-A198 493 SYNCHRONIZABLE SERIES EXPRESSIOIS PART 1 USER’S
F SS_ NACRO MASSACHUSETTS IHST OF TECH
CAM . R C HATERS
UNCLASSIFIED - -85-K-0124 F/G6 12/3

Ll S P

A £ oz
T
= = g

s s e

&y HESSLLTION TEST CHAZ
<& STANDARDS - 98 L

Nar TNA. 8 REAL

' ®© o o
s oy
X) W

:'?‘:,,'::.!:'.::'::"‘“f‘-:'.:m'wl.o. el

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
N ARTIFICIAL INTELLIGENCE LABORATORY
NN
A.LL Memo No. 938 November 1937
Synchronizable Series Expressions:
Part I: User’s Manual for the OSS Macro Package
" DT
1} gC
Richard C. Waters SLECT .
Abstract
The benefits of programming in a functional style are well known. In par-
ticular, algorithms that are expressed as compositions of functions operating
on series/vectors, streams of data elements are much easier to understand and
modify than equivalent algorithms expressed as loops. Unfortunately, many
& programmers hesitate to use series expressions, because they are typically
implemented very inefficiently. .
A Common Lisp macro package (0Ss) has been implemented which sup-
ports a restricted class of series expressions, obviously synchronizable series
expressions, which can be evaluated very efficiently by automatically convert-
ing them into loops. Using this macro package. programmers can obtain the
advantages of expressing computatlons as series expressmns without incurring
any run-time overhead.
’ ’ A 4 - *
/.
!
Copyright '© Massachusetts Institute of Technology, 1987
This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory’s artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644. in part
by the IBM Corporation. in part by the NYNEX Corporation, and in part by the Advanced Re-
search Projects Agency of the Departinent of Defense under Office of Naval Research contract
N00014-85-K-0124.
The views and conclusions contained in this document are those of the authors. and should
not he interpreterd as representing the policies, neither expressed nor implied. of the National
“r. Science Foundation, of the IBM Corporation, of the NYNEX Corporation, or of the Department
(::.j- of Defense.
Pratiovdon U, it -‘ 5

RPR R S ~ \“v-».\._-\-.-s.

St e e e ; ~ SN .
. 'h"h"'\-"m oo, AN R G A P U

Contents
: 1. All You Need To Know to Get Started | -
: e
,’: Example oo oo ! e
. 2. Reference Manual R
Ko
) Restrictions and Definitions of Terms. 8
. General Information 12
: Enumerators 14
L On-Line Transducers 21
| Cotruncation e e 25
s Off-Line Transducers 26
b Selection and Expansion 29
SPLtLING . . . e 31
b Reducers 32
fr Early Reducers. 35
)
‘ Series Variables 37
Coercion of Non-Series to Series 10
. Implicit Mapping 10
3 Literal Series Functions 14
’.‘_ Defining Series Functions 45 .
N . Multiple Values 47 @
ko Alteration of Values 13
:‘, Debugging 19
3 Side-Effects 50
3. Bibliography L o o, 52
O
” 4. Error Messages 53
]
o .
3~ 5. Index of Functions 33
b
>
I))
> Acknowledgments. Both the 0Sss macro package and this report have benefited
' from the assistance of a number of people. In particular, (. Rich, A. Meyer. Y. Feld-
. man, D. Chapman. and P. Anagnostopoulos made suggestions which led to a number of
- very significant improvements in the clarity and power of obviously synchronizable series
expressions.
q ~
K ‘,\":x‘
..l \in'
.‘
‘)
e.‘
,':
¢
\J
]
M am A A a . OB« e AN ST AN AL &"\\‘x'\ AR CRERESENS
".’l"'l‘! s A% ﬁ , { ‘ ﬁ (“‘f“ &) "9 ‘l a ‘.\{.’ ’ » .'\ . » ¢‘} W '.'c r ‘ -»’J..\ ..- * b \! ‘ Iaz §

LN
LSRR

L] ;1 3
R

SECUMTY T ASSIFICATION OF THIS PAGE /When Date Entered)

REPORT DOCUMENTATION PAGE - -~ - READ INSTRUCTIONS

BEFORE COMPLETING FORM
I REPDAT NUMBER

1. GOy ASSEIN0 CIPIENT' S CATALOG NUMBER
Al Memo 958 £/qd

& TITLE (and Subdtitie) S. TYPE OF REPORT & PERIOD COVERED

Synchronizable Series Expressions:
Part I: User's Manual for the 0SS Macro Package

6. PERFORMING ORG. REFPORT NUMBER

7. AUTHOR(e; 8. CONTRACT OR GRANT NUMBER(e)

Richard C. Waters NOOO14-85-K~-0124
. PERFORMING ORGANIZATION NAME AND ADORES Yo.
Artificial Inteligence Laboratory) * AREAVRoR UNIT wummERs | A

545 Technology Square
Cambridge, MA 02139

1. CONTROLLING OFFICE NAME ANP ADDRESS 12. REPORT DATE
Advanced Research Projects Agency November, 1987

1400 Wilson Blvd. 13. NUMDER OF PAGES
Arlington, VA 22209

14 MONITORING AGENCY NAME & AOOk!liﬂl difterent troemn Contrelling Oillice) 18. BECURITY CLASS. ref thie report)
Office of Naval Research

Information Systems
Arlington, VA 22217

18e. DECLASSIFICATION/ DOWNGRADING
!CN&DUL!

8. DISTRIBUTION STATEMENT (ol thls Repert)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tNe abetract entered in Black 20, Il diilecent trem Report)

8. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverss slde Il necessary and ldentily by block number)

Series Expressions Program Optimization '
Looping Constructs Functional Programming
Compilation

20. ABSTRACT (Continue on reveree olde Il necesoary and (dontity by Meck namnber)

The benefits of programming in a functional style are well known. In
particular, algorithms that are expressed as compositions of functions oper-
ating on series/vectors/streams of data elements are much easier to under-
stand and modify than equivalent algorithms expressed as loops. Unfortunately

implemented very inefficiently.
A Common Lisp macro package (0SS) has been implemented which supports a

restricted class of series expression, obviously synchronizable (Block 20 Cont

many programmers hesitate to use series expressions, because they are typically}

DD ,on'ys 1473 to1Tiow oF 1 uov e 13 ostOLE TR UNCLASSIFIED
S/N 0:02-014-4001

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entever

IO R IO A I RGN,
sj»' Ty "

N

e
4 *p
. (Block 20 Continued)

%~ % Bl

series expressions, which can be evaluated very efficiently by automatically
converting them into loops. Using this macro package, programmers can obtain

the advantages of expressing computations as series without incurring any
run-time overhead.

St

-

g "

@ 50T

-l
-

-
X

-
L)

)

AT

L Gt Y

'h*"‘ > AR RS

ARG IRy
O
~\ .h:‘-ﬂ LSOO

S e T e T S L VL AR L AL S LET NG LS
“ oy \\ -* \’\ \ (' 3'\'\ : WY x."\.‘”w.

Rt R N e
e "‘\"""
)

3] 3

< Sa et O " - . R A o i okl |

1. All You Need To Know to Get Started

This first section describes everything you need to know to start using the 08s macro
package. It then presents a detailed example. Section 2 is a comprehensive reference man-
ual. [t describes the functions supported by the 0SS macro package in detail. Section 3
contains the bibliography. Section 4 explains the error messages that can he produced
by the 0$S macro package. Section 5 is both an index into Section 2 and an abbreviated
description of the 0ss functions.

A companion paper 6 gives an overview of the theory underlving the 0ss macro
package. [t explains why things are designed the way they are and compares the 0ss
macro package with other systems that support operations on series. In addition, the
companion paper gives a brief description of the algorithms used to implement the 0ss
macro package. As part of this, it describes a number of subprimitive constructs which
are provided for advanced users of the 0SS macro package.

The OSS data type. A series is an ordered linear sequence of elements. Vectors.
lists, and streams are examples of series data types. The advantages (with respect to con-
ciseness. understandability. and modifiability) of expressing algorithms as compositions
of functions operating on series, rather than as loops, are well known. Unfiortunately,
as typically implemented. series expressions are very ineflicient—so inefficient. that pro-
grammmers are forced to use loops whenever efliciency matters.

Obviously Synchronizable Series (0S$) is a special series data type that can be im-
plemented extremely efficiently by automatically converting 0SS expressions into loops.
This allows programmers to gain the benefit of using series expressions without paying
any price in efliciency.

The 08S macro package adds support for the 0ss data type to Common Lisp 4.. The
macro package was originally developed under version 7 of the Symbolics Lisp Machine
software (7. However, it is written in standard Common Lisp and should be able to run
in any implementation of Common Lisp. (It has been tested in DEC Common Lisp and
Sun Common Lisp as well as Symbolics Common Lisp.)

The basic functionality provided by the 0SS macro package is similar to the function-
ality provided by the Common Lisp sequence functions. However, in addition to being
much more efficient. the 0SS macro package is more powerful than the sequence func-
tions, because it includes almost all of the operations supported by APL (3! and by the
Loop macro i2]. As a result. 0SS expressions go much farther than the sequence functions
towards the goal of eliminating the need for explicit loops.

Predefined OSS functions. The heart of the 08S macro package is a set of several
dozen functions which operate on 0ss series. These functions divide naturally into three
classes. Enumerators produce 0SS series without consuming any. Transducers compute
0SS series from 0SS series. Reducers consume 0SS series without producing any. As a
mnemonic device, the name of each predefined 0ss function begins with a letter code
that indicates the type of operation. These letters are intended to be pronounced as
separate syllables.

Predefined enumerators include Elist which enumerates successive elements of a list,

Evector which enumerates the elements of a vector, and Eup which enumerat~s the inte-

2 All You Need To Kknow to Get Started

ers in a range. (In the examples below. the notation [...] i~ used to represent an 08s
I

series.)

(Elist '(a b c)) = [a b c]
(Evector #(a b c)) = [a b c]
(Eup 1 :to 3) = [1 2 3]

Predefined transducers include Tpositions which returns the positions of the non-null
elements in a series and Tselect which selects the elements of its second argument which
correspond to non-null elements of its first argument.

(Tpositions [a nil b ¢ nil nill) = [0 2 3]
(Tselect [nil T T nill [1 2 3 4]) = [2 3]

Predefined reducers include Rlist which combines the elements of a series into a list.
Rsum which adds up the elements of a series. Rlength which computes the length of a
series. and Rfirst which returns the first element of a series.

(Rlist [a bcl]) = (abc)
(Rsum [1 2 3]) = 6
(Rlength [a b c]) = 3
(Rfirst [a b c¢]) = a

As simple illustrations of how 08s functions are used. consider the following.

(Rsum (Evector #(1 2 3))) => 6
(Rlist (Tpositions (Elist ’(a nil b ¢ nil))})) = (0 2 3)

Higher-Order OSS functions. The 0S5 macro package provides a number of
higher-order functions which support general classes of 0SS operations. (Each of these
functions end in the suffix “F”. which is pronounced separately.)

For example, enumeration is supported by (EnumerateF init step test). This enumer-
ates an 0SS series of elements starting with init by repeatedly applving step. The 0ss
series consists of the values up to, but not including. the first value for which test is true.

Reduction is supported by (ReduceF init function itemns) which is analogous to the
sequence function reduce. The elements of the 0SS series items are combined together
using function. The quantity init is used as an initial seed value for the accumulation.

Mapping is supported by (TmapF function items) which is analogous to the sequence
function map. An 0SS series is computed by applying function to each element of the 0ss
series items.

(EnumerateF 3 #’1- #’minusp) —> [3 2 1 0]
(ReduceF O #’+ [1 2 3]) = 6
(TmapF #’sqrt (4 9 16]) = [2 3 4]

Implicit mapping. The 0ss macro package contaims a special mechanism that
makes mapping particularly easy. Whenever an ordinary Lisp funetion is apphied to an
0SS series. it 1s automatically mapped over the elements of the 0Ss series. For example.
tn the expression below. the function sqrt is mapped over the 0SS <eries of numbers
created by Evector.

By T N T Ol L RGN L S T R RO S K CRAR S P
o R A S e e Y N " At

&

-
¥

N AT

4

~4

M
e
N
. 3
l'
(Rsum (sqrt (Evector #(4 16))))
' . = (Rsum (TmapF #'sqrt (Evector #(4 16)))) = 6
Y ;:.'-\
! A ".' e
A e lo a considerable extent. tmiplicit mapping 1s a peripheral part of the 0ss macro
) package- one can alwavs use TmapF instead. However. due to the ubiquitous nature of
‘, mapping. implicit mapping i~ extremely conventent. As illustrated belov | its key virtue
is that it reduces the number of literal lambda expressions that have to be written.
Y
K. (Rsum (expt (abs (Evector #(2 -2 3))) 3))
- = (Rsum (TmapF #’(lambda (x) (expt (abs x) 3))
W (Evector #(2 -2 3)))) - 43
e Creating OSS variables. The 0SS macro package provides two forms (1letS and
, letS#) which are analogous to let and lets. except that they make it possible to create
variables that can hold 0s$ seriex. (The sutlix “S”". proncunced separately. is used to
. indicate primitive 0sS forms.}) As shown in the example below. lets can be nsed to hind
N both ordinary variables (e.g.. n) and 0SS variables (e.g.. items).
i
} (defun average (v)
B (letS* ((items (Evector v))
¢ (sum (Rsum items))
" (n (Rlength items)))
& (/ sum n)))
:: (average #(1 2 3)) = 2
! ')’ User-defined OSS functions. New 0SS functions can be defined by using the form

defunS which is analogous to defun. Explicit declarations are required inside defun$S to
indicate which arguments receive 08$ series. The following example shows the definition

of an 0ss function which computes the product of the numbers in an 0SS series.

AN A S

(defunS Rproduct (numbers)
o (declare (type oss numbers))
! (ReduceF 1 #’# numbers))

(Rproduct [2 4 6]) = 48

o
.j Restrictions on OSS expressions. As illustrated by the examples above. 0ss
v.’: expressions are constructed in the same way as any other Lisp expression——i.e.. 0SS
::. functions are composed together in any way desired. However, in order to guarantee that
;\" 0S$S expressions can always be converted into highly efhicient loops, a few restrictions
% have to be followed. These restrictions are summarized in the beginning of Section 2 and
discussed in detail in 6 . Here. it is sufficient to note that these restrictions are checked
.‘ by the 08S macro package and error messages are issued whenever they are violated.

The best approach for progranuners to take is to simply write 0ss expressions without
worrying about these restrictions and then fix the expressions in the event that the
restrictions are violated. In conjunction with the descriptions of the error messages
E involved. Section 1 contains explicit suggestions on how to fix erroncous 0SS expressions.
¢
.

-

g AL G LV SR AT R U S N e T L S N N i
f:\S‘. > T N i I e A A VA T Y
‘ 1"&1&1&% AN LR T 0 SO LR CH AR 2O DN Y

“v = e eI bl - U rnrYrs T TR T - v - YT Y T Y YW T T T W W T Y e 1w e

‘
b A

4n 1 All You Need To Know to Get Started
’:' Further. it should be noted that simple 0ss cxpressions are very anlikely to violate
‘ .j any of the restrictions. In particular, it is tmpossible for an 0SS expression to violate any
:: of the restrictions unless it contains a variable bound by letS or defuns. .:.:::
'-. Benefits. The benefit of 0s$ expressions is that they retain mosi of the advantages R

of functional programming using series. while eliminating the costs. However, given the

o restrictions alluded to above, the question naturallyv arises ax 1o whether 08s expressions
: ‘ are applicable in a wide enough range of situations to be of real pragmatic benefit.
A An informal study |5 was undertaken of the kinds of loops programmers actually

e write. This study suggests that approximately 207 of the loops programmers write are

l-) constructed by combining a few common kinds of looping aigorithms. The 0ss macro

Al package is designed so that all of these algorithins can he represented as 05S functions.
] ::: As a result. it appears that approximately 800 of loops can be trivially rewritten as 0SS
_.;\': expressions. Many more can be converted to this formn with only miuor moditication.
» Moreover. the henefits of using 0S8S expressions go bevond replacing individual loops
o A major shift toward using 0SS expressions would be a significant change in the way

::..': programming is done. At the current time, most programs contain one or more loops

\".':{ and most of the interesting computation in these prograwus occurs in these loops. This
' Y is quite unfortunate, since loops are generally acknowledged to be one of the hardest
_ things to understand in any program. If 0SS expressions were used whenever possible.

2 most programs would not contain any loops. This would be a major step forward in §
:', conciseness. readability, verifiability, and maintainability.]
.r_:.T
$'Z Example o
‘

The following example shows what it is like to use 0SS expressions in a realistic
programming context. The example consists of two parts: a pair of functions which
convert between sets represented as lists and sets represented as bits packed into an
integer and a graph algorithm which uses the integer representation of sets.

Bit sets. Small sets can be represented very efhiciently as binary integers where each
t bit in the integer represents an element in the set. Below. sets represented in this
fastiion are referred to as bit sets.

Common Lisp provides a number of bitwise operations on integers which can be used
to wmanipulate bit sets. In particular. logior computes the union of two bit sets while
logand computes their intersection.

The functions in Figure 1.1 convert between sets represented as lists and bit sets. In
order to perform this conversion a mapping has to he established between bit positions
and potential set elements. This mapping is specified bv a universe. \ universe is a list

of elements. If a bit set b is associated with a universe u. 1hen the ith element in v is in
the set represented by b iff the ith bit in bis |.
For example. given the universe (a b ¢ d e). the iuteger #b01011 represents the <ot
ja,b,d}. (By Common Lisp convention. the Oth bit in an integer 1= the rightimost bit.)
(siven a bit set and its associated universe. the function bsat->list converts the
bit set into a set represented as a list of its elements. It does tlis by enumerating the

eleinents in the universe along with their positions and constructing a list of the elements<

I H
- A 'i‘" \"l -
Af
a_X

R R Y
o ~ -
'{;; PR NN L{A.&ﬂkl ._¢L'('.‘}'\ \M uP '\)_\J\f

LAY LR o
® “ALNN e ERIE N @ BRER e

-
1

.

.',1

Example 5

(defun bset->1list (bset universe)
(Rlist (Tselect (logbitp (Eup 0) bset) (Elist universe))))

(defun list->bset (list universe)
(ReduceF 0 #’'logior (ash 1 (bit-position (Elist list) universe))))

(defun bit-position (item universe)
.or (Rfirst (Tpositions (eq item (Elist universe))))
(1- (length (nconc universe (list item))))))

Figure 1.1: Converting between lists and bit sets.

which correspond to Is in the integer representing the bit set. (When no :te argument
is supplied. Eup counts up forever.)

The function list->bset converts a set represented as a list of its elements into a
bit set. lts second argument is the universe which is to be associated with the bit set
created. For each element of the list. the function bit-position is called in order to
derermine which bit position should be set to |. The function ash is used to create an
integer with the correct bit set to 1. The function ReduceF is used to combine the integers
corresponding to the individual elements together into a bit set corresponding to the list.

The function bit-position takes an item and a universe and returns the hit position
corresponding to the item. The function operates in one of two wavs depending on
whether or not the item is in the universe. The first line of the function contains an 0SS
expression which determines the position of the item in the universe. If the item is not in
the universe, the expression returns nil. { The function Rfirst returns nil if it is passed
a series of length zero.)

[f the item is not in the universe. the second line of the function adds the item onto
the end of the universe and returns its position. The extension of the universe is done
be side-effect so that it will be permanently recorded in the universe.

Figure 1.2 shows the definition of two 0sS reducers which operate on 05s series of
bit sets. The first function computes the union of a series of bit sets. while the second
computes their intersection.

Live variable analysis. As an illustration of the way bit sets might be used. consider
the following. Suppose that in a compiler. program code is being represented as blocks
of straight-line code connected by possibly cyclic control low. The top part of Figure 1.3
shows the data structure which represents a block of code. Each block has several pieces
of information associated with it. Two of these pieces of information are the blocks

(defunS Rlogior (bsets)
(declare (type oss bsets))
(ReduceF G #'logior bsets))

(defunS Rlogand (bsets)
(declare (type oss bsets))
(ReduceF -1 #’logand bsets))

Figure 1.2: Operations on 0SS series of bit sets.

N'\ RNy g TN ~
AN eyl SEAS NN A AT A
Vo) x e > ;M};}.r_ AN Oy SO

o
:2,(-.: Py

X |

0 All You Need To Know to Get Started

e that can branch to the block in question and the hincks it can branch to. \ progran is
2% represented as a list of blocks that point to cach other throush these fields,
';:: In addition to the control flow informatiou above., cach structure contains information
:I." about the way variables are accessed. In particular. it records the variables the biock
a reads and the variables the block writes. An additional field fcomputed by the function
N determine-live discussed below) records the variabies whiohoare Lvein the hlock, 1A
"l variable 1s live if it has to be saved. because it can potertiddiv be used by o following
2 block.) Finally, there is a temporary data field which i used by functions (such as
:: determine-live) which perform computations involved with the hlocks.
P The remainder of Figure 1.3 shows the function determine-Zive which. given a pro-
.' gram represented as a list of blocks. determines the variables which are live in each block.
:',: To perform this computation efficiently. the function uses bit sets. The tunction operates
}; in three steps. The first step (convert-to-bsets) lunks at cach block and <ets up an
b auxiliarv data structure containing bit set representation~ for the irput variables. the
. output variables, and an initial guess that there are no live vanables. (The integer 0
o~ represents an empty bit set.) This auxiliary structure is detined by the third form in
:‘_; Figure 1.3 and is stored in the temp field of the block.
::: The second step (perform-relaxation) determines which variables are live. This is
S done by relaxation. The initial guess that there are no live variables in any block is

successively improved until the correct answer is obtamed.

~ The third step (convert-from-bsets) operates in the revers» of the first step. Fach

- block 1: inspected and the bit set representation of the hive variahles 15 converted nto a

st

.
P

list which is stored in the live field of the block. The rest of the teinporary information

o« 8

. 1s discarded.

.

