
ADA COMLE VAIDTO SUMMAYRP T LINCO UU M
SYSTEMS CORPORATI (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER W-P AFB ON4 ADA VALI 69 JUN 87

UNCLASSIFIED AYF-VSR-88 8887 F/G 1215

L"-211. 11.6

MICROCOPY RESOLUTION TEST CHART
0I41V0#AAL WKl AU OF STNIIIIIII1-

UNCLASSIFIED
SECURITY C.ASSIFICAT!3% OF THIS PAGE tWherD)aaEnre_

REPORT DOCUMENTATIONP
" .E,,o..AD A190O 6

1. REPORT NUMBER ,4 _OG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 9 June 1987 to 9 June 1988

Alliant Computer Systems Corp. Alliant FX/Ada Compiler,

Version 1.0 Alliant FX/8 Host and Target 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(sL 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson AFB

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 9Jurie 1987
United States Department of Defense 13. NUMBER OF PAUES
Washington, DC 20301-3081 39

14. MONITRING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson UNCLASSIFIED
15a. 2 ASJFICATION/DOWNGRADING

N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STAT .MENT (of the abstract entered in Block 20. If different from Report) D T-C
UNCLASSIFIED 41i-Z E T

1iJANO06' IM

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

00 u 1473 EDITION OF I NOV 65 IS OBSOLETE

I JA 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THI PAGE (When Data Enreed)

L o ', 4 , /

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation tezting performed on the Alliant FX/Ada Compiler, Version
1.0, using Version 1.8 of the Ada® Compiler Validation Capability (ACVC).
The Alliant FX/Ada Compiler is hosted on an Alliant FX/8 operating under
Concentrix , Release 3.0. Programs processed by this compiler may be
executed on an Alliant FX/8 operating under Concentrix, Release 3.0.

On-site testing was performed 8 June 1987 through 9 June 1987 at Alliant
Computer Systems Corporation, Littleton MAv under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that
supported by the inplementation, were not processed. After the 2210 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 8 of the processed tests determined to be inapplicable. The
remaining 2202 tests were passed..--....

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
____ _ 2 ~ 14 5 6 7 8 9 10 11 12 114

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 C- 0

Inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/RIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

ILi

AVF Control N-nber: AVF-VSR-88.0887
87-02-09-ACS

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Alliant Computer Systems Corporation
Alliant FX/Ada Compiler, Version 1.0

Alliant FX/8 Host and Target .

Completion of On-Site Testing:
9 June 1987

Prepared By: C TAB
Ada Validation Facility AU[

ASD/SCOL 0
Wright-Patterson AFB OH 45433-6503

Prepared For: -
Ada Joint Program Office "..

United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

* I

+ +

+ Place NTIS form here +
. .

Adae Compiler Validation Summary Report:

Compiler Name: Alliant FX/Ada Compiler, Version 1.0

Host: Target:
Alliant FX/8 under Alliant FX/8 under
Concentrix, Release 3.0 Concentrix, Release 3.0

Testing Completed 9 June 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Ch!twood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

SValidation Organization

Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada JntProgram Office
Virginia L. Castor
Director
Department of Defense
Washington DC

Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Alliant FX/Ada Compiler, Version
1.0, using Version 1.8 of the Ada® Compiler Validation Capability (ACVC).
The Alliant FX/Ada Compiler is hosted on an Alliant FX/8 operating under
Concentrix , Release 3.0. Programs processed by this compiler may be
executed on an Alliant FX/8 operating under Concentrix, Release 3.0.

On-site testing was performed 8 June 1987 through 9 June 1987 at Alliant
Computer Systems Corporation, Littleton MA, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After the 2210 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 8 of the processed tests determined to be inapplicable. The
remaining 2202 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

i

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES -3
1.4 DEFINITION OF'TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS.3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-3
3.7.1 Prevalidation 3-3
3.7.2 Test Method 3-4
3.7.3 Test Site 3-4

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACV, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

A1-1

INTRODUCTION

1 .1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

• To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any umsupported language constructs
required by the Ada Standard

• To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
8 June 1987 through 9 June 1987 at Alliant Computer Systems Corporation,
Littleton MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not

represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard cther than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organizaticn
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations

* according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

NO I•

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to eport their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Cl&?s A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,

FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada

Standard for some parameters--for example, the number of identifiers

1-

CHAPTER 2

CONFIGURATION INFORMATION

,..1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Alliant FX/Ada Compiler, Version 1.0

ACVC Version: 1.8

Certificate Expiration Date: 870608W1.08076

Host Computer:

Machine: Alliant FX/8

Operating System: Concentrix, Release 3.0

Memory Size: 16 megabytes

Target Computer:

Machine: Alliant FX/8

Operating System: Concentrix, Release 3.0

Memory Size: 16 megabytes

2-1

-CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other
classes also characterize an implementation. This compiler is
characterized by the following interpretations of the Ada Standard:

" Capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55A03A..H (8 te3ts), D56001B, D64005E..G (3
tests), and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4A002A, D4AOO2B, D4AO04A, and
D4AO04B.)

" Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORT FLOAT, and TINY INTEGER in the package
STANDARD. (See tests-386001C and B660071D.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAXINT during compilation, or it may
raise NUMERIC ERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR during execution. (See
test E24101A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST

raises NUMERIC ERROR when the array type is declared. (See

test C52103X.)

A packed two-dimensional BOOLEAN array with more than

INTEGER'LAST components raises NUMERIC ERROR when the array

subtype is declared. (See test C52104Y.)

A null array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either

when declared or assigned. Alternatively, an implementation
may accept the declaration. However, lengths must match in

array slice assignments. This implementation raises
NUMERIC ERROR when the array type is declared. (See test
E52103Y.)

In assigning one-dimensional array types, the expression

appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is

compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to

be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either

accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible

discriminant constraint. This implementation accepts such

subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluzted in its entirety before CONSTRAINT ERROR

is raised when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

• Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all

choices are evaluated before being checked for identical

bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

2-3

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in thc ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5

I

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declarat .on of a parameterless

nction and an enumeration literal having the same profile in
rhe same immediate scope, or it may reject the function
declaration. If it accepts the function declaration, the use
of the enumeration literal's identifier denotes the function.
This implementation rejects the declaration. (See test
E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they are used in testing other language
features. This implementation accepts 'SIZE ano 'STORAGESIZE
for tasks, 'STORAGESIZE for collections, and 'SMALL clauses.
Enumeration representation clauses, including those that
specify noncontiguous values, appear to be supported. (See
tests C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

" Pragmas.

The pragma INLINE is supported for procedures and functions.
(See tests CA3004E and CA3004F.)

• Input/output.

The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and recora types with discriminants.
The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E, and
CE2401D.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE3102C.)

More than one internal file can be associated with each
external file for text I/0 for both reading and writing. (See
tests CE3111A..E (5 tests).)

More than one internal file can be associated with each
external file for sequential I/0 for both reading and writing.
(See tests CE2107A..F (6 tests).)

2-4

1 6

CONFIGURATION INFORMAT: ,N

More than one internal file can be associated with each

external file for direct I/O for both reading and writing.

(See tests CE2107A..F (6 tests).)

.-Li external file associated with more than one internal file

can be deleted. (See test CE2110B.)

Temporary sequential files are given a name. Temporary direct

files are given a name. Temporary files given names are
deleted when they are closed. (See tests CE2108A and CE2108C.)

• Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2

m2-5

I

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
Alliant FX/Ada Compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 178 tests were inapplicable to this implementation, and
that the 2202 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 69 865 1192 17 13 46 2202

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 176 0 0 0 178

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

CHAPTER TOTAL

___ 4 5 6 7 8 __ 10 11 12 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A B37401A B49006A C92005A
B33203C C41404A B4AO10C C940ACA
C34018A B45116A B74101B CA3005A..D (4 tests)
C35904A C48008A C87B50A BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 178 tests were inapplicable for
the reasons indicated:

• C34001E, E52004D, B55B09C, and C55BO7A use LONG INTEGER which is
not supported by this compiler.

. C34001G and C35702B use LONG FLOAT which is not supported by this
compiler.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT 10.

3-2

4 TEST INFORFATION

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and

largest values :-n DURATION's base type. This is not the case for

-.his implementation.

