Final Technical Report on Grant
AFOSR-87-0045
Period Covered: 10-01-86 to 09-30-87
DATE: January 22, 1983

PRINCIPAL INVESTIGATOR

Name: Jiri Jonas
Department: Chemistry
Title: Professor
Address: 166 Roger Adams Lab
Telephone No.: (217) 333-2572

University of Illinois
1209 West California
Urbana, Illinois 61801
A multi-nuclear, high resolution, high field NMR spectrometer system equipped with wide-bore (89 mm) 7.05 Tesla superconducting magnet, and accessories for high resolution solid state work and an NMR data station were funded under this instrumentation grant.

The basic system, a General Electric GN-300, was installed in September, 1986. The necessary accessories for high resolution NMR work on solids were installed during the week of February 23-28, 1987. The new Nicolet 1280 NMR data system, delivered in October 1986, is currently being used to control a recently built specialized NMR spectrometer using a wide bore 4.2 Tesla superconducting magnet made by Oxford Instruments.

Subject Terms

- High Field
- High Resolution
- NMR Spectrometer
- Glasses under extreme conditions
- Pressure curve
- Temperature

Abstract Security Classification

Unclassified

Responsible Individual

L. Burggraf

Telephone Number

(202) 767-4963

Office Symbol

NC
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Instrumentation Grant AFOSR 87-0045</td>
<td>3</td>
</tr>
<tr>
<td>2. Technical Specifications for the GN-300 NMR Spectrometer System with Accessories</td>
<td>3</td>
</tr>
<tr>
<td>3. Equipment Purchased</td>
<td>6</td>
</tr>
<tr>
<td>4. List of Publications Which Resulted from the Acquisition of the NMR Spectrometer System</td>
<td>8</td>
</tr>
<tr>
<td>5. Appendix - Interim Report for the period October 1, 1986 to March 27, 1987</td>
<td>9</td>
</tr>
</tbody>
</table>
1. Instrumentation Grant AFOSR 87-0045

The DOD instrumentation proposal ARO-DOD-URIP-Control No. 860314 was submitted via the AFOSR and $370,000 was awarded under the grant AFOSR-87-0045 for the purchase of "High Field, High Resolution NMR Spectrometer with Accessories." We purchased General Electric GN-300 NMR spectrometer with accessories. The NMR spectrometer was installed in February 1987, and its performance exceeds the specifications. The technical specifications of the GN-300 NMR spectrometer are given in Section 2. The actual equipment purchased under the grant is given in Section 3.

The NMR spectrometer and its accessories work well and are in daily use since the installation. So far the acquisition of the NMR spectrometer enabled us to carry out research supported by the AFOSR under the grant AFOSR-85-0345. The list of publications which resulted from the use of the NMR spectrometer is given in Section 4. Section 5 includes the Appendix with the Interim Report on Grant AFOSR 87-0045.

2. Technical Specifications for the GN-300 Spectrometer System with Accessories

GN-300

Technical Specifications

Oxford Cryomagnet:
* 7.05 Tesla field strength
* 89mm room temperature bore
* 25ml/hr He boil-off rate
* 250ml/hr N₂ boil-off rate
* N₂ refill capacity 60 liters
* He refill capacity 25 liters
* He refill interval is at least 40 days
* N₂ refill interval is at least 10 days
* Computer-monitored liquid N₂ and He levels

Data System:
* Nicolet 1280 computer
* 128K data table standard with optional 256K data table
* 20 bits/word
* 5-color raster scan display
* 8-color digital plotter
* Keyboard
* Standard 12-bit digitizer with ±62.5 kHz spectral width
* Standard 32-Mbyte CDC disk drive with 16 Mbytes fixed
* Optional 16-bit digitizer with ±12.5 kHz spectral width
* Optional 12-bit digitizer with ±500 kHz spectral width
* RS-232 interface ports
* Optional 128K word array processor
* Optional 96-Mbyte CDC disk drive with 80 Mbytes fixed
Front Panel:

* 3 multifunctional computer-readable knobs
* Observe and decoupler status LED's
* 3 manual shim knobs
* Lock level meter

Observe System:

