar to those used in a uniprocessor machine. An excep:
tion to this similarity occurs when “boundary conditions™ must be considered where
the problem domains of programs running in different processors overlap. In cases
such as these. interprocessor communications and some type of synchronization must

occur in order to complete the solution, which in turn reduces the efficiency of the

& processing.

In some cases. the adaptation of a sequential algorithm into a parallel algorithm
introduces other overheads in addition to the communications overhead. These addi-
x tional overheads may involve “housekeeping chores™ and imply that not all sequential
p algorithms are adaptable to parallel implementations [Cve87]. Also, sequential algo-

9 rithms may not expose all the parallelism present in the problem [HaL82].

2.4 Other Implementations

As noted in the introduction, there have been several software implementa-
tions recently developed for parallel computers. This section briefly describes some
» of these implementations that use loosely-coupled MIMD computers like the Intel
. iPSC. Many applications have been developed at Caltech and NASA JPL in a wide

range of problem areas such as high energy physics, fluid flow, astrophvsics, image

processing, chemistry, structural mechanics. and other areas [FoO®4.Sei’5, FoxR1].
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These applications are too numerous to describe here, but a few select applications
& are described, along with applications developed by researchers at other institutions.
2.4.1 Boost-Phase Track Initiation Algorithms One implementation closely
related to the ones that will be developed in this thesis was developed by Gottschalk
P at Caltech. His implementation was developed on a version of their Cosmic Cube
which is similar to the Intel iPSC. The problem involved determining the tracking
of ballistic missiles in the boost phase by selecting the likely missile tracks and
eliminating the unlikely or redundant tracks. His solution method used sequential
®

algorithms in each node of the hypercube with the number of nodes a factor of
4 less than the number of targets per track. Significant speedups over sequential

implementations of the same Kalman filter technique used in the parallel version

< were achieved [Got87].

2.4.2 Parallel Branch and Bound Mraz developed two implementations of a
parallel branch-and-bound algorithm for the Intel iPSC. He solved an N-queens prob-
lem and a deadline job scheduling problem using the branch and bound technique.
His method used a tree structure embedded into the hypercube interconnection net-
work that was used to search the problem solution space [Mra86]. He reported
Y speedups over sequential implementations of similar algorithms, however for small
problem sizes, the sequential implementation performed better. This appeared to be
caused by several factors, one which involved problem partition size. The other fac-
tor was related to synchronization of the tasks within the hypercube, which reduced
the amount of parallelism achievable. As the size of the problems were increased. the
speedup and efficiency of the parallel implementations showed good improvement.

The results of this thesis point out the important effects problem partitioning and

processor communications have on the overall performance.

2.4{.83 The Traveling Salesman Problem This implementation was also devel-

oped at Caltech on one of their Cosmic Cube parallel computers. The traveling sales-
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man problem is a classic optimization problem that has applications in areas such
as circuit layout, VLSI design, resource allocation, and logistical problems [FeK85].
The basic problem is to find the shortest tour for a traveling salesman who must, for
the least cost, visit a number of cities only once. The solution space of this problem
grows factorially as the number of cities are increased linearly because of the number
of possible routes the salesman could take. The solution method utilized by Felten
and his associates was a statistical mechanics technique known as simulated anneal-
ing. A mesh structure was embedded into the hypercube network in order to match
the structure of the simulated annealing algorithm. This implementation exhibited
speedups over sequential implementations ranging from 1.92 using two processors to
54.92 using sixty-four processors. These speedups are not ideal, but represent signifi-
cant reductions in the processing times required to solve this important optimization

problem.

2.4.4 Gaussian Elimination Gaussian elimination is a computationally in-
tensive method used to solve dense linear systems that requires manipulations of
the rows and columns of large matrices [Saa86]. Saad examined several methods of
mapping solutions to this problem onto the Intel iPSC computer. He found through
computational experiments that this particular problem was best solved using a grid
structure embedded into the hypercube network. The use of a piplining technique
combined with the grid algorithms produced the lowest amount of communications

between processors, which was pointed out in Section 2.3.2 as the most important

overhead to reduce.

2.4.5 Vision Algorithms A hypercube implementation that applies image
processing techniques to printed circuit inspection was accomplished by Mudge and
Abdel-Rahman. They used a gray-code scheme similar to a Karnaugh map to par-
tition and assign portions of an image to separate processors in a 128-processor

NCUBE hypercube computer [MuA87]. Their problem was to process the image of
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a printed circuit under inspection in order to extract certain features and compare
them with a template of the correct image. If discrepancies were detected between the
template and the image under inspection, the printed circuit was rejected as faulty.
The solution of this problem required the processing of approximately 10 Mbytes of
data in a few seconds. Although they used a 128-processor machine to obtain their
experimental results, they predicted that 40 frames of 512 x 512 1-byte images could
be completely processed in less than three seconds using a 1024-processor version of
the same NCUBE computer. Two problems they encountered were computational
overheads in algorithms and in communications, which were cited in Section 2.3 as

potential problems with parallel implementations.
2.5 Summary

This chapter presented a brief discussion of parallel-processor architectures and
an overview of Intel’s iPSC MIMD computer. Techniques for developing applications
for machines similar to the Intel iPSC were discussed, with particular emphasis
on problem partitioning and interprocessor communications. A few of the many
recent implementations on parallel MIMD computers were presented and some of
the problems associated with those implementations were noted. Chapter 3 begins
the process of developing parallel weapon-target assignment algorithms by examining
sequential assignment algorithms. Mapping techniques introduced in this chapter are
expanded for use in developing parallel implementations of assignment algorithms

utilizing as many features as possible from these sequential algorithms.
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;. . 3. Development of the Parallel Assignment Algorithms
5 In this chapter, a parallel weapon-target assignment algorithm is developed
::: for implementation on the Intel iPSC computer using the techniques presented in
3 " Chapter 2. First, a formal mathematical definition of the assignment problem is
¢ given. A background on research conducted during the past three decades on dif-
;.3 ferent solutions to the assignment problem is then presented. The general classes
. of assignment algorithms that have emerged from this research are described, fol-
. lowed by a detailed analysis of several candidate sequential assignment algorithms
E with the goal of selecting one of these algorithms for parallelization. Next, different
:J:' techniques for performing parallel search of a problem solution space are explored.
( - In the final section of this chapter, a parallel search technique and one of the se-
N quential algorithms are selected for use in the parallel assignment algorithms. This
o chapter concludes with a summary of the parallel algorithms developed and their
(_ S v implications on the remainder of this research.
8.1 The Assignment Problem
s @ In Chapter 1, optimum assignment was characterized as a problem whose solu-
e tion time-space complexity increases factorially with a linear increase in the number
:',' of resources and requesters [Chu57]. There are several variations in the details of the
)_:-:_ o how the assignment problem is stated. In sorne instances, it is considered a special
. case of the transportation problem, where there are several resources at each source
- of supply and multiple requests for those resources at each sink. The assignment
"fvl problem addresses a special case of the transportation problem where there is only
i N one instance of a resource at each source and only one instance of that resource is
}; required by each requester. The transportation problem itself is a special case of a
t' general, single-objective, linear programming problem [Ign82].
.
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8.1.1 History Research on finding faster and more efficient solutions to the

assignment problem has a long history, beginning with graph theoretical work pre-
sented by Hungarian mathematicians Konig and Egervary in 1931. More recent
developments were accomplished by Dantzig, Flood, Von Neumann. and Kuhn in
the 1950’s (Chu57]. The programming methods and algorithms developed in the
1950’s form the basis for much of the work that has been done on assignment prob-
lem solutions up to the present [MaN86]. Various modifications to these original
assignment algorithms have been made in an effort to enhance their execution speed
and efficiency on modern digital computers [McG83, CaT80, BaG77. Hun®3. BerS1.
GlK74, Hat75, SrT73, MaN86)].

8.1.2 Statement of the Assignment Problem The assignment problem can be
stated in words as: Given a number of resources and a number of requesters of those
resources, and given the profit or usefulness of each resource to each requester in
the form of a rating matrix where element q,; is the profit of assigning resource 7 to
requester j, the problem is to assign each resource to one and only one requester in
a way that a given measure of effectiveness is optimized [Chu57]. Mathematically.

the assignment problem can be stated as follows:
Given an n? rating matrix

A =|lag)l, ai; 20 fori,j=1,2,...,n(n>3) (3 -1}
Find an n? assignment matrix X = ||z,;|| such that

1 if resource 7 is assigned to requester j
Zi; = . (3 —’2)
0 otherwise

n

n
E::tq ==§:4EU =1 (3 - 3)
1=1 =1

T = Zaqr‘-] = minimum (3 -1
)
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The conditions of Equations 3-2 and 3-3 specify that each row and column of ma-

s et e

trix X will contain one element with a value of 1 and all other elements will be zero

-

[Chu57]. The requirement of square matrices at first appears to limit the problem

to cases where the number of resources equals the number of requesters. But situa-
- tions where they are not equal can also be solved by adding “dummy™ resources and
requesters to make matrix A square. The associated rating or cost of these added
matrix elements should be set to zero so that they will not be included in the final

' assignment solution. Other more efficient methods of handling this unequal situation

have also been devised [BoL71a].

oy vt T

3.2 Sequential Assignment Algorithms

oV ¥

As stated in Section 3.1.1, much of the development of assignment algorithms

over the past three decades has been based on the research accomplished in the

S T T}

1950’s by Dantzig, Flood, Von Neumann, and Kuhn. Other methods developed in

L the study of network flow have provided additional means of solving the assignment

-

problem {Smi82]. Two basic approaches, a simplex-based transportation method

and the Hungarian method, have emerged as the most popular means of solving the

A L IS R e A

* assignment problem primarily because of their simplicity and ease of implementation

{Hat75. GIK74, MaN86]. Because of limited time and space, all of the many different

Ll

assignment algorithms are not covered in detail. Instead, brief summaries of each

PN

are presented in this section. Then, in the following section, the transportation
and the Hungarian methods for solving the assignment problem are analvzed. A

detailed presentation and an example problem of both methods are presented in the

P M b o

Appendices to illustrate how the algorithms operate.

8.2.1 The Simpler Method The simplex method, developed by Dantzig. is a

general approach that can be used to solve most all single-objective. lincar program-

o

ming problems. The basic approach of the simplex method is to start with a feasible

solution to a problem and improve upon this solution in a step-by-step fashion un-
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til an optimum solution is reached [Kre68]. A feasibie solution means that all the
constraints placed on the optimization (minimization or maximization) in the origi-
nal problem statement are satisfied. In terms of the assignment problem, a feasible

solution would be one where each resource is assigned to a different requester.

The type of problem most easily solved by the simplex method is one where
there is a single objective function that is to be maximized or minimized, subject to
constraints which are stated in the form of a system of linear equations. Additional
variables, called slack variables, are added to this system of equations to aid in
converging on the optimal solution. During the course of the solution, there are two
sets of variables. One set is called basic and consists of variables that have been
incorporated into the present version of the solution. The other set of variables is
called non-basic and is comprised of variables not incorporated into the solution.
Variables are modified and exchanged between the basic and non-basic sets one at a
time until conditions indicate that an optimal solution has been reached. One of the
primary disadvantages of the general simplex method is that the solution it provides
is not integer-valued. Modified versions of the general simplex method have been

developed to provide integer solutions, but they are somewhat less efficient [Ign&2].

Because the simplex method is a general approach, specialized versions of it
have been developed to solve specific problems. Different rules are adapted for
selecting variables to enter the basic set and vary according to the type problem
being solved. One example of a specialized version is the transportation method

which will be described next.

3.2.2 The Transportation Method The transportation problem originated fron:
studies made to improve the efficiency of utilizing available transport capacity in the
railway and trucking industries. An example of this type problem is minimization of
the cost of moving empty freight cars from their present locations to other locations

where they can be used to transport goods [Chu57]). The transportation problem
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existed prior to the development of the simplex method. However, efficient solu-
) tions had not been developed for it until the techniques of the simplex method were
. applied [Ign82]. As stated earlier, the assignment problem is a special case of the
transportation problem. The transportation method uses a cost or rating matrix
b to represent the problem similar to the one described in the assignment problem
statement. An additional row and column is added to the rating matrix to represent
N the number of resources available at each source and the number of requests for
: those resources at each sink. In order to use the transportation method to solve the

assignment problem, all values in this additional column and row must be set to one.

3 The basic steps of the transportation method are similar to the general simplex.
although they are somewhat obscured by the matrix representation of the problem.
E Many of the computations that would be normally be required by the simplex method
. are avoided by exploiting this matrix representation and using a somewhat simpler
¥ approach [Kre68, Ign82]. There are two phases to the transportation technique. The
b - first phase generates a basic feasible solution to satisfy all the problem constraints
: (i.e., make initial assignments of all resources to all requesters). The second phase
consists of determining whether or not the initial solution can be improved. If not.
the algorithm terminates. Otherwise, the current assignment is reshuffled to improve
. the value of the objective function. This reshuffling is analogous to the exchange of
. basic and non-basic variables in the simplex technique [Ign82]. When the solution
obtained in this manner cannot be improved upon, or if it is found to be unbounded.

then the algorithm terminates. The exact steps of the transportation algorithm are

. . ,
_r lem 2 V.0,

presented in Appendix A. The next section describes another modification to the

simplex method.

F )

PR R

3.2.8 The Alternating Basis Algorithm The Alternating Basis (AB) algo-

rithm is a modification to the simplex method which avoids the unnecessary inspec-

-

e e r s A A 2 K a N

tion of alternative feasible solutions [BaG77]. It was presented in 1977 by Barr.

Y

Glover, and Klingman in an effort to reduce the storage requirements and compu-
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tational inefficiencies of using the simplex method to solve the assignment problem.
Their approach uses a rooted tree graphical representation of the problem where each
node in the tree corresponds to either a source or a destination. The nodes are con-
nected by arcs which are assigned a value of 1 if the two nodes are to be “assigned”
to each other and 0 otherwise. The “alternating™ part of the algorithm’s name stems
from the alternating manner in which the 0-arcs and 1-arcs are distributed in the
tree structure. By restricting the tree structure to the “alternating path™ as it is
referred to in their paper. degenerate solutions that would normally be considered
by the general simplex method are avoided and the efficiency of the computations
1s increased. The feasible solutions or bases that are considered are incrementally

improved in a step-by-step manner exactly as in the general simplex method.

Some computational comparisons of the AB algorithm against other imple-
mentations of simplex-based algorithms were made by Barr and his colleagues. The
results showed that the AB algorithm was approximately 15% faster than the clos-
est competitor ([BaG77]. The number of basic and non-basic variable exchanges was
reduced by as much as 25% over the other methods in the comparison. These perfor-
mance figures indicate that improved performance of the simplex method is strongly

dependent on the rules for selecting variables to enter the basic solution set.

3.2.4 The Hungarian Method Kuhn presented a paper in 1955 describing a
method for solving the assignment problem which he titled “The Hungarian Method
for the Assignment Problem” [Kuh55]. The overall scheme of the Hungarian method
is based on a theorem proved by the Hungarian mathematicians Konig and Egervary
[Chu57]. Their theorem involves covering, or including in sets. the elements of a ma-
trix which belong to one of two distinct classes. In the Hungarian method, these
two classes are formed by simple subtractions from members of the rating matrix
which yield null elements and non-null elements. The mintmum number of cover-
ings, referred to as lines by Kuhn, that include all these null elements is equal to the

marimum number of elements in that class. The Hungarian 1.ethod provides min
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imum or maximum cost assignments if the resulting null elements are independent.
Independent means that no other null elements occur in the same row or column.
This restriction is analogous to permitting the assignment of each resource to only
one requester and vice versa. When the number of covering lines equals the number
of resources to be assigned, then there exists in the set of covered null elements at
least one optimal assignment of all the resources. The method works on the prin-
ciple of selectively reducing all elements in a row or column by the same amount
and locating independent positions in the matrix that first become null. These in-
dependent null positions correspond to minimum or maximum cost assignments. A
detailed presentation of the Hungarian method and an illustrative example problem
are included in Appendix B. Several modifications of the Hungarian method have
been made since its introduction. Some of these modifications are presented in the

next section.

3.2.5 Modifications to the Hungarian Method Since the Hungarian is one of
the more popular algorithms for solving the assignment problem, it has received the
most attention by researchers who desired to improve its efficiency. Carpaneto and
Toth published an improved version of the Hungarian method in 1980 which reduces
the amount of time required to locate the zero elements and the unexplored rows of
the current cost matrix. They used pointers to accomplish this improvement. which
also reduced the storage requirements of the implementation. Another improvement
they made over the original Hungarian method was to modify the choice of the
initial assignment solution. Computational experiments showed that the modified
algorithm outperformed other implementations of the Hungarian method for densely

populated rating matrices.

Bersekas performed a more drastic modification to the Hungarian method. He
changed the way that the cost of assignments were incremented during the course of
the algorithm, which resulted in a faster convergence on the optimal assignment. He

called his method outpricing, which effectively reduces the row operations required on
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the rating matrix and results in solving a problem of a smaller dimension. The basic

® concept behind his method involves cooperative bidding where requesters attempt

to outbid each other for the resources to be assigned [Ber81].

Bourgeois and Lasalle modified the Munkres version of the Hungarian method

o to include more efficient means for solving assignment problems that are not square
(i.e., the resources do not equal the requesters) [BoL71a, BoL71b, Mun57]. They

present a proof that uses two submatrices, one consisting of the real and the other

consisting of the dummy resources or requesters. They argue that if the cost of

the assignments in the dummy submatrix are set high enough, then all of the real

resources will be assigned first. They conclude that the addition of the dummy

elements is not necessary. They present an algorithm and computational comparisons

G with the original Hungarian method to show that their method is a performance

improvement, especially when dealing with rectangular cost matrices.

3.2.6 The Branch and Bound Algorithm The Branch and Bound algorithm

for the assignment problem was presented by Land and Dorg in 1960. It is a technique
where a small portion of the many possible combinations of assignments are selected
and an objective function is evaluated subject to certain bounds or restrictions.
¢ The basic approach is to obtain an optimal value of the objective function that lies
between upper and lower bounds. The objective function’s value cannot be less than
the lower bound. The upper bound is normally the value of the best feasible solution
obtained thus far in the current algorithm iteration. The algorithm terminates when
it can be determined that there is no lower bound less than the current upper bound
[Ign 82]. The branching part of the algorithm partitions the solution space into

smaller. mutually exclusive subsets. The lower bounds associated with each subset

¢

are calculated and compared with the current value of the upper bound. If the
lower bounds are not less than the current upper bound, then the subsets are not
partitioned any further since no better solution could be obtained by branching.

. This branching process is repeated until all possible subsets have been formed or
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until none of the lower bounds are less than the current best feasible solution.

3.2.7 The Out-of-Kilter Algorithm The Out-of-Kilter algorithm resulted from
the study of optimal network flow and was presented by Ford and Fulkerson in 1961
[Dané3). Its original application was to find either minimal or maximal flow through
a network. However, applications have been found in other areas, including the solu-
tion of transportation and assignment problems [Smi82]. The network is represented
as a directed graph where the nodes correspond to locations and the arcs represent
links between different locations. Associated with each arc is a cost per unit flow
¢;, through the arc which connects node : and node j. The actual flow through the
arc is r,;;. The out-of-kilter algorithm is based on the conservation of flow at all
nodes of the network: what flows into a node must flow out. The conservation of
flow at node 1 is represented by a multiplier ;. The = multipliers of two nodes are
combined with the ¢,, of the arc connecting these nodes to produce the flow value
r;,- Upper and lower bounds on the flow z,; can also be imposed, but are not needed
when the algorithm is used for solving the assignment problem [Smi82|. The points
(zi;,¢i;, + ™, — ;) are plotted to determine if they fall on a “kilter line” which is
graphically derived from the upper and lower flow bounds, and the conservation of

flow multipliers for each node.

The algorithm first assigns initial flows to each arc and then searches for an arc
that lies off the kilter line, which is termed being “out-of-kilter.” An arc is brought
into kilter by adjusting all flows in the network from the source to the destination
linked by this selected arc. This process is repeated until all the arcs are brought into
kilter. The assignment problem can be solved using the out-of-kilter algorithm by
representing the rating matrix as a graph where the nodes correspond to the resources
and requesters, and the value of the arcs correspond to the cost of assigning resource
t to requester j. The upper bound on flow through each arc must be set to infinity
(or a “large™ number) and the lower bound to zero. Then an additional node must be
added that is linked to each resource and requester node. The arcs associated with
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this new node are assigned a zero cost, and an upper and lower bound of one. Then
the out-of-kilter algorithm is used to find the minimal-cost feasible flow through this
network. The optimal assignment is reached when the number of resources flowing

through the new node is equal to the number of resources to be assigned [Smi82].
3.8 Evaluation of Candidate Algorithms

In this section, two sequential algorithms for solving the assignment problem
are analyzed. First, the simplex-based transportation method is evaluated. The de-
tailed steps of the transportation method and a small example problem are worked
out and included in Appendix A to illustrate the algorithm. The Hungarian method
for the assignment problem is analyzed next. A detailed explanation of the Hun-
garian method and an example problem using the same cost matrix data as the
transportation method example are also included in Appendix B so that some com-

parisons of the two algorithms can be made.

3.8.1 The Transportation Method Many variations of Dantzig’s simplex method
have been devised in order to solve specific problems. One modification to the sim-
plex method was made by Dantzig himself and it was done to allow a simpler solution
to the transportation and assignment problems [Chu57, Dan63, Ign82]. The basic
approach of the simplex method was described in Section 3.2.1 and will not be re-
peated here. A brief overview of the transportation method was given in Section

3.2.2 and an expansion of that overview is presented here.

The transportation method utilizes a table representation similar to the cost
matrix described in the assignment problem statement of Section 3.1 where the ¢,,
elements represent the cost of assigning resource ¢ to requester j. Some modifi-
cations are needed which involve adding another row and column, and providing
additional space for maintaining some intermediate calculations. Also, elements r,,

of the assignment matrix are incorporated into this tabular representation in or-
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der to facilitate improvement on non-optimal assignments during the course of the

algorithm. An example of the table representation is shown in Table 3-1.