" The following 170 tests require a floating-point accuracy that

exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35708L..Y (14 tests) C45421L..Y (14 tests)

C35705L..Y (14 tests) C35802L..Y (14 tests) C45424L..Y (14 tests)
C35706L..Y (14 tests) C45241L..Y (14 tests) C45521L..Z (15 tests)

C35707L..Y (14 tests) C45321L..Y (14 tests) C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test

because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then

compiled and examined. The splitting process continues until all errors
are etected by the compiler or until there is exactly one error per split.

Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be

processed.

Splits were required for 19 Class B tests:

B24204A B2AOO3B B38008A B67001A B91003B
B24204B B2AO03C B41202A B67001B B95001A
B24204C B33301A B44001A B67001C B97102A
B2A0O3A B37201A B64001A B67001D

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Alliant FX/Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler

successfully passed all applicable tests, and that the compiler exhibited

the expected behavior on all inapplicable tests.

3-3

LM

TEST INFORMATION

3.7.2 Test Method

r the Alliant FX/Ada Compiler using ACVC Version 1.8 was conducted
vi J~ by a validation team from the AVF. The configuration consisted of

an Alliant FX/8 host and target operating under Concentrix, Release 3.0.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled, and all executable tests were linked and run on the Alliant
FX/Ada. Results were printed.

The compiler was tested using command scripts provided by Alliant Computer
Systems Corporation and reviewed by the validation team. All default
options were in effect for testing.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

The validation team arrived at Alliant Computer Systems Corporation,
Littleton MA on 8 June 1987, and departed after testing was completed on 9
June 1987.

3-4

IM

APPENDIX A

DECLARATION OF CONFORMANCE

Alliant Computer Systems Corporation has submitted the
following declaration of conformance concerning the
Alliant FX/Ada Compiler.

A-i

1 ALLIANT
Computer SystemsCorporation

DECLARATION OF CONFORMANCE ('),IM , i "1

Implementor: Alliant Computer Systems Corporation
AdatValidation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: Alliant FX/Ada Compiler Version: Version 1.0
Host Architecture ISA: Alliant FX/8 OS&VER #: Concentrix, Release 3.0
Target Architecture ISA: Alliant FX/8 OS&VER #: Concentrix, Release 3.0

Implementor's Declaration

I, the undersigned, representing Alliant, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-
1815A in the compiler listed in this declaration. I declare that
Alliant is the owner of record of the Ada language compiler
listed above and, as such, is responsible for maintaining said
compiler in conformance to ANSI/MIL-STD-1815A. All certificates
and registrations for the Ada language compiler listed in this
declaration shall be made only in the owner's corporate name.

Vko&,r.A Date: 19 2,
Alliant Computer Systems Corp.

Andrew F. Halford

Owner's Declaration

I, the undersigned, representing Alliant, take full
responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the
final Validation Summary Report. I further agree to continue to
comply with the Ada trademark policy, as defined by the Ada Joint
Program Office. I declare that the Ada language compiler listed,
and its host/target performance are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A.

(\ & A v \-mA Date: \O \j7

Alliant Computer Systemns Corp. &
Andrew F. Halford

Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Alliant FX/Ada Compiler, Version 1.0, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type TINY INTEGER is range -128 .. 127;
type SHORTINTEGER is range -32768 .. 32767;
type FLOAT is digits 15 range
-2#0. 111111111111111111111111111111111111111l111111111111111111111111111111#EI023

2#0o 111l11111111111111111111#E1023

type SHORT FLOAT Is digits 6 range
-2#0. 11111111111111111111111111111111#E127

2#0. 11111111111111111111111111111111#E127

* type DURATION is delta 2#1.0#E-14 range -2#100000000000000000.0#
.2#11111111111111111.11111111111111#;

end STANDARD;

B-1

FX/ADA IMPLEMENTATION NOTES
(ADA RM APPENDIX F)

FX/ADS Ada provides the full Ada language as specified in the Ada RM. Within the
Ada RM, a number of sections contain the annotation implementation dependent,
meaning that the interpretation is left to the compiler implementor. Alliant has at-
tempted to make those choices that provide the programmer with an essentially unlim-
ited capability to program in Ada. Consequently, an applications programmer can usu-
ally program in Ada according to the Ada RM and good engineering practices without
consideration of any FX/ADS specifics.

Alliant provides the following Chapter 13 capabilities.