* Broadband range between 5 and 300 MHz in 1 Hz steps
* Recovery time is less than 5 usec
* 15° digital transmitter phase shifts + 1°
* Continuously variable computer-controlled transmitter phase shift interpolator greater than 15° under programmable pulser control
* Phase shift time is less than 1 usec

Audio Filter:

* ± 50 Hz to ± 100 kHz in 100 Hz steps or ± 500 kHz

Lock:

* Internal deuterium lock
* Computer-controlled autolock or manual control
* Minimum lock concentration, 2% CDC\textsubscript{3} in 10mm and 10% in 5mm tubes

Decoupler (Proton):

* Computer control of all parameters
* Output 20W
* Digital attenuator 0 to 82 dB in 1 dB steps
* Frequency resolution of 0.397 Hz; optional 0.0417 Hz available
* ± 40-kHz offset capability
* 15° digital phase shift + 1°
* Continuously variable computer-controlled phase shift greater than 15° under programmable pulser control
* ROM-stored modulation schemes control 90°- and 180°-phase shifts
* Other programmable pulser modulation schemes, (e.g. amplitude and phase modulation), possible
* Phase shift and attenuator switching time less than 2 usec

Room Temperature Shim Power Supply:

* 18 computer-controlled shims with three manual front panel controls for Z1, Z2 and Z3 shims

Air Control:

* Air flow meters and valves for eject air, body air, spinner air and variable temperature (VT) air
* Computer-controlled spinner air flow valve
* Computer-controlled solenoids for eject air, VT air and body air
Variable Temperature:
* Microprocessor-controlled variable temperature unit
* 0.1°C resolution
* VT range -200°C to +300°C, (-100°C to +160°C standard probe range)

Power Amplifiers:
* Decoupler power amplifier with 20W proton output
* 5 to 200 MHz observe power amplifier at 100W
* 1H/19F observe power amplifier at 100W
* Observe low power amplifier 5 to 320 MHz at 1W
* Computer-controlled digital attenuator for observe power covers 63 dB in 1 dB steps

Probe Interface Module:
* Computer-switchable between 1H/19F and X nuclei observe
* Integral tuning bridge with raster display

Programmable Pulser:
* Pulse width outputs 160 nsec to 10,000 sec (3 hrs.)
* Timing resolution 10 nsec
* 40 independent pulse lines
* 256 programmable intervals
* Versatile looping capability
* Variable loop counter
* Conditional jump feature
* Easily user-programmed

Microprocessor-controlled System Monitor:
* Monitors all shim currents
* Monitors all critical power supplies
* Monitors forward and reverse decoupler power
* Monitors lock level
* Monitors cryogen levels

Optional Chemagnetics CPMAS Accessory:
* Resolution of less than 3 Hz on adamantane
* Sensitivity of greater than 200:1 on 8 scans Hexamethylbenzene
* Optional variable temperature range of -150°C to +30°C
* Optional variable angle (0°-90°) spinning
* Multinuclear capability of 31P to 15N
Performance Specifications for GN-300WB

<table>
<thead>
<tr>
<th>Lineshape</th>
<th>Resolution</th>
<th>S/N</th>
<th>Sample</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>5mm 1H/13C</td>
<td>15/35</td>
<td>0.3</td>
<td>100:1</td>
<td>0.1% EB</td>
</tr>
<tr>
<td>1. 1H</td>
<td>6/15</td>
<td>0.2</td>
<td>80:1</td>
<td>ASTM</td>
</tr>
<tr>
<td>2. 13C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Gamma H*2 = 10kHz @ 10W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse</th>
<th>90 deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

B. 10mm BB 31P to 15N

<table>
<thead>
<tr>
<th>Lineshape</th>
<th>Resolution</th>
<th>S/N</th>
<th>Sample</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>31P</td>
<td>0.2</td>
<td>280:1</td>
<td>1% TMP</td>
<td>25</td>
</tr>
<tr>
<td>2. 13C</td>
<td>6/15</td>
<td>0.2</td>
<td>300:1</td>
<td>ASTM</td>
</tr>
<tr>
<td>3. 2H</td>
<td></td>
<td>0.2</td>
<td>30:1</td>
<td>H2O</td>
</tr>
<tr>
<td>4. 170</td>
<td></td>
<td></td>
<td>150:1</td>
<td>H2O*</td>
</tr>
<tr>
<td>5. 15N</td>
<td>0.3</td>
<td>20:1</td>
<td>90% Form</td>
<td>w/o NOE</td>
</tr>
</tbody>
</table>

