Cognitive Modeling of Learning Abilities: A Status Report of LAMP

Patrick C. Kyllonen
Institute for Behavioral Research
University of Georgia
Athens, Georgia 30602

Raymond E. Christal
Universal Energy Systems
4401 Dayton-Xenia Road
Dayton, Ohio 45432-1894

Manpower and Personnel Division
Brooks Air Force Base, Texas 78235-5601

February 1988
Interim Technical Paper for Period November 1986 - November 1987

Approved for public release; distribution is unlimited.

Air Force Systems Command
Brooks Air Force Base, Texas 78235-5601
This paper describes some of the research activities underway as part of the Air Force's Learning Abilities Measurement Program (LAMP). A major objective of this basic research project is to devise new models of the nature and organization of human abilities with the long-term goal of applying these models to improve current personnel selection and classification systems. The activities of the project have been divided into two categories. The first category is concerned with identifying fundamental learning abilities by determining how learners differ in their abilities to think, remember, solve problems, and acquire knowledge and skills. From research already completed, a four-source framework has been established that assumes observed learner differences to be due to differences in processing speed; processing capacity; and the breadth, extent, and accessibility of conceptual knowledge and procedural skills. The second category of research activities is concerned with validating new models of learning abilities. To do this, a number of computerized intelligent tutoring systems have been built that serve as mini-courses in technical areas such as computer programming and troubleshooting electrical circuits. A major objective of this part of the program is to develop principles for producing such systems.
indicators of student learning progress and achievement. These indicators will serve as the learning outcome measures against which newly developed learning abilities tests will be evaluated in future validation studies.
COGNITIVE MODELING OF LEARNING ABILITIES:
A STATUS REPORT OF LAMP

Patrick C. Kyllonen
Institute for Behavioral Research
University of Georgia
Athens, Georgia 30602

Raymond E. Christal
Universal Energy Systems
4401 Dayton-Xenia Road
Dayton, Ohio 45432-1894

MANPOWER AND PERSONNEL DIVISION
Brooks Air Force Base, Texas 78235-5601

Reviewed by
William C. Tirre
Learning Abilities Research Function

Submitted for publication by
William R. Ercoline, Lieutenant Colonel, USAF
Chief, Cognitive Assessment Branch

This publication is primarily a working paper. It is published solely to document work performed.
SUMMARY

This paper outlines some of the research activities underway as part of the Air Force's Learning Abilities Measurement Program (LAMP). The major goal of the project is to devise new models of the nature and organization of human abilities with the long-term goal of applying those models to improve current personnel selection and classification systems. As an approach to this ambitious undertaking, we have divided the activities of the project into two categories. The first category is concerned with identifying fundamental learning abilities by determining how learners differ in their abilities to think, remember, solve problems, and acquire knowledge and skills. From research already completed, we have established a four-source framework that assumes that observed learner differences are due to differences in processing speed, processing capacity, and the breadth, extent, and accessibility of conceptual knowledge and procedural and strategic skills. The second category of research activities is concerned with validating new models of learning abilities. To do this, we are building a number of computerized intelligent tutoring systems that serve as mini-courses in technical areas such as computer programming and electronics troubleshooting. A major objective of this part of the program is to develop principles for producing indicators of student learning progress and achievement. These indicators will serve as the learning outcome measures against which newly developed learning abilities tests will be evaluated in future validation studies.
PREFACE

Development of this paper was supported by the Air Force Learning Abilities Measurement Program (LAMP), a multi-year program of basic research conducted at the Air Force Human Resources Laboratory (AFHRL) and sponsored by the Air Force Office of Scientific Research. The goals of the program are to specify the basic parameters of learning ability, to develop techniques for the assessment of individuals' knowledge and skill levels, and to explore the feasibility of a model-based system of psychological assessment. Support was provided by AFHRL and the Air Force Office of Scientific Research, through Universal Energy Systems, under Contract No. F41629-84-D-0002/58420360, Subcontract No. S-744-031-001, and Subcontract No. S-744-049-001. We thank Valerie Shute, William Tirre, and William Alley of AFHRL for their comments on this paper, and we give a special acknowledgement to Dan Waltz of AFHRL for many long and thorough discussions of the issues addressed herein.
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. COGNITIVE THEORY AND APTITUDE TESTING .. 2

III. LEARNING ABILITIES MEASUREMENT PROGRAM (LAMP) .. 3
 Modeling Cognitive Skills: The Four-Source Framework ... 4
 Processing Speed ... 4
 Processing Capacity .. 12
 Knowledge ... 19
 Skills .. 22
 Modeling Learning Skills .. 25
 Learning Skills Taxonomy ... 25
 Complex Learning Assessment (CLASS) .. 28

IV. SUMMARY AND CONCLUSIONS .. 30

REFERENCES ... 31

LIST OF FIGURES

Figure .. Page

1. Four-Source Research Framework .. 5

2. Sample Test Items Measuring Working Memory Capacity .. 14

4. Performance Curves for Three Dependent Measures as a Function of the Stage of the Skill Being Measured .. 27
I. INTRODUCTION

Considerable headway has been made during the last decade in our understanding of human cognition. This has led to speculation that it is only a matter of time before an improved technology for gauging individuals' intellectual proficiencies will be developed. The stakes are high: Psychological testing of cognitive proficiency is presently widespread in industry, the schools, and the military. Improved tests would have a profound economic impact in cutting education and training costs and enabling a more efficient and fair system of personnel utilization. Although the concept of psychological testing must certainly be considered one of psychology's true success stories, it is also primarily a past accomplishment. Systematic studies of predictive validity have shown that today's aptitude tests are no better than those available shortly after World War II (Christal, 1981; Kyllonen, 1986).

