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I. INTRODUCTION

The importance of the shaped-charge warhead as an antitank weapon has
justified repeated efforts to analyze the phenomena associated with its

performance. The conventional shaped-charge munition consists of a cylin-
drical charge of high explosive with an axisymmetric, conical cavity at one
end into which is inserted a conical, metallic shell. On detonation of the
explosive from a point on the axis of symmetry of the charge at the end
opposite the cavity, a pressure wave propagates toward the conical metal
"liner," and passes over it, sequentially collapsing the shell and generat-

ing a high-velocity stream of metal, called the "jet" and a lower velocity,
more massive body, called the "slug." The jet travels along the axis of
symmetry of the system, in the direction of the propagation of the detona-
tion wave, and is capable of penetrating the high-strength steel used to

protect military vehicles.

Much of the research done on shaped-charge physics in England and in
the United States during the Second World War was summarized in 1948 in an
article by Garrett Birkhoff, Duncan MacDougall, Emerson Pugh and Sir

1
Geoffrey Taylor. These authors derived equations describing the jet
generated by the symmetrical collapse of a hollow, ductile wedge under
steady flow conditions. Because of the extremely-high pressures acting on
the explosively-driven metal wedge, the wedge material was treated as a
hydrodynamically-perfect fluid. Although not strictly applicable to the
collapse of hollow cones, this theory was used to predict the mass and
velocity of jets from conventional shaped-charge munitions and the pre-
dictions were in good agreement with the experimental data for the first-

formed portions of these jets.

The steady-state theory of jet formation from wedge-lined charges was

modified in 1952 by Emerson Pugh, Robert Eichelberger, and Norman Rostoker
2

to account for the variation in the collapse velocity imparted to the wall
of the metal shell of a conventional shaped charge. The introduction of
variable-flow input conditions into the steady jet-formation theory resulted
in a description of the velocity gradient found between the tip and tail of
a conventional shaped-charge jet.

Experimental evidence supporting the theory of Pugh, Eichelberger and

Rostoker was presented in 1952 by Eichelberger and Pugh. 3 By recovering the

jet and "slug" material from conventional shaped charges with conical, steel
liners and by measuring the velocity of different portions of the jet, the

authors were able to show that, within the experimental error, the jets
produced from collapsing cones were well-described by the "unsteady" jet
formation theory valid for collapsing wedges.

1Y
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By 1954, Eichelberger 4 had refined his experimental technique suffi-
ciently to detect small but systematic discrepancies between the observed

characteristics of the jet from a collapsing cone and the characteristics
predicted by the unsteady jet formation theory for collapsing wedges. He
showed that the finite time required to accelerate the liner to its final
collapse velocity, neglected in the usual theoretical treatment, did not
explain the observed discrepancies. Another possible source of error in the
theoretical treatment, neglect of the convergence-velocity gradient

described by Sterne, 5 was suggested, 6but not explored.

With the advent of the two-dimensional, Lagrangian, hydrodynamical
7.

computer codes, such as HEMP, it became possible to compute in detail the
initial motion of an axisymmetric, shaped-charge liner. Unfortunately, for
most devices, the material distortion occurring in the jet formation region
could not be successfully treated. However, these calculations emphasized
the progressive thickening of the shell wall which occurs during the
collapse of a conical shell. This "convergence effect" leads to a velocity
gradient through the thickness of the shell which influences the jet
formation process. Such convergence-velocity gradients were described by
Sterne in 1950 and suggested as possible perturbing influences on the
simple, hydrodynamic, jet-formation theory of Birkhoff, MacDougall, Pugh,

and Taylor.
1

In this report, the quantitative effect of the "convergence-velocity
gradient" on the characteristics of the jets formed from collapsing cones is
evaluated in the spirit of the previous analytical jet-formation models. A
repartition of the mass and velocity in the jet, differing from the predic-
tions of the classical theory, is shown to occur under these conditions.

II. THE CONVERGENCE-VELOCITY GRADIENT

Suppose that a fluid shell of mass m per unit length, with external
radius r2 and internal radius rl, executes a purely radial contraction. If

the fluid is incompressible and mass is conserved, it follows that

d (r2 - r 2 ) = 0 (2.1)

and the quantity

r2 = r2 - r2  (2.2)
0 2 1

is a constant of the motion. Equation (2.1) implies that

'prr = rr(23

2 2 = r 1 (2.3)

2
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we dr
where r - . More generally, since the mass of the shell can be

dt

subdivided into smaller radial regions, Equation (2.1) implies

r r r r . (2.4)
rr 2 2 2

If r2 /r1 ;: , there is initially a nearly linear velocity gradient through

thp thinkness of the shell, with the highest velocity at the inner surface.

Sterne characterizes the shell motion by the variable x, the ratio of
r 2 to r . Then, for example,

r = r -l. (2.5)

%The kinetic energy per unit length of the cylinder is found by integrating

the kinetic energy density per unit length over the radial extent of the
cylinder. The incremental kinetic energy per unit length, dT, due to the
element of mass dm, located between r and r + dr and having characteristic

radial velocity r, is

T = r dm. (2.6)

Now
4.'-.

dm = 2cordr (2.7)

where 0 is the mass density of the shell material, so

T = p7rr-dr (2.8)

4Since rr is constant throughout the shell, it may be moved outside the

integral and

2 .2 2 dT = 7T r r 2 (2.9)
, "2 2 Jr r

~2

m 2 2 2 K (2. 0)
r x k ln 2

K -li

e.

O.

0*



This kinetic energy is assumed to remain constant, so the radial
velocity of any lagrangian element of mass, A, may be found from

-~ rr
* 2 2 (2.11)

r

where o = (r2 - r 2 ) (2.12)

The f 2 22 3

2
r

a,,' 2

r xx
0 (2.14)

V xI - /M

But, from Equation (2.10),

xx = (2.15)C'm ro0 in IX 2/(x 2 -I]

so

r (_,t)_ 1(2.16)

OM- vin [X/(x2 - 1) 2 2 - /m

The predictions of Sterne's theory for the radial collapse of a

cylindrical shell which conserves its mechanical energy are shown in Figure
1. The copper shell has an initial external radius of 25mm, an initial

external radial velocity of 1.5 km/s, and an initial internal radius of
23mm. The solid linesin Figure 1 represent the velocities of the inner, 1,
middle, M, and outer, O,parts of the shell. The dotted lines indicate the

-' positions of these Lagrangian elements as the collapse parameter x changes.
As the variable x approaches unity, the radial velocity of the internal
surface approaches infinity and the velocity of all other elements of the
shell approaches zero. Sterne points out that the rapid concentration of
kinetic energy at the inner portion of the shell requires the generation of
very large internal pressures.

