RO-A190 3357 M INUIRV INTO Tl‘ mxrs OF III.TIWOE :
) covrumxomm WASHINGTON UNIV SERTTLE DEPT OF CM#UTER n
SCIENCE L SNYDER MAY 83 TR-03-06-03 NOG#14-§ 5- K-032¢
UNCLASSIFIED 12/6 L8

rryr&Ers -i.sﬂ.
.hh--..- -.-.J M.b-ﬁ-\-p -

Aot 3 A o N O TN AN

G
[N RF B o W A e T -

!

122
z=_0.
é
I

== _ re——
= =" i
S
i 0
SISl sE s
= = = =
by)

14

—_—
_—

.
L
1.
[
o
[

==

i

1.25

A
‘

Il
|
|

B vt ovt A AR L At L
.0 &

PR S RS

~
'a

A

Y

AD-A190 557

SECUNITY CLASSIFIZTATION OF YIS PAGE (When Dars Entered;
N

An Inquiry into the Benefits of Multicauce

Parallel Computation Technical Report

READ INSTRUCTIONS
REPORT DOCUMEMTATION PAGE BEFORE COMPLETING FORM
1 REPDORT NUMBER :2 GOVY ACCESSION NC.| 3 RECIPIENT'S CATAL_OG NUMBER
' a ":,‘v .
none | . 5, I
4 T.TLE rand Subdtitle; § TYPE OF REPCRT & PERIOD CCVERED

6. PERFORMING ORG. REPORT NUMBER

7. ALUTHOR(e, 8. CONTRACT OR GRANT NUMBER(s)
Lawrence Snyder HNO00014-85-K-0328
9. PERFCAMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

. N . AREA & WORK UNIT NUMBERS
University of Washinoton

Department of Computer Science
Seattle, Washington 98195

V1. CCNTROL:.ING OFFICE NAME AND ADDRESS 12. REPORT DATE
O0ffice of tlaval Research May 1985
Information Systems Program T3. NUMBER OF PAGES
Arlington, VA 22217 5

14. MONITCRING AGENCY NAME & ADDRESS/(!f ditferent from Contro!ling Office; 1S. SECURITY CLASS. fof this report)

Unclassified

1Sa. DECLASSIFICATION DOWNGRAQDING
SCHEOULE

6. CISTRIBUT I ON STATEMENT ‘of this Reper:)

Distribution of this report is unlimited i A e

S

| . “ S .’E ..‘..'!:.}

8 SUPPLEMENTARY NOTES g .

19 xEY WORCS Continue on reverse aide if necessary and ident!ly by block number)

parallel programming, multigauge parallel computer, gauge shifting,
multitier algorithms, MIMD, SIMD

20 ABSTRAZT 'Cortinue on raverse side If necessary and {dentify bv block number)

A multigauge parallel computer is a machine whose processor elements can be
partitioned into distinct processors with narrower data paths. [ILLIAC IV was

a multigauge machine. This paper addresses the question of whether multigauge
computation is useful. First, the concept is defined. ‘MNext i* is araued that
multigauge machines offer truly new computational facilities, rather than being
other architectures in discuise. Finally, a class of algorithms is identified
that can exploit multigauge architectures and an example is presented to illus-

Ltrate multigauge machine perfornance—inprovenants
v T

DD .©..%, W73 €0, 3% 0F 1 NOV 8515 GBSOLETE

U R Y CLASS FICATIAN ~ € Tr 15 FAGE (#hen Dota Razere

s
.

Y
0

’

. . v .
. .

-
. 'e
"..\‘_A_LA

N

v
(AR

d

.
8 s 8 s »

".J"

PRI Yo . UL A 0 00 et B S F LBy S C 0 Aet B a0 Sad Set et Sl St St tad St T Bt A RS JSeBu Al Ry p R BResplepty e Bha e ftp et e i

[y

.
L
’

r %
.l 'l

_s .
QA .‘I
ez?.f ?