" representation clauses to the bit level and pragma PACK (RM 13.1)

" length clauses and unsigned types (8, 16 bit) (RM 31.2)

" enumeration representation clauses (RM 13.3)

= record representation clauses (RM 13.4)

" interrupt entries (RM 13.5.1)

* representation attributes (RM 13.7.2)

" machine code insertions and pragma IMPLICIT-CODE (RM 13.8)

" interface programming features, including pragma interface, pragma exter-
nal name, pragma interface object, with directives, a.info, and external de-
pendencies capabilities (RM 13.9)

* unchecked deallocations (RM 13.10.1)

" unchecked conversions (RM 13.10.2)

* shared generic bodies

" all-Ada runtime system

B-2

%

6.1 PROGRAM STRUCTURE AND COMPILATION ISSUES

6.1.1 Pragmas and Their Effects

pragma CONTROLLED is recognized by the implementation but has no effect in this
release.

pragma ELABORATE is implemented as described in Appendix B of the RM.

pragma EXTERNAL NAME allows the user to specify a link name for an Ada variable
or subprogram so that the object can be referenced from other languages.

pragma IMPLICIT CODE specifies that implicit code generated by the compiler is al-
lowed or disallowed-and is used only within a machine code procedure. It takes one of
the identifiers ON or OFF as the single argument (default is ON). A warning is issued if
OFF is used and any implicit code needs to be generated.

pragma INLINE - This pragma is implemented as described in Appendix B of the RM
with the addition that recursive calls can be expanded with the pragma up to a maxi-
mum depth of 4. Warnings are produced for too-deep nestings or for bodies that are not
available for inline expansion.

V pragma INTERFACE supports calls to C and FORTRAN language functions with an
optional link name for the subprogram. The Ada specifications can be either functions
or procedures. All parameters must have mode IN.

For C. the types of parameters and the result type for functions must be scalar, access,
or the predefined type ADDRESS in SYSTEM. Record and array objects can be passed
by reference using the ADDRESS attribute.

For FORTRAN, all parameters are passed by reference; the parameter types must have
the type SYSTEM.ADDRESS. The result type for a FORTRAN function must be a
scalar type.

The optional link name enables calling a function whose name is defined in another
language, allowing characters in the name that are not allowed in an Ada identifier.
Case sensitivity can then be preserved. Without the optional link name, the Ada com-
piler converts all identifiers to upper case. The link name overrides the default transfor-
mations that pragma INTERFACE performs on the name to create the unresolved ref-
erence name in the object module. For instance, the following example generates a
reference for Varl with no case or other changes.

pragma INTERFACE (language-name, Varl, "_Varl");

pragma INTERFACE OBJECT allows variables defined in another language to be ref-
erenced directly in Ac'a, replacing all occurrences of variable-name with an external
reference to linkname in the object file.

pragma LIST is implemented as described in Appendix B of the Ada RM.

B-3

1I M & " L % dL111111 1 111

=111112iM.

pragma MEMORY SIZE is recognized by the implementation, but has no effect. The
implementation does not allow SYSTEM to be modified by means of pragmas. How-
ever, the same effect can be achieved by recompiling the SYSTEM package with altered
values.

pragma OPTIMIZE is recognized by the implementation, but has no effect in the cur-
rent release. See the -O option for ada for code optimization options.

pragma OPTIMIZE CODE specifies that optimizations be allowed or disallowed and is
used only within a machine code procedure. It takes one of the identifiers ON or OFF
(default is ON).

pragma PACK will cause the compiler to choose a non-aligned representation for com-
posite types. Packing will be to the nearest power of two bits.

pragma PAGE is implemented as described in Appendix B of the Ada RM.

pragma PRIORITY is implemented as described in Appendix B of the Ada RM.

pragma SHARE BODY provides for the sharing of generic bodies (procedures and
packages), when the generic parameters are restricted to enumeration, integer, and
floating types. A 'parent' instantiation is created and subsequent generics of the same
basic type can share its code, reducing compilation times.

pragma SHARED is recognized by the implementation, but has no effect in the current
release.

pragma STORAGE UNIT is recognized by the implementation, but has no effect. The
implementation does not allow SYSTEM to be modified by means of pragmas. How-
ever, the same effect can be achieved by recompiling the SYSTEM package with altered
values.

pragma SUPPRESS - The single parameter form of the pragma SUPPRESS is sup-
ported; the pragma applies from the point of occurrence to the end of the innermost
enclosing block. DIVISION CHECK and OVERFLOW CHECK are not suppressible.
The double parameter form-of the pragrna, with a name of an object, type, or subtype is
recognized, but has no effect.

pragma SYSTEM NAME is recognized by the implementation, but has no effect. The
implementation does not allow SYSTEM to be modified by means of pragmas; however,
the same effect can be achieved by recompiling the SYSTEM package with altered
values.