6. Gamma H*2 = 6kHz @ 20W

C. 10mm BB 73Ge to 15N

<table>
<thead>
<tr>
<th>Lineshape</th>
<th>Resolution</th>
<th>S/N</th>
<th>Sample</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>5N</td>
<td>0.3</td>
<td>30:1</td>
<td>90% Form</td>
<td>w/o NOE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse</th>
<th>5kHz @ 20W</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>

3. Equipment Purchased

Catalog Number	Description	Price
881-007800 | GN-300 - The General Electric GN-300 NMR spectrometer capable of observing all nuclei from 73Ge to 1H. The basic system is comprised of a 7.05T superconducting magnet, RF electronics, and a data system based on the Nicolet 1280 computer. The standard software package allows simultaneous data acquisition, processing and plotting for increased sample throughput. Other features are user definable macro instructions, fully automated locking, shimming and phasing of spectra, automated relaxation time measurement, curve fitting and analysis routines, and two dimensional contour plotting. Basic, Pascal, and Fortran compilers are also included. | $304,750.00 |

Accessories

559-015200 | 12 Bit Digitizer, Dual Channel 250 kHz Data Rate | 2,750.00 |
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>869-019200</td>
<td>86 Mbyte Disk, 1 Mbyte floppies</td>
<td>12,500.00</td>
</tr>
<tr>
<td>843-010400</td>
<td>10 mm 31P - 15N Tunable Probe</td>
<td>12,000.00</td>
</tr>
<tr>
<td>869-018600</td>
<td>Array Processor</td>
<td>10,000.00</td>
</tr>
<tr>
<td>869-050100</td>
<td>CPMAS V. T. 9.5mm Highband Probe</td>
<td>22,500.00</td>
</tr>
<tr>
<td>869-050400</td>
<td>CPMAS V. T. 9.5mm Lowband Probe</td>
<td>22,500.00</td>
</tr>
<tr>
<td>869-053200</td>
<td>CPMAS Probe Interface (one required)</td>
<td>1,000.00</td>
</tr>
<tr>
<td>869-052700</td>
<td>30-80 MHz Observe Amplifier</td>
<td>6,000.00</td>
</tr>
<tr>
<td>869-052800</td>
<td>55-125 MHz Observe Amplifier</td>
<td>6,000.00</td>
</tr>
<tr>
<td>869-052900</td>
<td>300 MHz Decoupling Amplifier</td>
<td>4,000.00</td>
</tr>
<tr>
<td>841-012700</td>
<td>Accessory Console</td>
<td>3,000.00</td>
</tr>
<tr>
<td>841-012100</td>
<td>Micro-Processor Controlled Temperature Unit</td>
<td>12,000.00</td>
</tr>
<tr>
<td>869-051100</td>
<td>V. T. Controller Heater</td>
<td>7,000.00</td>
</tr>
</tbody>
</table>

Total Price for Above Accessories: 126,300.00

Total System Price: 431,000.00

Less 20% Discount: 86,200.00

Total System Price: 344,800.00

Selected Components for NIC 1280 NMR Data System

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>869-011200</td>
<td>Zeta 8 Plotter</td>
<td>8,500.00</td>
</tr>
<tr>
<td>884-000600</td>
<td>Cabinet</td>
<td>3,000.00</td>
</tr>
<tr>
<td>869-011500</td>
<td>CMD, 96 Mbyte disk 1180 Systems</td>
<td>18,500.00</td>
</tr>
<tr>
<td>869-021100</td>
<td>CMD, 1280 Interface</td>
<td>3,500.00</td>
</tr>
<tr>
<td>869-01800</td>
<td>256K Memory - 1280 only</td>
<td>8,000.00</td>
</tr>
<tr>
<td>869-010900</td>
<td>Raster Scan Monitor</td>
<td>6,500.00</td>
</tr>
</tbody>
</table>
8

869-000800 Model 43 Teletype 2,330.00
869-008400 12-bit digitizer 2,750.00

Total Price 53,080.00
Less Discount (-52%) 27,601.60
Total NMR Data System 25,478.40
Grand Total Instrument Price $370,273.40

4. List of Publications which Resulted from the Acquisition of the NMR Spectrometer System

"27Al and 29Si NMR Study of Sol-Gel Derived Aluminosilicates and Sodium Aluminosilicates," A. D. Irwin, J. S. Holmgren and J. Jonas, J. of Materials Science, in press.