An Inquiry into the Benefits of

Multigauge Parallel Computation
by
Lawrence Snyder
Department of Computer Science, FR-35
University of Washington
Seattle, Washington 98195
TR-85-06-03

¥ w > PR
f.’-’.‘f [
4

N .‘(-‘-?:,-.,1

"
.
.
.
>,
’.

-
o

SURE PRAARAN
AL A
Y S

This paper has been funded in part by the Office of Naval Research Contract No. N00O14-
85-K-0328 and National Science Foundation Grant No. DCR-8416878.

<,

P
Yy

[Accewan ror _’l
Mris Chen
‘ §)

o7 TAw

SO AL AN
;

. - i rea
Ui nood 4

- o —

‘$mﬂcvu. '
e iings) ’
- — ;
* B
By o e
.]
Doty un! Jl
AT S CURMIT PR !
SO
) : - o o
M ' S \
i)
| ' :
I __/ } ;
| { S)
‘ o B - -
! >

AT AT R T T e T i T R I U IR WAL TR A L LAY LN A e Rt At N NN LG L VNN RN O
E’b:.'\- D A O N R R U R TR AL PR 0 P A B A 0 I AR AN I SN N AT ¥

¥
LA R, LR CRTRI A CRL L RERT WES L OL VA FRANON AN, ¢ &\'{L A

AN INQUIRY INTO THE BENEFITS OF MULTIGAUGE PARALLEL COMPUTATION

Lawrence Snyder

Department of Computer Science
University of Washington
Seattle. Washington 98195

Abstract- A multigauge parallel computer is a machine whose
processor elements can be partitioned into distinct processors
with narrower data paths. ILLIAC [V was a multigauge ma-
chine. This paper addresses the question of whether multigauge

“computation is useful. First, the concept is defined. Next it is
argued that multigauge machines offer truly new computational
facilities, rather than being other architectures in disguise. Fi-
nally. a class of algorithms is identified that can exploit multi-
gauge architectures and an example is presented to illustrate
multigauge machine performance improvements.

Introduction

In parallel computation speed comes from organizing many
processors to solve a single problem, so it is natural to think
of accelerating s parallel computer by adding more processors
rather than by speeding up those currently in use. But speeding
up the processor elements (PEs) is an effective way to improve
performance. For example, s factor of two improvement in PE
speed yields a factor of two improvement in instruction execu-
tions per second and this can often be done with only a modest
amount of extra hardware; achieving the same improvement by
adding PEs requires at least twice the hardware. (Utslizing the
performance improvement has its problems with either solution:
Faster PEs cause memory latency to have a greater effect on
observed performance, and more PEs exacerbate communica-
tion bottlenecks.) Clescly, making faster PEs is only a tactic in
the battle for improved paraliel computer performance because
there is a limit to how fast a sequential processor can get, and
the greater the speed of a PE, the greater the cost of improv-
ing on it. Providing more PEs is the strategy that will win in
the long run. For any given situation, however, the question is:
more PEs or faster PEs?

One technique with elements of both approaches is to intro-
duce multiprocessing into the PEs. The technique. called gauge
shifting, exploits the fact that data types come in different sizes
and the smaller ones might be processed concurrently by par-
titioning the data path. The first machine capable of gauge
shifung was ILLIAC IV [1]; the 64 64-bit PEs could also be
used as 128 32-bit PEs or as 512 8-bit PEs. ! Although some
prozrams were written for ILLIAC 1V using the 32-bit gauge
PEs. the machine was apparently never used in the way pro-
posed here, naniely to shift back and forth between different
gauges dynamically.

‘Whether one thinks of an n processor machine with 64-bit PEs as becom-
ing a 2n processor machine with 32.bit PEs, or beceming an a processor
machine with dual 32.bit PEs, depends on other sspects of the architec
ture as descrnbed 1n the second section

Funded in part by the Office of Naval Research Contract No.
NOOO14-85-K-0328.