But even if it is agreed that forces are conspiring to usher in a new era of cognitive testing, there still is considerable debate on exactly what form these new cognitive tests will take. On one side of the debate, some argue that what cognitive psychology has to offer is a rationale and a methodology for measuring basic information processing components (Detterman, 1980; Jensen, 1982; Posner & McLeod, 1982). According to this view, the cognitive test battery of the future would consist of measures of speed of retrieval from long-term memory, short-term memory scanning rate, probability of transfer from short- to long-term storage, and the like. On the opposite end of the debate are those who suggest that the fundamental insight of cognitive science is that cognitive skill reflects primarily knowledge rather than general processing capabilities. This perspective has led to calls for testing intermingled with instruction, testing aimed at measuring what students know and what they have learned in the context of their current instructional experience (Embretson, in press; Glaser, 1985). This has been called *steering testing* (Lesgold, Bonar, & Ivill, 1987) or *apprenticeship testing* (Collins, 1986). Between these positions are those who propose new kinds of cognitive tests that are not
radically different from existing ones, but perhaps richer and more diverse in what they measure (Hunt, 1982; Hunt & Pellegrino, 1984; Sternberg, 1981b).

In this paper, we provide a status report of one ongoing program of research, the Learning Abilities Measurement Program (LAMP), that has been concerned with developing new methods for measuring cognitive abilities. We discuss some of our early thinking on the implications of cognitive psychology for testing, and how we have adjusted our ideas in light of data collected in our cognitive abilities measurement (CAM) laboratory. We conclude with a brief discussion of CLASS, the Complex Learning Assessment Laboratory, the setting in which we intend to validate the new tests.1

II. COGNITIVE THEORY AND APTITUDE TESTING

The idea of grounding psychological testing in cognitive theory is not entirely novel. During the 1970s and 1980s, the Air Force Office of Scientific Research (AFOSR) and especially, the Office of Naval Research (ONR) supported a number of basic research projects which had the explanation of individual differences in learning and cognition as a central goal. This research largely concentrated on the analysis of conventional aptitude tests, probably for two reasons. First, analysis of aptitude tests is important in its own right, as an attempt to determine what it is that such tests measure. But, second, and perhaps more importantly, aptitude tests can be viewed as generic surrogates for tasks tapping more complex, slowly developing learning skills. It is difficult and extremely expensive to identify and analyze the information processing components associated with the acquisition of computer programming skill; so goes the argument: It is far cheaper and more efficient to analyze the seemingly more tractable components of some aptitude test, such as an analogies test, that predicts success in computer programming. And the fact that tests do such a good job in predicting training outcomes can be taken as evidence that pretty much the same cognitive components are involved in both test-taking and learning.

1This paper does not review the research accomplished by William Tirre and Linda Elliott concerning individual differences in text comprehension. Readers interested in this area are referred to Tirre and Elliott (1987).
The wave of aptitude research that was motivated by these considerations did not lead directly to improvements in existing aptitude testing systems, however. A number of new methods and techniques, such as cognitive correlates analysis (Hunt, Frost, & Lunneborg, 1973) and componential analysis (Sternberg, 1977), were developed for analyzing aptitude tests, but the application of these methods did not suggest how the tests themselves might be improved. There have been suggestions that cognitive tasks exported from the experimental psychologist’s laboratory might somehow be used to supplement or even replace existing aptitude tests (Carroll, 1981; Hunt, 1982; Hunt & Pellegrino, 1984; Pellegrino & Glaser, 1979; Rose & Fernandez, 1977, Snow, 1979; Sternberg, 1981b), but after almost 10 years, the research still has not been carried out to an extent sufficient for determining whether this is really feasible.

Probably the reason cognitive-based aptitude research has not translated already into better tests is that this has not been a primary goal of the research. Indeed, if the creation of better tests had been the primary goal, the approach of analyzing and decomposing existing tests does not seem very promising. If such research efforts were completely successful, “if the research turned out better than anyone’s wildest expectations,” at best, new tests would simply duplicate the validity of existing tests.

III. LEARNING ABILITIES MEASUREMENT PROGRAM (LAMP)

In contrast to some of the aptitude research projects previously discussed, our own work in connection with Project LAMP has from its inception been focused on the goal of developing an improved selection and classification system. Our current efforts fall into two categories. First, we are continuing to model basic cognitive learning skills and their interrelationships, and to explore different methods for measuring these skills. Second, we have more recently begun thinking seriously about a system for validating the new cognitive measures. The system involves the extraction of learning indices, both on short-term (1 hour) and long-term (1 week) learning tasks, that will serve as criteria against which the new cognitive measures will be validated. Although we have not yet collected data on the long-term learning tasks, we have set up the laboratory, which consists of 30 computerized tutoring
stations. In the remainder of this paper, we discuss these two categories of ongoing LAMP research. We begin with a discussion of studies that have attempted to measure cognitive skills.

Modeling Cognitive Skills: The Four-Source Framework

Much of our work on identifying basic learning skills has centered around what we have called the four-source framework (Kyllonen, 1986). This is the idea that individual differences in a wide variety of learning and performance tasks are due to differences in four underlying sources: (a) effective cognitive processing speed; (b) effective processing capacity; and the general breadth, accessibility, and pattern of one's (c) conceptual knowledge and (d) procedural and strategic skills. Figure 1 illustrates these relationships.

We refer to the knowledge and skill components of this model (components [c] and [d]) as enablers, in the sense that any learning or performance task can be characterized as consisting of a necessary set of knowledge and skill prerequisites. We refer to the processing speed and working memory components of the model ([a] and [b]) as mediators, in the sense that these components mediate the degree to which the learner or problem-solver is able to use his or her knowledge and skills effectively. We have found the four-source framework to be useful in organizing our own as well as others' research and in monitoring our research progress. Further, although we have not yet applied it widely in this fashion, we expect that the system will be useful for task analysis purposes.

Thus far, most of the research we have accomplished in connection with the four-source proposal has been concerned with (a) improving the way in which we measure cognitive skills and (b) determining the dimensionality of the skills and subskills embedded within the four-source model. We now turn to a discussion of the four components, in turn.