Table 3-1. Example Transportation Table

requester — | 1 2 3 4 a; |
resource |

1 T T2 713 T4 1
C11 C12 C13 C14

2 I 122 T23 T24 1
C21 C22 C23 C24

3 T3 T3z T33 T34 1
C31 C32 €33 C34

4 T4 T42 T43 T4 1
Cq1 C42 C43 Ca4

[ &— Jv 1 [t Jv [ 4]

In cases where the number of resources does not equal the number of requests.
"dummy" resource rows or requester columns with zero cost elements must be added

to the above tabular representation. The a, and b; entries for

these additional rows or columns must be sufficient to balance the number of

resources and requesters [[gn82].

There are two phases to the transportation method. The first phase is to
formulate the initial basic feasible solution. The second phase checks the initial
solution for optimality and incrementally improves upon it until it is optimal. The
most difficult portion of the transportation algorithm is the search for the §-paths.
explained in Appendix A, that are required for the assignment of the ¢ allocations
and for the exchange of basic and non-basic variables. For large problem sizes.
these operations would tend to dominate the computation time. Another potential
bottleneck whose details are explained in Appendix A is the satisfaction of the A,

relationship where the R, and A, values are determined for assigned cells and the
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: ;;: values of the A,,’s are computed for the unassigned cells. There does not seem to be
R~
~ = any obvious shortcuts to reduce the requirements of these 6-path and A,, operations.

T In order to allow a comparison with the Hungarian method, the computational
P time complexity of the transportation method needs to be estimated. There are many

N

( . . .

N @ assumptions which can be made that will affect the complexity estimate. In order to
\

simplify the estimate made here, the operations that will be considered are scanning
-:{; a row or column, adding or subtracting from a row or column, covering or marking

-‘l

- a line, and searching for and modifying an element of the matrix. The operations
) carried out on the entire matrix will be the most costly, while simple operations on

.'.:: single variables are the least costly. The worst case scenario is assumed to be the

; situation where each iteration of the algorithm adds one additional member to the
o : N . .
e final solution. The following discussion is based on the solution of an n x n matrix.
/ Referring to Appendix A, Step 1-1 will be considered the overhead step re-

7 quired for both algorithms and not considered here. Steps 1-2 and 1-3 will require n

.’

‘-l - operations to locate and modify the appropriate elements. In Steps 1-4 and 1-5. all
='l initial unassigned cells are independent, so the object is to choose the n — 1 least cost

’

3

,'f: cells. This will require scanning the n rows n — 1 times and making n modifications
g

) . : . :

-i. to the appropriate variables to mark the positions. The total number of operations
YR
9 for these steps are n + n(n — 1) or 2n + n?.

o

-

o The next significant operations occur in Step 2-3 where the A,; equation must
:: be solved for the n + n — 1 members of the solution set. Step 2-4 requires the
*8 g

calculation and assignment of values to all elements of the matrix that are not part
v

) . . « .

) of the solution set or 2(n?~ (2n — 1)) operations. The entire matrix must be scanned

-3 in Step 2-3, requiring n row scans. Step 2-6 in practice could be combined with

o
';’ ’ Step 2-5, so another matrix scan will not be included. The operations required to
o . .

N construct the 8-path are more difficult to estimate. In the worst case, all the members

J-l

o of the current solution set would be included in the f-path. The scans of rows and

)

o columns to determine the path direction and the determination of the 8 assignment
D
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changes will require 2(2n — 1) + (2n — 1) operations. For Step 2-9, the worst case
L would be to need n — | ¢ assignments. These ¢ assignments would each require at
most n row scans to find the minimum element, and three row scans, three column
scans, and one assignment for each of the n — 1 cells found. Steps 2-2 through 2-9
would need to be repeated n — 1 times for the worst case scenario assumed. The

total estimated operations required are:

operations = n + (2n + n?) 4+ (n — 1)(3n? 4+ 12n — 12) (3-5)

Equation 3-5 simplifies to the following expression:

& operations = 3n> + 10n% — 21n + 12 (3 —6)

As a result, the transportation algorithm is O(3n3).

3.3.2 The Hungarian Method Kuhn presents a rigorous mathematical proof
of the theory behind his Hungarian method. which is primarily based on one main
theorem and an important property of matrices related to set theory. This theorem.
proved by Konig and generalized by Egervary is:

If the elements of a matrix are divided into two classes by a property
i R. then the minimum number of lines that contain all the elements with

property R is equal to the maximum number of elements with the prop-
erty R, with no two on the same line [Chu57].

The reference to a line means a row or column of a matrix. The restriction of
no two elements on the same line will be used in the Hungarian method as a means

to make the optimal assignment.

The important property of matrices presented by Von Neumann is:

- - -

Given a cost matrix A = |[a,,||. if another matrix B = ||b,,|| is formed
where b,, = a,, — u, — v, and where u, and v, are arbitrary constants, the
R solution of A is identical to that of B [Chu57).
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This property says that if all elements in a row or column are increased or decreased
by the same amount, then an equivalent assignment can still be made using the
modified elements. The important roles of the theorem and property are made

clearer in the presentation of the algorithm in Appendix B.

The general approach of the Hungarian method involves searching the rating
matrix for the minimum values in each row or column. These minimum row or
column values are subtracted from each element of the rating matrix to form a new
matrix that will contain a certain number of zero elements. These zero elements
form one class and the non-zero elements form the other of the two classes required
by Konig in his theorem. If the minimum number of lines that cover all the null (i.e..
zero) elements is equal to the number of resources to be assigned, then the optimal
assignment is contained in this set of null elements. The method of obtaining an

optimal assignment from these null elements is illustrated by an example problem in

Appendix B.

Now, a few comments on the computational aspects of this algorithm. Re-
ferring to Appendix B, the Hungarian method requires extensive scanning of the
rows and columns of the rating matrix, which can be time consuming for large prob-
lems. Some researchers have developed methods to reduce the amount of scanning in
their implementations of the Hungarian method [CaT80, McG83]. This scanning is
the major drawback to the Hungarian method. Otherwise, the operations required
to implement the algorithm are straightforward. Typical operations are additions.

subtractions, and comparisons.

As in the transportation algorithm presentation, the computational complexity
of the Hungarian method also needs to be estimated so that the more efficient algo-
rithm can be chosen for the parallel implementations. The same operations will be
considered in this case as in the previous analysis for an n x n cost matrix. Beginning
with Step 1 of the Hungarian method, the location of the minimum element in each

row requires n row scans and the subtraction of the minimum element from each row
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element will require an additional n? operations. These operations are repeated with

the columns, so the worst case number of operations for this step is 2(n + n?). For
Step 2, locating the row with one null element may require n row scans and n — 1
operations to cross out other possible column null elements. In the worst case. onlv
one such element would be found per iteration of the algorithm. Step 3 requires the
same number of operations as Step 2. However either Step 2 or Step 3 would be
performed, but not both. Steps 4.1 through 4.3 depend on the number of rows and
columns already “marked™ which corresponds to the number of assignments made
in the current state of the solution. The operations required would be n row scans
and n — m row markings where m is the number of assignments vet to be made.
Step 4.2 will require scanning n columns and marking at most m columns. Step 4.3
requires another n row scans and possibly marking m rows. The total operations for

Steps 4.1 through 4.3 aren+(n—-m)+n+m+n+m=4n+m.

The next significant operations occur in Step 4.5 where at most n rows or
columns will need to be marked. Step 5 will vary in the number of operations in
each iteration, but the entire matrix will need to be scanned and each element will
be either subtracted from, added to, or left the same depending on the location of
the marked rows and columns. The matrix scan will require n row searches and the
operations on each element will need at most n? steps. Step 5 operations total n4n®.
With the exception of Step 1, the Hungarian method will require n — 1 iterations
to solve an n x n assignment problem if only one assignment is made during each
iteration. There are other situations that may require more steps. but they are not

easily estimated. The estimated total number of steps for the Hungarian method is

as follows:

n—1

operations = 2n + n? 4 Z(n(n——l)+4n+m+n+n2) (3 -7

m=1
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:}' Simplifyling the expression yields the following estimate for the number of
\ - operations required for the Hungarian method.
2
" operations = 2n° + 3.5n% + 2.5n (3 -5
Y
':. v The Hungarian method is also an O(n®) algorithm, but the coeflicients of
.\ the expression are less than the transportation method. The implications of these
analvses will be discussed in Section 3.5.
-
b &
::\: 8.4 Parallel Combination Strategies
A
o
: There are many ways to combine the solutions to several subproblems into an
e ¢ overall problem solution [Qui87]. This section examines three techniques that have
{'.; been developed to perform this important task. The names of thes : techniques are
l more commonly recognized as those of sequential algorithms. but they have been
"-': w recently developed into high-level, parallel strategies for solving problems involving
’: combinatorial search (HoZ83, WaL85. Qui87]. The assignment problem belongs to
:: this class of combinatorial search problems, defined by Wah as the process of finding
o “one or more optimal or suboptimal solutions in a defined problem space™ [\Wal.87".

)
¢

The objective of this section is to describe and evaluate these parallel combination

e

-1 techniques. Selection of the high-level, parallel combination strategy to be used in
~s

o combination with the selected node process algorithm is made in Section 3.5.

e .

o 3.4.1 Branch and Bound The basic approach of the branch-and-bound tech-
o~
ke nique is the systematic search of an OR-tree representation of the problem solution
- space. The branch-and-bound technique begins with an initial problem and some
';-

' objective function which must be either minimized or maximized. It first attempts

”. . . . .

to solve the problem directly. If this is not possible because the problem is too large
e

::: to be solved in a reasonably short time, then the problem is divided into smaller
s . L

o subproblems. With each subproblem. constraints in the form of upper and lower
®.

N
o
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bounds are included. This process continues until all the subproblems have been
- either completely decomposed and solved or the problem is shown to be unbounded
'Qui8T]. In a parallel branch-and-bound technique, many of the functions involving
decomposing, solving subproblems, and evaluating constraints can be done in paral-
lel 'WalL85]. In a multiprocessor. the decomposed subproblems are each assigned to
individual processors for parallel solution. A majority of the individual processors
run identical node process programs. In most cases, a centralized controller. hosted
on one or more processors, is used to expand the problem nodes to be examined and

determine the conditions for terminating the overall process.

Lai and Sahni examined some anomalies in paralle! branch-and-bound algo-
rithms. They observed that theoretically, faster speedup is possible with a smaller
. number of processors. Experimental results with a parallel implementation to solve
the 0-1 knapsack problem confirmed the theories they presented. although they com-
mented that in practice the anomalies would rarely show up, except for small problem
sizes. Mraz also encountered the same type anomaly in his parallel branch-and-bound
implementation of the N-queens problem solution on th= Intel hypercube. In his re-
sults for the 8-queens problem. 16 processors solved the problem in 1.1 seconds while
32 processors required 2.2 seconds [Mra86]. This indicates that there are significant

overheads involved with implementing branch-and-bound techniques in a parallel

environment.

3.4.2 Alpha-Beta Search The alpha-beta method involves the search of an
AND/OR tree representation of the problem solution space. Search of an AND/OR
tree 1s more complicated because it combines the techniques of branch-and-bound
just described and divide-and-conquer which will be presented in the next section.
Alpha-beta is a method usually employved in the solution of two-person zero-sum

games like chess and checkers [Quig7].

The basic approach of the alpha-beta search is to consider the present state
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of the problem solution, evaluate a number of possible alternative decisions, and
then incorporate those alternative decisions that result in the most advantageous
solution to the present problem. Two parameters, a and J, define a search "window”
which is used to prune subtrees from the solution tree that do not contribute to
optimal solutions. Parallel alpha-beta algorithms typically assign different windows
to each processor so that faster and deeper searches of the AND/OR tree can be
accomplished [SeB82]. One problem with parallelization of the alpha-beta search is
that extensive communications must be used between processors to update the search
window. If communications are reduced or eliminated, the result is other overhecads
related to processors needlessly searching through nodes of the tree determined not
optimal by another node. There is a tradeoff between reducing communications and

processing efficiency in the parallel implementation of the alpha-beta search method.

3.4.8 Divide-and-Conquer Unlike branch-and-bound or alpha-beta strate-
gies, the divide-and-conquer strategy searches an AND tree representation of the
problem solution space [Qui87]. Every subproblem solution is actually a part of the
overall solution, which differs from the other search techniques where many sub-
problem solutions are discarded. Divide-and-conquer, as its name implies, divides
a problem into smaller subproblems that can be solved faster and easier than the
larger, overall problem. Once all of these subproblems are solved, the results are
combined to form the solution to the original problem [HoZ83]. Parallel divide-and-

conquer depends on the node processes to determine the feasibility or optimality of

the subproblem solution.

An important factor in the performance of the divide-and-conquer search is the
“granularity of parallelism” which is simply the minimum overall problem partition
size (Wal85]. Problem partitioning was emphasized in Chapter 2 as an important
consideration in mapping problem solutions onto parallel computers. Another con-
sideration in the parallel implementation of divide-and-conquer is the processor uti-

lization. The three phases of parallel divide-and-conquer are start-up, computation.
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and wind-down [Wal85]. In the start-up phase, the initial problem is partitioned
and the resulting subproblems are sent to the individual processors. During the
computation phase. the processor utilization is typically very good. However. dur-
ing the wind-down phase, many processors remain idle while the transferring and the
combining of subproblem results occur. This results in tradeoffs between problen:
partition size and processor utilization. Larger partitions mean longer time spent in
the computation and better processor utilization. But larger partitions also reduce

the amount of parallelism and limit the speedup possible over sequential algorithms.

An advantage of the divide-and-conquer over the other techniques is that in-
terprocessor communications can be very minimal during the computational phase
without any performance degradation. This is, of course, dependent on the tyvpe of
problem being solved. In the wind-down phase. transferring of subproblem results to
be combined intc the overall solution can be viewed as communications. However.
these communications do not interfere with the process running in the individua!

processors because at this time, they have already terminated.

3.5 Results of the Analyses

In this section. the results of the preceeding analyses are summarized. The
algorithm to be used as a node process and the parallel combination technique to be
used will be selected. The tentative form of interprocessor communications is then
be devised. A more definitive communications protocol is established in the following
chapter where the actual implementation process is described. The algorithm, the
search technique, and the interproceSssor communications are used as a basis for

completing the implementation of the parallel assignment algorithms.

3.5.1 Selection of Search Technique All three search techniques presented
have advantages and disadvantages. The branch and bound method emploved by
Lai. Sahni, and Mraz exhibits some anomalous behavior related to problem size and

algorithmic overheads. The cure for this behavior was larger problem partition size.
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which resulted in reduced parallelism. The alpha-beta search technique suffers from
sensitivity to the amount of interprocessor communications. The efficiency of the
solution space search is inversely proportional to the amount of communications.
Divide-and-conquer performance is also affected by the problem partition size, but
the effect is reduced processor efficiency and not additional algorithmic overheads as
in the branch-and-bound method. The amount of required interprocessor commu-
nications in the divide-and-conquer method is potentially the smallest of the three
search techniques because the individual node processes are relatively independent.
except for the combining of subproblem results. Because the divide-and-conquer
method is less sensitive to problem partition size and interprocessor communications
than the other search techniques, it will be the parallel search technique employved

in the implementations developed in Chapter 4.

3.5.2 Selection of Candidate Algorithm In Appendices A and B, the sequen-
tial transportation and Hungarian methods for solving the assignment problem were
presented in detail. In this section, one of them is selected as a basis for the node
process program. The problem areas that are considered in the selection are the
algorithm’s complexity, partitionability, and expected level of interprocess cormmu-

nications.

In an analysis and comparison of the computational complexity of simplex-
based algorithms and the Hungarian method, Bertsekas says a fully dense. all integer.
N x N assignment problem solution using the Hungarian method is O(\?). He
further states that there is “no simplex type method with complexity as good as
O(N?3)” [Ber81]. Some rules used for selecting entering variables in the simplex
method have been shown to lead to exponentially long sequences of computations
[Hun83]. These statements would tend to lead one to chose the Hungarian method
over the simplex method. There are other factors, however, that must be considered

before deciding on the “best™ method.
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Several comparisons of simplex-based and primal-dual based (i.e., Hungarian)
" @ methods of solving the assignment problem have been made [Hat75, GIK74, McG83].

N There is general agreement that an efficient implementation of the Hungarian method
- is better overall than using the simplex method. One reason for this is that the Hun-
‘, . garian method is an algorithm developed and optimized especially for solving the
, assignment problem, while the simplex method is a more general method that can be
: used to solve a variety of linear programming probiems which cannot be solved by the
Hungarian method. Although variants of the simplex method have been developed
:‘ v for the assignment problem, they still encounter difficulties with examining nodes
- that do not lead to the optimum solution [Hat75, BaG77, Hun83]. Simplex methods
E are generally more suitable for the transportation problems discussed in section 3.1
2;_ where the number of non-degenerate arcs between nodes is less because of multiple
W resources and multiple requests by each requester. In a comparison of minimum-cost
: network flow problem solutions, a specialized simplex-based code was shown to out-
'( . perform other codes which included a primal-dual code, of which the Hungarian is
{ ‘ special case [GIK74]. But there, the main emphasis was on transportation-type prob-
? lems rather than assignment problems where the simplex method seems to perform
,. worse.

) ® Both methods use similar matrix representations of the initial problem. the
. intermediate results, and the final solution. The partitioning of the problem rep-
:' resentations of both methods is essentially the same because of the similar matrix
'. . representation. If the partitions of the square cost matrix are in the form of square
-2 sub-matrices, then information on both the costs of assigning to each requester a
\ particular resource and the cost of assigning each resource to a certain requester
] will be incomplete. However. if the cost matrix is partitioned into “strips.” each
. processor will either have complete cost information on the assignment of a group of
resources to all requesters or a group of requesters to all resources. The availability
of complete cost information will have an effect on the optimality of the assignments
'
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made and the amount of assignment coordination required by the individual node
L 4 processes. If the problem is partitioned into “strips,” both methods use exactly the
same technique of “dummy” variables to form the required matrix format where the
number of resources must equal the number of requesters. The performance of the
two algorithms will be affected in much the same manner by the partition type. The
square partition appears to potentially require more interprocess communications

than the rectangular strip partition.

The format and type of communications that will be used between processors
are discussed in Section 3.5.3 and developed in Chapter 4. However, some assessment
needs to be made of the level of communications that might be required by the
transportation and Hungarian methods in order to develop a node rrocess with
minimal communications. The volume of communications will depend strongly on
the partition size and type in both methods. As mentioned in the previous paragraph.
the strip size will affect the amount of communications required to either obtain cost
information or coordinate the assignments. Because the problem representations and
solution results are similar. the level of communications is expected to differ very

little between the two methods.

Because the partitionability and the communications requirements are very

similar for both algorithms, the selection for use in the parallel algorithm must be

based on some other criteria. Fox feels that the processes running on the individual

Pt

nodes of a multiprocessor should essentially perform the same operations as the

sequential version of the algorithm [Fox84, FoO84|. For this reason, it is reasonable

-

to select the most efficient sequential algorithm for parallelization, provided that all

Wty Ay

s
A

other factors are nearly the same. The performance comparison by Bersckas of the

- llice

Hungarian and simplex-based methods indicates that the Hungarian method is more

efficient. In Section 3.3, the complexity analysis showed that the Hungarian method

Lt oA

would require only 2/3 as many steps as the transportation method to solve the

o

0
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same size problem (i.e. the Hungarian method is potentially 33% faster). Based on
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the previous discussion in this section and the complexity advantage, the Hungarian

method is selected as the basis for the node process progra:n.

3.5.8 Interprocess Communications Protocol Based on the discussion in Chap-

ter 2, the development of a communications protocol that both minimizes the amount
of communications and permits the efficient transfer of required information between
processors is the most crucial aspect of developing a parallel software implementa-
tion. The analysis of the divide-and-conquer technique pointed out that the inter-
processor communications were minimal in the computation phase. depending on
the type problem being solved. One type of communication envisioned is that the
cost of assigning a particular resource to a requester will require knowledge of the
assignment cost for all the requesters. The communication of cost information could
be eliminated by storing the needed information in all processors. This concept 1s
explored further in Chapter 4. At this point in the development. it is not clear

whether this method is feasible.

The assignment problem will also require some degree of communications be-
tween processors so that the assignments made by other processes can be checked to
see if the same requester was assigned more than one resource. However, this com-
munication would occur after an iteration of the assignment algorithm was complete.
If conflicts are present, then a form of bidding would need to take place where the
lowest cost assignment to a requester would stand and all processors that assigned
other resources to the same requester would need to recompute another assignment
without considering the conflicting requester. This will obviously require that after
each assignment by a node processor, the individual assignments would need to be
broadcast to other processors to determine if any conflicts exist. If none exist, the
assignment stands. Otherwise, the bidding process would occur to resolve the con-
flicting assignments. There are several unanswered questions about the exact form
of the interprocessor communications. But the concepts just presented should furm

a basis that can be further refined in the implementation process that follows.
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8.5.4 The Parallel Assignment Algorithms The general scheme of the par-

allel assignment algorithms are based on the divide-and-conquer as the high-level
parallel search strategy and the sequential Hungarian method as the node process
program. Each processor in the Intel hypercube runs a version of the sequential
Hungarian algorithm that has been modified to include a means of communicating
with other processors and the cube manager. The exact form of the interprocessor
communications is not fully defined at this point, but the majority of the communi-
cations involve the exchange of information to resolve conflicts in assignments after
each complete iteration of the Hungarian algorithm in the node processors. The

implementations in Chapter 4 use the general scheme described here and refine it as

necessary.

3.6 Summary

This chapter has covered the development of the parallel assignment algorithm.
beginning with a formal definition of the assignment problem. The major sequen-
tial algorithms developed for solving the assignment problem were briefly described.
followed by a detailed presentation of the transportation and Hungarian algorithms.
The Hungarian and transportation methods were compared in terms of computa-
tional complexity and suitability for parallelization. Then three methods of parallel
search of a problem solution space were explored. In the concluding section. the
Hungarian method was chosen as the basis for the node program to be developed in
Chapter 4. The divide-and-conquer technique was chosen as the high-level parallel
search method to be incorporated into the parallel assignment algorithm. And fi-
nally, the groundwork for the communications protocol was established. Chapter 4
continues the process of developing the implementation of a paralle] weapon-target
assignment algorithm on the Intel hypercube computer by utilizing the results of

this chapter in the design and coding of the software.
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\ 4. Implementation of the Assignment Algorithms

: This chapter utilizes the background work done in the preceeding chapters
E to develop implementations of parallel assignment algorithms for the Intel iPSC
N & parallel computer. First, detailed assumptions are presented to more closely define
the problem space being considered, followed by a definition of the experimental
. model. A brief description of a Ballistic Missile Defense (BMD) simulation program
[Odo85] developed for the U.S. Army and other government agencies is then given,
followed by an explanation of the method employed to generate input data for the

programs developed in this research.