» DL T IR P R
Lol J_'.'\-F g

v N B A

PO R R NS N,

The purpose of this paper is to inquire into the benefits of
the general idea of gauge shifting as a means of improving par-
allel computer performance. The presentation inciudes a more
precise definition of the concept, the identification of a class of
algorithms capable of exploiting dynamic gauge shifting, and an
investigation as to whether gauge shiflting constitutes a funda-
mentally different form of computation.

Definitions and Background

In this section the concepts alluded to in the introduction
are made more precise and relevant related work is cited.

A multigauge archstecture is a sequential computer with a
data path width of B oits, called the wide track machine, which
can be partitioned into k distinct sequential machines, called
narrow track machines, each with a | B/k|-bit wide data path.
It is convenient to permit a von Neumann machine to be a tnvial
(i.e. k=1) multigauge machine, and the term dual track will be
used to refer to the case where only one nontrivial value of & is
implemented.

Notationally, B will denote the wide track width, b will de-
note the narrow track width, and it is assumed hereafter that
b - k = B. The multigauge machine can be described by listing
the different track widths it supports. Thus the ILLIAC IV PEs
would be (64, 32, 8) multigauge machines.

The instructions executed by the narrow track machines can
form either a single stream, i.e. an SIMD multigauge architec-
ture, or multiple streams, i.e. an M/MD maultsgauge archstecture,
but there are some pragmatic limits. For example, it seems un-
realistic when b = I to postulate MIMD execution since fetch-
ing separate instructions for each bit of the data path, decoding
them, calculating operand addresses, and fetching disparate bits
from memory is excessive effort for the amount of computation
being performed. So, postulate the AM/MD threshold, the num-
ber of bits wide a narrow gauge machine must be before MIMD
execution is “justified”. Here the MIMD threshold will be taken
to be eight bits; shifting to gauges narrower than eight bits will
be assumed to be SIMD execution.

A multigauge parallel computer is a parallel machine whose
PEs are capable of gauge shifting. There are two ways to im-
piement this capability: The machine with wide track I’Fs and
the machine with narrow track PEs are each instances of the
same architectural family, i.e. if the size of the PEs is ignored.
the narrow track machines appear to be versions of the wide
track architecture scaled up to more PEs. Alternatively the ar-
chitectural relationships do not change as a result of shifting
except that the PFs become small multiprocessors. The former
are referred to as Type A multigauge parailel machines and the
latter as Type B multigauge parallel machine. To illustrate. an
8 % & mesh-connected architecture of G4-bit PFs that <hufts to a
16 x 16 mesh-connected architecture with 16-bit PEs s a Type
A multigauge parallel computer. Alternatively. if the machine

53

."_‘-'{‘. h'2e
%)

1' " \"‘I‘

.y ’l' DR AN

'Q.

X Yt
P4

o
1

]
SN

';_ e
f
LA

[A
v

hY
a

"."..":’ »
. Pa

.
-

..—I
Ny

VD
277

L
. .
(Y \-_\.'\.'\.:.,

10

f\fq_.{' "f\f \f~f.;{' o]

)

' e

0y

remains an & x 8 mesh but each PE becomes a quad processor,
then this would be a Type B multigauge parallel architecture.

The multigauge concepts discussed here are reminiscent of
several previous studies. The “Dynamic Architecture” of Kar-
tachev and Kartachev [2] is based on connecting together basic
narrow track (e g. 16-bit) computers on a bus to achieve a wider
word width. The wide track machine, called a dynamic computer
group. can be simultaneously shifted into different gauges as long
as the narrow track machines each have a mulitiple of 16-bit data
path width. The concept of switching between SIMD and MIMD
execution modes has been most fully developed in the Parti-
tioned Array SIMD-MIMD (PASM) Computer of H. J. Siegel
and his colleagues {3]. PASM uses the same fixed size processor
elements in both modes. The Very Long Instruction Word Ar-
chitectures of Fisher [4] utilize several independent, fixed gauge
ALUs that are neither split or joined. The Content Addressable
Array Processor (CAAP) of Weems et al. (5] couples several nar-
row gauge machines with a wide gauge machine; the machines
are distinct rather than being restructurings of the same hard-
ware. Similarities with other architectures undoubtedly remain
to be explored.

