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3Summary

- Homing missile guidance is formulated as an optimal stochastic control
problem where the special nonlinear structure of the missile-target engage-
ment is exploited. Since this stochastic control problem assumes a nested
information pattern, the filter structure can be developed independently of
the guidance scheme. However, the guidance scheme is dependent on and
affects filter performance. Significant progress is being made on both the
estimation problem and the guidance problem.

- Investigation of the nonlinear estimators especially tailored to the hom-
ing missile problem has produced not only a good deal of insight but re-
sponsive and mechanizable schemes. Although these schemes are applicable
to active sensors, our emphasis has been on the more difficult passive sensor
case where only angles are available. Recently-developed schemes based on

Ncoordinate transformations and on an assumed probability density function
perform well, but the modified-gain extended Kalman filter seems to be the
most promising. Furthermore, this filter has been used as the basis of a
stochastic adaptive flight control scheme. In order to improve this class
of stochastic control schemes, new results have been obtained in control
synthesis for structured plant uncertainties.

Two important current efforts in missile guidance with bearings-only
information are in the development of the guidance schemes that enhance
an information measure by trajectory modulation and in target accelera-
tion detection., A mechanizable guidance law based upon linear-quadratic-
Gaussian theory which modulates the path initially to enhance the infor-
mation measure but which meets terminal miss constraints has been tested.
Finally, based upon deterministic detection filter design by spectral meth-
ods, a detection scheme for rapidly detecting target motion has been de-
veloped and is being compared with current designs.

Research Objectives and Status

( A special class of stochastic control systems is being developed for the
guidance system of a homing missile by exploiting the special nonlinear
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structure of the missile-target engagement. Improvements are required
in the current guidance law, proportional navigation, because the guid-
ance system degrades under initial intercept geometries that produce large
nonlinearities about the homing triangle or due to active target motion
which also induces large nonlinearities. Our guidance law investigations
have emphasized measurements from passive sensors for which only bear-
ing information is available. This bearings-only guidance problem is most
challenging because the stochastic controller has the dual role of enhancing
filtler performance and achieving target intercept with minimal expected
terminal cost. However, this problem is somewhat simplified since the sep-
aration theorem in the sense of Witsenhausen is satisfied. The separation
theorem states that the filter structure, given the classical information pat-
tern, is independent of the controller structure although the controller is
highly dependent on the predicted filter performance.

Motivated by the separation theorem, high-performance estimators have
been developed which are tailored to the special nonlinearities of the missile-
target engagement. One new estimator, called the modified-gain extended
Kalman filter (MGEKF), is applicable to two important engineering prob-
lems: bearings-only estimation [1] and state and parameter estimation [2].
Although we consider the MGEKF a breakthrough in guidance filter devel-
opment, the assumed-density filter [3] and the coordinate-transformation-
based filter [4] have also shown considerable promise. Since the conditional
mean estimator is infinite dimensional, the finite-dimensional MGEKF is
proposed as the estimation processor for the homing guidance dual con-
troller. Furthermore, the MGEKF is also proposed as the state and pa-
rameter estimator for an explicit adaptive control law which is applicable
to flight control and autopilot design. In particular, the MGEKF has been

"O applied to the problem of on-line state estimation and the identification
of aircraft stability derivatives [5]. An adaptive control loop using this es-
timator is given in [6] where the essential parameter required is moment
coefficient due to elevator defection. The adaptive gain is inveresely pro-
portional to this parameter which seems well estimated by the MGEKF
even in moderately-high clear air turbulence. However, more elaborate
controllers will be required for bank-to-turn missiles. A multivariable syn-
thesis scheme is suggested in [7] in which the LQG controller can be made
insensitive to a class of parameter variations. It is seen in [5,6] that the
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moment coefficients are estimated well but the force coefficents are not. In
particular, their estimation response is quite sluggish due to the effect of
high-frequency noise associated with the model of the clear air turbulence.
An adaptive system is being designed so that the controller is only sensi-
tive to the moment coefficients. This approach to autopilot design is being
considered for application to a bank-to-turn missile.

Both homing missile guidance and adaptive control schemes are cur-
rently designed based upon the certainty equivalence principle. That is,
a controller and estimator are placed in cascade where both are designed
independently of one another. These ad hoc controller structures are not
adequate in general, and improvements are sought through the dual con-
trol concept. The dual controller structure which has never been realized
by even the simplest stochastic control example needs much study. We
began our efforts by noting that the essence of the dual control problem
is captured in deterministic setting where the nonlinear observer perfor-
mance is enhanced by trajectory modulation. In particular, a measure
associated with the Fisher information matrix is maximized in order to
obtain an information-enhanced homing path [8,9,10]. In [10] not only is
the EKF performance improved by trajectory modulation over the propor-
tional navigation path, but the performance of the MGEKF along these
information-enhanced paths relative to that of the EKF is impressive.

Based on these results an ad hoc guidance rule which seems to pos-
sess the dual control property is proposed. It is seen that the trace of the
information matrix weighted by the range-to-go when combined with the
current control performance index reduces to a quadratic form. This form
differs from current forms in that the performance index due to the infor-
mation measure is not convex. Some preliminary results are given in [11].
It is noted that this simple guidance rule produces trajectories similar to
those generated in [8,9,10].

The essential difficulty in dealing with dual control problems is that the
sturcture of the controller is not well understood. For this reason, ad hoc
schemes pervade the literature, but no rational scheme is ever suggested.
For this reason, we have begun looking into asymptotic approaches to this
class of problems. For small measurement and process noise variances, the
optimal control law, obtained from the Hamilton-Jacobi-Bellman PDE of
a particular nonlinear problem, is determined in terms of an asymptotic

3



expansion in the state estimate and state error variance. This problem is
chosen because the estimation process is conditionally Gaussian and the
deterministic problem (or zeroth-order solution of the Hamilton-Jacobi-
Bellman equation) is integrable. Since it is hypothesized that dual control
problems are not integrable, the expansion about the zeroth-order solution
should give valuable insight into the structure of the dual control problem.
The objective is to apply these ideas to both the homing guidance and
adaptive autopilot problems.

There is a real need to determine the effects of guidance system errors on
missile guidance. To do this, a measure of performance is used in [12) which
is associated with the optimal return function of the LQG problem and has
the property of a Lyapunov function. Since the guidance laws considered
to date are based upon the certainty equivalence principle, the control is
a function of the filter or observer output. The Lyapunov function is a
function of three terms, one associated with the LQ problem, one associated
with the observer, and one associated with the error in the control law due
to the inaccuracy of the state estimate from the observer.

Finally, the very important problem of target maneuver detection is
considered. Our approach is to develop target motion sensitive filters (ac-
tually observers). The theory has been developed for time invariant linear
dynamic systems [13,14,15]. The objective is to design the detection gain
so that the target motion can be associated directly with the measurement
residuals. Our present effort is described in [15].
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Maximum-Information Guidance for Homing Missiles

D. Hull,' and L. Spewer °

UnicersitY of Texas at A ustin, .1 ustin, Texas
and

C.Y. Tsengt

., Chung Shun Institute of Science and Tcchnolog.v, Taipei, Taiwan, Repuh/ic of China

A recently-defined information index is used to enhance the information conit al of minimurn-control-effurl
trajectories lor the homing missile intercept problem. Optimal planar intercept trajectories are obtained for a
performance index which is control effort weighted by position information content. The missile and target are
assumed to be operating at constant speed. The shooting method is ued to compute the optimal paiths: but
because of the simplicity of the model, on-line optimization yielding a guidance law with information enhance-
ment should be possible.

Nomenclature development are linear in the states (relative position,
A =cosdy/vR relative velocity, and target acceleration), the measurements

a = missile normal acceleration (ft/s2) are nonlinear in a rectangular coordinate frame. Hence, the
B =sino/vR trajectory followed by the missile affects the measurement

c =constant in measurement variance model (ft-) sequence and, in turn, the ability of the fi!ter to etract the
G =augmented end-point function states from the measurements. A scalar performance index
H = variational Hamiltonian representing a measure of the information content of the
R =range (ft) missile path is developed, and a maximum-information in-
t =time (s) tercept trajectory is determined. Next, measuremen:s are

=ratio of missile velocity to target velocity created along the maximum-information path and processed
V = velocity with an extended Kalman filter. It is shown that the filter
W =weight performs considerably better for measurement,, made along
X,Y = planar coordinates (ft) the maximum-information path than it does for
a =nondimensional missile normal acceleration measurements made along a proportional-navigaticn path.
0 =missile velocity angle In fact, the filter diverges from the true state along the

"2 X =time-dcpendent Lagrange multiplier proportional-navigation path and converges to the true stateX =constant Lagrange multiplier along the maximum-informatnon path.,,r =nondimensional relative coordinates Since the trajectory determined from the scalar information
t =nondimensional range performance index reported in Ref. I induces oreatly im-

1r =nondimensional time proved state estimation results, its use in the development of
0 =missile velocity angle an information-enhancement guidance law is investigated.

Because of the complexity of the problem, the simplest-
Superscripts possible intercept problem is formulated, that is, two-

() =derivative with respect to I dimensional motion of a constant velocity missile and target.
=derivative with respect to T The performance index is taken to be the control effort

weighted by the information index, and solutions are obtained
Subscripts by the shooting method. However, to obtain initial values of

f = final point the Lagrange multipliers required by the shooting method, the
M = missile problem of minimizing just the control effort nitist be con-
R = relative sidered first. Then. by solving the weighted problem in stages
T =target (gradually increasing the weight from 7ero), the desired op-
0 initial point timal trajectories can be obtained.

Introduction Statement of Ihe l'rolem

Is Ref. 1, the problem of enhancine the information con- The classical guidance law known as proportional navipa-

tent of angle measurements in a homing missile engatge- tion il.pert intercept triangleis ea iinte
ment is considered. While the dynamics used in the filcr control-effort traicctorv in ne scn I e Fig. I for

nomenclature). For a con,,tunt velocit', stcerable missile aid a
0., constant velocity I at et mos tu in a strai~tl inc. the optimnal

Rcce:,ed June II. 1984; pres-red as Paper ;4-1487 at the AIAA control problem is ,Tated as lollows:
Guidance and Control Confrercrce. Seattle, Wash.. Aug. 20-2, 19-.2 4 Find the missile norml-accelcration history a(t) hich
revision received Sept. 20. 1984. Copyright ';. American Irstii'ite of minimiies

S Aeronautics and Astronautics. Iric. 1Y84. All right- re, 'rved.
'Professor. Deparitnent of Aerospace Engineering and i:nncringt -

Mechanics. \ssocatc -cllow AIAA. .d 1rat (I)
tResear~h Asociate. 2



JULY-ALIGL'ST 1985 NIe\XIMI-NIORNlI 0\ (jULIDNC: FOR Iio.'I MISSI! LS 5esubject to dynamical constraints converged for a small value of If. W is increased, and the
process is repeated with the last converged multipliers as initial

X R VrCOSO - VICOSO guesses.

k= Vrsin6 - V,%,sin8 Minimum Control-Effort Problem

j = al/V5  (2) For the case where W-0C, the variational Hamiltonian and

and he resribe bonday coditonsthe augmented end-point function are given by

and the12 prsrie bondr conditions-snO)+ ~
to =O, XR =-R, YRo = 0, 0 freeG=V:f' 2f(9

~ free, X R -o 0 Y , -o = 0 , Of free (3) wh er 2X , is 1,2 ,3) is a tim e-varying L agrange m l i h r
PIN 1,) i aconstant Lagrange multiplier, A =coso/t,.

sih s nbeval.T ehnestt stmto, ti osi ;= - H, = 0 (1 a)
ble to weight the tinal time with a term associated with infor-
mation content. The simplest form of this term is obtained by X =- H, 0 (10b)
considering only the posi tion-in formation part of the
performance index developed in Ref. I. With this term includ- X3 -H,= - X,sinO±X 2cosO (10c)

1- W 'f 7 14,, If dt here tht. optimal control satisfies the optima!ity condition

J=t.r d1t2+ (4) H. = C+X 3 =0 I
2 to to I+ c(XR+~

where W is the weight and c is a constant associated with the Finally, the natural bouncarv conditions are
measurement variance model used in the filter. If IV= 0, J is X= Gf=
the control effort; and if W= 1, it becomes the information in- I
tegral. Since a minimum is being sought and since the infor- f G =2
mation is to be maximized, the minus sign is introduced to =Gf=V

convert the maximization problem to a minimization problem.
Finally, when actually implemented, it is envisioned that 11 X3, = Gf = 0, X, ,
would be related to the state estimation error covariance, in- fa12x A co)
creasing as the covariance increases.

At this point, the following nondimensional variables are + X21 (B -sin~f) + XJ.c 0 (2)introduced:f

V~XR ~1 "~'' T~V~tIt is observed that the absolute minimum control effort is
a -hieved when cy = 0. Whether or not this can be the solution is

vaVc=a/c;iw, P=,vR (5) r. w investigated. Equations (l0a) and (10b) indicate that X,
0

R~VM/Ta d X, are constants so that Eq. (I Oc) gives 0= const. Hence,

In terms of these variables, the optimal control problem is to t syemquioE.(7,cnbitgredsbctoth
i find the missile normal-acceleration history a(T) which fnlcniin fE.(b ooti

minimizes the performance index

f dr0= (A -cosO)r1 + 0, O=B-sinO (13)
2 (6)17 which determines 0 and -rf as follows:

Sj subject to the system dynamicssn6B 1  0 /c0A)()

q ~' =COSO/VR - cosO,

0, = Of(7)
VT

and the prescribed boundary conditions p-.NT
Z, To 0, Po' -oo , 00 free (8a) TRE

T1 =free, Gf 0, 17f= 0, Of free (9 l') /

This optimal control problem does not yield an anialtcal MISL- -4solution and is solved with the numcrical optimi-iation methtod - -

known as the shooting method. Because of' the sensitivitv of
the shooting methiod to initial yuesses, the prohk-m is sol-ed-
analytically for If'z:0 to obtain L.agrange multipliers. 'Then, X

- with these multiplters as initial guesses, the shooting method is Fig. I 11wo-dirnen%ionzi intercept peomneir).
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Next, Eq. (11) gives X, = 0 which satisfies the natural bound- IV~~(4-oO)+ .(-it)0 (9
ary conditions of Eq. (12). Finally, Eqs. (10) and (12) lead to .Icsf+ (B in) 19

0, X = 0(15) Unfortunately, this optimal control problem docs not yield
an analytical result so that numerical mezhcd% must be

These values of X will be used to begin the solution of the employed. Here, the shooting method 4 is uscd to solve the cor-
information -weighted minimum (or.trol-effort problem. responding two-point bounda.,y-value problem (TPIIVIV. It is9formed by solving Eq. (18) for thle control and clintinatig or

Minium IformtionWeigtedfrom the remaining equations to obtain the diff'crcntial systemn

Fo W0 teControl-Effort Problem U=A -coso
For ~dOthevariational Hamiltonian and the augmented

endpoint functicns are defined as 77' =B--inO

0' =-X 31(J - W)

2 g +t277 *LX(A-cosO)+X,(B-snl+ 3  X.= -Pk( 2+7

G = vj~~f + P7?jj X, = -1)/( 2+7)

Next, the differential equations for the X's are given by X3 = - X, cosO +X,sinO (0

X;'= -2W /(1 + 2 + 7
2 ) 2  and the boundary cconditions

X -2WY,/(1+ 2+_'12 )2  7=, ~ to, X0 =

X.= -X,sinO4-X 2coO (17) fo ?I0. Xf=0

while the optinal control must satisfy
(J-~csX3= (8) 2 (-cosB,)±, (B-sinO1 )=O (21)

J++ fI -f

Finally, the natural boundary' conditions lead to The TPLIVP is solved by using thme initial Larrange
mtltipliers for If'= 0 and a small value of IV. Then, as IV is in-

X/ 1 X2f P2 1 X3 O, X3 0 0 CrTeased, the initial guess for the X's is the converged set for the

+ W-.0

z + -00

9.i .00 120~ 10.0 20.0

In +ona -1 Ccr do-9 . Ade0.2 U. ntn ..or .

0.0 40 :0 i0 . 0 20.009 0(. cc400 a.62'. m 2.00 150 20.

*I 4%. 45( 0(1), de X'. cotci effor ft. Sf0c , 1
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kill Finally, solutions have only been obtained for values of'

MA.]NFOup to around 0.21. For W>0.21, the shooting method is
MAX INFO unable to converge to a solution. It is felt that the difficulty is

MISSILE - o caused by the minus sign in the performance index of Eq. (61.
0 4 TARGET: aAt some point, the missile can accumulate information faster

A6 than spending control to accomplish the intercept. Hence, the
missile can wander around, accomplish the intercept at t =cc,

RO NAy and generate J= oo

ii A Discussion and Conclusions
7. ", A recently-defined information index has been used to

enhance the information content of minimum control-effort
trajectories for the homing missile intercept problem. Optimal

_6 information-weighted trajectories have been obtained and
display the desired characteristic, that is, maneuvering for the

S sake of increasing information content. Because of the
6simplicity of the model assumed here, it should be possible to

6!00 2b. 00 4b. 00 ob. Doob. o 110 . 3 compute these optimal trajectories on line and, hence, have a
X INERTIAL AXIS IFTI x10' mechanizable guidance law for information enhancement.

Fig. 4 Maximum information path, horizontal plane.
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A Stochastic Analysis of a Modified Gain EiitAenced
Kalman Filter with Applications to Estimation with

Bearings Only Measurements

TAEK L. SONG. MEMBER. IEFE. N JASON L. SPEYER. FFLI.OM, IELF

.4bstract-A new globally conhergent nonlinear observer, called the associated with a steady-state Kalman filter based on a linearnic,'
modified gain extended Kalman observer MGEKO), is developed for a model of the actual s\stem. However. the convergence rate ,t the
special class of systems. This observer structure forms the basis of a new CGEKF is found to be too slow for use in many real time
stochastic filter mechanization called the modified gain extended Kalman estimation problems. To enhance converence a sain-scheduline
filter NIGEKF). A sufficient condition for the estimation errors of the scheme is suggested [201, but the stabiltv analssis no l,nger
MGEKF to be exponentially bounded in the mean square is obtained. applies.
Finally, the MGEKO and the MGEKF are applied to the three- The effort described here is restricted to a special class of
dimensional bearings-only measurement problem where the extended nonlinear functions which allows the stability analysis of [251 to
Kalman filter often shows erratic behavior, be applied to an estimator where the gain chances according to an

update formula that is similar to that of the EKF. This special class
of nonlinear functions was motivated by the class of functions

I. INTRODUCTION which can be manipulated into a pseudomeasurement form Ill.
THE construction of implementable observers for nonlinear [31. [141, [181. [291. For deterministic systems these pseudo-
.deterministic systems and nonlinear filters for nonlinear measurements are linear functions of the states of the system.

stochastic systems remains a challenge. With a few notable although the coefficient matrix is a nonlinear function of the
exceptions (e.g.. [151), implementation is based upon ad hoc original measurements. By using the pseudomeasurements in a
excpnions a e ar151)iz plmentation ten iqes F ale, in [ad[han linear observer structure 1211. global stability can be shown.expansions and linearization techniques. For example, in [271 an
extended linear observer is developed. In [261 a nonlinear However, if the pseudomeasurement observer (PNIO) is used in aextenedlnearobserver is implemee d .b g In 1 ial s ea b noisy environment as a pseudomeasurement filter PMF) 11I. [31,observer is implemented by augmenting the original state space by 14, 1!9, biased estimates result. This propery of the PMF is
new states composed of the quadratic terms resulting from the also shown in the results of Section IV. In 111 it is shown for a
second-order Taylor expansion of the system nonlinearities. In a
1241 the terms of a truncated expansion of linearly independent particular example how the EKO (the extended Kalman observer)

can be manipulated into the form of the P.%1. The essential
functions, which approximate the system nonlinearity is used to difference lies only in the calculation of the observer gains. A
augment the state space and, thereby, construct an observer, dif ceti es o the luai ofgteser in A
Similarly, in stochastic nonlinear estimation problems, numerous modification of the gains of the PMO is suggested in 211 ofhich

filtering algorithms, based upon series expansions to realize enables the EKO to achieve performance similar to that of the

* approximately the conditional mean. have been suggested (see the PMO. This is called the modified gain EKO (MGEKO). The
bibiogaph of[81. Hwevr, uchtecniqes re rohbitvein essential idea behind the MGEKO is that the nonlinearities bebibliography of181). However, such techniques are prohibitive, in -modifiable." This notion is defined in Section I1 and is thegeneral, even for low-order dynamical systems because of the central idea used in developing the structure of the estimators.

computational burden. Moreover, stability analyses of such This idea has some similarities with the development of the
t schemes are quite rare. pseudomeasurement function but it is not the same. For example,

As a computationally realizable and practical filter, the EKF is the concept of modifiability also applies to nonlinear dynamc
often used. Fortunately, there are many examples, especially in systems 1221 o231.i ig SR roleswhr te KFissucesfl nproducing sytm 12.121
high SNR problems. where the EKF is successful in The objective of this paper is threefold. First, the class of
useful estimates. Except for a few particular cases, little is known nonlinear modifiable functions is defined in Section 11 and then a
about the properties of the estimates (i.e.. stability, unbiasedness, general form of the MGEKO is shown to be globally convergent
and convergence) that it or its variants produce (51, [131. To begin under certain conditions. Secondly. the st lohastic stability of the
to understand some of the properties of the structure of the EKF. a MGEKO used in he noisy environment as a modified gain EKF
nonlinear filter with a constant gain is proposed in 125] and also (MGEKF) us in the n Section me. Since the gains are no
forms the basis for the stochastic stability analysis of [201. The constant, this analysis is related but distinctly different from that
filter designed in 1251 is based solely on stability considerations in of 1251, 1191. 1201. Note also that since the MGEKF is based on
a probabilistic Hilbert space. Later, in [ 191 and 1201 the stochastic the algorithm for the EKF, the gain of the MIGEKF is a function ofstablit proertes f th costan gan EF (CEKF Isonly past measurements. This differs from the gain of the PMFstability properties of the constant gain EKF (CGEKF) is

determined in the extended inner product space M 2,. In this waya onlyhpastameasureoents.pThisndiffersafromathergainnof.theref
'~ crtan mrginof obutnes isguaanted b th which is a function of present and past measurements. Therefore.certain margin of robustness is guaranteed by calculating the gain by eliminating the direct correlation of the pain and measurement

of the CGEKF from the algebraic Riccati equation (ARE) noise process in the estimates of the MGEKF. the estimation bias.

so prevalent in the PMF. is seen by the simulation of Section IV to

Manuscrivi received March 21, 1993. revised September 19. 1983. April be effectively eliminated. Therefore, the third objective is to apply
30. 1984. and September 20. 1984. Paper recommended bv Past Assciatc the MGEKF to the bearings only measurement problem (BOMP)
hdilot. A N. Willky. This wrk was suppirned in parl by Fgin AFR under (Section IV) which has important applications in naval engage-
Contract F08635 82 C-X)9( and by the Joint Services Electronic% Program ments [11, 131, 1141. [181 or for homing missile engagements
under Contract F49620-77-C 0(11.