¢ K

After fully developing the experimental model and the means to generate plau-
' sible input data, the development of two sequential assignment implementations is
‘ described. The purpose of the first sequential program, named the “sorting method.”

- is to establish a baseline for comparison with all of the other sequential and parallel

. o assignment algorithms. The second sequential implementation, which is based on a

y version of the Hungarian method developed by Bourgeois and Lassalle [BoL71a], is

known as the “sequential B&L algorithm.” The sequential B&L algorithm is also

X used for comparison with the parallel implementations. Portions of it later become

an integral part of the parallel algorithms.

The development of four different parallel implementations of an assignment
algorithm is presented next. Each parallel implementation uses a different level of
interprocessor communications in order to allow a study of its effect on performance
measures such as computation times, speedup, load balancing, and assignment costs.
The description of each implementation states the objectives, outlines the develop-
) ment approach, defines the software modules and interfaces. describes the organiza-
tion and major sections of the program, and estimates the computational complexity.

This chapter concludes with a summary of the implementations developed.

f-.C"
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4.1 The Ezperimental Model

In Chapter 1. a number of assumptions were stated concerning the deployment
and operation of the BM/C3 battle management system. This section expands on
those assumptions and states them in more detail. Then the battle management
portion of the BM/C3 system being modeled is precisely defined. A background
and brief description of the BMD simulation program is given in order to further
define the scope and limitations of the experimental model. This section concludes
with the development of a simpler program to generate data similar to the attack

scenarios generated by the BMD simulation program.

4.1.1 Assumptions The main point of the assumptions stated in Section 1.6
was that this study focuses on one specific task of the battle management function.
That function is the weapon-to-target assignment. All other functions related to the
management of the weapons and other resources are assumed to be handled by other
“modules”™ or components of the system. The optimal assignment of weapons cannot
be accomplished unless certain information from these other modules is available.
Information such as the range to the target, the type of target. the weapon-to-target
impact angle. the expected impact area of the target, the status and position of all
weapons, and several other factors are all needed to derive the “cost™ of assigning
each weapon to each potential target. The data collection and evaluation activities
required to derive these individual assignment costs are assumed to be performed by
the other modules and made available to the assignment module of the battle man-
agement system. The assignment module is further assumed to be memoryless. This
means that each assignment iteration is based only on the current cost information
provided to it and is unaffected by previous assignments. However. the assignment
process may choose to allow certain weapons to remain idle for future use if the

present cost of utilization is considered too high.
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4.1.2 Model Definition The system model used in this research is not geared
towards any specific type of weapon. “Generic™ weapons are assumed to be deploved
on space-based platforms orbiting the earth. These weapons are also assumed to be
“single shot™ in the sense that during each assignment. each weapon can be assigned
to only one target. For weapons with multiple targeting capability. multiple assign-
ments would occur over several iterations of the assignment task with other modules
accounting for factors such as slew rates and retargeting capabilities. Each itera-
tion of the assignment task is a single “snapshot™ in the overall battle management
process that would occur in the interception of ballistic missiles. This model is not
intended to account for all factors involved with the BM/C3 task. but rather to

address the major issues that affect the critical assignment task.

4.1.83 The Ballistic Missile Defense Simulation Program Several simulation
programs have been developed in the past to model the development and deplovment
of ballistic mussile defense systems [Odo85, Cur87]. One recent simulation program
is the result of work performed under contract to the Defense Advanced Research
Projects Agency (DARPA) and the U.S. Army. DESE Research and Engineering
was tasked to develop a software and graphics package to aid in the research and
development of BMD and Anti-SATellite (ASAT) programs [Odo85]. The main
objective of this project was to utilize interactive graphics to aid in assessing the
performance of proposed scenarios and weapon deployments. A FORTRAN-based
testbed program was written to model the significant physical parameters of the
problem and generate data to be used in developing the graphics driver program
written in a version of the FORTH language. The testbed program combined the
results of earlier research and provided a first order simulation of the events expected
to occur in a full-scale global engagement. The primary weapon system modeled in
this simulation program was a combined ground-based laser and space-based relay
mirror arrangement. The engagement scenarios generated were plausible because

the enemy missile trajectories were calculated as originating from known missile
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. sites in the Soviet Union and terminating in major cities and military complexes in
_ the United States. The altitudes and orbits of the relay mirrors were also simulated
b and the visibility of each mirror to the ground-based lasers were determined using

‘ » . .

N three-dimensional coordinates, the rotation of the earth, orbital mechanics, weather
o conditions, and several other factors.

. Rd
N
N 4.1.4 Method of Input Data Generation The BMD simulation program briefly

N

N described above focused on one particular type of weapon system. One component

e of that weapon system was a constellation of space-based relay mirrors. Certain sub-

. routines of the program calculate the distance between a relay mirror and a target.
5 and the incident angle of a laser directed at a particular target. These two pieces of
'.: information can also be used as basic parameters for an entirely space-based weapon
p- o=

! system. However, the BMD program is not capable of producing more than 20 feasi-
N ble weapon-to-target “links” per snapshot. This is much too low to be useful because
"y
o the assignment algorithms studied in Chapter 3 would treat this small number of
1 %g)

{ Bt weapons as a trivial case.

n,
~ The distance and angle data are still very useful, even though the quantity
“

N of data is insufficient. The testbed program was modified to store this information
® during the execution of a typical full-scale attack simulation. Representative values
W of the distances and angles were used as a guide to develop similar and more extensive
’ data by means of a much simpler program. One heuristic used in the BMD simulation

1
’j program to indicate a potentially good assignment was the weapon-to-target distance
o multiplied by the cosine of the impact angle. This produces low values for impact
%)

‘a angles close to 90 degrees and high values for angles near zero. For minimum cost
. . T
> assignments, this heuristic is expected to work reasonably well for other tvpes of

{ directed energy weapons that are likely to be deployed.

; The data generation program developed in this research uses a random number
‘,: generator to produce values in the range of 1 to 2500, which correspond to the range
[

"
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of values for the heuristic just described. Although the data is somewhat random.

provisions were made to produce lower values in some sections of the cost matrix
and higher values in others. The lower values correspond to a high probability of kill
and low cost assignments. The higher values indicate low probability of kill and high
cost assignments (i.e., long distances, small angles of impact). The groupings of low
and high values are intended to represent groups of weapons that have similar oppor-
tunities for engaging the same targets. One additional factor that can be accounted
for is the number of reentry vehicles (RV) contained in a particular booster-phase
target. An individual cost value can be lowered further by a factor of the number of
RV's, which make that particular target more likely to be engaged by the assignment

algorithm.

4.2 Sequential Assignment Algorithm Implementations

Two sequential assignment implementations are described in this section. The
first one, called the sorting method, is typical of the methods used in battle man-
agement simulation programs to assign weapons to targets and does not provide
the optimal assignment [Odo85, Cur87]. The second one, called the sequential B&:L
algorithm, is based on a version of the Hungarian method developed by Bourgeois
and Lassalle which does provide the minimum cost optimal assignment of available

weapons.

4.2.1 The Sorting Method The purpose of this assignment implementation
is to provide a baseline that is relatively easy to implement and can be used for
comparison with more efficient assignment problem solutions. It illustrates how a
commonly used. simple approach to the assignment problem solution can be very
time consuming. The basic approach to this program, as the name implies, is sorting.
The input data generated by the program described in Section 4.1.4 is normally
stored as a rating matrix. For this application, the data is reordered into a list or

one-dimensional array format to allow the cost values to be sorted in ascending order.
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The row and column values associated with each cost entry are accessible through

corresponding arrays. Once the list is sorted, the lowest value is selected and the
associated weapon and target (row and column) are marked as “assigned.” Then
the next lowest cost in the list is selected and if both the weapon and the target
associated with this value are also unassigned, the assignment is made. However. if
either the weapon or the target is already assigned, the next lowest value in the list
1s examined for possible assignment and so on. This process continues until all the

weapons are assigned.

At first, this method appears to offer the lowest possible overall assignment
cost. However, this is not the case. In many cases, a lower cost assignment is se-
lected for a particular weapon-target pair. This eliminates the pcssibility of using
the same weapon or target in a later assignment which, although some of the indi-
vidual assignment costs may be higher, the effect would be a lower overall cost. The
results of the example problems in Appendices A and B illustrate this point. If an
assignment was made using the same cost data given in the example with the sorting
method, the overall cost could have ranged from the optimum on up to a value of

15, depending on how the list was sorted.

The program implementing this algorithm is actually split into two portions.
The first portion is hosted on the cube manager of the Intel iPSC. Its function is
to prompt the user for problem size information, access the file containing the input
data. and compile post-run statistics. The other portion of the program is hosted on
one of the node processors of the iPSC. The cube manager or host program sends
the problem size parameters and the cost data to the node program. The node
program sorts the cost data using a relatively quick Shell sort [keR78] and performs
the process previously described to make the assignments. Once the assignments
are complete, the node program sends the assignments list and timing information
to the host program for further processing and display. The performance results of

this implementation are presented and analyzed in Chapter 5.
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The basic limiting factor of this method is the sorting of the cost list. Some
simulation programs use heuristic methods to reduce the size of this list in order to
shorten the time required to sort the list. The Shell sort is an O(N x V'N) procedure
‘Fel?5. When the assignment process is performed on the sorted list. it will be at
least O( N') because N weapons need to be assigned. In the worst-case. N operations
will be required to make the assignments using the sorted list. Overall, this sorting

method of solving the assignment problem appears to be O(N3%).

{.2.2 The Bourgeots and Lassalle Algorithm The Hungarian method. se-
lected in Chapter 3 as the basis for the node process of the parallel assignment
algorithm. can be found in many forms in the literature. The Bourgeois and Lassalle
‘B&L) algorithm is one variation of the Hungarian method [BoL71b]. It is chosen
for implementation because it handles the case of non-square cost matrices without
the addition of dummy variables mentioned in the presentation of the Hungarian
method. In a realistic scenario, there will be many more targets than there are
weapons. The basic operations of the B&L algorithm are the same as those illus-
trated in the example problem in Appendix B with the addition of some pointer

arravs to keep track of certain assigned weapons and targets.

The basic approach to solving the assignment problem in this implementation
1s to use the B&L algorithm as a function call within the same basic framework
as the sorting method program. The problem size parameters and input cost data
are handled by a cube manager host program. The actual assignment is performed
by a node program and the results are sent back to the host program for post-
run processing. The operations required to formulate the optimal assignment are
contained within the B&L algorithm and are illustrated in the example problem of
Appendix B. The cost matrix, the number of weapons, and the number of targets
are all supplied as parameters to the assignment function call. The function returns
an array indexed from one to the number of available weapons and the total cost of

the assignment. Fach entry in the array is the target number to which the weapon
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- all. the total number of operations are significantly less in the worst-case where each

- iteration adds only one additional assignment. Instead of n — 1 complete iterations.
. only m — 1 iterations are required. Performing a complexity analysis similar to the
D Ay . B . . . .

! one in section 3.3.2. the complexity estimate for the version of the B&L algorithm

b .

» developed here is:
‘U ] N 2 2 0

; operations = Inm* +4m* - 2nm — m — 1 (1 -1
b
I - . . . . . .

, This complexity estimate will be later used in assessing the complexity of the

Y parallel versions of the assignment algorithm.
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(the array index number) is assigned.

This program will provide a minimum-cost, optimal assignment. The overall
cost of the assignment is considered when each individual assignment is made. unlike
the sorting method where only the individual costs are considered. The use of
the matrix representation and several arrays to keep track of potential and actual
assignments of weapons and targets allow the optimal assignment to be derived. The

performance improvement of this program over the sorting method is presented in

Chapter 5.

The complexity of the Hungarian method was analyzed in Section 3.3.2. The
complexity of the B&L algorithm is somewhat worse for square matrices because of
the leading n® term’s coefficient. For nonsquare matrices. the complexity is slightly
improved. Fewer operations are required because, instead of searching and subtract-
ing both column and row minimums, either row or column minimums are searched
for and subtracted. In the nonsquare case with m rows and n columns where m < n.
m + mn operations are required to locate and subtract minimum values compared
to the 2(n + n?) operations in the pure Hungarian method where the matrix must be
squared with dummy elements. Other operations in the B&L algorithm are reduced

by similar factors because the extra durmnmy rows or columns are not needed Over-
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4.8 Parallel Assignment Algorithm Implementations

In this section, four different parallel implementations of the assignment algo-
rithm are presented. The first three programs are closely related and vary mainly in
the amount of interprocessor coordination. Although all of the first three programs
use the B&L algorithm function developed in Section 4.2 to perform the assignment
task in parallel. the final assignments produced are not optimal Heuristics are used
to reduce the number of redundant assignments and will be fully discussed in the
following sections. The fourth program is an effort to implement a parallel version

of the B&L algorithm whose final solution is optimal.

As studied in Chapter 2, the two major areas to be concerned with when
developing parallel programs are the interprocessor communications and the problem
partition size. The effects of different levels of interprocessor communications can
be studied by comparing the performance of these first three programs. The type
of matrix partitioning discussed in Section 3.5.2 was the strip method where entire
rows of the matrix are transferred to the different processors. By partitioning in
this method, each processor is responsible for a unique group of weapons. Complete
cost information for assigning any of its weapons is available without initiating any

communications with neighboring processors. Other forms of communications that

are necessary will be discussed in the description of each program.

4.8.1 The First Level: No Communications The “first level” or level 1 paral-

lel program is the case where there is no coordination between any of the processors
in the iPSC. Each node processor works entirely independent of the other processors.
Figure 4-1 illustrates the relationship between the individual processors in the cube
and the cube manager. With a 5-dimension hypercube, up to 32 processors can
operate in parallel on different portions of the cost matrix. The execution time is

expected to be much shorter than either of the sequential implementations, however

the resulting assignment will not be optimal.
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: Figure 4-1. Processor Communication Paths for the First Level

F & The non-optimal assignment solution of this implementation results from the
.'. individual processors not communicating with each other about which targets have
been assigned. As a consequence. one processor may assign a weapon to a certain
5 v target while another processor may assign a different weapon to the same target.
3 This wastes one weapon that could have been assigned to another target. A larger
number of processors will most likely result in more redundant assignments and
: more wasted weapons, but will yield these results much faster than could a single
. v processor implementation. The performance evaluations in Chapter 5 address both
the problem of redundancies and the tradeoffs between the speed of execution and
N the optimality of assignment.

-: . This parallel implementation is simply an extension of the sequential version
_:. developed in Section 4.2.2. An identical node process is loaded into all of the pro-
.'3 cessors to be utilized. The host program prompts for problem size input and reads

the input cost data from an external file. But in this case. the cost matrix must be

partitioned among the multiple processors. There are two situations that must be

-

handled. One is where the rows of the cost matrix are divided evenly among the node
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processors and the other is where they do not. In the uneven case, one processor
will receive an odd number of rows. This will slightly affect the load balancing of
the processors, but is not expected to be a significant problem. Once each processor
completes its independent assignment, it waits until prompted by the host to return

the assignment results and timing information.

In this implementation, the B&L algorithm is essentially running in each of
the cube processors. The complexity of this B&L algorithm has already been esti-
mated in Section 4.2.2. If the operations required to transfer the cost matrix data to
the individual nodes are ignored, the complexity estimate can be derived by simply
dividing the sequential B&L algorithm complexity estimate by the number of proces-
sors being used. The accuracy of this estimate is tested when the actual performance

data is analyzed in the following chapter.

4.3.2 The Second Level: Partial Communications, Single Iteration This “sec-
ond level” or level 2 parallel implementation introduces some coordination between
the processors computing assignments for certain partitions of the cost matrix. The
coordination 1s performed by processors designated as controller processors. The
processors performing the assignments are known as assign processors. A possi-
ble processor arrangement for two partitions is illustrated in Figure 4-2. For this
study. the number of controllers available is 2, 4, or 8. With 2 controllers, up to
15 assign processors may be used per controller. For 4 controllers, up to 7 assign
processors and for 8 controllers either 2 or 3 assign processors per controller may be
utilized. The level 2 implementation described in this section and the “third level” or

level 3 program discussed in the following section both use the same basic processor

arrangement.

The host program performs essentially the same function as in the first level
approach. The only difference is that the host communicates with the controller

processors rather than the assign processors. The partitions of the cost matrix sent
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.
« to the controller processors are further subdivided by the controllers and sent to the
o appropriate assign processors. 1he assign processors have no direct communication
. with the host except when a global START command is issued from the host to signal
1 . the completion of all data distribution functions and the beginning of the actual
'_':_.,-: processing. The assignments or weapon-target pairings from the assign processors
‘:: are examined by their associated controllers. The controllers eliminate redundancies
S
\.j: in the weapon-target pairings by comparing the individual costs of those that are

conflicting. The controllers allow the lowest cost weapon allocations to remain and
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sets all the higher cost. redundantly assigned weapons to an idle state. The results
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and timing information are sent to the host and processed as previously described.

The results of this implementation should show an improvement over the first

a

rrs
e

level approach. Fewer redundancies and lower costs are some of the expected benefits.
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The coordination requires extra computations that may degrade performance if a

/s

. large number of redundancies occur. The final weapon-target pairings for a two

controller configuration should be similar to the first level implementation using two

A
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The controller processors add a significant number of operations. For each
controller, the individual assignments must be received from the assign processors
and a master assignments list compiled. Then the list must be searched to identify
any redundancies. A table lookup must be accomplished for each individual assign-
ment to determine the lowest cost in the case of conflicts and to derive the overall
assignment cost. The operations required for the assignment list compilation depend
on the partition size. A large number of controllers allow more of the operations to
be done in parallel. The worst-case for conflicts would be where every assignment
from one assign processor conflicts with an assignment from another processor. The

additional load from the controller is estimated to be:

operations = n*/p+2(n/p) +n/2p+ n/p= (n® +3.5n)/p (4-2)
where
n is the total number of weapons

and p is the number of controllers

This estimate just given is in addition to the complexity estimate for the level 1

implementation. The complete complexity estimate is shown in Equation 4-3.

operations = (3nm* + 4m* + n* —2nm + 350 —m ~1)/p (4 -3)

4.3.3 The Third Level: Partial Communications, Multiple Iterations The
“third level™ or level 3 parallel implementation increases the amount of coordina-
tion performed in the controller processors. The controller and assign processors are
utilized in the same configuration as the second level approach, illustrated in Figure
4-2. Instead of idling the redundantly assigned weapons as in level 2, these weapons

are made available for assignment to other targets not yet assigned.

The cost matrix is partitioned exactly as in the level 2 implementation. Each

group of assign processors report to one specific controller processor. The controllers
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receive assignments computed on partitions of the cost matrix from their assign
processors. Each controller compiles a master assignments list. The redundancies
are then determined and the lowest cost individual assignments are allowed to stand.
The weapons involved in higher cost redundant assignments are entered into one list
and all targets that are not assigned are entered into another list. Each controller
then broadcasts its lists to all assign processors under its control. New sets of
assignments are computed and sent back to the controllers which again coordinate
the removal of any new redundancies. This process continues until all weapons have
been assigned to a different target and all redundancies within the partitions have
been eliminated. Each controller then sends its final master assignment list back to

the host where it is compiled into a final assignment.

The final assignment from this implementation will also not be optimal. There
may be some redundancies resulting from the assignments made in different con-
troller partitions because there is no coordination between the controllers. However.
there will be no idle weapons due to the multiple iterations performed to eliminate
the redundant assignments within each controller’s partition. The cost of the final
assignment will tend to be higher than the optimal assignment for several reasons.
When redundancies occur within a controller’s partition, at least one of the final
assignments made by the assign processors will not be optimal because alternative
weapon-targets are always an equal or higher cost. Although redundancies are elim-
inated within each controller's partition. other redundancies can still possibly exist

between different controllers.

The additional operations required by the controller processors are similar to
the second level implementation. However, the multiple iterations required to elim-
inate the redundant assignments within each controller’s partition are an additional
source of computational overhead. In the worst-case. each iteration would only as-
sign one of the available weapons for each assign processor. This would require n/pq

iterations where n is the total number of weapons, p is the number of partitions
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= or controllers, and ¢ is the number of assign processors per controller. Multiplying
S @ Equation 4-2 by the number of iterations and adding the result to Equation 4-3 yields
-j the following expression for the complexity estimate of this level 3 implementation:
+ I operations = (3nm?+4m? +n? —2nm+3.5n —m —1)/p+(n’ +3.5n%)/gp* (4 - 1)
7
:::ﬁ The coordination process is very expensive in terms of the number of operations
\ P required. In the worst-case, it is of the approximately same order as the B&L
- algorithm itself. Although each iteration of the controller process requires another
i
s iteration of the B&L algorithm, the B&L algorithm is performed on subproblems
» of successively smaller dimensions. The dominant factor is the controller process
q because it requires the same number of operations on each iteration.
X
.
:-: 4{.3.4 The Fourth Level: Parallel Matriz Operations The “fourth level” or
.. v level 4 implementation is a different approach from the first three parallel impie-
. mentations. The program development involved studying the different operations
* required by the sequential B&L algorithm and identifying the operations that were
-~
- the most time consuming. Then, certain operations were implemented in parallel on
A multiple processors.
A 7
-'J . . . . .
.'_: The most time consuming operations of the algorithm were located using the
: timing function of the iPSC on different segments of the sequential B&L algorithm
° implementation described in Section 4.2.2. Several different cost matrix sizes and
_,: weapon-to-target ratios were used to determine the algorithm’s performance charac-
- teristics. Three distinct segments of the sequential B&L algorithm were identified as
)
. - consuming more than 75% of the processing time. Not unexpectedly, these code seg-
g ments involved operations carried out on large portions of the cost matrix. Of these
’ : L
N three code segments, one of them dominated the processing time when the weapon-
By
! '; to-target ratio was greater than or equal to 1:5. Because the weapon-to-target ratio
e
.
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in a realistic scenario is expected to be at least 1:5 [AdW85], this particular seg-
ment of the sequential B&L algorithm was chosen for as the prime candidate for
parallelization. The operations performed in this segment search for minimum row
and column values, subtract the minimum values from the entire matrix, and locate
the resulting independent zero elements. These operations are analogous to the first
three steps of the Hungarian method description found in Appendix B. The other
time-consuming code segments were not chosen for parallelization because of the
higher amount of message passing that would be necessary to update various global

arrays used to coordinate the refinement of the initial assignment solution.