To close this section notice that certain other implementa-
tions besides ILLIAC 1V provide some degres of gauge shifting.
For example, the Cyber 205 (6] can partition the 64-bit data
path into two 32-bit data paths.

An_Analysis of Benefits

-

Multigauge computers appear to offer a benefit over fixed
gauge machines on computations involving small size data types,
since k narrow gauge machines provide k-fold parallelism. But
because the multigauge ides uses essentially the same hardware
with only modest enhancements, one wonders if perhaps the
speedup is only an illusion. This concern is further strength-
ened by the observation that & 1-bit machines each performing
an AND is essentially equivalent to a k-bit fixed gauge machine

executine s hit-wise AND. Therefore, it is Decessary to argue
that multigauge computation is a fundamentally different phe-

romenon. and we will. In addition, we will identify the exact
source of the improved performance.

Before beginning, we make some preliminary observations.
First, 1t 1s appropriate to limit our arguments to multigauge ma-
chines as opposed to parallel multigauge machines, since we are
interested in the multigauge phenomenon alone, and the argu-
ments either extend directly to the parallel case or become more
complicated due to interactions with other parts of the parallel
architecture. Second, we will assume that multigauge machines
have comparable performance to like gauge sequential comput-
ers. This is a significant assumption because there is somewhat
greater complexity with a multigauge machine, and so we are
assuming that it is completely transparent during wide track
execution. (We also assume, though perhaps somewhat less re-
alistically, that the narrow gauge instructions run at the same
rate } Another reason why comparable performance is a signil-
icant assumption is that there are many strategies for speeding
up sequential machines, and these may not be compatible with
the multigauge approach (or each other for that matter). So
adopting & multigauge design may preclude other optimizations.
Stll. comparable performance is a plausible assumption to get
us started; if fundamental benefits can be identified, the detailed
design needed to resolve these other 1ssues will be justified.

To understand how performance gains might accrue from
gauge shifting, compare the narrow track machines executing
in SIMD mode with a standard sequential machine. For the
comparison to be interesting suppose that instructions exist for
the sequential machine so all data types of small size can be
treated like the bit-wise 4.¥Ds mentioned above. Specifically, a
standard k- b-bit sequential machine having (k - 1)b unused bits
when computing on b-bit data has its instruction set extended
to support & b-bit operations elementwise within a word. TFor
example, in addition to logicals one might have instructions to
do two half word ADDs, etc. Such an extended sequential ma-
chine would not be equivalent to a multigauge machine executing
even in SIMD mode because, aithough there is one instruction
stream in force in both machines and multiple data values being
manipulated in both, there is but one address for each operand
group of the extended sequential machine. Data values must be
packed together in & word to achieve k-way parallelism. There
15 no such restriction for the multigauge machine. *

For the two machines to have equal performance require«
:hat every algorithm using differently addressed data streams
>f narrow width data be convertible into a packed form that
can be referenced by a single address stream. This seems to be
extremely unlikely. The point of the comparison is twofold: The
bitwise AND is really a special case rather than being a good
example of the multigauge idea, and although construction of a
multigauge machine will engender certain costs associated with
supporting multiple operand fetching, the feature has apparent
benefit even in the SIMD case.

Having focussed on multiple operand fetching, we now ad-
dress the benefits of multiple instruction fetching. (The argu-
ment amounts to a defense that MIMD computation is more
powerful than SIMD computation.) Postulate a sequential ma-
chine capable of packing several operator/operand specifications
together in a single instruction word. Such a machine. though
still with only a single program counter, would be able to exe-
cute several distinct programs provided that a particular condi-
tion could be enforced on the execution sequence. namely, that
they remain “in unison™. In particular, let

I A
JisJan o Ja

/*program [*/
/*program J*/

Ky, Ks, -+, Ko [*program K*/

be programs. As long as these are straight line code. the instruc-
tions and their operands can be packed together in instruction
words,