Figure 2 shows the collapse-velocity vectors computed by the HEMP code
for various Lagrangian elements of an explosively-driven conical shell which

is collapsing toward its axis of symmetry. Only one-half of the cross-
section of the conical segment is depicted. The values of the pressure
field intensity (in GPa) at the centers of the HEMP computational cells are
also given. The gradient of the velocity field through the thickness of the

shell is apparent as well as the divergence of the shell boundaries as the
flow approaches the axis. A wedge of equivalent initial thickness explo-

sively-collapsed shows no such velocity gradient. The covergence-velocity
gradient is then formed when the flow divergence velocities are superimposed
on the explosively driven collapse velocity.

4
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III. THE ASSUMPTIONS AND RESULTS OF THE PREVIOUS STEADY-STATE
JET-FORMATION THEORY

The original analysis of jet formation from a collapsing wedge, the
Birkhoff, MacDougall, Pugh, and Taylor (BMPT) theory, was based on the

-w. premise that, for steady flow conditions, the process was equivalent to a
-.. diverted flow issuing from a moving collision point. This process is

illustrated in Figure 3, taken from the BMPT paper, Reference 1. Figure 3a
-k shows the formation of a jet and slug from a wedge-shell whose sides col-

lapse with constant velocity V0 , driven by the detonation of a charge of

high explosive that was in contact with its outer surface. The solid lines
in Figure 3a show the collapse conditions at one instant of time and the
dotted lines show the conditions at a later instant. Figure 3b shows the
formation of jet and slug by the wedge-shell shown in Figure 3a from the
viewpoint of an observer stationed at the moving junction A.

The high pressures involved in the process far exceed the mechanical
strength of the metal in the shell, so this material was assumed to behave
like a perfect fluid.* To eliminate the complexity of pressure waves and

5,' because the metal of the shell is not very compressible, the fluid was
- considered to be incompressible. The flow of material through the collision

region was determined by applying the laws of conservation of linear momen-
tum, mechanical energy, and mass at the boundaries of the collision region.

In BMPT theory, the constant velocity of the wedge wall, V0 , is
resolved into a "flow" component, VF, along the wall and a "stagnation

P point" component, Vspy along the axis of symmetry of the shell. In the

reference frame of the collision region, traveling down the axis of symmetry
with Vsp, the collapse velocity is the same along each streamline.** In

terms of the collapse angle, P , and the y- and x-components of the collapse
velocity, Voy and V ox, respectively, the magnitude of the flow velocity is

'5 VF  = Voy csc f , (3.1)

while the stagnation point velocity of the moving junction A has a magnitude
given by

V sp = V F cos#3+ V ox (3.2)

In the stationary frame of reference, the jet velocity magnitude, V is

V = V + V (3.3)Fj sp
5,

*A perfect fluid is non-viscous and non-conducting.

**A streamline maps the direction of the velocity at every point in space at

0 .any instant. The paths of the fluid particles are tangent to the stream-

.4 lines at any instant.

5.!
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since the jet flow "turns the corner" and proceeds in the same direction
that the stagnation point is moving. The magnitude of the slug velocity,
V is

V s - Vsp - VF9 (3.4)

since the slug flow is opposite to the stagnation point motion. The mass
partition into jet mass, j, and slug mass, ms, of the incoming liner

(shell) mass, m, is

m s

__ = cos 2 (8/2) (3.5)
m

and

m.
-- = sin 2 (B/2) (3.6)
, I

The conclusions reached through this analysis were considered
applicable to jets produced from both conical shells and wedge shells. In
the absence of convergence velocity gradients, the same results can be
derived for conical geometry, by distorting the geometry somewhat to mask
the essentially divergent nature of the flow. In the next section, the
equivalent theory for a conical geometry is developed, under the assumption
of "convergenceless flow," in order to lay the foundations for the new
theory which explicitly addresses the convergence effect.

IV. JETS FROM CONVERGENCELESS CONE COLLAPSE

In order to approximate the conditions required for the application of

the steady-state, BMPT, wedge-jet theory to a collapsing conical shell, the
thickness and collapse velocity of the shell are assumed to be adjusted so
that the collision region moves with constant velocity down the axis of
symmetry of the cone and the mass entering the collision region is constant.
Then, from a reference frame in the collision region, the incoming and out-

going flows are steady.*

* The conditions of the liner collapse are illustrated schematically in
Figure 4. Half the metal liner is shown in cross-section at the top of the

figure along with the charge of high explosive. At the bottom of the
figure, the conical liner is shown partially collapsed with a small amount
of undetonated explosive still remaining at the end of the charge.

*The flow is steady if there is no variation with time in either the
magnitude or the direction of the velocity at any stationary point in the
space through which the fluid flows.

0.
9
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(a)

ir

(b)

L -

P

Figure 4. Schematic diagram of "constant-velocity" shaped charge with tapered
conical shell liner; (a) before detonation of the high explosive,
(b) with the explosive partially detonated.
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The collapse conditions are such that the collapse angle 0, measured
with respect to the central streamline of the incoming flow, remains

constant. Since an individual liner segment swells as it approaches the
axis of symmetry, the incoming flow is no longer uniform,* as it was in the
case of the wedge flow. The incoming flow is divergent as it approaches P
and the separating streamlines have relative velocities with respect to each
other. A convergence velocity gradient necessarily exists which will be
neglected in the analysis of this section.

Figure 5a shows the areas intercepted by the flow on an imaginary
surface enclosing the jet-formation region. Figure 5b shows the boundaries
of a "quasi-uniform" flow through the formation region, reminiscent of wedge
flow. The incoming flow is represented as parallel flow because constant
velocity divergent flow raises many of the same complications associated
with the actual flow to be treated later. The adjustment in the apparent
"thickness" of the flow brought about by the convergence of the mass in the
conical shell and the consequent rearrangement of the spacing between
streamlines occurs in this "convergenceless" model in the interior of the
collision region and is "invisible" at the boundaries.

In Figure 5b, let CE - a be the initial thickness of the flow as it
enters through the bounding surface. Since the flow is axisymmetric, the
total area of the boundary surface intersected by the flow is the area of a
ribbon of width a and length 21rf,

A= 2wra = 7(r C + rE)a (4.1)

on the same diagram, let FG - al, and BA - a2 be the radii of the deflected

flows. The boundary surface areas intersected by these flows are
S.

Al = it a 2  (4.2)

and

A2 = iTa2  (4.3)

In the reference frame of the moving collision region, the incoming momentum
per unit length of quasi-uniform flow has a z-component given by

in a(E) o(VF COS) 21(r -cx) dxPz = F C

Jo~c)

=-2vtV F cos 6 (rca- Ea2/2), (4.4)

*The flow is uniform if all streamlines remain parallel to one another.