The implementation of this program was divided into three portions. The usual
host program performs the functions described in the previous implementations.
There are two different node programs. One is known as the serial process and
it performs the serial tasks of the B&L algorithm. The other node program is
the parallel process. The multiple parallel processes are subordinate to the serial
process and perform the operations identified as time consuming in the preceeding
paragraph. Figure 4-3 illustrates the communication paths between processors in

this implementation.

Each parallel process operates on a particular “strip™ of the cost matrix. Ini-
tially, the minimum value in each row is determined and then this minimum value is
subtracted from each element in that row. These row operations can be performed in
parallel without any interprocessor communications. However, in the case of square
matrices, the minimum elements in each column must also be determined and then
subtracted. Because the row subtractions are performed on horizontal strips. no
processor will contain a completely modified column. This requires that each pro-
cessor search a portion of each column for minimum elements. The overall minitmnum
element of each column is determined from the individual processor contributions by
using a global operation function. The overall column minimum is then broadcast to

all processors for subtraction from their segment of the column. After all minimum
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2 o elements have been subtracted, then the independent zero elements are determined
N and used to make the initial assignment of weapons to targets.
L
- In the three previous parallel implementations. there is a problem with the
- redundant assignment of weapons to the same target. In this implementation. the
problem is eliminated by coordinating the assignment process. Since each processor
X contains a strip of the cost matrix. the assignments will be made by using only the
N
cost information from this strip. Two vectors. one containing the weapon number
& ‘ .
assigned to each target and the other containing the target numbers that have been
fl‘ . . . . - . . .
e assigned will be used as the means of coordination. Each strip is further subdivided
'.\
':-: into separate “windows.” The parallel assignment process will require a number of
.
- iterations equal to the number of these “windows.” During a parallel assignment
iteration, each processor makes assignments on a different independent window. The
- term independent means that the targets being considered for assignment are not
n being considered by any other processor during the present iteration. The weapons
o : . . L
/o are already independent by virtue of the strip method of partitioning. After cach
Py iteration. the individual assignment contributions from each processor are used to
-
‘..
e
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update the two assignment vectors using a global concatenation function. Then the
vectors are broadcast to each processor and the next set of independent windows are
searched for possible assignments. After the last iteration of the parallel assignment.
the number of weapons that have been assigned is checked. If all weapons have been

assigned, then the algorithm terminates. If not. then the remainder of the program

The solution produced by this implementation will be the minimum-cost op-
timal assignment. The final results will be the same as those produced by the
However. de-

velopment and initial testing of this implementation indicates that it will possibly
require as much or more time than the purely sequential version. The primary reason
for this is the volume and frequency of interprocessor communications used to coor-
dinate the assignments and eliminate the redundancies. Specific performance data
are presented in the following chapter and comparisons are made with the other

implementations.

In the nonsquare matrix case where the number of targets is greater than the
number of weapons. the number of operations required at first appears to be reducec
because of the multiple processors performing the operations in parallel. This holds
only when there is little or no coordination required. After the row minimums
have been subtracted. each of the assignment iterations on the windows described
earlier require the transmission of node contributions to the serial processor. which
in turn broadcasts the updated vectors back to the parallel processors. Much of the
communications processing involved with the sending of messages between nodes
1s performed by the operating system and the number of operations involved is

not easily determined. However. the sizes of the the vectors are known. so some

rough estimate of the processing can be made. One vector length is equal to the

number of weapons and the other is equal to the number of targets. The number of

windows will be equal to the number of parallel processors utilized. At least m + n
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operations will be required to combine the node contributions into a single vector
during each iteration where m is the number of weapons and n is the number of
targets. If p is the number of parallel processors, then at least p(n + m) additional
operations are required in the parallel implementation. The row minimum search
and subtraction will also require some additional operations to transmit the cost
information to the serial processor. but the actual number of operations is difficult
to determine because of the message passing. After considering these additional
factors. the complexity estimate of the fourth level implementation for the worst-

case where only one assignment is found in the parallel segment is estimated to be

as follows:

operations = 2nm? +4m?+mn(2/p+4/p* —1)+m/p+p(m+n+1)—n-m (4 - 35)

It is obvious from the complexity estimate that the parallel version of the B&L
algorithm will require more operations than the level 1 implementation in the worst-

case. The actual performance. using data that is not worst-case, will be examined

in Chapter 5.

4.4 Summary

This chapter restated the assumptions given in Chapter 1 and provided more
background on the ballistic missile simulation program used as an aid in gencrating
input data for the programs developed. Two sequential programs were presented.
one which utilized a sorting method to order the assignment costs and the other
which used a modified version of the Hungarian method presented in Chapter 3
and Appendix B. Four parallel programs were described which involved different
levels of interprocessor communications. The first three used the B&L algorithin
code replicated in certain nodes and partitioned the cost matrix among the different

processors. The fourth parallel program attempted to perform certain operations of
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the B&L algorithm in parallel. The computational complexity of each implemen-
tation was estimated. In Chapter 5, regression analyses is used to determine how
well the plots of predicted and actual processing times match. The relative perfor-
mance of each implementation is compared in terms of speedup over single processor

< implementations and the optimality of the assignments.
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5. Ezperimental Results and Performance Analysis

The details of implementing the sequential and parallel assignment algorithms
were presented in the previous chapter. Test cases were devised that were small
enough to permit hand calculation of the assignment results. After these imple-
mentations were tested with this test data to insure the assignment results were
correct. a series of performance runs was made with larger cost matrices and data
was collected. This chapter presents these experimental results and analyzes them
according to the criteria stated in Chapter 1. The specific performance criteria are
computation times, speedups, interprocessor communications, load balancing, and
machine-size to problem-size relationships. This chapter is organized into three ma-
jor sections. The first section defines the performance criteria and the method of
data collection. The second section presents the performance results of all the im-
plementations and evaluates the predicted complexity estimates made in Chapter 4.
The last major section analyzes and compares these results according to the criteria

defined in the first section. This chapter ends with a summary of the experimental

results and analyses.

5.1 Testing Approach

In the engagement of defencive weapons against a full-scale, global missile
attack, the defensive weapons will most likely be outnumbered by the incoming
missiles. Several estimates of the ratio between defensive weapons and incoming
targets (referred tc as the ratio of weapons-to-targets from here on) have been made
in the open literature [AdF85, AdW85, BoW85, DrF85]. Although predicted ratios
of weapons-to-targets vary, depending on the assumptions m~de and the method
of analysis, most estimates range from 1:1 to 1:10. Based cn these estimates, cost
matrix sizes corresponding to weapon-to-target ratios of 1:1, 1:5, and 1:10 were

chosen for this study. The number of weapons was chosen to range from 32 to 128.
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This range of weapons was selected in order to study the assignment problem on a
small scale and does not represent any estimate of the number of defensive weapons

that may be actually deployed.

For the experimental tests, five different cost matrices for each matrix size were
generated using the program that was described in Chapter 4. Several trial runs
were made with each implementation to test the variability of the processing times
obtained and to establish the number of test runs needed. An analysis of the means
and the variances of the processing times was performed using a statistical data
analysis package known as SAS (a registered trademark of the SAS Institute. Cary.
N.C.) [CoS87]. Five sets of matrices for each size were chosen as the standard number
of runs because the mean processing times for the same number of processors were not
found to be significantly different from each other within a 95% confidence level. The
same test performed on the mean processing times obtained using different numbers
of processors with the same suite of input data did show significant differences, as
expected. The ANOVA (A Nalysis Of the VAriance) procedure of SAS showed that
modeling the processing times as a function of the input data (the different cost
matrices) with the number of processors held constant was a very poor model. It
had a probability of rejection of 0.9942. This indicates that the different input data
sets do not have a significant effect on the processing times. On the other hand, if
the same input data was used for different numbers of processors and the processing
times were modeled as a function of the number of processors, the probability of
rejecting this model was less than 0.0001. This means there is a better than 99.99%

chance that the number of processors used has an effect on the processing times.

5.1.1 Performance Criteria As stated in Chapter 1 and repeated in the in-
troduction to this chapter, there are a number of performance measures that need
to be analyzed and compared for each implementation. In this section, each of these

measures are briefly defined and any special considerations are explained.

The first performance measure is the computation or processing time. In se-
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quential processors, this performance index is relatively simple to neasure. However,

in an MIMD multiple-processor machine such as the iPSC, there are many factors
that affect the ease with which actual processing times can be measured. The paralle]
solutions to many problems involve three principle phases: start-up, computation.
and wind-down (WalL85]. In this research, the start-up and wind-down phases are
especially time consuming because of hardware ccnstraints imposed by the Intel
iPSC. One major constraint is that there is only cae serial data channel from the
cube manager to the node processors. This limits the speed of transferring initial
cost data to the node processors and receiving the results from the node proces-
sors. Improved parallel 1/O techniques have been implemented in, for example. the
NCUBE hypercube [HaM86] and the PASM prototype [SiS84]. The start-up and
wind-down times in the iPSC implementation unnecessarily bias the runtimes. As a
result. they will not be included in the total processing times reported. The timing
will commence when all processors have received the initial cost data and terminate

when the last processor finishes its computations and is ready to return results.

One common performance measure in parallel processing is speedup (S). This
index relates the time to compute a solution with one processor with the time to

compute a similar solution with IV processors. It is defined as follows:

S=T,/Ty (5-1)
where
T, is the computation time for one processor and
Tn is the computation time for N processors
If a problem can be broken down into N independent pieces, then N processors can
solve these N pieces in 1/Nth of the time required by a single processor. The T} times
reported in this research are those obtained from using one node processor of the
iPSC. Perfect speedup is N, but this is not normally achieved in practice. In some

instances, certain implementations achieve superlinear or greater than N speedup.
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There are several factors that can account for this surprising result. In this research,

-
¢

some of the speedups reported are superlinear. One reason for this is that the start-up
and the wind-down times are not included for the reasons discussed earlier. Another
reason is that although the processing times and assignment costs of sequential
B&L algorithm are compared with those of the parallel versions, the algorithms
being compared are very different. The sequential B&L algorithm yields the optimal

overall assignment, where the parallel versions are heuristic methods designed to

s 18 & &

produce acceptable results that are near optimal, but not exactly optimal.

In a strict interpretation of speedup, the results of two different configurations
should be the same. However, in this thesis, the term speedup will be used as one
measure of performance between implementations yielding very different results. For
- . this reason, speedup alone is not sufficient and must be taken in conjunction with

other measures such as the optimality of the results or the percent effective.

Interprocessor communications were discussed in Chapter 3 as one of the more
o important overheads to minimize in parallel implementations. In the results that will
be presented shortly, the actual time spent communicating between processors will
not be explicitly shown. The method that will be used to assess the communications
effect will be to compare the other performance measures of the different implemen-

tations. The increasing levels (level 1 to level 4) of implementation correspond to

‘X JERLY_
¢

; increasing levels of interprocessor communications. The criteria is straightforward:

if higher levels of implementations perform better, then higher levels of communi-

C cations are better. On the other hand, if lower levels of implementations perform
better, then lower levels of communications are better. Of course there are tradeoffs
» between different performance characteristics. Different applications may require

a higher performance in one area and accept poorer performance in another area.

? Issues of this type are discussed further in the concluding sections of this chapter.

Load balancing is a performance measure that compares the processing times

of the individual processors in a parallel system. The purpose is to determine if
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\: all processors are performing approximately the same amount of work or if several
'4- © processors remain idle while a few processors are performing a majority of the total
o processing. Perfect load balance at first appears to be the ultimate objective. but if
E,, the load balance is achieved solely by excessive communications between nodes, then
Nj " very few useful computations are likely being performed. In later sections, specific
-. times are not presented, but representative times are discussed and the issue of load
‘ ; balancing is evaluated for each parallel implementation.
|
:. The machine-size to problem-size relationship or scalability is an important
‘ . * measure that shows how the small-scale experimental results can be applied to larger
“real world” applications. The primary means of evaluating this relationship is to
-" first use regression analyses to determine the models that best fit the data that has
."‘ been collected. Then reasonable estimates, based on these models and plots of the
.,:? collected data, are made for larger problem and machine sizes. Because of the nature
: of some problem solution times, these estimates are subject to some error and should
j: & not be taken as absolute.
:-_: 5.1.2 Method of Data Collection As explained in the introduction to this
::: section, five sets of matrices were generated for each different matrix size. Two
‘, " ® sequential implementations and four parallel implementations were tested. The data
:: for the single-processor B&L algorithm is included in the level 1 data presentation.
X N From this point on, the different parallel implementations are referred to as level 1,
.; - level 2, level 3, or level 4 corresponding to the first level, second level, and so on
: implementations described in Chapter 4. The sorting method implementation is
-., referenced as the level 0 implementation.
“‘-
X { N Because five runs per matrix size were earlier shown to be statistically ade-
_,.: quate, each implementation was tested with the same set of five matrices so that
::’_'i direct comparisons of computation times, speedups, and communications overhead
E;‘ can be made. However, some of the performance runs for the level 4 implementation
3
>
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,::: were not possible because of limitations in system buffers used to handle the intern-

> . .

:! i & ode message traffic. This occurred when the cost matrix was large and greater than

N 16 processors were being used. Complete data for the level 0 (sorting method) imple-
‘g

Y
:'\ mentation is also not presented because as the matrix sizes increased, the processing

o i . .
ks times increased very rapidly.

v |

S In some instances, the 0.005 second resolution of the timing function of the
-
2y iPSC affected the accuracy of the timing results. Cases where the error exceeds 10%

< of the reported mean of the processing times are marked with an asterisk (*) and

@ o
. are mainly confined to the 32-weapon cases where utilizing more than 16 processors
".t:: resulted in processing times approaching the 0.005 second resolution. All derived
O speedups associated with these suspect processing times are also marked with an
A~ o

~
j ." - asterisk and are not considered to be accurate.

Y
N
M 5.2 Presentation of Results
:;:-

\ Y . . .

L~ The results of all the implementations are presented in this section. It is
‘A . . . . . .
o organized into subsections that correspond to the name given to the implementation.

"
~- . . . .

:' All of the 96-weapon data for the three ratios discussed earlier are given in tabular
:" ° form. The data for 32, 64, and 128 weapon evaluations are included in Appendix C.
. 5.2.1 Level 0 The level 0 or sorting method program was developed to pro-

- . . . . . .

-~ vide a baseline for comparison with the other implementations. However, because
. d

::j', of system load, complete data for all the matrix sizes was not obtained. For the
: largest matrix size (128 x 1280), the processing time was estimated to be in excess of
o : :
5t three hours per run. The average processing times and assignment costs that were

A : .

] e obtained are shown in Table 5-1. The Size column represents the product of the
‘.‘J“'

o. Weapons and Targets columns and shows the number of elements in the cost list
s
f:- that must be sorted. The entries in Table 5-1 are sorted according to the number of

* - -
j,': elements in the cost list. The Cost column shown in Table 5-1 represents the sums of
Ca

A

the corresponding values from the cost matrix for the weapon-to-target assignments ‘
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made using the sorting method. The % Effective column represents the percentage

® of the weapons that actually killed a target. For example, in Table 5-1, the 100%

effective values mean that each of the 32 weapons killed a unique target. Less than

p 100% effective means some of the weapons were redundantly assigned to the same

target and were thus not fully utilized.

; Table 5-1. Timing and Costs of the Level 0 Implementation
[ Weapons | Targets [ Size [ Time (sec) | Cost | % Effective |

32
84
32
96
32
128
64

32
64
160
96
220
128
320

1024
4096
5120
9216
10240
16384
20480

2.352
16.581
21.693
35.988
51.057

101.011
132.016

6513.6
6787.6
392.0
8646.4
281.6
9107.2
560.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0

There are three different weapon-to-target ratios represented in Table 5-1. As
the ratio of weapons-to-targets increases from 1:1 to 1:10, the assignment costs drop
by a factor of 10. This is caused by there being a larger number of lower cost
individual assignments to choose from in the 1:10 case. When there are ten targets
for every weapon, then there is a better chance of selecting lower cost weapon-to-
target pairings than there is when the number of weapons and targets are equal.
When there is an equal number of weapons and targets, certain weapon-to-target
pairings are forced to be higher cost because the weapon that would have yielded
a lower cost may have been previously assigned to another target. In the sorting
N method, no provision is made to reshuflle previously assigned weapons. In later

implementations using the B&L algorithm, reshuffling of assignments is done to

X obtain a lower cost overall assignment.

. The processing times shown in Table 5-1 reflect an increase as the size of the
cost list increases. This is an understandable result. The elements of the normally
used cost matrix are rearranged into a linear list so that they can be sorted into

ascending order for the assignment process. As the number of elements in this
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list grows, the sorting time grows accordingly. As pointed out in Chapter 4, the

time required to sort this list is the dominating factor of this implementation. This
explains why the processing time (Time) is more closely related to the size of the

cost list than to the weapon-to-target ratio.

The complexity of this implementation was estimated in Chapter 4 to be
O(N3®). Performing a regression analysis on these processing times resulted in

the model shown in Equation 5-2.

processing time = 3.54 x 107" WT? 4 6.103 (¢

o]
[
[Q%]
—_—

where
W is the number of weapons and

T is the number of targets

The adjusted R? coefficient produced by SAS in a regression analysis is a measure of
how well the predicted and actual times match, with 1.0 being a perfect match. The
adjusted R? coefficient between the predicted and actual processing times for this
model was 0.9725. For an equal number of targets and weapons, this corresponds
to O(N3), so the estimate made in Chapter 4 was somewhat pessimistic. However,
the estimate was based on the number of operations expected. In Equation 5-2, the
actual processing time is being modeled. There are many operating system functiouns
and other lower level instructions being executed for each operation estimated. The
relationship between high-level operations and these lower-level operations is difficult
to determine. However, a relationship does appear to exist. The processing times
and the estimated number of operations were tested for correlation and the Pearson

correlation coefficient was found to be significant to better than a 95% confidence

level.

5.2.2 Level | The level 1 implementation is the first parallel implementation

where there are no communications between any of the processors in the hypercube.
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The mean processing times and related speedups over both the single-processor B& L

algorithm (Spgg 1) and the level 0 implementation (Ss,,) for the 96-weapon cases are
shown in Table 5-2. Similar results were obtained for other numbers of weapons
and are included in Appendix C. In Table 5-2, the Processors column contains the
number of processors utilized to obtain the corresponding mean processing times
(T'tme) reported. The number of processors used is also the number of partitions

made on the input cost matrix.

Table 5-2. Timing and Speedups of the Level 1 Implementation
| Weapons | Targets | Processors | Time (sec) | Sgur | Ssort |

96 96 1 8.9020 1.00 4.67
96 96 2 1.4335 6.21 25.10
96 96 4 0.5180 17.19 69.47
96 96 8 0.2206 40.35 163.14
96 96 16 0.1028 86.60 | 350.08
96 96 32 *0.0494 | *180.20 | *728.50
96 480 1 7.7080 1.00 —
96 480 2 3.7935 2.03 —
96 480 4 1.8853 4.09 —
96 480 8 0.9464 8.14 —
96 480 16 0.4772 16.15 —
96 480 32 0.2422 31.82 —
96 960 1 15.0570 1.00 —
96 960 2 7.5195 2.00 —
96 960 4 3.7635 4.00 —
96 960 8 1.8891 7.97 —
96 960 16 0.9518 15.82 —
96 960 32 0.4836 31.13 —

The Spg; speedups shown in Table 5-2 are all superlinear for the 96-weapon.
96-target cases. Some of the Spg; speedups for the 1:5 ratio cases were slightly
better than perfect (perfect speedup = number of processors utilized), while the
1:10 ratio cases (96 x 960) were slightly less than perfect as more processors were
utilized. One reason why the speedups became less than perfect as the ratio of
weapons-to-targets increased is directly related to how the processing times behave.
In the B&L algorithm, when the cost matrix is square (i.e., the number of weapons
equals the number of targets), the initial solution calculated is nearly always not

optimal and must be reshuffled to obtain the optimal solution. However, as the
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input cost matrix becomes more and more rectangular, the initial solution more
often than not is optimal and the reshuffling portion of the B&L algorithm not
performed. This results in a time savings and the less than linear increase in the
B&L algorithm processing times as the number of weapons is held constant and the

number of targets is increased.

When the original cost matrix is divided into more and more partitions, the
resulting partitions are increasingly more rectangular. This results in faster compu-
tations of the partition assignments because the reshuffling portion of the algorithm
is bypassed and results in superlinear speedups over the single-node processing time.
This is mainly true for the case when the original cost matrix is square. When the
original cost matrix is rectangular, then the previously described behavior is already
in effect in the single-node processing times. The partitioning still produces more
rectangular submatrices, but the relative reduction in processing times is not as great

and results in the more expected near-linear speedups shown in Table 5-2.

The speedups over the sorting method Ss,,, are only shown for the 1:1 ratio

case because the level 0 1:5 and 1:10 cases for 96 weapons were not run as previously
........

algorithm. the level 1 processing times are more than four times faster than the

level 0 times. When multiple processors are utilized, the speedup Ssor; becomes very

large and illustrates the speed advantage of the parallel level 1 implementation.

A regression analysis similar to the one explained in the level 0 presentation
was performed using the processing times shown in Table 5-2 and Appendix C. The
resulting models of the processing times were of the same order as the complexity
estimate made for the B&L algorithm in Chapter 4. The models differed from the
estimate in the coefficients of the terms and some of the lower order terms were not
significant. The coeflicients are different because of the previously mentioned rela-
tionship between high-level operations and lower-level machine instructions. Also.

the estimate was based on an assumed worst-case scenario, while the data used in
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:E these performance runs was not worst-case. As an example, the model obtained for
‘!‘ v the eight-processor, 1:1 weapon-to-target ratio is given in the following equation:

¥

\ processing time = —5.6283 x 1078(W T?) 4 0.00002964(7T*) (5-3)
-

,: The adjusted R? coefficient for this model was 0.9924 and the probability of
‘-.}' rejection was less than 0.0001. Similar models were obtained for other numbers
2 . of processors and weapon-to-target ratios. One concern is the negative sign of the
. . leading term. This indicates that the T2 and WT? terms are interactive and to
""_:; some extent cancel each other out. Each term was modeled individually and yvielded
acceptable models. The best fit was obtained, however, when both terms were com-
‘ - bined into a single model. The Pearson correlation coefficient between the predicted
.Ej number of operations and the actual processing times was very significant. which
‘- indicates that there is some relationship between the two. For example, the Pearson
N - coeflicient between the estimated number of operations and the 1:1 weapon-to-target
: ratio processing times was 0.98397 and the probability of rejection was 0.0160.