5. Appendix - Interim Report
APPENDIX

Interim Report on Grant
AFOSR-85-0045

Period Covered: October 1, 1986 to March 27, 1987

PRINCIPAL INVESTIGATOR

Name: Jiří Jones
Title: Professor
Social Security No. 331-40-6560

Department: Chemistry
Address: 166 Roger Adams Lab
Telephone No.: (217) 333-2572

University of Illinois
1209 West California
Urbana, Illinois 61801
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Summary of Instrumentation Obtained</td>
<td>3</td>
</tr>
<tr>
<td>2. Detailed Equipment Listing</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Manufacturer</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Equipment Requested</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Equipment Purchased</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Explanation of Changes to the Equipment List</td>
<td>6</td>
</tr>
<tr>
<td>3.-4. Work in Progress</td>
<td>8</td>
</tr>
<tr>
<td>3. Sol-Gel Process</td>
<td>8</td>
</tr>
<tr>
<td>3.1 B_{2}O_{3}-SiO_{2}</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Al_{2}O_{3}-SiO_{2} and Na_{2}O-Al_{2}O_{3}-SiO_{2}</td>
<td>8</td>
</tr>
<tr>
<td>3.3 TiO_{2}-SiO_{2} and ZrO_{2}-SiO_{2}</td>
<td>8</td>
</tr>
<tr>
<td>4. Viscous Fluids</td>
<td>8</td>
</tr>
</tbody>
</table>
1. Summary of Instrumentation Obtained

A multi-nuclear, high resolution, high field NMR spectrometer system equipped with wide-bore (89 mm) 7.05 Tesla superconducting magnet, and accessories for high resolution solid state work and an NMR data station were funded under this instrumentation grant.

The basic system, a General Electric GN-300, was installed in September 1986. This instrument is a high performance multi-nuclear NMR spectrometer capable of observing all nuclei from 7Ge to 31P, as well as 1H. The basic system is comprised of a 7.05 Tesla superconducting magnet, RF electronics, and a data system based on the Nicolet 1280 computer.

The necessary accessories for high resolution NMR work on solids were installed during the week of February 23-28, 1987. Only the variable temperature accessory for the solid state work remains undelivered.

The new Nicolet 1280 NMR data system, delivered in October 1986, is currently being used to control a recently built specialized NMR spectrometer using a wide-bore 4.2 Tesla superconducting magnet made by Oxford Instruments.

2. Detailed Equipment Listing

2.1 Manufacturer

General Electric Company
Medical Systems Group
P.O. Box 4905
255 Fourier Avenue
Fremont, CA 94539
(415) 490-8310

2.2 Equipment Requested

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>881-007800</td>
<td>GN-300 - The General Electric GN-300</td>
<td>$304,750.00</td>
</tr>
<tr>
<td></td>
<td>Is a high performance multi-nuclear NMR spectrometer capable of observing all nuclei from 7Ge to 1H. The basic system is comprised of a 7.05T superconducting magnet, RF electronics, and a data system based on the Nicolet 1280 computer. The standard software package allows simultaneous data acquisition, processing and plotting for increased sample throughput. Other features are user definable macro instructions, fully automated locking, shimming and phasing of spectra, automated relaxation time measurement, curve fitting and analysis routines, and two dimensional</td>
<td></td>
</tr>
</tbody>
</table>
contour plotting. Basic, Pascal, and Fortran compilers are also included.