% 
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(a)

(b)

Figure 5. (a) Bounding surface for conical qeornetry, (b) cross-sectional view,,.
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where x is a coordinate which measures the thickness of the flow as
indicated in Figure 5b, VF is the magnitude of the flow velocity,

C=(r C - r E)/a, (4.5)

p is the mass density of the shell material, J3 is the collapse angle defined
by an incoming streamline and the axis of symmetry, and p"T is directed

z
alon 7 the negative z-axis.

The outgoing momentum per unit length has a z-component of the form:

out a2(B) al(F)
= C PV 2,Tydy + pV 27y'dy' (4.6)

PZ fo F J o(G) F

where y and y' are indicated in Figure 5b. For continuous, incompressible
flow, the relation between a, a1 and a is

07(r + rE)a = Qa 2 +ora 2

C E 2

so

a, VCr + r E)a -a . (4.7)C E 2

Then

out
Z 2 7tV F a2 -(r. + r E)a/2 1 48

2(48

If linear momentum is conserved in the collision frame,

cos 2 (r a - a2/2) = a2 _ (r + r ) a/2, (4.9)
C 2 C E

and a2 ( r + r a (Cos 3 + l
2 L, E 2

( r + rE)a c05 2 (EB/2) (4.10)

The fraction of the mass in the incoming flow which goes into the
"1slug" is then

m a2

rn - (r 2r COS (/2 (4.11)
1C E

13
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a . which is the same result obtained in BlNT theory for the slug from the
collapse of a wedge shell. The mass partition in the jet is

7m I Mi  - M S
- 1 s £in2 (B/2). (4.12)

The velocity of the slug portion of the mass will be Vsp - VF; that of the

jet mass will be Vsp + VF, as indicated in Figure 3b.

This jet-formation model, which ignores convergence effects, gives a
good qualitative description of the jets produced by the collapse of conical
shells. When the effect of a time varying collapse velocity and collapse
angle is incorporated by simply changing the input conditions to the steady-
state model, the description is so good that, in the first examination of
the validity of the model, the predicted and experimentally - determined jet
characteristics were shown to agree within the precision of the experimental

3
data . Later, when a more sensitive analytic approach was taken using

refined experimental data4 , small systematic deviations between predicted
and observed properties were detected, but no theoretical explanation for
the effects was offered. In the next section, the influence of a conver-
gence-type velocity gradient on the mass and velocity partition in wedge-jet

formation is investigated. Small, but systematic,deviations from the
results of the BMPT theory are shown to occur. The derived formulae,
although artificial, illustrate the changes in the jet properties with the
least mathematical complexity.

V. THE INFLUENCE OF A CONVERGENCE-TYPE VELOCITY GRADIENT ON THE MASS
AND VELOCITY PARTITION IN DFLECTED WEDGE-FLOW

The effect of a velocity gradient on jet formation in the stagnation-
point frame of reference is most easily assessed by using the wedge-flow
model first proposed by Birkhoff, MacDougall, Pugh and Taylor. The
advantage of this model is its particularly simple flow pattern.

. In Figure 6, one half the cross-section through the flow and bounding
surface is shown. The initial thickness of the wedge flow is CE - a, and
the thicknesses of the deflected forward and rearward flows are FG - aI and

BA - a 2 , respectively. The velocity gradient across the incoming flow iS

assumed to be linear, in particular

V (x) =V OF + O< x < a (5.1)

14
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Figure 6. Flow configuration for wedge with velocity gradiant.



where VF is the magnitude of the flow velocity at position x, measured

across the thickness, with x - 0 being point C on Figure 6. VOF is the flow

velocity at C and

a = (VE - V c)/a (5.2)

is the "strength" of the velocity gradient.

Since the flow is assumed to be uniform and steady, there is a smooth
division of the streamlines in the collision region and the incoming
velocity gradient is preserved in the exiting flows.

The incoming momentum, through a surface CE across the cross-section of
the flow and extending for unit length perpendicular to the plane of Figure
6, has an average z-component given by

<p i = -oa <VF> cos B,
z F

where <V F> is the average flow speed* defined by

.1' <V > =fa VFN dA
A

VFN being the component of the flow velocity normal to the area element dA.

Then, since the surface CE is normal to the flow

ina F(x<r > = -0a coss dxz -o dx

= -P cos8 (V OFa + aa2/2) (5.5)

The incoming mass per unit time is pa <V F>. The outgoing average
momentum has the z-component,

* out (5.6)
z -oa2 <VF2 a VF1

*This definition is given, for example, by Jerzy A. Owczarek in Introduction

to Fluid Mechanics, (International Text Book Company, Scranton, 1968), p.
183.
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where (V F2> is the average flow speed into the slug, of thickness a2,

through the surface AB, and <VFI> is the average flow speed into the jet, of

thickness al, through the surface FG. Thus

out, ea a 1 )Fxd<Pz > So 2v PVx I)dx ' + 1 v( 0 V )dx " ,

where the integrations are performed over the surfaces whose cross-sections

are AB and FG, respectively.

For this idealized deflected flow, the velocity gradients are

V F(x') V OF + a(a - x'), (5.7)

and

V (x") = V + a (a + x"). (5.8)
F OF 2

Therefore,
:..

P out > = Va-a a2 + Vora, + aa a + a a2 (5.9)
tz >O= - 2- 2- 2 1 2

The expression for the continuity of the flow is

a <VF> = aI  _ > + a 2 <VF2(5.10)

where

~al VF (x")
<V > = a dx" =V + a 2 + (5.11)
F -a or 2  a 1 ,

..
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and

<V = a 2 VF X') dx' = V + C a (5.12)

F2  C) a2  OF 2 2,

Then since,

La<V a=VF (x) dx = V + a (5.13)
, J a oF 2

V al + caa2 + - a 2 = V a + a V a - -a2
OF 2 1 OFOF 2 2 2

Since momentum is conserved,

a cos3 (V P + aa/2) = 2a (VoV + oca /2)- a(V + ca/2). (5.15)F2 2 OF

The thickness of the outgoing flow is then

-V V2 + ca (cos 3 + 1) ( O + ota/2)

a = O___,F + OF v (5.16)
2 ot

where the limitation
0 < a < a

determines the root to be chosen. Note that, if Equation (5.16) is expanded
by means of the binomial theorem, the result is

a =a cos 2 (/2) + "a2  cos2 (/2) + "' (5.17)
2 2VOF

0 18
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in agreement with BMPT theory if a 0. For constant influx energy (see
Appendix A), as a increases, VOF decreases until finally, the lim-ti'c value

for VOF non-negative is a = a cos (3/2).