The author(s are with the Department of Aerospace Engineerine and where passive seekers are used to track the target. Comparisons of
Engineering Mechanics. UJniscrsity of Te as at Austin. Austin. TX 7X712 the estimation performance of the MGEKF with the EKF and
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PMF show that the MGEKF is ver rapidly convergent and Note that if se had the linear estimation problem iih d' riamics

seemingly unbiased.
",i=A,C, +w, (2.12)??, II. ~e ,M, t-D . G-kin E\r- T~D KALMAN" OBSERVER

11. (MGEKO) and measurements

In this sections a clans of nonlinear functions is defined which y,=gdz,*,.0,S'+
f o r m th b a ts r t e g ob a ly o n v e g e n m o ifi d g i n xte d ed w h e re th e w h ite n o ise se q u e n c e s w , a n d v, h a v e c o ,v a ria n c cs Q , a nd

. -Kalman obser,.er (MGEKO). The g'ain structure of the MGEKO 'Y,, respectively, then (2.9)-(2. I11) would he the precise equations

for this particular class (f nonlinear system is essentially the same for the covariances in, and p, of the one-step predicted and filtered
P -% /' as that of the Kalman filter, since the error dynamics of the estimates of ',. respectively. Here we are assuming that and x,

MGEaO are in the same form as those of a linear system. Even known. We will view Q, and ), as design parameters and will
though this paper deals w ith discrete, linear system dynamics, the
ideas extend to the continuous-time case and to discrete nonlinear If (A,, g,) is uniformly observable and (A,, QI -) is uniformly
system dynamics (221. controllable it can e shown that the error dynamics of (2.7) and

Consider the deterministic case where the system dynamics are (2.8) are globally convergent to zero by using the Lyapunov
linear, and the measurement z,* is a nonlinear function of the function V,(e,) = elp le in a way that is similar to the approach
states v,. i.e., used by [ 17). Note that since g, depends upon the specific state-

(2.1) space trajectory, the observability condition is also trajectory
, t=A, r, (2. I dependent in general and this may be difficult to check.

Remark 1: In the next section white measurement and process
z,* = h,(x,) (2.2) noise sequences are added to the measurement (2.2) and dynamics

where i E Z. (the nonnegative integers), x, E 11", z e ;EJ. (2.1). If the gain algorithm of (2.10) is used in this stochastic

Consider the following definition of "'modifiability." environment, biased estimates are expected, since the gain and the
Dfu residual of (2.5) are directly correlated in a manner similar to theDefinition I.- A time-vaning ucina:1 -eqi oii

able if there exists a q x ntime-varyingmatrixoffunctions g,:Iq pse udomeasurement filter (PMF) as shown in the Appendix.
x -.' " sothatfor a ,. and e ZTherefore, a gain algorithm similar to that of the EKF which

any x ensures that the gain is a function of the past measurements only is
a,(x)-a,(.)=g,(z,*, .i)(x-.t) (2.3) recommended. However, if the measurement equation is a

nonlinear function of the states, the useful relationship between
where z = h,(x). the observability Gramian and the p, matrix in (2. I1) is no longer

Note that the difference a,(x) - a,(.) is equal to g,(z*, .,)(x - available. This discussion motivates the assumptions required in
.€) without any approximations. Notice also that g,(z,*, .x) = the development of the modified gain extended Kalman filter
g,(h,(x), .) * g,(h,(:). ?)., where this latter quantity is (if a, is (MGEKF) presented in Section III.

I differentiable) the differential of a, evaluated at ;Z, as used in
linearization. II. THE MODiFiED GAIN EXTENDLD) KALMAN FILTER (MGEKF)
The NIGEKO has the following structure: In this section we develop the MGEKF and study its stochastic

., =A,1,, (2.4) stability. As stated in Remark 1, the gain algorithm of the
"F MGEKF is altered from that of the MGEKO in order to reduce the

1= , + k,(z* - h,(.,,)), (2.5) biases due to direct correlations between the gain and the residual.
Consider the stochastic case where the system dynamics are

where 1, can be interpreted as a propagated estimate at time i, 1, linear, and the measurement z, is a nonlinear function of the states
can be interpreted as an updated estimate, and k, is some gain x,, i.e.,
sequence that may depend on past and present data. If h,(x) is
assumed modifiable, .f, in (2.5) can be rewritten as x,=Aj_1x,._ +w,_i (3.1)

c, =,i, + k,g,(z,*, ,?,)(x, -. ,) (2.6) zi = h,(x,) + v, = z* + v, (3.2)

where g,(z,*. .,)(x, - Z,) = h,(x,) - h,(.9,), and g, E 1 q 4 . The where {w,} is a zero-mean independent process noise vector

* error e, in the estimates is defined as sequence with finite second moment

e, x,-x, E{wr}Q, 5,, (3.3)

=(I-k,g,(z,*, Q)tLD,e, (2.7) where 6,, = I if i = jand 6, = 0 if i * j, and where {v, is a
w r fzero-mean independent measurement noise vector sequence with
where from (2.1) and (2.4), d, satisfies finite second moment

,9x,- 9,=A,- le,- 1. (2.8) E{ v, v I} =y,6,J. (3.4)

Since z," is a deterministic quantity, (2.7) and (2.8) are exact Furthermore, the w,'s and ,'s are assumed independent.
; and they are in the same form as that of a linear estimation system. Beo m ark 1ths re

'lhis provides us with motivation for choosing a particular gain Based on Remark 1, the structure of the MGEKF is altered

sequence based upon Kalman filter-type updates. Specifically. from that of the MGEKO. Furthermore. since z,* in (3.2) is not
available because of the measurement noise v,, z* is replaced by z,

n,= A, Ip,A A,r + Q, 1 (2.9) in the gain formulation. If h,(') is modifiable and differentiable.
the estimates of the MGEKF are obtained from the fol'owing
algorithm:

-. ,. k,=m,g,(z*, r,)r(g,(Z,*, f,)m,g,(z,*, ;?,)r+7,) - (2.10) x,=A,.1 .,_ 1  (35)
fr =-,-l, 3 5

xTp, Y -k g, (I- k g,(z,*, T + k,-..,r" (2.11) R, + k,(z, -h,(,)) (3.6)
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.2w" m, = A, p, , .4 t" Q,_, (3.7) The errors in the estimates of the intermediate MGEKF can be

written as
k, =m,, r(fir r+-y')- 1(3.8) 1 = x, - .w =A, I ,,, , i (3.17)

p,=(l-kg,(z,, . ,))m,(I-k,g,(z,, . ))r + k,-,,k[ (3.9) where

where x,, ah,(x,)/8x,I,,. - (I- c;,*)e - k,*v,. (3.18)

Note that if the predicted measurement h,(.,) is used in (2.10) Define a Lyapunov function ',(#,) as
P P, rather than z, then the gain in (2.10) reduces to that of (3.8). In ,(#s) Prr * (319)

this way, the gain of the MGEKF is in the form of the EKF which I "

ensures that the gain is only a function of the past measurements. Before stating Theorem I. the following assumptions are
Since the stochastic estimator (3.6) can be rewritten in a needed.

modifiable form without any approximation as Assumption I: A, in (3. 1) is uniformly bounded and invertible.
Assumption 2: L,* (I - c,*) of (3.15) is invertible for all

+ c,(x, - ,) + k,v, (3.10) i E Z.
Assumption 3: Q, of (3.3) is uniformly bounded from below

wherec, ! k,g,(z, *, 9,) the error equations produced from (3.10). such that Q, _> c-I > 0 for all i E Z..
(3.1). and (3.5) are exact. Although c, is not implementable. the Assumption 4: i,- is bounded from below by a constant
form of (3. 10) is important for our analysis of the behavior of the matrix c. I such that
algorithm. Furthermore, it is critical to MGEKF performance that - = lrm*-

.. , g, in (3.9) be calculated using z,. In contrast, the EKF algorithm IK I : , - (3.20)

S"~ 1131 calculates g, using h,(.,) in (3.9). As a final note, in [281 the Remark 2: Assumptions I and 3 are not terribly restrictive.
MGEKF is applied to an estimation problem where part of the Note that for the MGEKO described in Section II. the uniform
state vector is composed of discrete valued random variables. For observabilitv of (A,, g,) is sufficient to guarantee that D,, defined
this problem g,(z,, 9,) exists. The EKF cannot be applied to this in (2.7). is' invertible and that m,-t is uniformly bounded from
problem since the partial derivative hr, does not exist. below wherem, is defined in (2.9). The corresponding conditions

on L* and in*-' in Assumptions 2 and 4 are not unreasonable.
A. Stochastic Stability of the Intermediate MGEKF although there is no such simple sufficient condition that can be

checked.
In order to facilitate the stability analysis of the MGEKF, as a Theorem /:' The errors in the estimates of (3.17) and (3.18) of

first step we employ an unrealizable estimator, which used z; to the intermediate MGEKF are exponentially bounded in mean
calculate the gain k,. Although this scheme is not implementable square with exponent 6 under Assumptions 1-4.
for the noisy environment, it forms a nominal to which the The following proof of Theorem I is distinctly different from
implementable filter is compared. This estimator, called "the the proof of [25. Theorem 41 where the stability of the estimates is
intermediate MGEKF" for convenience, is given by the following based on a constant gain nonlinear estimator.
algorithm: Proof' Rewrite (3.17) by using (3.18) as

?I* A, ,i>_, (3.11) ., = A,Lt. ? * -A,k; , + ,. (3.21)

=.i,* + k,*(z, -h,(.1*)) =,* + k,*g,(z,*, ",*)(x,- .7,*)+ k,*u, Note that v, and L*, and w, and L* are independent, since z* is

• rA9 _ ,. + c,*(x, -.?,*) + k*v, (3.12) not a function of w, and 9€; is a function of the past measurements.
Moreover. since m*., in (3.13) is a function of z,* and .,*. m*,I is

m*=A,_i ,A",+Q,-i (3.13) independent of u, and w,. Take the conditional expectation over
- - - J',(#,), given Y,* = { e". " ",

' k,*= m*(/i*)r[(h* )m*(* ) r+ %1]- I (3.14)

p,*-(- C* )m,* (I_-C,*) T + k,*- %k,*r (3.15) =0L* r m,-t T_.-}** -,*

where the superscript * means that the estimates are obtained from + E* {tr [k*rA Tm*-:Ak,* y+tr [m," :Q,I} (3.22)
the gain algorithm with z,* = h,(x,) in (3.2) instead of z,. The
essential change in forming the intermediate MEGKF is that Z* where E,.{" } Is a conditional expectation operator given Y, Note

rather than z, is used to calculate p, and. therefore, (3.9) is that the terms inside the tr operator become strictly positive for Q,

j. replaced by (3.15). The second equality of (3.12) uses the > cr.l > 0 and if ,* obeys Assumption 4. Define
important modifiability characteristics of h, to be exploited in the K,, = E,{tr ,k*TATm* Akyt+tr [m" Q,]J, (3.23)
following analysis.

First, we consider the stability of the intermediate MGEKF by then (3.22) becomes
using Lyapunov's second method in the probabilistic Hilbert
space L2 . The norm of a vector random variable x, is defined as E { V, ,(e,,)-

t, ,, . =Kt+ *rE*,1L~rArm*-AL

x,11 xTx,(x,) dx,, (3.16),-'. (3.24)
-3-" . 'The term inside the E*, operator on the right-hand side of (3.24).' can be written after some manipulations as

where i(x,) is the probability density function of x,. Before

proceeding further, the following definition is introduced. L*TArm* -A ,L, -m* - I

Definition 2 1231: A discrete stochastic process x, is said to be L*rA r(A*r+ Q,) -'A,L-
exponentially bounded in mean square with exponent 6, if there
exist constant 0 < 6 < 1, KI ? 0, and K2 > 0 such that = -sr(sm,*sr+y,) s,

1 IIx, I,5K,+K2(I-6)' for all iEZ.. L,*rp*-'A, '(Q,- +A,-rp,* 'A, - ') 'A,-rp,*-iLe (3.25)

% %-
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where the mairi\ insersion lemma 1131 is used..4, is assumed algorithm. Therefore. N = {c, , t,, , contrihutes to
invertible, and s,* of the intermediate MGEKF satisfies the difference in the gains k, and k,*. since A , affects the

calculation of (3.9). Denote the gain of the MGI-KF as the suni of
s7 = yk, L~ (3.26) the gain of the intermediate MGEKF and the perturbed gain dut: to

N,a Therefore. from (3.25)

eT(L T14 rm*-IA L* -m*-)0*<0. (3.27) k, - A,7 + -k,. (3.35)

Similarly. c, of the NIGEKF is denoted as
Hence. there exists 0 < p, < 13

i < I such that
c, = c* + Ac,. (3.36)e*TrL ,r4,rrn * :'A,L,*j*- =P, Trm.*- le,*.  (3.28)'-

Therefore. d,. in (3.33) can he written as
The existence of 3, is assured by Assumptions 2, 3, and (3.25).

Now. (3.24) becomes ,. =A,(L* - Ac,)O, - A,(k* + %k,)t', + w,. (3.37)

E',{ r;. I(# )- ,(#)} -K -5,E { ,(*)} (3.29) Consider the following sufficiency theorem.
rK, < co, and , 1 - pi such that Theorem 2: If Ak, in (3.35) is bounded and Ac, in (3.36)

where0 < supz K - n ,= sc belongs to the set of nondestabilizing deviations such that
0 < d: - 6, < 1. The boundedness of KL is obtained from
Assumptions 3.4. and (3.14). Note that Assumption 3 implies that (L* -,Ac,)TAfr,* .A,(L,*-Ac,)-m,*- <0 (3.38)
m,* is uniformly bounded from above. for all i, then under Assumptions 1-4, the error in the estimates of

By applying the nesting property of the conditional expectation the MGEKF is exponentially bounded in mean square with
% to (3.29). one can obtain exponent .

E{ f'. t(e-, j)} = Er0{E ,{ , t* 0 Proof: Introduce the Lyapunov function for the MGEKF as
<K, + (1I - 6,),E-yo{E-,{ ,(j,* ) V , -, I) = #e lm, e,, (3.39)

EK, + (I -6,)E%4 V(~)) (3.30) where m, is bounded from below by Assumption 4. Since L,*-
Ac, in (3.37) is a function of z,*. ,€,, and N,-1 , LI - Ac, is

Define 6 as 5 - infiEz {5} and note that since 0 < 32 -< 6, < independent of v, and w,. Therefore, the conditional expectation of
1, then 5 > 0. Applying (3.30) recursively results in V,o (#,,) - V,(i,) for given Y, = {0o, el, , e,} becomes

[similar to (3.22)1i
,=o ~= rEr,, { ? - ac,) TA, rm* 'A(L,* - Ac,) - m,*- },

(3.31) + Ey{tr 1(k*+Ak,)TATm,*- A,(k + Ak,)yt,]

Use (3.19) and take an unconditional expectation over Yo* in +tr [m*%1Q,J}. (3.40)
(3.31). Then If Ac, satisfies (3.38) which is a modification of the left-hand side

117e, 11j5-K, +K2(I- 6)'
,  (3.32) (3.25) in the presence of Ac,, there exists 0 < /3 < ,6, < I such~that

where K,< K _ $7 =o (I - 6)Jlc=K,1 c6 and Kz=E{J'o(eo*)}/c. thac

Therefore. the exponential boundedness of the intermediate ( (3.41)
MGEKF is proved. Therefore,

B. Stochastic Stability of the MGEKF E,{ V_ 1(0,+ 1) - P#(1,)} K1 - 6,Ey, {,I)} (3.42)

Thus far, the exponential boundedness only of the intermediate
MGEKF has been proved. Now, our objective is to obtain where 5, = I and 0 < K = supz {K1} where

sufficient conditions for the MGEKF to be exponentially bounded Kt
in L2 by comparing the estimates of the MGEKF to those of the +E,{tr [(k*+ r r m- A *k+Ak,),,I+ m*-
exponentially bounded intermediate MGEKF. Such conditions are
found again by using Lyapunov's second method and are similar (3.43)
in concept to [6]. In this way the conditions for the deviation from and K, is bounded from above, since k,* is beunded from above by
the nominal to belong to the set of nondestabilizing deviations Assumptions 3, 4, and (3. 14), and Ak, is bounded from the
(terminology excerpted from [ 191) are obtained, hypothesis of the theorem. The remainde- of the proof is the same

The errors in the estimates of the MGEKF can be written from as that of Theorem I.
(3.1), (3.5). and (3.10) as Remark 3: Note that the perturbations in (3.38) are due to

variations in the gain calculation and not in the system nonlineari-
e,.1 =x,.1 -. , =A,e,+ W, (3.33) ties as found in [191, 1201. Therefore. although condition (3.38) is

similar in form to a condition given [19, Sect. 4.5.21, the
where derivation of this condition based on a time-varying algorithm

e,=x,- ,=(-e,),-k,,,. (3.34) rather than a constant gain algorithm is different. Although this
global sufficiency condition is uncheckable analytically, it can be

Note that the only difference between (3.33) and (3.34) for the used as a guide for engineering evaluation. For example, a local
MGEKF. and (3.17) and (3.18) of the intermediate MGEKF, test may be constructed for a given initial state and state estimate.
results from the algorithm for the calculation of the gain of each The MGEKF and the intermediate MGEKF algorithms can be run
filter. That is. the MGEKF uses z, instead of z,* in the gain for the same ensemble of measurement and process noise
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sequences. For each sequence the deviations of Ak, and Ac, can be measured perfectly from the accelerometers. The control u, is
calculated and the boundedness ot ..k, and the stability of the generated from the homing guidance law which is derived by
MGEKF via (3.38) can be assessed. This procedure was used in using linear-quadratic theory [7] and is the basis for modern
evaluating the performance of the bearings-only problem de- homing missile guidance. The dynamic coefficients for (4.1) are
scribed in Section IV.

Remark 4: If the processes are ergodic. boundedness of A,(kr*
+ .1k,) implies that the exponential stability of the MGEKF in L2  13, At/", (e - -'+ "t - )3-(t/)I
and the finite gain stability of the MGEKF in M 2, are equal by [!2, " I 
Theorem 7]. 1A, 0, 111 -( e )b B,= -t 3

Remark 5: A time-varying function h,:j$t -, .f' is called . A ) , B
approximately modifiable if there exist time-varying matrices of 0, I e
functions g,:.$lq x 1" - 1 and x JI" - Rqx" where j L e [
= x - so that for any x..' E D C W and i E Z., h,(x) -
h,() = [g,(z* .€) + ,(x, e)le where z,* = h,(x) and where 2)
lim ,t-0 11IF,(x, f)lj/ljg,(z* _II - 0. The effect of the error &,(x, (4
e)e on stability is to contribute to the deviations Ac, and Ak, in where 1, is an n x n identity matrix. At is the time interval
Theorem 2. For example, Ac, is replaced by the deviation Ae, between measurements, and X is determined from the bandwidth
Ac, + (k,* + Ak,)&,(x, e) in (3.37) and also (3.38). The gain of the target acceleration assumed as a band-limited colored noise
algorithm (3.7) and (3.9) uses the modifiable part g,. The process. Note that A, in (4.2) satisfies Assumption I in Section
bearings-only measurements are shown to be approximately III-A.
modifiable for the three-dimensional problem in Section IV and The intercept geometry, measurement angles, and relative
exactly modifiable for the two-dimensional case 121]. range are given in Fig. I. The azimuth and elevation angle

measurements for the three-dimensional BOMP can be written as
IV. APPLICATION TO BEARINGS-ONLY MEASUREMENT PROBLEM (2.2) where z7 satisfies

(BOMP) st a1

In [291 a new measurement model based on a transformation of az tan - Y4

the original measurements, called pseudomeasurements, is pro- ]= h,(x,) X, (4.3)

posed which is linear in the states of the system with a coefficient el tan -'z,/(X + Y")"

matrix composed of nonlinear functions of the original measure-
ments. By using the pseudomeasurements. observability criteria By using simple trigonometric identities, the two measurements of
are rigorously established for the BOMP [181. However, as (4.3) are manipulated into the following pseudomeasurements
shown in [31. the resulting estimates of a linear filter structure are (yr(z*) ' l,, y2,J):
biased. The simulation results here demonstrate this as well.
Moreover, in the Appendix. the bias in the estimate of the PMF is [Y] sin az, -cos az, 0, .. 0 ,

analyzed. By a different approach this analysis generalizes [3]. Y2, sin el cos az, sin el sin az, cos el, 0 ... 0 ,
Since the PMF produces biased estimates and because of the
nonlinearities of the problem, most of the studies have been H,(Z,)X, = [0, 01 (4
conducted using various forms of the EKF for the two-dimen-

sional BOMP (see bibliography in [10] and [161). Recently, [21 For the stochastic version of the system, the dynamics (4.1) of
reported successful results using the EKF for the two-dimensional
BOMP formulated in a modified polar coordinate when no the BOMP formulated in rectangular coordinates are corrupted by
process noise is present. However, as shown by [91 through additive process noise W, where w0, is zero mean white noise with
statistical consideration, and by several others through simulation second moment Q, = E{w,w0r}. Since the target model is
studies, EKF for the BOMP formulated in a rectangular coordinate assumed as a continuous first-order Gauss-Markov process along
still remains a problem. Fortunately, it can be shown that the each axis, Q, is obtained as the resulting discrete process noise
measurement equation from the two-dimensional BOMP formu- variance where Q* is the assumed power spectral density for the
lated in a rectangular coordinate is both transformable to a continuous input process. Q, is written as
pseudomeasurement form and a member of the class of modifiable
functions (see (21. Sect. 4.21). For the three-dimensional BOMP Atr
which is more realistic for homing missile engagement problems, Q, =  0 T)CQ*Cr0T(At-i) dr (4.5)
the measurement equations are approximately modifiable (see
Remark 5 of Section III-B for the relationship with the previous where ,O(At - r) is A, with At - r replacing At. and C =
analysis). [0:0:131 .Note that Q, of (4.5) satisfies Assumption 3 of Section

A. System Dynamics and Pseudomeasurements for the III-A. Similarly. in the noisy environment, zero mean white noise
Homing Missile Problem process v, = [vl,, v,]1 r is added to h,(x,) in (4.3) as (3.2) to form

the noisy measurement equations where ul, and v2, are azimuth and
The deterministic system dynamics of the missile intercept elevation angle measurement noise, respectively, and Ejv,vr}=

ptoblem written in rectangular coordinates are linear , n 2x2.