Accessories

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>869-015200</td>
<td>12 Bit Digitizer, Dual Channel 250 kHz Data Rate</td>
<td>$2,750.00</td>
</tr>
<tr>
<td>869-012100</td>
<td>CDC 32 Mbyte Disk, 16 Mbyte Removable; 115V, 60 Hz</td>
<td>$14,500.00</td>
</tr>
<tr>
<td>843-010400</td>
<td>10 mm 31P - 15N Tunable Probe</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>843-010500</td>
<td>10 mm 15N - 73Ge Tunable Probe</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>869-018600</td>
<td>Array Processor</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>869-050100</td>
<td>CPMAS 9.5mm Highband Probe</td>
<td>$19,500.00</td>
</tr>
<tr>
<td>869-050400</td>
<td>CPMAS 9.5mm Lowband Probe</td>
<td>$19,500.00</td>
</tr>
<tr>
<td>869-053200</td>
<td>CPMAS Probe Interface (one required)</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>869-051400</td>
<td>Cables/Plug-in for 29Si</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>869-052100</td>
<td>Cables/Plug-in for 11B</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>869-052500</td>
<td>Cables/Plug-in for 17O</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>869-052700</td>
<td>30-80 MHz Observe Amplifier</td>
<td>$6,000.00</td>
</tr>
<tr>
<td>869-052800</td>
<td>55-125 MHz Observe Amplifier</td>
<td>$6,000.00</td>
</tr>
<tr>
<td>869-052900</td>
<td>300MHz Decoupling Amplifier</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>869-053100</td>
<td>RF Monitor Panel</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>841-012700</td>
<td>Accessory Console (Required)</td>
<td>$8,000.00</td>
</tr>
</tbody>
</table>

Total Price of Above Accessories $135,250.00

Total System Price with Above Accessories $440,000.00

2.3 Equipment Purchased

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>881-007800</td>
<td>GN-300 - The General Electric GN-300 is a high performance multi-nuclear NMR spectrometer capable of observing all nuclei from 73Ge to 1H. The basic</td>
<td>$304,750.00</td>
</tr>
</tbody>
</table>
system is comprised of a 7.05T superconducting magnet, RF electronics, and a data system based on the Nicolet 1280 computer. The standard software package allows simultaneous data acquisition, processing and plotting for increased sample throughput. Other features are user definable macro instructions, fully automated locking, shimming and phasing of spectra, automated relaxation time measurement, curve fitting and analysis routines, and two dimensional contour plotting. Basic, Pascal, and Fortran compilers are also included.

Accessories

869-015200 12 Bit Digitizer, Dual Channel 250 kHz Data Rate 2,750.00
869-019200 86 Mbyte Disk, 1 Mbyte floppies 12,500.00
843-010400 10 mm $^{31}P - ^{15}N$ Tunable Probe 12,000.00
869-018600 Array Processor 10,000.00
869-050100 CPMAS V. T. 9.5mm Highband Probe 22,500.00
869-050400 CPMAS V. T. 9.5mm Lowband Probe 22,500.00
869-053200 CPMAS Probe Interface (one required) 1,000.00
869-052700 30-80 MHz Observe Amplifier 6,000.00
869-052800 55-125 MHz Observe Amplifier 6,000.00
869-052900 300 MHz Decoupling Amplifier 4,000.00
841-012700 Accessory Console 8,000.00
841-012100 Micro-Processor Controlled Temperature Unit 12,000.00
869-051100 V. T. Controller Heater 7,000.00

Total Price for Above Accessories 126,300.00
Total System Price 431,000.00
Less 20% Discount 86,200.00
Total System Price $344,800.00
Selected Components for NIC 1280 NMR Data System

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>869-011200</td>
<td>Zeta 8 Plotter</td>
<td>$8,500.00</td>
</tr>
<tr>
<td>864-000600</td>
<td>C-net</td>
<td>3,000.00</td>
</tr>
<tr>
<td>869-011500</td>
<td>CMD, 96 Mbyte disk 1180 Systems</td>
<td>18,500.00</td>
</tr>
<tr>
<td>369-021100</td>
<td>CMD, 1280 Interface</td>
<td>3,500.00</td>
</tr>
<tr>
<td>869-01800</td>
<td>256K Memory - 1280 only</td>
<td>8,000.00</td>
</tr>
<tr>
<td>869-010900</td>
<td>Raster Scan Monitor</td>
<td>6,500.00</td>
</tr>
<tr>
<td>869-000800</td>
<td>Model 43 Teletype</td>
<td>2,330.00</td>
</tr>
<tr>
<td>869-008400</td>
<td>12-bit digitizer</td>
<td>2,750.00</td>
</tr>
</tbody>
</table>