< ’|../|. N Kl >
<l Js, - Ka>

< In.Ja. - Ra>

and be executed by a machine with a single program counter. If
there is & conditional branch. say 10 J; with target instructions
J: and J;. then we need to provide another sequence of packed
instructions

‘It may be that once the data types get too narrow. addressing restriztions
must apply for the same reasons motivating the MIMD thresho'd 1 the
limitaticn 19 to & single data stream, the machines cruid be equivalent

. II‘.{

T L'*:-

Ld

K

v v
A

s P

"l'ft'{’{

d SRS Y

KA

""'."' - 'l"‘ T 8 t 17

R
LA

AR

l-'." %
NI

L4
AALE
l- 1‘. I N

et
P .'."¢' LA

LA

ALY A AT

t 7

AT AN

LAY
FARA) L

< I, .l-:-. - K>

< I, -’:."“- K. >

so that the branching can be provided for and still remain “in
unison”.

Obviously. storing the whole execution sequence is unrealis-
tic. <0 we concentrate on storing short segments that represent
the instructions that could be executing concurrently. Consider
programs composed of short blocks which each test a value,
change it and then jump to one of two different blocks depend-
ing on the outcome of the test. Each program will jump around
to different locations in an unpredictable order. When we con-
sider the programs together we see that any given instruction
could be executing with any combination of instructions from
the other programs. Thus to generate a program that can be
executed with a single instruction counter requires that essen-
tially all tuples of instructions, one from each program, must be
provided for.

Returning now to the question of multigauge computation
being faster than an equivalent sequential computation, we note
that programs of the type just discussed can be stored in Ofkn)
<pace on a multigauge machine but will require Ofn*} space ona
sequential machine. This disparity is too great to be the basis of
a fair comparison, as can be seen by instantiating the functions
for realistic size values such as k=§ and n=100. Assuming the
sequential machine is limited to a comparable amount of space,
it must cease to exploit packed instructions and thus be reduced
to exccuting the programs (esscntinllys separately. The result-
ing longer execution times imply the existence of a fundamental
performance improvement with multigauge computation.

The coaclusions from the preceding discussion are that multi-
gauge computation is fundamentally different from sequential
computation and that potential performance improvements ex-
ist. Fetching multiple operands and multiple instructions, though
complicating to the machine design, have been showa t> be s
source of power. Whether the benefits can actually be real.zed in
a physical design is an interesting and challenging open problem.

Since it would seem that s multigauge architecture will es-
<entially be many program counters, control units, instruction
decoders, etc.. sharing a data path and a memory, neither of
which 1s a very scarce resource, it is evidently not the case that
zauge <hifting is justified on purelv economic erounds. It is,
therefore. appropriate to close this section with a brief philo-
<ophical discussion of additional benefits of multigauge (parallel)
computation. One advantage is that multigauge machines neu-
tralize a rather pointless argument about the merits of “coarse
grain® versus “fine grain® computation; these machines can be
cither, as appropriate. More importantly, multigauge architec-
tures respond to the fact that certain problems dispiay several
types of computational needs - voluminous but rather direct
data manipulation followed by much more complex, sophisti-
cated processing. {A more detailed description is given in the
pext section.) The key point is that multigauge machines can do
both with respect to the same memory. It is not that memory
is expensive, but rather that data occupancy is. Once in mem-
ory. data should be processed where it resides rather than being
moved about, unchanged and thus introducing overhesd. This
aspect 1s extremely important for nonshared memory architec-
tures. Finally, there are the esthetics of being able to describe
directly different gauge computations rather than encoding one

v"- AN - ‘I » *"-’-nw".’vwv *:'\‘\-

in another. Of course. no matter how elegant. a machine doesn't
count for much unless it is useful for some important problems;
so we consider algorithms that can exploit gauge shifting.