The pseudomeasurement observer [211 can be extended to the
x,_, =A,x,+B,u, (4.1) noisy environment. In that case, the pseudomeasurements [i.e.,

where the state vector x is a nine-state vector composed of three (4.4)1 are corrupted by the state-dependent noises. These state-wrete positate vcr X is a nine-t atie veocos o dependent noises together with the gain structure of the pseudo-

r ie andi R tions aR[[Ztr e atv el i, and measurement filter (PMF) 11], [211 cause the biases in the
x, V, zad three targetat estimates. In the Appendix, the biases in the estimate of the PMF

where u r  [aq,, at,, a.zI is the three-dimensional missile are analyzed by using the innovation processes for the case where
acceleration used here as the control vector since it is assumed that the process noise is included, whereas in [31, the bias analysis for
the autopilot of the missile has zero-lag. Note that in implement- the no process noise case is studied by a batch estimation scheme.
ing the estimator, the missile acceleration is assumed to be Since the noise variance R, corresponding to the pseudomeasure-
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MISSILE POSITION note that sin az= Y,/d 1 ,, cos az X,/d,,, sin el - Z,/d2,, and
p ~~cos el =d 1 /d,,. Thcrefore. D,= Dj,z7, .,) and D,, D2Z*

TARGET POSITION 9,). Hence, at, and 4, in (4.9) satisfy

P1, , ] sin azX - cos azY (410
_____0, D;] [' 2, sin eld1 , + cos e12, I 4.0

If we add and then subtract D,, sin el/Q1 , to 4, of (4. 10), then

/, = P,(sin el cos azX, + sin el sin a,

i+ cos W/,-i-sin el (dj, - IID,)). (.1

The last term in (4.11), which we dentby6(, ),ane

X+ (Y, - fY) 2 _ e (4.12)

where f,(x,, 9,) = tan el/(d,,d,, + Z,2,). This bound is used to

show that the elevation angle measurement is approximately
modifiable. By using H(z,*) given in (4.4), (4. 10) becomes

/Y,1 +a] 01

Fig. 1. Intercept geometry and measurement angles. 1 ,z*g + 0(.3

ment, as shown in the Appendix, is associated with the state- By using (a, 0,1 "of (4.13) and (4.4), the measurement residual in
dependent noise (A.2) and -y, is the noise variance of the original (4.9) can be written as

,,~ angle measurement. -yj and R, are related by

j,= D1- IR,D,- T (4.6) h,(x,) - h,(A',) = - EH,(z,*)(x - g,) + E[0, &,(x,, e,)ID2,]

where the range matrix D, is (4.14)

D,= IX> 1+~+ (47) here
D,= [47)(I, tan a4Ics,, (0,tn'fj4].(.5

S Since the actual state x, is not available, -y, is approximated as If (4.13) is used explicitly in (4.15), then (4.14) takes on the
approximately modifiable form as defined in Remark 5 where the

'RD,- T(4.8) modifiable part is g,(z"*, A~e = -E,(z7*, A,)H,(z,*")j where E', is

where 17, is D, calculated using the state estimates f', of the E, evaluated with a3, rather 0j, and the remainder term becomes
"' estimation algorithm. - {(E, - _P4 ,z,')e, E,[0, 6,(X,, 0,)/V 2,J T). Note that the

nonzero element of E, - ;can be written as an explicit function
SB. Modifiability of h,(x,) of 6, as (a3, tan-'I (6,/(l + 4j,)-6, tani (,)/D 2,/43,. This

In this section it is shown that the measurement equation of the remainder has the property ascribed to the term &,(x,, in
*two-dimensional BOMP is a member of the class of modifiable Remark 5 in an appropriate region 3) since as 1151 - 0 this

Sfunctions, and h,(x,) in (4.3) for the three-dimensional BOMP is remainder is proportional to 6,(x,, e,) which has the quadratic
approximately modifiable. The measurement residual in (2.5) is error bound given in (4.12). By inspection of f,(x,, 9), the region
now manipulated for the BOMP a~s 3) appears to be all of x, fx E JP except for l/(ldi, + ld2, +

[.K~ltani /Icos (el - el)J) :5 t where e is some small positive number,
ta , t an and d 2 , and dfare the values of d2, and el using the state estimates.

LXJ= For the noisy environment g,(z,, 9,) is used to calculate the gain
[tan Iz of the MGEKF, where z, in this case is of the form given in (3.2).

ta- d,1 tan d, Although the measurement el is approximately modifiable through
L 04, of (4. 13), the measurement az belongs to the class of modifiable

functions 1211.

tan -' c, (.) C. Simulation Results and Comparisons
tan (4.9

The results given in (211 are for the two-dimensional BOMP
where d,, = ,- + Y2 Let D, A d, /(X,X, + Y, Y,;) and 4D2, _ and noiseless environment. The simulation study given here

-. d2,/(d,,d,, + Zj2) where d,, = X 2 +Z Furthermore, considers the three-dimensional BOMP where both the noisy and

DIP
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noiseless environments are included. The launch scenario is given
, by

X 0=3500 ft, Y 0=1500 ft. Zo= 1000 ft

ux 0 =-1100 ft/s, vyo=-150 ft/s, Zo= -50 ft/s

arX= 10 ft/s, aT,= 10 ft/s 2, aTz = 10 ftJs2  
-PMO

and the initial estimates i0 of the state vo are assumed to be 0 o EKO "

0 ato--o-- MGEKO

,o3000 ft = 1200 ft,. , = 800 ft
00

,x.0= -950 ft/s, bYo= - 100 ft/s, D 0  - 100 ft/s o

dT, = 0  ft/s ,  d rr= 0 fi/S2 o jT o= 0 ft/s' 
.  

X

0 .Z. 0

The filters (or observers) are initialized with a diagonal P0 matrix ' - \ 'where z ,

0 10 41,--" .1'' 0 j3 "(4.16) I. .\

The noise variance corresponding to the pseudomeasurement R, \
(see the Appendix) is assumed constant such that R, = 0.1 12 and 0 \l
the variance of the process noise Q, in (4.5) is found using the d
power spectral density Q* = 0.1 13. For the system dynamics, N
X = 1 is used, and the sampling rate used in the simulation is 50
Hz. 

00The value of weighting between control effort and terminal '
miss in the quadratic cost criterion to generate the guidance 0.00 0.70 1.40 2.10 2.80 3.50
command u, [7) is 10'. Clearly, in practice the control law is TIME (SEC)
mechanized by using the estimated value of the states rather than
the states themselves as implemented in our simulation. However, Fig. 2. Errors in range estimates of the P.MO, EKO, and MGEKO for
since the emphasis here is on filter performance, the guidance law noiseless environment.
is only used to establish trajectories from which the observers and
filters are tested and compared.

The performance of the observers (PMO, EKO. MGEKO) and , _ _ ,
filters (PMF, EKF, MGEKF) is measured here by using the- PMO
histories of errors in the estimates. By comparing the error - - - EKO
histories of the observers to those of the filters, the biases, so MGEKO

dcprevalent in the PMF, can be demonstrated to be effectively
reduced in the MGEKF. P

As shown in Figs. 2-4 for the deterministic system, the
responses of the PMO and the MGEKO are quite similar, S
although the PMO performs a bit slower than the MGEKO. If the A

", initial errors were reversed in sign, then the PMO performs a bit ' S "
faster than the MGEKO. Note that the responses of the MGEKO ,
in this case are obtained by using the same algorithm as the ,MGEKF. Therefore, the gain k, is a function of the past*~ v measurements. This is done to compare the performance of the
observer and filter with the same structure but used in different ! - "
noise environments. Clearly, the EKO performs poorly for these z
relatively large initial errors. \

For the stochastic environment, the results of 100 runs of
Monte Carlo simulation are presented in Figs. 5-7. The error in i , \0the range estimate at a specific time i in Fig. 5, for example, is ,

" plotted by using the value IfE{ex,}2 + eII + Eex,}-where" ,
E{exI is the averaged value of the error in the estimate of the X "
over 100 runs of Monte Carlo simulation. Similar rms-type 0 0.00 0.70 1.40 2.10 2.80 3.50
quantities are plotted in the other figures. Figs. 5-7 show that the
estimates of the PMF are biased away from the deterministic TIME (SEC)

_ responses of Figs. 2-4. While the MGEKF shows good tracking
performance, the EKF remains poor. When the initial errors are Fi.3 rosi eoicity e ionethePI.EOndNG rsmall, the three observers for the deterministic system perform noiseless environment.

" equally. However, for the noisy environment, the EKF and the
MGEKF perform similarly, while the PMF still shows biases
which are quite affected by Po as shown in (A. 17). This is
particularly true for the short-timc engagement problem of the
homing missile. Therefore, at least for this scenario, very
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8PMO 8 PUF
if"J O---[ -EKO " "----o EKF

- --- o - -o MGEKO 0- --0- - -- - GE'F

4!

0 8
wo

Vw

0

,,, > o,

a0.00 0.70 1.40 2.10 2.80 3.50 0!00 0.70 1.40 2.10 2.80 3.50

TIME (SEC) TIME (SEC)

Fig.4. Errors in acceleration estimates of the PMO, EKO. and MGEKO for Fig. 6. Errors in velocity estimates of the PMF, EKF, and MGEKF for
noiseless environment. noisy environment.

V
8. 8 PM

G - -- o o MGEKO G- - -a MGEKF

w

-8 8-

0 t .

0.00 0,70 1.40 2.10 2.80 3.50 0.00 0.70 1.40 2.10 2.80 3.50

Ti1ME (SEC) TIME (SEC)

0. Fie . Errors n range etmates of the PMF, EKF, and MGEKF for noisy Fig. 7. Errors in acceleration etimates of the PMF, EKF, and MGEKF for
environlment, noisy' environmen~t.
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accurate estimate,, of the initial (taie, are rmtial tor the PMIF and Therefore, the error in the estimates eot the PM F can be A rittcn.
the EKF. while the MNIKF rvrt.'rnis %%Cil Under all conditions, by using~ (4.6). (A.3). and (A.4). as
To determine the desiations .1k and -It Ntarlino trorin the gisen
initial state and state estimate. the iniermcdiaic N\t F-K[ s" as run-
using the same ensemble of ifidp~ .Jprks noise e, 'i,.A 'k ' qi (A.X)
sequences as used in e,.aluatnne me MIf IN ( ser the ensembhleI
of realizations of these des inn. 0he ' un,dncss oft 1A
required by Theorem 2 was neser csen , ioe to ricino s iolated and where
the stochastic stability ot the NII-ll KI' ri dition 0 ;S) F sas
always satisfied.H (IAH H I..(A9

V. CoNCIF sloN's

A new observer, called the %1GEKO for a class of' nonlinear Since A, in (4.2) is a constant miatrix, the ubciti is suppressed.
In order ito understand the biased behavior oftbe PMF estimates. afunctions called modifiable functions, iN desined such that it is

globally stable. A stabilityi analissis ot the 'vl6EKF is perform ed closed- Dorm expression for the error e, is It) he determined.

N: by introducing as an intermediate step a nominal filter called the nrdethtasortin s
intermediate NIGEKF. In Theorem 1, the intermediate MGEKF is [U1 L,
shown to be globally stable in the probabilistic Hilbert space L,.
Sufficient conditions for the NIGEKF to be iflobally stable are [v "v,
found in a similar way to that of the intermediate NMGEKF. but a 1 R ',~ r
condition on the allowable deviations to be nondestabilizing is A - +HrR' ,A rHR HA
required in Theorem 2. [A r A, I

The M1*GEKO and the MGEKF are applied to the three-
dimensional BOMIP formulated in rectangular coordinates which (A. 10)
by Remark 5 is approximately modifiable. For the three- whr 1,E 1',VGII"Le'1. P',anVo=.
dimensional deterministic formulation of the BOMP. the MOEKO wheren, ;V",', ;'.Lei, =P',ad =Iperforms in the simulation almost identically to the PMO. Thn

Howev~etiate can aonly estimate Frtethe states when the initial 1' 7T,1...T O 0

these observer structures are retained. While the estimates ofthL
PMF are biased, the EKF and the MGEKF show seeminglyrr 1
unbiased characteristics in the simulation. However, the EKF A~ c'p 0) P,1 (' 0). 111)
appears only stable in the small. Although the simulation results = ~ 1 i 0) 0"" (i 0) 1 'J( I
indicate that the NIGEKF is stochastically stable, checking the
conditions of Theorem 2, with respect to an ensemble of Since the solution to the discrete Riccati equation is
measurement and process noise sequences starting from a given

~'\ initial state and state estimate, produces additional evidence of P,= [ Drjj )PJ + O'2 i )]i 1 i )P0  + 0) -,
.~ stochastic stability. (A. 12)

APENFXthen P', = 'V,Uvi. L,A in (A.9) can be written in terms of CU,,
The objective of this Appendix is to generalize the results of [3] after some manipulations, as

and to show the structure of the PMF used in the simulation and its
inherent biased characteristics in a stochastic environment. LA = - 9 T T (A. 13)

The pseudomeasurement y,(z,*) in (4.4) is changed to the
% 0~ following form in the noisy environment: Now, e, due to jtjs can be written, by using (A. 1), (A.8), (A. 9),

and (A. 13), as

*,Z, 0 H(,X+,X ' (A. ) (ei),, = 1R-H_,+LAI-1 R'-1H, -x,, + - -

where the noise corrupted z, is from (3.2), and the state dependent =pV-y TV rHTR-'Hx (A. 14)
noise A, is I

pU,(X,, V,)~ [(X 02+ y,)i/ 1 i (X" + Y'+ 72) /22, 1 r (A.2) Similarly, the e, due to w, and the e, due to e0 can also be written as

vi, and V2, are the original angle measurement noises defined in -I)P -~ (J( S
C( Section IV-A.(e)=pV- 11JA' A-15

The algorithm of the pseudomeasurement filter (PMF) [11,
1211. similar to the Kalman filter, satisfies and

1i,=.i,+ K,(y,(z,) - ,(z,).f,) (A.4) Therefore,

e, p,V T e ± 1 T Ix

K, Af,H1,(Zr(H, (Z,)Akf,1-, (Z,) r+R) (Po 'e,+ Ii

SM, FA,P,A[+, (A.7) (A. 17)

%. '
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% Because of the last term of (A. 17) which is the error due to the filter and parameter identification in linear ,,stem," Automatt-a, to
" state dependent noise A, E[e,1 is nonzero, be published.[241 H. Takata. "Transformation of a nonlinear ss5tem into an auemcned

linear systems." IEEE Trans. Automat. Contr., vol AC-24. tkt.
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The Modified Gain Extended Kalman Filter and
Parameter Identification in Linear Systemns*

TALK L. SONGt and JASON L. SPF' ER-t

4 ttc' ?11i htlwa filte, develo/aped /o r a ;pecial ctid~ oif lionl, , t1itit'N haos 1a0 iltc,a

lIlltwonzed st SttOs.

k* %\' ords Estimation: filtering: (extended Kalman filters i. nonlinear filiering. ,hscrs cr,. paramecter
V estimation. state estimation.

'~ Abstract For a special class ol ss stems. a general formulation and Spever 1 1985j to warrant presentation. This
and stochastic stabihts anals sis of a ness nonlinear tilter.' called generalization is partl mnotti ated b\ the paramecter

the odiiedgai cstnde Kamat tiler UEK. ~ identification problem in linear sx stemns. It is shlow n
5 ~presented. L sed as an ohser-\er. it is 'LdobalIk exporientialk

conseritent. In the presence of unc-ertainties a nominal that in an appropriate coordinate frame, thle
nonrealiable fiter algorithm is deseloped for sshich global nonlinear dy namics, associated with an augmented
stochastic tabiditN Is prosen. With respect to this nominal tilter
alc'orithni. conditions are obtained such that the eflectie state vector which includes the Unknow n para-
des iations of the realizable filter are not destahiliwint. In an meters. is a modifiable function.
appropriate coordinate brame, the parameter identilication Recursive identification of syse parametersha
prohlem ofi lineair s,stem is sho\sn tobe a memberof this special L wdl suidiI-se a
class, I-or the example problems, the %fGE KF shovks superior bjeen ideyIsuidi rcent Years. Amroniz them are
consereence characteristics \%ithout esidcnce of instahilit%. the identification procedures developed by Landau

(1976) w\here his model reference adaptive systems

1. INTRODtICTION 011 RAS) technique is analx zed solely on the bases of
FOR SPCIALclas ofsysems. cenral deterministic stability considerations by applying

formulation and stcasi ne hN per-stability concepts to the equivalent feedback
noniner iltr.caledtilmdianai ofxaendew representation (EFR Iofthealgorithm. Ljung( 11977)

* nolinar iltr, alld th moifid cin xteded has dev eloped a useful method, called the ordinary
Kalman filter) (\IGEKF). is presented. The essential
idea behind the MGEKF is that the nonlinearities differential equation (ODE) method, to analyze thle

convergence of the rcursive identification algor-
be "odiiabe nnlieartics imlyig atyp of ithms in the presence of uncertainty. Ljung ( 1979)

universal linearization. This simple notion, defined has studied the convereence analysis of the
in Section 2. is the central idea used in developing peitdsaeetne-Kla 'le EF
the structure of the nonlinear estimator. The apeiced tte eimutnedu iadmnifilatern ofti
analysis for thle, MGEKF was first given in Song and saplead torather imultaneussyidentificatingof thle
Spe~er ( 1985) for the case of linear dynamics and sae n aaeeso ierssesb sn h
modifiable nonlinear measurement function. Here,. hoydvlpdi jng(97.Lug 99as
the general MOEKE is presented for a stochastic suggested a modification to the predicted state EKF

systm were oththenonlnea meaureent algorithm to assure its asymptotic conxergence. The
funcion andnoninea dyamis ar inthe las of analysis in Ljung ( 1979) req uires that the stabilit\ offuncion an noniner d namcs re n th clss f a nonlinear system be tested So ats to insure tha:t themodifiable functions. Thle stability anayi pre- siat o teprmtrs re tbl ansented here is sufficiently different -m thyst esimte oftepaaeesnrgtal n

fromtha of ong convergent to stationary val[ues. These stationary
valtes are obtained by, keeping tthe current estimates

W * Receised IX October. 1983: reused 19 JuneI 1Q584.res sed 16
July 1954 rtiioriial %crsiiin of this paperwas nut presented at ofthe parameters inside t he sta bil i t domnatn deli ned
an [VA( Meetine rtis paper Asas recomnmended for such that thle estimates of the states are exponenl-

A.*s. publicati;on in res isd fiirm hK Associate F ditiir Y. Sunahara tiallv stable. Weiss atnd NI oore ( 19N0) ha~ e
under the direction of Editor 11 U. Parks. ThiN research %kas
partialk suppo'rted hN I glin A[F It unider cotract f-08615-82-4 developed an ex pomient ial lv conx rgent esttmation

P~)0 A~9i.I-OSR tinder Grant AI-OSR-s4-i07 I. and the Joint algorithm which dfoes not require at stability test by
Sers ices Electronics Program tinder contract F 4962(0-77.CA0l 01. incorporating thle K alman gain cal1culations inside

* ~* SttDepartment of Aerospace Frniieerine and Envincring
M1chanics. L nisersit of Texais it Austin. \ustin. IX -,,7 thle system matri tt s. e state estimates. Iu

tU S .v converuence chairacteristics of tlte esttmates are
59
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asN mptoticall. eqUitalent tothe modified aIgorithm estimation gains remain finite.,~of Ljun,z [ 19791I. tHo\\ever, the modification in kjung

.19791 and Kalman gain calculations in Weiss and 2. THE MODIFIED GAIN EXrENDI-I) KALMAN
Moore 1980)certainly require more computational OBSERVER \I(EKO)i
eflrt. Moreo\er. in those papers. the cause of In this section. a globally convergzent observer
instability of the algorithm is rather overlooked called the modilied gain extended Kalman observer
while concentrating on obtaining stable estimates. (MGEKO) is developed for a class of nonlinear

function (SnadSee.18) ogadSeverIn this paper the MGEKF is applied to the functionsSonmandSpeyer. 19X5.SoncandSp
'.-. parameter identification of linear systems. In I19851 ha\e de eloped the MGEKO for systems

Section 2. the globally convergent observer, called with linear dynamics and nonlinear measurement.
the modified Lain extended Kalman observer This is generalized here to the case where both the
(MIGEKO). is developed for a special system system dynamics and measurements are nonlinear

-. composed of both nonlinear dynamics and non- functions of the system states.
linear measurements in an effort to generalize the Consider the deterministic discrete-time non-
result of Song and Spever (1985). The gain linear system governed bv the follo\%ing equations
algorithm of the MGEKO is the same as that of the
Kalman filter. By using Lvapunov's second method, X,. I .(x (2.1)
the resulting algorithm is shown to be exponentially (* = hx) (22"
convergent. Another exponentially convergent
algorithm for the parameter identification problem where ie Z- (the non-negative intecers). x, e ." arecan be found in Anderson and Johnson (1982). In -
Seto ,asaiivaavi fteNGK s state variables, and :,* e r are noiseless measure-
Section 3, a stability analysis of the MGEKF is ments.
studied in the probabilistic Hilbert space L_ by The notion of a modifiable nonlinearity is defined
introducing an exponentially bounded nominal

~, ,. filter called the intermediate MGEKF. Later.
- sufficient conditions for the MGEKF to be Definition I A time-varyinfunctiona,: "-.Pisa

exponentialik stable in L, are obtained by nooditiahle nonlinear system jiiction if there exists a
comparing the estimates of the MGEKF with those p x n time-varying matrix of functions , x
of the intermediate NIGEKF. Besides the general- -- 97'" so that for an, x. . e -" and i e Z
ization of the results of Song and Speyer (1985). a
stability analysis for the parameter identification a,(x)- ai. )= //,:z.,').x--.l (2.3)
problem is studied. In Section 5 two examples of the where hl(x).
application of the MGEKF to the parameter Note that '/(*..R,)(x,-i,) in (2.3) is a universal
identification problem are presented. A simple linearization with respect to the measurement
example of Ljung (1979) illustrates that a modi- function h(x) without any approximation. Notice
fication in Ljung (1979) is similar to the MGEKF also that o/u(:. i) = /po(hxmat) i o) ,(. o)c
algorithm, at least for the transient period which is where this latter quantity is (ifa, is differentiable) the
critical to stability of the estimates. Furthermore,
the filtered state EKF may have global stability for d o
this example. A convergence analysis of Ljun,, ization.t e Although the class of modifiable functions is(1979) is studied for the MGEKF using a simple
example and compared with the filtered state EKF small, it contains nonlinear functions used in many

analyzed in Westlund and Tysso 11980) and Ursin practical estimation problems. Two examples are
(1980). 1lowever, when the process noise variance is given below which illustrate a modifiable non-

MGEKF has slightly linearity in the dynamics and in the measurement

biases than the filtered state EKF. Finally, the function.