Ou each cvele of the loop in perform-relaxation. a hiock 1~ examined to determine

{::: whether t1s live set has to he changed. To do this. the successors of the block wre
::::: inspected. Each successor needs to have available to it the variables it reads plus the
- variables that are live in it. The total set of variables needed by all of the successors
": together is computed by using Rlogior. A new estunate of the variables which are live
/) in the current block is ohtained by taking the difference i:.ing logande2i of the set of
::Q variables needed by the successors and the variables written Ly the current block.
) [f this new estimate is different from the current e:timate of what variabies are live.
N ;: then the estimate is changed. In addition. if the estiniate is chanuzed. perform-relaxation
) has to make sure that all of the predecessors of the current block will be examined to
® see if the new estimate for the current block requires their Live estitnates to he changed.
oy This is done by adding each predecessor onto the list to-do uuless it is already there. As
:z‘« soon as the estiimates of liveness stop changing. the compntation can stop,
,::::. Summary. The function determine-live is i particnlarly socd ecample of the way
s 0SS expressions are intended to he used in two wavs. First. 08S exjpressions are used in a
v winber of places to express computations which would otherwise be expressed less dlearly
::,:": s doops or less efhiciently as sequence function expressions. Sccond, the mann refaxation
e adeonithm is expressed as a loop. This s dones becasice nvither 0SS expressions rnor
'.:-1:' ~equence function expressions) lend themselves to expressne 1he roboxation algorithm.
Y [rs lughlights the fact that 0SS expressions are not ntended to render Joops entirely
.r,a obsolete, but rather to provide a greatly nuproved methiod for s xpressing the vast majority
o
e
o
Y
B N N T T I I S T A

I—.—r—r—rv Rl akiealiEaltca i o E e iRt et Ja® Bak Sa’ et Mab dot Mol Segb Bal Bub Ba¥ S Ak As Bs S Bod B e S Ay 2 4 folia® Jiu Jiat Ra® gt gat Se¢ he 0 " et Ae da® da 0 o5, |

Fxample

ot l()()p,\.

xa

S,

!'_l

:: (defstruct (block (:conc-name nil))
code ;The code 1in the block.
predecessors ;List of blocks that can branch to this cne.
SUCCOSSOrS ;List of blocks this one can branch to.
inputs ;jList of variables read by this block.
outputs ;List of variables written by this block.
live ;List of variables that must be stored.
temp) ;Temporary storage location.

(defun determine-live {program-graph)
(let ((universe (list nil)))
(convert-to-bsets program-graph universe)
(perform-relaxation program-graph)
(convert-from-bsets program-graph universe))
program-graph)

(defstruct (temp-bsets (:conc-name bset-))
inputs outputs live)

(defun convert-to-bsets (program-graph universe)
(letS ((block (Elist program-graph)))
(setf (temp block)
(make-temp-bsets
:inputs (list->bset (inputs block) universe)
routputs (list->bset (outputs block) universe)
:live 0))))

(defun perform-relaxation (program-graph)
(let ((to-do program-graph) block live-estimate)
(loop (when (null to-do) (return (values)))
(setq block (pop to-co))
(letS* ((next (Elist (successors block)))
(next-needs (logior (bset-inputs (temp next))
(bset-live (temp next))))
(total-need (Rlogior next-needs)))
(setq live-estimate
(logandc2 total-need (bset-outputs (temp block)))))
(when (not (= live-estimate (bset-live (temp block))))
(setf (bset-live (temp block)) live-estimate)
(1etS ((prev (Elist (predecessors block))))
(pushnew prev to-do))))))

7 (defun convert-from-bsets (prcgram-graph universe)

:}: (1etS ((block (Elist program-graph)}))

w7 (setf (live block)

?:: (bset->1list (bset-live (temp block)) universe))
" (setf (temp block) nil)))

o

P . , . . A
e Figure 1.3: Live variable analvsis,

2.
.

T K P AL

-

&)

S R R UL LR LA s
P A \;ﬁv:r\-‘r‘a\

-

A2 il s ats o - ¢ S s s o s 4w g A A g Jedn A0 Sin-DAa-Ri b S oul d At il S A S Y
S Retereno e VL
2. Reference Manual
I'his section is organized around descriptions of the varions fonerons and -

ported by the 088 macro package. Fach description fewin wirle o neaaer win

_f\";- the arvuments and results of the funciion or form hecns deccrihad, For eaee v comers

M the headers are duplicated in Section 5. [n Section 50 the hewders are i alpraros

t}‘: order and show the page where the function or forn s described.

i"-:: In « reference manual like this onel it i advartageous 1o deambe vaey oo o
separately and completely. Howevero this evitably feads o prosentaonm prosn

el hecaus evervthing 1s related to everything else. Theretore, e cornnt avord menero

things which have not heen discussed. The reader is enconraved 1o <kip aroia o oo
document and to realize that more than one reading will probably be nececary nor
to gain a4 complete understanding of the 08S macro package.

Although the following list of 0SS functions 1s large. 1t ~hould not be taken 4> oo
plete. Every effort has been made to provide a wide range of u~etul predetined fancrgo
However. except for a few primitive forms. all of these functions conld have heen detd
by the user. It is hoped that users will write raany niore such finctions. A ke reaso
for presenting a wide array of predefined functions is to in<pire ueers with tioazbine o
the wide variety of functions theyv can write for them-cives.

Restrictions and Definitions of Terns.

As alluded to in Section L. there are a number of restrictiogi~ which sy CNX T
have raobey, The 088 myacro package is designed so that 2l bhat v e 0 e ee e 1o on -
are tmpossible to violate with the facilities provided. N« 0 resnli toe provranimer need

not think about these restrictious at all.

The 08s macro package checks to see that the rematians three costrietions are obey |
on an expression by expression basis. Whenever they are violated. an error message i-
rssued. There is no need for programmers to worry ahout thesc sevinerions unti! one ot
these errors occurs. However, when such an error oconrs the otfending expression has o
Le reartanged in order to alleviate the problen.

Cirven that simple 0SS expressions are very unlikely to violite any of the restrictions.
1 frasonable to skip this section when fiest reading thi- manuai However, it 1s useful
o read this section before trying to debug complex 0SS expressions,

Die discussion below starts by defining two key ternns ton line functions and carly
ervnnationt which are used to categorize the 0SS functions described in the rest of this
st el The diseussion then continues by briefty descsibing the three restrictions wiiich
can b violated, 1See 6 for a complete discusston of all the restrictions

On-line and off-line. Suppose that fis an 65 Functon which reads one or more

:'A corrnpnts and writes one or more series outpuats foe Yarction f e oonche 1l
',:; cperates i the followimg fashion. Firsto foreads in the nret elerent of cach fnpat series,
’_.- '}14‘1 rowrItes ont f}lv‘ “."\l "ll'llIPII’ Uf. <‘.’1(‘h Ullt;)‘ﬂ NRST .. T}[!‘Il il {'c-,”l\ i;; th(‘ x(‘(‘nnt{
o clerent ot cach oput seriescthen it wates out the second elenent o each output series.

and oon Inaddimons poovast nnediaiely ternate as conte as any npat runs ont of -

Il)l,’

k.
At s

AT
PP NI B

———————————— bl e A Y aY Baw §
"‘memm‘v‘ﬁ.ﬁw,_ﬁr- s Ry,
Restrictions and Definitions of Terns. 4

elements. Ifa fis not on-line. then it s off-line.

In the context of 08s expressions. the term on-line is generalized so that 1t applies
to individual 0ss input and ontpat ports in addition 1o whole functions. An 0SS port
is on-line iff the processing at that port always tollows the ricidly <yvnchronized patrern
described above. Otherwise. it i~ off line. From thix point of view. a function is oo line
itf all of its 0SS ports are on-line.

The prototypical example of an on-line 0ss function is TmapF (which niap- « function
over a series). EFach time it reads an input element it applies *he mapped function 1o
it and writes an output element. In contrast. the function Tremove-duplicates 'which
removes the duplicate elements from a series) is not on-line. Sinee some of the impnt
elements do not become ontput elements. it is not possible for Tremove-duplicates '
write an output element every time it reads an input element,

For every 0ss function. the documentation below specifies wnicl ports are on line
and which are off-line. In this regard. it is interesting 1o note that every function which
has only one 0SS port {e.g.. enumerators with only one output and reducers with onlv ‘
oune input}) are trivially on-line. The only 08s functions which have off-line ports aie
transducers.

Early termination. An important feature of 0ss functions is the ~ituations under
which they terminate. The dehnition of cn-line above requires that on-tine functions
must terminate as soon as any series input runs out of elements. If an 0s« fuaction can
terminate before any of its inputs are exhausted. then it s an early terminator. The
degenerate case of functions which do not have any series inputs (i.e.. enmmerators) is
categorized by saying that enumerators are early terminators iff they can terminate.

As an example of an early terminator. consider the function TuntilF (which reads a
series and returns all of the elements of that series up to. but not including. the first
element which satisfies a given predicate). This function is an early terminator, because
it can terminate before the input runs out of elements.

The documentation below specifies which functions are early terminators. Besides
enumerators. their are only 7 0SS functions which are ~arly terminators.

Isolation. A data flow arc é in an 0SS expression X is isolated iff it is possible to
partition the functions in .Y into two parts ¥ and Y in such a way that: & goes from Y
to Y. there is no 0ss data flow from ¥ to Y. and there is no data flow from Y to Y.
For example. consider the 0SS expression (letS ((x f y))) (i (h x (g x)))) which
corresponds to the graph in Figure 2.1,

&
] N ;
| &3
-_.‘ g
e

Fignre 2.1 Parallel data flow paths in an expression.

The data How are s isolied. To show this one merely has to partition the expres-
ston so that £, g. and hare on one side and 1 is on the other. The question of whether or

.'J.'I-'J"I.';‘ e A a e . R e N) o oo
AT .. s A S T Y St L SN LA

' - " \' ., '(\ a4 -.'). Y oave
.n:‘l.\':tk-(:ﬂ‘}' :}.\‘:‘1\: VLI N

R

LY

5- N~ "“’lv
b LY
'-f ~t f";'.' PAsAr)

2

b

S5

l.ll.
S,

iy

LY
l‘_ ‘l- 'l‘ .‘.

4,._
)

il
Ll

R
SN

AR,
o l' l. "
b*.;";':s;'.- >

Ll
S& S

¥ N .
Pl it
545

-l.. .
AT

4 &8

Sl

S N0
3.’{,,-: I .. .':-.;. Ry

L
-

Ay o fa”e”a”
I e SR A

R A R TI ’.“"'."‘ LI I T X -
N v A SN s N

10 Reference Manual

not the other data flow arcs are solated 1~ wore comphoared to answers A croaes
partition. then &1 must cross this partition as well. \saresis S0 s otated o 2 carries
a non-0ss value. (This is true no matter what Kind of valae passes over &3 itselt o T
related situation. ¢2 is irolated tl (1t and theretore &1 carmies wonon Oss vidae. Frnalls,
consider the arc #1. Here there are two potential partition- to consrder. one whecn cars
&2 and one which cuts &3, The data How are &1~ tsolated o ogther o vand theretore 22
or &3 carries a non-0Ss value.

The concept of isolation 1s extended to tnpits ard arputs as fodows, A output pon
an expression X is isolated iff X can he partorcned et an parts Y oandd Y osuel i
every data flow originating on p goes from Y 1o Y Cevers orher data How from Y oro Y-
a non-0ss data flow. and there is no data fow from Y 1o Y - \itpnt o in an expression
X is isolated iff X can be partitioned into two part~ Y aned Y owuch that: the data flow
terminating on ¢ goes from Y to Y. every other data How troan Y 1o Y s anon oss data
fow. and there is no data flow from ¥ to ¥

For example, in Figure 2.1, the outputs of £ and h are tsolated as s the mput of 1.
The input and output of g are isolated iff £ computes a non oss valne, The inputs of h
are isolated iff the data How arcs terminating o thenr are tsolated.

Non-0SS data flows must be isolated. [n order for an Oss expression 1o he
reliably converted into a highly etlicient loop. every non-oss date tlow in it st be
isolated. As an example of an expression where this 15 not true. constder the following.
In this expression, the data flow implemented by the variable total is not 1solated.

(letS* ((nums (Evector #(3 2 8))) ;Signals error 16

(total (ReduceF O #'+ nums)))
(Rvector (/ nums total)))

{ The basic problem here is that while the elements created by Evector are heing used
to compute total. they all have to be saved so that they can be used again later in
order to perform the indicated divisions. Eliminating the need for such storage is the key
source of efficiency underlying 0SS expressions.)

Off-line OSS ports must be isolated. In order for an 0SS expression to he reliablv
converted into a highly eflicient loop. every off-line port must be isolated. As an example
of an expression which has an off-line output which i1s not isolated, consider the following.
[n this expression, the data flow implemented by the variable positions 15 not ixolated.

(letSs ((keys (Elist list)) ;Signals error 17.1

(positions (Tpositions keys)))
(Rlist (list positions keys)))

¢ The basic problem here is that since Tpositions -kip~ nnll elements of the inpur.
Tpositions owetimes has to read several input clewents hefore it can produce the next
cutput element. This forces an unpredictable nnnber of elements of keys to he <aved <o
that thev can be used later when creating List~. A aboves elimnnating the need for <neh
storadge 1~ the main goal of 0SS expressions.)

Code copying. If an 0ss expression violates either i the abunve restretions, the
probleni can alwavs he fixed by copving code nnnil the data ow or port i question
hecomes 1solated. For instance. the example above of an oss exprosaon an wlech

non-0ss data flow is not 1solated can be fixed ax follow-.

Restrictions and Definitions of lerras 11

{1atS* ((nums (Evector #(3 2 8)))
(total (ReduceF 0 #’+ (Evector #(3 -2 8)))))
(Rvector (/ nums totall)) - #(3/13 2/12 8/13)

It would he possible for the 0ss macro package to awtomatically copy code whenever
either of the olation restrictions 1> violated. Howeiver, this is not done for two reasons,
Firstoif side-effects tee o iuput or outputjare involved. code copying tiay not he correct
ness preserving, Second. larse dounts of code somcttmes Bave 1o he copied and that

can mntroduce large amounts of extra computation.

A major goal of 085 expressions v ensuring that expressions which look simple to

Yok compute actually are siiple to compute. Automatically introducing large janoants of
i "'- additional computation without the progranmuner’s knowledge would violate this gonl.
- At the very least. leaving code copying to programmers makes them aware of what is
.': expensive to compute and what is not. [ooked at from a more positive perspective,
: it encourages them to think of ways to compute what thev want withont doing code
DN copying.

e, For iastance. consider the the example above of an 08s expression in which an off-line

port 1s not 1solated. It might be that case that the programmer knows that list does
not contair any null elemments. and that Tpositions is therefore merely being used to
enumerate what the positions of the elements are. In this situation. the expression can
he fixed as follows: which does not require any code copying. (7 he key insight here s
that the positions do not actual depend on the values in the list.)

(letS* ({keys (Elist '(a b ¢)))

RS (positions (Eup 0)))
L (Rlist (list positions keys))) = ({0 a) (1 b) (2 ¢))

\ L]
) N:;:
._J‘. [t i~ interesting to note that if an expression is a tree (as opposed to a graph as
i - _ ,
g in Figure 2.1} then every data flow arc and every port is isolated. This is why 0ss
Yoes . A . .

~r expressions which do not contain variables bound by letS. lambdaS. or defunS cannot
" violated either of the isolation restrictions. This is also why code copying can always fix
(VY.

- any violation- code copying can convert any graph into a tree.)
WS -

et On-line subexpressions. 1he two isolation restrictions above permit a divide and
Cang]

~ conquer approach to the processing of 05s expressions. If an 0SS expression obeys the
. ixolation restrictions, then it can be repeatedly partitioned until all of the data flow in
?-"v each subexpression Zoex from an on-line output to an on-line input. The subexpressions
o which renvain after partitioning are referred to as on-line subexpres<ions.
K :: Termination points. he functions in cach on-line subexpression can be divided
‘|l
: e into two classes: those which are termination points and those which are not. A function
'." I~ a termination point if it ean terminate before any other function in the subexpression
o teriinate~s. There are two reasons for functions being termination points. Functions
e which are ecarly terminators are alwayvs termination points. In addition. any function
SN . . P
e which reads an 0SS series which comes from a different on-line subexpression s a termi-
el Stion point.
p ..{-. . - .

N i Data flow paths between termination points and outputs. [n order for an
"‘ WG N . .

OGN 0SS expression to be reliably converted into a highly efficient loop. it must he the case
‘g A . A
L -
. :;q,

o

oy

ST R L T VIR N S VTS, Y Y S e W e
N M N AR M S LA AL AN ey -
s B e e 2t M A e I W

1)
Lo I s

a . hm-.‘v(\"h'_-}m‘)“.*v -.,.n’.- -*n‘_—_.__.'_.-_-*.(_.._ «_ .
Mty N T A R R T R N N S S LA TR ~
N NN N I T T T L '

5580
SIS

LA

i s
FANTEAPY o R

P X R Y5 W

7
x

Wi

RO ‘ﬁ'\".

12 Reference Manual

that within each on-line subexpression. there 1+ o data tlow path ‘rom cach termination
point to each output. As an example of au oss expression for which this property
does not hold. consider the following. Partitioning divides this expression into two on-
line subexpressions, one containing list and oue coutoimng everything else. In the
large on line subexpression. the two nstances of Evestor wre termination points The
program is erroneous. because there s no data How ot fror the termination poins

(Evector weight-vector) to the output of (Rvector wgiares).

(letS* ((values (Evector value-vector))
(weights (Evector weight-vector):®
(squares (* values values))
(veighted-squares (* squares weights ')

(list (Rvector squares) (Rvector weighted-squares'.:

;51gnals errcr 18

{ The basic problem here 1s that if the number of e crte 2 value vecrter o uriater
than the number of elements in weight-vector. thr connpratation o squares woand have
to continue even after the computation of veighted-cqiares 1~ heer completed This
kind of partial continning evaluation 1~ not supported Hy e Oss o aro packhace, because
it was Judged that it requires too much overhead 1 oides 1o A wers cvalnated

when.)
When an 08s expression violates the restriction abooo, b ar o oree apnroaches 1o
fixing the problem: reducing the mumber of termnnation o G rea ong the cannee

tivity between termination points and outputs. and devveasnz e crmber o arput s

The easiest wayv to decrease the number of ternunation o v to replace early
terminators by equivalent operations which are not early terunnators tfor example, <ee
page 36). If ap early terminator is not an enumerator. then this cau alwavs be done
without difficultly. The documentation bhelow. deseribies a non early variant for each
early terminating transducer and reducer. [f multiple enumerators are the problem tas in
the example above) decreasing the number of termination pointsis usuailv not practical,
However, sometimes an enumerator which terminates can be replaced by an enumerator
which never terminates.

The connectivity hetween termination points and outputs can be increased by using
the function Tcotruncate. As discussed on page 25. this i~ the preferred way to fix the
probleny in the example above.

If worst comes to worst. code copyving can alwavs be nsed to fix the problem. It is
impossible for an on-line subexpression to violate the restriction above unless it computes
two different outputs. This in turn is impossible unless the 0SS expression as a whole
contains variables bound by letS. lambdaS. or defunS. ("ode copying can alwayvs he used
to breik the subexpression in question mto two parts each of which computes one of the
outputrs,

General Information

Betore discussing the individual oss funeticns tn detail. o few general comments are
i order. Firstoall of the 0ss funetions and forms are defined in the package 08s. To make
these names eastly aceessible nee the package 0SS (1o evaluate (use-package "055") |
If this 15 not done. the names will have to be prefixed with “oss:” when they are used.

..‘.b"--’-._ .

.»

A

")

‘ * % Sindhiiabaibid e PRt Ratal Sal ol h Gl ek bos eon g N W T Y P W W I oWy
1
¥
(RN ' . |
: General Information 13
W
" :
o Naming conventions. The names of the various 0ss functions and foris follow a
L strict naming convention. The first letter of an 08S function name indicates the tvpe of
R RGN g o e | _ " - o .
SOCGENEN function as shown below. The letter codes are written in upper case in this document
A L ~ . . .
Vo, (case does not matter to Common Lisp) and each letter is intended to be pronounced as
A
e, a separate syllable.
.‘: :
e E Fnumerator.
N » .
poor T Transducer.
e R Reducer.
v)
::1". The last letter of each 085 special form is »S™. lu general. this indicates that the forin
P 1s primitive in the sense that it could not be defined by the user. Some 0ss functions
N ~F
™ end in the letter . This 1s used to indicate that the function is a higher-order function
v
W, :1 which takes functions as arguments.
The naming convention has two advantages: one trivial but vital and the other more
N fundamentally useful. First, many of the 0SS functions are very similar to standard
A Comimon Lisp sequence functions. As a result, it makes sense to give them similar names.
NN q 5
. . . . - - v .
,,.:_.:: However. it is not possible to give then: exactly the same names without redefining the
"4"'9 standard functions. The naming convention allows the names to be closely related in a
o predictable way without making the names unreasonably long.
o Second. the naming convention highlights several properties of 0ss functions which
,~ “ . 0 . . .
N make it easier to read and understand 0SS expressions. In particular. the prefixes high-
e . .
W light the places where series are created and consumed.
> *) . .
AR The names of arguments and results of 0ss functions are also chosen following naming
' . ‘l'
i o conventions. First, all of the names are chosen in an attempt to indicate type restrictions
.- T
¥ ;x (e.g.. number indicates that an argument must be a number: item indicates that there is
\
X no type restriction). Plural names are used iff the value in question is an 0SS series (e.g..
s . - . .
Y numbers indicates an 0SS series of numbers: items indicates an 0SS series of unrestricted
LS - . . . WA T e, .
. values). The name of a series input or output begins with “0™ iff it is off-line.

0SS series. Two general points about 0SS series are worthy of note. First. like

N

L
0"' Common Lisp sequences, 0SS series use zero-based indexing (i.e., the first element is the
X :: 0th element). Second. nnlike Common Lisp sequences. 0SS series can be unbounded in
g a length.