Two Tier Algorithms

Although we have concentrated on the architectura| issues of
gauge shifting. the motivation for studying the phenomcnon. as
indicated in the last section, is to support the execution of cer-
tain kinds of aigorithms. the general class of which we call mult:-
tier algorithms.® The simplest members of the algorithmic class
are (wo tier algorithms which have the property that there is an
enormous amount of simple data processing on small «ize data
items. followed by more complicated processing on more com-
plex data structures. Probiems requiring two tier algonthms for
their solution arise in many applications arcas such as artificial
intelligence, data bases and image processing. For example. in
image processing the first tier would involve pixel level process.
ing where regions of two images might be correlated to register
the two pictures. The higher tier processing focusses an ~uch
activities as motion detection.

Two tier algorithms are ideal for execution on a multizauge
computer. The narrow gauge processing of the first ver can
benefit from the greater parallelism, while the wide track mode
supports the more complex processing of the higher tier. It
would be unrealistic to present a two tier algorithm for a true
application since the higher tier would be complex beyond what
is necessary for illustration. However, we can present an algo-
rithm to solve a simple puzzle, Word Find, which illustrates the
principal concepts of switching between different gauges.

Word Find is & common puzzle in which the solver is pre-
seated with an m x m array of letters, A, and a word list ¥’
of size r x 3, i.e. there are r words, the longest of which 13 s
letters. The object of the puzzle is to locate the words of the list
in the array of letters as consecutive positions in a row. column
or diagonal. For example,

Finding the words will be the first tier problem. The words will
be tested to see if they are all found exactly once. making the
higaer tier processing to find if all the words of the list exist in
the array without duplicates.

The Word Find problem will be solved on a Type A (32, R)
multigauge parailel machine of the CHiP architecture {8]. Re-
call that Type A machines display the same architecture 1n both
wide and narrow tracks, so in the present case both gauges are
assumed to be configurable. We will use an cight way mesh in-
terconnection for the narrow gauge and a binary tree intercon-
nection for the wide gauge. Thus, each tree node will correspond
to a 2 x 2 mesh subarray of the narrow gauge.

To simplify the presentation, we make some assumptions.
First we assume that the letter array 4 is already loaded into
the processor array, one latter per narrow gauge PE. Second.
each narrow gauge PE has access to the r x s word list W',

*These algonithms have 3leo been called Arzrarchical 171

A N e T T T P T N S R T L TR P N S S PRI | y
QOGRS NN OGN RGN, G oGRS YUY Sty (5 O 1 QR (o0 AN

«
.

L4

-'l“l‘.l‘l‘ A AL
Asu#ﬁa i

¥

cy
-
w

e

e
"v "' .y '-l ‘l‘ 5’,"’

Ryl W

% Y Y
.v,'.'.’f"c'l‘.-:

L 238

LB o S S
YN .
PP AP R A

et bt

(. (.i' "' ". "' ',.I‘..
PPV SV TR

¢
v

A I

Lo d, J

a

rd

® sy

r
'Y
AL

L)
53

fi;f'
o

-
"

U .
:‘)\.:'J.‘.‘ K '.'\I

‘-" » g
P,

§,~ LS YT O S S A N AN SR RS S8 A% R AL 0 670 £ % A% ANt TpY n
™

which means there is at least one copy per wide track machine;
there may be one per narrow track depending on how memory
reference conflicts are handled. Third, we simplify matters by
only searching for horizontal matches; the other cases are trivial
extensions. Finally, we ignore “edge effects”®, i.e. we do not
worry about the case where the right column PEs have no right
neighbor.

The rx s word list W has a special form. The words are right
justified, padded (on the left) with blanks (4), augmented by a
blank column (= 0) on the left and a blank row (= r+ 1) on the
hottom. The words are lexicographically sorted by right-most
position, i.e. words ending in a “a” come first. (See Figure 1.}
Also if I¥,; is a nonblank character and W,_,; = W;; for this
and al! larger values of j then W;; is replaced by s ditto mark
("). Finally, a bit vector find [1:r], initially zero, is local to each
narrow gauge PE and is assigned 1 in the i** position if this PE
is the first character of an (horizontal) instance of the i** word.