Processing Speed

Considerable research on individual differences in cognition over the past 10 years has been concerned with determining the relationship between processing speed and performance on complex
Figure 1. Four-Source Research Framework. Performance in each of the three learning phases (Knowledge Acquisition, Skill Acquisition, and Skill Automation phases; right side of figure) is presumed to be a function of the enablers (Knowledge and Skills), the mediators (Processing Capacity and Processing Speed), and whether the prior learning phase is complete.
tasks, such as intelligence tests. There are a number of reasons for the high level of interest in processing speed. One is that we now can measure it. The availability of microcomputers as testing instruments makes it feasible to measure, with precision, response time to particular items. Paper-and-pencil tests allowed only gross estimates of response speed. Second, processing speed seems to reflect something basic, something fundamental about all mental activity, and therefore something that might explain the general factor of mental ability in some sense. Third, since the beginnings of modern cognitive psychology, processing speed has played a major role in confirmatory theories in revealing the dynamics of mental processing. Research of this kind, which is naturally considered the kick off point for the discipline, reported primarily on laboratory studies. Finally, there are operational performance contexts, such as the Air Traffic Controller Workstation in the cockpit, that require efficient processing of cognitive data. Therefore, the relationship between processing speed and performance in these contexts would illustrate practical payoff.

In our own laboratory, we have conducted a number of studies on processing speed that have focused on both i.e. speed and speed reasoning. We have been interested in performance on criterion tasks. Studies have revealed that speed is a central factor in performance. A number of early studies in the project reported in Kelion and Pickett (1957) were designed simply to address the question of whether processing speed is a unidimensional construct or whether it is a powerful unidimensional construct. That is, we addressed the question of whether or not the people are really different information processors. The evidence from these studies strongly supports the concept of a unidimensional construct of processing speed. Both positions are assumed in the literature. Until now, however (Kelion, 1982) at least implicitly, previous research has been to the exclusion of information processors. We have correlated between processing speed tasks and measure task load in these laboratories. The results were strongly correlated processing speed components.
did just that and found evidence for both separate reasoning, quantitative, and verbal processing factors, and a higher-order general processing speed factor. Interestingly, we found that although processing speed scores were quite reliable, at least within session, they were not related to accuracy scores on the same tests. Timed versions of the tests thus mix these two separable components of performance in yielding only a single score. There are problems with this approach to testing the dimensionality question, such as how to allow for speed-accuracy trade-off, what to do with response times when the person guessed incorrectly, and so forth. But a more substantive problem is that although the findings are suggestive, they fall considerably short of revealing much about the processes that produced them.

Thus, in subsequent work we have restricted our focus (and employed a narrower range of tasks) in the hope of achieving a better process-oriented understanding of the generality question. In these studies, we attempted to identify processing stages, then measure the duration of those stages for individual subjects, then compute the stage inter-correlations. The procedure is best illustrated by example. In the first study (Kellonen, 1987), we administered a series of tasks that required subjects simply to determine whether two words presented (e.g., happy-lose) were similar or dissimilar with respect to valence. Happy would be considered a positive-valence word; lose would be considered a negative valence word. We presumed that a decision on this task was executed after a series of processing stages. The subject begins by encoding one of the words, then encoding the second word. The result of the encoding process is that a symbol representing valence is deposited in working memory for each word. The subject then compares those symbols. The result of the comparison process is an implicit assertion that the symbols are either the same or different. A decision process then takes the comparison result and translates it into a plan for the execution of the motor response. A response process then executes the motor response. Through the method of processing, which has been used with some success in separating process components on other reaction time tasks (e.g., Sternberg, 1977), we were able to independently estimate the duration of each of these processing stages.
We also administered two other versions of the task in which the only difference was that subjects were required to decide whether (a) two digits were the same with respect to oddness or evenness, or (b) two letters were the same with respect to vownelness or consonantness. The data analysis addressed two questions regarding generality. First, were parallel measures of stage duration (estimates derived from separate blocks of items) more highly inter-correlated than correlated with other stage durations? This is a direct test of stage independence. Second, were stage durations estimated from tasks with different content (words, digits, or letters) more highly inter-correlated or were alternative stages taken from same-content tasks more highly inter-correlated? This is a direct test of the relative importance of content and process. Although the analyses were rather complex, the general finding was that processes were somewhat independent, and also general across contents. That is, fast encoders were not necessarily fast comparers, but fast encoders on the word task were also fast encoders on the digit task.

One of the problems with this approach to studying dimensionality is that it relies on a model of performance that assumes serial execution of processing stages. In our more recent work (Kyllonen, Tirre, & Christal, 1988), we have relaxed this assumption by applying both those models that assume serial execution and those that do not in estimating stage durations. (We also have abandoned the precuing technique because its validity depends on the serial execution assumption.) Following Donaldson's (1983) analysis, stage durations can be estimated in two ways. Assume an ordered set of tasks, each of which can be characterized as requiring a proper superset of the processes of its predecessor. For example, the following set of tasks, each of which requires processing a pair of words, might be characterized this way: reaction time, choice reaction time, physical matching, name matching, semantic (meaning) matching. That is, reaction time consists only of a reaction component; the choice task adds a decision component, the physical matching task adds comparison, name matching adds retrieval from long-term-memory, and semantic matching adds search through long-term memory.
One can estimate each of these stage durations either by subtracting latency on the predecessor task from latency on the target task (the difference score model), or by statistically holding constant the duration of all predecessor tasks (the part correlation model). The two models employ differing assumptions about the relationships among task components. The difference score model assumes nothing about the relationship between the duration of the target component (e.g., comparison) and the duration of the predecessor task (e.g., choice reaction time). Thus, this correlation is a parameter to be estimated. But the cost of this flexibility is the assumption that the duration of the target component (e.g., comparison) remains constant, regardless of whether the component is embedded in the physical matching task, the name matching task, or whatever. Conceptually, there are two problems with this assumption. Consider the reaction component. It may be that reaction is rapid when nothing else is going on, as on the simple reaction time task, but slow when it follows complex processing, as on the semantic matching task. Or it could be the opposite, due to parallel processing: Reaction appears slow on the simple reaction time task because it is the only process executing, but on the meaning identity task, the reaction begins before decision ends, and thus appears fast (as is specified in process cascading models, McClelland, 1979).