,:: The assignment costs and other information for the 96-weapon case are shown
: - in Table 5-3. The column labeled % Effective is defined the same as in level 0. An
o additional column named % Wasted contains the percentage of weapons that were
! '.“: redundantly paired with a previously assigned target. These weapons were therefore
'.-::' “wasted” on a target that was already “killed” by another weapon.

LGN

_._. One trend that should be noted in Table 5-3 is that as the ratio of weapons-to-
_ ' targets increases, the % Effective also increases for the same number of processors.

::3 This is a result of fewer redundant weapon allocations, which are in turn a result
:: of the larger number of possible targets. The assignment costs are also lower for
' the uigher ratios of weapons-to-targets due to the wider choice of possible targets
- which may be engaged by each weapon. In all cases, the % Effective drops as more

processors are used because none of the processors coordinate the assignments made

.
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Table 5-3. Assignment Results of the Level 1 Implementation

[ Weapons [ Targets

[ Processors | Cost [ % Effective [ % Wasted |

96
96
96
96
96
96

96
96
96
96
96
96

1
2
4
8
16
32

96
96
96
96
96
96

480
480
480
480
480
480

1
2
4
8
16
32

96
96
96
96
96
96

960
960
960
960
960
960

1
2
4
8
16
32

processors.

R
ol 1.

e ey

the % effective utilization.

PR VL At W
n.I

o

within each partition. In later implementations, different levels of coordination are

introduced in an attempt to reduce the redundant weapon allocations and increase

5.2.83 Level 2 The level 2 implementation introduces a small amount of co-
ordination between groups of processors in order to reduce the number of redundant
assignments. The 96-weapon timing and speedup results are shown in Table 5-4.
The Spyr and Ss,,; speedups shown in Table 5-4 were calculated in the same man-
ner described in the level 1 presentation. The Cntrl column refers to the number
of partitions or controller groups used in the configuration. The Proc/Cntrl column
refers to the number of processors per controller. The Tot Proc column contains
the total number of processors utilized in a particular configuration and is derived
by multiplying the number of controllers by the number of processors per controller
and then adding the number of controllers to the product. For example, a two con-

troller configuration with four processors per controller will utilize (2 x 4) + 2 = 10

L P
b
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Table 5-4. Timing and Speedups of the Level 2 Implementation
| Weapons | Targets | Cntrl [ Proc/Cntrl | Tot Proc | Time (sec) | Spar | Ssorc |

96 96 2 2 6 0.659 13.51 54.61
96 96 2 4 10 0.375 23.74 95.97
96 96 2 8 18 0.239 37.25 150.58
96 96 4 2 12 0.189 47.10 190.41
96 96 4 4 20 0.149 59.74 241.53
96 96 8 2 24 *0.046 | *193.52 | *782.35
96 480 2 2 6 1.983 3.89 —
96 480 2 4 10 1.044 7.38 —
96 480 2 8 18 0.606 12.72 —
96 480 4 2 12 0.951 8.11 —
96 480 4 4 20 0.523 14.74 —
96 480 8 2 24 0.468 16.47 —
96 960 2 2 6 4.615 3.26 —
96 960 2 4 10 2.359 6.38 —
96 960 2 8 18 1.228 12.26 —
96 960 4 2 12 2.305 6.53 —
96 960 4 4 20 1.176 12.80 —
96 960 8 2 24 1.163 12.95 —

The processing times and speedups shown in Table 5-4 are divided into sec-
tions corresponding to the 1:1, 1:5, and 1:10 weapon-to-target ratios. Each of these
sections can be further subdivided into three sub-sections by the number of con-
troller groups (Cntrl). By grouping in this manner, the effects of adding additional
processors per controller can be seen. The processing times for the 1:10 and 1:5
weapon-to-target ratios decreased in proportion to the number of additional proces-
sors per controller group: doubling the processors per controller reduced the process-
ing times by approximately half. In the 1:1 ratio case, the reduction in processing
times was not as evident. This is related to the processing time behavior discussed
in the level 1 presentation. The 1:5 and 1:10 ratio cases provide more choices for
allocating weapons and the solution is obtained quicker due to the highly rectangular
partitions. Although the partitions in the 1:1 case are also rectangular, there are
fewer targets to choose from and computing the partition solutions is more likely to

require iterations of the reshuffling portion of the B&L algorithm.

As in the level 1 implementation results, the 1:1 ratio cases produced superlin-
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ear speedups. However, the Sgg values were not as large as those of level 1. This
9 is due to the increased processing times which are a result of the additional over-
head involved with the coordination within controller groups. The nodes running
the controller processes and the assign processes are basically synchronous. When
o the controller process is active, then the assign processes are idle and vice versa.
This creates a situation where there are always idle node processors and reduces the
speedups obtainable. The situation for the 1:5 and 1:10 ratios is similar, but the
time required by the controller process is longer because of the factor of 5 or 10
® increase in the number of targets that must be coordinated. This causes the assign
processes to remain idle longer and results in speedups being less than those of the
1:1 cases.
= Although the coordination of redundant pairings does comprise a portion of the
processing time, the regression models obtained for the level 2 times were very similar
to the level 1 models. This indicates that the coordination does not completely
® dominate the processing time. An example of the type model obtained is shown in
Equation 5-4 for the 18-processor, 1:10 weapon-to-target ratio case.
- processing time = —1.95412 x 107*(WT?)+2.9718 x 107%(T?) - 0.263511 (5 — 4)
The terms W and T refer to the number of weapons and targets, respectively. The
Y-intercept terms were found to be significant in models for this implementation.
= which is where some of the added computations estimated for the level 2 model are
accounted for. The R? coefficient was at least 0.95 for all models. which indicates o
very good fit between the actual and predicted processing times.
- The mean assignment costs, percent weapons effective, percent weapor~ .
and an additional measure labeled % Idle are shown in Table 5.5 The
sure is unique to this implementation. It is a result of the coordinasw. -
- instead of different processes possibly assigning multiple wea;o:
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get, the weapons associated with higher cost redundant assignments are placed in an
L) idle state for future use rather than being “wasted” on an already-assigned target.
In general, this implementation idled a higher percentage of the weapons when the
weapon-to-target ratio was 1:1. This results from the coordination action where,
. instead of wasting redundantly allocated weapons, they are idled for future use.
More redundancies occur in the 1:1 case, which in turn yields a higher percentage
of the weapons in an idle state. Some weapons are still wasted because there is no
coordination of assignments between controller groups. For the 1:10 ratio, very few
o weapons were wasted and less than 20% were idled. This stems from fewer redun-
dancies both within and among the controller groups. The greatest advantage of
this implementation is that the idled weapons are available for future assignments
« where they can possibly be used in a more cost effective manner.
Table 5-5. Assignment Results of the Level 2 Implementation
[ Wpns | Tgts | Cntrl | Proc/Cntrl | Tot Proc | Cost | % Effective | % Idle | % Wasted |
; 96 96 2 2 6 | 1328.0 65.8 11.9 223
9 96 96 2 4 10 | 1180.8 62.7 17.7 19.6
96 96 2 8 18 | 1115.2 61.0 204 18.5
96 96 4 2 12 | 1372.8 62.7 8.1 29.0
96 96 4 4 20 | 1281.6 31.0 11.6 27.5
96 96 8 2 24 | 1436.8 61.0 40 35.0
96 480 2 2 6] 7120 84.8 54 9.8
L 96 480 2 4 10 696.0 83.1 7.5 9.4
96 | 480 2 8 18 | 689.6 82.7 8.3 9.0
96 480 4 2 12 | 736.0 83.1 2.5 14.4
96 | 480 4 4 20 | 729.8 82.7 1.3 16.0
96 480 8 2 24 748.8 82.7 08 16.5
96 960 2 2 6| 6864 87.7 48 7.5
- 96 | 960 2 4 10 | 662.4 84.8 7.9 7.5
96 | 960 2 8 18 | 651.2 83.3 94 7.3
96 960 4 2 12 | 699.2 84.6 31 123
96 960 4 4 20 688.0 83.3 4.6 12.1
96 | 960 8 2 24 712.0 833 1.5 15.2
-
5.2.4 Level 3 The level 3 implementation introduces more coordination be-
tween the same configuration of processors found in the level 2 program. After each
X iteration of the B&L algorithm in the “assign™ processors, the controller eliminates
82
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the redundant assignments and sends out vectors containing information to be used

' & in the computation of new assignments.

Table 5-6. Timing and Speedups of the Level 3 Implementation

{ Wpns | Tgts | Cntrl | Proc/Catrl | Tot Proc | Time (sec) | SpeL [ Ssors |
96 96 2 2 (] 0.9730 8.15 | 36.99
L 4 96 96 2 4 10 1.8905 | 4.71 | 19.04
96 96 2 8 18 3.5370 2521 10.17
96 96 4 2 12 2.1135 421 | 17.03
96 96 4 4 20 2.5548 3.48 | 14.09
96 96 8 2 24 1.4069 5.48 | 25.58
96 480 2 2 6 2.4975 3.09 —
o 96 | 480 2 4 10 4.3405 | 1.78 —
96 480 2 8 18 6.0985 1.26 —
96 480 4 2 12 4.0150 1.92 —
96 480 4 4 20 4.6833 1.65 —
86 480 8 2 24 2.6573 2.90 —
96 960 2 2 6 4.8910 3.08 —
< 96 960 2 4 10 8.4135 1.79 —
96 960 2 8 18 11.6000 1.30 —
o 960 4 2 12 7.6133 1.98 —
96 960 4 4 20 9.0953 1.66 —
96 960 8 2 24 5.2775 2.85 —
This implementation was very expensive in terms of processing times as illus-
trated by the times and speedups in Table 5-6. Except for the first entry in Table 5-6,
none of the Spy 1 speedups were better than perfect. The extra iterations of the B& L
algorithm, combined with the coordination process, substantially increased the pro-
cessing times and thereby reduced the speedups. As more processors were added to a
controller partition, the processing time tncreased rather than decreased. The reason
o the processing times increased so dramatically is that if redundancies remain after

an iteration, then new information vectors must be assembled and all processors
must recompute another assignment on their given partition based on the updated

information. This procedure continues until all redundancies are elimirated. The

‘)

increase in processing times is an especially undesirable effect since the objective is

to decrease rather than increase the time as more processors are utilized.

Regression analyses yielded very similar models for this implementation when
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"‘. compared to the level 1 and level 2 models. One difference in the models obtained
X for this implementation is that the Y-intercept term became more significant and
) positive. This is an indication that there are increasing overheads involved with
the coordination process. The estimation of the extra computation involved with
. " the “controller” process made in Chapter 4 could not be confirmed because the
" regression models were computed with the number of processors held constant. The
: SAS software regarded the models with processors as a variable as “not of full rark.”
i, This means the results obtained would be misleading and biased because of certain
| & inter-relationships between the different terms in the model. The model shown in
> Equation 5-5 is for the 1:1 ratio, 32-weapon, 20-processor case.
A
§ - processing time = —5.924 x 1077(WT?) 4+ 0.000048772 + 0.267500 (5 — 5)
;'. Assignment results for the level 3 program are shown in Table 5-7. The per-
" 2 . cent weapons wasted decreased as the ratio of weapons-to-targets was increased.

This trend was also noted on the results for other numbers of weapons. The assign-
ment costs for level 3 were higher than any of the other implementations. This can

be at least partially explained by the method used to reassign weapons that were

® redundantly allocated. In cases when another target must be selected because of a
‘:" redundancy, it will be at least equal to and probably a higher cost than the originally
7: selected target. The combination of several substantially higher cost reassignments
1 drives up the average cost dramatically as shown by the cost data in Table 5-7.

L)
|'
:.:‘ 5.2.5 Level 4 The level 4 implementation is an attempt to perform several

U
ﬁ of the tasks of the sequential B&L algorithm in parallel. As the timing and speedup

1)

‘ results in Table 5-8 illustrate, the effort did not perform as well as one would hope.
P The major bottleneck was the amount of interprocessor communications required
L)

e to update global information used in the selection of potential weapon-to-target
‘A
‘ . .
pairings.

9
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Table 5-7. Assignment Results of the Level 3 Implementation

[ Weapons | Targets | Cntrl | Proc/Cntrl | Tot Proc | Cost % Effective | % Wasted
96 96 2 2 6 | 15696.0 71.3 28.7
96 96 2 4 10 | 18886.0 68.5 315
96 96 2 8 18 | 17457.6 68.5 315
96 96 4 2 12 | 13412.0 64.9 35.1
96 96 4 4 20 | 16022.4 62.9 371
96 96 8 2 24 7556.8 61.3 38.7
96 480 2 2 6 9344.0 87.3 12.7
96 480 2 4 10 8501.2 86.7 13.3
96 480 2 8 18 | 10070.4 86.3 13.7
96 480 4 2 12 4572.8 83.5 16.5
96 480 4 4 20 6408.0 83.5 16.5
96 480 8 2 24 2606.6 82.7 17.3
96 960 2 2 6] 6779.2 89.8 10.2
96 960 2 4 10 | 11288.0 88.1 119
96 960 2 8 18 | 11124.8 87.3 12.7
96 960 4 2 12 4798.4 86.3 13.7
96 960 4 4 20 7107.2 85.2 148
96 960 8 2 24 2947.2 84.0 16.0

The processing times for this implementation were only marginally better than
the results obtained for the sequential B&L algorithm (i.e., level 1, one processor). In
some cases, the sequential B&L implementation was actually faster than the level 4
implementation. It is difficult to discern the exact reason for the poor performance.
One problem noted during the gathering of the results was that the default number
of buffers in the iPSC used to handle internode message traffic was too small. When
additional buffers were made available, then the amount of memory remaining was

inadequate for processing larger cost matrices. This definitely had an effect on the

speed of the level 4 implementation.

Another possible reason for the poor performance is that the parallel algorithm
used was too inefficient. One especially time consuming task was the search for inde-
pendent zero elements. Recall that the cost matrix was partitioned into “windows”
that were searched independently and in a certain order by the “parallel” processors.
After each parallel processor searched one of its windows, then all of the partial re-

sults were transmitted to the serial processor for combination and transmittal to all
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',;: Table 5-8. Timing and Speedups of the Level 4 Implementation
MY ‘ Weapons | Targets | Processors | Time (sec) | Spgyr | Ssort

)X ‘ 96 96 2 4.969 179 | 7.24
- 96 96 4 4563 195 | 7.89
;' 96 96 8 5.075 175 { 7.09
" 96 96 16 6.616 | 135 5.44
O 96 96 32 15711 | 057 | 2.29

. 96 480 2 12373 | 061 —

X] 96 480 4 6.924 1.11 —

ﬁ- 96 480 8 6.851 1.13 —

> 96 480 16 11802 | 065 | —
o 96 | 480 32| 32605 | o024 —
i 96 960 2 17522 | 0.86 —

L 96 960 4 12876 | 117 —

- 96 960 8 11.898 1.27 —

3 96 960 16 18001 | 084 | —
W
¥ -Q
g . o
'\'i parallel processors for the next set of window searches. The coordination between
)

- processors was necessary in order to insure no redundancies occurred. There may be
" more efficient methods for performing this and other tasks, but the basic Hungarian
I~ method, and the B&L algorithm in particular, may be intrinsically serial and not
Ca
s & parallelizable.

W
| The regression model obtained for this implementation was somewhat different
1
. from the other models. This was expected because this program was so much differ-
-» ® ent from the other programs. The processing times were affected by the hardware
L& limitations to the extent that multiple runs had to be made with different numbers of
'.‘: system buffers and system memory allocations before the processes would complete
:.'. normally. The most reliable data obtained was for the cases where four and eight
3 processors were used, so these data were used as the basis for the regression analysis.
v , o :

3 The model for the 8-processor, 32-weapon, 1:1 ratio case is given in Equation 5-6.
W
S

<14

processing time = 0.0000475(WT?) — 0.00893(T?) + 0.55860(W) — 8.359 (5 — 6)

"

‘
(o
. : A term that was not significant in any of the other models is W. The reason for
s
.: - this is that the vectors transmitted and the combination procedure performed by
0
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the serial processor were all strongly related to the number of weapons.

A feature of the level 4 program is that the weapons are always 100% effective.
However, this is not an advantage since the time required to achieve these results
is longer than the single-processor level 1 program. The assignment results of the
level 4 implementation are shown in Table 5-9. Essentially, the assignment results

are identical to those of the level 1 implementation utilizing a single processor.

Table 5-9. Assignment Results of the Level 4 Implementation

{ Weapons | Targets | Processors | Cost | % Killed |

[ 96| 96 2 [1779.2 100.0 |
96 96 4| 1779.2 100.0
86 96 8 |1779.2 100.0
96 96 16 | 1770.2 100.0
96 480 2| 756.8 100.0
96 480 4 756.8 100.0
96 480 8| 7568 100.0
96 480 16 | 756.8 100.0
96 960 2| 723.2 100.0
96 960 4| 723.2 100.0
96 960 8| 7232 1060.0
96 960 16 | 723.2 100.0

5.3 Analysis of Results

In this section, the performance results of the different implementations are
compared and evaluated. The relative advantages and disadvantages of each im-
plementation are also discussed. Graphs are used to illustrate trends and make

additional comparisons between the different implementations.

5.8.1 Computation Times and Speedup The computation times varied widely

between the different programs. The fastest times were those of the level 1 and level 2

- programs, while the slower times were where those of the level 3 and level 4 programs.
This can be mainly attributed to the volume and frequency of communications be-

tween processors in the different implementations. As the level of coordination and

. communications increased, the computation times also increased. The correspond-
L 4
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L
ing speedups over the level 0 program and the single-processor level 1 program show
the reverse trend since T is a divisor in the calculation of speedup. The speedups
o obtained by the four levels of implementation over the level 0 program for 96 x 96
cost matrices are illustrated in Figure 5-1.
Y
w 4 * : 96X 96 level 1
T o : 96x 96 level 2
O : 96X 96 level 3
990 ¥ q: 96x96 level 4
T X : Number of processors
880 + Y : Speedup over Level 0
¢ 770 + ¢
660 +
.
550 [
< 1
440 4+
330 T .
[
T . .
- 28 32 36
Figure 5-1. Speedups over the Level 0 Implementation (1:1 Weapon-Target Ratio)
The speedups over the single-processor level 1 implementation are shown in
S . . . .
Figures 5-2 and 5-3. The single-node level 1 results are equivalent to a sequential
version of the B&L algorithm. In all cases, the level 1 and level 2 implementations
exhibited substantial speedups over the single-processor programs. The superlinear
- speedups in the 1:1 ratio cases at first do not seem possible. The explanation for why
the B&L algorithm works faster for rectangular matrices than for square matrices
was given in the presentation of the level 1 results. Recall from that discussion
.
88
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that when an initially square cost matrix is partitioned, each processor receives a

rectangular submatrix. For rectangular matrices, it is more likely that the final
assignment solution will be reached in the formation of the initial solution because
of the increased number of targets from which assignments can be maae. This results
in bypassing of some of the reshuffling portions of the B&L algorithm and yields a

faster solution to each partition.

In the 1:5 and 1:10 weapon-to-target ratios, the speedups were not as great
because the previously discussed performance for rectangular matrices was already
in effect for the single-processor times. However, significant speedups were still ob-
tained. One drawback to all of these faster partition solutions is that when they are
combined into a final solution, they are no longer optimal because of redundancies,
weapons idled, and reassignments to other targets performed by the different imple-
mentations. However in most cases, the advantage in processing time allows many

sub-optimal assignments to be computed in the time required to compute only one

optimal solution.

The speedups obtained by the level 3 and level 4 programs were disappoint-
ing. They point out how extensive communications between processors and multiple
iterations of the B&L algorithm severely affected the processing times. However,
even with the poorer performance when compared with the other paralle] imple-
mentations, the level 3 and level 4 programs did produce speedups over the sorting

method used as the baseline for comparison.

5.8.2 Interprocessor Communications The effects of increased interprocessor
communications are illustrated by the longer processing times of the level 3 and
level 4 implementations. The ratio of computations-to-communications becomes
very small as the level of communications is increased because much more time is
spent communicating than computing. The difference in processing times between

the level 1 and level 2 programs is not excessive because the coordination process
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;. @ Figure 5-2. Speedups over the Single-Node Level 1 Implementation (1:1 Ratio)
> requires a relatively small amount of time. All other operations in the level 1 and
~ level 2 programs are essentially the same. In the level 3 program, the coordination
e & process involves higher interprocessor message traffic to control the extra iterations
required to eliminate the redundancies. The transmission of vectors designating
) the new assignment instructions in level 3 is similar to the vectors transmitted in
-

.. level 4 for coordinating the search of the matrix partitions for assignments. The
: processing times of the level 3 and level 4 implementations reflect the extra time
.' . .

Y spent communicating instead of computing.

)

K
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“ The desirability of complete independence between processors can been seen
3D . y p P p

upon comparin e processing times of the level 1 and level 4 implementations.
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9 Figure 53-3. Speedups over the Single-Node Level 1 Implementation (1:10 Ratio)
level 1 program. For a 96 weapon. 960 target problem. the level 4 implementation
using 8 processors solved the problem only slightly faster than the single-processor

® level 1 implementation. However, the level 1, 8-processor configuration solved the
same problem 6 times faster than level 4 using 8 processors. However, the resulting
assignments and costs were somewhat different: 84.6% of the weapons were effective

- for level 1 vs. 100% effective for level 4. Except for the 100% effectiveness of the
allocated weapons for level 4, the added communications and iterations of the level 3
and level 4 implementations do not appear to provide any particular advantages.