B-4

ed

6.1.2 Library Units

Compilation Units - Library Units - FX/ADS requires that a 'main' program must
be a non-generic subprogram that is either a procedure or a function returning an Ada
STANDARD.INTEGER (the predefined type). While a 'main' program may not be a
generic subprogram, it may, however, be an instantiation of a generic subprogram.

Generic Declarations - FX/ADS does not require that a generic declaration and the
corresponding body be part of the same compilation, and they are not required to exist
in the same FX/ADS library. An error is generated if a single compilation contains two
versions of the same unit.

FX/ADS provides for sharing of generic bodies (procedures .nd packages) when the
generic parameters are restricted to enumeration types, integer types, and floating types.
The pragma SHAREBODY is used to require or suppress sharing.

The pragma SHARE BODY is used to indicate desire to share or not share an instan-
tiation. The pragma may reference either the generic unit or the instantiated unit. When
it references a generic unit, it sets sharing on or off for all instantiations of that generic
unless overridden by specific SHAREBODY pragmas for individual instantiations.
When it references an instantiated unit, sharing is on or off only for that unit. The
default is to share all generics that can be shared unless the unit uses pragma INLINE.

The pragma SHARE BODY is only allowed in the following places: immediately within
a declarative part, immediately within a package specification, or after a library unit in a
compilation, but before any subsequent compilation unit. The form of this pragma is

pragma SHARE_BODY (generic-name, boolean-literal)

Note that a parent instantiation is independent of any individual instantiation, therefore
recompilation of a generic with different parameters has no effect on other compilations
that reference it. The unit that caused compilation of a parent instantiation need not be
referenced in any way by subsequent units that share the parent instantiation.

Sharing generics causes a slight execution time penalty because all type attributes must
be indirectly referenced (as if an extra calling argument were added). However, it sub-
stantially reduces compilation time in most circumstances and reduces program size.

Alliant has compiled a unit, SHARED 1O. in the FX/ADS STANDARD library that
instantiates all Ada generic I/O packages. Thus, any instantiajion of an Ada I/O generic
package will share one of the parent instantiation generic bodies.

B
I B-5

6.1.3 Representation Clauses

FX/ADS supports bit-level representation clauses.

pragma PACK - Objects and components are packed to the nearest power of two oI.L

Length Clauses - FX/ADS supports all representation clauses to the byte level in the
current release. The size specification T'SMALL is not supported except when the rep-
resentation specification is the same as the value 'SMALL for the base type.

Enumeration Representation Clauses - Enumeration representation clauses are sup-
ported.

Record Representation Clauses - The only restriction on record representation speci-
fications is the following: if a field does not start and end on a storage unit boundary, it
must be possible to get it into a register with one move instruction. It must fit into 4
bytes starting on a word boundary.

for rec use
record at mod 16;

a at 0 range0 .. 9;
b at 1 range 2 .. 30;

end record;

Note that in the example above a size specification could be given, e.g.,

for rec'size use 39;

but due to alignment, such a record would always take 5 bytes (i.e., 40 bits).

Interrupts - Interrupts are supported.

Representation Attributes - The ADDRESS attribute is not supported for the follow-
ing entities:

static constants
packages
tasks
labels
entries

Machine Code Insertions - Machine code insertions are supported.

Address Clauses - Address clauses are not supported.

B-6

6.1.4 Default Representations

The following limits are zctually enforced by the implementation. It is not intended to
imply that resources up to or even near these limits are available to every program.
Many limits in the FX/ADS implementation are variable as allocated memory is used
extensively; therefore, many constructs are limited only by the virtual memory space
available to a process.

Line Length - The implementation supports a maximum line length of 500 characters
including the end of line character.

Record and Array Sizes - The maximum size of a statically sized record type is
4,000,000 * STORAGEUNITs. A record type or array type declaration that exceeds
these limits will generate a warning message.