As one would expect from a velocity gradient of the sort assumed (with
a>0), less mass is required in the jet to balance the axial momentum in the

K' stagnation point frame of reference because the average flo velocity in the
Fjet, <VFI> , is greater then the average flow velocity in the slug, <V F2>.

Some examples of the phenomenon are shown in Table I.

Table I. Dependence of Wedge-Flow on Velocity Gradient For Constant
Influx Energy in Stagnation Point Frame

VOF= 2.751 km/s a = 4.624mm 13 36.4 degrees

VOF aI  a2  <VFl> (VF2 >

(km/s/mm) (km/s) (mm) (mm) (km/s) (m/s)

0.0 2.751 0.451 4.173 2.751 2.751

0.1 2.516 0.419 4.205 2.957 2.726

0.2 2.276 0.391 4.233 3.162 2.699

0.3 2.028 0.365 4.259 3.361 2.667

0.4 1.774 0.342 4.282 3.555 2.630

0.5 1.513 0.321 4.303 3.745 2.589

0.6 1.245 0.302 4.322 3.929 2.542

0.8 0.685 0.267 4.357 4.277 2.428

1.0 0.093 0.236 4.388 4.599 2.287

1.2 -.537 0.207 4.417 4.887 2.113

1.4 -1.218 0.177 4.447 5.132 1.895
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VI. JETS FROM COLLAPSING CONICAL SHELLS

The steady flow associated with a collapsing conical shell is non-
uniform. This introduces additional complication into its analysis.

According to Sterne's theory of the collapsing cylindrical shell, the
radial velocity of the central streamline is essentially unaffected by the

internal pressures until the collapse is nearly complete. Consequently, the
ae other streamlines diverge from this streamline and the central streamline is

a natural point of reference in the flow analysis.

In the following it is assumed that, in a reference frame in which this
streamline is at rest, the flow pattern appears stationary. This conical

flow pattern is illustrated in Figure 7 along with the flow velocities as
seen in the "stagnation point" reference frame of the central streamline.

VA boundary region, indicated by the dashed line in Figure 7, is
established just outside the high pressure collision region whose existence
was indicated in Figure 2. The flow velocities are obtained by resolving

the collapse velocities along their respective streamlines. The reference
frame velocity is the axial component of the collapse velocity on the

V central streamline, evaluated at the point where the streamline first
intercepts the surface of integration, just above the collision region. The
collapse velocities of the other streamlines have different axial compo-

* nents, since they are diverging from the central one.

The momentum of the fluid entering the dotted boundary surface,
illustrated in Figure 7, will be conserved. As in the previous analysis
of conical flow, CE - a is the thickness of the incoming flow and the

projected area of the flow on the boundary surface is As = 7(r + rE) a,

where rC and rE are radii to the boundary points C and E in Figure 7.
N The radii of the outgoing "jet" and "slug" flows are a I and a respec-

tively. The projected areas of the outgoing flows on the boundary
N surface are A = wa2 , for the jet, and A = Tra 2 for the slug.

1 1 2 2

Let x label the position of a streamline in the incoming flow and
let V FN(x) be the velocity component of the incoming flow at x normal

to the boundary surface. It is assumed that the velocity gradient of

this normal flow is linear, i.e.,

(IV (X) = V0F N + ax 0 < x < a (6.1)

p-s

where VOF N is the normal component of the flow velocity at point C

in Figure 7, and x is measured from point C. The velocity components
parallel to the boundary CE are associated with the "natural" stream-

.7 line divergence and are neglected in the analysis of the collision.

%.J
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The average momentum per unit length of the flow entering through

the boundary surface has a z-component, <P '>, given by
Pz

<p> =- V > A cos 8, (6.2)
z FN c

where
%a

V > J VFN (x) 21 (rC - ex) dx. (6.3)

The integrated incoming momentum, in the negative z-direction, is

.in

<P > =-21ro F(a) cos 8 (6.4)

where F(a) r ca V + (r C - V FN) a2/2 -aE a/3. (6.5)

The average momentum leaving the bounding surface has a z-component,.out
<p o , given by

o a (B) aI (F)
<Pz o(A) (x')27rx'dx' + J OVF(X)2-x"dx" , (6.6)

z o(A) F f 0o(-,) F

where VF (x' ) and VF (x" ) are the streamline flow velocities in the slug

(x') and jet (x ) respectively. These flows are normal to the boundary
surfaces.

It is assumed that the normal components of the individual streamlines
are preserved in this "perfect" collision. The spacing between the stream-
lines changes due to convergence effects. For continuous incompressible
flow, conservation of mass demands that

a(z + r ) <V > = a2<V > + a 2<v > (6.7)
C E FN I F1  2 F 2

where 2F (a) (6.8)

reFN a (r + rE)

0 aI• ... [C
%: J F(x)xdx (6.9)

1

and <V > I (')'d' (6.10)
F2  a

.22
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Then, the expression for continuity is

al a2
F(a)=0 V F(X X)x " oV (x')xdx' (6.11)

Let i VF(x")x"dx" (6.12)oF
0

= F(a) - VF(x')x'dx',

then <V > = 2 1  (6.13)
F1 2

a
1

The axial component of the average momentum is therefore

."

<OUt = -2 (X')X'dX' - F(a) (6.14)
z 0 ZFx-"

Since momentum is conserved,

-a)cos = 2a VF(x')x'dx' - F(a) (6.15)

p,',

or

1- (1 + cos2) F(a) = VF(X')x'dx'. (6.16)

Let I - VF(x')x'dx', (.17)
F 2 F

* then
2T

<V >= 2
F2 2

a
2

Se.
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In order to evaluate the integral 12, the velocity distribution in the

exiting flow, VF(X'), must be determined from the spacing between stream-

lines in the slug flow. Figure 8 shows the flow variables considered.

Let a* be the lagrangian label of the streamline which divides the

jet-slug flow. The area of a streamtube* in the incoming slug flow is then

-y + , 0< y < a* (6.18)
2 2

where A is the area between the dividing streamline, a2 , and the stream-v 2
line with coordinate y; r , is the radial position of the point a2 ona*

the boundary surface and r Y is the radial position of the point y on this
same surface. Let the bounding surface CE be normal to the central
streamline of the flow.