The part correlation model avoids this assumption and allows for variability in stage durations over different tasks. This is represented as freedom in the regression weight associated with stage duration to differ from 1.0. But in order to achieve this flexibility, the part correlation model must compensate with an assumption not required with the difference score model. In the part correlation model, it is assumed that the duration of the target stage is uncorrelated with the duration of the predecessor task. For example, the duration of the comparison component in the context of the physical matching task would be assumed to be uncorrelated with response time on the choice reaction time task.

Which of these sets of assumptions is correct, those associated with the part correlation model or those associated with the difference score model? It is not possible to tell, but it is possible to employ both models and then to be confident of relationships only when the models agree.
We took this approach in attempting to estimate the relationship between processing stage durations and performance on a vocabulary test, and also on a paired-associates learning task. Vocabulary is an interesting test case because it is a good measure of general intelligence. The current view is that breadth of word knowledge reflects efficient learning processes in inferring word meanings in context (Marshalek, 1981; Sternberg & Powell, 1983). An additional motivation for looking at vocabulary as a criterion was that a considerable literature has evolved from Hunt and colleagues' (Hunt et al., 1973) early finding of a relationship between the duration of the retrieval stage (as estimated by the difference between response time on the name and physical matching tasks) and verbal ability.

Contrary to Hunt et al. and other previous work, however, we did not find much of a relationship between retrieval speed and vocabulary ($r = .17, N = 710$), but we did find a strong relationship between search speed and vocabulary ($r = .49$). Subjects capable of quickly accessing semantic attributes of words, controlling for how quickly they did other kinds of information processing, had larger vocabularies than did other subjects.

We found a similar relationship between processing speed and learning, but only in particular circumstances—namely, when study time on the learning task was extremely short (5 to 2 seconds per pair). The component analysis again made it possible to isolate the semantic search component, as opposed to other processing speed components, as the one consistently most critical in determining learning success. Over a number of studies (which varied on block size, recognition vs. recall responses, etc.), the correlation between learning success and response time on the meaning identity test, controlling for (or eliminating by subtraction) response time on other information processing tests, ranged from $r = .30$ to $r = .50$. In some studies, other information processing speed components predicted learning outcomes, but only inconsistently.

We currently are engaged in two lines of extension to the processing speed work. One is motivated by the idea that information processing speed may be closely tied to working memory capacity insofar as both measures reflect the dynamic activation level of a memory trace (Wolfe, 1987). An intriguing
implication of this idea has to do with individual differences in the maintenance of activation. In most
learning tasks, we do not simply access a term once and only once. Rather, there is redundancy in
instructional materials, which allows for multiple access of a concept in an instructional episode.
Thus, the important search speed variable is not merely how quickly a concept can be accessed on first
encounter, but also how quickly it can be retrieved for second and third, and fourth
encounters. We have found that for most learners, the search speed for second and third encounters are much faster than first
encounter, and that the amount of improvement in search speed from first to subsequent accesses increases the more similar the features are not necessarily those
who are least fluent. We have used this redundancy of the idea of activation as a concept
and have developed more generative models of activation.

This method has four basic steps: (1) identify the task to be performed,
(2) identify the concepts that are relevant, (3) determine the operations that will
be involved, and (4) identify the information that will be needed. The first step is to
identify the task, which is usually a production task. The second step is to
identify the concepts that are relevant to the task. This is usually done using a
theoretical framework, such as the theory of activation. The third step is to
determine the operations that will be involved. This is usually done using a
theoretical framework, such as the theory of activation. The fourth step is to
identify the information that will be needed. This is usually done using a
theoretical framework, such as the theory of activation.
of work by Jensen and others. We have found relationships between basic reaction time and learning, but the particular component of speed of some kind of semantic memory appears to be the more critical predictor of verbal learning success. Thus it now looks as if studies employing vocabulary scores as a criterion and in those employing a highly speeded presentation of material to be learned. (Perhaps both tasks reflect the learner's ability to quickly code or encode stimuli materials.)

Processing Capacity

Although much of the earlier research has focused with response time, we recently found that a more general and more specific index of working memory capacity. It now appears in a number of tasks of our own (Jensen, Stephenson, Wolitz, Pless, Wolitz & Christal, 1985) and in others (a number of tasks of Pitts, 1985, Donahue & Carpenter, 1985, Heuer, Pless, and others). Our research has been to look at individual differences across a wide variety of reasoning tasks.

In keeping with our own general methods and the above background, we propose that working memory may be defined as the portion of the system in a task-related accessible state that is, whatever is being processed or attended to in a task environment. The individual differences corollary is that greater working memory capacity should be associated with greater attentional and learning capacities. We have also proposed that a general index of the degree of working memory capacity may be seen in the individual's working memory score, which we believe to be the *proactive capacity* and the *attentional capacity*.

The single most consistent and the most general of working memory tasks (Spencer, 1985, Document, and Hulch, 1985), proposed a dual component of working memory in which there may be a large number of stimuli roughly three to nine items may represent the carefully, actively maintained information. More efficient on processing of working memory tasks, the application of the premises is that the capacity of the working memory capacities tasks. But if these findings are correct, a significant number of informations...
while simultaneously requiring the processing of irrelevant or other information. This principle is consistent with Baddely and Hitch's (1974) original definition, and seems on the surface to lend itself readily to a basically valid test that can serve as a measure of listening demands. Simultaneous attention and processing in an actual situation, as posed in span tests, seems contrived and not typical of what people actually do when engaged in normal learning.