The matching part of the algorithm uses siterstions to locate
which of the r s-length words match. During the ;'* iteration
a PE reads a value (p) from the east indicating either that no
word matches in the last ; — 1 positions (p = 0), or giving the
index of the (first) word in the list that matches in the last j - |
positions {p # 0). If the match bad failed or fails this time, the
p = 0 value is sent west. If the match continues a p # 0 is sent
west. If it happens that a match also succeeds, this is recorded
in the find vector. Finally, the match that had been found could
fail. but because of the ditto marks (indicating other words with
the same suffix) the index could be moved to a subsequent word.

We give (he text of the narrow gauge program as if for the
Poker parallel programming environment {9].

code match;
/¢ The information global to this process is:
character A The element of

the word find
letter array stored
in this narrow
track PE.
character array W{l.r+1.0..]
The word list,
padded and right
Justified
integerr. s The word list
size, ie. num-
ber of words and
maximum num-
, ber of letters.
ports East, West;
begin integer s, j,p; Boolean array find {1.r];
/¢ locate word matching A in last character o/
p :=0: /¢ initislize to “none found® ¢/
fori:=1tordo
if W[i,s] = A then { p:=1;
it Wies~1]='¥ then find[s] := 1;
goto Ll };
L1: West — p: /4 send index to neighbor ¢/

/* general matching - next to last through first character +/
fory =s~-1tolstep-1do

R s et N A s h A e A At e atn s o n - m e
A el e ¥ s S S L L e T L

N o RS e I A

begin p — East; /+ receive index from neighbor «/
ifp#0then
begin
if Wip.j) = AAW[p.jy - 1] ='¢ then find |i] =
L2 ifWlp gl # AAWp+ 1y +1]="""
then { p:=p+1; go to L2}:
itW(p)] # Athenp =0
end;

West — p /¢ send index to neighbor «/

end
end;

At the completion of the narrow gauge programs, the machine
changes state and begins to execute the wide track program.

The wide track program uses a binary tree interconncection of
PEs. Each node refers to the find vectors of its four constituent
PEs, treating the values as words and using logical bitwise op-
erations on them. (The careful reader will recognize that our
use of bitwise ANDs here is only a coincidence and has nothing
to do with the discussion in the third section.) The goal is to
recognize if all and only the words of the word list appear in
the letter array, so each node “ merges” its find vectors; if it 18
a leafl it passes the result to its parent, and if it is a nonleaf it
“merges” in the results from its two children before passing the
result to its parent. To perform the “merge” operation, we use
a function merge that checks for and records any collisions and
the unions the bit sequences together. At the end. the outcome
of the collision tests is passed up the tree.

The code for the wide track program of nonleaf node is given
below. Leal programs would not have the starred lines.

code combine;
/+ The information global to this process is:
Boolean array PEl.find, Find arrays
PE2find, from the narrow
PE3.find. gauge PEs

PE4 find
integerr Number of bits in finds
o/
ports lefichild, rightchild. parent;
begin

integer i ans r |
logical temp, templ, temp2;
logical array PE1bits [1..[r/32]},
PE2bits [1..[r/32]].
PE3bits [1..[r/32]],
PEdbits [1.[r/32]):
/¢ make data value correspondence «/
equivalence (PELl find, PElbits), (PE2 find. PE2bits).
{PE3.find, PE3bits), (PE4.find, PE4buts):
function C(a.b); loglcal ab:
(iflaAb) #0then ans — 0:C:=a Vi |;
ans:=1;

g}

R T S A N A NI N N N LN S Y I IV IV NI YN AT et i S0 A N ANC A P " N0 P a0 g M A g

.