NIGEKFisapplied toa pole identification problem Example 1. Consider the simple linear dynamic
of a linear time-inariant system excerpted from system with an unknowNn coefficient wvhich is
Saridis I1974) where the EKF is shown to ha~e poor anal.ied for the noisy case in Section 5.
performance. This application also illustrates the
robustness of the MGEKF since statistics of the y,. v, =0,y. 0" =0. :*=y, (2.4)
process noise model are mismatched w ith that of the
actual noise. Note that since it is usual to model the lhere x, -' Lv,.0, . This is easilk put into
parameters as constants. the parameter estimator modifiable form as

gains for large time are inversely proportional to ().v] [0j,1 1v~ e1. + 00 V .time, and therefore. converue to zero. I lo~kever, our =K -'-'I

results extend to parameter models NO lch for L'i = -
example are Gauss .Marko so that the parameter - //,) *. , x - , (2.5)
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% where (1.0) and 2. I can be written b, us.i 2.2).
(2.10) and (2.11 ) as

~//(:,.4= L 4 , x-. = , , 4 (2.6) -. -.- + =/(: .Kh,. (".14)

Note y = is used in (2.6). Note that since no and
differentiation is assumed, parameters modelled as
discrete valued random variables can be included e, - - I - k, * X I .,,l,. (2.15)
(Marcus and West%%ood. 1984).

Since (2.14) and 2.15) are written %\ithoutll ill\
Example 2. For the noiseless two-dimensional approximations and they are in the same haIrm asN
bearings-only measurement problem (Nardon and that of a linear estimation s\ stem, a prtilcular gai n
Aidala. 19811. the system equations are governed by sequence based upon Kalman liltCr-t. p updates is

chosen. Specilicalls.
= Axi + Bu, (2.7)

, an '(Y, X,) - t x,) (2.8) k2.1 \

where .4 and B are known constant matrices, it, is a ,= - , .. , , - k, ,-*, - r ,;,k,'
known guidance command, and x, is the system 2.17)
state consisting of two relative positions (Y,. 1j. two
relative velocities (Vx,,ir, . and two taruet accel-
eratio n s ( UTr,, TY (,) such th at x. = I\. Y x ,  .VXr %'V'- (, tj) , : , )' - o,. .

aT,]1/. Then the nonlinear measurement function Note that if \e had the linear estimation problem
.' hi(x,) of(2.8) can be manipulated into the form with dlnamics

_ \,....' -(hi(. i) = /1(,*,..,)(x, - .j where (Speyer and
Song, 1981) i = r/(c,..,. - ,., (2.19)

SDj(tan i ( (2.91 and measurements

where H(:*) = [sin :-*, -cos: 0,. 0. 0. 0, 01. + (2.20)
D, = I (cos :*,, + sin-* Y;), and (, = Dj(:,*i,.
The three-dimensional bearings-only measurement where the white noise sequences .,, and v, hase

* problem is shown to be an approximately covariances Q, and 7,, respectively, then
modifiable function in Song and Speyer (1985). (2.161--(2.18) would be precise equations for the
Other examples ofmodifiable functions are found in coariances mi and p, of the one-step predicted and
Song (1983). filtered estimates of -" respecti\el\. Here we are

If the observer for the system of (2.1 ) and (2.2) is assuming that c* and . j are known. We will view Q,
selected in the form of the extended Kalman filter and as design parameters and will call mI, and p,
(EKF), then the pseudocovariances' of e, and e,, respectively.

=J 2.0) If (i, (is uniformly observable and 1.e/,. Q,'I
-- i+ = !i(.i) (2.10) is uniformly controllable, it can be sho\in that the

-i =-Ri + k,(:-,* h,( ,)) (2.11) error dynamics o -(2.14) and (2.15) are globall.
convergent to zero by using the L apuno\ function

where . , is interpreted as a propagated estimate at l1(e,I = eflp,- 'e, in a way that is similar to the
time i, .ij is interpreted as an updated estimate, and approach used b Moore and Anderson (1980) and
ki is some gain sequence that may depend upon past McGarty (1974). Note that the uniform obser\-
and present data. Suppose ( (and Iti) of (2.1) and ability and uniform controllabilit\ in ole a rank
(2.2) are modifiable functions such that test of the corresponding (Irainians. [.'nfortmunatClv.

(... ',) and ( ,. 2) for modifiable nonlinear
-(X,) - /JI, = .1,) *..i, (I, -. l.), (2.12) systems are realization dependent such that the tests. , ,,are not ai priori checkable.

and Rcmark, I. In the next section k\hite measurcmcnt
and process noise sequences are added to the

\ • .. /i,(x,) - 1(. ,) = ,, ..i,)(x - i,) (2.13) measurement (2.2) and d,,nanics (2.1). If the gain
4 algorithm of (2.16) is used inl this stochaslic

where I .- -'.". " G,(-*..{, e 'i". Then. the en\ ironment. biased estimates are expected. since
actual errors in the estimates of the ohscr),er of the gain and the residual of (2.11) are direct I
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correlated isee Song and Spec er. 1985. for thle \l( K' 1Is in the for in of thle l:KF 1 iich
additional detaili Therefore, a cain aleorithil ensures that hie ai s onh1 a function of' past

% ~similar to that of thle E KF which ensures that thle measurements. Since thle stochastic l.stimator 3.41
gain is a function of the past measurements onlx is canl bo res ritten inl a modifiable form %%ithoUt an\~
recommended. Ho\%e~er. if thle mleasuremnrt equa- appro\imlationii s

4J, tion is a nonlinear function of the states, the useful
relationship betw\eenl the observabilitN Grimian x' + - ~ .-38

Nand thle p, matrix in (2.171 is no longer a~ ailablc. whrC ~~he error equationl produced
This discussion moti\ ates the assumptions required whr I A is~.t
in the de~elopmnrt of he modified gain extended from i_ -,,3.If and (3. 3) are exact. Although C, is

Kalmn flte ( GEKH peseile inSecionnot in plemnirtahle. thle form of 3.81I is inmportant for
Kalmn fiter(MGE~i reseted n Sctio 3- our anal\ sis oft the beha~ ior of thle altlorithm-

Furthermore, it is critical to the \GE[K F
3. rin. \iot)itiEt) (i\\ I\t\1)-t \.M*Nperformance that , in 3.7the calculated u1sing :_. In

FIt[I R \t(ilI i contrast, thle [ KlF ah,_orihm (Jatv\ inski. 19701
In this section %e dle lop thle \IG [K Fand StUd\ calculates ',, Iinghj V,) ll (3.71.

its stochastic stabilits. AS Stated in Remark I, thle
gain algorithm of the MIG FK F is altered from that 31.1, Stih i/it v anrdis ol the in1terIMediate Al GEK F
of the NIGEKO in order to reduce thle biases due to In order to facilitate the stochastic stabilitx

2.direct correlations bet~keen the cain and the analxsis ofthe MGEKF. as at first step wec emploN an
residual. unre'aliable estimator, wkhich uses :,* to calcu'late

Consider the stochastic case where the nonlinear thle gain k,. Although this scheme is not imple-
systm ot2.H ad 1.2)~ it aditie nisebecmes mentable for thle stochastic case. it forms a nominal

-to wkhichl thle implemnentable filter is compared. This
+ ('~ (31 f estimator. called '*tile intermediate MGEKF- for

~c. ~Ii~x i- :~ ~, 3.2) conxenience. is eien bv the following! aluorithm.

- ~ N where again f and h(-) are assumed to be A . I)(3.91

modifiable functions and where l t) and v i, are x,* .(mk),- i()3.10)
zero-mean independent noise sequences with finite til= k
second moments Q, and ;.respectively. It is further /-tfP I- . )

assumed that thle (,),s and t',s are in dependent. Based + Q f3.11I)

on Remark 1, the structure of the MGjEKF for the kf* =i)*Jt~n*ht + -10(3.12
above svstem is similar to that of the MGEKO in T -

Section'2 except that the gamin algorithm is altered. P1 =I -, k~(~.~fif ~(f if
+ k*.kI(3.13)Furthermore, since :,* in (3.2) is not available

because of the measurement noise %,,. -:, is replaced where the superscript *is to distinc'u'ish the
* by in he ainforulaion Ifhf)andIf)are estimates of thle intermediate MGEKF from those

Smodifiable nonlinear functions and hn(- is differen- of the MIGEKF. Thle essential change in forming the
tiable. then the algorithm of the MGEKF is itreit GK sta ~rte hn i

summrize asused to calculate till and p, in (3.5) and (3.7).
f, f~, I (.3) We consider the stabilitv of the intermediate

MGEKF by using Lyapuinov's second method in
.~=±k,(;-I~.,( (3.4) the probabilistic Hfilbert space L,.

(p~ : r+QBefore proceeding further, thle follIowirie L
b I: - '''definition is introduced].

(.) Definitionz 2 (Tarn and Rasis. 1976). A discrete

- A nh ti~ini ~ ; ((3.6)1 stochastic process x, is said to be exponlential lx
(I -k~4(..~)(ir~tlbounded in mean square w~ith exponent i. if there

p,(:. +f k,7,k' exists constants ) < J< I. K I O~andl K., > Osuch
(3.71 ha

kk here /I, K,)i, , K-I (1 (3 1-41

I,2 in (3.1-4) is defined In the probabilistlic H ilbert

Remark 2. Note that if the predicted measurement Space I.- such I (rat
hf , (is used in (2.101 ratheir than :~ hnthe gain in
(2.16) re(luces to that of'(3.6i. In this %kay. (lie gail (if 0x i~\c\ ( 1f

% 
J
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%%here -I x,) is tile probability density function of x,. x. i.e.
The errors in the estimates of the intermediate

MGEKF can be written from (3.1). (3.2). (3.9) and -, - l, + 1, (3.21)
(3.10) as

Assumptions 2. 3 and 4 can be relaxed. Instead an

(3.16) tion 3 is important when applying the IGEKF to

the parameter identification problem. The algor-

and ithm of the intermediate MGEKF for this case can
be written as

D "" *,, - = :' k* e*= x,- ,*= (I - K, .,(.,..x, ))+ - k* ,=I:.*v1+2

= I.)(3_22)- L*.i,_ ,(c*_ L.. - (<'+ - k'v, + L~g .(* = ..,*+ l*( - lit*) (3.23)

(3.17) 
)

where L*, is defined as L* kI ., . ). and + Q, (3.24)
where (3.161 is introduced. k* = (I,' It, ' + '3.251
of L,,apunov functions for e* and * are in the form ii = (3.2+)

. of p*= (1 - k~t,1. (3.26)

* = ep * * (3.18) For the linear measurement case, since
H, = , = It, the update formula for p* of the

and intermediate MGEK F is essentially the same as that
of the Kalman filter. Therefore. positive definite-

)= 4* * - *. (3.19) ness of Q, in Theorem I can be relaxed to show the
global stability of the intermediate \IGEKF. With a

Before stating Theorem 1. the following assump- small modification of the method suggested by
tions are needed. Moore and Anderson (1980). the invertibility of

• V.-jz*.,*) can be relaxed to prose the stability of the
.Issumption 1: . of (3.16) is uniformly intermediate MGEKF. However. here the in-
bounded and invertible. vertibility fcV:x)is kept to dexelop Theorem
Assumption 2: L* in (3.17) is invertible for all ie Z 2.

Assumption 3: Q, is uniformly bounded from below An important aspect of the case of linear
such that Q, I > 0 for all ieZ+. measurements is that for k* = p,*tI1';, I the
Assumption 4 :p*- in (3.18) is bounded from below following inequality holds for every Q, _0 and
by a constant matrix a I for all ie Z such that nonsingular .,.i, (see the Appendix in Moore and

Anderson. 1980. for a more general case)
I ' l e,*(ll = -1e,* p,*  'e,* > c le,*Il2.  (3.20) p.- F - L.

Remark 2. Assumptions I and 3 are not terribly > . rt I ,l, If (3.27)
restrictive. Note that for the MGEKO described in
Section 2. the uniform observability of .,.') is where L*, (I - kH(. Moreover, if is
suflicient to guarantee that L, defined in (2.15), is uniformly observable, A ' is uniformly bounded
inertible and that p, ' is uniformly bounded from ufromly Terefore, ptis 2. 3oande
below. The corresponding conditions on L* and p, from below. Therefore, Assumptions 2. 3 and 4 are

blw Tep otions ounreandbl not needed in the proof of the exponential
inaltumtiones 2nd 4uch arpe t unreasonb. boundedness of the errors for the intermediate
althoucLh there is no such simple a sufficient MGEKF.~~~condition that can he checked. M EF
c i a b eNote that the Riccati equation for the in-

SThemrinz I. The errors in the estimates of the termediate MGEKF can also be obtained from

intermediate MGEKF for the system of Equations minimi/ing ,
(3.1) and 13.2) are exponentially bounded in mean

*. square ,ith exponent o under Assumptions I. 2. 3 j, % , + !,, t;. ty

and 4. I

+ ,t . (3. 28)s
Prool, See Appendix I.

The objcctixe of tile follow+ing is to show that subject to \,. =-1,, + h,, The minimum , \due
when the measurement equationsof(3.2) is linear in ofJ, is \\17 \x. Note that Q, of) 0 1 1, related to

lWk
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Q, i [tie algorithmi of' the intermediate NI( 1 K 1 as h nsdfeec ewen33)ad331 i
-hb~,', and Q, canl be factored as 0)- ,( . N( %IIK -. and 03.161 and (-,.] 7) of' thle i-neeiate

%I(JI:K 1-. results from thle algorithri IfOr thle
Leuiia Icalculationl o) thle gain filter. T1hat is. the NGF K IIQ - (Ip - is uniformis bounded f'or all Z . uses instead of'--, inl tile g~ain alaorithm. Thecref-ore.

N, -_:1 .1- .v I :contributes to thle difference
Proof. If one chooses v, Q2 i Mchre t ' then in thle -a'tn Calculation atnd colnseq uct tI
xecRangell t I. shere Range (lt I denotes the ranue atlects thle estim, 1, , aind ,.,. Since

space of the controilahih it (irarian It. Since Is C< \I Z IU I t C autd b tile Inter'-
Ranize O) ) Range i Q 1, x,. is a Controllable ,tate. r1CIiia I C 17.K I. then it is conk enient to
Therefore, from tilie fact that tilie in iinir cost ot' \% rite ( , ~ sI of tile MI( IK I as used
3.281 i s finite for ans controllable states. x,') I~s n31)a h u f ~ai h etubto

l *'Q)-'p*\ (2- <! M:i for all Z . and. for AC as
all YEv .

Before statinu Theorem 2 consider tile folloss in C, ( i - AC 13. ',21
observability assumption.

\% here \C, is dependent onl :c atid N, . Similarls
.-l's.siimprtion 5: For esers k. aind some N > 0). there .cI i and kt of tile NIGEKI: is defined as
exists a j0 > 0,. such that

Sk .",k 1,11 C/II(p, I > 0 13.29 (333
k AA,. (3.34)

where ik 1-1 i. (Note that Assumption 5 Consider the folloss il! sufiiciencx theorem which
impli ~ k taes thescondtions2)st for the deiations AC, and

implies. / AsupinjA to belong to the set of nondestabilizing

Theorem 2. If the measurement equation is linear as dxitossc htteerr nteetmtso h
(3.211 .As--umptions I and 5 are satisfied. and tile iv,s MGEK F are exponcntiall. bounded.
and v~s have finite second and fourth moments, then hoe3.IAkin331isbuddadCn
the errors in the estimates Iof the intermediate T/3.321u 3.d IfJ A, in (3.331 i beonde and the intof

square with exponent (i for positive semidefinite nndtbiineeitinsuhha

Proof. See Appendix 1. (1 - Cl - AC)rI,* '(1 C1* - AC,)-iu 0
(3.35)

3.2 Stabilit t anal vsis oY the AJGEKF C (
So far the exponential boundedness only of the+A,-

intermediate MGEKF has been proved. The + A 1, <gu '(i ):3. loobjectise of this section is to obtain sufficient J t ) (.6
0 ~conditions for the NIGEKE to be exponentiallyte

V ~~~~ stable by comparing the estimates of the NI1GEKE hr F i n ~ r uniisfo
with those of the exponentially stable intermediate intermediate MIGEFK F. then under t he ASSUmIpt Ions
MG E KF Such conditions are found acai n bN usi niz 1, 2. 3 and 4 for the ssstem of 13.1 ) aind (3.2). ort the
L-yapunovs second method. In this was, the Assumptions I aind 5 for the s, stemn of' (3.1 ) and
conditions for the des iatton from tile nominal to (3.21)1. the errors iii the estimates of the NICE ,K V are
belong, to thle -set of nondestabhil i/inrg des at it ms C\ ponIenlt all bounded in mnean squta re s% ith
(Safono%. 19..) are obtained. exponett '

The er rors in thle estimates, of the \1; F1K I- cain be ro.Se\erd 1
5ritten from (3. 1. (3_1 . ( 3.3)1 and 13.-4 1as Pof e peii

=~~~ 0, 3m~i Ai:.\k, K, ) Rcmuai A 4 (uditions 13.35)1 and (33-6) can be
combhin. tas

(1 - * o

. .) . .. ..



quantities from thle intermediate \IGEKF-. If thle
measurement equation is linear in x, as (3.21 l. Av, , Bit, Ill I,*~

I,,=1, and AC, = k1,aeused in the above 4 , 1)±+(.,- 4I, 0j IV

Remar i. lthoah e run fr h s ame cn

dequence the35 deaaton of36 or, Therfore .Ve - n 2.2ohtiscae a b wite
andkiav tey can be acuaed a th boude fof as

eK mad. The taili f he tle ineeia 33)and

\I E F a=rtm a ernfrtesm (4.6)

Coquncsder h oequ nce chea deN aticn mode whrAkiheqxqieti~ia

-~ ~~ n AChr n isasued alclate and minmal aond u, s figec aslisi

i~~~~~ an thew scalipt ft tie NiG F \. Te (335 and ~ Aypoi eairo h rdce tt K

W~~~ ~.6 are the 37 co anb aramees t ed iet.e.Te a prmtretmtrfoierssesi

otaie PAAin U heTH~ O stateEN spceh"setme I. o the param i ei ate r i ogt o.h

+ 7,:.* , +'Ov +4 7-' (5.2)5 PPIC TIN

where~~~~ ... + (4.... .. ) and R~hr BadC w elaind to are ' zeroe a ite niewthdnt

saer t is secondd moment and andmal and resecivly The(011egec na

a kno~ n calr iputat im i 1.The7,s-an 13s structure eavo of the predicted state EKh sa

br0  l caoia for W h [97] ex.1)is aamledo the rcursi predicion erro (1979 ),h

A baie in 0 h stat spac ' B s C'tmalgrthm (Moorte pa te We is 1979) t istl

Ky 'I 0  
., () + vi hy (5.3)

(43) whrecthe tiae of the premented state K .wihisa

0. 0= 0- exm l o f the ersix at i ct f/) i th errsRpec t
If ~ ~ ~ ~ ~ ~ ~ loih u(Moore an Wess and9) issaeacnne O h sdlnda

I.:I, +u' ' e K,(,-It 53

i.i wher tilet estm.t the th augctntr stin(5.4

IV ! [.!'0,and I the de ri\ ati % e of.,(.) %% ith respect to ideie

%xhere \:, satisfies a nonlinear dvrnamic sxsteml ast iedr\iico t()%t epc ovseic

expressed in (2.1 ) but with the addition of a known
input it,. ith) ') F

It is shosk n below% that / )corresponding to (4.2). CA(~) K D,1], (5.5)1
manipulated in the aucinejied state space is L

ALT 22:1-E



66 T. L. So\(; and J. L. SPLt. ER

and E: v,.e ,  = 0 for all i.i. then the gain K, of the simple example from Ljung 11979). i.e.
predicted state EKF of (5.3) is obtained from the
following algorithm. Y, = 0, + (,,

K, = [.AP C,r + \I,PC,' + A,P,,D, = (5.8)

+ .IP 2D]S I i, , D ] v,,

= CPC + CP,,D,r + D,P C r

+ DP3,D 1r + .'I is used to show how the filtered state of the EK F Ithe
1 [, I Pusual EKF) has asymptotic conmergence charac-

teristics by usine the same method of Ljung (19791.P ,. .4,P .,+j! .4iP,,.\ j + \, P - - I  Ho%e~er. if Ljung's modification 5.6) is applied to

+ \,P,.jI - K,S,K r + Qthe above example. .I1 in (5.7) becomes

,= .P, + .11iP3 , - KiSiL r,

P3 , = P 3, - LSL, , + P.- -
PI,~ + ,

where the partition of covariance matrix Pi of the

state x, which can be written as .I* ., + vj, - ,) = if

P P,] In order to avoid biases in the estimates, the
P=[ "I estimator of(5.3) w ith the modified gain K, of(5.6) is

changed to the form of the filtered state EKF. i.e.

is used in the algorithri and the initial value of the P,
matrix is P0 = diag [Pl, P 3,]. -= - -

5.1.1 Liung's modified EKF. As shown in LJung

(1979). the predicted state EKF is not asymp- where x = v, 0 ]T and 11 = [1.0]. For the filtered
toticalIN stable. This fact is analyzed from the state EKF. Ljung's modification would turn out to
stability of the ordinary differential equations be the algorithm of the MGEKF. at least for the
obtained by decoupling the estimates and co- transient period which is critical to the stability of
variance of the state of (5.3) under the assumption the estimates.
that the stationary (or equilibrium) value of 0 is Note that I() of the above example is modifiable
obtained. However. the stability domain, defined such that .4/, in (2.12) for the system of (5.8) can be
such that the estimates of the system are written as
exponentially stable, is not explicitly specified in
Ljung (1979). In Ljung (1979) the estimator of (5.3) (5.9)
is also modified to be asymptotically stable at the 10 1
stationary point. This modification includes the
change in the gain K, (seeTheorems 7.1 and 8.1. and In order to calculate the gain of the MGEKF.
Corollaries 7.1 and 8.1 of Ljung. 1979) such that

K, [..1,P, CT + %[* P .Cr + AtP 2,DT ./V(Z" .i) 0 1j j5.10)
+is 

used, while

where

.1,* = 1, + . z, - C ,) (5.7) [ j( )

Sis used in the EKF to calculate the gain. Since the

IV %here K and 0 are stationary values of K, and 0, original system of (5.8) is linear. (5.9). (5.10) and
respectively, and 'K O is obtained from an )5.11 are similar in form. Since the intermediate

. approximated algorithm (Equation (7.8) of Ljung. MGEK:. which uses .1i, in (5.9) to calculate the
1979). Since the modified gain Ki of (5.6) is a gain, is globally stable in the mean square sense by
function of the present measurements, biased Theorems I and 2 of Section 3. the exponential
estimates are expected during the transient period boundedness of the EKF for this example can be
where P,, is nonzero (Song and Speyer. 1985: obtained by a procedure similar to that used to
Aidala and Nardon. 1982). For example. in prove Theorem 3. The result is that the EKF for this
Westlund and Tysso 11980) and Ursin (1980). a example is exponentially bounded if Ak,. which is

@f
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the difference between k,* of the intermediate 1?13 =[1113 - "I.'S O 1) - 1113,, 25.224

NIGEKF and A, of tile EKF. is bounded and if the
inequality The objective is to demonstrate the local con-

vergence properties of the NIGEKF using thle
kH)p~'I - ,H)linearized differential equation of Ljung (1979)

Xi - Iabout the stationary point.