=

Tutorial mode. A prominent feature of the various descriptions is that they contain

:.-;‘ many examples. These examples contain large numbers of 0SS series as inputs and
:'J:’; outputs. {n the interest of hrevity. the notation [...] is used to indicate a literal Oss
TS series. [f the last entry in a literal 0ss series is an ellipsis, this indicates that the 0ss
N . .
‘\-‘"7 series is unhounded in length.
Q.- [1 2 3]
Wy [a b (c d)]
o)" . .
ndeg [T nil T nil ...]
D \;:
h)
oy I'he notation [...] is not supported by the 0Ss macro package. It would be straight.
T . .
AT forward to do so by using set-macro-character. Perhaps even better, one could use
';‘! X set-dispatch-macro-character to support a notation #[...] analogous to #(...). How-
% . . . :
el ever. although literal series are very useful in the examples below, experience suggests

o~ iTado SOIEN P oRay
a7 '. ' , 44:.‘_ ‘.u.r,x X \)DQ".A

" Q..
nd e e % "y .i.l.h}.""
%

.

14 Refereuce Manual

e that literal series are seldom useful when writing actual programs. Inasninch as this is
'::' the case. it was decided that it was unwise to use up one of the small set of characters)
}::, which are available for user-defined reader macros or user-defined # dispatch characters. ~::;~
e Many of the examples show 0SS expressions returning 0SS series as their values. AR
[However. one should not take this literally. If these examples are typed to Common Lisp
_:4 as 1solated expressions. they will not return any values. This is so. because the 0SS macro
:::: package does not allow complete 0SS expressions to return 0SS series. Tlie examples are
‘ ';:: intended to show what would be returned if the example expressions were nested in larger
eXpressions.
)
e e oss-tutorial-mode &optional (T-or nil T) = state-of-tutorial-mode
E The above not withstanding. the 0SS macro package provides a special tutorial mode
S in which the notation [...] is supported and 0S5 expressions can return (potentially
o unbounded) 058 values. However, these values «till cannot be stored in ordinary variables.
. This mode is entered by calling the function oss-tutorial-mode with an argument of T.
»:ﬁ Calling the {unction with an argument of nil turns tutorial mode off
'-:: Using tutorial mode. it is possible to directly duplicate the examples shown below.
*".': However. tutorial mode is very inethcient., What is worse. tutorial mode introduces non-

- correctness-preserving changes in 0SS expressions. (For example, in order to correctly
1 duplicate the examples that illustrate error messages about non-terminating expressions
i v and the fact that 0SS series are not actually returned by complete 0$s expressions.
:ﬁ tutorial mode must be turned off.) All in all, it 1s important that tutorial mode not be
:i used as anything other than an educational aid.]
A 0SS functions are actually macros. Every 0ss function is actually a macro. As %
},‘ a result. 0SS functions cannot be funcall'ed. or apply'ed. When the user defines new
h{ 0SS functions, they must be defined before the first time they are used. Also, when an
’i\’-\; 0ss function takes keyword arguments. the keywords must be literals. They cannot be
e expressions which evaluate to keywords at run time.
2) Finally, the macro expansion processing associated with 0SS expressions is relatively
w time consuming. In order to avoid this overhead during the running of a user program.
:::' it 15 important that programs containing 0SS expressions be compiled rather than run
s, interpretively.
K A minor advantage of the fact that everything in the 0SS macro package is a macro

i> that once a program which uses the macro package is compiled. the compiled program

£, can subsequently be run without having to load the 05s macro package.

'5; A more important advantage of the fact that everything in the 0ss macro package is
e a macro is that quoted macro names can be used as functional arguiients to higher-order
X 0ss functions. (In contrast. quoted macro names cannot be used as functional arguments
i to higher-order Common Lisp functions such as reduce.) Although this may appear to
‘f:, be a minor benefit, it is actually quite nseful.
<

- Enumerators

2

- Eaumerators create 08S outputs Lased on non-0ss inputs. There are two hasic kinds
:"n. of enumerators: ones that create an 05 series based on some formula (e.g., enumerating
A
B0
i3
q:,:

|]
X
e

"%

W

et iy VORI L I U W, W Y T T S SN e M T, N VO T SO W T I
o, (POUCC AN .r.f.ﬁvr.(\f‘.-(,‘ O

' W Y WY T %
- e A
BSOS 5 PO ST LN I VT A '.N',h !'O_n \ » \ \ "y '

B
Y Enumerators 15
o
" a ~equence of integers) and ones that create an 0SS series containing the elements of an
N RO avgredate data structure je.g.. enunierating the elements of a list). All the predefined
). :-~:-.\ ennmerators are on-hine. In general. they are o1l early terminators However, a~ noted
".,‘ L i . . .))
s helow. in sotne situations. <ome enmnerators produce unbounded outputs and are not
= early terminators,
-"..
~ ® Eoss &rest oxpr-list = items
’
:: [he expr-list consists of zero or more expressions. The function Eoss creates an 0ss
> series containing the values of these expressions. Every expression in expr-list is evaluated
!| hetore the fiest output element is returned.
‘ .
1% (Eoss 1 ’a 'b) = [1 a b]
,,.b' (Eoss) = (]
v
iy To get the effect of delaving the evaluation of individual elements until theyv are
R o o J .
. needed, it is necessary to define a special purpose enumerator which computes the indi-
o vidual ttems as needed. However. due to the control overhead required. this ix :eldow
NS)
18 worthwhile.
2
5 It is possible for the expr-list to contain an instance of :R. (This must be a literal
o instance of :R, not an expression which evaluates to :R.) If this 1s the case. then Eoss
¢ produces an unbounded 08§ series analogous to a repeating decimal number. The output
N consists of the values of the expressions preceding the :R followed by an unbounded
! :‘: number of repetitions of the values following the R, if there are any such values. (In this
\'_’.‘J situation. Eoss 1s not an early terminator.)
a '.
Ju AV (Eoss 1 ’a :R'b '¢c) => [tabecbcbc...]
- e (Eoss T :R nil) => (T nil nil nil ...]
b~ (Eoss 1 :R) = [1]
.J}, (Eoss :R 1) = [1 11 ...]
,.
:-::: e Eup &optional (start 0) &key (:by 1) :to :below :length => numbers
2,
,') This function is analogous to the Loop macro 2 numeric iteration clause. It creates
B an 0SS series of numbers starting with start and counting up by :by. The argument
:-: start is optional and defaults to integer 0. The keyword argument :by must always be a
A positive number and defaults to integer 1.
e There are four kinds of end tests. If :to is specified. stepping stops at this number.
."' The number :to will be included in the 0SS series iff (- :to start) is a multiple of :by.
\ [f :below is specified, things operate exactly as if :to were specified except that the
')
o number :below is never included in the 0SS series. If :length is specified, the 0SS series
! . .
'\: Las length :length. It must be the case that :length is a non-negative integer. If :length
A~
- i~ positive. the last element of the 0ss series will be (+ start (¢ :by (1- :length))). If
° ione of the termination arguments are specified. the output has unbounded length. (In
= this ~ituation. Eup is not an earlv terminator.) If more than one termination argument
| :‘ i~ specified. it s an error.
" (Eup :to ¢4) => [0 1 2 3 4]
ué (Eup :to 4 :by 3) = ([0 3]
" (Eup 1 :below 4) => [1 2 3]
v (Eup 4 :length 3) => [4 5 6]
v "t -
o bt (Eup) => [0 1234 ...]
W
l:::n
3
l‘::’
[
3 %}
¥
'

0"‘. DA W o N P P U VY PR TR A A A B2 ® jo ™ AR PR A
fRna e e W O
i hnblglthattesielcirishilebl, 8 YIRS

o

A W £ i W e) ,:'-“'I " ol
'~€:". ‘* ~~ A'ln .l.‘“’l K .l .t.! > J (sl 99,09, !".

-
AR

RNt
f?f 0,

6"‘ .
Edd

YW,
LA N

16 Reference Manual

As shown in the following example. Eup does not assume that the numbers being
enumerated are integers.

(Eup 1.5 :by .1 :length 3) = [1.5 1.6 1.7]

e Edown Roptional (start 0) &key (:by 1) :to :above :length => numbers

The function Edown is analogous to Eup. except that it counts down instead of up and
uses the keyword :above instead of :below.

(Edown :to -4) = [0 -1 -2 -3 -4]

(Edown :to -4 :by 3) = [0 -3]

(Edown 1 :above -4) = (1 0 -1 -2 -3]

(Edown 4 :length 3) = [4 3 2]

(Edown) = [0 -1 -2 -3 -4 ...]

(Edown -1.5 :by .1 :length 3) = [-1.5 -1.6 -1.7]

e Esublists [ist koptional (end-test #’endp) => sublists
This function creates an 0SS series containing the successive sublists of list. The end-
test must be a function from objects to boolean values (i.e., to null/nen-null). It is used
to determine when to stop the enumeration. Successive cdrs are returned up to, but not
:ncluding, the first one for which end-test returns non-null.

(Esublists ’(a b c)) = [(a b e¢) (bc) (c)]
(Esublists '(a b . c) #’atom) = [(a b . c) (b . c)]

The default end-test (#’endp) will cause Esublists to blow up if list contains a non-
list edr. More robust enumeration can he obtained by using the end-test #’atom as in the
second example above. The assumption that list will end with nil is used as the default
case, because the assumption sometimes allows programming errors to be detected closer
to their sources.

e Elist list toptional (end-test #’endp) = elements

This function creates an OSS series containing the successive elements of list. It is
closely analogous to Esublists as shown below. In particular. end-test has the same
meaning and the same caveats apply.

(Elist '(a b c)) = [a b c]

(Elist ’()) = (]

(Elist ’(a b . ¢) #'atom) => [a b]
(Elist 1list) = (car (Esublists 1list))

The value returned by Elist can be used as a destination for altersS.

(let ((list '(a b ¢)))
(alterS (Elist (cdr list)) (Eup))
list) = (a 0 1)

VS T NN N, R
v"' -" o LA f
.!‘.‘)Q "Am\)&.& " \J\J\A\J& YN,

Cwlt et
Ll

L »
' * .. '- ' w" * h~
AT A A TA U

Fnumerators 17

e Ealist alist &optional (rest #’eql) == kevs values
This function returns two 0SS series containing keyvs and their associated vilues, The
first element of kevsis the kevon the first entry inoalict the first elemen of vieluesis the
value in the first entry. and so on. The alist must be a proper list ending 1 nil and each
eatry in alist must be a cons cell or nil. Like assoc. Ealist skips entries which are nil
and entries which have the same kev as an earlier entry. The test arsument 15 used 1o
determine when two keys are the sime.

(Ealist *({a . 1)) (a . 3) (b . 2))) = [a b] [1 2]
(Ealist nil) = {1 (]

Both of the series returned by Ealist can be used as destinations for alterS. ‘In
analogy with multiple-value-bind. letS can be used to bind both values returned by
Ealist.)

(let ((alist ((a . 1) (b . 2))))
(letS (((key val) (Ealist alist)))
(alterS key (list key))
(alterS val (1+ val)))
alist) = '(((a) . 2) ((b) . 3))

The 0ss function Ealist is forced to perform a significant amount of computation in
order to check that no duplicate kevs or null entries are being enumerated. In a situation
where it is known that no duplicate keys or null entries exist. it 1s much more eflicient to
use Elist as shown helow.

(letS* ((e (Elist ’((a . 1) (b . 2))))
(keys (car o))
(values (cdr e)))
(Rlist (list keys values))) => ((a 1) (b 2))

e Eplist plist = indicators values
This function returns two 0SS series containing indicators and their associated values.
The first element of indicatorsis the first indicator in the plist, the first element of values
is the associated value. and so on. The plist argument must be a proper list of even
length ending in nil. In analogy with the way get works, if an indicator appears more
than once in plist, it {and its value) will only be enumerated the first time it appears.
(Both of the 0SS series returned by Eplist can he used as destinations for alterS.)

(Eplist '(a 1 a3 b 2)) = [ab] [1 2]
(Eplist nil) = [] []

The 0ss function Eplist has to perform a significant amount of computation in order
to check that no duplicate indicators are heing enumerated. In a situation where 1t is
known that no duplicate indicators exist. it 1v much more eflicient to use EnumerateF as

~hown below.

(letS* ((e (EnumerateF '(a 1 b 2) #’'cddr #’null))
(indicators (car o))
(values (cadr e)))
(Rlist (list indicators values))) => ((a b) (1 2))

NN

TN AT ot s
'&'{\.A N _\.._n.ﬁ.{&* _-z.‘f .("' "‘h..'* SOSSON, O \'(-_'(Y

YR
LN}

s
)
__J'

Y
o

o

18

Reference Manual

o Etree tree &optional (leaf-test #’atom) = nodes

This function creates an 0SS series containing all of the nodes in tree. [he function
assumes that tree ts a tree built of lists, where each node is a list and the elements in ,:::,:'.]
the list are the children of the node. The function Etree does not assume that the node
lists end in nil: however, it ignores any non-list cdrs. (T'his behavior increases the utility
of Etree when it is used to scan Lisp code.) The nodes in the tree are enumerated in
preorder (i.e.. first the root is output. then the nodes in the tree which is the first child
of the root is enumerated in full. then the nodes in the tree which is the second child of
the root is enumerated in full, etc.).

The leaf-test 1s used to decide which elements of the tree are leaves as opposed to
internal nodes. Failure of the test should guarantee that the element is a list. By default.
[eaf-test 1s #’atom. This choice of test categorizes nil as a leaf rather than as a node
with no children.

The function Etree assumes that tree is a tree as opposed to a graph. If tree is a
graph instead of a tree (i.e. some node has inore than one parent). then this node (and
its descendants) will be enumerated more than once. If the tree is a cvclic graph, then
the output series will be unbounded in length.

(Etree ’d) = [d]
(Etree ’((c) d)) = [((c) d) (c) ¢ d]
(Etree ’((c) d)

#’'(lambda (e)
(or (atom e) (atom (car o))))) = [((c) d) (c) d]

e Efringe (ree &optional (leaf-test #’atom) = leaves

This enumerator is the same as Etree except that it only enumerates the leaves of @
the tree. skipping all internal nodes. The logical relationship between Efringe and Etree
is> shown in the first example below. However. Efringe i~ implemented more efficiently
than this example would indicate.

(Efringe tree) = (TselectF #’atom (Etree tree))
(Efringe ’d) => [d]
(Efringe '((c) d)) = [c d]
(Efringe *((c) d)
#’(lambda (e)
(or (atom o) (atom (car e))))) = [(c) d]

The value returned by Efringe can be used as a destination for alterS. However. if
the entire tree is a leaf and gets altered, this will have no side-eflect on the tree as a whole.
[n addition. altering a leaf will have no effect on the leaves enumerated. In particular. if
a leaf 15 altered into a subtree, the leaves of this subtree will not get enumerated.

(let ((tree '((3) 4)))
(letS ((leaf (Efringe tree)))

(it (evenp leaf) (alterS leaf (- leaf))))
tree) —> ((3) -4)

¢ Evector vector &optional (indices (Eup)) = elements

This function creates an 0SS series of the elements of a one-dimensional arrav. [If
tudices assumes its default value. Evector enumerates all of the elements of vector in
order.

Fnumerators 1Y

(Evector "BAR") == [#\B #\4 #\R]
(Evector “"} = []

Looked at in greater detail, Evector enumerates the elenents of vector which are
indicated by the elements of the 0Ss series indices. The indices must be non-negative
integers. however. they do not have to be in order. Enumeration stops when indices runs
out. or an index greater than or equal to the length of vector is encountered. One can
use Eup to create an index series which picks out a section of vector. {Since Evector takes
I an OSS series it 1s technically a transducer. however, it is on-line and is an enumerator

i spirit,)

(Evector #(b a r) (Eup 1 :to 2)) = [a r]
(Evector "BAR" [0 2 1 1 4 1]) => [#\B #\R #\a #\a]

The value returned by Evector can he used as a destination for altersS.

(let ((v "FOOBAR"))
(alterS (Evector v (Eup 2 :to 4)) #\-) v) = "F0---R"

Esequence sequence goptional (indices (Eup)) = elements

The function Esequence is the same as Evector except that it will work on any Com-
mon Lisp sequence. However. sinee it has to determine the type of sequence at run-tine.
it is much less ethicient than either Elist or Evector. (The value returned by Esequence

can be used as a destination for alterS.)

(Esequence ’(b a r)) = [b a r]
(Esequence #(b a r)) = [b a r]

Ehash table = keyvs values

This function returns two 0Ss series containing keys and their associated values. The
first element of keys is the key of the first entry. the first element of values is the value
in the first entry. and so on. (There are no guarantees as to the order in which entries
will be enumerated.

(Ehash (let ((h (make-hash-table)))
(setf (gethash ’'color h) ’brown)
(setf (gethash ’'name h) ’'fred)
h)) = [color name] [brown fred] ;in some order

In the pure Common Lisp version of the 08S macro package. Ehash is rather inethicient,
hecause Common Lisp does not provide incremental support for scanning the elements of
a hash table. However.in the Symbolics Common Lisp version of the 08S macro package.

Ehash i~ quite efficient.

Esymbols &optional (package *package*) = svmbols
This function creates an 0Ss series of the symbols in package (which defaults to the
current packagel. (There are no guarantees as to the order in which symbols will be

enumerated.)

R
PR

N
P

.as
Y,

20 Reference Manual

(Esymbols) => [foo bar baz ... zot] ;in scme order

In the pure Common Lisp version of the 085 macro package. Esymbols i ratlier
inefficient. because Common Lisp does not provide incremental support for scanning the
symbols in a package. However. in the Symbolics Common Lisp version of the 088 niacro
package. Esymbols is quite efficient.

e Efile narie = items
This function creates an 0SS series of the items written 1n the tile ramed wame. 1he
function combines the functionality of with-open-file with the action of reading frong
the file (using read). It is guaranteed that the file will be closed correcthy even it an
error occurs. As an example of using Efile. assumie that the forms (a). (1 200 and T
have been written into the file "test.lisp".

(Efile "test.lisp”) = [(a) (1 2) T]

e EnumerateF init step &optional test = items

The higher-order function EnumerateF is used to creat > new kinds of enumerators. The
init must be a value of some type ['l. The step argument must be a non-0ss function
from T1 to TIl. The test argument (if present) mnust he a non-0ss function from T1 to
boolean.

Suppose that the series returned by EnumerateF ix &. The first output element 5S¢ ha~
the value Sy = init. For subsequent elements. S, = step(S,).

If the test is present, the output consists of elements up to. but not including. the
first element for which test(S,) is true. In addition. it is guaranteed that step will not be
applied to the element for which test is true. If there is no test, then the output series
will be of unhounded length. (In this situation, EnumerataF is not an early terminator.)

(EnumerateF '(a b ¢ d) #'cddr #'null) => {(a b ¢ d) (c d)]
(EnumerateF ’(a b ¢ d) #’cddr) = {(a b ¢ d) (¢ d) nil nil ...]
(EnumerateF list #’cdr #’null) = (Esublists list)

[f there is no test. then each time an element is output. the function step is applied to
it. Therefore, it is important that other factors in an expression cause termination before
EnumerateF computes an element which step cannot be applied to. In this regard. it 1s
interesting that the following equivilence is almost. but not quite true. The difference is
that including the test argument in the call on EnumerateF guarantees that step will not
be applied to the element which fails test. while the expression using TuntilF guarantees
that it will.

(TuntilF test (EnumerateF init step)) Z (EnumerateF init step test)

e Enumerate-inclusiveF init step test =3 items

I'he higher.order function Enumerate-inclusiveF i~ the .ame a» Enumeratef rxcept
that the first element for which test i~ trueis included in the ontput. As with EnumerateF.
1 1s guaranteed that step will not be apphed to the cleinent for whieh resr 1o triue.

(Enumerate inclusiveF '(a b) #'cddr #'null’ -3 [(a b} ()]

N T T s S N L L AN L e S RN e B e T ™ e e
RS Lo P S L S Car o Lar s, " :.?-.}-."-."5"'-’ ’ *\J,"‘*‘

4

ln,

P

L)
Wb

.
RRRRARE -

S
2t

-

~
Y
~

P s
Y

)
[y

. >y
i'.t't'
2's’s

%]

-
‘-‘.’L\ e

> @

x
Ly

L O A R e

B aaNs

On-Line Transducers 2]

On-Line Transducers

Transducers compute 08§ series from 08S series and form the heart of mosr oss

. exprossions - This section and the next one present the predefined transducers that re
on-line (e, all of their inputs and outputs are on-liner. These transducers are ~inuled ;
out because they can be ned more tlexibly than the rransducers which are off-hne. In ‘
particular. it Is impossible to violate the off-line port isolation restriction without using

an off-ine transducer.

e Tprevious Iterns &optional (defaulr nil) (amount 1) = <hifted-items
This function creates a series which is shifted right amount elements. The input
amount must be a positive integer. The shifting is done by inserting amount copies of
default before ftems and discarding amount elements from the end of items. The output

1z always the same length as the input.

(Tprevious [a b ¢]) = [nil a b]
(Tprevious [a b ¢] ’z) = [z a b]
(Tprevious [a b c] 'z 2) = [z z a]
(Tprevious [1) = []

The word previous is used as the root for the name of this function. because the
function 1~ typically used to access previous valnes of a series. An example of Tprevious
used in this way is shown in conpinetion with Tuntil below.

To isert some amount of stuff in front of a <eries without losing any of the elements

A off the end. use Tconcatenate as ~hown bhelow.

(Tconcatenate [z z] [abcl) = [z 2 a b c]

¢ Tlatch ifems &key :after :before :pre :post —» masked-items

This function acts like a latch electronic circuit component. Fach input element
causes the creation of a corresponding output element. After a specified number of non-
null input elements have been encountered. the latch 1s triggered and the output mode
i~ permanently changed.

The :after and :before arynments specify the latch point. The latch point is just
after the :after-th non-null element in items or just before the :before-th non-null
element. If neither :after nor :vefore i~ specified. an :after of | is assumed. If both
are specified. 1t is an error.

[f a :pre is specitied. every element prior to the latch point is replaced by this value.
It & :post 1s specified. this value v used 1o replace every element after the latch point.
ft neither s specified. a :post of nil ix assnmed.

(Tlatch [nil ¢ nil d e}) = [nil ¢ nil nil nil]

(Tlatch [nil ¢ nil d o] :before 2 :post T) = [nil ¢ nil T T]
(Tlatch [nil ¢ nil d e] :before 2 :pre ’'z) => [z z z d e]

A~ domore realistic example of using Tlatch. suppose that a programmer wants to

. write a program get-codes which takex in a list and returns a list of all of the numbers
o which appear in the list after the second number in the list.

'Y 4
f?/.ﬁ

£E5;

4
;?ﬁ

4
[d

" .."