Default Stack Size for Tasks - In the absence of an explicit STORAGE SIZE length
specification, every task except the main program is allocated a fixed -size stack of
10,240 STORAGEUNITs. This is the value returned by T'STORAGESIZE for a task
type T.

Default Collection Size - In the absence of an explicit STORAGESIZE length speci-
fication, the default collection size for an access type is 100,000 STORAGE UNITs.
This is the value returned by T'STORAGESIZE for an access type T.

Limit on Declared Objects - Declared object size is limited only by available virtual
space for the process.

Stack Size- The compiler and other large dynamic compiled programs can occasionally
give problems due to the shell's stack limit. Altering the stack size and recompiling is
sometimes necessary.

The C shell allows the default stack size of 512K to be reset up to the limit of the
process size (usually 6112K bytes). To change the stacksize for the C shell, execute the
following command.

limit stacksize number

Most Bourne shell implementations do not allow the stack size to be modified.

6.1.5 Conversions

The predefined generic function UNCHECKEDCONVERSION cannot be instantiated
with a target type that is an unconstrained array type or an unconstrained record type
with discriminants.

6.1.6 Deallocations

Any objects may be deallocated, but the deallocation succeeds only for constrained
objects. No error is reported for objects that cannot be freed. No checks are currently
performed on released objects.

I
B-7

0 tf t tt

6.1.7 Character Set

FX/ADS provides the full graphiccharacter textual representation for programs.

6.1.8 Source File Structure/Restrictions

Lexical Elements, Separators, and Delimiters - FX/ADS Ada uses the normal Con-
centrix I/O for reading source files. Each line is terminated by a newline character
(ASCII.LF). Source lines may contain up to 500 characters, including the terminator.
All variable-length Ada elements, such as identifiers and literals, may extend up to the
full 499-character limit.

6.2 PREDEFINED ENVIRONMENT

6.2.1 Supported Packages

The following predefined Ada packages given by RM Appendix C(22) are provided.

package STANDARD
package CALENDAR
package SYSTEM
generic procedure UNCHECKED DEALLOCATION
generic function UNCHECKED CONVERSION
generic packz~e SEQUENTIA:_10
generic package DIRECT_10
package TEXT 10
package 10 EXCEPTIONS
package LOW LEVEL 10
package MACTINECODE

-- in package STANDARD

type TINY INTEGER is range -128 .. 127;
type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;
type SHORTFLOAT is short float is digits 6 range

-2,o.11i1i1i1ii111111i11111111i111illi27

2#0. 2i11111111111111111i11li11111111#Ei27 ;
type FLOAT is float is digits 15 range
-2#0.11111111111111111i111111111111121111i1iii1ii111111111111111lllllll#i,,i23

2#0.111111111111111111111111111111i11111111111111111 1#Elc23;
type DURATION is delta 2#1.0#E-14 range
-2#100000000000000000.0# .. 2#11111111111111111. 11111111i11111#;

04
B-8

= J0

-- in package DIRECT_10

type COUNT is range 0 2_147_483_647;

-- in package TEXTtO

type COUNT is range 0 .. 2_147_483_647;
subtype FIELD is INTEGER range 0 .. 132;

6.2.2 Input/output

The Ada I/O system is implemented on top of basic Concentrix I/O. Both formatted and
binary I/O are available. There are no restrictions on the types with which DIRECT 10
and SEQUENTIAL_10 can be instantiated, except that the element size must be less
than a maximum given by the variable SYSTEM.MAX REC SIZE. This variable may
be set to any value prior to the generic instantiation; thus, the-user may use any element
size. DIRECT 10 may be instantiated with unconstrained types, but each element will
be padded out-to the maximum possible for that type or to SYSTEM.MAX RECSIZE,
whichever is smaller. No checking - other than normal static Ada type checking - is
done to ensure that values from files are read into correctly sized and typed objects.

Input-output under Concentrix is similar to the C language implementation. FX/ADS
file and terminal input-output are identical in most respects and differ only in the fre-
quency of buffer flushing. Output is buffered (buffer size is 1024 bytes). The buffer is
always flushed after each write request if the destination is a terminal. The procedure
FILE SUPPORT.ALWAYS FLUSH (file.ptr) is provided for flushing the buffer for
nonterminal output. A single call to this procedure will cause flushing of the buffer after
all subsequent output requests. See the source code for file io body.a in the standard
library.