P < 0 for all ieZ- (5.12) It can be shown that In and m-, tend to be zero as
i- Y_ (Ljung. 1979: Moore and Weiss. 19794.

is satisfied where p, and I)*- are calculated from the (5.h)redes oIa m,-iian

intermediate NIGEK F. and 1 -X1 I and k, are 52)rdcst

evaluated from the estimates of the EKE. If the h )2oh i12h,+I +. 5.131
abov e conditions are alwvays sat isfied, then thle E KF 3n,-ii4,+IK4m1.(24
for this case is globally stable. Otherwise, the regions Thsipesta
of sat isfaction of (5. 12 provide thle stabil it% domain
for the filtered state EKF. If the conditions of ±

Theorem 3 are satisfied. the errors in the estimates of = ~__--(5.244
the NIGEKE are exponentiall% bounded in the2
mean square and the stationary value of the
estimate of parameter Uis obtained in that sense. where 43 is the stationary %alue of the estimate of thle

parameter obtained under thle assumption that thle
5.1.2 Convergence an-isn (I/ o the A!GEKF. The conditions of Theorem 3 are satisfied. Therefore. (
followin2 is a con~ergence analysis of the 1MGEKF which is the limit 'alue ofG, as i-'zz satisfies usHin
for the scalar systemn of 0.8. (A convervence analysis (5.17)
of the predicted state EKE for thle same system was
given originally by L-jung- (1979). and similar - I?

J.analyses of the filtered state EKE are found in , + I'
W~estlund and Tysso 41980) and Ursin (19804.
Satisfaction of the reguILlarity conditions necessary By' usinLe (5 .22) in (5.21 I.nm, satisfies
for the proof of c-onvergence is relegated to
Appendix I of Ljunv 41979). After some manipu- n. =((4, -(0G,), + Zi1I13., (5.26)
lation. the MGEKF algorithm which estimates the
augmented state xi of the systemn 45.8) yields The process 11'satisfvine,

V = ti + G(:, - ,)(5.13) ft 444- lGt + 2, (5.27 1

= ~ (.14) is related to the Ini, process viv en by (5.26) as I -
(= 0, + L,(zi - Y)(5.15) with the assumption of constant "13. 4 Lrsin. 198).

0, =(5.16) i.e.

Gi 1 , Oin, + In j-'. (5.18) t , 1 II15

L+(51) where ih., = ii1 and Ph~i Fii .1romi4.5 and

The matrix In, is partitioned as (5.16)

11?, = -, ~~(5.19)4) - I.(2)

and each partition satisfies weeL iad: ,-~ .Fo i

Ml, [OP III0 - I Vi ) ~ assumption of ergodicitv of tile processes and the

+ Q,. Il, (5.2)
I the RI-S of the differential equation associated %% ith

Ill, =[4)in~- II ,0 at thle stationary' point in L-jung (1979) %"ill be

,n 0 (5.21) L': U: = E:J , (,Ti, + 1I (5.314

0%
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As shovn in Ljunge 1979). the sign ofE: It7.: decides = El 117 , =1 , +J, where
the stability of 0 since ii m, -, I > 0.

In order to calculate El K-7: analytically. transfer .e, = G ,, (1 -0
functions for It: and j: are needed. From (i.27) (5.40

11'z satisfies

(5.'32) Figures I and 2 show the comparison ofl,, and t.
= H,(q) ---- for 0 = 0.2. 0.4. 0.6 and 0.8 and for /.= I and

I - K 52 = 10. The results show that there is only one zero
h i er=crossing for both the filtered state EKF and the

where q - is a one-step delay' operator and/9 = 06S. MGEKF indicating that there is only one point to
Note that using the predicted state EKF in Ljung which the estimator will converge. Note that for

(1979)stiato wil :oxre Not that) forortefitrd tt(1979. 1 - is H(q , and for the tiltered state ; = 10 for mismatched process noise variance, the
EK a t iso qHo q ). From therelation(limitig parameter estimate of the MGEKF is only slightly

equation for (5.13) and (5.14)1 more biased than that of the filtered state EKF.
Although the figures show that 1_.1 > jJ'. and

.,= ,_ - + G(;--~, - )1. IdJ,, do! > Jdl,. dOl, this does not indicate that the
MGEKF has faster convergence that the EKF. as

,z is obtained as would be supposed by the analysis of Ursin (1980).
The local converence of the estimators is iven by

- (5.34) evaluating E[LU in (5.31) which includes ,i3 and
-o Knot just by.JA or J,. Althoogh it can be argued that

near the equilibrium point 1h3 is a constant, its value
Therefore. is different for each of the filters and is obtained from

Ljung (1979)

= Hq) = (5.35)
- - - 0-K) t F G(0)= E IW 2s ]

Finally. El Iti, is obtained from 1 H(q -I)s- 'M (jq) dc (5.41)

J + _, 1 f i, )1ll(q 4) ..(q dq2 jq

= E;It LJ I- {4t - _ where H(q) is given by H, in (5.32) for the NIGEKF.
by GqH (q) 2 for the filtered state EKF. and by

(5.36) OGH1 (,) 2 for the predicted state EKF. All threefilters may have similar asymptotic rates of

where c is the unit circle in the q domain, and where filter may hav e Mptoti res of
convergence since 1in3 of the MGEKF is less than

(1-(q) = I + /., [I - q00)(1 - 00,,'q)] (5.37) that of the filtered state EKF, which in turn is less
than that of the predicted state EKF. If t113 is

where 00 is the actual value of the system parameter asymptotically the estimation variance, then this
indicates that the MGEKF is locally, relatively

4 and . is the actual process noise variance, while unit more efficient than the other EKFs.
variance is used in the gain calculation of the filter,
Note that (5.37) is derived from (5.8) with , = I and 52 P ole identificaion
the actual process noise variance /'.. After evaluation
usina residue calculus, fm yields Consider the following example ofa discrete-time

single-input, single-output linear time invariant

" = ,,,, + 1~ (5.38) system excerpted from Saridis (1974)

where +., = . d.t , + 5w

"" !,., - I I , I K, - _)0w where

(5.39)
0-- I - 20 1 - ],,lhl - O,) 0 I C00

A 0 0 1= 0 1 =7

where I =0-F =0)1+0
2 2+\0 44+ I. r 0 0 0

V can be compared to the results of the filtered state a a 1 a4 0

EK F of Ursin (1980)% where!,. of the ElK F satisfies 1, (5.43)

IN*
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FIG. I. The functions I,0) and /. 1)1 for 0o = 0.2, 0.4, 0.6 and 0. vith

and the noises are zero-mean white Gaussian with This form is consistent Atil.i TI syb:,r-.,,iittr

finite second moments such as canonical form (Chen. }T,) : riz',: .a,,

E! w,%%l = 6,lJ ' * | - II.
.i.Ii

E~v =O0.256, Z 1.

", According to Saridis (1974), the EKF used to where

identify the a#.j = I .... 4 performs poorly even for -0 0 0 1

the case where it is stable. A direct application of the0 0 / l
MGEKF to the above system is infeasible, since the 1 0 0 ,/

nonlinear system dy namics are not modifiable when A d I t -

the unknown parameters are augmented t: the i
original state ,. Therefore, the stochastic system 0 0
(5.42) is first transformed into the input output
transfer function using the Z-transform technique
as This is the form sugge:;c~l ;in. &,ni v. if

unknown parameters ,i, t-, .i,. mid ,i' 1re:(q)_ q2 _ (I( + 3 augmented to the origin.,AtioqIv .... Vatv ,
. (q) q _- aq 3a(1 au,(/ (54 respectively. then the auinu d ,nIiinorii lintT.

04
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-a 1d

-4 -- --- - --

-20 -Oa -2 D 4 0 0 .0 0 80 -,20 -8C 0*

0 2 Lomnda :10 0 00 :4

'2EK 28

-0EK

LIa 22 -21~- -~ ~ 00

2 0 8 : - 0 60 0L0o0 0 s0 -0 80 0  40 0 0on d JO a

Fiwi. 2. The funct ions /,0 and iQi1 fr 0i, 0+2. 04, 116 aind 0i S s itih 10

d~ namics are Aritten as moditiable. Note that the abo\ e noniliear s\stemI is
corrupted by state dependent noise \ ih ,cconld

K, x N4i X momen~t

NJ +I: :4

VX S'40 since N: -.) and V, 11n 11 of (5,-4 Ji kIe tthill\1

0 Uflkno\\ ii % alue', lor ihis problem. 0) 'InI I I 4> ii hr
V11 l 0assumne(] to he in arbitrar% con1i itr 1110 henI

I A A p 0the 1iK 1- I, ippledt. and 1,,icr. at) adaipt i~e
I! !0 scheme, used to calculAte 1Q, is impleiiieTIiid InI thle

LX MI~ 0 simlulationl. -Fie siabilit\1 a l'sInI Scionl 3 i" ,tIll]
fl.'* t"X j 5.7 alid cecn thou.gh11 tile noise model is diflerent lioin

.41 the actual nolCise aslnea Ie ctCA noise and noise
[-olon~inu thle aruuments of Section 4, thle model ire /cro-mecin processes %\itlilint I s 1; econd
measurement x, + % , and (~of (5.47) atre moments;. A.s gi\ en in SectiJon 4. h t :I I. Ii oband
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from j~,- is For simulation. tile actual aZILICS for c

are selected as [Ir el .I~ 2 (1,1 -t 0.46. .
~)0 0 ~X4  0 0 01 --0. 18. 1. 0' a s, ei ken i n S ar id is (19 7 4. ThI n ia t rl (

1 0 0 ~ ,0 , 0 0 in (5 48 1is selected for the matched 'And misniatclickd
0 1 0 0 0 0 case. Ani 8 x 8 Q, mnatrix for Matched process noise

'~- 0 , 0 statistics, denoted Q,. satisfies
0 01 s 0 0 OX.,,

= 0 0 0 0 1 0 0 0 (11. -1.18s. 1

0 0 0 0 0 1 0 0 -1.18 .1 .- 0

0 0 0 0 0 0 1 0 11 lI . (.)

0 0 00 0 0 0 1]

(5.49) 10 0

w here x,, . Note that .c(.~.which is
obtained from replaciniz x, in (5.49) by - is used to For thle mismatched case, thle first tmo diauonal
calculate the Lain of the NvIGEKE. while I~ .. elements of' Q, are increased by, 20. 40. 60). 80 and
which is in the same form as (5.49) but with x,. 100" "A series of simulations is executed wil
replaced by is used to calculate the ,ain of the matched and mismatched process noise statistics.
EKF. Ficure 3 showks the results of 10 runs of Montc Carlo

0 90 024.

I," -

0o60 -016

00 07-062

0'2

0 21

0C -9 0o D -7-4..

0 20 240 360 460) 60' 0 12 2-0 36 480 60O

L tero,on (x1 ') te't~o (,0V

0i, .Teerr nteetm ts(fteprm tr ntec~ trac~ ~ocsnie\rac

ti. IT 01 o' 02



wihtematchedprcsnossttsiswhl cacltosOOFo lt[ C& aitsof,Fig4 sowsthose of the 100",, mismatched cases thle folloN~ing Q, is used]
where

F 1.669)2. -2.36 1.669 0.l-.-. (
-2.36 , 2 -1.414 0 ~ -*

= 1.669 .- 1.414. 1 Q-

O 0 0

is sed Fo al ofthesiulaion, te iitil 1 The results here sho\\ a remarkable im pro% enent
is se. Fr llof hesimlaios. heiniia %alue of usine thle stochastic s~sten (5.42. Fihe t'erauc

true state is 4) = [00.0,0 - 0.66. 0.78. - 0.18. 1t)'. normalied parameter error %%as reduced h\ three
the initial value of the a pr-iori estimation of thle state orders of' magnitude of' the [K F of' Sarids (19 94

is io"= 5 . ,5 -13- .6 - 0.36. 2'] and the and. in fact, thle result of thle.%~ NI:K F Is equ111 alent to
initial value of pi is p, = 101. Finally, for the the bcst parameter identification schemne reported
purpose of comparison with the results of Saridis here.
(1974), Fig. 5 shows the convergence rates of the With thle same arguments as those gisen in

20 0 14

4. -0 ~ 90. 007

0 060 -

0 30 LU -007.

0 . -0 14
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002
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Fic;. 4. The errors in ihe estimaies of (he parameters in ihe case (if mismaiched process noise %a.ri.Cnve
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- -o -m ,ma' "eJ

s--- ---

.11

:20 21C 360 4k0 6CC

Iteration x OO

Fi,( 5 Conergence rates of the MGEKF Aith Q,, Q_,. and adaptie calculations of Q,.

Section 5.1. the EKF applied to observable ties as the filtered state EKF which differs markedly
canonical form (5.45mav have global stability since from that of the predicted state EKF (Ljung. 1979.
thedifferencebetween.j,,/*..{,oftheintermediate The MGEKF is applied to a pole identification
MGEK F and (I C/ , of the EKF is small if x, - .<, problem of a fourth order system where the previous
for the EKF is small such that (5.121 in Section 5.1 reported results for tile performance of the EKF are
holds. poor. By choosing the observable canonical form of

the state. the resulting system dynamics are
6. CONCLUSIONS modifiable such that the MGEK F is readily applied.

An exponentially conxergent observer called the Monte Carlo simulation indicates that for the case
MGEKO is derived for the problem "here both the of matched noise variance and for the case of the
nonlinearities in the dy namics and measurement are adaptive calculations of the noise variance, the
assumed modifiable. The exponential convergence MGEKF has excellent convergence characteristics.
of the MGEKF is studied in the probabilistic In the case of mismatched noise variance without
Hilbert space L, by introducing the exponentially the adaptive feature, the MGEKF has decent mean
bounded nominal filter called the intermediate square error performance characteristics.
MGEKF. and sufficient conditions for the MGEKF
to be globally stable are obtained from the analysis.
The intermediate MGEKF can also serve as a REFERENCES
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ABSTRACT To circumvent these difficulties,approximations have
been attempted to realize estimation methods consisting of a finite

A maximum likelihood estimation method is developed for a class of number of equations. The Edgeworth series expansion has been
problems where the dynamics are linear and the measurement function is used by Sorenson and Stuberrud(4) in developing a finite-
nonlinear. In this method. called the assumed density filternADF), the form dimensional filter for a discrete scalar system. The Edgeworth
of the conditional probability density funcuon(CPDF) is selected to be a series (5) is described by an asymptotic expansion about a kernel
function of a finite number of quantities. These quantities which describe and it consists of Hermite polynomials (5) and their coefficients are
the approximate shape of the CPDF around the mode are propagated given by quasi-moments which are related to the central moments.
through each measurement interval. At the measurement the CPDF is Sorenson and Stubberud have chosen a Gaussian kernel for their
updated using Bayes theorem and its mode, computed numerically. is applications and approximated the CPDF by an Edgeworth series
defined to be the best estimate of the state. The posteriori CPDF is then truncated after the fourth term. Thusthe first four quasi-moments

" approximated by a Taylor series expansion about its mode to preserve the define the CPDF. The problem of expectations of nonlinear
assumed functional form. The numerical results for a target-intercept functions in the propagation equations has been handled by senes
problem indicate that the ADF is superior to the extended Kalman filter. expansions. The state and measurement equations were
Howe'er. the ADF has a negative range bias. It is analytically provedwith approximated with second-order perturbations using a Taylor series.

, ",' some approximations, that the maximum likelihood range estimates are Due to the nonlinear term in the measurements,the update equations
smaller than the mean range estimates, across the measurements become very involved requiring further

approximations, Note that the filter developed in this paperdoes not
have such approximations for the nonlinear measurements.

4 1. INTRODUCTION Furthermore,Sorenson and Stubbenid have reported that the
approximationss associated with the nonlinear measurment term are

Tactical weapon systems require accurate tracking of of "critical importance" to stabilise the behavior of the second and
maneuverable vehicles such as submannes and airplanes. During the the fourth moments and thereby, to the performance of their filter.
last several years, there has been an active interest in the
development of sophisticated filtering algorithms for tracking with A similar method of parametrizing the CPDF has been

beanngs-only as the observations. Mathematically,this problem can reported by Willsky (6). He has used the study of random processes

be descnbed in an inertial rectangular coordinate frame by a linear on the circle effectively to formulate,using Fourier seriesa variety

dynamical model and a nonlinear discrete observation model or in of nonlinear estimation problem, arising in the field of

an inertial polar coordinate frame by a nonlinear dynamical model communications. He has discussed a few finite-dimensional

and a linear discrete observation model. Satisfactory results for this approximations for a scalar continuous time problem (6). The

class of problems have been difficult to obtain using current results of approximating the CPDF with the first three coefficients

mechanizable filters because of the nonlinearity and the passive of Fourier series when applied to a phase-tracking problem were

nature of the observations. As a result, considerable research has found to be very poor. The reason according to Willsky was that
been going on to improve the existing methods in order to obtain the truncated terms of the series might not have been negligible.V beern goimat. This was shown by an example assuming perfect knowledge of the" better estimates,.hae

phase.

2 APPROXIMATIONS IN NONLINEAR FILTERING THEORY An alternate method to completely neglecting the

The target tracking problem is stochastic in nature. higher-order moments or coefficients is discussed by Kushner (3).

, Analyses of stochastic problems are possible through statistical Instead of truncation of the higher order moments, he has devised a

interpretations. In order to obtain mathematical expressions for the method to replace them with lower order moments. The method,
statistics, assumed to represent the best estimates of the states called the 'moment sequences', involves picking an n' parameter

** . associated with a problem, knowledge of the underlying probability moment approximation to the CPDF. When moments of order

density function (PDF) is essential. higher than n are encountered, they can be computed in terms of
S .the first 'n' moments resulting in a better approximation than

If the system dynamics and/or the measurement assuming them to be zero. Kushner has discussed the conditions to
function are nonlinear,a firute set of statistics sufficient to descnbe be satisfied for picking the moment sequence for a scalar problem.
the conditional probability density function (CPDF) is not available It is not clear from his paper as to how the moment sequences could
(1.2,3). Even if the initial states and the process noise are assumed be picked fur a general multidimensional problem.
Gaussianthe nonlinear dynamical system results in a non-Gaussian
CPDF. Secondthe propagation equation for the conditional mean Some other formulations of parametrzing the CPDF

a consists of expectations of nonlinear functions that are very difficult with moments have been reported (1,7). An approximation has
to evaluate. Third,since the CPDF is not Gaussian, the system of been made by assuming the CPDF as Gaussian and neglecting the
equations to describe the conditional moments and.hencethe filter even moments of order higher than four. The system and
as a whole becomes coupled and infinite-dimensional. measurement nonlineanties in this method are carried to second-

order. The resulting filter is known as the Gaussian second-order
Assistant Professor, Aerospace Engineering filter (1,7). A slightly different ver.ion of this filter has been
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concentrated near its mean. Such a basis allows for ignonng the density should he preservahle dunng the processir: t a

fourth central moment.resulang in what is termed as the truncated measurement. These conditions can he accomplishel h% pmk n an

10 .4* second-order filter (1,7). The basic difference between the two exponential form for the density function and h s ',ntmnv the

filters is in the propagation equation for the second moment. The argument of the exponent in the form of a Ta.,hor enes ahut the

modified second-order filter (1) is the version of these two filters mode and neglecting terms higher than a pred,:termine order
without the measurement term, which contains random noise, Hence, the assumed lorm of the IPDF of an n-staie se,or x is gien

included in the covariance equaton. This is done in order to prevent byUthe covariance from taking negative values. The most popular
method in the applications of nonlinear filtering theory is the 5(x't) = C Iexp I-f (1 'I)
exter.,c2 of the Kalman filter methodology (1,8), which is optimal
for hnr- ir systems, to nonlinear problems through linear perturbation value uc e in a
thery. The resulting filter is called the extended Kalman filter (1).
Hossever. it is not known how the statistics of the CPDF relate to Ta)lor senes about the mode of the t'DF, m, and expressed as

the extended Kalman filter (EKF). Simulation results for a scalar
problem using the second-order filters discussed here and the EKF f(r.t)=f(m ,t)+f, (ma. )(X -M )+-1(T-m )Tf(mt )((-rn)
hi e been reported by Schwartz and Stear (7). Their results showed
no particular merits of any second-order or any distinct superiority I T
o: he second-order filters over the EKF. + t  -M) f. (m .t )(x - i2)

Another technique to approximate the CPDF involves
the idea of cumulants (6,9). The advantage of the cumulants over + I (X rn) f., A (Mt)(xJ-mJ)(xk-mt)(x-m)+...
the moments is that while the higher order moments may not tend to 41.

zero ,it is reasonable to assume that the higher order cumulants tend Here, for example, the term f,._ denotes the partial denvatise of

to zero. Nakazimo (9) has assumed a Gram-Charlier expansion (5) the matrix f.. with respect to the component state x, Also. note

for the CPDF characterized by cumulants. He has also derived the that f and its devatves are evaluated at the mode and are unctins

dynamical equations for the cumulants for a nonlinear continuous of the time, as is the mode.

time problem that are infinite-dimensional in nature and discussed The development of the ADF requires the equations for
finite-dimensional approximations by truncation. Willsky (6) has processing a measurement and the equations for propagating the
referred to the possible approximation of the CPDF using cumulants terms ff_,f_, etc., to the next measurement time. However, at
for the nonlinear estimation problems in communication theory. the mode, p. = 0 .so that fA(m ,) =0 everyw here. In addition, it
Both have not discussed any numerical results, turns out that the term f(mt) does not have any effect on the

processing of the measurements; hence, it does not have to be

3. A NEW FILTER FORMUL4TIO,V.4ND ITS REI4ATIOV TO propagated between measurements.

PREVIOU WORK f e The remaining items needed for the development of the
Rh filter are the system dynamics and the measuremen-state relation