MR
.t S e

NN

Fd

l" a
. 3 . " L]
R ST

i

-

o

N

" ,-)
1 . .‘ ". <y "t."i.}'./' .“

P
.

’

s,

Ll
’ ‘)‘

B

AR
o

A}
o
A«

n“' -"ﬁ‘. /\/ .

. [.5..““.5

e

Y B

-‘-u.-'f-'wa.‘r.-."‘fr‘w\.\"' "'.;-" o

.ﬂﬂ:‘ﬂ} s ._A.I...\A‘Mw

Reference Manual

(defun get-codes (list)
(letS ((elements (Elist list)))
(Rlist (Tselect (Tlatch (numberp elements) :after 2 :pre nil)
elements))))

(get-codes '(a b3 4cd5e6 f)) = (56)

o Tuntil hools ftems => Initial-items

This function truncates an 0SS series of elements bised on an 058 series of hoolean
vilnes. The output consists of all of the elements of items up to. but not including. the
first element which corresponds to a non-null element of bools. That is to suy. if the
tirst non-null value in bools is the mth. the output will consist of all of the elements of
itenis up to, but not including. the mth. (The eifect of including the mth element in
the vutput can be obtained by using Tprevious as shown in the last example helow.) In
addition. the output terminates as soon as either input runs out of elements even if a
non nuil element of bools has not been encountered.

(Tuntil [ril nil T nil T] (1 2 -3 4 -5]) == [1 2]
(Tuntil [pil nil T nil T] [1]) = [1]
(Tuntil (Eoss :R nil) (Eup)) => [0 1 2 ...]
(Tuntil [nil nil T nil T] (Eup)) = [0 1]
(lets ((x [1 2 -3 4 -5]))

(Tuntil (minusp x) x)) = (1 2]
(letS ((x [1 2 -3 4 -5]))

(Tuntil (Tprevious (minusp x)) x)) = [1 2 -3]

[f the items input of Tuntil 15 such that it can be used as a destination for alterS.
then the ourput of Tuntil can be used as a destination for alterS.

(letS» ((1list ’(a b 10 <))
(x (Elist 1list))
(y (Tuntil (numberp x) x)))
(alterS y (list y))
list) = ((a) (b) 10 ¢)

e TuntilF pred items = initial-items

This funetion s the same as Tuntil except that it takes a functional argument instead
of an oss series of boolean values. The non-08s function pred is mapped over items in
order to obtain a series of boolean values. |Like Tuntil. TuntilF is can be used as a
destination of alterS if items can.) The basic relationzhip between TuntilF and Tuntil
i~ ~hown in the last example below.

(TuntilF #’minusp (1 2 -3 4 -5]) = (1 2]
(TuntilF #'minusp [1]) = [1]
(TuntilF #’minusp (Eup)) => [0 1 2 ...]
(TuntilF pred items)
(letS ((var items)) (Tuntil (TmapF pred var) var))

[he funetions Tuntil and TuntilF are both early terminators. This can ~ometimes
o i o conthiers with the restriction that within each on-line subexpression, there nimnst

becdara flow path from each termimation point to each output. o get the same effect

withont g an early ternnator use Tselact of Tlatch as ~hown helow,

v
'
'
4
v
.
[}
v
.
t
"
'
s

\a

(AN

\}\)

Y Oun-Line Transducers 23

8 2

~ Y . .

~7n (Tuntil bools items)

NN = (Tselect (not (Tlatch bools :post T)) items)

AN (TuntilF #’pred items’

AR = (Tselect {(not (Tlatch (pred items) :pcst T)) items)

A ® TmapF function &rest items-list = items

4 -\.

Y [he higher-order function TmapF is used to create simple kinds of on-line transducers.
s E . .

'.:-., [ts arguments are a single function and zero or more 08$ series. The function argnment

- must be a non-0$s function which is compatible with the nuniber of input series and the

N) types ot their elements.

.-;j A single 085 series is returned. Each element of this series is the result of applving

:;'J funcrion to the corresponding elements of the input series. (That is to sayv. il TmapF re
N ceives a single input series R it will return a single output S such that S; - function(R

hn T'he length of the output i~ the same as the length of the shortest input. If there are

no bounded series inputs (e.g.. i there are no series inputs), then TmapF will generate an

v, .

v:, unhounded 0SS series.
'

K, ™

el (TmapF #’+ [1 2 3] [4 5]1) = [5 7]

s (TmapF #’sqrt [1) = (]

) (TmapF #’gensyn) => [#:G003 #:G004 #:G005 ...]

N e TscanF {init} function items = results

K ‘J" IS Bl

NN I'he higher-order function TscanF is used to create complex kinds of on-line transduc-
- ~ . . —y . . .

N ers. { The name is borrowed from APL.) The init argument (if present) must be a non-0ss
, . . .

' y S, value of some type TI. The function argument must b2 a binary non-0ss function from

{ ‘o I'l and some type T2 to TI. The items argument must be an 0SS series whose elements
s are of type 12, If the init argument is not present than TI must equal T2.

- The function argument is used to compute a series of accumulator values of tvpe T1

O which 1s returned as the output of TscanF. The output is the same length as the series

“. input and consists of the successive accnmulator values.

7') Suppose that the series input to TscanF is R and the output is §. The basic rela-

::.:E. tionship between the output and the input is that S; = function(S, . K, 1. If the init

:5: arguiment is specified, it is used as an initial value of the accumulator and the first output

! element Sy has the valne 5y function{init. Rg). Typically. but not necessarily. init is

81 chosen so that it 1s a left identity of function. If that is the case. then Sy -~ Rp. It is

,. important to remember that the elements of items are used as the second argument of

":‘é function. The order of arguments is chosen to highlight this fact.

)

: (TscanF 0 #'+ [1 2 3]) = [1 3 6]

X (TscanF 10 #'+ [1 2 3]) -> {11 13 16]

0 (TscanF nil #’cons [a b]) => [(nil . a) ((nil . a) . b)]

,; (TscanF nil #’'(lambda (state x) (cons x state)) [a b]) = [(a) (b a)]
e

-:::- [f the init argumient is not specified. then the first element of the output is computed

A differently trom the sneceeding elements and Sy Ry, (If function 1s cheap to evaluate.
\ . . PRPLEEY

' ;:-. TscanF run~ more efficientlv if 1t s provided with an init argnment.} One situation where
=5 one tvpicadly has to leave out the init argument is when function does not have a left

;::'. ﬁ,,z;.\ identity element as in the last example below.

.0..]

3 ;

a2

'

@

0

o

'c‘:‘o

!

.| e - I S Sw el

St € P AT S ":{%‘;‘.-".n".f} W R D I AT AN RGN
R s A A m%&;. e A A A S A R N S

L hd e B 4wl hy

- - o

[B LR
ity

4 Reterence Manual

(TscanF #°+ [1 2 3]) = [1 3 6]
(TscanF #'max [1 3 2]) = [1 3 3]

An interesting example of a scanning process 1~ the operation of proration. In this
process. a total is divided up and allocated hetween .« number of catesories. The alloca
tion 1s done based on percentages which are assoctated with the categortes. tFor example,
<ome nnmber of packages might be divided up hetweer o nunidier of peopless Oue mighs
think that this could be done straightforwardly by vultinlvinge rthe total by each of the
percentages. {nfortunately. this mapping approact does not work.

I'he proration problem is more complex thau 1t Ers appears. Pypically, there 1 i
limit to the divisibility of the total re.g.. when a croup of pachages i~ divided up. the
individual packages cannct be subdivided). 1his means that ronnding mast he perfornied
each time the total is multiplied by a percentage. In addition, 1t i» wsually important
that the total be allocated exactly i.e.. that the sum of the allocarions be exactly equal
to the total. rather than being one more or one leso. Scanning i+ tequired in order to
niake sure that things come out exactly right.

As a concrete example of proration. suppose that 99 packages need to be allocated
among three people based on the percentages 35700 150 and 2077, Assuminy that the
percentages and the number of packages are all repre ented ac integers, simple mapping
would lead to the incorrect result below in which the allocations add up to 100 instead
of 99.

(prognS (round (/ (* 99 [35 45 20]) 100))) => (35 45 20]

The transducer Tprorate below olves the proration problem by using TscanF. It takes
i a total and an 0SS series of percentages and returns an 0ss series of allocations. The
basic action of the program is to multiply each percentage by the total. However. it
also keeps track of how much of the total has been allocated. When the last percentage
i encountered. the allocation is set to be everything wiich remains to be allocated.
(This can cause a significant distortion in the final allocation. but it guarantees that the
allocations will always add up to the total no matter what has happened with ronnding
alony the way.) In order to determine when the last percentage is being encountered. the
progran keeps track of how much percentage has been acconnted for and as<ames that
the percentages always add up to 100.

(defun prorate-step (state percent)
(let* {(total (second state))
(unallocated (third state))
(unused-percent (fourth state))
(allocation (if (= percent unused-percent) unallocated
(round (/ (* total percent) 100)))))
(setf (first state) allocation)
(setf (third state) (- unallocated allocation))
(setf (fourth state) (- unused-percernt parcent))
state))

(defunS Tprorate (total percents)
(declare (type oss percents))
{car (TscanF (1list O total total 100) #'prora“e-stup percents’))

(Tprorate 99 [35 45 20]) - {35 45 19] RN
."‘b

O P N N N R O N I I R e Ry S SRy R s e NS AL NN
'.' > \"" .' .0.!. O " .~ .’ ."-"’ A'” WM N SRR RSN "‘. 'r\"\-;‘»l‘ S .-'

LI 0 T ™

<.

-'IIJ‘I\'I

.'

J'I-P/vl‘ 4

o

C'otruncation 25

An interesting aspect of the function Tprorate is that the state wanipulated by the
~canned function prorate-step has four parts: an allocation, the total. the unallocated
portion of the total, and the remaining percentage not vet allocated. This illustrates the
lact that TscanF can be used with complex state objects. (1 he same 15 true of EnumerateF
and ReduceF.) However. it also illustrates that accessing the various parts of a complex
state 1» awkward and inethicient.

Fortunatov. it is often possible to get around the need for a complex state object by
ustng a compound Oss expression. For the example of proration. this can be done as
~hown below. Sunple mapping is coanbined with two scans which keep track of cumulative
values. Ao implicitly mapped test is used to make sure that things come out right on
the last step. 1 The function Tprevious is used to access the previous value of the seres

unallocated.)

(defunS Tprorate-multi-state (total percents)
(declare (type oss percents))

(letS* ((allocation (round (/ (* percents total) 100)))
(unallocated (TscanF total #'- allocation))
(unused-percent (TscanF 100 #’- percents)))

(if (zerop unused-percent)
(Tprevious unallocated total)
allocation)))

Cotruncation

A key feature of every on-line transducer is that it terminates as soon as any input
runs out of elements. Put another way, the output is never longer than the shortest
input. (If the transducer is also an early terminator. then the output can be shorter than
the shortest input. otherwise it must be the same length as the shortest input.) This
effect is referred to as cotruncation. because it acts as if each input had been truncated
to the length of the shortest input. If several enumerators and on-line transducers are
combined together into an 0SS expression, cotruncation will typically cause all of the
series produced by the enumerators to be truncated to the same length. For example, in
the expression below. all of the series (including the unbounded series produced by Eup)

are truncated to a length of two.

(Rlist (= (+ (Eup) [4 51) [1 2 3])) = (4 12)

Tcotruncate ifems grest more-items => initial-items krest more-fnitial-itemrs

It is oecasionally important to specify cotruncation explicitly. This can be done with
the function Tcotruncate whose only action is to force all of the outputs to he of the
<ame dength, (If any of the inputs of Tcotruncate are such that they can he used as
de<tinations of alterS. then the corresponding outputs of Tcotruncate can he used as
destinations of alterS.)

(Tcotruncate [1 2 -3 4 -5] [10]) == [1] [10]
(Tcotruncate (Eup) [a b]) = [0 1] [a b]
(Tcotruncate [a b] (1) = [0 0O

‘- « e e
*.‘-‘-""\ RS I W Yie

PN NN I M NN .'{‘7'})J‘-"J‘c“n"\-l‘\'r‘-’J'J'_\‘-";‘n"*v"{'f}q,*x,\"_f

(%

=
AAAS

LAY
PPl P

ll

i

3
/

AL

]
"

[

~

~

[

5
P

vy

,W'AMS
P 2

=
Ed

e by

[A
-l.I.l
o R

o
*5"s

. 5, R
.I ‘l r ‘. ..
NN AN

26 Reference Manual

An muportant feature of Tcotruncate i~ that 1t hus a powerful interaction with the
requirement that within each ou-line subexpression. there must be a data flow path from

. . . o e . _ _ :ﬁ
each terx-lflr}atlon pomt‘to.each output. Consider the t.umnon weighted-squares buggy {_\]
helow. This program is intended to take a vector of values and a vector of weights :

and return a list of two vectors: the squares of the vilues and the squares multiplied
by the weights. The program is erroneous. because there 1s no data flow path from
(Evector weight-vector) to (Rvector squares).

(defun weighted-squares-buggy (value-vector weight-vector)
(letS* ((values (Evector value-vector)) ;Signals error 18
(veights (Evector weight-vector))
(squares (* values values))
(wveighted-squares (* squares weights)))
(list (Rvector squares) (Rvector weighted-squares))))

[t might be the case that the programmer knows that value-vector and weight-vector
always have the same length. (Or it might be the case that he wants both output values
to be no longer than the shortest input.) In either case. the function can be written
4> shown below. The key difference is that the use of Tcotruncate makes hoth out-
puts depend on both inputs. If the inputs are known to he the same length. the use of
Tcotruncate can be thought of ax a declaration.

(defun weighted-squares (value-vector weight-vector)
(letS* (((values weights)
(Tcotruncate (Evector value-vector)
(Evector weight-vector)))
(squares (* values values)) %
(weighted-squares (* squares weights)))
(list (Rvector squares) (Rvector weighted-squares))))

(veighted-squares #(1 2 3) #(3 2 1)) = (#(1 4 9) #(3 8 9))

Off-Line Transducers

This section and the next two describe transducers that are not on-line. Most of these
functions have some inputs or outputs which are on-line. The ports which are on-line
can he used freelv. However. the off-line ports have to he isolated when they are used.
{ For ease of reference, the off-line ports all begin with the letter code “0O™.)

¢ Tremove-duplicates Qitems &optional (comparator #’eql) => items

This function is analogous to remove-duplicates. It creates an 0ss series that has the
same elements as the off-line inpnt Oitems with all duphicates removed. The comparator
i< used to determine whether or not 1wo items are duplicates. If two items are the same.
then the item which i later in the series i~ discarded. A\ in remove-duplicates the
algorithin emploved is not partienlaaly etficient. hewe Qo0 00 the Oitems imput of
Tremove-duplicates is such that it can be used as i destination for alterS. then the
ontput of Tremove-duplicates ran he used as a destination tor alterS.

(Tremove -duplicates [i 2 1 (a) (a)]) -3 [i 7 (a) (a)]

(Tremove-duplicates [1 2 1 (a) (a)] #’equal) —> [1 2 {(a)] ’
- et At a P T T T P S S B R T T VR T S D e i S N P LI AL
. ; : ;I?,.(._\,:*x NSNS RITSIS ﬂJ\,.f\“;f. ‘a‘¢}4\¢1}:¢‘¢‘ NJ\¢\J\ \;x’:’\' .
N - » B A N 2 - Bl . A

O#-Line Transducers 27

e Tchunk amount Qitems => lists

This function creates an 0SS series ol lists of length amount of successive subseries of

:\i::‘ the oft-line inpnt Oitems. If the length of Oitems s not a multinle of amount. then the
o last (mod (Rlength Oitems) amount) elements of Oitems will not appear in any output
chunk.
(Tchunk 2 [a b c d e]l) = [(ab) (c d)]
(Tchunk 6 [a b c d]) = (]
e Twindow amount Oitems = lists
This function creates an 0SS series of lists of length amount of subseries of the off-
line input Outems starting at each element position. If the length of Oitemns is less than
amount. the output will not contain any windows. The last example below shows Twindow
being used to compute a moving average.
(Twindow 2 [a b c d]) = [(a b) (b c) (c d)]
(Twindow 4 {a b ¢ d]) = [(a b ¢ d)]
(Twindow 6 [a b c d]) = []
(prognS (/ (apply #’+ (Twindow 2 [2 4 6 8])) 2)) = [3 5 7]
e Tconcatenate Oitems! Oitems? &rest more-Oitems => items
This function creates an 0SS series by concatenating together two or more off-line
input 0SS series. The length of the output is the sum of the lengths of the inputs. (The
elements of the individual input series are not computed until they need to be.)
De (Tconcatenate [b ¢l [] [d]l) = [b ¢ d]
(Tconcatenate [J (1) = [
e TconcatenateF Enumerator Oitems = items
The Enumerator must be a quoted 0ss function that is an enumerator. The function
TconcatenateF applies Enumerator to each element of the off-line input Oitems and
returns the series obtained by concatenating all of the results together. If Enumerator
returns multiple values. then TconcatenateF will as well.
(TconcatenateF #’Elist [(a b) () (¢ 4)]) = [a b ¢ d]
(TconcatenateF #’Elist [() 1) = [
(TconcatenateF #’Eplist [(a 1) (b 2 ¢ 3)]) = [a b c] [1 2 3]
o Tsubseries Oitems start &goptional below =+ items
This function creates an 0SS series containing a subseries of the elements of the off-
| ® line input Oitems from start up to, but not including. below. If below is greater than the
o5 length of Oiterns, output nevertheless stops as soon as the input runs out of elements. If
- below is not specified. the output continues all the way to the end of Oitems. Both of
- the arguments start and below must be non-negative integers.
"l
o (Tsubseries [a b c d] 1) = [b ¢ d] |
] ~ (Tsubseries [a b c d] 1 3) = [b c] 1
.::,:3 (Rlist (Tsubseries (Elist list) 1 2)) = (subseq list 1 2) |
‘ i

g 3

B

‘w

A S Ny * Al o RNt T, 1
¥ » ,,~\,4 _ T T SR "
Ve 'x‘f. A.s-_-\.x ‘.":'.":'. NS \.'-Ca. N PR AN

o]
; 28 Reference Manual
\q It the Oitems input of Tsubseries is such that 1t can be used as a destination for
:,. alterS. then the output of Tsubseries can he used as a destination for alterS.
v . 4
o (let ((1list ’(a b c d e))) e
A (alterS (Tsubseries (Elist list) 1 3) (Eup))
N list) => (a 0 1 d e)
Len
"
e I'he function Tsubseries terminates as soon as it has written the last output element.
-y .. . e - . . .
) As a result, 1t 1s an early terminator. Thix can sometimes lead to conflicts with the
B restriction that within each on-line subexpression. there must be a data low path from
o) cach termination point to each output. To select & subseries without using an early
:Q terminator, use Tselect. Tmask. and Eup as shown below.
l‘.: - .
" (Tsubseries Oitems from below)
e = (Tselect (Tmask (Eup from :below below)) Oitems)
- e Tpositions Obools = indices
N e
wh This function takes in an 0SS series and returns an 0ss series of the indexes of the
"‘:,,-: non-null elements in the off-line input series.
W
~ . .
o (Tpositions [T nil T 44]) = [0 2 3]
(Tpositions [nil nil nill) => []
...',
g - .
e Tmask Omonotonic-indices => bools
N e
N [his tunction is a quasi-inverse of Tpositions. The input Omonotonic-indices must
e be a strictly increasing 08S series of non-negative integers. The output. whicl is al- v
{ wayvs unbounded. contains T in the positions specified by Omonotonic-indices and nil Y
o evervwhere else.
.-.
oy (Tmask [0 2 3]) = [T nil T T nil nil ..]
) {(Tmask []) = [nil nil ...]
A (Tmask (Tpositions x)) = (Tconcatenate (not (null x)) (Eoss :R nil)) “
~ e Tmerge Oitemsl Oitems2 comparator = items
o
._-' ['Lis function 1s analogous to merge. The output series contains the elements of the
N two off ine input series. The elements of Oitems! appear in the same order that they
7 . ve . . .
. are read in. Similarly. the elements of Ottems?2 appear in the same order that they are
. read in. However the elements from the two inputs are intermixed under the control of
H
A the comparator. At each step, the comparator is used to compare the current elements
U
) in the two series. If the comparator returns non-null. the current elenment is removed
+
R from Oitems] and transferred to the output. Otherwise. the next output comes from
v Oitemns2. (1f. as in the first example below. the elements of the individnal input series
!‘ are ordered with respect to comparator. then the result will also be ordered with respect
A to comparator. . as 1in the second example helow, etther input s not ordered. the result
will not be ordered.)
» \‘
"
; (Tmerge [1 3 7 9] (4 58] #*<» =2 (134578 9)]
’ (Tmerge [1 7 3 9] [4 58] #°<) == [1 457 38 9]
‘a"‘ (Tmerge x y #’'(lambda (x y) I,) .- (Tconcatenate x y) s
" N
N
\
1Y
A
-
o
St
N
o
N R T P T T, e A N
NS e - 'z"/?.-f B I N o N N

N
LA R

.
r ¥ R
[

" SRS,
AARARA

oy
-\"\(\{\". Y

e
l' l‘ ".

.

LGN
P SR A

”~ -

XX

x
N

SR
fd

'.%':‘l'v'i
AR Y

..-4. v
‘:.}J‘/-

-
Pl s

LR

N .F.’Ilff}f

.. -
L A

XA X

A s

Selection and Expansion 29

e Tlastp Oitents => bools 1tem~

This function takes in a series and returns a ~eries of boolean values having the same
length <such that the Tast valne is Tand all of the ather values are nil. If the input series
1> nnbhounded. then the ontput ~eries will also be nnhonnded and every element of the
output will be nil.

[t turns out that thi> output canuot be computed by an on-line 0Sss function. There-
fore. 1f Tlastp returned only the haolean values desceribed above, the isolation restrictions
would make it impossible to use the input series and the ontput values together in the
same computation. In order to cet around this problem. Tlastp returns o ~econd out
put which i~ identical to the input. This output can be used in Hea of the input in

combination with the boolean values.