If 9 is the angle between the line CE and the positive z-axis in
Figure 8, then

r -r r - r a
= Csin a2  (6.19).a y

. and also r - ra, r - r
C a C EV.. 22 __(6.20)

a, a

so

r *=r - Ea* (6.21)
a2 C 2

fluid and formed by all the streamlines passing through a closed curve
224
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where c is given by Equation (4.5). The area between any two streamlines is

then

Ay= -y (2r - 2£a* + cy). (6.22)
C 2

All these streamlines are carried into the slug, where the spacing is

determined by the area A , of the stream tube, wherex

A = -x'. (6.23)

,

Since the flow is incompressible, A , = A and, since y is positive,i'x y

ca r a*)2 + Ex'
2 C 2 (6.24)

S.C

* Mapping the streamline velocities from one configuration of the flow,

V (y) incoming, to the other, V (x') outgoing, leads to the transformation
F F

(v) = VF(a) -Ly = V + aa* -Av (6.25)
F F 2

Letting A(a*) rc - -a, it follows that
2 2), ( 6

. (x) = V + ia* + - A(a*) - A2 (a*) + x (6.26)
F OFN 2 2 2

4

9
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Substituting for V FX') in Eq. (6.17) for the integral 12 and integrating
gives

(6.27)
rOF 2 212 a

a2 OFN a2 + 2 a2 -3 L r - ca*) 2 + Ea2 1 ]/2 + c' (r C - Ea*)3
2 2 2 _ 2-I 3 2 3E2 2

The result of equating the incoming and outgoing "slug" areas is that

rC - r, - Ea2
a* - r , (6.28)

2C

so

1 2 1 2 1 2 a
I =r a /C + - 'a/ + (r 2 - £a2 ?/2 (6.29)

2 2 OFN 2 C 3 C 3c 2

Now II is just the difference between F(a), Eq. (6.5), and 12. Once 11 1I
is known, <V I> follows from Eq. (6.13). Then <V > can be obtained bv:

Fl F2
dividing twice I, by a2 . The magnitude of the average flow velocitv into

the slug is then

C 2c (r 3 - [rg - ea2 ]3/2) (6.30)

F2 OFN E 3 2a2  2

2

The expression for conservation of the axial component of the linear
momentum, Eq. (6.16), becomes

i (r 2 2 3/2 ar 3

" (i+ cos F(a)= (VoF 4- a 2- '(r ca 2 Cr 2 7,2 C - -2 (6.31)2 2 ( r CFN

2 3 2 2

Let

cor3
K= (1 + cosB) F(a) + - (6.32)

dL = 3 (6.33)

Sand

M -- (V + ar /(3
2 OFN c (6.34)
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, Then, Equation (6.31) becomes,

K - %1a2 = L(r 2 - ca?) 5/2. (6.35)
2 C 2

Squaring both sides, rearranging terms and letting

u = a2  
(6.36)

2

M2 - 3(Lerc )2
N = (6.37)

.- E3 L2

4.

3L2 Er 2KM
SrL2 (6.38)

and

K2 _ 2rE
P =_ (6.39)

S E3L2

.. the result is the cubic equation,

3 2 v + p 0 (6.40)

The cubic equation for the mass distribution, Eq. (6.40), is solved by

the standard methods.* If

3V -N 2  (6.41)

. R = N 27 0 (6.42)45 4

S ( + 2T )l3 (6.43)

*For example, see Murray R. Spiegel, Mathematical Handbook of Formulas and

Tables, Schaum's outline series (McGraw-Hill, New York, 1968), p.32 .
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and

T = (_ Q3 
+ R(6.44)

then the solutions to Equation (6.40) are

U. = S + T - N/3 , (6.45)

1 q + T N ip3
u (9 + - + !--- (S - T) , (6.46)3 2

and

u = - - (S + T) N - (S - T).
2 3 2

(6.47)

For physical reasons,_ u < a(r . + r ),and this criteria is used to select
E

* the proper root.

Once a, has been determined, by taking the positive square root of the

appropriate value of u, <VF2>, the average flow velocity in the "slug" flow,

can be obtained from Eq. (6.30).<V F>, the average "jet" flow velocity,

follows from Eq. (6.7), since a can be determined from the area identity,

a21 a2

- i 2 (6.48)
a(r C + r E) a(r + r)

Table 2 shows the results of increasing the strength of the velocity
gradient, a , on the other properties of the flow in the conical geometry.
For these conditions, the behavior of the flow, parameters for the flow with
linear convergence - velocity gradient are quite similar in character to
those obtained in Section 5 for wedge flow with velocity gradient. The
calculations wTere made for constant influx energy (see Appendix C). For

= 0, the treatment of Section IV is used.
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Table 2. Dependence of Conical-Flow Properties in Stagnation Point

Frame on Velocity Gradient for Constant Influx Energy

VOF N  2.900 kmn/a a = 4.624 mm R- 36.4 degrees

e 0.824 rC  13.22 mm rE - 9.41 mm

a VOF N  aI  a2  <V F> <V F2>
-*1 -l - l-

(kin mm ) (kms- ) (mm) (mm) (kms- ) (kms-

0.0 2.900 3.19 9.72 2.900 2.900

0.1 2.679 3.06 9.76 3.116 2.876

0.2 2.451 2.97 9.79 3.323 2.847

0.3 2.218 2.86 9.82 3.548 2.816

0.4 1.978 2.80 9.84 3.730 2.779
.

0.5 1.732 2.69 9.87 3.934 2.740

. 0.6 1.479 2.61 9.89 4.149 2.694

0.3 0.952 2.46 9.93 4.520 2.586

1.0 0.396 2.33 9.96 4.881 2.452

VII. COMPARISON OF THE WEDGE AND CONICAL SOLUTIONS

Figure 9 illustrates the effect of varying the strength of the
convergence-velocity gradient, a, on the mass partitioning in the wedge and
conical flows. Both flows are constrained to have constant influx
thickness, collapse angle, and kinetic energy. For the wedge flow, the
ratio of the mass of the slug formed by a collapsing liner element to the

2
mass of the element itself increases smoothly from cos (//2) to cos (3/2).
Above cos (/3/2), because of the constraint of constant influx energy, the
strength of the gradient can only be increased by reversing the flow
direction of part of the flow, a physically unappealing situation. For the
conical flow, the fraction of the mass going into the slug increases
smoothly, following the wedge flow.

3
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The physical reason for this great similarity is illustrated with the

help of Figure 10. The quantity F(x) is

rC oFNX + (irC - EVoFN) x 2/2 - ax 3/3

and plays the role of an area-weighted average of the incoming velocity. As
the thickness coordinate, x, is increased from 0 to a, 4.624 mm, the average
velocity increases. As the strength of the velocity gradient increases, the
shape of the velocity distribution changes from a curve with gradually
decreasing slope, to one of constant slope, to one of increasing slope. Even

for the larger values of a, under the constraints of constant influx energy and
positive V ON, the contribution from the cubic term is not great .nd the distri-

bution resembles the corresponding wedge distribution quantity, f(x) = VOF X +

Ox2/2.