Figure 3 shows the performance of 13 college students in the ABCD Test. The subjects were instructed that they would see a series of letters that were generated by a machine. As they were presented, the subjects were required to write down the letters which they saw. The letters were presented in one of the following conditions: (a) in a single, unbroken string; and (b) in four strings, each consisting of four letters. The findings are the subject's errors in each condition. A subsequent analysis of the data indicated significant differences in the groups' performance. The next step was to examine the meaning and nature of these findings.
EXAMPLE ITEMS FROM TESTS MEASURING ATTENTION CAPACITY

ABCD Test

<table>
<thead>
<tr>
<th>Letter</th>
<th>Set 1 Precedes Set 2</th>
<th>B Follows A</th>
<th>All Eight Orders Are Provided as Answer Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Follows 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABC Test

<table>
<thead>
<tr>
<th>Letter</th>
<th>B/2</th>
<th>B/4</th>
<th>B/13-9</th>
<th>B/10</th>
<th>A/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alpha Recoding Test

After mentally transforming all three letters, the subject enters them as a set.

Mental Arithmetic Test

The subject is given 2 seconds to encode a problem, then the screen goes blank. He presses the space bar when he has mentally solved the problem and selects an answer from five alternatives in 3 seconds.
to subtract 1, 2, or 3 (n). Added to this was the instruction to determine which letter follows or precedes each of the target letters by one step. After mentally recoding all the letters, the subject presses the appropriate key, indicating the letter. For the test shown in Figure 2, the "Mental Arithmetic Test" is explanatory.

A critical item concerning the subjects, and one to be asked regarding performance on the main test, is their performance on the tasks that tap into working memory and processing speed. These tests are Additive-Subtractive Verification and a Reversal Task. For the Additive-Subtractive Verification task, which we had modified, the Bock test (1966), which consists of 19 frequently asked questions such as "Numerical Operations" and "Letters and Numbers," was used.

Let's turn now to the factor-analytic factor analysis and a second factor analysis on the Mental Arithmetic Test and the Additive-Subtractive Verification test, as well as the factor analysis of the three tests: the Bock test, the test of additive factors, and the test of subtractive factors. The factor analysis of the Bock test was performed, which was a test of the factor analysis done on the Bock test, which received a 1.0 added factor, which matches a similar factor.
defined by the Numerical Operations subtest ($r = .75$), but it also was significantly loaded by latencies from the Mental Arithmetic Test and the Sunday Tuesday Test ($r > .30$). The basic pattern of results found here has been corroborated in a recently completed follow-up study.

Taken together the results suggest the involvement of both domain knowledge (quantitative and verbal) and a domain independent working memory in memory test performance. In addition, it appears from the data over the two studies that the Working Memory factor subsumes the Reasoning factor. That is, individual differences in reasoning proficiency may be due entirely to differences in working memory capacity. Christal notes that the factor on which all the reasoning tests in the battery loaded into, is a Working Memory factor in that the test that defined it, Alpha Recoding ($r = .68$, in the follow-up study), does not appear to involve reasoning per se but clearly depends on working memory capacity.

Recently, we have begun investigating an alternative to the processing workspace model which is based on a different conceptualization of working memory. The activation capacity model, based primarily on Tulving's (1985) ACT* theory, defines working memory not as a separate short-term store, but rather, as a state of fluctuating activation patterns characterizing traces in long-term memory. According to this theory, long-term memory is a network of traces, each characterized by resting activation levels. Traces become activated when they become the focus of attention, or are linked to the focus of attention, then fade into a state of deactivation as other traces move to the center of focus. Working memory is said to be a "matter of degree" rather than an all or none state, in that at any given moment, a trace might be the focus of attention (and thereby be at a peak activation level) or it might be continuously fading from attention if, for example, it was the focus a few seconds earlier.

The application of this model has resulted in tests of working memory capacity that look quite distinct from those based on the processing workspace model. Figure 3 illustrates a test developed by Wolitz (1985) to reflect individual differences in activation capacity. In this test, subjects are presented a series of word pairs and are required to determine whether or not the words are synonyms. Occasionally, words are repeated one, two, or four, or eight items later. As Figure 3 shows, mean
Example Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>fate</td>
<td>destiny</td>
</tr>
<tr>
<td>humid</td>
<td>damp</td>
</tr>
<tr>
<td>complain</td>
<td>thunder</td>
</tr>
<tr>
<td>polite</td>
<td>courteous</td>
</tr>
<tr>
<td>polite</td>
<td>kindle</td>
</tr>
<tr>
<td>astonished</td>
<td>unstable</td>
</tr>
<tr>
<td>conquer</td>
<td>arrange</td>
</tr>
<tr>
<td>visit</td>
<td>guest</td>
</tr>
<tr>
<td>variant</td>
<td>empty</td>
</tr>
<tr>
<td>complain</td>
<td>gripe</td>
</tr>
</tbody>
</table>

Measures Obtained

1. **Verbal Information**
 - Processing Speed
 - Mean: 126 ms, SD: 328 ms

2. **Residual Activation**
 - Strength

<table>
<thead>
<tr>
<th>Lag of Repeated Item</th>
<th>Mean Savings</th>
<th>SD Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103 ms</td>
<td>215 ms</td>
</tr>
<tr>
<td>2</td>
<td>124 ms</td>
<td>229 ms</td>
</tr>
<tr>
<td>3</td>
<td>108 ms</td>
<td>214 ms</td>
</tr>
<tr>
<td>4</td>
<td>107 ms</td>
<td>216 ms</td>
</tr>
</tbody>
</table>

Figure 1: Wolfer's (1984) Procedure and Resulting Statistics for Measuring Memory Activation Capacity
response time is 1265 ms if neither of the words was shown before, but that time is reduced by 191 ms if one of the words was encountered on the previous item, and by 107 ms if one of the words was encountered eight items ago. The interpretation is that the word encountered even eight items ago is still more highly active than it would be at its true resting state, and therefore is processed faster. Woltz argues that individual differences in the response time facilitation effect reflect differences in activation capacity.