- 5.3.8 Problem Scalability The relationship between the size of the problem
and the size of the machine (number of processors used) is difficult to assess. In the
cases studied in this research, the optimum number of processors varied from one

o
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implementation to another. For the level 1 implementation, the 1:1 ratio speedups
obtained tended to decrease as the number of weapons and targets increased. For
example, the speedup Sgg 1 for the 32-weapon, 32-target problem using 4 processors
was 24.38 while the 128-weapon, 128-target problem speedup using 4 processors was
only 18.07. The situation for the 1:5 and 1:10 ratios was completely different. In-
creasing the number of weapons and targets while holding the weapon-to-target ratio
constant provided some interesting results: as the weapons and targets increased, the
speedups remained nearly constant. For example, the speedup Sggr for the 32 x 320
cost matrix using 16 processors was 15.62. But the speedup for the 128 x 1280 cost
matrix for 16 processors was 15.92. These trends indicate that for weapon-to-target
ratios greater than or equal to 1:5, close to perfect speedups are possible even as
the problem is greatly enlarged. Some limit to the problem size probably exists, but
increasing the problem size by a factor of 16 and still obtaining roughly the same
speedup is a good indicator that much larger problems can be solved with reasonably

good speedups over the sequential processing times.

Although the Sgg; speedups for the level 2 implementation were not as close
to linear as the level 1 results, there were similar trends in scalability. For the 1:5
and 1:10 ratios, the speedups remained fairly constant with a few showing some
slight increase as the problem size increased from 32 to 128 weapons. One difference
was in the 1:1 ratio cases where, instead of the speedups decreasing as they did in
the level 1 implementation, the speedups Spgr and Ss,r also increased slightly as
the problem size increased. Based on these results, the level 2 implementation also

appears to be a good candidate for solving larger problem sizes.

For both level 1 and level 2 weapon-to-target ratios greater than 1:1, an in-
crease in the weapon-to-target ratio appears to decrease the speedups obtained. By
observing the plots in Figure 5-4, these speedups appear to be close to linear. But
there is a slight difference between the 1:5 and 1:10 plots. For the level 1 implementa-

tion, if there were a 128 processor machine available, the speedups would approach
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128 and so on for larger machines. For the level 2 implementation, the speedups
would not be as great as the level 1 speedups, but as the size of the machine in-
creased, there would be a corresponding improvement in the processing times and
speedups obtained. These are conjectures, but they are based on observations and
trends of the data collected. There is no way to predict precisely what the behavior
of the processing times would be for larger machines. However, for the range of
problem and machine sizes tested, it is reasonable to expect similar results for larger

machines and problems.

Y
® . 96x 96 matrix
© : 96x 480 matrix
270 0 : 96x 960 matrix
X : Number of processors
Y-
240 Level 1 Speedup
210
180 .
150
120
90 "
60
.
0+ T e -
L2 PUREREL
D S UL ————————+ X
4 8 12 16 20 24 28 32 36

Figure 5-4. Level 1 Speedups over the Sequential B&L Algorithm (96 Wpns)

Up to this point. the discussion has focused on the level 1 and level 2 imple-
mentations because the programs are very similar and the speedups obtained were

the largest. For the other implementations. the speedups rapidly fell victim to the
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communications overhead as the number of processors were increased. Except for the
level 1 and level 2 implementations, the processing times generally increased rather
than decreased as more processors were used. Because of the trends in processing
times observed in the level 3 and level 4 implementations, the extension to larger

problem sizes and correspondingly larger numbers of processors does not seem to be

feasible.

5.8.4 Cost and Effectiveness of Assignments The processing times and speedups
have been the main measures of performance emphasized until now. The manner in
which the available weapons are utilized is also very important. If an algorithm is
extremely fast but yields poor weapons utilization, it will not be very useful. The
assignment results of all the implementations were presented in the previous section.
For comparison, plots of weapon effectiveness for 1:1 and 1:10 weapon-to-target ra-

tios are shown in Figures 5-5 and 5-6.

One important trend to note between Figures 5-5 and 5-6 is that the percentage
of targets killed increases as the ratio goes from the less likely 1:1 (96 x 96) ratio
case to the more likely 1:10 (96 x 960) ratio. All of the implementations produced
kill percentages above 80% for the 1:10 and 1:5 weapon-to-target ratios. Except for
the 100% kill percentages for the relatively slow level 0 and level 4 implementations.
the best overall assignment performance was obtained with the level 2 program.
In most all 1:5 and 1:10 ratio cases, it wasted less than 10% of the weapons. In
general, the level 2 program idled more weapons than it wasted while yielding kill
percentages comparable to the other implementations. The idling of weapons rather
than wasting them is important, especially when weapons are scarce. 1dled weapons
can be withheld until a later assignment iteration when they may be utilized in a

more cost effective manner.

The associated assignment costs are shown in Figures 5-7 and 5-8. The assign-

ment cost i1s a measure of how expensive the overall assignment will be in terms of
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Figure 5-5. Weapon Effectiveness vs. Number of Processors (1:1 Ratio)

resources utilized. The highest costs were produced by the level 3 program. This
was explained earlier as a result of the assignment of certain weapons to higher cost
targets when redundancies occur. The purpose of the level 3 program was to utilize
as many of the weapons as possible to kill all possible targets. Situations may occur
when this strategy may be useful. However, upon comparing the results of other
programs. level 2 killed approximately the same percentage of targets at a generally
lower cost and wasted fewer weapons. In addition. the level 2 processing times were

much faster than the level 3 program.




Y
] * : 96X 960 level 1
t © : 96x 960 level 2
180-# 0 : 96x960 level 3
< 96x960 level 4
| X : Number of processcrs
. 160 1 Y : Weapon Percent Effective
T
140 4
+
120 4+
100 W—.' L I R B A R R R -
+ .. .
so+ 0 CmmTeeeceoBian . J N .
ﬁ-
. 60 +
40 4
+
20+
<4
®
e et X
4 8 12 16 20 24 28 32 36

Figure 3-6. Weapon Effectiveness vs. Number of Processors (1:10 Ratio)
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Figure 3-8. Assignment Cost vs. Number of Processors (1:10 Ratio)
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5.4 Summary

This chapter has presented and analyzed the performance results of all the
programs developed in this research. It first explained the testing approach and
then defined the criteria used to measure the performance of the implementations.
The results for each program were presented and followed by an assessment of the
performance characteristics. Regression analyses provided some insight into how the
processing times behaved with the addition of coordination and communications.
The speedups and processing times of all implementations were compared and an-
alyzed. Also, the communications overhead, scalability, and effectiveness of the
assignments were evaluated. The level 2 program, which involved a modest amount

of coordination and communications, produced the best overall performance.
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6. Conclusions and Recommendations

Before the conclusions and recommendations of this research are presented, a
review of the research is in order. Beginning in Chapter 1, an overview of parallel
processing as it relates to SDI was presented. The general problem of assignment was
introduced and its importance to the BM/C3 system emphasized. The objectives
and assumptions were stated in order to define a reasonable scope to the research.
Chapter 2 presented a detailed background on parallel processing encompassing the
architectures of parallel processors, the hardware organization of the Intel hypercube
computer, the techniques for developing parallel software implementations, and a

survey of recent parallel implementations developed in the field.

Chapter 3 defined the assignment problem and reviewed some of the important
sequential algorithms developed to solve the assignment problem. The transporta-
tion and the Hungarian algorithms were chosen for comparison and evaluation. The
Hungarian method was chosen as the basis for the parallel implementations. The
divide and conquer strategy was chosen as the high-level parallel strategy for com-
bining the partial problem solutions into an overall solution. In Chapter 4, the
implementations of two sequential and four parallel assignment programs were ex-
plained. The complexity of each implementation was estimated based on high-level
operations. Three of the parallel programs utilized the sequential B& A algorithm
and involved different types of partitioning and interprocessor communications. The
fourth parallel implementation was a parallelized version of the B&A algorithm.
Chapter 5 presented the experimental results and a performance analysis of each
of the implementations. The performance measures of computation time, speédup.

load-balancing, and problem scalability were evaluated.

The remainder of this chapter will focus on the implications of this research

and form some conclusions. It will end with recommendations for applications of
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this research and topics for further research in the area of parallel processing and

N BM/C3.

6.1 Parallel Processing: Lessons Learned

The four parallel implementations completed in this research all served to il-
lustrate certain advantages and disadvantages of parallel processing. The first and
foremost disadvantage is that all problems cannot be solved in parallel. In some cases.
the computational overheads and interprocessor communications overpower any ad-
vantage gained by performing certain operations in parallel. This was illustrated by
the poor perforrnance of the level 4 implementation where several operations were
attempted in parallel. The main problem with the level 4 implementation was the
method used to decompose the problem. The “windows” were used to allow multiple
processors to search for possible assignments and insure that none of those assign-
ments were redundant. There are other methods for storing portions of matrices
in different processors where the data is more easily accessible. But an underlying
problem with the B&A algorithm in particular and the Hungarian method in general
is that a large number of its operations appear to be intrinsically serial in nature.
In the final analysis, the time penalty for parallelizing the operations of the B&A
algorithm was just too great. Much better performance was achieved with the level 2
implementation where minimal amounts of communications were used. In the level 2
implementation. a sequential algorithm was used to solve partitions of the overall
problem in parallel. A small amount of communications also proved to be better
than no communications at all. This was illustrated by the improved assignment re-
sults and minimal time penalty of the level 2 program over the non-communicating

level 1 program.

The size of the problem partitions also play an important role in how well
a parallel implementation performs. In this research. problem solutions utilizing

a larger number of small partitions produced noticeably better results than did a
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small number of larger partitions. One reason for this appears to be a function of

the sequential algorithm used in the node processors. Other algorithms may or may

not yield the same results.

Another problem observed is that the balancing of the computational load
between the processors has an important effect on the performance. The load balance
of the level 1 and level 2 programs appeared to be relatively even. The problem arose
in the level 3 and level 4 programs. The controller processor in level 3 became the
bottleneck to completing the problem solution. After the assign processors completed
one iteration of the assignment algorithm, they remained idle until the controller
processor completed a serial process to determine if further processing was needed.

While the assign processors computed another iteration, the controller processors

remained idle.

In summary, achieving fast and eflicient parallel processing appears to rely on
three fundamental rules: (1) The problem must be partitionable into a number of
independent subproblems. (2) The communications between the processing elements
must be kept to a minimum. (3) The computations performed by each processor must

be approximately equal and simultaneous.

6.2 Areas of Application

The assignment problem solved in this research was very general. In Chapter 3.
the background information on assignment algorithms revealed that many types of
problems can be solved using the same basic techniques. Areas such as circuit board
routing, network flow analysis, and allocation of resources were cited. The applica-
tion of weapon-target assignment algorithms is certainly not limited to the missile
defense system proposed by the SDIO. Smaller-scale battle management systems
could also benefit from the application of parallel assignment algorithms to aid in
speeding up the decision processes. In addition, other functions of battle manage-

ment where fast processing of large amounts of data is necessary could certainly bhe
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performed in parallel. The implementations could be realized using the development

¢ techniques and guidelines presented in this research.

6.3 Recommendations for Further Research

The results of this research show that significant decreases in processing times
are possible by using multiple processors. The performance of the level 2 imple-
mentation illustrated that there needs to be a balance between communications
® and computations. The Intel iPSC used in this research is a loosely-coupled paral-
lel processor machine. A shared-memory machine described in Chapter 2 was not
available for use when this research began, but one has recently been obtained by
the department. A natural extension would be to compare the results obtained in
this research with the results of assignment algorithms implemented on the shared-
memory machine. The reduction in interprocessor message-passing and the sharing
of assignment information between processors through the common memory could

™ prove interesting.

Diferent types of heuristics for reducing the redundant assignments could also
be a topic for further research. The elements of the cost matrix were random val-
- ues in a specified range. Time did not permit experimentation with the effects of
different groups of weapons that have similar opportunities for engaging the same
targets. The method of deriving the cost information could also be expanded and
improved. Instead of random numbers for cost values, further work with simulation
programs could be done t> derive more representative values. The inclusion of sta-
tistical probabilities of target kills based on specific weapons and targets is another
possibility.
In Chapter 4, the assignment process was assumed to be memoryless. The
assignment depended only on the present state of the system and the present in-
put. Expansion of the implementations to include consideration of past assignments

- could yield improved results. In addition, methods t¢ predict possible trends in fu-
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ture assignments could also be beneficial, especially in situations where the weapon

LSS

¢

resources are expected to be limited or very expensive.

D

In closing, this research has demonstrated that parallel processing provides

Y

’-

benefits and creates liabilities. Some of the benefits were demonstrated in the com-

[
-

o

putation times and speedups obtained with the implementations. But the results

‘).

>

were not completely optimal. This is, of course, just one of the liabilities. Each

K
S Sy N

application will possibly involve tradeoffs of one type or another. Further research

-
¢

in the area of parallel algorithms and parallel software implementations can build

on the results presented in this thesis and yield further performance improvements.
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s © Appendix A. The Transportation Method
5 . . :
' In Chapter 3, the transportation method of solving the assignment problem
\J
: :4 was briefly described. This appendix presents the steps of the algorithm in detail
-
e v and points out the similarities between the transportation method and the simplex
N method from which it was derived. Following the algorithm presentation, an example
0 . . . .
-, roblem is given that illustrates how the algorithm operates
2 p g g p
H
i 9 There are two phases to the transportation method. The first phase is to
v formulate the initial basic feasible solution. The second phase checks the initial
{“
= solution for optimality and incrementally improves upon it until it is optimal. There
o
o have been several methods devised to provide the initial solution, but one simple
pTr o
’ approach known as the “northwest corner rule” will be given here [Chu 57].
-
o>
X
O 1-1 Initialize the table by setting all z;; entries to null (no entry) and all ¢,; entries
A
T to the corresponding cost matrix values.
™ p g
<
I
)\ 1-2 Beginning with the cell in the northwest corner of the table, assign the min-
. . . gy
- imum of a, or &,, which correspond to the row availability (resources) and column
SAS
:-_: requirements (requesters) respectively, to the z,; variable. For the assignment prob-
D) d lem, these elements will always be one, so no decision needs to be made. Both q,
P~ and b, are reduced to zero and the r,; element is set to one.
">
. 1-3 Eliminate from further consideration the i th row and j th column containing
® the r,, element just modified. This effectively reduces the dimension of the table. If
¢
}: no rows and columns remain after this elimination, the initial solution is complete.
p L
A Otherwise, repeat Steps 1-2 and 1-3.
2
W
.‘ - When the initial solution is complete, the number of cells assigned will be
'\3 n and they will form a northwest to southeast diagonal in the matrix. However,
\j: one restriction of the transportation method is that the number of assigned cells in |
“ . v . ;
. o an n X m cost matrix must equal n + m — 1. When the number of assigned cells
5
.
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is less than n + m — 1, then the solution is called degenerate. In the assignment
problem, the initial solution is always degenerate since only n cells of the required
n+n —1 are assigned. Additional artificial assignments need to be made to achieve
a nondegenerate solution in order for the second phase of the algorithm to work. A

method of generating these artificial assignments is described following steps:
1-4 Start with an unassigned cell and assign this cell 2 +6 designation.

1-5 A 6-path is a loop that begins and ends on a particular unassigned cell by
alternately assigning +60 and —@ designations to certain assigned cells in the loop.
This 6-path loop is formed by making one or more horizontal and vertical movements.
Except for the initial and final movements from and to the selected unassigned cell.
each movement must be from one assigned cell to another and form a segment with
assigned cells as endpoints by traversing one or more cells per movement. One
subtlety of forming the #-path is that all assigned cells do not need to be included in
the path and some cells may be “skipped over” when forming the path. If a closed
loop can be formed in this fashion, the unassigned cell is termed dependent. The
objective is to identify all independent cells, which are those cells where a closed-loop
6-path cannot be formed. Once all independent unassigned cells are identified, then
a sufficient number of artificial € allocations are made to these cells with the lowest
cost ¢;; to form the required n + n — 1 assignments. An e allocation is defined as a
very small positive number which will be set to zero in the final solution to obtain

the actual allocation [Ign82).

Once the required number of ¢ allocations are made, then the steps of phase

II can be performed as follows:

2-1 Add an additional column and row to the table to contain row indicators R,

and column indicators K.

2-2 Given a non-degenerate initial solution from phase I, assign a zero element to

any of the R, or K, positions.
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2-3 For each cell that has an actual or artificial value for the z,; entry. satisfy the

following expression:

A;=R+K,+¢,=0 (A-1)

The initial zero R; or K, element can be used to determine the missing R, or A,
element. From this initial determination, all other values of R, and K, can be

determined [Ign 82].

2-4 For the remaining unassigned cells, determine the values of A,; using the
corresponding R;, K,, and c;; values. Enter these values of A, into the associated

cell in the upper right hand corner.

2-5 If all of the A,, values are nonnegative for the unassigned cells. then the
assignment is optimal and the algorithm terminates. If any A,, values are negative.

then the solution can be improved and step 2-6 must be performed.

2-6  Select the unassigned cell with the most negative A, value. In the case of a
tie in A;; values, choose one of the most negative A,; cells arbitrarily. This step is
analogous to the simplex method of selecting a non-basic variable to enter into the
basic solution set. The present assignment must be changed in order to include this
new variable, which requires that one of the present assigned cells (basic variables)

be removed. Go to Step 2-7.

2-7  Construct a 6-path as described in step 1-5. beginning with the cell having the

most negative A,; value. However, this time the objective is to form a closed-loop

6-path.

2-8 The results of step 2-7 will yield some cells with +8 designations and others
with —@ designations. The cells with +8 designations will become assigned cells with
z,, values of one and all -8 cells become unassigned (no entry for z,,). This step
is the same as the simplex method of selecting basic variables that are to leave the

basic solution set.
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2-9 If the new assignment obtained in Step 2-8 is degenerate, perform steps 1-4
and 1-5 to add the required number of ¢ allocations to form a nondegenerate solution.

Then repeat steps 2-2 to 2-8 until an optimal solution is indicated in step 2-5.

As an example of the transportation algorithm just described, consider the

following cost matrix:

[ 743 8]
55 49
Ao = (A=-2)
279 2
[ 10 31 6|

Using the ¢;; values from this matrix, the initial transportation table can be

formed as shown in Table A-1. The null z,; values are indicated by a “-".

Table A-1. Initial Transportation Table

requester — | 1 2 3 4 a; |
resource |
1 - 1- - - 1
7 4 3 8
2 - - - - 1
5 5 4 9
3 - - - - 1
2 7 9 2
3 - - I- ]
10 3 1 6
L &= [rv Jv J1 1 [ 4]

The initial basic feasible solution resulting from steps 1-2 and 1-3 of the trans-
portation algorithm is shown in Table A-2. The a, column and the b, row will be

omitted in later representations since they will not be modified.
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Table A-2. Initial Basic Feasible Solution

requester — |i 1 2 3 4 a; |
resource |
1 1 - 1- - 0
7 4 3 8
2 - 1 - - 0
5 5 4 9
3 - 1 - 0
2 7 9 2
4 - - 1 0
10 3 1 6
b, — O 0 Jo Jo [ 0 |

One possible result of performing steps 1-4 and 1-5 is given in Table A-3. All
unassigned cells in Table A-2 are independent. Three additional assignments are
needed to form the required 4 + 4 - 1 = 7 assignments. The three independent
cells with the lowest c;; costs were selected and given the € allocations as shown in
Table A-3. One note of explanation about the choice of € assignments is warranted.
The assignment of an € to cell z4; instead of 234 was necessary because after cell z43
was assigned, the 0-path for cell z3, was no longer independent. This means that

the lowest cost unassigned cells are not always given the ¢ allocations.

Now that a nondegenerate basic solution has been obtained, phase II of the
transportation method can be entered to determine if this initial solution is optimal.

If the assignment is not optimal, then it will be modified to improve it.

As required by Step 2-1, the additional R; column and K; row are added to the
table. An initial zero element is arbitrarily assigned to the R4 position by Step 2-2
and is shown in Table A-4. Any of the other positions could have been chosen for

this initial zero element.

The first iteration of step 2-3 is shown in Table A-5 where the A;; = R+ 1 +c,

expression is satisfied for the assigned cells in row 4. There are several iterations
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Table A-3. Initial € Assignments

requester — || 1 2 3 4
resource |

1 1 - - -

7 4 3 8

2 - 1 - -

5 5 4 9

3 € - 1 -

2 7 9 2

4 - € € 1

10 3 1 6

Table A-4. Initial Row Indicator R; Assignment

requester — || 1 2 3 4 R; |
resource |
1 1 - - -
7 4 3 8
2 - 1 - -
S 5 4 9
3 € - 1 -
2 7 9 2
4 - € € 1 0
10 3 1 6
F= T 1 1 [ [
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required to formulate the remaining R; and K elements. One possible sequence is

shown in Tables A-6 and A-T.

Table A-5. Calculation of Additional R; and K; Values

requester — |[ 1 2 3 4 R, |
resource | s
1 1 - - - I
7 4 3 8
2 - 1 - -
5 5 4 9
3 € - 1 -
2 7 9 2
4 - € € 1 0
10 3 1 6

Table A-6. Additional R, and K, Values

requester — || 1 2 3 4 R; |
resource |
1 [ - - -
7 4 3 8
2 - 1 - -
5 5 4 9
3 € - 1 - -8
2 7 9 2
4 - € € 1 0
10 3 1 6

(K- 6 [3 1 & [ ]

Once all the R; and K values are determined, the A,; values can be calculated
for the unassigned cells and entered into the associated cells. Using the values of R,

and K; from Table A-7, Step 2-4 yields the results shown in Table A-&.
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Table A-7. Complete R, and K, Values

requester — | 1 2 3 4 R, |
resource |
1 1 - - - -13
7 4 3 8
2 -~ 1 - - -2
S 5 4 9
3 € - 1 - -8
2 7 9 2
4 - € € 1 0
10 3 1 6
(K= 16 [3 [T (6] ]

Table A-8. A;, Values for Unassigned Cells

requester — || 1 2 3 4 R, |
resource |
1 1 - -12]- -11!- -11] -13
7 4 3 8
2 ~ +9 1 - 41 |- 41 -2
5 5 4 9
3 € - 411 - -121 -B
2 7 9 2
4 - 416 ]€ € 1 0
10 3 1 6
C K=o o [5 T+ 1o 1
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From Step 2-5, since all of the A,, values are not nonnegative, the assignment
is not optimal and can be improved by performing Step 2-6. The most negative 4,,
value in Table A-8 is -12, which is associated with the cells r,; and r34. Ties in the
negative values may be broken arbitrarily, so z34 is chosen. Now the 8-path must be
constructed by using Step 2-7 so that the assignments may be shuffied to bring the

r34 variable into the basic solution. The resulting #-path is shown in Table A-9.