VIII. APPLICATION OF THE THEORY

In order to illustrate the new jet-formation analysis, the input
boundary conditions from a HEMP code simulation of cone collapse will be

.. used to calculate the properties of the jet and slug segments produced from
one element of the liner. In Figure 2, the material in the segment of the
cone whose cross-section in the upper half-plane is bounded by the grid
lines 8, 9, 14, and 16, is assumed to collapse steadily into the
jet-formation region below boundary line 9. The velocities and positions of
the node points on the boundary surface just above the high-pressure
collision region are given in Table 3.

Table 4 gives the flow velocities and directions, relative to the

positive z-axis, of these boundary points as well as the "stagnation point"

velocities for all three streamlines, as computed from Equations (3.1) and

(3.2), with the appropriate changes in notation to reflect the new
coordinate axes.

The "thickness" of the incoming flow, as measured normal to the central
streamline, is

a - 4.624 mm

The slope of the boundary line in the flow, as defined by Equation (4.5), is

E- 0.8240,

where the radii to the edges of the boundary surface are

r - R(9,14) m 13.22 mm!i: rC

and

rE R(9,16) 9.41 mm.
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Table 3. Input Boundary Conditions For The Jet-Formation Theory

Node V V V R ZZ r

Point (km/s) (km/s) (km/s) (mm) (mm)

" (9,14) 0.915 -1.478 1.738 13.22 -28.22

(9,15) 1.153 -1.803 2.140 11.40 -27.06

(9,16) 1.565 -2.185 2.688 9.41 -25.60

Table 4. Flow and Stagnation Point Velocities Computed From The Input

Conditions

Node VF F  V

Point (km/s) (deg) (km/s)

(9,14) 2.758 32.4 3.244

(9,15) 3.038 36.4 3.598

(9,16) 3.278 41.8 4.009

In order to analyze this data with the BMPT theory, the velocitv
gradient and flow divergence must be ignored. Taking the central streamline
to characterize the flow, the fraction of the liner mass going into the
slug" is, from Equation (4.11),

M_ a-

a(r cos2 (2/2) = 0.9024,ml aC ,

since P= 36.4 degrees. The radius of the slug, a2, is 9.72 mm. The jet

velocity, from Equation (3.3), is 3.038 km/s + 3.598 km/s or 6.636 km/s,

while the slug velocity, from Equation (3.4), is 0.560 km/s.

O Note that, in this case, the incoming kinetic energy, in the stagnation

:d. point reference frame, is expected to be 135.4 kJ/cm (if the flow had no
velocity gradient).

,..
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To analyze the data with the new theory, the (linear) velocity gradient
across the thickness a must be determined. The components of the flow
velocities of the surface streamlines normal to the boundary surface are

IV (9,14)1 = Iv (9,14)lcos 40 = 2.751 V
FN s OFN

and IVF(9,16) (9, 116) cos 5.40 = 3.263 )m
FN F Is

The components of the flow velocities parallel to the boundary surface are

1i (9,14)1 = - VF(9,14)1 sin 40 = - 0.192 km

and V p(9,16) ( [-(9,16)r sin 5.40 = + 0.308 ]an

These oppositely-directed velocity components are a manifestation of the
flow divergence. These "lateral" velocities are ignored in the jet
formation calculation.

The strength of the (normal) velocity gradient is, from Equation (5.2),

= 0.1107 km/s

Based on the assumption of a linear velocity gradient, the predicted flow
velocity on the central streamline is 2.990 km/s, about 98 percent of the
input value of 3.038 km/s.

The fact that the "stagnation point" velocities of the surface
streamlines differ from each other and from the stagnation point velocity of
the central (reference) streamline is a consequence of the divergent flow
imposed by the conical geometry. Nevertheless, for a properly-tapered
conical shell, these streamlines are embedded in their same relative

positions in the surface of integration as this surface translates down the
axis of symmetry of the shell, so that steady flow conditions are achieved.

The key variables in the theory of conical flow are given in Table 5.
The cubic equation to be solved is

U ? + Nu 2 + Vu + P = 0

35
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e:" From Equations (6.41) and (6.42),

:..'.,-8 4
Q = -87.39 x 10 m

and R = -816.50 x 10 12 6

Since the coefficients in the equation are real, the discriminant, D =

3 2
Q + R , determines the nature of the roots. In this case,

D = -726.2 x 024m 12

so all the roots are real and unequal. S and T are then computed from
Equations (6.43) and (6.44) and are displayed in Table 6. From Equations

(6.45), (6.46) and (6.47), the solutions for u = a2  are
2-- 4 2

=l = 1.3
0 9 x 10-

4 m2

Su2 = -26.91 3 x 10- 4 m2

U 3 = 0.953 x 0-m 2

Table 5. The Key Variables In The New Theory

Symbol Value Equat ion

K 0.2669 <i/s (6.42)

L 0.5435 x 105 s- (6.43)

M 0.2264 x 10 4 M/s (6.44)

N 24.65 x 10-4 m2 (6.47)

V -59.62 x 10-8 m (6.48)
P 33.56 x 10- 12 (6.50)
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Table 6. Solutions To The Cubic Equation Defining The Mass Partition In

Conical Flow

S = 9.348 x 10 4 m (cos 59.37" + i sin 59.37')
9.34 x1- 4 m2 r193'

S = 9.348 x 10 m (cos 179.37' + i sin l79.37°)

S3  = 9.348 x 10 - 4 m 2 (cos 299.370 + i sin 299.370)

= 9.348 x 10.4 m 2 (cos 300.630 + i sin 300.630)

T 2  = 9.348 x 10 .4 m 2 (cos 180.630 + i sin 180.63 c )

T 3 = 9.348 x 10- 4 m 2 (cos 60.630 + i sin 60.630)

Since u must satisfy

4 2
o < u < 1.046 x 10 m

A

a 2 = 0.953 x m

2

The radius of the slug is 9.76 mm and the mass division is such that
"-"' 2

m a
a'z r= 0.9101

m I  a(r C + rE)

The average jet velocity is the sum of the stagnation point velocity of the
central streamline, 3.598 km/s, and the average flow velocity into the jet
in the stagnation point reference frame, obtained from Equation (6.9), 3.232
km/s. The result is an average jet velocity of 6.830 km/s. The average
slug velocity is the difference between the reference frame velocity and the
average flow velocity into the slug obtained from Equation (6.10), 2.969
km/s. The result is 0.629 I-n/s.