The system is assumed to be linear. Ilence. the dvnantics are
All the approximate filters, described in Section 2, governed by the equation

claim to estimate the conditional mean. A major diftficulty in the
estimai: n of the condatonal mean is the computaton of the x(t)=Fx(t)+ b(t)+ w(r) (3)
normalizing constant of the CPDF at the measurement update for where x is the n-state vector. F is nxn matrix of constants, b is a
the nonlinear problem (1). In this studynew filter structures which time-varying n-vector control, and w is a Gaussian zero-mean
are more complex but mechanizable are proposed. The conditional white-noise process with a constant power spectral density Q and t
mode is assumed to be the closest representation of the state. thus, denotes the time. The relationship between the measurement and the
eliminating the normalizing constant from the computations. state is represented by the vector equation
Alsothere is no approximation to the nonlinear measurement
function as in the EKF. The basic idea is to choose the form of the z, = h (xi) + v, (4)
CPDF to be a function of a finite number of quantities and to project Here,z, is the p-vector measurement. h is the p-vector known

*. these quantities through each measurement interval. These nonlinear functions of the state xi, vi is a p-vector Gaussian zero-
quantities describe the approximate shape of the CPDF around the mean sequence of random vanables with variance V. and the
mode. The vector which maximizes the approximate posterion subscript t denotes the time at which the measurement is made.
CPDF at a measurement is defined to be the best estimate of the true
state. This method is referred to in this paper as the assumed density 3.2 Update Equations
filter (ADF). The ADF is applicable to a class of problems where The approximat CPDF por to the measurement z, is
the dynamics are linear and the measurement functions areTeapmia:CD nrt h esrmn jt

nonlinear. The equations that define the ADF are developed and the given by
ADF is applied to a homing missile problem. The results are I

d explained and the inherent biases in certain formulations are ,r(xil/Z1 )=C'J e (xp (- -- t) f(x-I)
indicated. The performance of the ADF is also compared to the 2!
widely-used EKF. - -(x -R)Tf,(Xr)(Xrn)

A 3 1 Assumed Form of The Density Function
In this section, an assumed form of the unnormalized 4 1 _(5

CPDF is presented. Then. the procedure for processing where C2 =C exp (-f) Tn is the apnon mode the bar denotes
measurements is developed, and the equations for propagating the quantities evaluated at iii, and Zi- denotes the measurement history

%9 quantites required for measurement processing are discussed. To upto t- l.
avoid having to develop a theory for three-dtmen.sional matnces, a In processing the measurement zt. the approximate

[ mixed matnrt-indicial notation is used, Hence, throughout this conditional density function is updated using Bayes theorem which
section, a repeated index denotes summation. The equations are

8developed in rectangular coordinates where the propagation leads to
equation for the approximate conditional mode is linear. 1i(xIIZ() = C 31expI-f (r ,z)I (6)

There are two considerations in the selection of the where C, is the postenori normalizing constant which is not a
form of the PDF. First, the density function should he a function of function of x but only of Z and skhere
afinite number of parameters. Second, the functional form of the
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'.f o : . -h +

I - ()+ -r-n )r! ,. .(t,-fl )tI-Pili (7) r '-

I "shere the tifth-order terms have been discarded.
tIti The boundary conditions for the propagation equations

are the values of ni ,/" and f. obtained alter processing the lastAt this point. Eq.(6) is maximized with respect to ir, to measurement. These propagaton equations ire then integrated upto
o[.>btain the posteron mode nit  hich is the maximum hkelihood the _ next _ measurement time to obtain the values of
estimate ot t thsrmeprobleh maximization car be meun, tand f, needed for the next measurement update.
camed out analsticallN; hoeverif this is not possible, a numerical P
method such is the Ne'wton-Raphson( 10) 3 4 A Second-Order Assumed Densir Filter
method must be employed. Note that the mode does not depend on
C, Finals, the posterion conditional density function is expanded A second-order ADF is developed in order to to
in a Ta. lor senes oNout the posteron mode to obtain illustrate the adaptive nature of the ADF. Note that in the

terminologv of the ADF. the EKF is a second-ordcr filter because ot
1 . the linearized measurement-state relation and the assumption of a

1tl Zj) C,, aetp rtm )rfU(tm. Gaussian probability distribution.

I If the Taylor series expansion is truncated after the
3 -t f.-- (r"-ni s)( -m) second-order terms, the exponent of the postenon density function.

Eq.(7), becomes
-ni + (8) 1 1 -- ',x

41 f () = 2(Zh )r, V-'z -h ) + !(x -n ) P -,7- (13)

s here C 41 = C je.xp b_f ) and the carat denotes a quantity evaluated where the substitution P --i has been made. Then. the
at.,h Note that the denvatives of f consist of the measurement zt. posteriori mode occurs whenf, = 0 or when

The functional form of the density function after the [-(z-h)TV-1h, + ( 5x-,i-)TPi =0 (1,)
measurement. Eq.(8) , after the approximations is the same as that
before the measurement. Eq.(5). Hence, the functional form has Finally, if Eq.( 13) is expanded in a Taylor series about W and terms
been preserved, higher than second-order are dropped (see the discussion before

" 3'EuEq.(8)) , the following result is obtained."- 3 3 Propacarzon Equations

The differential equations for propagating the mode and t; = Ih TV-h. - (z,-h)V- 'A t1 . + P 1  i (15)
the necessary derivatives off are derived by repeated differentiation Here, the subscripts on V- refer to the elements of V-I Also./; ,
of Eq.( I), Kolmogorov's equation (I which is the inverse of the curvature at the likelihood point, must be

positive definite.

Pi -P tr (F) -_PT(Fx+b) + -QkP,,,,, (9) With regard to the propagation equations, Eqs.(10) and
(11) reduce toand by use of the fact that p. = 0 at the mode. The argument t of x

4 , p.p, and p_ have been dropped for convenience. For a Gaussian m =Fm +b (16)probability distribution, the derivative f is the inverse of the
covariance matrix. Hence, to be able to compare the results of the (17)
ADF with those of the EKF, the equations for propagating f, is
replaced by an equation for propagating f -t_ P. Only, the The initial conditions are obtained from Eqs.(14) and (15).
equations through fm are presented because this is the highest- Eq.(15) points out the adaptive nature of the ADF. The
order derivative present in the differential equation for the mode. second-order term hk allows the ADF to adapt to the measurement

In view of the above discussion, the equation for residuals. This feature can be very useful when the measurement
propagating the mode is given by uncertainty is inaccurately modeled or when the states areinaccurately initialised.

4. HOMING MISSILE-INTERCEPT PROBLEM

in = Fm +b - Lp (10) A specific application of interest for the filtering
2 .'T2 technique liscussed in Section 3 is in the estimation of the states of

Then, the equations for propagating P can be written as a homing missile relative to a target and the target acceleration. A
SI six-degree-of-freedom computer program (1I), which simulates the

P -P f,. P,Qsj,_,,,, + FP + PFT interception of a maneuvering target by a bank-to-turn, short-range.
2 air-to-air homing missile has been used to test the ADF and the

,I p r EKF. The guidance scheme to compute the commanded missile
+ 2P[Qs(f,f ,,r+f,,.T ,  (11) acceleration has been based on an 'optimal' linear guidance

law(12).

-fJ,%I - ~The launch geometry used in this analysis is described
in Figure 1. For this inertial system, the Z, axis is directed towards
the earth's center, the X, axis is aligned parallel with the missile's
initial launch direction, and the Yf axis is chosen to make the

J% inertial system right-handed. The engagement geometry used in this0.. Note that P must be inverted in order to obtain the f terms analysis is characterized by the initial conditions: range, 3000 feet;
needed to perform this integration. Finally, the differential equation altitude, 10,000 feet; aspect angle (0o), 120 degrees; and off-
forf, is the following: boresight angle (0b), 0.0 degree. The measurement and the state

noise models and their statistics are the same as in (13). The initial
fj state covanance are the same as in (14). The number of Monte Carlo

trials is ten. A second-order ADF is used in all the numerical
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6o
expenments. postenori state error covariance~becomes indefinite. Investigation

In the first attempt to validate the ADF using the of the history of the range errors shows that the failure of
4 .selected engagement geometry, the ADF fails to converge near the convergence is always preceded by the filter computed range
• end of the trajectory because P. defined as the approximate approaching zero when the actual range is far from zero. This

covanance matnx. becomes indefinite. In trying to determine why phenomenon leads to the conjecture that there might be a negative
the ADF behaves this way, it is found that towards the end, the bias in the range computed by the ADF.
residuals become large. This phenomenon occurs because the true This section deals with the analysis of the bias in the
range vector and the estimated range vector have their components maximum likelihood estimates of the states of a system. Two
in different quadrants. Although the error in the range is not very inequalities relating the ranges from different methods are
large, the difference between the meaurement which is made on the established. They are

At true trajectory and the filter-computed measurement is of the order
of 180 degrees. Consequently, the optimization process does not 1) (18)converge. The optimization process is terminated on the condition where R,, is the unconditional maximum likelihood range estimate
that the changes to the azimuth and elevation angles become smaller of two Gaussian variables x and y and k is the unconditional range
than 10- 6 . At this point, the curvature of the likelihood function obtained from the same Gaussian distribution.
need not be positive- definite and as a result P defined as the inverse
of the curvature is also non-positive definite. Note that if the 2) (19)
residual dependent term is not included in the updating of P, it where R,, is the conditional maximum likelihood range of two
always remains positve-definite as in the case of the EKF. In fact, random variables x, and y, with a CPDF p (x,,y,/Z,) , /R, is the
in the formulations of the Gaussian and truncated second-order conditional mean of the same CPDF and RM, is the conditional
filters (1), this random term is dropped in order to avoid the maximum likelihood range of p(R,,0,/Z,) , the CPDF of {R,0
covariance from becoming non-positive definite. In this analysis, obtained from the CPDF of {x.y}.
however, the random term is retained so that it could add more
information to the the covariance. To circumvent the convergence 5.1 Relationship Between The Mean Range And The Maximum
problem, the measurements that cause large non-converging Likelihood Range For An Unconditional Density Function
residuals are discarded. The underlying reasoning is that if a The relative magnitudes of the mean range and the
measurement causes P to become indefinite, then it increases the maximum likelihood range of the two Gaussian random variables x

-17' uncertainty of the estimates which P represents. Consequently, it and y are compared in this section. Expressions for the mean range
does not help the filtering process and ,therefore, is ignored. The and the maximum likelihood range are obtained and Minkowskis
propagated states and the covariance are used to continue to the next
measurement time.inequality (18) is used to prove that the mean range is always equalto or greater than the maximum likelihood range.

•. ,, The error histories of the ADF and the EKF for various
• conditions are given in Figures 2 through 8. The error is defined as

the difference between the magnitudes of the true and the estimated and y is given by

range vectors. The magnitude of the estimated range is obtained by [X"1
averaging over the ten Monte Carlo runs. p (x,y )C exp [--2-(x -x ,y -y ) P_ (20)

The range errors for the nominal case are given in
Figure 2. The ADF tracks better than the EKF during most of the where
flight. However, it exhibits a negative range bias. The range error - t
history when the initial range has perturbations of 500 feet in the x'y_- the means ofx and y respectively
positive and negative directions are given in Figures 3 and 4 P and the state error covanance mamx of x and ypoitv an neaiedrcin-r=gvni iue n a normalising constant.' respectively. In both cases, the performance of the ADF is supenior TeC anraiigcntnto that of the EKF. The maximization of the joint PDF with respect to x and y leads tothe minimization of the negative part of the argument of the

Since the filter does not know the actual measurement exponent, called the likelihood function, L.
noise variance, a measurement mismatch, defined as the ratio of the
actual value to the assumed measurement covanance in the filters is L (x- ,v-- -I X-j (21)
hypothesized in genarating the measurements. The range errors of - I -
the simulations with a measurement mismatch of 0.1 is presented in For comparison and later use. the likelihood function L is defined

P Figure 5. The performance trends of both filters are similar to the in terms of the range, R, and the azimuth angle,0, as
nominal case in Figure 2 except that the ADF performs better
dunng the later part of the flight. For the higher mismatch of ten, the - R cos1-1
performance of the ADF, as can be observed from Figure 6, is much L =(R cosO-iR sinO-y) P - "RsinOi.. (22)
worse than that of the EKF.

To simulate actual situations where uncertainties in where R = (x2+y2)2 and 0= tan-'(y Ix)
both the states and the noise statistics can occur, experiments are The values for the range, R,,,and the azimuth angle,., .that
made with perturbations to the initial states and measurement minimize L are obtained by setting the partial derivatives of L with
mismatches. The range error history with an initial state error of 500 respect to R and 0 to zero/to yield
ft and a measurment mismatch of 0.1 is presented in Figure 7. With
the same intial error, and a measurement mismatch of ten, the x =R ,,,cos0,,, =i and
results in the range errors are given in Figure 8. The ADF tracks
better than the EKF in both cases. From these numerical y, =R,,sin0,,,=- (23)

" experiments, it can be seen that the ADF shows a high sensitivity to where x,,, andy,., are the values of x and y which minimize
a higher measurement mismatch. This can, however, be alleviated L.Also,
by adaptively estimating the measurement noise covanance (15,16).
The EKF performs well when the noise statistics are uncertain. I?, 1 =(x,

2 +y. 2 )12 . (24)
^A However, its response to imperfect initial conditions is poor. The bias in the maximum likelihood estimate of the

*.. range §,, is shown by comparison with that of the mean value of

5. BIASES IN THE MAXIMUM LIKELIHOOD FILTERS Lhe range R which is given by

As discussed in Section 4, the ADF fails to converge
near the end of the trajectory because P.defined as the approximate .ER= .(x +y2)t.Zp(ty)dt dv (25)
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where E(.) is the unconditional expected value operator.
Mnosisinequality (18) can be used to state the following R ininequality.For x = si

-- -- In processing the measurement , ,the CPDF is updated
(XJ J~ 2y)1tp(x~y)dx dy) 2 >( J xpxyd y 2 using Bayes' ruleas

p p(R,0,Z,)= p (, ,Z,..p(.O 1 , (35)+( fJ y p(x.,y) d. dY)2 (26) ("-

The terms on the right hand side of Eq.(26) are the mean values of By examining on the right hand side term by termi can be noted
x and y. That is, (2) that p (R,,OIZ,-A) already known. From the joint PDFof z, and v,

th agnlCPDFp (z,/Z,..j) can be reduced as ('i9)

f )&dv = ~E[x I= i (27)
P(ZZ,-,= J((z-v)IZi) p(vi) dv,

Wihteadof Eqs.(26),(27),and (28),the inequality statement can b,-i bA /2 e~pexp(-2a,(Q) +(AJ )I -'I dvIbrewritten as 212o 2a.ep ( 3 -vl']2

(EJR 1)2 > V+ 7- = k. (29) 6 0wherelizv and f~ exp[-]dLr
Since the range is always positive.Eq.(219) implies that 2.

R=E[R I 9, 0 . (30) Also,

5-2 Approximations To The Posteriori Conditional Density a, (6) = s Icosii + 2s 12sinros + s 22sinr6 and
Function

With the assumption that the measurement noise b, (6) = iiO~ ttX- + s 125T) + sinO(s 121'+ S 21T) (37)
variance is very small (a reasonable practical assumption) the The integral on the right hand side of Eq.(36) is
conclusion of Eq. (30) is shown to be valid for the posteriori PDF approximated by using Laplace's method (17). The idea is to use
conditioned on the measurement. In order to compute the the assumption that the measurement variance is small and,bconditional mean tange, an expression for the posteriori CPDF is therefore, 11- is large. The main contribution to the integral, then,required. Assuming that the aprioni CPDF of xi andv, and the I-measurement noise distribution at time i are known, the posteriori comes from the region where the dominating term, exp(- 2 V)
CPDF can be computed using Bayes rule. In doing so, however, the is maximum. The term multiplying the dominant term is expanded
evaluation ofp(zil/Z.1 ), an integral which is a normalising constant in a Taylor series about the maximum point and the integral is then
is difficult. Consequently, Laplace's technique (17) is used to evaluated term by term. To first order, the approximated value of

varince is erysmall. To facilitate easier computation of the
cniinlmaragthe CPDF is obtained in polar coordinates p(z,/Z,-1) = Cl Kill) (38)

R and 6.

Assume that the apriori joint PDF of the stare variables whr
x and y at stage i, conditioned on the measurement history Z,.. 1  b,3/2(O) bi2 (8) It1/upto stage (i- l),is Gaussian with means i and - and is given by K 1 (6) + -~1 ()() 2)/ + Ai)] (39)

p (x ,yZ,.) = - ep (-~x~i~..~-5 A' 1~(31) By the substitutions of Eqs.(34),(36), and (39) into Eqll5) it can be
2r ~ 22 LY Yi shown that

where R, exp[-l/2(aTS,aX+(z,4,)2Vi1)I

(32) : 1 p (R jO , Z , = 2trl!T,I 1 (21cI V J1)1,2C 1i, i OJ (40)
P, *Si = 1S S22j1(3).. Determination Of The Conditional Mean Range

WVith the expression for the approximated CPDF in
The PDF of vi, *the measurement noise in Eq.(4), is expressed as Eq.(0) R,, the conditional mean range at i, is computed in this

I I section. Approximations have to be made to the integrals in the
iavi eXp(._.jV, 2V1) . (33) expression for R, assuming that the measurement variance is very

% (27c .V(2t2 small. The mean value of the posteriori range is given by
In order to make the computation of the mean range

simpler , the CPDF of the rectangular coordinates x, and y, is first
transformed to the polar coordinates R, and 0, . The result is f RitT(Ri1Z, R,

0

,p(R,,O, 1Zt t~Pj R, 2 * a TSo:J (34) -xl'l R, d( 0R, ,,Z.p(,/Z)d dR, (41)

where By the substitution of Eq.i 0 in Eq.(4 ) it can be shown 'after

some manipulations) that R, reduce to ' 19)
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R ,+ [-I- Jexp (-b 2 /2a)+ (-)I +h'ep(,22,] can be concluded that R, ,the conditional maximum likelihood
, a, 2 a,.ex~,/2,I estimate given by E-q.(50).is always smaller than'/, the conditionilA mean range subject Co the assumptions made.

(exp (-b, 2/ 2a, ) +b,/ae, II ((-) 1 + A )(42) 5.5 A Method Of Modifying The Likelihood Estimate
2

Since the maximum likelihood estimate is
where the terms containing a, and b, are evaluated at 0, = z, For biased.techniques for the reduction of the bias are developed. One
future companison.it is observed that when b7'12a, is large method is determined by considering the apriori PDF transtormed
exp(-b, 2-1,) = 0 and Eq.(42) reduces to from x and y to R and 0 which can be written as

p (,,OIZ,,) Rexp( ~(R,2a,--2R,b,+c,)) (1
(43) p(RGIli) 2 ,. (1

After processing the measurement, z, ,the posteriori CPDF can be
By an asymptotic expansion for A, (17) and neglecting terms computed as

containing exp -)A, can be approximated as
2ip (R,,0,IZ,)- R, exp(-[z-,'-

NOA, N n (44)

By substitution of A, from Eq.(44) into Eq.(43) , the expression for + R,2a,-2 b, +c,I. (52)
.R, is reduced to The transformed CPDF given by Eq.(52) is used to

b, obtain the maximum likelihood estimates of R, and 0, instead of
R?, z- +- (45) defining §,, = (x,,2 2+y,,2)1,2 where x,, and y,, are the miaximum

a, 3blikelihood estimates of the posteriori CPDF in x and y . It can be
Note that both terms on the right hand side of Eq.(45) proved now that,RM, ,the range thus obtained is always greater than

are positive. The first term will be shown to be common to R,
R, and J~M. However, comparison of the second term of R, with
that of k, aind R51, will establish the biases of k, and R51. The maximizat-ion equations forp (R, 0,IZ,) lead Co (19)

S.4 Determination Of The Rang~e That Minimizes The Likelihood b, + (b,2 +4a,)i,21 (53)
, ~ Function. R= 2a Je=,

(x,,I, An expression for the maximum likelihood range of and
-(,vZ1) is obtained in this section for comparison with R, given

in Eq.(45). Maximization of the CPDF for xandv amounts to z 1 , 1(4
minimization of the likelihood function which is defined as (19) [M , Ra.-R, bIj],(54)

L [(, -0,)'-1 Rai -2R~i + il 46) The assumption that the measurement noise covariance, V, is small,
2 isai+ -2~b e.(6 used in Eq.(54) to obtain an approximation to 6m. as

kN I~ whr i .= (55)

C 1172+2s 12y + S 22--2Substitution of Eq.(55) into Eq.(53) is made to yield

The values of k, and 6,,~ which minimize L(in the process of b, + (b2+4ai,' (56
max miingth PD ) re obtin d a ( 9)The right hand side ofE .( 6 is now rewritten and expanded to

show that Rim, is always greater thanR

(47) b,, bi a, A
a,+ -(I1+ 4-)

2a, 2a, T
S and

b, b, 4ai a,2

(48)R Il, -L'a +-(1+---+O(-_-) ) (57)

a,'
dellDa, here0' contains terms of the series of order equal to orwhere a,' - and b,' - Consistent with the argument in b4do, aoi ,

approximating Ri, the measurement noise variance V is assumed to higher than (A -) . This binomial expansion is valid for
-be very small. Consequently, the term containing V in Eq.(48) is 4ab4

01 -jetd hersl s- <lIand this condition is usually satisfied in actual cases

(4) (Appendix A.2). Neglecting terms of order higher than (-)the

Eq.(49) leads to range k,,. can be approximated asb1

R,,= L](50) Ji. (~ (58)

This expression on the night hand side of Eq.(58) is always greaterBy comparing the expression for R,,with that of RnEq.t45), it than Ri, in Eq.(50) because a, and bi, are always positive.
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Comparison of R, given by Eq.(58) with, in .(45) isritten In order to prove that b(0)_>0 the likelihood function L
shows that R, is also biased. However, a positive bias as with R, is writte as follows

may be less detrimental to the performance of the filtenng process I
than the negative bias of R, because the range goes to zero in the L =- a (0)(R-R ) (R-R 2) (A.8)
homing mssile problem.

where

6. CONCLUSIONS R R b(O) (A.)

In this study, the problem of obtaining estimates of the a( n

states of a linear system for the case where the measurement
function is nonlinear has been considered. A new maximum R tR2=- _0 (A. 10)
likelihood filter has been formulated based on the Taylor series a(0)

expansion of the posteriori conditional probability density function
around its mode. The performance of the resulting assumed density Since both at0) and c are positie. R and R, are such that they
tilter is analysed by tracking manuevering target with signals from shcald satist one of the following conditions:
a passive sensor for which only angle information is available. The
numerical results show that the error histories of the new assumed R 0 R 2 5 0 (A. I1)

p density filter are better than that of the widely-used extended
Kalman filter for initial conditions which are off-nominal. The 1 0 R2 0 (A.12)
assumed density filter is. however, negatively biased with respective
to range. R <0 R2 <0 (A.13)

The numerical results are corroborated by approximate R I > 0 R 2 >- 0. (A.14)
analytical expressions for the conditional and unconditional
estimates of the mean and maximum likelihood range. In addition to the restrictions on L. a, and c. note that in addition

R 0. This means that the value of R corresponding to the
maximum value of L is also equal or greater than zero. Therefore,

APPENDIX .4 the only possible values are given by Eq.(A. 14) . In order to satisfy
Eq.(A. 14), it can be observed from Eq.(A.9) that b (0)-0.This appendix deals with some derivations that are used

in Section V. 2. Approximations Ofp (zZ,_1)
,,, i The aprioi PDF of z is given by

1. Proofs To Show That a (0)>0 and b()_>0 p(/Z,.i) = C [Ti + T,] (A.15)
Consider the likelihood function L in terms of x and y.