(Tlastp [a b ¢ d]) = [nil nil nil T] [a b ¢ d]
(Tlastp [a]) => (T] [al

(Tlastp {]) = (1 (]

(Tlastp (Eup)) = [nil nil nil ...} [0 1 2 ...]

As an example of using Tlastp. it 1s interesting to return to the example of proration
discussed in conjunction with the function TscanF. Both of the proration tunctions pre
sented earlier assume that the percentages alwavs add up to 100, If this turns out not
to be the case. then an exact allocation of the total is not guaranteed. The tollowing
program ensures that exact allocation will occur no matter what the percentages add up

to. It does this by using Tlastp to detect which percentage is the last one.

(defunS Tprorate-robust (total Opercents)
(declare (type oss Opercents))

(letS* (((is-last percents) (Tlastp Opercents))
(allocation (round (/ (* percents total) 100)))
(unallocated (TscanF total #'- allocation)))

(1f is-last (Tprevious unallocated total) allocation)))

(Tprorate-robust 99 [35 45 20]) = ([35 45 19]
(Tprorate-robust 79 [35 45 21]) = [35 45 19]
(Tprorate 99 [35 45 21]) = (35 45 21]

Selection and Expansion
Selection and its inverse are particularly important kinds of off-line transducers.

—a

e Tselect hools &optional items = (Oiternns

This function selects elements from a series based on a boolean series. The off-line
output consists of the elements of stens which correspond to non-nall elements of hools,
That i~ to say, the nth element of items i~ in the output iff the nth element of bools 1s
non tull. The order of the elernents 1 Oirems 1~ the <amie as the order of the elements
in 1tems, The output terminates as ~oan asx either input runs out of elements. 1 no
items inpnt is specified. then the non null elemwents of bools are themselves returued as
the cutput of Tselect. (It the rems input of Tselect in ~uch that 1t can he used as
a destination for alterS. then the outpnt of Tselect can be used as a destination for
alterS.!

A NN |

XY
n_}‘ 10 Reference Manual

Oy

N (Tselect [T nil T nil] [a b ¢ d]) > [a <]

vy (Tselect [a nil b nil]) = [(a b]

(Tselect [nil nil] [a b]) = []

An interesting aspect of Tselect is that the output series 15 off-line rather than having "‘l
the two input series be off-line. This is done in recognition of the fact that the two input
sertes are alwavs in svnchrony with each other. Having only one port which is off line
allows more flexibility then having two ports which are off-line.

One might want to select elemernts out of a series based on their positions in the series
rather than on boolean values. This can be done straightforwardly using Tmask as shown

below.

(Tselect (Tmask [0 2]) [a b c d]) => [a c]
(Tselect (not (Tmask [0 2])) (Euwp 10)) = [11 13 14 15 ..]

A final fearure of Tselect in particular, and off-line ports in general. is illustrated by
the program below. In this prograin. the Tselect causes the first Elist to get out of
phase with the second Elist. As a result. it v important to think of 0SS expressions as
passing around series objects rather than as merely being abbreviations for loops where
things are always happening in lock step. The latter point of view might lead to the idea
that the ontput of the program below would be ((a 1) (¢ 2) (d 4)).

(lets ((tag (Elist ’(a b c d e)))
(x (Elist '(1 -2 2 4 -5))))
(Rlist (list tag (Tselect (plusp x) x)))) => ((a 1) (b 2) (c 4))

o TselectF pred Oitems = items

This function 15 the same as Tselect. except that it maps the non-0Ss function pred §
over (Oitenis 1o obtain a series of boolean valies with which to control the selection. [n
addition. TselectF has an off-line input rather than an off-line output (this is fractionally
more ethicienti. The logical relationship between Tselect and TselectF is shown in the
last example below.

(TselectF #’'identity [a nil nil b nill) => [a b]
(TselectF #’plusp [-1 2 -3 4]) = [2 4]
TselectF pred items)

= (letS ((var items)) (Tselect (TmapF pred var) var))

e Texpand hools Oitems toptional (default nil) = items

N [his function is a quasi-inverse of Tselect. (The name 15 borrowed from APL.) The
T output contains the elements of Qitems spread out into the positions specified by the
'. . . -

o non-null elenrents in bools e the nth element of Oitems is in the position occupied

vy

N Sy the nth non null element in bools. The other positions in the output are occupied by
; devonlt. The ontput stops as soon asx bools runs out of elenuents, or a non-null element
F'-:. 0 bools s enconntered for which there is no corresponding element in Oitems.

-:".
t:.‘-: (Texpand {nil T nil T T] [a b c¢}) = [nil a nil b ¢]
o (Texpand [nil T nil T T] [a)) = [nil a nil]
- (Texpand [nil T} [a b c¢] 'z) = [z a]
*'.’ (Texpand [nil T nil T T) {J) > [nil]
o

\,-.s\. PRI TR AL NN .-./-.)(; RPN .ﬂg-'&‘_

it A a0 oth oba oA |

N N R T A M N W W W WU WO W T W ST OO O I I WY
¥ '—""'u‘l"$'“\.1\"1v b "Rl et s ol & ‘-""'.‘!""Y"I’w"

Splitting 31

Splitting

An operation which is closely related to selection. is splitting. In selection. specified

e
.

“ &Y

elements are seledted out of a series. Tt s not possible to apply further operations to the

elements which are not selected. because they have been discarded. In contrast. splitting
divides up a series into twe or more parts which can be individually used. Both Tsplit
and TsplitF have on-line inpurs and off-line outputs. The outputs have to be off-line.
because they are inherently non-~vnchronized with cach other.

e Tsplit items bools grest more-bools = Oitems{ Oitemns? grest mmore-Oitems
This function takes in a series of elements and partitions them between two or more

outputs. If there are n hoolean inputs then there are n - 1 outputs. Each inpnt element
15 placed in exactly one output series. Suppose that the nth element of hools is non-null.
In this case. ine nth element of items will be placed in Ottemsl. On the other hand. if
the nth element of bools is nil. the second boolean inpnt (if anyv i is consulted in order to
see whether the input element ~hould be placed in the second ontput orin a later output.
{Ax1n a cond. each time a boolean eleutent i~ nil. the next boolean series 1s consulted.y
If the nth element of every hoolean series is nil. then the nath element of itenis is placed
in the last output,

nil nil]) = (-1 -2] (3 4]

nil nil] [nil T nil T1Y = {-1 -2] [4] [3]
TT]) = (-1 -2 34] []

(Tsplit (-1 -2
(Tsplit [-1 -2
2

1 [Tt
10Tt
(Tsplit [-1 11T

W W W
RTINS

- [f the items input of Tsplit is such that it can be used a~ a destination for alterS.
° then all of the outputs of Tsplit can he used as destinations for altersS.

(letS#* ((1ist (-1 2 -3))
(x (Elist list))
((x+ x-) (Tsplit x (plusp x))))
(alterS x+ (+ x+ 10))
(alterS x- (- x- 10))
list) = (-11 12 -13)

o TsplitF items pred grest more-pred = Oitems! OQitemns2 krest more-Oitemns

Thix function iz the same as Tsplit. except that it takes predicates as arguments
rather than boolean series. The predicates must be non-08s functions and are applied to
items in order to create boolean values. The relationship between TsplitF and Tsplit is

alniost but not exactly as shown below.

(TsplitF items predl pred?2) |
Z (letS ({(var items)) ‘
(Tsplit var (TmapF predi var) (TmapF pred2 var)))

¥

A 4

The reason that the equivalenee above does not quite hold 1s that, as in a cond. the

.-
U
"~

A

predicates are not applied to individual elements of items unless the resulting value s

" T
ShNN

LS S W N

- -

needed in order to determine which output series the element should be placed in (e

- -
[t
[y

if the tiest predicate retarns non null when given the nth eletient of items. the second

%" predicate will not be calledo This promotes eticiency and allows ecarlier predicates to
W < . .
At act as guards tor Later predicates

b3
&
SR

,(.ﬁv ;..‘_,ﬂ-"'._,,s'-.,'. T AT "f'\f NS AT T N AT yw
U AN AN > NIt W :ﬁ:l Ve P TN
A R T LYY Vit M T ol u"‘ A aROL I A A SR A% COnS RO Rss SANCERINS |

"
)
:? 32 Reference Manual
o (TsplitF [-1 -2 3 4] #’'minusp) = [-1 -2] [3 4]
4' (TsplitF [-1 -2 3 4] #’minusp #’evenp) = [-1 -2] [4] [3]
L e
v o
' Reducers
v Reducers produce non-0ss outputs based on 0SS inputs. There are two basic kinds
'j of reducers: ones that combine the elements of 0SS series together into aggregate data
" structures {(e.g.. into a list) and ones that compute some summary value from these
) elements (e.g., the sum). All the predefined reducers are on-line. A few reducers are also
X early terminators. These reducers are described in the next section.
N
> e Rlist items = list
R~
= This function creates a list of the elements in items in order.
§ (Rlist [a b ¢]) = (a b ¢)
> (Rlist [1) = O
. (Rlist (fn (Elist x) (Elist y))) = (mapcar #’fn x y)
’ (Rlist (fn (Esublists x) (Esublists y))) = (maplist #’fn x y)
e
t e Rbag items = list
N This function creates a list of the elements in items with no guarantees as to the order
::: of the elements. The function Rbag is more efficient than Rlist.
~
': (Rbag [a b ¢]) = (c a b) ;in some order
" (Rbag (1) = O <oy
(oy
: e Rappend lists = list
. This function creates a list by appending the elements of lists together in order.
s (Rappend [(a b) nil (c d)]) = (a b ¢ d)
(Rappend [1) = (O
<&
- e Rnconc lists = list
. This function creates a list by nconcing the elements of lists together in order. The
function Rnconc is faster than Rappend. but modifies the lists in the 0SS series lists.
P (Rnconc [(a b) nil (¢ d)]) = (a b ¢ d)
- (Rnconc []) = O
‘N (let ((x ’(a b))) (Rnconc (Eoss x x))) = (ababab...)
A (Rnconc (fn (Elist x) (Elist y))) = (mapcan #’fn x y)
N (Rnconc (fn (Esublists x) (Esublists y))) = (mapcon #’fn x y)
.' e Ralist kevs values => alist
g [his function creates an alist containing kevs and values. It terminates as soon as
. either of the inputs runs out of elements. If there are duplicate keys, they will be put on
! the alist. but order 15 preserved.
¢ =
' '_ZIL-'
~
‘

“w - LIPS TR e N
OO NN IS

N . %)

A

L B Gy Ry W o

~,
)
n,
)

Reducers

(Ralist [a b] [1 2]) > ((a . 1) (b . 2))
(Ralist {a b] [1) = ()
(Ralist keys values) = (Rlist (cons keys values))

Rplist indicators values = plist

33

This function creates a plist containing kevs and values. It terminates as soon as

either of the inputs runs out of elements. If there are duplicate indicators, thev will be

put on the plist. but order is preserved.
(Rplist [a b a] [1 23]) = (a1b2a3)

(Rplist [a b] [1) = O
(Rplist keys values) = (Rnconc (list keys values))

Rhash keys values &rest option-plist = table

This function creates a hash table containing keys and values.

[t terminates as soon

as either of the inputs runs out of elements.

The option-plist can contain anv options

acceptable to make-hash-table.

The option-plist cannot refer to variables bound by lets.

(Rhash [color name] [brown fred]) —> #<hash-table 23764432>
; shash table containing color->brown, name->fred

(Rhash [cclor name] []) = #<hash-table 23764464>
; ;empty hash table

Rvector items &key :size &rest option-plist = vector

This function creates a vector containing the elements of items in order. lThe option-
plist can contain any options acceptable to make-array. The option-plist cannot refer to
variables bound by letS.

The function Rvector operates in one of two ways. If the :size argument is supplied.
then Rvector assumes that items will contain exactly :size elements. A vector is created
of length :size with the options specified in option-plist and the elements of items are
stored in it. (If items has fewer than :size elements. some of the slots in the vector will
be left in their initial state. If items has more than :size elements, an error will ensue.)
In this mode, Rvector is very eflicient. but rather inflexible.

(Rvector [1 2 3] :size 3) = #(1 2 3)
(Rvector [#\B #\A #\R] :size 3 :element-type ’string-char) => "BAR"
(Rvector [1] :size 4 :initial-element 0) = #(1 0 0 0)

If the :size argument is not supplied. then Rvector allows for the creation of an
arbitrarily large vector. It does this by using vector-push-extend. In order for this to
work. 1t forces radjustable to he Tand :fill-pointer to be 0 no matter what is specified
in the options-list. In this mode, an arbitrary number of input elements can be handled.
however. things are much less efficient. since the vector created is not a sitmple vector.

(Rvector [1 2 3]) = #(1 2 3)

(Rvector []) = #()
(Rvector [#\B #\A #\R] :element-type ’string-char) —=> "BAR"

I'o store a sertes in a preexisting vector, use alterS of Evector.

» - 0
P, "\" .I‘,.(' -F~? a, vy

LA AN RN .
R T AT A NN AR ﬁ
{&fb{ {.L L‘LA‘AAF.A*.‘ SRR RS, \A}‘.Al‘ \

Ll
::\'_' 34 Reference Manual \
T |
L (let ((v #(a b ¢)))
‘.: (alterS (Evector v) (Eoss 1 2))
~ v) = #(1 2 ¢) .
N S
\g-‘ -';s."i
AN, e Rfile narme items &rest option-plist = T b
. This function creates a file named name and writes the elements of items into it |
\ ::} using print. The option-plist can contain anyv of the options accepted by open except ‘
SN :direction which is forced to be :output. All of the ordinary printer control variables ‘;
': are obeved during the printout. The value T is alwavs returned. The option-plist cannot 1
> refer to variables bound by lets.
1
,::4 (Rfile "test.lisp" [’(a) '(1 2) T] :if-exists :append) = T
oy ; ;The output " ‘
".\.: s (a) |
¥ L |
"y ;35(12) :
fin ;35T " is printed into the file "test.lisp". j
2 ® Rlast items &optional (default nil) = item |
\.: This function returns the last element of items. If items is of zero length. default is
10 returned.
o |
Ll (Rlast [a b c]) = ¢ :
. (Rlast [] ’z) = z]
N . |
® Rlength items => number |
:;-: This function returns the number of elements in items. ;
~” L
. < ~
((Rlength [a b c]) ﬁ
P (Rlength []) = © |
P |
B« o Rsum numbers = number |
P o
0 This function computes the sutn of the elements in nunbers. These elements must !
'~ be numbers. but they need not be integers. 1
- (Rsum [1 2 3]) = 6 1
b (Rsum [J) = 0
-, (Rsum [1.1 1.2 1.3]) = 3.6 |
o
- e Rmax jumbers = number
L

i

['kis function computes the maxtmuin of the elements in numbers. These elements

must be non-complex numbers. but they need not be integers. The value nil is returned

e N w

o if nurbers has length zero.
\3
(Rmax (2 1 4 3]) = 4
'y (Rmax (]) = nil
A (Rmax (1.2 1.1 1.4 1.3]) = 1.4
.
- e Rmin numbers => number
"I . B - - . o~ . .
“ Fhis funetion computes the mininim of the elements in numbers. These elements
'-' miist be non-complex numbers. but they need not be integers. The value nil is returned
i nuhers has length zero. ,”']
A
ot
‘\.r.»'~‘ ~J‘-F-I‘"J~j
RSN LAY

Farlv Reducers 10

(Rmin [2 1 4 3]) = 1
(Rmin [J) = nil
(Rmin (1.2 1.1 1.4 1.3]) =+ 1.1

—a,

e ReduceF init function items = result
['his function is analogons 1o reduce. In addition. it 1s ~tmilar to TscanF except that
init is not optional and the final value of the acermulator s the only value returned as
shown in the last example below. It irems is of length zeroo init 1s returned. As with
TscanF. function must be a non-0ss function and the value of jnit i~ typieally chosen 1o
he a left identity of function. It 1~ ftuportant to rewember that the elemwents of items are
used as the second argument of function. JThe order of arguients i chosen to highhel
this fact.
(ReduceF 0 #’+ [1 2 3]) =
(ReduceF 0 #'+ []) = 0
(ReduceF 0 #’+ x) = (Rsum x)
(ReduceF init function items)

= (letS ((var init))
(Rlast (TscanF var function items) var))

[n order to do reduction without an initial seed valie. n1se Rlast of TscanF. Note tha
although a seed value does nout have to be specified. a value to be reiurned it there are

no elements in items still has to be specified.

(Rlast {(TscanF #’max x) nil) = (Rmax x)

‘e Early Reducers

The following four redncers are ecarly terminators. Each of these functions has a non-
early variant denoted by the suttix “-late”. The early variants are more eflicient. because
they terminate as soon as theyv have determined a result. This may be long before any
of the input series run out of elementx. However, as discussed at the end of this section,
one has to be somewhat careful when using an early reducer in an 0SS expression.

e Rfirst iterns &optional (default nil) => item
e Rfirst~late items &optional (defaulr nil) => item
Both of these functions return the first element of items. f items is of zero length.
default is returned. The only difference between the functions is that Rfirst stops im-
mediately after reading the first element of items. while Rfirst-late does not terminate

”
- oo
< nntil items runs out of elements.
S
o (Rfirst [a b c]) = a
S (Rfirst [J ’z) = =z
@
;3 e Rnth 1 items koptional (default nil) =+ ftem
o e Rnth-late n ifems optional (default nil) = itemn
&1

Both of these functions retuen the nth element of items. If nis greater than or equal
to the length of items. default i~ returned. The only difference between the tunctions
- i~ that Rath stops inmediately atter reading the nth element of items. while Rnth-late

does not termenate until items runs ont of elemer ..

¥
ol
2
 J
).; {
b
*
J.\
<
'.'\
2
'®.
e

[3
Pl 4

llll

et s

LRl

__v.
- @)

.
LR N4

S

-
'

v
e .
P)

AT e s G e

« e
.

PR s

‘ T
waay) 200

AL

by S
./.aJ\J

2 sl

A

t

'

']
oA

v/

s

.I

\

3%

4

LA
AN]

-

- o

)

h N

i'l'

0>

a s
adont

&

@

>

B AW W SN AT LU TS e Ve L LU S T) P e P A" "2 " B "R "> "B s m " . - . -

o) P P AT NN P AP Bt R A A e L S S L S

) g % X e, et
W VRGN SR ARY RS A s TR . AN i SRRt .

36 Reference Mannal

(Rnth 1 [a b<cl]) = b
(Rnth 1 [] '2) = 2z

Rand hoais = hooel

Rand-late hools = bool

Both of these functions compute the and of the elemenos in vool~. As with “he function
and. nil i~ returned if any element of bools 1: n11. Otherwise the last element of bools is
returned. The value Tas returned 11 hools has lenath zeros The oaly ditference hetween
the Duinctions 1= that Rand terminates as ~oon 4~ a nil s enconntered m the put, while

Rand-la%te Jues not terininate until bools tins out of elements.

{Rand {a b c]) = ¢

‘Rand [a nil ¢}) => nil

(Rand []) = T

(Rand (pred (Esequence x) (Esequence y))) = {(every #’pred x y)

Ror bools =% hool
Ror-late Houols = bool

Both of these functions compute the or of the elements in bools, As with the function
or.nil i~ returned if every element of bools is nil. Otherwise the first non-null element of
boolsis returned. The value nil is returned if bools has length zero. The only difference
hetween the functions 1s that Ror terminates as soon as a non-null value 1s encountered
i the mmput. while Ror-late dues not terminate until bools runs out of elements.

(Ror [a b <c]) = a

(Ror [a nil ¢]) = a

(Ror []) = nil

‘Ror (pred (Esequence x) (Esequence y))) = (some #’pred x Yy)

Care must be taken when using early reducers. A. discussed in the section
onrestrictions, 0SS expressions are required to obey the restriction that within each on-
ane subexpression. there must be a data flow path from each termination point to each
ontpit. Farly reducers interact with this restriction since early reducers are termination
potnt~. As a recult. there must be a data flow path from each carly reducer to each
oatpit of the containing on-line subexpressicn.

Sinee redncers compute non-08s values. they directly compite outpats of on-line
subexpresstons. \s a result. it is impossible for there to be o data fow path from a
reducer 1o any output other than the output the reducer itseif computes. Therefore, it
i- ot possible to nse an early reducer unless that redicer compntes the only ourpat of
the on-line subexpression.