Note that, in this case, the incoming kinetic energy, in the stagnation
point reference frame, is 131.8 kJ/cm.

IX. COMPARISON WITH EXPERIMENT

The small, systematic deviations between theory and experiment
discovered by Eichelberger* will now be discussed. His experimental
observations were of liner mass, jet velocity, and slug mass. The liner -as

A, *Reference 4, p. 402.

0 .
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divided into sections, and the slugs corresponding to different liner
segments were recovered by firing the shaped charge into a reservoir of

r' water. The results of such experiments with a particular charge are shown
* in Figure 11. The jet mass was estimated by subtracting the observed slug

mass from the observed cone segment mass.

The collapse angle 0 as a function of liner segment position was
estimated by means of the slug mass measurements and the relation

dm
dm Sd = cos2 (H/2) (9.1)

where m is the mass of the slug and m iS the mass of the parent liner

segment. Equation (9.1) is the differential form of Equation (3.5). The

experimental curve of m5 verus m (Figure 11) was fit using Birge's method8

*" to a polynomial which was subsequently differentiated to obtain the values
of C displayed in Figure 12. The coordinate x is measured from the apex of
the cone, along the axis of symmetry, to a point at which a perpendicular is
erected to the liner wall. Note that, according to the new theory, the mass
of the slug is no longer determined solely by the mass of the liner and the

- collapse angle.

The rapid variation in g, especially near the base of the liner,
*indicates that the collapse of this shaped-charge is non-steady. Pugh,

Eichelberger and Rostoker*, PER, deduced a formula for the shape of a

conical liner collapsing with a velocity gradient along its length (instead
of through its thickness). The determination of the jet-formation
conditions, the collapse velocity V and the collapse velocity gradient,
dV /dx, was relatively complicated,°but the jet formation itself was treated

by0the steady-state theory. Therefore, any discrepancies found between the
predictions of the non-steady jet-formation theory and experiment may be due
to either inaccuracies in the determination of the initial conditions for
jet formation or inaccuracies in the treatment of the jet-formation process
itself. The collapse velocities and jet velocities deduced by Eichelberger
are shown in Figure 13.

The nature of the discrepancies between theory and experiment
discovered by Eichelberger is illustrated in Figures 14 and 15. In Figure

14, the theoretical cumulative mass distribution in the jet (as a function
of velocity) is compared to the results of several experimental mass

* determinations. In these tests, the jet first perforated a target plate
then its tip was photographed with a high-speed camera, and finally the
remaining jet was collected and the particles weighed. The jet tip velocity
was determined from the photographs. The curve was computed from slug mass
data using the "convergenceless" PER theory, assuming instantaneous
acceleration of the liner elements by the detonating explosive and
deflection of the liner segment according to the Taylor angle hypothesis.

*Reference 2, p. 536
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In Figure 15, the theoretical spatial distribution of the jet veloci-

ties is displayed along with the experimental observations at a short time
(35s) after the detonation waves passed over the apex of the liner. The
position of the jet tip relative to the detonation wave was used to fix the
position of the tip for the theoretical curve. The experimental curve
"leads" the theoretical curve, and the disagreement is greatest at the rear

of the jet.

The jet-mass discrepancy may be due to the neglect of the convergence
gradient in the treatment of the steady-state jet formation process. A

qualitative explanation of the difference between the PER and the observed
jet mass distribution may be obtained from the new theory. The differences
between the jet properties calculated by the Birkhoff, MacDougall, Pugh and
Taylor (BMPT) theory, using the collapse velocity and collapse angle of the

central streamline of the liner, and the jet properties calculated by the
new theory taking into account a linear convergence-velocity gradient of

-1 -I
strength 0.1107 km s mm are illustrated in Table 7. For these "appar-

ently identical" initial conditions, the new theory predicts a jet element
with about 8 percent less mass and about 3 percent higher velocity than that

of a jet element whose properties were estimated by the BMPT theory which
ignores the convergence-velocity gradient. For the slug, the new theory
predicts an element slightly more massive (less than I percent) and 13
percent faster than that estimated by the BMPT theory. If a correction of
92 percent in mass and 103 percent in velocity is applied to the curve of
Figure 14, the new curve is in better agreement with the experimental data.
This is shown in Figure 16. Of course, there is no reason to expect that
the correction would be constant over the collapse of the entire liner, but
it would require a calculation of the complete jet-formation process to find

the actual corrections.

An explanation of the difference between the PER theoretical predic-
tions and the observed jet position, probably requires more than just the
new jet formation theory. In Figure 17, the point J on the axis of symmetry
of the conical liner at which the jet is formed from a liner point origi-

nally at P is controlled by a, the half-angle of the cone apex and by the
deflection angle S. For steady-state collapse, the angle 8 is the Taylor
angle used in the PER theory for the case of the unsteady collapse. For
liner collapse in which there is a velocity gradient along the length of the

9
liner, as in the case of unsteady collapse, Chou, Hirsch and Ciccarelli

CHC, have shown that the deflection angle is no longer the Taylor angle, but
depends on the collapse velocity gradient. Thus, both the collapse angle 9

and the deflection angle 8 depend on the collapse velocity gradient along the
length of the liner.

6
I
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S%,According to some calculations made by CHC for the collapse of the

BRL 81mm shaped charge, the difference between the deflection angle
* "observed" in computer simulations of the cone collapse and the Taylor anple

increases from some 13 percent near the apex to as much as 75-80 percent

near the base of the cone.* Similar results would apply to the charge
analyzed by Eichelberger, so it appears that the deflection angle was

P probably underestimated by PER and so the distance of the collapse point J

from the cone apex was probably underestimated. The combination of revised

input conditions and the slightly higher jet velocities obtained from the

new theory may account for the position discrepancy at short times after

formation.

Table 7. COMPARISON OF THEORETICAL RESULTS

QUANTITY IN STAGNATION-POINT FRAME THEORY-EQUATION

*. . Incoming Flow Velocity

r- 7= (9 15) 3.038 km/s BMPT-(3.1)
FF

- <VF = 2.997 km/s NEW-(6.8)
__ FN

2. Incoming Flow Kinetic Energy

KE. = 135.4 kJ/cm BMPT-(B.3)

' 131.8 kJ/cm NEW-(C.3

- . 3. Outgoing Jet Flow Velocity

VFl : VF 3.038 km/s BMPT-(3.3)

< = 3.232 km/s NEW-(6.9)
Fl

4. Outgoing Jet Kinetic Energy

KE = 13.2 kJ/cm BMPT
lout

- 14. 2 kJ/cm NEW

* 5. Outgoing Slug Flow Velocity

%= IV = 3.038 km/s BMPT-(3.4)
FF2 F

< > 2.969 km/s NEW-(6.10)
F2

, *Reference 9, p. 23.