Table A-9. 8-Path for Exchange of Variables

requester — | 1 2 3 4 R, |
resource |
1 1 - -12]- -11]- -117 -13
7 4 3 8
2 - +9 |1 - +1 |- +1 -2
5 5 4 9
3 € - -4 11 - -12 8
2 7 9 —-8|2 46
4 - +16 | ¢ € 1 0
10 3 1 +60|6 -4

K — 6 |3 {1 |6 [ ]

Now, the r,, values of the cells in the #-path must be modified to form the new

assignment shown in Table A-10.

The new assignment is degenerate since there are only six assignments and
seven are required. Performing Steps 1-4 and 1-5 yields a possible nondegenerate

basic solution shown in Table A-11.

The presentation of next iteration of phase II will slightly abbreviated. but tle
intermediate results of each step will be shown. One possible result of performing

Steps 2-2 and 2-3 is shown in Table A-12.

Performing Step 2-4 results in following Table A-13. Since all A, values in
Table A-14 are not nonnegative, the solution can be improved upon further. The

most negative A,; value in Table A-13 is -2 (Az;). A 8-path beginning with this cell
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Table A-10. New Assignment from First Iteration

requester — || 1 2 3 4 R, |
resource |
1 1 - - -
7 4 3 8
2 - 1 - -
5 5 4 9
3 € - - 1
2 7 9 2
4 - € 1 -
10 3 1 6

Table A-11. Second Nondegenerate Basic Solution

requester — | 1 2 3 4 R; |
resource |
1 1 - € -
7 4 3 8
2 - 1 - -
3 5 4 9
3 € - - 1
2 7 9 2
4 - € 1 -
10 3 1 6
L K~ ] | J
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¢
b
v Table A-12. Second Set of R, and K, Variables
requester — | 1 2 3 4 R, |
resource |
1 1 - € - -2
7 4 3 8
- 2 . T |- |- 2
5 S 4 9
3 € - - 1 +3
2 7 9 2
4 - € 1 - 0
° 10 |3 |1 |6
[ K, — 5 |3 |1 [-5 |
- is shown in Table A-14 and traverses the sequence of cells Ay, Ay, Aga. Agze Dy,
A,,. and Ay to form a closed loop.

Table A-13. Second Set of A;; Values

¢ requester — |l 1 2 3 4 R, |
resource l__
B - 17e — 1] -2
7 4 3 8
@ 2 - 211 - +1 - +2} -2
5 5 4 9
3 € - +71- 41111 +3
2 7 9 2
4 - +51 ¢ 1 - 41 0
> 10 3 1

~
- |
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Table A-14. Second 8-Path for the Most Negative A,

requester — | 1 2 3 4 R, |
resource |
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<
The assignment resulting from reassigning the resources from the —6 cells 1o
v the +6 cells is shown in Table A-15. Since there are only five assignments in this
new table, two additional € allocations must be made using Steps 1-4 and 1-5. Oune
possible set of ¢ allocations is shown in Table A-16.
|
Table A-15. Second Iteration Assignment
requester — |i 1 2 3 4 R, |
resource |
° 1 - 1- [1 |-
7 4 3 8
2 1 S I
5 5 4 9
3 € - - 1
- 2 7 9 2
3 - T |- |-
10 3 1 6
L K= [ 1 T [T [ 1]
¢
Table A-16. Third Nondegenerate Basic Feasible Solution
requester — | 1 2 3 4 R, |
[*Y resource |
1 - - 1 |-
7 4 3 8
2 1 - € -
5 3 4 9
- 3 € - - 1
2 7 9 2
4 - 1 € -
10 3 1 6
] L= T [T T T T 1
After completing the ¢ allocations, the new R, and K, elements cau be deter
mined. One possible arrangement is shown in Table A-17.
L




e b
h .
s A s n

a €
v
e Table A-17. Third Set of R, and K, Variables
N requester — [ 1 2 3 4 R, |
> resource |
" 1 - ~ J1 ]- 2
o 7 4 3 8
M 2 T [~ e |- 3
K. 5 5 4 9
N 3 € ~ - 1 0
N 2 7 9 2
\ 4 - 1 € - 0
‘ * 10 3 1 6
o L A— 2 [3 [1 ]2 | |
7
",
T P After determining all the R, and K, the A, values for the unassigned cells can
K be calculated. The results in Table A-18 show that A;, and A,; are still negative.
>
N which requires another shuffle of the assignment using the 8-path of Steps 2-6 and
N
. 2-7. Possible results of performing these steps are given in Table A-19.
¢ K4
‘u'
Lo,
’ Table A-18. Third Set of A,, Variables
”
” requester — | 1 2 3 4 R, |
t @ resource |
1 - +3]- 11 ' )
. 7 4 3 8
.~ 2 1 - -lte - +4] -3
; 5 5 4 9
py 3 € - 4 |- +8]1 0
5 2 7 9 2
) 4 - 4811 € - +4] 0
:"- 10 3 1 6
\}
3 Ch= T2 (3 [+ (7 [ |

Reassigning the resources according to the #-path constructed in Table A-

19 and assigning new ¢ allocations results in the assignment shown in Table A-20.
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@ Table A-19. Third 8-Path for the Most Negative A,
requester — || 1 2 3 4 R, |
resource |
1 [[- +3[- 11 — +4] -2
7 4 46|13 -018
o 2 1 = 1 e - +4| -3
5 5 4 9
3 € - +4 (- +8]1 0
2 7 9 2
4 - +8 1 € - 44 0
® 10 3 —6|1 +6ls
K- [-2 [3 [t [2 [ ]
v Possible results of a third iteration of Steps 2-2, 2-3, and 2-4 are represented by
Table A-21.
Table A-20. Third Iteration Assignment
v requester — | 1 2 3 4 R, |
resource |
1 - 1 € -
) 7 4 3 8
2 1 - € -
5 5 4 9
3 € - - 1
2 7 9 2
4 - - 1 -
10 3 1

Upon inspecting the A,; values in Table A-21, all are found to be nonnega-
tive. This means an optimal solution has finally been obtained. After setting the «

allocations to zero, Table A-22 summarizes the optimal assignments.
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Table A-21. Third Iteration R, K;, and A,, Values

requester — |l 1 2 3 4 R, |
resource |
1 - 431 € - 4| +1
7 4 3 8
° 2 I — 0 e 4] 0
) ) 4 9
3 € - +5|- +87]1 +3
2 7 9 2
4 - +81- +111 - +4 +3
- 10 3 1 6
LK~ [ [-5 [+ S
v
: @
Table A-22. Results of Transportation Method
: Resource | Requester
1 2
2 1
3 4
4 3
‘!-
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The total cost of the assignment can be obtained by summing the associated

¢, values of the assigned cells and yields

- 5+4+1+2=12

4 This is an improvement over the initial assignment from Table A-2. which had

a value or cost of

T+35+9+4+6=27

This completes the example of the transportation method of solving the a~-

. signment problem.
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Appendix B. The Hungarian Method

In Chapter 3, the general approach of Hungarian method for solving the as-
signment problem was described. In this appendix, a detailed explanation of those
steps will be presented. Then an example problem will be used to illustrate how the

algorithm operates.

In the presentation that follows, reference to the rating matrix refers to the

matrix described in Section 3.1.2. The specific steps of Hungarian method are given

in the following:

1. Find the minimum element in each row of the rating matrix Ay and subtract
that element from each element of that row. Next, find the smallest element in each
column and subtract that element from each element of that column. The resulting
matrix will now contain at least one null element in each row and column. This new.

modified matrix will simply be referred to as the matriz in later references.

2. Locate any row in the matrix that contains only one null element and suitably
mark the null element’s position. Cross out all other null elements in the column
that contains this marked position. Repeat this process until no more rows can be
found with only one null element that has not been marked or crossed out. If all rows
contain a marked position, then these positions constitute the optimum assigninent.
The total cost of the assignment can be found by summing the individual costs of
the corresponding positions in the original matrix Ag. Otherwise, if all rows do not

contain a marked position, then go to step 3.

3. Locate a column in the matrix from the previous steps that contains only
one null element. Mark this position and cross out all other null elements in the
row that contains this newly marked position. Repeat this process until no more

such columns can be found. If every column contains a marked element. then these
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\f. marked positions form the optimum assignment and the cost can be calculated as in
'.' & step 2. Otherwise, go to step 4.
. jf_: 4. Since an optimal solution has not yet been reached, more null elements must be
generated. First, the minimum set of lines that contain or cover all of the null ele-
\ o ments in the matrix must be constructed. By disregarding the crossed out elements
and retaining the marked elements from steps 2 and 3, the following procedure can
_ Jv_: be used to draw this minimum set of lines:
: 4.1 Mark the rows that do not contain any marked elements.
< = 4.2 Mark the columns that have an unmarked null element in a marked row.
j 4.3 Mark the rows that have a marked null element in a marked column.
J 4.4 Repeat steps 4.2 and 4.3 until no more rows or columns can be marked.
I' - 4.5 Draw lines through all unmarked rows and all marked columns.
o
i 5.  All elements with lines drawn through them are “covered” and those without
~ - lines through them are “uncovered.” Find the smallest uncovered element in the
¥ - matrix and subtract this element from all uncovered elements in the matrix. Then
add this smallest element to all covered elements that are located at the intersections
N

of the lines drawn in step 4.5 to form a new matrix. If all elements of the matrix are

covered, then this indicates the optimum assignment has been reached and exists in

the set of null elements in the present matrix.

¢

1

o,

-2 This step is a result of the Konig-Egervary theorem on the minimum set of
hr JN

L3 covering lines [Kre68]. Its objective is to generate additional independent zero el-
.::?': ements to be covered by lines in later iterations of the algorithm. As defined in
‘:: : Section 3.2.4, independent means that no other zero elements are present in the
. : same row and column. With N available resources, at least N independent zero
_’::: elements need to be included in the set of zero elements used to make the optimal
j{:f assignment. By performing Step 5, the cost of adding these additional zero elements
:-‘_ to the solution set is minimized. This step reduces all of the uncorered elements by
o
o

h
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the same minimum uncovered amount, increases the elements covered twice by the
same amount, and does not change the elements covered only once. This procedure
is very similar to the simplex method’s exchange of basic and nonbasic variables

explained in Sections 3.2.1, 3.2.2, and 3.3.1.
6. Repeat steps 2 through 5 until the optimum assignment is found.

As an example of Hungarian method just presented, again consider the cost

matrix from Appendix A, which is repeated here for convenience:

7 43 8]
55 49

A = (B — 6
279 2
(10 3 1 6 |

The matrices referred to in the algorithm will be represented as tables in the
following presentation. Using the steps of the Hungarian algorithm, the following
tables illustrate the procedure. First, the minimum row elements of 4, are identified
and subtracted to yield the following Table B-1. Then the minimum column elements

of Table B-1 are identified and subtracted to form Table B-2.

Table B-1. Results of Subtracting Minimum Row Elements

resource — [[1 (213 |4
requester |

1 4]1]0]5
2 111[(0]5
3 05710
4 912015
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Table B-2. Results of Subtracting Minimum Column Elements

resource — || 1123 ]4
requester |

1

-~ Ol o

OO | v
— e OO
| Of U]

2
3
4

<

In steps 2 through 5. a box will be used to mark the single null elements in the

rows or columns and an ‘X’ to cross out nu!l elements. Performing the procedure of

Step 2 yields Table B-3.

Table B-3. Independent Null Row Elements

resource — {1 | 2 [ 3 |4
requester | ]
1 4 [[o]T e [5]
2 1{8 [ 8 |5
3 04| 710
4 ERIOIE

Rows 2 and 3 do not contain a boxed element, so the optimum assignment has

not been reached. Step 3 must now be performed and one possible result is shown

in Table B-4.

One note of explanation is needed about Table B-4. The null element boxed in row 3.

column 1 was not the only choice. The null element in row 3, column 4 could have

been boxed and the null element in row 3, column 1 crossed out. Recall that the set
of null elements contains at least one optimal assignment and possibly more than

one.

Checking the columns containing boxed elements in Table B-4 shows that col-

urun 4 does not contain a boxed element, so an optimum assignment has not been
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' ) Table B-4. Independent Null Row and Column Elements

My resource — || 1 213 1|4

e requester |

1o 1 4 [[o]Ta [s

" 2 18 [®” |5

' 3 [o]j4]7 |8

¢ 4 9 {1 [lo]]5

i

L

L4

4

R @ reached. This requires the generation of more null elements. so Step 4 must be

. taken. Only one row does not contain a boxed element. and Step 4.1 yields Table B-

?: 5. Checking for columns with null elements in a marked row as required in Step 4.2

'.:f results in Table B-6.

>

- Table B-5. Checked Rows Without Boxed Null Elements

\ resource » || 1 | 2 | 3 4| Row

X requester | Checks
( L 4

1 4 {[0]{ 0[5

N 2 T[00]5] V

. 3 loj] 4 [7]o0

. 4 9 [ 1 [[o]]5
= 9 Column

N Checks

N Now. using Step 4.3 requires rows 1 and 4 to be marked since they contain

- a boxed null element in a marked column. The results are shown in Table B-7.

- Rechecking Steps 4.2 and 4.3, as required by Step 4.4, reveals that no other rows or

-

- columns can be marked. Now Step 4.5 can be followed, which calls for lines to be
Lot .

! drawn through all unmarked rows and all marked columns to form the set of covering
: lines. The covering lines are illustrated by the asterisks at either end of a row or
:: column in the following Table B-8.

!
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o Table B-6. Checked Columns with Null Elements in Checked Rows

resource —» f| 1 | 2 |1 3 |4| Row
requester | Checks
1 'BIDIERE
. 2 1|0 0|5 Vv
v 3 o] 417 Jo
4 9 |1 ][ol]s
Column
Checks NARY
-
Table B-7. Checked Rows with Boxed Null Elements in Checked Columns
resource — || 1 21314 Row
» requester | Checks
1 4 [Jo]{ofs5] V
2 1[0]0]5 Vv
3 foJfaf7]o
4 9|1 |lo]]5] V
e Column
Checks NARY
L

Table B-8. A Minimum Set of Covering Lines

resource — (|1 12|34
requester |
1 410015
2 1{0]01}5
e * % 3 01470 * *
- 2 9[1]0]5
*
*
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Step 5 requires that the minimum uncovered element be subtracted from each
uncovered element and added to the elements that lie at the intersections of the
covering lines. From the previous diagram, the minimum uncovered element is 1.

Subtracting this from the proper elements results in Table B-9.

Table B-9. New Table From Step 5

resource —= || 112)3}4
requester |

1 310014
2 0jofol4
3 05810
4 8111014

Performing step 2 again yields Table B-10. Now there is a boxed element in
each row of Table B-10, so the optimum assignment has been reached. In this case.
the resulting assignments are shown in Table B-11. Note that this table is identical

to Table A-23 obtained in the transportation method example in Appendix A.

Table B-10. Independent Null Row and Column Elements

resource — || 1 21314
requester |

1 3 [Jo]Ta ]4
2 [0f[ 8 [8 | 4
3 8 | 5|8 |[o]
4 8 |1 []o]] s

The cost of this assignment shown in Table B-11 can be obtained by summing

the corresponding costs in the original rating matrix Ao which gives

3+44+241=12

128
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Table B-11. Results of Hungarian Method

Resource | Requester
1 2
2 1
3 4
4 3

The sum of all the minimum elements found in steps 1 and 5 should equal this
assignment cost since these minimum elements represent the costs associated with

each intermediate assignment. Summing these values yields
3+4+4+24141+1=12

The cost results of the Hungarian method are also identical to the transporta-
tion example, as expected. The example just presented was a minimization of the
assignment cost. It could have been transformed into a maximization of the assign-

ment cost by modifying the original rating matrix as follows:

0.1 Find the maximum element in the rating matrix. Create a new matrix
Co = |[lciy{| by individually subtracting each element in the cost matrix from the

value of the maximum element and store the difference in the corresponding location

in Coi

¢; = Maz(ay;) — a;, (B-1)
1]

One other variation would be the case where the number of requesters and
resources were not equal. In this case, the rating matrix would not be square as it
must be for the original Hungarian algorithm to work. This can be taken care of
by adding “dummy” resources or requesters with rating values of zero [Ign82]. This

completes the example and discussion of the Hungarian method.

129

LI

e am ettt At o
MR "'\’:"-‘l"‘\"\' A

“» .




¢ 8 A K& &

-t

[N
s aante

.
b

-
CALAF

xs 8 3

at b

RO T s A

(L‘l*a-\'&\‘.

T A

Appendix C. Additional Results

This appendix lists all of the remaining results of the implementations de-

scribed in this report. All entries marked with a * are more than 10% in error due

to the accuracy of the timing function of the iPSC.

Table C-1. Timing and Speedups of the Level 1 Implementation (32 Wpns)

[ Weap [ Targ | Processors | Time (sec) | Sper | Ssort |

32 32 1 1.2750 1.00 1.84
32 32 2 0.2210 5.77 10.64
32 32 4 0.0523 24.38 44.97
32 32 8 *0.0245 *52.04 *96.00
32 32 16 *0.0116 | *109.91 | *202.76
32 32 32 *0.0061 | *209.02 | *385.57
32 160 1 0.9100 1.00 23.84
32 160 2 0.4320 2.11 50.22
32 160 4 0.2138 4.26 101.46
32 160 8 0.1070 8.50 202.74
32 160 16 0.0551 16.52 ; 393.70
32 160 32 *0.0285 *31.93 | *761.16
32 320 1 1.7090 1.00 29.88
32 320 2 0.8450 2.03 60.78
32 320 4 0.4215 4.05 121.13
32 320 8 0.2135 8.00 239.14
32 320 16 0.1094 15.62 | 466.70
32 320 32 0.0572 2988 | 892.60
130
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Table C-2. Timing and Speedups of the Level 1 Implementation (64 Wpns)

[ Weap | Targ | Processors | Time (sec) 1 SBer | Ssort |
64 64 1 4.1830 1.00 3.96
64 64 2 0.6450 6.49 25.71
64 64 4 0.2143 19.52 77.37
64 64 8 0.0959 43.62 172.90
64 64 16 *0.0447 *93.58 | *370.94
64 64 32 *0.0224 | *186.74 | *740.22
64 320 1 3.5310 1.00 37.88
64 320 2 1.6940 2.08 77.93
64 320 4 0.8408 4.20 157.01
64 320 8 0.4225 8.36 312.46
64 320 16 0.2139 16.51 617.19
64 320 32 0.1095 32.25 { 1205.62
64 640 1 6.7820 1.00 —_
64 640 2 3.3800 2.01 —
64 640 4 1.6943 4.00 —
64 640 8 0.8515 7.96 —
64 640 16 0.4308 15.74 —
64 640 32 0.2200 30.83 —
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[ Weap | Targ | Processors | Time (sec) | Spar | Ssore |
128 128 1 14.5550 1.00 6.94
128 128 2 2.2250 6.54 45 40
128 128 4 0.8055 18.07 125.40
128 128 8 0.3605 40.37 280.20
128 128 16 0.1759 8275 574.25
128 128 32 0.0871 | 167.11 | 1159.71
128 640 1 13.5720 1.00 —
128 640 2 6.7240 2.02 —
128 640 4 3.3478 4.05 —
128 640 8 16771 8.09 —
128 640 16 0.8424 16.11 -
128 640 32 0.4263 31.83 —
128 | 1280 1 26.8220 1.00 —
128 | 1280 2 13.3425 2.01 —
128 | 1280 4 6.6820 4.01 —
128 | 1280 8 3.3503 8.01 —
128 | 1280 16 1.6848 15.92 —
128 | 1280 32 0.8517 31.49 -

Table C-3. Timing and Speedups of the Level 1 Implementation (128 Wpns)

Table C-4. Timing and Speedups of the Level 2 Implementation (32 Wpux~i

N aZ AN

ﬁ\'eap_[ Targ I CntrllProc/Cntrl l Tot Proc ] Time (sec) ] SeatL I Scere
32 32 2] 2 6 *0.036 | *32.42 *65.33
32 32 2 4 10 *0.024 *53.13 *9R (U
32 32 2 8 18 *0.030 *42.50 *78.40
32 32 4 2 12 *0.006 | *212.50 *392.00
32 32 4 4 20 *0.014 *91.07 *168.00
32 32 8 2 24 *0.004 | *318.75 *588.00
32 160 2 2 6 0.117 7.78 185.41
32 160 2 4 10 0.068 12.38 319.01
32 160 2 8 18 0.069 13.19 31439
32 160 4 2 12 *0.009 | *101.11 | *241033
32 160 4 4 20 *0.035 *26 .00 *619 80
32 160 8 2 24 *0.005 | *182.00 | *4338 60
32 320 2 2 6 0.205 8.34 249 06
32 320 2 4 10 0121 1412 421.96
32 320 2 8 18 0.093 18.38 549.00
32 320 4 2 12 *0.036 *47.47 | *1418.25
32 320 4 4 20 0.062 27.56 823 50
32 320 R 2 24 *0.016 | *106.81 | *3191 06
N, N ST -
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Table C-5. Timing and Speedups of the Level 2 Implementation (64 Wpns)
hd [ Weap | Targ [ Cntrl [ Proc/Cutrl | Tot Proc | Time (sec) | Sper | Ssort |
64 64 2 2 6 0.244 17.14 67.95
64 64 2 4 10 0.160 26.14 103.63
64 64 2 8 18 0.129 32.43 128.53
64 64 4 2 12 0.029 | 144.24 571.76
@ 64 64 4 4 20 0.060 69.72 276.35
64 64 8 2 24 0.010 | 418.38 | 1658.10
64 320 2 2 6 0.902 3.91 146.36
64 320 2 4 10 0.487 7.25 271.08
: 64 320 2 8 18 0.284 12.43 464.85
64 320 4 2 12 0.395 8.94 334.22
@ 64 320 4 4 20 0.256 13.79 515.69
J 64 320 8 2 24 0.176 20.06 750.09
64 640 2 2 6 1.813 3.74 —
64 640 2 4 10 0.925 7.33 —
64 640 2 8 18 0.530 12.79 —
) 64 640 4 2 12 0.899 7.54
. 64 640 4 4 20 0.476 14.24 -
« 64 | 640 8 2 24 0451 | 1503 —
Table C-6. Timing and Speedups of the Level 2 Implementation (128 Wpn-:
v L\\'eap] Targ | Cntrl | Proc/Cntrl | Tot Proc | Time (sec) | Spar | Ssore |
128 128 2 2 6 1.009 14.43 { 100.11
128 128 2 4 10 0.527 2762 | 19167
128 128 2 8 18 0.339 40.54 | 281.37
128 128 4 2 12 0.340 4281 | 297.09
128 128 4 4 20 0.244 59.65 | 413.98
o 128 128 B 2 24 0.132 | 110.27 | 765.24
128 640 2 2 6 3.668 3.70
128 640 2 4 10 1.903 713
128 640 2 8 1R 1.033 13.14
128 640 4 2 12 1812 7.49
128 640 4 4 20 0.932 14.56 —
128 640 8 2 24 0.902 15.05 -
~ 128 | 1280 2 2 6 8378 | 320
128 | 1280 2 4 10 4283 6.26
128 | 1280 2 8 1R 2.237 11.99
128 | 1280 4 2 12 4.195 6.39 -
128 | 1280 4 4 20 2.145 12.50
. 128 | 1280 g 2 24 2.122 12 .64
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Table C-7. Timing and Speedups of the Level 3 Implementation (32 Wpns)