For example. consider the following four expression<. The fire 1wo expressions return
the same result. However, the first 1< more efficient. This s a pratotypical exiample of .
situation here it is better to use an early reducer. Inocontrast. the Tast two expressions
do not produce the same results. The next to last expression s erronecous hecanse there
i~ no data flow path from the instance of Rfirst to the second onrput. To compnte these

two ontpits, a non-early reducer st bhe nsed as v the Lot exaple

AR N N N P Pk N

ry

i
1

Rl AL "'_"_"“('I-l‘lﬂqv.T

X7
v

J
L)
] e

- Series Variables 37

i\: -.!
Y (letS ((x (Elist ’(1 2 -3 4 5 -6 -7 8))))
N (Rfirst (TselectF #’'minusp x))) => -3
T (lets ((x (Elist '(12 -3 45 6 -7 &)
e B (Rfirst-late (TselectF #’minusp x))) = -3

(letS ((x (Elist '(1 2 -3 45 -6 -7 8)))) ;Signals errcr 18
(valS (Rfirst (TselectF #’minusp x))
(Rsum x)))

(letS ((x (Elist ’(1 2 -3 4 5 -6 -7 8))))
(valS (Rfirst-late (TselectF #’minusp x))
(Rsum x))) = -3 4

Series Variables

The principal way to create 0ss variables is to use the form letS. « These variables
are also created by the forms lambdaS and defunS.)

e
o
o o letS var-value-pair-list {decl}* &body expr-list = result
oA .
O I'he form letS is syntacticallv analogous to let. Just as in a let. the first subform

%ﬁ: is a list of variable-value pairs. The letS form defines the scope of these variables and
A gives them the indicated values. As in a let. one or more declarations can follow the

e variable-value pairs. These can be nsed to specify the types of the variables.
C'._-':: The variables created by 1etS can be 0SS variables or non-0ss variables. Which are
g \ which is determined by the type of the value that is bound to the variable. As in let.
A Lo . y . R . . .
- ,6-'- the variables are bound in parallel. In the example below. y is an 08$ variable while x
P - and z are non-0SS variables.
PR
Y (lets ((x (1 2 3))
b (y (Elist (1 2 3)))
N (z (Rsum (Elist ’(1 2 3)))))
' (list x (Rmax y) z)) = ((1 2 3) 3 6)
; ‘\j;: Unlike 1let. 1etS does not support degenerate variable-value pairs which consist solely
o of a variable. (Since letS variables cannot be assigned to. see below. degenerate pairs
~ :
.-\'Q would be of little value.)
’ “:‘
) (lets (x) ...) ;Signals error 9
179449
,.N"E
DO I'he following example illustrates the use of a declaration in a 1etS. Declarations are
AT . .
) handled in the same way that they are handled in a let.
e
. (lets ((x (Elist '(1 2 3))))
®.- fdeclare (type integer x))
":\ (Xsum x)) = 6
(AN
| 'u“‘r- "
N g
AL I'he forin 1ets goes bevond let to include the functionality of multiple-value-bind.
e ; : P
v A variable in a variable-valne pair can be a list of variables instead of a single variable.
SIS i L.)))
0, When thi-is the case the variables pick up the firstosecond. ete. results returned by the
' 2; '.f'::'} vialue expression. (If there is only one variable, it gets the first value. I nil s used in
s ' L)
R
. '
oy
R
04
~ Al
e
LS
)
Aa. . e
LI PR PR N NI T B B S PR T RN T T SN T S] R R I A LI PR G I N P L AL N T TR
G A e A T A O S S B T My S P e e R) R g A A Vs o AR A e S i s e N WA A W
(T T B O O O N R AN NN

Syl e

LA &

iy SR SR /

N FI TR LR,

> . o - B Zhin S e e Sl e S A N A A

3R Reference Manial

lieu of a variable. the corresponding value i~ ignored s W there are tewer vartables sha
values, the extra values are ignored. Unlikemultiple-value-bind. let$ ~ignals an error 1!
there are more variables than values. 1 Note that there s 1o torn multiple-value-bindS
and that the form multiple-value-bind cannot he nsed mside of an 0SS expressior 1.
bind the results of an 0SS function.)

(letS (((key value) (Ealist ’((a . 1) (b . 2)));
(Rlist (list key value))) => ((a 1) (b 2")

(letS ((key (Ealist '((a . 1) (b . 2}))))
(Rlist key)) = (a b)

(letS (((nil value) (Ealist ’((a . 1) (b . Z:i.Y)
(Rlist value)) = (1 2)

(letS (((key value x) (Ealist '((a . 1) (b . 2)1)))
(Rlist (list key value x))) ;Signals error 8

The expr-list of a LetS has the effect of grouping ~everal 0Ss expressions together.
The value of the last form in the expr-fist is returned as the value of the 1ets. This value
may be an 0ss value or a non-08s value.

[n addition to placing all of the expressions in the <ame letS hinding <cope. the
grouping tmposed by the expr-list causes the entire ody 1o hecome an 9SS expression.
This can alter the way implicit mapping is apphied by meluding non-0ss functions in the
0SS expression,

The restricted nature of OSS variables. There ire « number of ways in which
the variables bound by letS {or lambdaS and defunS) are more restricted than the ones
bound by let. For the most part. these restrictions stem from the fact that when the oss
macro packize transforms an 0SS expression into a loop. it rearranges the expressions
extensively. This forces 1etS variable scopes to be supported by variable renaming rather
than binding. One result of this is that it i~ not possible 1o declare (or proclaimi a
letS variable to he special. (Standard Common Lisp does not provide any method for
determining whether or not a variable has been proclainied special. As a result. the
0SS inacro package 1s unable to issue an error message when a special 1etS variable is
encountered. The Symbolics Common Lisp version of the 088 macro package does issue
an error message.)

(proclaim ’'(special z))
(lets ((z (Elist '(1 2 3)))) (Rsum z)) ;erroneous expression

Another limitation i~ that programmers are not allowed to assign values to letS
viertables in the body of 4 letS. ¢ This restriction apphies whether or not the vartables
coutain 08 values.) The only time Llets vartables can he given a value is the moment they
are bound. t Although assignment conld he supported easily enough. the rearrangement -
mtroduced by the 08s macro package would make 1t very confusing tor a programmer
to fignre ont exactly what would happen in a given <o eons e partieulars naon ey
applyving implicit mapping 1o setq would lead to peculiar re-ults T addition. ontlawing
assignuents enhances the functional nature of the OSs macro package + An error message

is issued whenever such an assigiiaent 1~ attenpted

3

o
5
e
e
B
¥

”
s

Bl

s

>
.
L
s
.

»

.

i -
D'.‘ J

X l:.' “-
(2} ‘{l.‘l’

L

" e
h
F'e

PP
e‘a’a’a’a

SHES A

03

v

o 1"...' .~-" :‘..
RTINS AN

h)

-

"
s‘
g

OCX
"I‘II

[d

-,l

(SR UL NN
[SENE NS

. s
s,
.
.
St

AN SR

.
s

\

L 4
,.:l.l‘:ll.-\\
AP b LA

4 a

o
o
>
Ca

serres Vartables 24

viets ((x (Elist ’(1 2 3))))
(setq x (1+ x)) ;Signals error 12
(Rlist x))

\nother aspect uf 1etS variables 1s that their scope is semewhat limited. In partic-
njar. letS variables can be referenced in a letS or mapS which is inside the letS which
binds them. However. they cannot be referenced in lambda or lambdaS. (Ax above, this
Hmitation 1> imposed 1 order to avoid confusions due to rearrangements. Further. it is
not obvious what it would mean to reter to an 0SS variable in a lambda. Should some
~ort of unphett mapping be applied”) No attempt is made to issue error messages in this

sitnation. Rather. the variable reference in question is werely treated as a free variable.

(let ((x 4))
(letS ((x (Elist ’(1 2 3))))
(Rlist (TmapF #’(lambda (y) (+ x y)) x)))) = (56 7)

o letS+ 1.1 value pair-list {deci}* &body expr-list = result

[he form letS* is exactly the same as letS except that the variables are honnd
sequentially instead of in parallel.

(letS* ((x *(1 2 3))
(y (Elist x))
(z (Rsum y)))

(list x (Rmax y) z)) = ((1 2 3) 3 6)

- e prognS &body expr-list = result

As shown below. progaS 1s identical to 1etS except that it cannot contain any variable-
value pairs or declarations. It is a degenerate form whose only function is to delineate an
0ss expression. This can alter the way implicit mapping is applied by including non-0ss
functions in the 0SS expression.

(prognS . expr-list) = (letS () . expr-list)

Complete OSS expressions do not return OSS values. A key point relevant
to the discussion above i~ that syntactically complete 0Ss expressions are not allowed
to return 0SS values. This is relevant, because 1letS and prognS are often used in such
a way that an 0SS <eries gratuitous|v ends up as the return value. For example, the
main intent of the expression below i~ 1o print out the elements of the list. However. as
written. the expression appears to retarn an 05S series of the values produced by print.
Becanse expressions like the one Felow are relatively common, it was decided not to issue
an error message o thes Sitaation. Reather. the 0ss value is simply discarded and no

valne is rerarped,

(prognS (print (Elist '(1 2)))) =
;;The output '"12" 1is printed.

[t might be the case that the programmer actually desires to have a physical series

- returned in the example above. This can be done by using a reducer such as Rlist or

- r
Rvector as shown below,

.« e e M
A

o« _ v «. BRI _'. U
A - Lo LT N e .f_'f' B

Lt e

10 Reference Mannal

(prognS (Rlist (prin1l (Elist ’(1 2))))) => (1 2)
; ;The output "12" is printed.

Preventing complete 0SS expressions from returning oss values does not limit what
can be written. because programmers can alwayvs return i non-0ss sertes. This can be
a bit cumbersome at times, but it is highly preferable to the large inetliciencies which
would be introduced by automatically constructing physical representations for 0Oss series
in situations where the returned values are not used in further computation.

Coercion of Non-Series to Series

If an 0ss input of an 0SS function is applied to a non-series value. the type contlict is
resolved by converting the non-08s value into a series by inserting Eoss. That is to sav.
a non-0ss value acts the same as an unbounded 0ss series of the value.

(Ralist (Elist ’(a b)) (* 2 3))
= (Ralist (Elist '(a b)) (Eoss :R (* 2 3))) = ((a . 6) (b . 6))

Using Eoss to coerce a non-0SS value to an 0SS series has the effect of only evaluating
the expression which computes the value once. This has many advantages with regard to
efficiency. but may not always be what is desired. Multiple evaluation can be specified
by using TmapF or mapS.

(Ralist (Elist ’(a b)) (gensym)) = ((a . #:G004) (b . #:G004))
(Ralist (Elist ’(a b)) (TmapF #’'gensym)) => ((a . #:G004) (b . #:6005))

Implicit Mapping

Mapping operations can be created by using TmapF. However. in the interest of conve
nience. two other ways of creating mapping operations are supported. The most promi-
nent of these is implicit mapping. If a non-0S3 function appears in an 0SS expression and
15 applied to one or more arguinents which are 0ss series, the type conflict is resolved by
automatically mapping the function over these seriex.

(Rsum (car (Elist *((1) (2)))))
= (Rsum (TmapF #’car (Elist ’((1) (2))))) = 3

(Rsum (*+ 2 (Elist (1 2))))
= (Rsum (TmapF #'(lambda (x) (* 2 x)) (Elist ’(1 2)))) = 6

A~ shown in the second example, implicit mapping actually applies to entire non-
0S5 subexpressions rather than merely to individual functions. This promotes efticiency
and makes sure that related groups of functions are mapped together. However, it is
not always what is desired. For instance, in the first example below. the call on gensym
gets mapped in conjunction with the call on list. This canses each list to coutain a
separate gensym variable. It might he the case that the programmer wants to have the
same gensym variable in each list. This can be achieved v inserting an Eoss as shown in
the second example. (Inserting a Eoss here and there can promote efliciency by avoiding
unnecessary recomputation.)

d T TP Tk " 8" w38 & &/ - 7 s =¥

<,
-',
>,

e
/

Implicit Mapping 1]

5. 11

o (Rlist (list (Elist ’(a b)) (gensym)))

:{‘: = (Rlist (TmapF #’(lambda (x) (list x (gensym)))

\:.: e (Elist ’(a B)YY) = ((a #:G002) (b #:G003))
" SRS

Sﬁ S (Rlist (list (Elist ’(a b)) (Eoss :R (gensym))))

= (Rlist (TmapF #’list
(Elist ’(a b))
(Eoss :R (gensym)))) => ((a #:G002) (b #:G002))

In order to be umplicitly mapped. a non-0ss function must appear inside of an Oss
expression. For example, the instance of print in the first exiuple below does not aet
implicitly mapped. because it is not in an 05s expression. Iphicit mapping of the prini
can be forced by using progns as shown in the second example above.

(print (Elist ’(1 2))) = nil
; ;The output "NIL" is printed.

(progns (prini (Elist ’(1 2)))) =
; ;The output "12" is printed.

(The result of the first example above is that ¥IL gets printed. This happens because
(Elist *(1 2 3)) is a syutactically complete 0ss expression and is therefore not allowed
to return a series. It returns no values instead. The function prinl demands a value
anyway. and gets nil.)

Another aspect of implicit mapping is that a non-0ss function will not be mapped
unless it 1s applied to a series. This is usually, but not always. what is desired. Consider
the first expression below. The instance of prini1 is mapped over x. However. the instance
“‘ of princ is not applied to a series and is therefore not mapped. If the programmer intends

o to print a dash after each number, he has to do something in order to get the princ to
be mapped. This could be done using TmapF or mapS. However. the best thing to do is
to group the two printing statements into a single subexpression as shown in either of
the last two examples below. This grouping shows the relationship between the printing
operations and causes them to be mapped together.

(1letS ((x (Elist (1 2 3))))

(prini x)

(princ u_u)) : 0n_n
; ;The output '123-" is printed.
(letS ((x (Elist ’(1 2 3))))

(progn (prini x) (princ "-"))) =
; ;The output *'1-2-3-" is printed.
(lets ((x (Elist (1 2 3)))) ’

(format T "~A-" x)) =
; ;The output "1-2-3-" 1is printed

Ugly details. Implicit mapping is easy to understand when applied in simple situa-
tions such as the ones above, However. it can be applied to any Lisp form. Things become
sammewhat more complicated when control constructs (e.g.. if) and hinding constructs
(eg.. let) are encountered. The example below shows the implicit mapping of an if.

hﬁ This creates a lambda expression containing a conditional which is mapped over a series,

¢, ‘S e et a el el AT
32 0¢ S O R Y TN Y,)

l‘, *

A
2
" 12 Reference Manual
\ A key thing to notice in this example i~ that tmplict nagpping of 1f 1~ very ditferent from
o a use of Tselect. In particular. the mapped 1f returns o vadne corresponding to every
o input. while the Tselect does not.
|4 (Rlist (if (plusp (Elist ’(10 -11 12))) (Eup))}
L = (Rlist (TmapF #'(lambda (x y) (if (plusp x’ yi!
:: (Elist ’(10 -11 12)) (Eup)))} (0 nil 2)
N (Rlist (Tselect (plusp (Elist '(10 -11 12)7) (Eup/)) 3+ (0 2)
:d
v Another aspect of the way conditionals are hivondlea feode of a 0ss expression s
o Hustrated below. When an 088 expre-sion ix heing processed 1 order to deterniine what
f_{ should be implicitly mapped. the expression v broken up 1nro Oss pieces ard non-oss
N pieces. If the argument of a conditional is an Oss expression. *his argnment will end up
:: in a separate piece froin the conditional itself. One result of this is that the argument will
f alwayvs be evaluated and the conditional will therefore lose t1s power to control when the
_. arzument should be evaluated. This effect will happen even if. as 1n the example below.
‘_: the conditional does not have to be mapped. The three exanmples helow all produce the
';-: same value. but the first two alwavs evaluate (Rlist {abs (Elist x))) while the last
::, may not.
,: (prognS (if (Ror (minusp (Elist x)))
- (Rlist (abs (Elist x)))
. x))
';:- = (prognS (funcall #'(lambda (y z) (if y z x))

(Ror (minusp (Elist x)))
(Rlist (abs (Elist x)))))
(if (Ror (minusp (Elist x)))

.
»

o~

'.fj (Rlist (abs (Elist x)))

Ny x)

-

M The following example shows the impheit mappimg of a let. + \mong other things.
this illustrates that such expressions are far from clear. Tn general it 15 better to use lets

< a~ in the second example.)

AN (P

’q

:. (Rlist (let {((double (* 2 (Elist '(1 2))))) (= double double)))

e = (Rlist (TmapF #’(lambda (x)

(let ((double (* 2 x))) (* double double)))
(Elist '(1 2)))) = (4 16)

(letS ((double (* 2 (Elist '{1 2)))))
(Rlist (#* double double))) = (4 16)

A problem with the implicit mapping of o let tor orbier hinding tortnst 1~ that the
unplicit mapping transformation potentially moves subexpres<sions out of the scope of the

l";l "R
@ TNV e

e binding form 1n guestion. This can change the meanmy of the expresaonafany of these
:-',' sithexpressions contain an instance of a variable bound by the bhindine form. Forimnstance.,
::'_’. in the example above, the transformation moves the subespression (Elist *(1 2)) ot
_':j of the scape of the Yet. This would cause a problencif this cubexpre-<on referred to the
°® variable double.
it
!:u
o

::is}.;.u.'l'. 2

LA S LN LI e -
W Lo -f.(.rl‘.r,-',z.rf..r O R P L T

. d " .~ AL VST P % RS
AL A R M N o ‘('..'(.A_-"‘L' J '-’A_'..-'\Ar-,, .

Fd

B
ol it Mapni :
Lplicit Mapping 1
&
1) . . .o . .
- In oeder toavoid this problem. an error message s issned whenever mplicit riapping ot
: . a binding torm causes o variable seference to move out of a form that bieds 10 Whenever
:::: ':-.;_ it oecurs. this prohlerg can he et iated by aaing TarS ae cheon o dhoue
- b N bnad complexity mvolves forms ke return. return-from throw. ete. e firms
o are trupheitly wapped like any other non-oss form. Wien thes ger evaluated. riev will
:.'\ carse an exit. However, the loop produced by the oss s aenn doe nor contaim a houndan
:-. which s recounized by any of the e forms et does not create o prog or catsh s
:: result. such a boundary st be defined which will serve ws the reference pom. Needie.
. to say. the tinal results of the Oss expression will not be compnted 1f the expression -
-_. exited 1o this way.
..-
A Nested loops. lmplicit mapprug s applied when con 0SS firctions recere os-
= values. However imphoit mapping i~ not applied when oss functions tecenve ¢ss val es.
o even if these values are passed 1o non oss puts As il rated helow . whenesver s
’ Stuation 0ecirs. al error message is 1-~ied
-
f, (Elist (Elist *((1 2} {2 4)))) ;Signals error i
S
: _"..2 There are sitnations corresponding to pested loops where 1t would be e anahle to
A tmplicitly map subexpressions containing oss function-. For oxample. one o chr wrine

the following expression in order to copyv a list of lists,

(Rlist (Rlist (Elist (Elist *((1 2) (3 4)))))) ;Signals error 14
N (Rlist (TmapF #'(lambda (x) (Rlist (Elist x'))
(Elist *((1 2) (3 4))))) = (1 2) (3 4))

Nevertheless. expressions like the first one above are forbidden. This s done for

n}
Ia two reasous. Firstoin more complex situations 0SS expressions corresponding 1o nested
N
7 loops becote so contusing that sneh expressions are very hard to understand. As a
- -
y result. they are not very useful. Second. experience suggests that a large proportion of
situations where mapping of 08s functions might be done arise from programuing errors
~ rather than an intention to have a nested loop. Outlawing these expressions makes it
L]
i . . .
o possible to tind these errors more gnickly,
a e X . .
oK (The following example shows that there is uo problen with having one loop com-
N putation following another. There are no tvpe conthier ol dtiation and wo implicit
- .
o . .
» mapping 1~ required.
®
54 , .
o (Rsum (Evector (Rvector (Elist '(i 2))))) & 3
)
4
A" Needless ta<ivoit would be unreasonable it there were o Wi to write OSS expressions
A" . : : : :
' corresponding 1o nested loaps. First of allrhas conalway - b done n-ine TmapF as ~shown
@, sbove, However this can Lerather camnbersome. To alleviare oh ditfienity. an odditional
N
poes form (mapS) i~ introduced which foalitates the expresson of ested compntations,
~
s
{: ® mapS &body cxprlist = ftens
L) The expr-fist consists of one ot more expressions. These oxpressions are trected as the
’j 2% body of a function and mapped over any free Oss vanables which appear o them. That
Yoo e i~ to say. the first elenient of the ontpat s computed by evalnating the expressions o an
~ T A A
._:
>
>
1]
@
gt
:
22

. LI IR RV R L N P
\J:J_'r_.',-ufx \f*\.;. SN

- v . aa iam el ¢ gy - e B Stn Ale S0 At Sln-Afls Ste B M Sia G0n M SN . i Sen e Qe S gue BF R3S A4
48)

i)
*
'] Reference Manual
L environtnent where each 088 variable s hound to the first element of the corresponding
o series. The second element of the cutput is computed by evaluating the expressions in an
' environment where each 08s variable i1s bound to the secand element of the corresponding _»'_';-"_;,
. series, etc. The way mapS could be used to copy a list-of-hists is shown below. A letS has Rt
! to be used. because mapS requires that the series being mapped over must be held in a
::u variable.
A
) (lets ((z (Elist ’((1 2) (3 4))))
. (Rlist (mapS (Rlist (Elist z)))))
= (lets ((z (Elist *((1 2) 3 4))))
' (Rlist (TmapF #’(lambda (x)
X (Rlist (Elist x))) z))) =3 ({1 2) (3 4))
> (Rlist
A (mapS
y (Rlist (Elist (Elist '((1 2) (3 4))))))) ;Signals error 14
B
P Implicit mapping is very valuable. From the above. it can be seen that although
) itphictt mapping is simple in simple situations, there are a number of sitnations where it
y hecomes quite complex. There is no question that these complexaties dilute the value of
’ nnplicit mapping. Nevertheless, experience suggests that implicit mapping is so valuable
that. warts and all. it is perhaps the most useful single feature of 08s expressions.
" Literal Series Functions
:; Just as it 1s very convenient to be able to specify a literal non-0ss function using S
{ lambda. it i~ sometimes convenient to be able to specify a literal 0ss function. ﬁ
& .
‘ ¢ lambdaS var-[ist {decl}* &body expr-list
A ihe torm lambdas is analogous to lambda except that some of the arguments can have
K 0SS series passed to them and the return value can be an 0SS series. The var-list is
sttnpler than the lambda lists which are supported by lambda. In particular, the var-1list
17 must consist solely of variable names. It cannot contain any of the lambda list kevwords
5 such as goptional and &rest. Asin a letS. the variables in the var-list cannot be assigned
; to 1n the expr-1list or referenced inside of a nested lambda or lambdas.
-’: Asin a lambda. the body can begin with one or more declarations. All of the argu-
r ments which are to receive 0$$ values have to be declared inside the lambdaS using the
. declaration type oss (see below). All of the other arguments are assumed to correspond
. to non-0SS values. Just as in a letS. the declarations may contain other kinds of decla-
' rattons besides type oss declarations. However, the variables in the var-list cannot be
. declared (or proclaimed) to be special.
The expr-list i a list of expressions which are grouped together into an 0ss expres-
R ~ton as in a letS or prognS. The value of the function specified by a lambda$S is the value
¥ of the Last form in the expr-list. This value may or may not be an 0ss series.
& In many ways. lambdaS hears the same relationship to letS that lambda bears to let.
0 However. there iy one key difference. The expr-list in a lambdaS cannot refer to any
(] free variables which are bound by a 1etS. defunS. or another lambdaS. Fach lambdaS 1» e
W RO
q
*
e o S e S e ey e R

Yty
« &7
LAY

Y
r4g

PN N]
2_ 8 R & .
AR

.
L2

AL
wh N A

-/

X
Lol

2000
Prlrrl S

DA
A

lll"".
k4 ¢ 8

N N
.ﬂ@:afl

b
gl

-
¥y

LRt I Tl s

>0 1)
PO

g -
&Y

LB v

l'.
“.‘. b}

.