0,
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6. Outgoing Slug Kinetic Energy

KEt 122.2 kJ/ctn BMPT

=117.4 kJ/cm NEW

QUANTITY IN LAB FRAME FOR V SP 3.598 km/s THEORY-EQUATION

7. Jet Velocity

V. =6.636 km/s BMPT-(3.3)

=6.830 km/s NEW

8. Jet Mass

m. 0.0976 ml = 2.865 g/cm BMI'T

0 C) 899 m I = 2.639 g/cm NEW

0.Slug Velocity

* = 0.560 km/s BMPT-( 3.4)
S

= 0.629 km/s NEW

0. Sl!ig Mass

=0.9024 ml= 26.491 g/cm BMPT
S

- p.91'01 rn = 26.717 g/cm NEW

X. SUMMARY AND CONCLUSIONS

This study appears to be the first attempt to explicitly integrate
cinvergence effects into the jet-formation equations. For initial
conditions appropriate to a conventional conical-lined shaped charge, the
predicted changes to the results of the previous theory are small, but in
the proper direction to explain some of the discrepancies observed by
Eichelberger.

.,
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The new theory, in both wedge and conical flow form, conserves mass,
kinetic energy and linear momentum. Appendix A demonstrates the conserva-
tion of kinetic energy in wedge flow; Appendix B does the same for "uniform
conical flow." Appendix C illustrates the key results in the demonstration
of conservation of kinetic energy in nonuniform conical flow with a linear
velocity gradient. For the rather artificial condition of constant
energy influx and varying strength of the convergence-velocity gradient, the

"" 2
mass partitioning for the wedge flow is confined between ms/m, = cos (fl/2)
and m /m = cos (13/2), for positive values of the minimum collapse

velocity V in the case considered. Very similar results are found for the case
of conical flot,.considered. It appears that the strengths of the convergence-
velocity gradients for conventional conical liners lie in the range 0.1 to

.' ," O0. ! s-: --"

A HEMP simulation of the collapse of the shaped charge used in
Eichelberger's experiments and a calculation of the integrated effect of the
convergence-velocity perturbation .;ould be required to show whether the
convergence-velocity effect alone is sufficient to bring theory and
experiment into agreement. The HEMP code simulates the collapse dynamics of

10a shaped-charge liner rather accurately , but cannot properly form the jet
and slug for most shaped-charge designs. The HEMP input would be used in
the new jet formation equations since it "automatically" includes the
unsteady collapse effects.
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APPENDIX A.

Conservation of Kinetic Energy
in Wedge -low

nKE . a: a V 2 - d x 
( A - )

in 2 so

a;[ - 7 (vo +  x)2 dx{A e
1 O
20 ( 0 +ahx(A-2)

" V2  aV 2
-. 2 a + 2 + - a (A-3)

.... pa a2(x") ax"

KE a 2 - dx' - pa Vout - 2 a a

r. (A-4)

la-(v + c(a - x')) 2 f'i 2 0

+.-"+(V + ac(a + x")) 2 dx".

9-.
(A-5)

a2 a2

.. = - :V (a + a ) + oiV ( + a a +--)
2 0 2 2 2 1 2

"- a) ",, a'a aa 2 a2 (A-)

a a

2- - 2 . .a i -- L
6 2 2 6

V2  a

S-V .(A-2)
T a + o 2a+ ) -6-

e.

where a + a a

'p.'=
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% APPENDIX B

Conservation of Kinetic Energy in
N"Uniform Conical Flow"

YE, =-A I 2-(r -x)dx (B-1)
n o 0 A C

ia
4"

- ~ ( -:'' C - x)dx (B-2)

=- -a [r - ca/21
0 ~C

_.4.

-' ~p 1(B a

=E :A - 2 -x"dx"

V?

:.0 2

S(a- + a:A = - (r + r )a
2 2 2 C E

--

I _ ~a[r - a/2l(43

z0
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APPENDIX C

Conservation of Kinetic Energy in Nonuniform

Conical Flow With Linear Velocity Gradent

m '

42

a V2  (x)
- FN 2-(r - x) dx (C-1)

KEin - A A C0 O O

4'

4'N + X) x C - -x)dxJo (c- 2)

60

-' -, r a + (2ir. - F _)FNa  OF'N VOFN-2

- (r i2 - 2<>1V.FN) y- a2 a4/4 (C-3)

The fraction of the area of the incoming flow through which the jet material

passes is illustrated in Figure C-l. The area intercepted by the incoming

jet flow is

= Y' (r a* + r) , (C-4)

* where r = ra, - .C-5)

and r r a* (C-6)
a* C

4'.. Then A - (r - 2,.a - i') (C-7)
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. •l-ese * - ct t-e area A in t.e ou-
x

4coing e f .... ,

x

S t',it tP~.f ew.c<- :re i

- (2-9)

a n d (2 r - ' a * - ," ) (r -l .j

-, A (a*) - x '
NA

i- (ae) n ( (C-li)

4

where A(a*) - r - a*
2 C 2

gives the streamline spacing relation. Note that, when y' = C, x" = C, and

P(r - Ea*) - (r - ca)21l
/ 2

C • 2 C
when a - a*, x" = = a

2!

(av, (x,)1]2

1 f EVN -xx

KEout 2 A A

+ oA sA 2 2[xvdx] (C-13)2 f A20 2

where the first tern represents the energy per unit lenqth in the jet and the

second the energy per unit length in the slug.
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-or the slug,

'I', V' (xI) = V + La- + - A(a*) - A2"(a . ) + Ex2 (c14)
SFN N 2 E 2 £ 2

r ( (r2 _ Ea2 )1/2
where a* C C (C-15)

2 E

'.

and A(a*) r- a* r 2
- ra2)1 /  (-16)

2 C 2 C 2

,, For the jet,

SV~" V x") = V (a*) + ay'
'LNN (N

=~ +~ cLa* + - A(a-) - a /(a*) - £2-

2 12 I2E

Note that V'(x') decreases as x' increases, while V" x) increases as x"
increases.

Substituting Eqs. (C-14) and (C-18) into Eq. (C-13) and integrating gives

a
2

1~u =~ V 2  ~ ~+ .aa 2 4 1 2 2 2out.. OFN 2 O a 2 2 2 2

2 V A2(a*) + a2 / + /2 V A(a*)a 2

T OFN 2 2J + £ -2 2
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w7,a*-r- - a)/, so, after simplification,
2

KEt r {a VN+ [Ca~r -v a"/2

- CE (r -2rV Q a?/3 c2 a (C-23)
c 4
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