It is given by where

L = - - (AlI) TI= I ,p I, 1du

~(A.16)
after dropping the subscripts for convenience. In Eq.(A.l), the

matrx S, being the inverse of the aprion curvature at the maximum I b, (0) b,2 (0) 1
of the CPDF is positive. Given the quadratic form of the right hand T (27Vtl)2 a 2. (2 a)x 2u

side of Eq.(A. I). it can be concluded that L is always greater than or (A.17)
equal to zero. In terms of R and 0 ,the likelihood function can be
expressed asan

L Ro0f~i~-T R cos0-i I I 1
' sin-) si- (A.2) Cii= I, exp(- c (A.18)

where R -(x'+y')t'2and 9=tan-rI) The right hand side of
whreR = 12.y)2 ndBtai(~. hergh hn sdeo and 0=z,-ui. The integration of the term T, is considered first.

Eq.(A.2) is expanded to yield The term exp(--u,2V-J) is maximum at ui =0 and becomes veryL L( OR2-2 OR+c(.3 small rapidly for any non-zero values of u, because V is assumed to

2 R A be very small. Note that for all values of 0, a,(0) is bounded. Under

these conditions, an approximation to p(ilZ,_i) is sought using
where Laplace's method (17). Laplace's method involves the expansion of

the term multiplying the dominating exponential term in a power
a (0) = $tIcos

20 + 2s . 2cos0sin0 + s 2 2sin 20 (A.4) series and the evaluation of the resulting series of integrals term by
b (I 1term to any desired accuracy. In order to use the method the right

)- b(0) =cos0(. i-'-s i") + sinO(s 2 r+s2 ,y) (A.5) hand side of Eq.(A.16) is expanded in a Taylor series about u,=O.
aThe result is

c =siir4-2S21~, 2  y2 (A.6) Ti I -
2 ....]

Note that a(0) from Eq (A.4) can be written in the (2tllV )I2
following form:

ao(0) = (cosOxinO) S Lso exp (-I12u, 2V - 1) du, (A. 19)at0)= (os0sm0 S .si0 J(A. 7)

Since cosO and sinO cannot both be zero at the same time, a (0)>0. where g (4)= and primes denote partial difterentiation with
By similar arguments, it can be shown that c_>0.

respect to . All functions of 0 are evaluated at 0 = :, Evaluation
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of the integrals in Eq (A. 19) is carried out to yield
cosO,,, z cosO and sinO,,, z sinO (A.2S)

TI= g((P)+ g "(0)V + 0(1'2 ). (A.20)
where

evaluated at it=., Since V is small, the terms containing V are -
neglected and the approximated expression of 1 is given by 0 = tan-tV:).

T, By substitution of Eq.(A.28) into Eq.(A.27), an approximation for
T g (P)) (A.21) tb

2

a, (,) -is obtained as
In evaluating T,, it is recognised that the term a

m ultiplying exp -l'2u,' 'v) also has an exponential term . (cosl (s tli+ s + sin 1(s 2  +

However, exp( _ ) is bounded for all values of 0 and it can be
2a, (0) a

expanded in series. Each term in the expansion can be multiplied S lIcos 2 0 + s i2 sin0cos0 + s 2sin'0

with and the resulting integrals can be evaluated as in the S 1112 + 2s 12TY + S 21T (A 29)

b,(6) b,2(O)case of T 1. In other words, the term 3 ()eXp ( ) jCanl be hi,2
aeas 2 (Q) Without losing the generality, the magnitude of can

expanded in a Taylor series about u, =0 and the resulting I a can

expression for T 2 is be analysed by examining s tiT. At the beginning, the initial range
considered in a typical tracking or a homing missile problem is
3000 feet or more and , therefore, £ is of the order of 10' Though= 2 g i(0)+g i'(0)u,+g I-(0)u 2+..1 the initial value of the covariance is assumed to be high, thereby,
making s II small, the product six is usually greater than unity.
As the problem proceeds, i becomes smaller in the homing missile

exp(-1/2u,2V-)du, (A.22) problem. However, with more information through the
measurements, the covanance matrix is also becomes smaller and,

therefore, sit bigger. Consequently, the magnitude of '- is
greater than unity.

b (0) b,() 
(,3
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Improved Target Tracking

Z4 I S. N. Balakrishnan*
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and
Jason L. Speycr-,

The LUiiversitiv of Texas at Austin, Texvas

A maximum likeiihood estimation method is developed for application., to [the target tracking prohlein haiscd
oni bearings-onJy observations from a single observer. The n~ethud ins oies propagation (it states ill rectineiitir
coordinates in which ithe lineir dynamics permit a closed form solution. At the measurcement times thle statts
are converted to a special polar coordinate system in w~hich the measurement is modeled as linear in the
transformed state and updated using the Kalman methodology. The coordinate transformation is chosen so that
the direct transformation of the maximum likelihood estimate is approsimatetk presersed. I li nunmerical
experiments for a target-intercept problem are presented, which show that the performance cf this coor#Iiratc
transformiation based filter is superior to that of the Cartesian s,,stem based extended Kalman filter. Approimiti
analytical results also corro)borate the numerical results.

Introduction coordinates are used, the state uquation iN'a and the ,)rre-
r ACTICAL weapon systems require accuratc tracking of ma- spqriding measuremen equation is nonlineair. 1! polar oco rdin--tes

t euverable vehicles s'uch as submarines and airplanes. During maree t e at oel h a e nonlindtt tnion PCF , ittelast several years there has been an zctive interest in the de- mauecteuto.Teie eidtePEi se~ll
velcpmiit of sophisticated fleigaluo-ithms for tracking v.ith available linearity in both coordinate 11;!it. l~s idea:, lli ht%,n
bearings-only observations. Satisfactory' results have been difficult usdiih atb cr n amnstoolere.n rb
to obtain using current mcchanizable filters because of the Don lems. The algorithms of Mcbhra' and Simmons' use the standard
linearity and passive nature of the observations. In practical cases. Kalman updaite and propagation t .o-niula, whore a nonhincar trans-
the highl level of uncertant ;n thle initial states of the submarine formation is used for thc cosariances. In contra-t. ihe apisprxi-
and th~e rapidly accelerating target in the missile-intercept problem mattons used in the PCF are misae directly ito the conditional
make accurate estimation of thle states even more ditficu!t to ac- prbaift dest:ucin(PF.adteapoiiiie con-
complish. Considerable rceearch has been going on to improve ditional miode is assumed to represecnt the best -'tiniai oll~ tae
existing methods. The single dominant mnethod used, in the ap- In all of the available work inivolvine transterniatiNs of the stare:
plications of the nonlinear filter-ing methods to the tracking prob- &pae pproxite iPs taIlls~mdt the r nstrm&iont- mcaen.
lems, has been the extended Kalman filter (EKF). steapoiae P' rsre teapoitie odtslma

An approach to achieving a better nonlinear estimator is to However, ts is no, the case,. Ini the PCF. the Lcoordinate .s ste m
determine a state-space, which may be different from Cartesian is chosen so that the approximate conditionai miode i, !lt atfccted
coordinates, for which improved estimation occurs.69 '3 The aim bytenliarrntoiai.
of this paper is to develop a better and suitable maximum likelo System Model
filter based on transformations of state spaces for application to a Thriecmntsaevto -cibgthmsi l o-

*target- intercept problem. The formulated polar coordinate fifter Thene-lem t staate ecoresiing rlthe isile-tree 3n
(PCF) uses a nonlinear transformation of thle state stpices. How- ggmn otisatrednesoa eai oiin'er
ever, the choice ot the coordinatc sys;tems is such. that thle ap- target aiclraionretieocN vector . andccda a firt rde dar cl pioess.
proximate conditional mode (which represents the estimrates, of the Thret acciltion testate vncto in, th firl ter sr i

states) is. except for one ,tate, unaltered by the nonlinear trans- mtrix nvotat In aftstaevco ntemrilfai ,% i,7 l

formations. This is approximatcly true in a three-dimensional Co-
ordinate frame and exactly truc in a two-dimensional frame. The .1 x FV I - t
developmnent of the PCF, numerical results from- the alplicaticin

@1of the PCF to a homing missile problem. and analy-ses arc used wshe:- x is rill state sector ill an, airitrarv inertial it inie ccnitwo
* ~~to explain the resuLl:s Of the numnerica! experimnrts. In all anals oftlte pillion vector i ty, %)? :p,, anid thi lc i n'!uc~riii

S*'the Cartesian based EKF has ncen n~ldd t for compairison. cornpornents are rerresented bs i is --ix-lN ICor ;s
9 \, 9 tixi-i of orsil Ili-,inine clorneor i %J:tr I't-'

Developinent of the Polar Coordinate Filter the component, (if the m11i IC Il 1ee it0 Cthr ii t

[he basis for thle PCF is the aiahlt'Of tuso convenient ie i0I ''.t 1 ' I.0 .O ~'.*VI .~ 1
mathemnatical klescriptiiins of the takrl pohlern It Canesian iril% ion lert' c''tiornt in th ile-cllnie:, e'i ii ,)ttc, old

S. .to the- tar!,ct aicceleritini. col Poncent, V, i, Ai C ai'- i
_______________________ no. , OlC iiC tii.s s kitt i r'iso NsV Ideii. ()

Rc,:e:ed Aug t12. t9X5, revision receiscil March 5.t C,.(prlei 'Ihle o- rt r'onlinir nm.. -riiptied aitc otist iit :, :

* , rivhis resersed
*,\-.i,iani F'rotessii 1 )evarniini )i \lLa~,lii~ c- ~e rici- *,1 tait N, 5nilil Mrnher A

- t'~ri'teswtr. tX-pinent ot \cropasc FrirccriiiLsi nins rifent:-

shans kti. \t*\ \ t~'i j,
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s here : nd : are the measurements. t and v- 1are Gjaussian shere
zero-oema cquenc:es of random s ariabicsN ssith a s ariance 1.and 13 -sR o ,cst t 3'cN6Nin tlsubscript derittes the time a( Much the micasuremnent is niade. [3cs6 ~ ts.

Transfrmatioins (of the~ %pproximate Conditional Priihahilit% R3' sin 6, - (i
Dtinsit% unctions

Sinc:e the %, teni ds naritics are linear. its .ippro\irilate co~- If thle determiinant of thle Jacohian of thle ratoitinhct% ccrl
tion al mean and itt si are prt paic icd trot n Nta cc it - it) NI.aC thle kand Nsvste nis i, constant, the ntodcs ti the appromne1

b% CPIs of* both systems, can be related hN the transfortn~i
=tx tp. Since thle determinant tof the Jacobian is not constant.

approximiatiotis to the condititonal modes of [the Nsystcni n1CCd to
I -.' t ~h e determined. Sinee cos 6l multiplies thle expi-onentials inl Eq. (9.

the appro ximin to the eond itinIl nitde to r 6 is of concern.
%%here .!x t.i il tailc tr.itiit;n iatriv -. I the apriOri File approximate conditional mode 6, is obtained by seit inc thle
c:onditional miode .tt e en :he tteC.t'l~ret hisor% LI t partial derivative ot pi v Z. . sith respect to d6, to zero as
I - I . aI4 td , . he I'lr! , t, ra 11lic at Ixe /
The: rropteation n~..i :11,: 'sttj

t  prioi tite error [o . , i[ ([6 I - art 6. - /3,hf,r )1riv t, ) (
etix artir, s Tor i .10)

r% %% . . here r A 43itS. The usual Kalnian update formulas fttr esti-
tmatitmn are obtained if tan 6, ss crc not present or ncglected. In the

homnini. missile problemn. xx hich motix ales our xx ork. the initial
1 7*' (1):1 7'd 7 launch ceomeitr-v is assumed to be coplanar in the t-.\ plane. k% hich

meains that the Initial x alue of' 6 is zero. Throughout a typical
en,_:ceent. the miacnitude of' cb, is not Lreater than 45 dec and

xx hre f ' he Kxs t:''rx~it~ic aniserir etnitinal th mai.nitude tf tan 6r is less than unity. In comparison wxith the
%ariawic i ti- :noi-irte' e tn s elrse Of the Ursature ot other termis in Eq. 1 10). which contain'terms of the torder of' tilethe (P1 F rour :A1%ns: : Id lhere!o. etr a ttiauretiiett rance iRS R) or higiher. talih inelgb.%ktthis ap-

th totore anaie 6, is n=lcbe With.
uThite pateua ahorce ofa~ arnfrmto variablt fr1)m Eqt isa(61eo o

prPintin th aprxmt conitina moe tI I vP Z, It 15thetir /exp- I2i(P [ 51 approximiatelv .pre~erves the citijional miode's of the initial and

L th tra~fornedapproximate CPDFs. [here are some examples in

%% here It i - i J-I. and t he literature' xx %here transformat ions of tk, variables of* in-
i,, , .and-, ae dlind it hethea prt )-rimode ofR vR terest ha\ e been used to form newv state spaces %% here the EKF has

* R nd re etited o b th a rior nidestif~ ~performed better. In all of these sets of state spaces the assumption
and N.respctisel% ,dnrilx osat

- -i a ntrinam/in consantof a Gaussian formt fOr the CP[)F dtoes not allow the nonlinearThe transtirniaition trori the Cartesian coordinate s~tr 'to ai transformations to preserve the approximate conditional means,
polar coordinate sx xtetn is inixen tn a tanctional fori b * i Ct (w&hich are used tot represent the estitmate of the states,) in the
%%here x includes the 1%%o nieasuremient fuinctions H~ and 6. The transfornied coordinate systemns.
choice of the tither states Is dictated by% the need to iraintain fat if' the CPDF can be ap'proxiniated by a Gaussian form for I,.
least approximatel% ) the direct transtorniatmo1Ln ot the nmaxitmum 0,, 6,. and v,. then the states can be updated using the Kalman
likelihood estimates betsxeen the CPDF's of t and %. In order toi rule'" at the measurement. In order to acctimplish this. the armzu-

athie othis, Tine tiafoed state n is thei cube tif the ran R3 andF ment of the exponent in Eq. (9) is expanded in a Taylor series
theothr ist.Th trnstrtnd sat v s cxenbx R3.). .s jT abtout the approxitmate conditional mode up to second order. In

and neiflectini. the hieher-order terms. it is assumed that the CPDF is,
approxim'ately Gaussian, with the mean approximately equal to

Vi t) = Ir( -*- :R -)' c an 1(11 VR I. the miide. The resultinig approximated CPDF

tan 1I :R(rh' \0 1. 5~ (6) M-1 Z, T, exKpi i/.),rpr%
1 6A

The choice of R3 %% ill be motiv ated in discussine the transformatioin "hr 6, - A x, 'cos 6, exp I -f( T, [ and the inith
of the CPDF. The inverse transforniation fromt to tis pcivn by element tif TI11- is given by
r = It-% A here v x x . R -~ :R - S andlo 

Cs6, N

h()= (R 3 lcos,(hcos 0. R3 " cos 6si n.

-R3 'sin 6. k 'r (7) .-

The CPDF of 1, can be obtained from that ot x, as ,-

jk, ' Z., pct, Z, IJ

h~ere J~ ( he determinant oif the Jactibian of the transformation.,
ifound tobe I1i3 cos 6, With this value of J - Ithe CPDF: of '

vcan be wkritten in terms iof R3,. 0, 6, and t., as/

p( i, Z,) i/Cos lh,, expi ':i J33 rr[ / 0

Cos Ct6, expi-() (9) Fig. I Launch gooretir,..

% N N% I

- -% A.
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In Eq. (H1),7 represents the curvature uf this CPDF at the a Numierical Results
pror md The presence of the term cxd od),) in Eq. A six-deeree-obredm computer proam 'MEIIisiiiL.,t

(9 eea ns Th onmle xrsinfrP- IOeoe t feti the intercept of a maneuvering tariget by a t.,nk-io-trn. short-

examined. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~cntr th nytr htlgoO fecsi P_-1,.adi aie X mai hoigts! is albprleen to -t -) !ni :Nl ?,h imtia laLI
isc gie by&~ 13) dEerio. aThe guidais schoena ofnputo Oe meni 1 st:i

miile hacdd.eletn is bachonaracterm.a'h', theua pintil 1.M.

%where F is a function of 1,sin3 and cos , Note that the ditions: ranee. 3C00 ft: altitude. 10,006 it. aspect: anelc tQ,). 11

term sec23 in Eq. ( 13) 1an11 between I and 2 as -3 chances trom de anof-rsohanl(l,00deiTenm'co Mui
zero to 45dg oprdto the other terms, whc aeam - Carlo trials is ten. The rani~epcdn e-cctnis n~~

nitude o the order of ragsec3, is small and thierefor n- ad(estenoise- niode. ind their statisuics ire thc sinme as Re)

glected. Since the expression for P7,' in Eq. (11) can be reduced 11) tr o 2 h i-ia liet tteiiilsaec~i~ne r,1'i
to co7rrespondJing o. I) to to and to :M 101) it- c

(gP, (T -I14) for the velocity components, andl 10 1 e ., the taree t .~e

wher g,=% g(_r)/ar; s ealuaLd t x .1 theappoxiate eration components. The off'-diagoia! elemnents arc: zero

CPDF represented by Eq. (11) is Gaussian.
In the coordinate systems employed by Mechral and Sammons, 2
VA[RI., 0. (,, s] where R I -N x~± The tranc,- ....

formed CPDFs have the fun~ctional form

,6(v>iZ_,) = , Y:)exp(fby') (15) Ell

since the determinant of the Jacobian for their transformat ions is
a function of v:. Furthermore, the determinate of the Jacobian is 0 I
not even approximately justifiable as a constant since it contains
the range. When the aritument of the exponential is approximated LiI
up to scond order. the resulting approximated CPDF is of the
form

m.. . 1

- s~y~ep[F)12( -(l -)p -i( ) (16 .

which is clearly not Gaussian. Consequently the applications of 6J,,

Kalman methodology in their algorithms are not valid. ' '/

Updating the Conditional Density Furnctions and Estimation in Polar -

Coordinates_______________

The a priori CPDF for R3,, 19. (, and s, given by Ecl. 0 1) can C. 00 0. 40 3.50 1. 20 i L6C 2. Cii

be updated by using Bae'rule. 'O The a posteriori CPDF, after 1M 92
some manipulation, can be reduced to a Gaussian CPDF Fig. 2 Range error history (no perturbations).

i(Y.,) C_-,exp[ Il/2(y, /5, 1 P7(y, -s)] (17)

The objective is to update the conditional mode as if it were the
* conditional mean with the curvature at the conditional mode used

as the inverse of the conditional covariance. 'The update equations
used to process a measurement are given by the Kalman rules as

I' + PVI H, (19) /_

P, (19 pr ,. I
N H, is a constant vector or partial derivative oif the measurement 00

As ith respect to v evaluated at (,, and t', is a normalizing constant. / C

There is no further approximation involved in the update process. ,--

After the update in the polar coordinate svstem, the cons ersion .

back to the Cartesian system is ohtained by tracing the same ste:ps 0 1

and niakirig similar approximations to the VilUC of III, as before.
1 ie PCf is cornputed by the prtnpagaition Eqs,. (3) and (4). trans- ' -.. r

formation Eqs.. 61 arid ( 14), filter update Eqs. 1191 and t(19). and 0

*: transf .ormiation hack to the tsystemn given by i, =hl( 'I liTe state

covarince (it the .rsystemi i, obtained in a manner siinilair to Eq.-~-- . -,--

(14). %,,here 0. cc 0. 4U ii. ai J . - I.61
: mL (3E: J

-. P, .,
1

p.i,.I(2-0) Fig. 3 itinet urror lii'tornI 5ol it,.
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Fig. 4 Range error history U = -500 ft). Fig. 6 Range error histor. imismatch = 10i.

Since the filter does not know the actual neasurement noise
o;r variance. a measurement mismatch, defined as the ratio of the

actual value to the assumed measurement covariance in the filter,
is hypothesized in generating the measurements. The range errors

" i of the simulations ss ith a measurement mismatch of 0. I is presented
in Fig. 5. The performance trends of both filters are similar to the
nominal case in Fie. 2. For the hiher mismatch of ten. both the
PCF and the EKF are equally affected, as seen in Fig. 6.

S.,_-_ < i To simulate actual situations, where uncertainties in both the
,: - - - - - - ---- - - - states and the noise statistics can occur, experiments are made

S with perturbations to the initial states and measurement mis-
matches. The range error history with an initial state error of 500 ftz a , / and a measurement mismatch of 0. I is presented in Fig. 7. With

, 'the same initial error and a measurement mismatch of ten the results
in the range errors are given in Fig. 9. It is clear that in both cases."'.Z / the PCF has a better response to perturbations than the EKF.