Total Price: $53,080.00
Less Discount (-52%) $27,601.60
Total NMR Data System: $25,478.40
Grand Total Instrument Price: $370,278.40

2.4 Explanation of Changes to the Equipment List

a. Requested
 869-012100 CDC 32 Mbyte Disk, 16 Mbyte Removable; 115V, 60 Hz $14,500.00

Purchased
 869-619200 86 Mbyte Disk, 1 Mbyte floppies $12,500.00

Remarks
The larger internal disk (86 Mbyte vs. 32 Mbyte) will facilitate manipulations of 2-D NMR data. Floppy diskettes can be archived more easily.

b. Requested
 843-010100 5 mm $H/^13_C$ Dual Probe $13,000.00

Remarks
$H/^13_C$ NMR spectra can be run on the 10 mm 31_P-15_N tunable probe.
c. **Requested**

843-010500 10 mm 15N - 73Ge Tunable Probe
$12,000.00

Remarks

Obtained as a donation from G.E.

d. **Requested**

869-051400 Cables/Plug-in for 29Si
$1,000.00

869-052100 Cables/Plug-in for 11B
$1,000.00

869-052500 Cables/Plug-in for 17O
$1,000.00

869-053100 RF Monitor Panel
$4,000.00

Remarks

Built at the University of Illinois for a total cost of $1,500.00.

e. **Requested**

869-050100 CPMAS 9.5 mm Highband Probe
$19,500.00

869-050400 CPMAS 9.5 mm Lowband Probe
$19,500.00

Purchased

869-050100 CPMAS VT 9.5 mm Highband Probe
$22,500.00

869-050400 CPMAS VT 9.5 mm Lowband Probe
$22,500.00

841-012100 Micro-Processor Controlled Temperature Unit
$12,000.00

869-051100 V. T. Controller Heater
$7,000.00
Remarks

Variable temperature capability is essential in the study of dynamic processes.

3. Sol-Gel Process

3.1 B_2O_3-SiO$_2$

Previously, in studies involving the borosilicate sol-gel system, we were able to show, using 11B and 29Si NMR spectroscopy as well as infrared spectroscopy, that although some borosiloxane (=B-O-SiE) linkages are formed in solution the majority of the necessary borosiloxane linkages form during the thermal treatment [1]. We are currently conducting further spectroscopic studies on this borosilicate sol-gel system using 11B and 29Si MAS and CPMAS NMR. Through these studies we hope to better understand the condensation which leads to the formation of =B-O-SiE during the drying and subsequent heat treatment of these gels.

3.2 Al_2O_3-SiO$_2$ and Na$_2$O-Al_2O_3-SiO$_2$

During the past year we have developed procedures to prepare homogeneous aluminosilicate gels over a wide range of compositions [2]. We are currently performing spectroscopic studies using 27Al and 29Si MAS and CPMAS NMR to determine the chemical and structural nature of the products. We are particularly interested in the chemical environment of the aluminum atoms and the dependence of this environment on compositional and processing variables. The ultimate goal of these studies is to further our understanding of how we may use processing parameters to influence the final properties of these materials [3].

3.3 TiO_2-SiO$_2$ and ZrO$_2$-SiO$_2$

Feasibility studies on the use of 47,49Ti, 91Zr and 17O NMR spectroscopy in the study of the sol-gel process are in progress. We are particularly interested in studying the hydrolysis and condensation stages of the mixed alkoxide systems: TiO_2-SiO$_2$ and ZrO$_2$-SiO$_2$. Due to the quadrupolar nature of these nuclei, however, we find that complementary studies using 29Si NMR are essential. We are currently pursuing the latter.

4. Viscous Fluids

The viscous fluid, 2-ethylhexylbenzoate, is currently the object of extensive study as it is a model lubricant. In preparation for high pressure NMR studies, 13C spin lattice relaxation times (T_1's) and nuclear Overhauser enhancements (NOE's) were recorded as a function of temperature between -34.8°C and 103°C using the GN-300 [4].
References