.II"I.X
SAv
oo & A, 4, 4,

MRS

RN
» .l‘tl"l o

580

R
PO

@ &

‘dw

Ntk
F 2 DR}

AAANSAS
Srlelelse

s

Detining Series Fun. tionus 15

processed in complete isolation from the 0SS expression which surrounds 1it. The ounly
values which can enter or leave a lambdaS are specified by the var-list and non-0ss
variables which are bound ontside of the entire containing 088 expression,

Another key feature of lambdaS is that the only place where it can validly appear is as
the quoted first argunent of funcallS (see below). or as an argument to a macro which
will eventually expand in such a wav that the lambdaS will cud up as the quoted first
argument of a funcalls.

The following example ilustrates the use of lambdaS. It shows an anonyumous 0SS

function wentical to Rsum.

(funcallS #’(lambdaS (x)
(declare (type oss x))
(ReduceF 0O #’+ x))
(Elist '(1 2 3))) => 6

type oss &rest variable-list
This type declaration can only be used inside of a declare inside of a lambdaS or a
defunS. It specifies that the variables carry 0SS values.

funcallS function &rest expr-list = result

This is analogous to funcall except that function can be an 08S function. In partic-
ular. it can be the quoted name of a series function. a quoted lambdaS. or a macro call
which expands into either of the above. [t is also possible for function 10 be o non-0ss
function. in which case funcalls is identical to TmapF. I function is an expression which
evaluates to a function (as opposed to a literal function). then it v assumed to be a

non-0ss function.

(funcallS #’Elist (1 2)) = (Elist '(1 2)) = [1 2]

(funcallS #’'(lambdaS (y) (declare (type oss y)) (* 2 y))
(Elist (1 2))) = [2 4]

(funcallS #’car [(1) (2)]) = [1 2]

(funcallS #'car (1 2)) = {1111 ...]

[he number of expressious in expr-list must be exactly the same as the number of
arguments expected by function. If not. an error message is issued. In addition. the
types of values (either 0SS series or not) returned by the expressions should be the same
as the types which are expected by function. If not. coercion of non-series to series will

he applied if possible in order to resolve the conflict.

Defining Series Functions

\n important aspect of the 08 macro package is that it makes it easy tfor program-
mers to define new 08s functions. Straightforward 0ss functions can be defined using
the factlities outlined below. More complex 0SS functions can be defined using the sub.

primitive facilities deseribed mm 6.

1’}..,-'{-.’-.I-.J;\,“\.’—.(‘\.J’.{ 'J".' .-.-w." RS ." " P .ﬂ... .
-l -l -l .' -- .I ,1 \ -
S Aihimi\.‘-i -it(‘.ﬁ.j}x :43(‘::&';(; 2!(.#:\. AJ'L"A."

o i an o gha acg o p v ™y . - » M Ade dis gem e atanh ol A8 Aal Wt end
N}

> 16 Reference Manual

-:. o defunS name lambda-lhst {doc} {decl}* gbody expr-lict l
oS N . . . |
:: This is analogous to defun, but for 0ss functions. At a ~stmiple level. defunS i~ just

= syntactic sugar which defines a macro that creates a funcallS of a 1ambdaS. The lambda- j
>~ . . - T

N Iist. decilarations. and expression list are restricted in exactly the same way as in a iR

-

lambdaS except that the standard lambda list keywords &optional and &key are allowed
in the lambda-list.

(defunS Rlast (items &optional (default nil))
“Returns the last element of an 0SS series"

“ol- .ézo

not allowed to refer to the macro-expansion-time values of the other arguments. They

\ :
e (declare (type oss items))
Al (ReduceF default #’'(lambda (state x) x) items)’
b ‘; = (defmacro Rlast (items &optional (default 'nil))

v "Returns the last element of an 0SS series"

7 ‘(funcallS #’(lambdaS (items default)

) (declare (type oss items))
- (ReduceF default #'(lambda (state x) x) items))
,items ,default))

A

d However. at a deeper level, there is a key additional aspect to defunS. Preprocessing
L and checking of the resulting lambdaS is performed when the defunS is evaluated (or
N compiled). rather than when the resulting 0ss function i~ used. This saves time when

the function is used. More importantlyv. it leads to better crror messages because error

C~ miessages can be issued when the defunS is initially encountered. rather than when the
e Oss funetion defined is used.

" Although the lambda list keywords #optional and &key are supported by defunS. it
. should be realized that they are supported in the wayv they are supported by macros. not T
{ the wayv they are supported by functions. In particular. when kevwords are used in a call
“' on the Oss function being defined. they have to be literal kevwords rather than computed
S by an expression. In addition, initialization forms cannot refer to the run-time values of
- other arzumnents. because these are not available at macro-expansion-time. They are also
:
-~

' S

st stand by themselves when computing a value. \ quote is nserted so that this value

O will be computed at run-time rather than at macro-expansion-time. (In the example
[) »
-.';- above. (default nil) becomes (default ’nil).)
\-/:: [t may seem unduly restrictive that defunS does not support all of the standard
A N . . - .
X kevwords in lambda-list. However. this is not that much of a problem because defmacro
.r can be nsed directly in situations where these capabilities are desired. For example.
N Tconcatenate is defined in terms of a more primitive 0sS function Tconcatenate2 ax
'::: , foliows.

4,
a0 . . .
o (defmacro Tconcatenate (Oitemsl Oitems2 &rest more-Oitems)

. (if {null more-Oitems)
‘o0 ‘(Tconcatenate2 ,0itemsi ,Qitems2)
Oy ‘(Tconcatenate2 ,0itemsl (Tconcatenate ,01tems2 .,more-Oitams))))
3
‘ * - N .
, : I'sing defmacro directly also makes it possible to define vew higher-order 0Oss fune
S tion-. For exauple, an 0Ss function analogons to substitute-if could he defined as
o follows. 1 The Eoss ensutes that newitem will only e evaluated once.)

h

)
> T
s
I
I

»

L

(NI,

IO ._}.\. At e A A T T A T T RN e P O O
LA T ol N I3 I NDEN . N0 % e Y A A S AR
‘ ‘ A P A A A A N R AT A A DA W AT A AR

TETETETRTRATATET R TN TN T RO N OR ST S Y

Multiple Values 17

(defmacro Osubstitute-if (newitem test 1items)
(let ((var (gensym)))
s ‘(letS ((,var ,items))
.:.}f (if (funcall ,test ,var) (Eosc .R ,rewitem, ,var,)))

(Osubstitute-if 3 #'minusp (1 -1 2 -3]1) = [1 3 2 3]

Multiple Values

The 088 macro package supports multiple values in a nuniber of contexts, A~ di-
cissed above. letS can be used to bind variables to multiple valites returned by an Oss
function. Faculties are also provided for defining 0ss functions which return mulup'e
values. The support for multiple values is complicated by the fact that the 0ss macro
package implements all communication of values by using variables. \s a result. it is not
possible to support the standard Common Lisp feature that multiple values can coexist
with single values without the programmer having to pay much attention to what is going
oi. When using 085 expressions. the programmer has to be explicit about how manv
values are being passed around.

® valS &rest expr-iist = &rest multiple-value-result

This is analogous to values except that it can operate on 0s8S values. [t takes in
the values returned by n different expressions and returns them as n multiple values. It
enforces the restriction that the values must either all be 0$s values or all be non-0ss

- values. The following example shows how a simple version of Eplist could be defined.

SO A
o . 4
(defunS simple-Eplist (place)
(letS ((plist (EnumerateF place #’cddr #’null)))
(valS (car plist) (cadr plist))))

It is possible to use values in an 0SS expression. However. the results will be very
different from the results obtained from uring vals. The values will be implicitly mapped
like any other non-0ss form. The value ultimately returned will be the single value
returned by TmapF.

(progns (valS (Elist *(1 2)) (Elist '(3 4)))) = [1 2] (3 4]
(prognS (values (Elist ’(1 2)) (Elist ’(3 4))))
= (prognS (TmapF #’(lambda (x y) (values x y))
(Elist (1 2)) (Elist ’(3 4)))) = [1 2]
e pass-valS u expr = &rest nltiple value-result

This funetion is used essentially ax a declaration, It tells the 0SS macro package that
the forin expr returns nomaltiple vabies which the programmer wishes to have preserved
in the context of the 0SS expression. (This is needed, because Common Lisp does not
provide any compile time way to determine the number of arguments that a function will
return.) The fiest example below enumerates a list of syinbols and returns a list of the

0. internal syiubols. if any. which correspond to thew The second example defines a two
=, ~r T . :
h ARVl vitlied 08s function which locates symbols.
-,,/; S
A
~
~
paiy]
v
04
2y
S
)
. .f{ AT Lt T A ;\G&‘ "’- .--'\-‘.‘o.,\w \."“-’.‘ S o >.;".;_- .-‘.'-\'A‘.‘- ‘.-:

RS .\.:' ;" :“. e
CANERERE Bl .\{\'_\'.\'t\'.\",x_

.
-
-
o
%

N L L s e

. A AR A R i e e e I '.‘?

f
N I3 Reference Manunal
‘ (letS+ ((names (Elist ’(zots Elist zorchi))
s ((symbols statuses) (pass-valS 2 (f:rnd-symbol istring names)))’
K (internal-symbols (Tselect (eq statuses :internal) symbols))
3 (R1list internal-symbols)) = (zots zorch?
') (defunS find-symbols (names)
o (declare (type oss names))
~ (pass-valS 2 (find-symbol (string names));’
S (find-symbols [zots Elist zorch])
P => [zots Elist zorch] [:internal :inherited :internal]
v ['he form pass-valSs never has 1o bhe used in conpunction witn an oss function. hecanse
i the 0SS macro package knows how many vadues every oss function returns, Stmilarly.
- pass-valS never has to be used whern multiple values are being bonrad by Lets. hecanse the
- syviatax of the letS indicates how many values are returned. + A\ a result, the pass-vals
v in the first example above s not necessary.) However, in situations <uch as the second
’ example above. pass-valS must be used.
LY
"
N Alteration of Values
N I'he transformations introduced by the 08s macro packace are inherently antagonistic
. .
‘ to the transformations introduced by the macro setf. I particular. 0ss function calls
” cannot be nxed as the destination of a setf. In order to et around this problem. the 0ss
- macro package supports a separate construct which is in fact more powerful than setf.
- e alterS estinations items = iterns
b [his form takes in a series of destinations and a series of items and stores the items E
(i the destinations. It returns the series of items. Like setf. alterS cannot be applied T
b to a destination unless there 1s an associated definition for what should be done (see the
S discussion of alterableS in bt). The outputs of the predefined functions Elist. Ealist.
L
o Eplist. Efringe. Evector. and Esequence are alterable. The effects of this alteration
L]
2 are illustrated in conjunction with the descriptions of these functions. For example. the |
following <ets all of the elements in a list to nil. i
\
. (et ((list "((a . 1) (b . 2) (¢ . 3))))
S (alterS (Elist list) nil)
D,
. list) = (nil nil nil)
As a related example, consider the following. Althonsh setf cannot he applied to
~ an oss function. 1t can be applied 10 a non 0SS function in an 08s expression. In the
- example helow. setf is used to set the edr of cach element of a list to nil ‘
- (let ((list '(Ca . 1) (b . 2) (c . 3))))
. (prognS (setf (cdr (Elist list)) nil})
(list) =3 ((a) (b) (<))
[\~
S \ key featnre of alterS is that fin contrast ta satft a ~tructure can be altered by
4 . . L
- applving alterS to a variable which contains cnumerared clements ot the structure. T his
.- .
Ce 1~ u-ebal becanse the old value in a strueture can be used 1o Jdeade what new value
‘ shondd be put o the structure. (When alterS is applied 1o such a variable it modifies
v the strictiure bemng enumerated hat does ot change the vaiue of the variable. e
v LR
o v
'
'
’
w
w
(

&\. 1 l“

o)
s
-~

by

AP A

S

s
.

LR

LR

&

bS

o g
-

PR

e e e
Y

o

L4

NN

G4

i R R e }

s
.

P
PR A A
A .

»

v

a5

I3

]
P

e AP

* L

R
P I T B §

hd

LN NSy

Al

@)

X

“. "."- 11 "l. \q.

't "l Il -'-
AR

r

PN

%

A
‘%

-

-

2

@ 1&&‘:,{'

.
I\I.\&l\‘

@

Debugging i

(letS* ((v #(1 2 3))
(x (Evector v)))
NS (alterS x (* x x))
T (valS (Rlist xY y)) =+ (1 2 3) #(¢ 1 9}

Another interesting aspect of alterS i~ that it can be apphed to the outputs of a
nutnber of transducers. This is pos~ible whenever a transducer passes through nnehanged
a series of values taken from an input which 1s itself alterable. This can happen with the

transducers Tuntil. TuntilF. Tcotruncate. Tremove-duplicates. Tsubseries. Tselect.

TselectF. Tsplit, and TsplitF. For example. the following takes the absolute value of

the elements of a vector.

(letS* ((v #(1 -2 3))
(x (TselectF #’minusp (Evector v))))
(alters x (- x))
v) => #(1 2 3)

Debugging

The 0ss macro package supports a number of features which are intended 1o faciiitate
debugging. One example of thisis the fact that the macro package tries to use the variable
nanes which are bound by a letS in the code produced. Since the macro package i forced
to use variable renaming in order to implement variable scoping, it cannot guarautee that
these variable names will be used. However. there is a high probability that they will,

) . If a break occurs in the middle of an 0ss expression. these variables can be inspected
in order to determine what 15 going on. If a 1letS variable holds an 0SS series, then the
variabie will contain the current element of the series. For example. the 0SS expression
below is transformed into the loop shown. (For a discussion of how this transformation

ix perfornied see 6 .

(letS* ((v (get-vector user))
(x (Evector v)))
(Rsum x))

(l1et (#:index-9 #:last-8 #:sum-2 x V)
(setq v (get-vector user))
(tagbody (setq #:index-9 -1)
(setq #:last-8 (length v))
(setq #:sum-2 0)
#:L-1 (incf #:index-9)
(if (not (< #:index-9 #:last-8)) (go oss:END))
(setq x (aref v #:index-9))
(setq #:sum-2 (+ #:sum-2 x))
(go #:L-1)
oss:END)
#:sum-2)

o showS thing &optional (formar " %"S") (stream *standard-outputs) => fhing

- I'his function is convenient ‘or printing out debuguging information while an 0Oss ex.
pression i~ being evaluated. It can be wrapped around any expression no matter whether

o e e (G “J'(“ e "'.-w\ﬂ_. R IO

>

N WL mc‘x.‘r;r‘m

Yol

4

LA

o .

s 30 Reference Manual

-

N NG it produces an 08$ value or a non-0ss value withont disturbing che containing expression.

.,:'_‘?, I'he function prints out the value and then returns it. If the value is a non-08s thing.
‘AN - -
2 it will be printed out once at the time it is created. I it s an 0SS series thing. it will i
B . . - . . 2N
NN he printed out an element at a time. The formar can be used to print a tag in order to -
! identify the value being shown.
N
s

(showS format stream)
= (let ((x thing)) (format stream format x) x)

«
S

iy (lets ((x (Elist ’(1 2 3))))

- (Rsum (showS x "Item: “A, "))) = 6

‘3) ;;The output "Item: 1, Item: 2, Item: 3, " is printed.
')

,.‘3":'.: ® *permit-non-terminating-oss-expressions*

G On the theory that non-terminating loops are seldom desired. the 0ss macro pachage
Reat checks each loop constructed to see if it can terminate. If this variable is nil {which 1~
AR the default). then an error message is issued for each loop which the 0$s macro packaze
D thinks has no possibility of terminating. This is useful in the first example below but
e not in the second. The form compiler-let can be used to bind this variable to T around
s such an expression.

£,

e (Rlist 4) ;Signals error 15
[(block bar ;Signals error 15

- (letS ((x (Eup :by 10)}))

1 (if (> x 15) (return-from bar x))))

- (compiler-let ((*permit-non-terminating-oss-expressions* T)) ﬁ

(block bar

(letS ((x (Eup :by 10)))
(if (> x 15) (return-from bar x))))) = 20

® slast-oss-loop*

This variable contains the loop most recently produced by the 0sS macro package.

After evaluating (or macro-expanding) an 0ss expression. this variable can be inspected

NS
> in order to see the code which was produced.
L
SN
s ® *last-oss-errors
2AN . :
I'his variable contains the most recently printed error message produced by the 0ss
>
b macro package. The information in this variable can be useful for tracking down errors.
e
o
W .
e Side-Effects
$ 1
Fd "2 -
®.- [he 0Ss macro package works by converting each 0ss expression into a loop. This
Nt allows the expressions to be evaluated very ethcientlyv, hut radically changes the order
\. . . . - . . - .
- in which computations are performed. In addition. off-line ports are supported by code
-,- N
motion. Given all of these changes. it is not surprising that 0SS expressions are primarily
intended to be used in situations where there are no side-effects. Due to the change in
0. computation order it can he hard to figure out what the result of a side effect will Le
(~ ‘W N \1
,'Q“' ~
|~.
A
1‘0 ..0
St
@4
",
[y &
o
v -

Ny '.ﬁ"r .

R A A AN .'-a\ 2 ")-" .'% e A At
mis..xu WO .i\f)ﬂ\:A'JC'.A} AN u‘)-.b.n s .“.nm.

L

LT T AR T T AT WL TAT LT LELE e e e e A

Side-FEtfects o1
5_:: Nevertheless. sinee side-etfects (particularly tn the form of input and output) are an
:’.: inevitable part of programming. severil steps are taken in order to make the behavior of
i'.:s x'\ 0SS expressions containing <ide etfect operations as easv to understand as possible. First.
O when tmplicit mapping ix applied. it s applied to as large a subexpression us possible.
This makes it straightforward to understand the interaction of the <ide-effects within a
single mapped subexpression. Several examples of this are ziven in the section above
which discusses umplicit mapping.

Second. wherever possible, the 088 macro package leaves the order of evaluation of
the 0ss functions in an expression unchanged. Fach function is evaluated incrementaliy
an elentent at a time. but on each cvele, the processing follows the svntactic ardering of
the functions in the expression.

The one place where order changes are required 1s when handling off-line ports. How-
ever, things are simplified here by ensuring that the evaluation order implied by the order
of the inputs of an off-line function is preserved.

Third. when determining whether or not each termination point i~ connected to every
cutput in each on-line subexpression. functions whose outputs are not used for anything
are considered to be outputs of the subexpression. The reasoning behind this s that f
the outputs are not used for anything. then the function must be being used for side-effect
and it must matter that the function get evaluated the full number of times it should be.
For example, consider the expressions below. The first expression prints out the numbers
in a list and returns the first negative nuinber. The second expression signals an error. If
it did not signal an error. it would fail to print out all of the numbers in the list. because
Rfirst was cause the expression to terminate prematurely.

Ve (Lotsx ((x (Elist *(1 23 -4 §))))
(princ x)
(Rfirst-passive (TselectF #’minusp x))) == -4
; ;The output "123-45" printed.
(letS* ((x (Elist ’(1 2 3 -4 5)))) ;Signals error 18
(princ x)
(Rfirst (TselectF #’'minusp x)))
-
2o

- R R OR G SR T f“f“ T N S N ot TN 2
< NN AN NI NENENY 2 Ny
N‘(A.A{ﬁ.’:&'f&f 4 ﬂ“&i\i\i R A S AR A O ."r.ﬂu'?.‘m‘)..n\a VAV AN '.r" ST AN A RV ATAT RTINS

)

e o7
!-’.’A.}
LSERELT

Tl ol
i
< R

‘.
N

e g T

XN 2
R L]
XA

h)
Pd

sk e
55
}'.l RS

»
A

oA

"N

. ... "" LB ..l..'u v ¥

(1]
(8%

Bibliographv

3. Bibliography

.
e
P
e e

1 A. Aho, J. Hopcraft. and J. Ullman. The Design and Analy<is of Computer
Algorithms. Addison-Wesley. Reading MA, 1974,

2 G. Burke and D. Moon. Loop [teration Macro. MIT LCS TN 169, Julv [us0,

3 R. Polivka and S. Pakin. APL: The Language and [t~ 1'~age. Prentice Hall.
Englewood Cliffs NJ, 1975.

4 G. Steele Jr., Common Lisp: the Language. Digital Press. Mavnard MA. Lux],

R. Waters, “A Method for Analyzing Loop Programs™. IEEE Trans. on Software
Engineering. 5(3):237-247, May 1979.

6 R. Waters. Synchronizable Series Expressions: Part [1: Overview of the Theorv an-f
Implementation, MITAIM-959. November 1987

Lisp Machine Documentation for Genera 7.0, Symbolics, Cambridge MA. 1956,

1 '\"\- \"\'r\’:"\’\..'-f\f‘v(\"qf-}
WAV ¥y . L)

g T I N L S P YL L O S R L A FRYCAS ST R AR e
: ol X \._\ » \ ~ - e . SOV ol .r_.r f.‘i' .r - a J'

~

- 1 W 7
. AN
r'. r‘g'/l:’ o

LTSN
PIFLTL LAY

IAI("‘ "
ST

»
s

Fa A
[4

~/

.
L)
i
»
»
a’a

by

-

prrlS
oy

?’?"l.‘l"l“ M

g

SR

VO

“sd

NN
Ll
N

i
E s
LahNhhS

\

»
R
3
\
e

)

o
AAL A0S

L4 5

‘ ‘A.
V@ sl s
L A y

Pl
AR

SO . -

Y

e

3

ﬁsg

.’*‘\}.‘ v((i

LAY

‘-r AN AN A "-'.‘- -_',-,‘}‘.', .',- '..

4. Error Messages

In order to facilitate the debugging ot 0ss expressions. this section discusses the
various error messages which can be issued by the 08s macro package when processing
the functions described in this document. Each of these error messages is printed out in
the following format. (This format is shown as it appears on the Symbolics Lisp machine
and may differ in minor wayvs in other svstems.)

Warning: Error error-number in 0SS expression:
containing 0SS expression
derailed error message

For exaruple. the following error message might be printed.