Instantiations of DIRECT 10 use the value MAX REC SIZE as the record size (ex-
pressed in STORAGE_UN-TITs) when the size of ECEME-NT TYPE exceeds that value.
For example, for unconstrained arrays such as a string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used instead. MAX RECORD SIZE Ts defined in
SYSTEM and can be chinged before instantiating DIRECT_10 to provide an upper
limit on the record size. The maximum size supported is 1024 * 1024 * STOR-
AGE UNIT bits. DIRECT10 will raise USE-ERROR if MAXRECSIZE exceeds this
absolute limit.

Instantiations of SEQUENTIAL 10 use the value A4kX REC SIZE as the record size
(expressed in STORAGE UNIIs) when the size of EEEM9'NT TYPE exceeds that
value. For example, for unconstrained arrays such as STRING where ELE-
MENT TYPE'SIZE is very large, MAX REC SIZE is used instead. MAX RE-
CORD SIZE is defined in SYSTEM and can be chinged by a program before instan-
tiating'INTEGER 10 to provide an upper limit on the record size. SEQUENTIAL10
imposes no limit on MAXRECSIZE.

B-9

6.2.3 Package system.a
package SYSTEM
is

type NAME is (fxunix

SYSTEMNAME constant NAME :- fxunix;

STORAGEUNIT constant :- 8;
MEMORYSIZE constant :- 16_777_216;

-- System-Dependent Named Numbers

MININT constant :- -2_147_483_648;
MAXINT : constant :- 2_147_483_647;
MAX_DIG:TS constant :- 15;
MAXMANTISSA: constant :- 31;
FINEDELTA constant :- 2.0**(-30);
TICK : constant :- 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer :- 64*1024;

type ADDRESS is private;

NOADDR : constant ADDRESS;

function PHYSICALADDRESS(I: INTEGER) return ADDRESS;
function ADDRGT(A, B: ADDRESS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDRESS) return BOOLEAN;
function ADDRDIFF(A, B: ADDRESS) return INTEGER;
function INCRADDR(A: ADDRESS;

INCR: INTEGER) return ADDRESS;

function DECR ADDR(A: ADDRESS;
DECR: INTEGER) return ADDRESS;

function ">"(A, B: ADDRESS) return BOOLEAN renames
ADDRGT;

B-10

function "<"(A, B: ADDRESS) return BOOLEAN

renames ADDRLT;
function ">-"(A. B: ADDRESS) return BOOLEAN

renames ADDR GE;
function "<-"(A, B: ADDRESS) return BOOLEAN

renames ADDRLE;

function "-"(A, B: ADDRESS) return INTEGER
renames ADDR DIFF;

function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS
renames INCRADDR;

function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS

renames DECRADDR;

pragma inline(ADDRGT);

pragma inline(ADDRLT);

pragma inline(ADDR GE);

pragma inline(ADDRLE);

pragma inline(ADDRDIFF);

pragma inline(INCR ADDR);

pragma inline(DECRADDR);

pragma inline(PHYSICAL ADDRESS);

private

type ADDRESS is new integer;

NOADDR : constant ADDRESS :- 0;

end SYSTEM;

6.2.4 Other Packages in standard

package MACHINE-CODE

The general definition of package MACHINE CODE provides an assembly language
interface for the target machine including the necessary record types needed in the code
statement, an enumeration type containing all the opcode mneumonics, a set of register
definitions, and a set of addressing mode functions. Also supplied (for use only in units
that WITH MACHINE-CODE) are pragma IMPLICITCODE and the attribute 'REF.

Machine code statements take operands of type OPERAND, a private type that forms
the basis of all machine code address formats for the target.

B-11

The general syntax of a machine code statement is

CODE.n" (opcode, operand {, ope.'and)));

where n indicates the number of operands in the aggregate.

When there is a variable number of operands, they are listed "ithin a subaggregate using
the syntax shown below.

CODE n° (opcode, (operand {, operand));

In the example shown below, code 2 is a record 'format' whose first arguement is an
enumeration value of type OPCODS followed by two operands of type OPERAND.

CODE 2'(add, a'ref, b'ref);

For those opcodes requiring no operands, named notation must be used. (See Ada RM
4.3(4).)