tor s :=1to [r/32] do

begin References
templ:= C(PElbits, PE2bits);
temp2:= C({PE3bits, PE4bits); {1} W.J. Bouknight, S. A. Denenberg, D. E.. McIntyre. J. M.
temp:= C(templ, temp2); Randall, A. H. Sameh and D. L. Slotnick. “The Illiac IV
templ — leftchild; temp 2 «— rightchild; [+ ¢/ System," Proceedings IEEE 60(4), 1972, pp. 369-379.
!cmpf= C:(temp, templ)t [exef 2] S. I Kartashev and S. P. Karashev, “A Multicomputer
temp:= C{temp. temp2); [esef . . . " .
parent — temp System with Dyn?m|c Arch:.tccture,- w
end: in Computers C-28(10), 1979. pp. 704-721.
| — leftchild, Xy (3] H. . Siegel, L. J. Siegel, F. C. Kemmerer. P. T. Mucller,
r — rightehsld, Jossf Je., H. E. Smalley, Jr. and S. D. Smuth, “PASM: A Par-
ans:= ans x | x r; Jeoef tionable SIMD/MIMD System for Image Processing and by
parent — ans Pattern Recognition,” IEEE Transactions on Computers R
end C-30(12), 1981, pp. 934-947.

(4] Joseph A. Fisher, Very Long Instruction Word Architec- :
tures and the ELI-512, Department of Computer Science,)

The “parent” of the root, presumably the controller, receives the i
Yale University, YALEU/DCS/RR-253, (April, 1983)

results.
For the algorithm analysis, we notice that as long as the W [5] C. Weems, S. Levitan, D. Lawton and C. Foster. A Con-
array bounds remain within the “single precision” range of the tent Addressable Array Parallel Processor and Some Ap- ,
narrow track PEs, there is essentially full speedup for the narrow plications in [mage Understanding, Scientific Applica-
track phase of computation. The paralielism in the wide track tions, lnc., SAI-84-176-WA, (1984).
phase is restricted to that provided by multiple PEs rather than [6] Control Data Corporation, CDC Cyber 200 Model 205 X
gauge shifting. Thus, we have for some Cy > 0 and C: > 0, Computer System: Hardware Reference Manual. Control
Cilr + s)m? + Cyrlogm Data Corporation. St. Paul, (1981). N
steps. If we suppose that B = 32 and & = 4 then we achieve [7] Janice E. Cuny, personal communication. p
essentially the whole factor of four speedup on the work repre- 8] L.Snyder, “Introduction to the Configurable Highly Par- :
sented in the first term. Since this is the dominate term in the I.l lé .uter . ¢ lS(lr) Ja:u i l982g - N
computation, the benefit applies to the whole algorithm. More- ;Ge omputer,” _omputer, uary. - PP .
over, if the problem size grows in terms of m the benefits persist. O] L ‘Snyder. “Parallel Programming and the Poker Pro- X
Conclusions gramming Environment,” Computer 17(17} July. 1921
pp. 27-36. .
The goal of this paper bas been to inquire into the benefits "
of zauge shifting. Towards this goal we have defined multigauge R
architectures and relsted concepts. We have argued that muiti- .
gauge computation represents a fundamentally different kind of ~
computation, not simply sequential computation in disguise. Fi-
nally. we have identified a class of algorithms, two tier algo- ~
rithms, that can exploit gauge shifting. I
The benefits, analyzed in the abstract, seem to be substan- ’
tial. suggesting the worth of a design and implementation cflort
to identify and quantify the problems.
Acknowledgements
,.n
7
- [t is a pleasure to thank Jean-Loup Baer and Janice E. Cuny
-j‘ who read copies of an early draft of this paper and provided very
NN helpful comments. | would also like to thank Kye S. Hedlund y
- & with whom early precursors to these ideas were discussed.
iy :
e :
ey :
- 5 :
\
S

-

»®a"a AR P BT AV)
AN . -r.' N

-_‘. ~

“w"p " A" 2" M. R T IR T LI R S
\z_:‘\. R . RN

RPN NS AU AN AT AN

A9 V!

155 5 Xt]
Bl e
XA AR LR

4 8 AR 4°ar

A AT
AU AR A AN

o
)

SRS

E
D
1 g9

R
M

‘.

A¥naara’r

A an g
(¢ %

*

A B S

- s s i UAs A A A A B T B & KB, O A LA " 2 X £ & B A SR o o i & . e —