Warning: Error 1.1 in 0SS expression:
(LETS ((X (ELIST NUMBER-LIST))
(Y (EUP (CAR HEADER) :TO 4 :LENGTH 5)))
(RLIST (LIST Y X)))
Too many keywords specified in a call on Eup:
(EUP (CAR HEADER) :TO 4 :LENGTH 5)

The first line of each error message specifies the number of the error. This number
is useful for looking up documentation for the error below. The next part of the error
message shows the complete 0SS expression which contains the error. This makes it easier
to locate the error in a program. The remainder of the message describes the particular
error in detail. (The variable *last-oss-aerror* contains a list of the information which
was used to print out the most recent error found by the 0ss macro package.)

The 0Ss macro package reports errors using warn so that processing of other parts
of a program can continue, potentially finding other errors. However, each time an 0SS
error is detected. the 0SS macro package skips over the rest of the 0sS expression without
performing any addition checks. Therefore, even if there are several 0s$ errors in an 0SS
expression, only one 05S error will be reported. When an 0ss error is found, a dummy
value 1s inserted in place of the erroneous 0SS expression. As a result, it is virtually
impossible for the containing program to run correctly.

A kev feature of the 0SS error messages is that they attempt to provide large amounts
of contextual information by printing out portions of program text. Given that 0SS
expressions go throngh multiple stages of macro processing. the macro package has to
work quite hard in order to try to ensure that the program text printed corresponds to
actual user tnput. rather than some intermediate stage of the processing. The package
i~ qnite suceessful in doing this. however. in certain obscure situations. it can fail. In
particular. 1t i~ sometimes nnable to locate any user text to print out. When this happens,
a 7?7 s printed in liew of & piece of program text,

The documentation below describes each of the error messages which the 0ss macro
package can produce. Fach description begins with a header line containing a schematic
rendition of an error message. Italies is used to indicate pieces of specific information
which is inserted in the message. The number of the error is shown in the left margin at

...'\,.,\. .“*\;- - ~ A -
» (A A x) RaxRalalal ! " -‘; .!'u . L2 ._ .bé‘

(A 1Y

L \:f‘\-'\- ' .*

W

54 Error Messages

the beginning of the header. For ease of reference, the errors are described in numerical

order.

Local errors concerning single OSS functions. The following error messages
report errors which are local in that they stem purely from the improper use of a single
0ss function. These errors cover only a few special situations. Many (if not most} local
errors are reported directly by the standard Common Lisp processor rather than by the
0SS macro package. For example. if an 0SS function is used with the wrong number of
arguments. an error message is issued by the standard macro expander.

1.1 Too many keywords specified in call on Eup: call

1.2 Too many keywords specified in call on Edown: call
1.3 Too many keywords specified in call on Tlatch: call

6.

Each of these errors specifies that incompatible kevwords have been provided for the
indicated function. The entire function call is printed out as shown above.

2 Invalid enumerator arg to TconcatenateF: enumerator

This error is issued if the enumerator argument to TconcatenateF fails to he an
enumerator—i.e., fails to be an 0$s function that has no 0s$ inputs, at least one 0s$
output. and which can terminate.

3 Unsupported &-keyword keyword in defunS arglist.

—

This error 1s issued if an &-keyword other than &optional or &key appears in the
argument list of defunS. Other keywords have to be supported by using defmacro directly.
(See the discussion of defunS.)

AlterS applied to an unalterable form: call

This error is tssued if alterS is applied to a value which is not alterable. Values are
alterable only if they come directly from an enumerator which has an alterable value.
or come indirectly from such an enumerator via one or more transducers which allow
aiterability to pass through.

Malformed lambdaS argument arg.

{his error message is issued if an argument of a lambda$ fails to be a valid variable.
lu particular, it is issued if the argument, is not a symbol, is T or nil. is a symbol in
the kevword package, or is an &-keyword. ([t is also erroneous for such a variable to be
declared special. However, this error is only reported on the Symbolics Lisp Machine.)

LambdaS used in inappropriate context: call

This error message s issued if a lambdaS ends up (after macro expansion of the
surrounding code) being used in any context other than as the quoted first argument of
a funcalls.

Wrong number of args to funcallS: call

This error message is issued if a use of funcallS does not contain a number of argu-
uients which is compatible with the number of argunients expected by the 0ss functional

argument.

(s
&2 4 4

P -~ e
Ay Yy
".-" p .'\'.‘ PP

Wi el)

X 2,
s

L4

- PR
) l..".'s LA,

‘l .‘l

v a2
P

ray

-~ .

J.::z RO .

; g r. J i e
RASOAAY ¥

[}
-~

II L@ L

T TN v Y 4 . Ty R AAA Balk il Ak Rl il Sak el Rt Ra® Rt

b |
-

~ Only n return values present where 1 expected: call
This error message 1s 1ssued 1f an 0ss function 1s used in a situation where it is
S expected to return more values than it actually does for example if a 16tS tries to bind
two values from an 0ss function which only returis une. or pass-val$ tries to obtain two
values from an Oss function which only returns one. 1 Non-08$ functions return extra
values of nil if they are requested to produce more values than they actually do.

Errors concerning OSS variables. The following errors concern the creation and
use of letS and lambdaS variables. Like the ones above. theyv are quite local in nature
and relatively easy to fix.

Y Malformed letS{*} binding pair pair.
This error message is issued if a 1etS or letS* binding pair fails to be either a list of
a valid variable and a value. or a list of a list of valid variables and a value. T'he criterion
for what makes a variable valid is the same as the one used in Error 7 except that a
binding pair can contain nil instead of a variable

10 The variable var erroneously declared TYPE 0SS in a letS{*}.

This message is issued if 4 variable in a letS is explicitly declared to be of type oss.

Il The letS{*} variable variahle is unused in: call

This error message is issued if a variable in a letS is never referenced in the body
of the 1etS. Note that these variables cannot be referenced inside a nested lambda or
YA lambdas.

1

|89

The letS{*} variable var setqed.

This error message is issued if a letS variable (either 0SS or non-08S$) is asxsigned to
in the hody of a letS. It is also issued if any of the variables bound by a lambdaS or
defun$ are assigned to.

Non-local errors concerning complete OSS expressions. The following errors
concern non-tocal problems in 08s expressions. The first two are discussed in further

detail in the section on implicit mapping.

—
—

Decompcsition moves: cnde out of a binding scope: surround

This error is issued if the processing preparatory to implicit mapping causes a subex-
pression to be woved out of the binding scope for one of the variables in it. The error
can be fixed by using lets to create the binding scope. or by moving the binding form
<o that it surrounds the entire 0Oss expression. (The testing for this error is somewhat
approximate in nature. [t can miss some erroneous situations and can complain in some
situations where there is no problen. i these latter situations, variable renaming can

he used to eliminate the complaint.)

| 0SS value carried to non-0SS input by data flow from: call to: call
As illustrated below. this error is issued whenever data flow connects an 0SS output
.f-:?_s to a non-0Ss input of an 0SS function as in the example below. (If the expression in
.\".

et ATt e . O N _-.A._\'_.___.'_\. \,'._._-x\\.w
-~ .. - AR . . ERh - _‘ -1'- Ca -f_
el) ¢ " N e e ‘v« ;'*.r"'n..» .?}.f{‘u

T T W

o'y i i ith it et b i A RSSO AL b A M bt bbb l/b bl O M AR AR A AR
raT T
® o

A

'is 56 Error Message-

question is intended to contain a tested loop. the error can be tixed by wrapping the
nested portion in a mapS.)

Soce

Warning: Error 14 in 0SS expression: ’
(Rlist (Rlist (Elist (Elist '((1 2) (3 4)))))) T
0SS value carried to non-0SS input by data flow from:

(Elist ’((1 2) (3)))

to:

(Elist (Elist ’((1 2) (3 4))))

The error message prints out two pieces of code in order to indicate the source and
destination of the erroneous data How. The outermmost part of the first piece of code
shows the function which creates the value in question. The outermost function in the
second piece of code shows the function which receives the value. (Entire subexpressions
are printed in order to make it easier to locate the functions in question within the 0ss
expression as a whole.) If nesting of expressions is used to implement the data flow. then
the first piece of code will be nested in the second one.

15 Non-terminating 0SS expression: expr
This error message is issued whenever a complete 0$S expression appears incapable of
rerminating. The expression in question is printed. It may well be only a subexpression
of the 0SS expression being processed. (This error message can be turned off by using
the variable *permit-non-terminating-oss-expressionsx.)

Errors concerning the violation of restrictions. These errors are issued when
an 0SS expression violates one of the 1solation restrictions or the requirement that within .
each on-line subexpression. there must be a data flow path from each termination point @

1o each output.,

]t Non-isolated non-oss data flow from: call to: call
This error is issued if an 0SS expression violates the non-0ss data flow isolation
restriction. As shown below. the error message prints out two pieces of code which

indicate the data flow which triggered the error.

Warning: Error 16 in 0SS expression:
{LETS* ((NUMS (EVECTOR #(3 2 8)))
(TOTAL (REDUCEF O #’+ NUMS)))

(RVECTOR (/ NUMS TOTAL)))

Non-isolated non-0SS data flow from:

(REDUCEF 0 #'+ NUMS)

to:

(/ NUMS TOTAL)

As disenssed on page 10. errors of this type can always be ehminated by duplicating
subexpressions until the data flow in question hecones zolated. For example, the error
above could he fixed by duplicating the expression (Evector #(3 2 8)).

.l Non-isolated oss input at the end of the data flow from: call to: call
.2 Non-isolated oss output at the start of the data flow from: call to: call

-1 =1

One of these errors is issued if an 0$S expression violates the off-line port isolation
restriction. The error message prints out two pteces of code which indicate a data flow N

- ampva oW
MR LN Ny

0 g vmm{ o AL AT A A T NN A 4t e W
S A R N RN

.
LW

L
IS

P
aa A

. .
L}

.

R
‘l

s
"'l .
By

).l

-

»

rh “;..)"J. ,

PRar iy

v'-'.'~w
LAY

A S
waN

Pd

LS

NT

PR
2o A

h §

DY S A ¢

A A

okl

-~ e

)
a'aa

5 5 44 Yy

}J“J ’.'-

-

’

K- N

which ends ror startsron the port i gquestion. A~ discussed on page 10, errors of this

type can alwavs be elinnuated by aaophicating subexpressions until the port in question

}n‘.'.)'l‘:‘\ i-,q)“;(?f‘l’

I~ o data flow path from the termination point: call to the output: call

[his error i< issned i o termination point in an on-line subexpression of an 08s
expression 1= not connected v it tiow 1o one of the outputs. As discussed on page 12,
the errar can often be tixed by using pon-early terminating 058s functions instead of early

terminating binections, Inocthes sirpartions. tbe error can be fixed by using Tcotruncate
,
|

toindicate relationships hetween noness Wt the worst, code copying can be nsed.

Errors concerning implementation limitations. These errors retlect himitations

of the way the 0SS macro pickage 1~ implemented rather than anyvthing fundamental
ahout OS8S§ expressions,

LambdaS body too complax tc merge into a single unit: forms

It general, the 0SS macro packaze i~ capable of corabining together any kind of per
missible O8NS expression. [n particular. thereas never a problem as long as the expression
as a whole does not have anv oss inputs or 05y ontputs. However, in the body of a
lambdaS. it is possible to write 0ss expressions which have both 0ss mputs and 0ss
ontputs. If such an expression has a data How path from an 0SS input to an 0SS ontput
which contains a non-0ss data flow are. then this error message is issued. For example.
the error would be issued in the situation below.

(funcallS #’(lambdaS (items) ;Signals error 19
(declare (type oss items))
(Elist (Rlist items)))

An error message is issiued in the situation above. because the situation is unlikely
to occur and there is no wayv to support the situation without resorting to very pecnliar
code In particnlar, the input items in the example above would have to he converted
into an off-line input.

]

The form funcrinon not allowed in 0SS expressions.

In general. the 088 macro packagze has a sufhicient understanding of special forms to
bandle them correctly when they appear in an 0ss expression. However. 1t does not
hoondie the forns compiler-let. flet. labels. or macrolet. The forms compiler-let and
macrolet wailld not be that hard to handle. however 1t does not seem worth the etfort.
[4e forris £let and labels would he hard to handle. because the 0ss macro package
does not preserve binding seopes and therefore does not have anyv obvions place to put
thewsin the code it produees. Al fonr form: can be used by simply wrapping them
around entire OSs expressions rather than putting them in the expressions,

'

[
=1

Documentation tor these errors Appears m t.

R -

S Y T AT ST O Ay N AT L \ R Ky W -
o
“Wh T, c,l‘\.“. DO .I‘_:'.t‘c AN T o, W WO QY £ 'F

N

“\\\\“./-"‘(~

.‘ l" l-' L'. . ..

1%
%)
19Y

P

.

SfAADSITED T AN

Tt
[A

-_-
ol g P e e

e erEe

P BN e R o S)

o

byt ¥

&

Ce

LN

A

Index of Fuuctions

5. Index of Functions

This section is an index and concise summary of the functions, variables. and special
forms described in this document. Each entry shows the nputs and outputs of the
function. the page where documentation can be found. and a one line description.

The names of 0ss functions often start with one of the following prefix letters.

E Fnumerator.
T Transducer.
R Reducer.

(ccasionallv, a name will end with one of the following suthix letters.

S Special form.
F Function that takes functional arguments.

In addition, the argument and result names indicate data type restrictions (e.g.,
number indicates that an argument must be a number. item indicates that there is no
*vpe restriction). Plural names are used iff the value in question is an 0ss series (e.g..
numbers indicates an 0SS series of nuwmbers: items indicates an 0SS series of unrestricted
valiues). The name of a series input or output hegins with “0" iff it is off-line.

alterS destinations items = item-

p. X Alters the values in destinations to be items.
defunS natwe lambda-list {doc} {decl}* #body expr-list

p. 6 Defines an 0SS function. see lambdas.
Ealist alisr &optional (rest #’eql) => kevs values

p. 17 Creates two series containing the keys and values in an alist.
Edown &optional (start 0) &key (:by 1) :to :above :length => numbers

p. 16 C'reates a series of numbers by counting down from start by :by.
Efile name => items

p. 20 Creates a series of the forms in the file named name.
Efringe tree doptional (leaf-test #’atom) => [eaves

p. IR Creates a series of the leaves of a tree.
Ehash tahle => keys values

p. 19 Creates two series containing the kevs and values in a hash table,
Elist [ist &optional (end-test #’endp) = elements

p. 1 Creates a series of the elemients in a list,
EnumerateF init step &optional test =2 items

p. 20 Creates a seties by applyving step to inrt until test returns non-null.
Enumerate-inclusiveF init step fest 2> jtems

p. 20 Creates a series containing one more element than EnumerateF.
Eoss &rest expr-list = items

p. 15 Creates a series of the results of the expressions.
Eplist plist = indicators values

p. 17 Creates two sectes containing the indicators and values in a plist. :'-I'CJ

-.‘I

P P I P L T R e T N e L R e R e A) N e v e -.fﬂ' ‘J’ -

ITAY ',;-f‘ "olodarn (- Nata 1\‘\{ e .(ol ; _',. ‘} o’ J' Py ‘ L RGN ".
» "» » A . d ol ! B +) » a B o’ . . B . B . » - -l » ! «

-
)

e
C YA
o,
T,
. .f-r.r
A ‘\\

\"

MY

Esequence -~cqitence koptional inidices (Eup)) = elements
Py Ureates a seres of the eletients ina sequence.
Esublists i~ g~ptional (enef rosr #endp) -3 <nhlicts
p. I Creates a seres of the ~ablhists i a List.
Esymbols &optional (packaue spackage*) =3 svmihols
. b Creates a seres of the svinhols in p;u‘kiigtn
Etree tfree optional ([eal-resr #’atom) = nodes
p. s Creates a series of the nodesn a tree.
Eup &opticnal (start 0) gkey {:by 1) :to :below :length = numbers
p.o L Creares a sertes of imombers by counting up from start by :by.
Evector vector &optional (infives {Eup)) = elenients
1N Creates a senies of the elvments inoa vector.
*'unfallS function &rest expr-list = result
p. 15 Applies an 08s furction to the results of the expressions.
lambdaS var-list {dec}* gbody expr-list
1t Form for specifving literal 0ss functions.
last-oss-error
p. 30 Varable containing a description of the last error in an 08s expression.
last-oss-loop
p. 50 Variable containing the loop the last 0SS expression was converted into.
letS var-value-pair-list {decl}* &body expr-list = result
p- 37 Binds 08s variables in parallel.
letS* var-value-pair-list {decl}* &body expr-list = result
39 Binds 0ss variables ~cquentially.,
mapS &body expr-list = itenis
13 Causes expr-list to he mapped over the 0ss variables in it.
oss-tutorial-mode &optional (T-or-nil T) = state-of-tutorial-mode
14 If called with an argument of T. turns tutorial mode on.
pass-valS n expr = &rest rnultiple-value-result
17 Used to pass multiple values from a non-0$s function into an 0SS expression.
*permit-non-terminating-oss-expressionsx
p. 50 When non-null, inhibits error messages about non-terminating 0SS expressions.
prognS &body expr-list = result
p. 39 Delineates an 0SS expression.
Ralist keyvs values = alist
32 Combines a series of keys and a series of values together into an alist.
Rand hools = bool
p. 36 Computes the and of the elements of hools, terminating early.
Rand-late bools = hool
p. 3n Computes the and of the elements of hools.
Rappend [ists = [Ist
32 Appends the elements of lists together into a single list.
Rbag items = [ist
p. 32 Combines the elenents of irems together into an unordered list.

'\-’\ "-\."\"' 7 '-." L ot .’\" Rty

60 Index of Function-

ReduceF init function items = result
p. 35 Computes a cumulative value by applying function to the elements of items.
Rfile name items &rest option-plist = T
p. 31 Prints the elements of items into a file. ‘::j
Rfirst items &optional (defanlt nil) = item
p. 35 Returns the first element of items, terminating early.
Rfirst-late Items &optional (default nil) => Item
p. 35 Returns the first element of items.
Rhash kevs values &rest option-plist => table
p. 33 Combines a series of kevs and a series of values together into a hash table.
Rlast items &optional (default nil) = item
p. 34 Returns the last element of items.
Rlength items => number
p. 34 Returns the number of elements in items.
Rlist items => list
p. 32 Combines the elements of items together into a list.
Rmax numbers = number
p. 34 Returns the maximum element of numbers.
Rmin numbers = number
p. 34 Returns the minimum element of numbers.
Rnconc lists = [ist
p. 32 Destructively appends the elements of lists together into a single list.
Rnth n items &optional (default nil) = item
p. 35 Returns the nth element of items, terminating early. ﬁ
Rnth-late n items &optional (default nil) = item ~v
p. 35 Returns the nth element of items.
Ror bools = bool
p. 36 Computes the or of the elements of bools. terminating early.
Ror-late bools = bool
p. 36 Computes the or of the elements of bools.

Rplist indicators values = plist
p. 33 Combines a series of indicators and a series of values together into a plist.
Rsum numbers => number
p. 31 Computes the sum of the elements in numbers.
Rvector iterns &key (:size 32) &rest option-plist = vector
». 33 Combines the elements of items together into a vector.
showS thing &optional (format "~%"S") (stream *standard-outputs) => thing
p. 19 Displavs thing for debugging purposes.
Tchunk amount Qitems = lists
p. 27 Creates a series of lists of length amount of non-overlapping snbseries of Qiterns.
Tconcatenate (itemis! Oitems” grest more-Oitems = jrems
p. 27 Concatenates two or more series end to end.
TconcatenateF Frnumerator Oitemns = items

p. 27 Concatenates the results of applyving Enumerator to the elements of Qiterus.

RRANP

s

= o -
LA LA AN

[T

-t

-« . AT
A DL R P,

Y

a

Sl.l

s 5

ot
v

ot
5

Tcotruncate itemns &rest ore-items = initial-items &rest more-initial-1tems

p. 25 Truncates all the inputs to the length of the shortest input.
Texpand bools Qitems &optional (default nil) = items

p. 30 Spreads the elements of items out into the indicated positions.
Tlastp Oitems = bools items

p. 29 Determines which element of the input is the last.
Tlatch items &key :after :before :pre :post => masked-items

p. 21 Modifies a series before or after a latch point.
TmapF function &rest items-list = items

23 Map - function over the input series.

Tmask Omonotonic-indices = bools

p. 28 Creates a series continuing T in the indicated positions.
Tmerge Oitemsl Oitems?2 comparator = items

p- 28 Merges two series into one.
Tpositions Obools = indices

p. 28 Returns a series of the positions of non-ncll elements in Obools.
Tprevious items &optional (default nil) (amount 1) => shifted-items

p. 21 Shifts items to the right by amount inserting default.
Tremove-duplicates (itemns &optional (comparator #’eql) = items

p. 26 Removes the duplicate elements from a series,
TscanF {init} function items = results

p. 23 Computes cumulative values by applying function to the elements of items.
Tselect bools &optional items => Oitemns

p. 29 Selects the elements of items corresponding to non-null elements of bools.
TselectF pred items = Oitems

p. 30 Selects the element~ of items for which pred s non-null.
Tsplit items bools &rest more-hools = Oitems] Oitems2 trest more-Oitems

p. 31 Divides a series into multiple outputs based on bools.
TsplitF items pred &rest more-pred = QOitemsl Oitems2 krest more-Qitems

p. 31 Divides a series into multiple outputs based on pred.
Tsubseries Oitems start doptional (below (length Qitemns)) => items

p. 27 Returns the elements of Oitems from start up to. but not including. below.
Tuntil bools items = initial-items

p. 22 Returns items up to. but not including. the first non-null element of bools.
TuntilF pred items => initial-items

p. 22 Returns items up to. but not including. the first element which satisfies pred.
Twindow amount Oitems = lists

p. 27 Creates a series of hists of length amount of <nccessive overlapping subseries.

type oss &rest variable-list

p. 15 Declaration used to <pecify that vanables are 088 variables,
valS &rest expr-list => &rest multiple value result
p- 47 Returns multiple series values,

- . S et

\ - -

‘--_'-' erele el ERRIN

- > -
S J elale
\ .. . ,. o .J
L‘A.f;.';.'i- L‘L'('L!.._";)ﬂhq‘\.q-\."._\.x- -i‘.;

"
-
)

A\
Trff

L J

o
o,
§)
e

-
SJ‘
~

5

Le
¥

.
T
T