Given that we can define working memory capacity in two distinct ways, an important next question is: What is the empirical relationship between the two kinds of measures, and even more importantly, what is their relationship to learning? Cognitive analyses of learning tasks (Anderson, 1987; Anderson & Jeffries, 1985), such as mathematics learning or learning a computer programming language, suggest that the limiting factor in learning is the working memory bottleneck. But the proof of this assertion is often rather theoretical, based on a rational analysis of learning task requirements, supplemented by a formal computer simulation of learning processes. An individual differences analysis of the role of working memory in learning can be a useful supplement to this kind of formal analysis, and is a fair test of the theoretical claim (Underwood, 1975). Thus, we have recently begun investigating the relationship between working memory capacity (as measured by tests such as those displayed in Figures 2 and 3) and performance in realistic learning contexts. We currently are investigating the acquisition of electronic troubleshooting (Kyllonen, Stephens, & Woltz, 1988) and computer programming skills (Kyllonen, Scovel, & Stephens, 1988), and other procedural learning tasks (Woltz, 1987). In all cases, we find that working memory, as indicated by both the processing workspace and activation capacity measures, is a strong predictor of learning outcome. These analyses are beginning to clarify our understanding of working memory. The analyses also suggest that the particular tests of working memory capacity that were already developed (Figures 2 and 3) are solid candidates for inclusion in future testing batteries.
state, are designed to help the reader understand and evaluate the amount of general data. A knowledge-based approach is used here, which provides a framework for analyzing the data. The data is presented in a structured format, making it easier to read and understand. The presentation includes various charts and graphs to illustrate key points. The conclusion of the analysis is that the data supports the hypotheses presented earlier.

In conclusion, the analysis of the data has provided valuable insights into the case study. The findings suggest that further research is needed to fully understand the factors that contribute to the outcomes observed. The implications of these findings are discussed in the conclusion, along with recommendations for future research.
Even the measurement of the depth and breadth dimensions of knowledge may benefit from recent work in cognitive science. The most innovative recent developments in probing declarative knowledge have been produced by researchers interested in achievement testing (Frederiksen, Lesgold, Glaser, & Stafke, in press; Glaser, Lesgold, & Leible, in press; Haertel, 1985; Lesgold et al., 1987). Glaser et al. point out that current methods, typically multiple-choice tests, suffer two key drawbacks: First, the alternatives cannot directly indicate all the possible misconceptions a student could possess and thus lose diagnostic utility. Second, the alternatives may give away the answer, as has been shown in test results.

Glaser et al. discuss several cognitive approaches to knowledge assessment, which in contrast to protocol analysis involve protocols extracted from students struggling with new material or a plain statement of declarative knowledge (Hansson & Siman, 1984) and serve as the basis for the development of additional cognitive task analysis. The protocols are used to pinpoint common misconceptions that are exposed. Protocol analyses are costly in both subject and time, so that selectivity and other judgments are appropriate for inclusion in a test form.

But Glaser et al. also make a distinction between conventional and protocol methods. In their experimental design, they collected a series of "naked menus." For example, a five-element naked menu might include these five elements: (a) stating the law, (b) stating the rule, (c) stating the principle, (d) stating the exception, and (e) stating the alternatives on screen. For each response, the participants were to choose the exception. This method avoids processing load on students and provides data about strategy selection and test-taking.
strategy. Second, the hierarchical arrangement can closely mirror the way in which a student is thinking about a problem, in a kind of top-down fashion.

Thus far, this approach to probing an individual's knowledge has been employed in one of the CLASS tutoring systems. Bridge (Bonar & Cunningham, 1986), which teaches learners how to program in Pascal, presents general programming problems to be solved. At the top level (the first set of questions), the alternatives are general categories or general approaches to the problem (e.g., "add something together" or "keep doing something"). Once the student selects a category, he or she is presented a list of alternatives that refine the category selection, and so on, until a fully specified answer is selected. From pilot testing using Air Force subjects, the method has proved general enough to accommodate the vast majority of potential responses to particular programming problems; therefore, the approach seems highly promising as a way of assessing knowledge status in the student.

To summarize, although we have not yet fully explored the domain of how to probe a learner's declarative knowledge base, we have made some important initial steps. It is likely that as we begin further testing in the more complex tutoring systems environments, the methods described in this section will be refined further.

Skills

We define skills or procedural knowledge as it is referred to in the cognitive science literature, fairly informally, as any unit of knowledge that is typically or would likely be represented in production system simulations in the form of an if-then rule or series of if-then rules. This is any knowledge or skill the student has that might bear directly on problem solving ("how-to knowledge"). Procedural skill varies widely along the generality dimension; at the most general level are problem-solving heuristics or approaches, such as working backward, means-ends analysis, or persisting in the face of uncertainty. At the opposite end of the continuum are very specific procedures, such as moving the cursor to position 12, 45 when required to delete a character at position 12, 45.
One fairly consistent finding in cognitive research is that although specific procedures are trainable, general procedures are quite resistant to modification. This finding is certainly not due to a shortage of attempts to modify general skills. Kulik, Bangert-Downs, and Kulik (1984) reviewed over 50 studies of the effects of extensive coaching for the Scholastic Aptitude Test (SAT). They concluded that the effects, even for long-term training, were quite small (approximately one-sixth to one-third standard deviation, or 17 to 34 points). The results of Venezuela’s Project Intelligence (Herrnstein, Nickerson, de Sanchez, & Swets, 1986) may be seen similarly as somewhat disappointing. Despite an ambitious project in which domain-free thinking skills were taught 4 days per week, in 45-minute lessons, for an entire year, the actual changes experienced on standard measures of cognitive skill (intelligence tests) were quite minuscule (about .3 sd). These findings should not have come as any great surprise. Attempts to have students transfer general problem-solving approaches to superficially distinct but isomorphically identical problems have repeatedly failed (e.g., Brown & Campione, 1978; Simon & Hayes, 1976).