CODEO' (op => opcode);

The opcode must be an enumeration literal (i.e., it cannot be an object, attribute, or a
rename). An operand can only be an entity defined in MACHINE CODE of the 'REF
attribute.

The arguments to any of the functions defined in MACHINE CODE must be static
expressions, string literals. or the functions defined in MACHINE CODE. The 'REF
attribute may not be used as an argument in any of these functions.

'REF

The attribute 'REF denotes the effective address of the first of the storage units allo-
cated to its object. For a subprogram, package, task unit, or label, it refers to the ad-
dress of the machine code associated with the corresponding body or statement. For an
entry for which an address clause has been given, it refers to the corresponding hard-
ware interrupt. The attribute is of type OPERAND defined in package MA-
CHINE CODE and is allowed only within a machine code procedure. 'REF is not sup-
ported for a package, task unit, or entry. (See Section F.4.8 for more information on
the use of this attribute.)

pragma IMPLICIT-CODE

pragma IMPLICIT CODE specifies that implicit code generated by the compiler is al-
lowed or disallowedfand is used only within a machine code procedure. It takes one of
the identifiers ON or OFF as the single argument (default is ON). A warning is issued if
OFF is used and any implicit code needs to be generated.

B

~B- 12

01

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGID1 (l..498 WV'A, 499 w>I')

Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (I..498 -->A', 499 W>2')

Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..248 => 'A', 249 => '3',
Identifier the size of the 250..499 => 'A')
maximum input line length with
varying middle character.

$BIGID4 (1..2J48 => 'A', 249 => 'i4',
Identifier the size of the 250..499 => 'A')
maximum input line length with
varying middle character.

$BIGINTLIT (1-.496 => '0', 497-.499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it i the size of the
maximum line length.

C-1

SN

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1..49 3 => '0', 494..499 => "69.0EI")

A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..479 =>' ')

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT LAST 2147_483_647
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDEDASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all "&I$%?@[]^(}-"
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 2_1I47_483_647
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD CHARS "/illegal/file name/2{]$%2102c.DAT"
An illegal- exEernal file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR "illegal/filename/CE2102C*.DAT"
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THANDURATION 100000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATIO?4'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASE LAST 10_000_000.0
The universal real-value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

TEST PARAMETERS

Name and Meaning Value

$ILLEGALEXTERNAL FILE NAMEI """no/such/directory/" &
An illegal external file name. "ILLEGALEXTERNALFILENAMEI"

$ILLEGALEXTERNALFILENAME2 """no/such/directory/" &
An illegal external file name "ILLEGALEXTERNALFILENAME2"
that is different from
$ILLEGALEXTERNALFILENAMEI.

$INTEGER _FIRST -(2**31)
Tne universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGERLAST (2"31)-1
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -100_000.0

A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESSTHAN DURATION BASE FIRST -10_000 000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX_DIGITS 15
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX_IN LEN 499
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT (2"'31)-1
The universal integer literal
whose value is SYSTEM.MAXINT.

C-3

ANUM

TEST PARAMETERS

Name andMeaning Value

$NAME TINYINTEGER

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHOFT FLOAT, SHORTINTEGER,
LONGFLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEGBASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NONASCII CHAR TYPE (NONNULL)
An enumerated type definition
for a character type whose
literals are the identifier
NONNULL and all non-ASCII
characters with printable
graphics.

C-4

- -* - -

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form

"AI-ddddd" is to an Ada Commentary.

. C32114A: An unterminated string litera occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the

presence of implicit conversions.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR instead of CONSTRAINTERROR as expected in
the test.

" B37401A: The object declarations at lines 126 through 135 follow

subprogram bodies declared in the same declarative part.

" C41404A: The values cf 'LAST and 'LENGTH are incorrect in the if

statements from line 74 to the end of the test.

" B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of

the wrong type--PRIBOOLTYPE instead of ARRPRIBOOL TYPE--at line
41.

• C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminated

incorrectly with colons, and end case; is missing from line 42.

" B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

~D-1

'- WITHDRAWN TESTS

• B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

* C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

" C92005A: The "/=" for type PACK.BIGINT at line 40 is not visible
without a use clause for the package PACK.

. C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

. BC3204C: The body of BC3204C0 is missing.

D-2

ThR1)

mt/C-

*,~4 S.IS9 9 5
S S U S S