Aallar i Bt At g et aadh Sod Bad Sad Sl S atd b b B Y ANt

[ Weap | Targ | Cntrl | Proc/Cntrl | Tot Proc | Time (sec) | Sgar | Ssort |

32 32 2 2 6 0.1500 8.50 15.68
32 32 2 4 10 0.3360 3.79 7.00
32 32 2 8 18 0.9200 1.39 2.56
32 32 4 2 12 0.5158 2.47 4.56
32 32 4 4 20 0.6073 2.10 1.12
32 32 8 2 24 0.3403 3.75 6.91
32 160 2 2 6 0.2955 3.08 73.41
32 160 2 4 10 0.5440 1.67 39.8R
32 160 2 8 18 0.8465 1.08 25.63
32 160 4 2 12 0.5275 1.73 4].12
32 160 4 4 20 0.6650 1.37 32.65
32 160 8 2 24 0.3976 2.29 54.56
32 320 2 2 6 0.4940 3.46 | 103.35
32 320 2 4 10 0.7965 215 64.10
32 320 2 8 18 1.0390 1.64 49.14
32 320 4 2 12 0.6968 2.45 73.27
32 320 4 4 20 0.8420 2.03 60.64
32 320 8 2 24 0.5058 338 | 100.94

Table C-8. Timing and Speedups of the Level 3 Implementation (64 Wpns)

[ Weap [ Targ | Crtrl | Proc/Cntrl

[ Tot Proc | Time (sec) | Spar | Ssort |

64 64 2 2 6 0.4485 9.33 36.97
64 64 2 4 10 0.9235 4.53 17.95
64 64 2 8 18 1.7630 2.37 9 40
64 64 4 2 12 1.0165 4.12 16.31
64 64 4 4 20 1.1958 3.50 13.87
64 64 8 2 24 0.6671 6.27 24 .86
64 320 2 2 6 1.1194 315 (11793
64 320 2 4 10 1.9175 1.84 68.85
64 320 2 8 18 2.6600 133 49.63
64 320 4 2 12 1.7131 2.06 77.06
64 320 4 4 20 2.0381 1.73 64.77
64 320 8 2 24 1.1914 296 | 11081
64 640 2 2 6 2.0045 3.38 -
64 640 2 4 10 3.2400 2.09 —
64 640 2 8 18 4.1520 1.63 —
64 640 4 2 12 2.8298 2.40 -
64 640 4 4 20 3.4108 1.99 —
64 640 8 2 24 2.0333 3.34 —
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Table C-9. Timing and Speedups of the Level 3 Implementation (12X Wy«

[ Weap [ Targ | Cntrl [ Proc/Cntrl

[ Tot Proc | Time (sec)j SE&TI -‘ism»x?

128 [ 128 2 2 6 15355 948 [ 65 7Ta )
128 128 2 4 10 3.0785 4731 32R1
128 128 2 8 18 56275 259 | 1795
128 128 4 2 12 3.3035 4 4] 30 5%
128 128 4 4 20 3.8353 3RO | 26 34
128 128 8 2 24 2.1064 691 | 47 Y5
128 640 2 2 6 4.5330 2.99 -
128 640 2 4 10 7.8575 1.73

128 640 2 8 18 11.3755 114

128 640 4 2 12 7.2560 1 RY

128 640 4 4 20 8.3495 1.59

128 640 8 2 24 4.9200 276

128 | 1280 2 2 6 8.7008 308 -
128 | 1280 2 4 10 14.9796 179

128 | 1280 2 8 18 20.3846 1.32

128 | 1280 4 2 12 13.4023 200

128 | 1280 4 4 20 15.3583 175

128 { 1280 8 2 24 8.8406 3.00 —

Table C-10. Timing and Speedups of the Level 4 Implementation 132 W«

| Weap | Targ | Processors | Time (sec) | Spay | Ssort |

32 32 2 1.641 0.78 1.43
32 32 4 1.713 0.74 137
32 32 8 1.934 0.66 122
32 32 16 3.918 033 060
32 32 32 12.798 0.10 0.18
32 160 2 1.513 0.60 | 14.34
32 160 4 1.285 071 | 1688
32 160 8 2,176 0.42 9.897
32 160 16 7.354 0.12 2.95
32 160 32 21327 0.04 1.02
32 320 2 2.340 073 | 21.82
32 320 4 1.461 117 ] 3495
32 320 8 2.091 082 2442
32 320 16 7.654 0.28 6.67




e
Table C-11. Timing and Speedups of the Level 4 Implementation (64 Wpns)
® { Weap | Targ | Processors | Time (sec) | Spar | Ssort |
64 64 2 2.594 1.61 6.39
64 64 4 2.540 1.65 6.53
64 64 8 3.296 1.27 5.03
64 64 16 4 589 0.91 3.61
64 64 32 12.463 0.34 1.33
L 64 [ 320 2 5884 | 0.60 | 22.44
64 320 4 3.427 1.03 | 38.52
64 320 8 4.022 0.88 | 32.82
64 320 16 9.100 0.39 | 14.51
64 320 32 26.155 0.14 5.05
64| 640 2 9585 | 141 —
® 64 640 4 6.020 | 1.3 —
64 | 640 8 6106 | 111] —
64 | 640 16 11203 | o061 | —
s Table C-12. Timing and Speedups of the Level 4 Implementation (128 Wpns)
| Weap | Targ | Processors | Time (sec) | Spar | Ssort |
128 128 2 17.808 0.82 5.67
128 128 4 15.433 0.94 6.55
128 128 8 16.619 0.88 6.08
128 128 16 13.246 1.10 7.63
® 128 | 128 32 24843 | 059 | 4.07
128 | 640 2 20321 067 —
128 | 640 4 11739 | 116 | —
128 | 640 8 11865 | 114 | —
128 | 640 16 16579 | 082 | —
128 | 1280 ) 33239 | 081] —
¢ 128 | 1280 4 22152 | 121 —
128 | 1280 8 18657 | 144 —
128 | 1280 16 2661 | 101 —
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Table C-13. Assignment Results of the Level 1 Implementation (32 Wpn«1

[ Weap | Targ | Processors [ Cost | % Effective | % Wasted |
32 32 1] 2660.8 100.0 0.0
32 32 2117664 74.4 26.5
32 32 4 | 1550.4 67.5 32.5
32 32 8 | 1528.0 65.6 34.4
32 32 16 | 1476.8 64.4 35.6
32 32 32 | 14736 63.1 36.9
32 160 1 384.0 100.0 0.0
32 160 2 380.8 93.8 6.2
32 160 4 376.0 92.5 7.5
32 160 8 376.0 913 8.7
32 160 16 376.0 90.6 9.4
32 160 32 376.0 90.6 94
32 <20 1 278.4 100.0 0.0
32 320 2 276.8 95.0 5.0
32 320 4 276.8 93.8 6.2
32 320 8 276.8 93.8 6.2
32 320 16 276.8 93.8 6.2
32 320 32 276.8 93.8 6.2

Table C-14. Assignment Results of the Level 1 Implementation (64 Wpns)

[ Weap | Targ | Processors | Cost | % Effective | % Wasted |

64 64 11 2016.0 100.0 0.0
64 64 2112144 75.6 244
64 64 4| 13376 713 28.7
64 64 8 | 1310.4 69.7 30.3
64 64 16 | 1296.0 68.1 31.9
64 64 32 | 1289.6 67.5 32.5
64 320 1 550.4 100.0 0.0
64 320 2 547.2 93.4 6.6
64 320 4 545.6 90.0 10.0
64 320 8 545.6 89.1 109
64 320 16 545.6 88.8 11.2
64 320 32 545.6 88.8 11.2
64 640 1 486.4 100.0 0.0
64 640 2 486.4 928 7.2
64 640 4 486.4 913 8.7
64 640 8 486.4 89.7 103
64 640 16 486.4 88.4 11.6
64 640 32 486 4 878 12.2
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- Table C-15. Assignment Results of the Level 1 Implementation (128 Wpns)
N @ [ Weap | Targ | Processors | Cost | % Effective | % Wasted |
o 128 ] 128 121584 100.0 0.0
- 128 | 128 2116688 74.4 25.6
N 128 | 128 4| 16016 68.1 31.9
: 128 | 128 8 | 1566.4 65.2 348
T 128 | 128 16 | 1558.4 64.1 35.9
& 128 | 128 32 | 1552.0 63.8 36.2
3 128 | 640 1| 992.0 100.0 0.0
128 | 840 2| 9%0.4 90.6 9.4
128 | 640 4| 990.4 85.0 15.0
- 128 | 640 8| 9904 82.7 17.3
o 128 | 640 16 | 990.4 81.7 18.3
d ® 128 | 640 32 | 990.4 81.1 18.9
128 | 1280 1| 9376 100.0 0.0
128 | 1280 2| 936.0 89.7 10.3
128 | 1280 4] 936.0 85.3 14.7
128 | 1280 8| 936.0 82.2 17.8
L 128 | 1280 16 | 936.0 80.9 19.1
e 128 | 1280 32 | 9360 80.5 19.4
N Table C-16. Assignment Results of the Level 2 Implementation (32 Wpns)
- [ Weap [ Targ | Cntrl | Proc/Cntrl | Tot Proc | Cost | % Effective | % Idle [ % Wasted |
{ 32 ] 32 ) 2 6 11136 68.1 16.3 156
. 32 32 2 4 10 | 1008.0 65.6 20.0 14.4
: 32 32 2 8 18 | 915.2 64.4 21.9 13.7
K 32 32 4q 2 12 | 1406.4 65.6 5.0 29 .4
. 32 32 4 4 20 | 1296.0 64.4 6.9 28 7
: & 32 32 8 2 24 | 1412.8 64.4 25 33.1
32 | 160 2 2 6 | 368.0 925 1.9 56
, 32 | 160 2 4 10 | 361.6 91.2 38 5.0
- 32 | 160 2 8 18 | 355.2 90.6 5.0 1.1
- 32 | 160 4 2 12| 3696 91.2 1.9 6.9
" 32| 160 4 4 20 | 3632 90.6 3.1 6.3
2 32 | 160 8 2 24 | 369.6 90.6 1.3 8.1
‘ 32 | 320 2 2 6| 2720 9338 1.9 11
y. 32 320 2 4 10 | 2720 93.8 1.9 14
. 32| 320 2 8 18 | 2720 93.8 1.9 4.4
; 32| 320 4 2 12 | 2768 93.8 0.0 6.3
. 32 | 320 4 4 20 | 276.8 93.8 0.0 6.3
. 32| 320 8 2 24 | 276.8 93.8 0.0 6.3
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Table C-17. Assignment Results of the Level 2 Implementation (64 Wpns)

[Weap [ Targ [ Cntrl T Proc/Cutrl [ Tot Proc | Cost [ % Effective | % Idle | % Wasted ]

64 64 2 2 6| 1158.4 713 104 17.9
64 64 2 4 10 | 1099.2 69.7 12.8 17.5
64 64 2 8 18 | 1033.6 68.1 15.6 16.3
64 64 4 2 12 | 1236.8 69.7 38 26 6
64 64 4 4 20 | 1171.2 68.1 6.6 253
64 64 8 2 24 | 1220.8 68.1 2.8 29.1
64 320 ~ 2 6| 523.2 90.0 3.8 6.3
64 320 2 4 10 t 520.0 89.1 4.7 6.3
64 320 2 8 18 | 5184 88.8 5.0 6.3
64 320 4 2 12 | 539.2 89.1 1.3 9.7
64 320 4 4 20 | 5376 88.8 1.6 9.7
64 320 8 2 24 | 5440 88.8 0.3 10.9
64 640 2 2 6| 476.8 91.3 1.9 6.8
64 | 640 2 4 10 | 468.8 89.7 34 6.8
64 | 640 2 8 18 | 4608 88.1 5.0 6.8
64 | 640 4 2 12 | 4784 89.7 1.6 8.8
64 640 4 4 201 4704 88.1 3.1 8.8
64 840 8 2 24 | 4784 88.1 1.6 10.3

Table C-18. Assignment Results of the Level 2 Implementation (128 Wpns)

[ Weap [ Targ [ Cntrl | Proc/Cntrl | Tot Proc | Cost [ % Effective | % Idle | % Wasted |

128 128 2 2 6 1361.6 90.8 154 27.1
128 128 2 4 10 | 1259.2 65.2 158 19.1
128 128 2 8 18 | 1203.2 64.1 17.8 181
128 128 4 2 12 | 1446 .4 65.2 6.3 286
128 128 4 4 20 | 13728 64.1 8.9 27.0
128 128 8 2 24 | 1483.2 64.1 3.1 32.8
128 640 2 2 6 928.0 85.0 6.1 8.9
128 640 2 4 10 902.4 82.7 8.6 8.8
128 640 2 8 18 889.6 81.7 9.8 84
128 640 4 2 12 963.2 82.7 2.7 14.7
128 640 4 4 20 948 .8 81.7 4.1 14.2
128 640 8 2 24 976.0 81.7 14 16.9
128 | 1280 2 2 6 881.6 85.3 5.3 9.4
128 | 1280 2 4 10 846.4 82.2 8.8 9.1
128 | 1280 2 8 18 833.6 80.9 10.0 9.1
128 | 1280 4 2 12 900.8 82.2 34 14 4
128 | 1280 4 4 20 884.8 80.9 5.0 14.1
128 | 1280 8 2 24 920.0 80.9 1.6 17.5
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Table C-19. Assignraent Results of the Level 3 Implementation (32 Wpns)

[ Weap | Targ [ Cntrl | Proc/Cntrl | Tot Proc | Cost [ % Effective [ % Wasted |

32 32 2 2 6 | 9596.8 76.3 23.7
32 32 2 4 10 | 9857.6 78.1 219
32 32 2 8 18 | 8180.8 725 27.5
32 32 4 2 12 | 4302.4 66.9 33.1
32 32 4 4 20 | 43856 66.9 33.1
32 32 8 2 24 | 25104 63.8 36.2
32 160 2 2 6| 6720 93.8 6.2
32 160 2 4 10 | 1276.8 938 6.2
32 160 2 8 18 | 1916.8 93.8 6.2
32 160 4 2 12 | 1104.0 919 8.1
32 160 4 4 20 | 1656.0 92.5 7.5
32 160 8 2 24 964.8 91.3 8.7
32 320 2 2 6 | 1332.8 95.0 5.0
32 320 2 4 10 | 1332.8 95.0 5.0
32 320 2 8 18 | 1332.8 95.0 5.0
32 320 4 2 12 | 276.8 93.8 6.2
32 320 4 4 20| 2768 938 6.2
32 320 8 2 24| 2768 93.8 6.2

Table C-20. Assignment Results of the Level 3 Implementation (64 Wpns)

[ Weap [ Targ [ Cnt:l | Proc/Cuotrl | Tot Proc | Cost | % Effective | % Wasted |
64 64 2 2 6 9766 .4 76.9 23.1
64 64 2 4 10 { 10984.0 75.0 25.0
64 64 2 8 18 | 10337.6 73.8 26.2
64 64 4 2 12 4660.8 70.3 29.7
64 64 4 4 20 7102.4 69.1 30.9
64 64 8 2 24 4182.0 68.4 31.6
64 320 2 2 6 4758.0 93.4 6.6
64 320 2 4 10 5696.0 922 7.8
64 320 2 8 18 5928.0 92.2 7.8
64 320 4 2 12 1764.0 89.8 10.2
64 320 4 4 20 1972.0 89 R 10.2
64 320 8 2 24 1222.0 89.1 10.9
64 640 2 2 6 1780.8 92.5 7.5
64 640 2 4 10 4190 .4 919 8.1
64 640 2 8 18 5326.4 90.6 9.4
64 640 4 2 12 2206.4 90.6 9.4
64 640 4 4 20 2881.6 89.7 10.3
64 840 8 2 24 1960.0 891 10.9 |




"

o
e
N
"
. Table C-21. Assignment Results of the Level 3 Implementation (128 Wpns)
~
v R [ Weap | Targ [ Cntrl | Proc/Cntrl | Tot Proc | Cost | % Effective | % Wasted |
- 128 | 128 2 2 6 | 16811.2 72.3 277
- 128 | 128 2 4 10 | 20294.0 89.5 30.5
N 128 | 128 2 8 18 | 17078 4 69.4 30.6
- 128 | 128 4 2 12| 9393.6 66.4 336
128 | 128 4 4 20 | 13936.0 65.8 342
" T 128 | 128 8 2 24 | 9993.3 65.9 34.1
128 | 640 2 2 6 | 12964.8 878 12.2
~ 128 | 640 2 4 10 | 13024.0 875 12.5
< 128 | 640 2 8 18 | 14980.8 86.4 13.6
» 128 | 640 4 2 12 | 6249.6 83.6 16.4
<o 128 | 640 4 4 20 | 8673.6 82.8 17.2
! o 128 | 640 8 2 24 | 3081.6 81.9 18.1
D 128 | 1280 2 2 6 | 11006.7 R7.0 13.0
W 128 | 1280 2 4 10 | 14636.0 86.1 13.9
7 128 | 1280 2 8 18 | 12617.3 84.9 15.1
> 128 | 1280 4 2 12 | 7730.7 82.7 17.3
-7 - 128 | 1280 4 4 20 | 8046.7 81.8 18.2
° 128 | 1280 8 2 24 | 2969.3 81.3 18.7

Table C-22. Assignment Results of the Level 4 Implementation (32 Wpns)
[ Weap [ Targ | Processors | Cost | % Effective |

s

32 32 2 | 2660.8 100.0
- 32 32 4 | 2660.8 100.0
e 32 32 8 | 2660.8 100.0
T 32 32 16 | 2660.8 100.0
NG 32 32 32 | 2660.8 100.0
-‘.. 32| 160 21 3840 100.0
~ 321 160 4| 384.0 100.0
32| 160 8| 384.0 100.0
o 32| 160 16 | 384.0 100.0
o 32| 160 32| 384.0 100.0
32| 320 2| 2784 100.0
- 32| 320 4| 2784 100.0
) 32| 326 8| 2784 100.0
:.:; 321 320 16 | 2784 100.0
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Table C-23. Assignment Results of the Level 4 Implementation (64 Wpns)

Pa

Weap | Targ | Processors | Cost | % Effective |
64 64 2 | 2016.0 100.0
64 64 4 ] 2016.0 100.0
64 64 8 | 2016.0 100.0
64 64 16 | 2016.0 100.0
64 64 32 ] 2016.0 100.0
64 320 2] 5504 100.0
64 320 4 550.4 100.0
64 320 8 550.4 100.0
64 320 16 550.4 100.0
64 320 32| 550.4 100.0
64 640 2 486 .4 100.0
64 640 4 486.4 100.0
64 640 8 486.4 100.0
64 640 16 | 486.4 100.0

Table C-24.

Assignment Results of the Level 4 Implementation (128 Wpns)

[ Weap [ Targ [ Processors | Cost | % Effective |

.Plfag'/f,&'

128 128 2| 2158.4 100.0
128 128 4 | 2158.4 100.0
128 128 8 | 2158.4 100.0
128 128 16 | 2158.4 100.0
128 128 32 [ 21584 100.0
128 640 2 992.0 100.0
128 640 4 992.0 100.0
128 640 8 992.0 100.0
128 640 16 992.0 100.0
128 | 1280 2 937.6 100.0
128 | 1280 4 937.6 100.0
128 | 1280 8 937.6 100.0
128 | 1280 16 937.6 100.0
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ABSTRACT

The process of effectively coordinating and controlling resources
during a military engagement is known as Battle Management/ Command,
Control, and Communications (BM/C3). One key task of BM/C3 is allocating
weapons to destroy targets. The focus of this research is on developing
parallel methods to achieve fast and cost effective assignment of weapons
to targets. Using the sequential Hungarian method for solving the
assignment problem as a basis, this report presents the developument of
four parallel assignment algorithms implemented on the Intel iPSC hypercube
computer.

The first approach partitions the problem space into smaller,
independent sub-problems and assigns each to a processing node the
hypercube. The second and third approaches also partition the >blem
space but they assign each partition to a group of processing .des.
Each group 1is controlled by a separate node which further subdi--ides
the partition among members of the group. In the second approa h, the
control node acts as an arbitrator to eliminate the redundant assignment
of weapons by selecting the least costly weapon allocation and icling
the more costly redundant allocations. The third approach eliminates
redundant weapon allocations by also selecting the least costly weapon
allocations, but directs additional processing to reallocate the more
costly weapons. The fourth approach is a parallel implementation of the
Hungarian method, where certain subtasks of the algorithm are performed
in parallel. This approach produces an optimal assignment instead of the
sub-optimal assignment generally obtained using either of the three
heuristic methods.

The relative performance of the four approaches is compared by
varying the number of weapons and targets, the number of processors,
and the size of the problem partitions. The first and second approaches
produce significantly faster assignment solutions than those possible with
the baseline sequential methods., The third and fourth approaches vield

slower solutions, but are still faster than sequential methods of
assignment.
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