On the other hand, there is good evidence for the modifiability of specific skills, especially in context. Schoenfeld (1979) has shown how training in mathematical heuristics (e.g., draw a diagram, simplify the problem, test the limiting case) can facilitate subsequent problem solving so long as the instruction is wedded tightly to the domain material simultaneously being taught. Recent analyses of transfer of training have shown that skill transfer is excellent and quite predictable when the skills transferred are related at some conceptual level to the new skills (Anderson, 1987; Kieras & Bovair, 1986).

The implications of these two results for testing purposes are apparent. On the one hand, specific procedural knowledge is rather easily modifiable and therefore ought to perhaps be trained rather than tested for, at least in the personnel selection and classification context. Recent work on diagnostic monitoring (Frederiksen et al., in press; Lesgold et al., 1987) shows how tests can be used to tailor instruction and are thus appropriate for this purpose. On the other hand, general procedural knowledge should have an important predictive relationship to learning ability, and it seems to be fairly
immutable. General procedural knowledge, therefore, is an ideal capability to test for in entrance (selection and classification) testing. It is interesting that researchers from very diverse perspectives—psychometric (Cattell, 1971), information processing (Sternberg, 1981a), and artificial intelligence (Schank, 1980)—have argued consistently for the importance of the ability to cope with novel problems as a key aspect of intelligence, and therefore as an ideal candidate for inclusion in aptitude test batteries.

Do we now test for general procedural knowledge, or general problem-solving skills? As was the case with declarative knowledge, there certainly are in existence paper-and-pencil tests that would appear to tap very general problem-solving skill—Raven's Progressive Matrices being an excellent example. And about 7 years ago, ETS began supplementing its existing Verbal and Quantitative portions of the Graduate Record Examination with a new test of Analytic ability (Wilson, 1976). The ASVAB comes close to testing general problem-solving ability with the Arithmetic Reasoning subtest. This subtest consists of story problems such as “How many 36-passenger buses will it take to carry 144 people?” (DoD, 1984). Recall that the Arithmetic Reasoning subtest loaded highly on the Working Memory factor in the Christal (1987) study, which suggests an intriguing research question: What is the relationship between working memory and procedural skill?

We can think of working memory capacity as mediating the development and efficiency of general problem-solving strategies. But an alternative view of the relationship between the two constructs assigns the central role to working memory. Baddeley (1987) has proposed a model of working memory consisting of various slave storage subsystems (for storing linguistic information, spatial information, etc.), along with a central executive which monitors and coordinates the activities of the subsidiary storage systems. Executive skill, then, is skill in monitoring one's problem-solving processes, adapting to changing task requirements, successfully executing general problem-solving strategies, allocating resources where they are needed, and more generally, changing processing strategy in accordance with changes in processing demands.
In this way, the executive can be seen as the most important component of working memory. Yet, though we have a reasonable understanding of how the subsidiary storage systems function, according to Baddeley the workings of the central executive still remain largely a mystery. An important and exciting research direction is to begin devising means for measuring executive skill and thereby begin unraveling that mystery.

Modeling Learning Skills

Learning Skills Taxonomy

If we can adequately measure knowledge and the various skills associated with the four sources, an important next step in the research program is to demonstrate the relationship between those scores and scores generated from a trainee's interaction with a learning task. We believe that learning should be expressible in terms of (i.e., predictable from) the underlying components, but it is necessary to prove that this is the case.

Much of our research until fairly recently has used grossly simplified learning tasks as criterion measures against which to validate the new cognitive abilities measures. For example, in the Kyllonen-Tirre-Christal (1988) study, performance on various paired-associates tests were used as criteria; and in other studies, we have employed comparably simple, short-term learning tasks. The logic underlying this decision is twofold. First, we are concerned with developing rigorous models of the aptitude-learning-outcome relationship; and simple, short-term learning tasks afford more control over the instructional environment. But second, we believe that the kind of learning involved in even these simple tasks is at some fundamental level the same as that involved in more realistic learning situations. Or, conversely, even apparently complex classroom learning can be analyzed and decomposed into a series of much simpler learning acts.

If we accept the notion that even complex learning tasks can be broken down into their constituent learning activities, then it obviously would be useful to specify the nature of those basic learning
activities. One proposal that has been useful in our work, based largely on Anderson's (1987) three-stage model of skill acquisition, is represented on the right side of Figure 1. The idea is that cognitive skills develop through an initial engagement of declarative learning processes ("memorizing the steps"), followed by an engagement of proceduralization processes ("executing the steps"), then finally refinement processes ("automatizing the steps"). As Figure 4 shows, different performance measures will be sensitive to the course of skill development at various points along the way. When first learning a skill, many mistakes will be made, and accuracy measures will be the most sensitive indicators of skill development. Later, when the skill is known, few mistakes will be made, and performance time measures will be the most sensitive indicators. Still later, performance time will approach a minimum as the target skill becomes increasingly automatized, but there might still be considerable variability in whether (and how much) other processing can be occurring while the target skill is being executed.

We (Kyllonen & Shute, in press) recently elaborated on this simple taxonomy in proposing that in addition to the status of the skill (i.e., whether the skill is in a declarative, procedural, or automatic state, which we identified as the knowledge-type dimension), learning could be classified along three other dimensions: the learning environment, the domain, and the learner's cognitive style.

The learning environment specifies the nature of the inference process required by the student: The simplest learning act involvesrote memorization. Learning by actively encoding, by deduction, by analogically reasoning, by refinement through reflection following practice, by induction from examples, and by observation and discovery involves successively more complex processing on the part of the learner. The second dimension, the resulting knowledge-type, as indicated above, specifies whether the product of the learning act is a new chunk of declarative knowledge (a new fact or body of facts) or new procedural knowledge (a rule, a skill, or a mental model). The third dimension, the domain, refers to whether learning is occurring in a technical, quantitative domain or a more verbal, non-technical domain. Together, these three dimensions specify a particular kind of learning act. The fourth dimension, the learner's cognitive style, is a property of the learner rather than of the instructional situation per se. But we included it in recognition of the possibility that we cannot be
Figure 4. Performance Curves for Three Dependent Measures as a Function of the Stage of the Skill Being Measured. The different dependent measures are optimally sensitive to individual differences at different stages.
certain on any task of what learning skill is being assessed unless we consider how the learner is approaching the task.

Our proposal, which has not in any sense been put to the test, is that the taxonomy should prove useful in two ways. First, it provides a sampling space from which we may draw learning tasks. The goal of the LAMP effort is to model learning ability using cognitive skill measures; the taxonomy specifies the range of learning tasks for which we must develop adequate models. Second, in reverse fashion, the taxonomy specifies the kinds of micro-level learning acts that combine to make complex learning. This aspect provides a task analysis tool. Our idea is that we can inspect the requirements of any complex learning situation, in the classroom or in front of a computer, and specify what learning acts are occurring. Given any instructional exchange, we can find a cell in the taxonomy that represents that exchange.

Complex Learning Assessment (CLASS)

One potential stumbling block for any program like ours is that it is not easy to monitor progress. To determine whether our innovative measurement methods are valid predictors of learning success, it is necessary to observe students engaged in learning. Two approaches have traditionally been taken. One is to validate the new tests against some criterion reflecting success in operational training, such as final course grade point average. The benefit of this approach is that inferences from the research are direct, but there are a number of drawbacks: Data collection is extremely slow, instructor quality is highly variable and may interact with learner characteristics in affecting learning outcomes, and there is no allowance for manipulating the learning task in any way so as to allow "what-if" questions regarding validity (e.g., "what if the instructor encouraged more questions, would that differentially affect student outcomes?").

The second approach is to simplify the learning task such that it is under the experimenter's control and can be administered within a single session. With complete control over the learning task, one can ask and test what-if questions easily. Unfortunately, in so modifying the learning task, the researcher
cannot necessarily continue to assume that the instruments shown to be valid in the experimental context will prove to be valid in predicting success in more realistic learning situations.

Our solution to the validity problem represents a compromise between these two positions. We are currently designing intelligent computerized tutoring systems to teach computer programming, electronics, trouble-shooting, and flight engineering in 8-hour mini-courses (Learning Research & Development Center, 1987). In addition, we will add new mini-courses over the next several years. The tutoring systems are being designed to produce a rich variety of indices of the learner's curriculum knowledge and to offer the process of capturing the new knowledge and skills being taught. The tutoring systems are sufficiently flexible so that it is easy to modify the instructional strategy and thus ask different questions. The learning involved, however, is not trivial. It has been estimated that 1 hour of tutored instruction is equivalent to approximately 4 hours of regular classroom instruction (Anderson, Boyle, & Reiser, 1984); thus, these mini-courses are quite extensive. A major goal of our current research efforts is to use the taxonomy to generate the most expressive indices of the student's learning experience.

We envision a broad range of research questions that can be addressed once we begin gathering data with these kinds of learning indices. First, the indices can serve as alternatives to end-of-course achievement test scores as criteria for validating new cognitive aptitude tests. An index such as “probability of remembering an instructional proposition as a function of the amount of study and presentation lag” is more precise and potentially more general than a broad achievement test score. Such a fine breakdown of the learning experience also permits enhanced analyses among the indices themselves. For example, we can begin investigating more precisely questions concerning the relationship between initial knowledge acquisition and the subsequent ability to turn that knowledge into problem-solving skill, or the ability to turn that skill with more problem-solving experience.

Finally, developing rich profiles of an individual learner's strengths and weaknesses in the form of elaborate assemblies of learning indices should permit a reassessment of the aptitude treatment interaction (ATID) idea (Tulviste & Snow, 1977). Probably, the main interest of this all research.

1.9
can be traced to the employment of global aptitude indices and global learning outcome measures along with pragmatic limitations on instructional variation. The tutoring systems being developed overcome these limitations by generating richer traces of a learner's path through a curriculum, and by being sufficiently flexible to allow potentially unlimited variations in how instruction is presented.

IV. SUMMARY AND CONCLUSIONS

This paper has outlined some of the research activities underway as part of the Air Force's Learning Abilities Measurement Program (LAMP). The major goal of the project is to devise new models of the nature and organization of human abilities, with the long-term goal of applying those models to improve current personnel selection and classification systems.

As an approach to this ambitious undertaking, we have divided the activities of the project into two categories. The first category is concerned with identifying fundamental learning abilities by determining how learners differ in their abilities to think, remember, solve problems, and acquire knowledge and skills. From research already completed, we have established a four-source framework that assumes that observed learner differences are due to differences in information processing efficiency, working memory capacity, and the breadth, extent, and accessibility of conceptual knowledge and procedural and declarative skills.

The second category of research activities is concerned with validating new models of learning abilities. To do this, we are building a number of computerized intelligent tutoring systems that serve as prototypes in a number of areas such as computer programming and electronics troubleshooting. A major goal of this part of the program is to develop principles for producing indicators of student learning progress and achievement. These indicators will serve as the learning outcome measures against which newly developed learning ability tests will be evaluated in future validation studies. These indicators also will be applied to studies that attempt to analyze instruction so as to capitalize on and compensate for learner strengths and weaknesses.
REFERENCES

33

Learning Research and Development Center (1987). *Research in Intelligent CAI at the Learning Research and Development Center of the University of Pittsburgh*. Pittsburgh, PA: University of Pittsburgh, LRDC.

Psychology, 8, 165-190.

K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 105-137).
Norwood, NJ: Ablex.

in biology students. Unpublished master's thesis, University of Georgia, Department of Educational
Psychology, Athens, GA.

Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning: The

Sternberg, R. J. (1981a). Intelligence and nonentrenchment. Journal of Educational Psychology, 73, 1-
16.

38, 878-893.

END
DATE
FILED/MED
4-88
DTIC