Biases Associated with Different Formulations of the Extended
Kalman Filter

.... Observe from the given range error histories that the range
_ __ _estimate/k, of the EKF has a larger bias than the range estimateo. 07o 0. 4o o .ao a ,- 2 0 -1. 6 2. 00 of the PCF. This phenomenon can be explained by developing and

T IM E (5 E C I comparing the expressions for the square of the a posteriori range
Fig. 5 Range error history (mismatch = 0.1). estimate of the EKF with that of the PCF. For simplicity, the

differences in the expressions for the conditional range estimate
are provided from a two-dimensional tracking problem. In this

The error histories of the PCF and the EKF for various conditions case, the polar coordinate for the PCF is (R , ,I) where R is the
range. The posterioric estimate of the range in the PCF is defined

are given in Figs. 2-8. The error is defined as the difference range.. The p,'eriori est imate of R . In order to illustrate
as R~ : R2. where R- is the estiaeo'R.Iorrtolusae

between the magnitudes of the true and estimated range vectors t d in th
The magnitude of the estimated range is obtained by averaging the differences in the estimates of range wih a different polar

coordinate system, the expression for /,, the estimated range romthe ten Monte Carlo runs. The estimated range in the PCF i the filter with a transfonnation from Jx. y} to JR. 0} is derived.
computed as (0"). It is proved that R ,,and shown that H .This inequality

. The range-error histories for the nominal case are presented in hels plain thaller _ ane s o eha s inate
Fig. 2 for the PCF and the EKF. The performances are quite helps explain the smaller range iases ofMchra's polar coordinate

similar. The range error history when the initial range has pertur- filter' over the EKF for a reentry problem.

bations of 500 ft in the positive and negative directions are given The Approximate Conditional Range from the EKF
N in Figs. 3 and 4, respectively. The PCF clearly out-performs the

EKF. Since both the observer and target are constantly maneu-
vering, the PCF. having states measurement functions, is able to estimated with known .,,. The expressions for the a posteriori range
utilize the information better than the EKF. By comparing the estimate are developed at the first measurement where the known
performances of the EKF in Figs. 3 and 4. it can be observed that a priori conditions for all the filters are assumed to be the same.
the range errors. with a positive initial perturbation in range. are The state .r,, has a Gaussian probability density function with mean
much worse than those with a negative initial perturbation 'Thus x,, and covarance P,,. The EKF for the estimation of .,, is given
the EKF is biased. The performance of the PCF. however, is more by
even with positive and negative perturbations. -o .,, + X, (21
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Peual [z. UJOj h apseir etmt fth qaeo

the ragR scmue rmteEFei h paeeuto o h au taieCuceti -%:

-. =_ 444.+4_T.x 1 T X" (2

Thereondtoa ang EstIiates fromi the aPoseir odtoCFr ~ernte ttsi ie y,=gx)shr

The equasformation1 eaiostfro testatc of tem tquae of ee j otis eeenso .r~ic oL
thew prae sy som pue rom. the' i Ks evtimt Thy Npn eqato fr, thc~r rn he : a -,o inasreen -!is coe

2 + +1,2, .~x, (2

hConnditouat aproximates. frTheoe thPconiinlF
Te tvriansfonrmati eqantornsrom, the-q C4teia sAte toaxeecnan h lmns fi.rl t i t

n e pae sy ste ' [R.61 s ie ys gx hr and ise coaiac Sen b" at th firstR . h qur teCt~i

Constaentwhot aroximcuations Thr.oe the codto a modes

derivative of the measurement funcnion in the. and ., svystems can
be related at H,~ = (al65 )ddy,) =II,q. . This expression for i A

HP, and Eq. (20) for P, are substitod into Eq. 1S 18 or .%' to g ~/ I(9
yield [ARI& 7

or=s,-~~ , (23) Note that the determinant of the matrix Q e, :N ,,ro. thereftore.
one cieenvalue is zero. Also, the trace it '. *, I, unlt% .1-d.

The posterioric estimate of h2 is gi'. en hb R hrir. h eodcgnalei n ,fs.(~ry ~iP. P be written its

~, ±2~Ax,, 24)- ,

The bias in the polar formulation can he dern'nstrattcd by dif-L
ferences in values o~," from Eq. (24) and Irm givenl b ir h oun o reteeev trI~ i si
Eq. 122) sion for R' troni L1 i 2 is revrili %,.fih 0.e L'.r'esiii Ik,:

-- ~~ ~s =, ArAho5)~ ~ rm Eq. (31 (lv rcipi.iri R %%:Ili k ,,

This result is, siciificant in the contre'n of ihc numeri-il results of W, 2,A ,I'~* 4I
Feus. 3 and 4. ThL ian!c error listutics. in resp 'nsc k positlon
perturbations fi f:iz,.3 11nd 41 shu, tflat the L:KI scent p),SitieCv
biased. Since the anavi cal result, ,hov, that R; -R" . the rclatisc 115 stnicti itt (roili k.in hN Lu 21), t11C Lilit 117 PL, !1
perfornmance of thie I scens les i~iscd than the I:KF. (lic ran.e c stuniaies 'ltil ilin44oinlli le t%%,)iie k cut )'441.1Ir

Uhe (lnditional R~ange Estim~ate of the ilter "iiii R iind1 Oa IStes nuIlIos.J Ic10*l

A formrnulation is nowi attcnrpicrl Ainc, r(c ie ueins aus , it.-
rnon, polar Lui4rdin.4ic ilter. I h-, tt.. rtiuain, Ili.th, rce!trteor -. A? I .

st..tes to a polar sstrIA 1R, I 11 ll.:rC Ili,: c ueri
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On-Line Aircraft State and Stability Derivative Estimation
Using the Modified-Gain Extended Kalman Filter

Jason L. Speyer* and Edwin Z. Cruest
University of Texas, A ustin. Texas

A new on-line state and parameter identification algorithm called the modified-gain extended Kalman filter
(MGEKF) is applied to the problem of on-line state estimation and identification of the stabilit' derivatives of a
F-Ill tpe of vehicle. The conceptual basis for the MGEKF is the existence of a class of nonlinear functions that
allow a universal linearization with respect to the measurement function. This class includes the problem of

- identification of linear systems. The previous single-output formulation is extended to a multioutput formulation
where the only available measurements are acceleration and pitch rate. but not elevator deflection. The filter
formulation includes a simplified Drvden wind gust model. The inclusion of the wind gust model results mainly in
a slowed response in the estimation of the stability derivatives associated with the acceleration state: estimates of
the stability derivatives associated with the pitch rate still respond ver'y quickly. The accuracy of the acceleration
stability derivatives depends upon the amplitude and frequency components of the persistently exciting dither
signal.

1. Introduction stated. The essential features of this algorithm are then dis-
T HE historical development of aircraft parameter identifi- cussed. The dynamic system model for the aircraft is pre-
I cation is given in Refs. 1-3. These studies are designed sented in Sec. III. The short-period longitudinal mode of the

• .. primarily for off-line use. A very complete study of recursive aircraft is expressed in acceleration and pitch rate states to be
identification schemes for on-line use is given in Ref. 4. consistent with the measurements. In addition, a first-order
However, the usual assumption that the parameters be con- model for the actuator and a second-order simplified Dryden
stant produces gains that are asymptotically inversely propor- wind gust model are described. In Sec. IV, the mechanization
tional to time and therefore become vanishing small. These of MGEKF using this aircraft model is discussed and, in Sec.
schemes are not applicable to aircraft systems that must V, the performance of the MGEKF algorithm using accel-
operate continuously and identify changes in the stability erometer and pitch rate gyros is presented. Conclusions and
derivatives as the flight conditions change. One motivation for recommendations are given in Sec. VI.
this type of on-line state and parameter estimation scheme is
for use in adaptive flight control systems. II. The Modified-Gain Extended Kalman Filter

In Ref. 5, various schemes for identifying constant system Algorithm
parameters are compared on a common problem. Among The dym'mic nonlinear system model used for combined
these schemes is the extended Kalman filter (EKF) whose state and parameter estimation is presented first. The defini-
performance is shown to be relatively poor. This problem was tion of a modifiable nonlinear system function, used as the
again analyzed in Refs. 6 and 7, where a new estimation

4 scheme called the modified-gain extended Kalman filter algorithm is presented and its properties discussed.
, 1% (MGEKF) is used For a special class of nonlinearities of

j'. twhich state and parameter estimation in linear systems is a
member, there exists a universal linearization of these special Dynamical System and Modifiable Nonlinearities
nonlinearities with respect to the measurement function. In The discr ete dynamic system model used for combined state
order to obtain nonlinearities in this class, the observability and parameters identification is
coordinate system rather than the controllability coordinate
frame is used for the problem in Ref. 5. The results given in );i =A(0,)y, + B(O,)u, + w. (1)
Ref. 7 indicate a remarkable improvement in performance.
The MGEKF described in Ref. 7 is applied here to the + (2)
problem of on-line state estimation and identification of the
stability derivatives of an F-111 type of vehicle.

Section 11 presents the definition of a modifiable nonlinear and the scalar measurement is
system function that forms the basis of the MGEKF al-

A% gonthm. A simple illustration of a modifiable nonlinearity is z, - HY, + v, = z,* + u, (3)

' given before the general form of the MGEKF algorithm is where v, is an n-dimensional state vector, 0. is a vector of
maximal dimension 2n of unknown parameters representing

_the elements of the matrices A(O,) and B(0,), .4(0,) is an
Presented as Paper 85-1762 at the AIAA Atmospheric Flight Me- n x nz matrix, and B(O,) is an n vector where both contain up

chanics Conference. Snowmass. CO. Aug. 19-21. 1985. received Aug. to n unknown elements represented by the elements of 0,, u,
20. 1985; revision receied July 24. 1986. Copvnght , American is a known scalar input, :,* is the scalar measurement func-
Institute of Aeronautics and Astronautics, Inc. 1987. All rights re- tion, It is a known 1 x n measurement matrix, and t%-,, w ,,

*Farry H. Power Professor in Engineering. Department of Aero- and v are zero-mean white noise sequences with variances
space Engineering and Lngineering Mechanics. Fellow AIAA. Q,. and y,. respectively. The formulation given here is for a

tResearch Assistant, Department of Aerospace Engineering and single-input/single-output system consistent with the results
O 4 Engineering Mechanics. Member AIAA. of Ref 2. Although the extension to more than one input is

ill t~l~a'llJd 3 !.~tlr~ll *[ ... , a
I,

, . , : . . .t
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trivial, the extension to more than one output takes some summarized as
innoation. This extension is done in the following sections.

The nonlineantv in this problem is .4(0,)y,. For conveni- , =f( ¢,) (10)~ence define

x , K, 1, lL( 1
XT [r OT (4)

and the nonlinearity as M , F ( , F( , (1)

f JA[(0),Ou, (5) P,=(I -K, It)MI( I- K, 1I)r+K,y zK,' (14)

where l , is the propagated state and parameter estimates. K,
where x, has maximal dimension of 3n. the odified Kahnan gain calculated i Eqs. (12-14), M. .

Modifiable Nonlinearities the propaated pseudo error-co aiance matax P, the up-
dated pseudo crror-covariance matrix. Q, the process noise

themeasurementafuctionfteuntofxwihrsett and Q),. and y, the measurement noise covariance matrix-
themeaureentfuntio '*The functions ]f(.Z. ) and PF(:,, Z,) can be expressed in a

Defirition A function f: R P -hr Re is a modifiable nonlin- simple wav w-hen the dimension of 0, is assumed to be 2n.
ear systeo function if there eany sts a p xp matex F: R x R P  Note that B(O,) becomes just the last n elements of 0.

tnown Furthermore. the function F(: ,) obtained from a modifi-
state ., able nonlinear function I(x,) becomes

where z.* = lix,. F(:,*, : ) . (15)
Note that F(:,*, i, )( x, - .,) in Eq. (6) is a universal lin- 0 i

earization of f(x, ) with respect to the measurement function where ,, is an n X n identity matrix and 0, is a 2n × n
z,* without any, approximation. Notice that the known func- matrix of zeros. In Ref. 7, this matrix is -obtained in the
tion F( :,*, i:,) = F( lix,, i,) * F( tI, i,), where the latter observabilitv canonical form where the unknown parameters
quantity is the differential of f evaluated at i, as used in the lie in the last column of the A matrix. It should be noted that
linearization in the gain algorithm for propagating the pseudo error-covari-

The noiseless case of a simple linear dynamical system with ance matrix [Eq. (13)]. the actual measurement z, is used
an unknown coefficient illustrates the idea of a modifiable rather than the measurement function z* in Eq. (15). Finally,nonlinearity. The system is represented as for use later when describing the MGEKF for the aircraft

= 0, (7) application
Y(,) = r(0..-,).-, (16)

where y, is a scalar state at stage i and 0, the unknown

parameter at stage i. The nonlinearity is put into modifiable The key to applying the MGEKF to the parameter estima-
form by writing tion problem is to ensure that those unknown parameters

being identified enter the dynamic equation so as to
multiply the states or controls that are directly measured. As

(x, 1+1 -- ,,1 ) = - shown in Ref. 7, this means that the coordinate frame must be
chosen carefully. Furthermore, the results given in Ref. 7
apply to only a single output problem. The results here give an

=[ + . .example of how the MGEKF can be extended to two or more[ 0,-, outputs.

- F( :,, ,)( x, - ,) (8) Ill. The Aircraft Dynamical System
The linear longitudinal dynamics representing the short

where x,1r [y,.0,]. 0, and 0 are the estimated values of Y and period motion are
0,and

=Za + Zqq+ Ze- Z,a + b,, (17)

F( = , X, - i)= (9) lMa q+M,.e-M, A +q (18)

that the estimation error in Eq. (8) is propagated where a is the total angle of attack, q the pitch rate, e the
Note televator deflection, a the angle of attack due to wind gust, h.

without approximations by a linear equation. Since the mea- and b the trim biases associated with the steady-state condi-
surements are linear, the update formula for the error is also tions a and q, respectively, and 7,,, 7 ,., M,,,., 5 , and
linear. In the noiseless case where this filter reduces to a Mi. th aaft stily nvatvMs.
nonlinear observer, the error of this observer is shown to be M. the aircraft stability derivatives.

exponentially convergent by Lyapunov's second method.'- In Tranfortiation of State Space
Li the noise-corrupted case where only the noisv measurement is Aircraft, such as that in Ref. 8 and the F-111 type, have

available and not the measurement function, under certain a normal acceleration and pitch rate measurements available
priori uncheckable conditions the MGEKF is shown to be from an accelerometer and pitch rate gyro. Therefore, it is
exponentially bounded in the mean square sense."- advantageous to convert from angle of attack to acceleration

in the dynamical representation of the aircraft for MGEKF
The MIGEKF Algorithm applications.

The discrete formulation of the MGEKF from Ref. 7, based The accelerometer measures the combined acceleration of
on the dnamic system [Eqs. (1-3)] using Eqs. (4) and (5), is the center of mass and the acceleration relative to the center

= Nam,-,*~ *~~,4 5
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of mass due to the moment arm Xo. This relationship Wind G;ust D)namics
between A, q, and a is The wind gust model is also included in the formulation.

-B(-)+Two commonly accepted wind gust models used in the analy-
A -,(q - 6) + f124 (19) sis of aircraft motion are the Dryden and the yon Kirmn

models.9 For estimation purposes, a sinp:ificd Drvden
where A is the normal acceleration (in g's) and model9 '"' %hich compares very wv ell with the Dryden model, is

S2 used. The simplified Dryden wind gust model is
: fp , A A6 g f 2 &  360 g ( 20

S,360g = Klo;K, 6,;m + ,;(t) (26)

" where u is the aircraft velocity (in ft/s), g the gravitational where ow- is a zero-mean white noise process with spectral
acceleration, and X.,, the X distance from the aircraft e.g. to density K2Q. and
the accelerometer.

Equations (17-19) can be used to derive a new set of C, o2 L, 1 4 3/? (1 p /3)4/3

dynamical equations using A and q.' The new dynamical Q= 2 - _ 'i = - T7i-, C-3 =

system is 
-U 2,3

A=D A +DQq+D e+Daa+ 2Q + 2g;t+B (21) = l= h

47=HA A+ Hqq + 1,e +HGac,+ Bq (22)
K,=-C , K, =-C, K, =C--

where L

Mf, where i is the altitude (mn ft), h, = 2500 ft, L, = 2000 ft, b
DA Z. + -- the wing span (in ft), u the aircraft velocity (in ft/s), and a

M.Aq, the rms gust velocity (in ft/s). By lettirg aI = a G and a, = &C ,

,= Z&aI2. + M1
2 q - , S q, e, G the followvinz set of linear equatiors is obtained from Eq. (26):

°i, = Ct2 (27)

H A -- Al, , s=q,e,G
6 2 = Ktal + K,o:, + K.2 0 (t) (2F)

"Aa ,-iZ, sa, e,G12 2 PAugmented State Variables and Mdified "Nonlinearities

SA '+ (If Eqs. (27), (28), and (25) are augmented to the dynamics
of Eqs. (23) and (24), then the dynamical system is expanded

&fib. - 92, to fifth order in the states A, q. e, a , and v.. If in addition,
BA = ,7 "-fl-~' - Bq~~ A , + bq the constant biases B4 and are augmeted as states, ,hen

13t a we obtain a seventh-order systern.

However, the system dynamics are not modifiable since the
Note that Zio and M,7 are the stability derivatives for unmeasured state ' e multipies some of the parameters to he

acceleration and pitch rate associated with wind gust effects. estimated. However, the system dynamics can be made mod-
,itG c ; if these relationships hold, th at D th & = 0 ifiable by replacing state e with m'o new states defined as

and HG = 0. Interestingly, this results in only the acceleration
equation being directly affected by the wind gusts and then X ) (

only by dtG. Although not directly affected by wind gusts, the where D , - 11 2. Note that e,, the commanded elevator
pitch rate is affected by the wind gusts through the accelera- position, is avail, blb and is assumed to be known perfectly.
tion term. The aircraft dynamics can now be written as This results in the following modifiable dynamical system:

* A= DA A + Dqq+ De+ S2,6- f2. + BA (23) 1)4 D, 1 0 0 -. ,, 1 0

4 4 + 11q+ 11,e+ B, (24) 1) HA 11, 0 1 0 0 0 1
kX 0 0 -1, 0 0 0 0 0

Note that B, and Bq are biases associated with A and q, k, 0 0 0 -- 11, 0 0 0 0
respectively. In the next sections, the elevator actuator and a 0 0 0 0 0 1 0 0
wind gust models are described. 0 0 0 0 K K 0 0a,8 0 0 0 0 K1  K2  0 (0

evnB4 0 0 0 0 0 0 0 0

A measurement of the elevator deflection is not available. [ 0 0 0 0 0 0 0 0
The first-order elevator actuator dynamics, which determine
the actual position of the elevator in response to an el.cator A
command e, . are assumed to be of the form 0

e = -tie- 11.e, (25) XI I),

X, 1111 0
where l11 and 11. reflect the dominant dynamical charcteris- O + e ('0)
tic of the elevator actuator. As in Ref 8, the actuator d ,naarnic 0 ,.

coefficients are assumed to remain ce stant; therefore. ,'I, ,rd B
11, need not be estimated. 11owever, since the actuai cleaitor B ]'
deflection is not measured. I, tnut be etmnmated ,,n-hne. L

% %
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where 6, I:.. Note that by this device the parameters ). earitics. The acceleration and pitch rate measurements are
and t1, are now multipled by e . which is a known input.
Thus, with acceleration and pitch rate measurements, the , A, u'. :q, q , (32)
nonlineanties are modifiable nonlinearities. As stated in Ref.
7. it is important that the s "stem be observable. By using the whcre 1.4 and t,'¢ are constant standard deviations associated
obsenabilitv test in Ref. If. it can be shown that th-s s,\stcm with the measurement noise of 4 and q. respecti-elv, so that
is obser"able.

Transformation from Continuous to liscrete Form y, [ (33)

Since the discrete '.ersion of the \IGEKF will be imple- t
mented, the aircraft dynamical equations must be tranformed
into discrete form. Bv assurmng the sample time A! to he The formulation of the NI('EKF algorithm requires that the
sufficiently small, the discrete dvnamical equations arc ap--rxm th matrices F :,. -_i, ). 11, and f( . ) be formed from the aircraft
proximately dnamic system [Eq. (31)] and measurements [Eq. (32)1. Since

we did not include the biases (B, B ,) in our linear simula-
.4 D, D 1 0 0 R At 0 tion. the, are not included in the state space defined now as

q 0 01 0 1 0 0 0 A
.' 0 0 0 0 0 0 .<r £ [.4.q .X'.X.\',a 1 .a:, D)4, Dv,f. 11 , S5. S5 .. t.,.

A = 0 0 0 C, 0 0 0 0 (34)

a, 0 0 0 0 1 At 0 0
a. 0 0 0 0 R, R, 0 0 and the measurement is defined as the two-vector

B4  0 0 0 0 0 0 1 0B , 0 0 0 0 0 0 0 1 :=:, ,(5
Then

A S 0 H (36)
q S, 0

t CD/, 0

2  C2 H e  0 - ESTIMATED PARAMETERS DY1=0.003 g's

x + 0 +. (31) ------- ACTUAL PARAMETERS DY2=0.004 deg/sec
a, 0 0.03

B, 0.02B -----0.2 ......... ....

P D ~D~r0.01D4 = D, %t I-1 D, = D,,At0.1 )-f

D,, = D At, H,, = fH4.1t0.1- " ...

H,,, =- H , At +1, H, = ft.%t He -.

At 0.2
S, = H2 [, (D,, + 1) + De, ]- -0.3

At 0.0 4.0 8.0 12.0 16.0 20.0
S, 2- 114 + TIME (SEC)

Fig. I Parameter tracking with a step change in flight condition%.
Note that x,, = De, and x, - He, and that the following WG = I ft/s, accurate instruments, and low-amplitude dither signal.
parameters are assumed known at each time step i:

H,
C, =e-i C2= - ESTIMATED PARAMETERS DY1=O.003 g's

.J = R 4 7ri, o.2 = R ---------- ACTUAL PARAMETERS DY2=0.004 deg/sec

0.03

R, K 1 t, R, 'K,Ar± +1, R, -Q.At
K(At(+K1)KD0.02

R4 2K (2+KAt)K De .

whee 1i ajzjrlillan noise sequence with variance Q,../A. He 0
In making the discrete approximation. the exact discrete form

isusd he onenen:otherwise, the above is the first term *0.1. of a Taylor series in At. He

" IV. Implementing the MGEKF

The MGEKF algorithm, formulated in Eqs. (10-14). is to -0.3
be applied to the problem of estimating the aircraft states and 0.0 4.0 8.0 12.0 16.0 20.0
parameters. This algorithm is extended from a single output to TIME (SEC)
the output of acceleration and pitch rate. We have already Fig. 2 Parameter tracking with a ramp change in flight conditions.,
shown that the dynamic nonlinearities are modifiable nonlin- W(; = I ft/s, accurate instrument,, and low-amplitude dither signal.
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1) 2~1 0 0 R1  0, 0 f) t
11 I 1 1 0 0 U 0 0

0 0 C1  0 0 0 0 0 Q tU fi C C ( I
F(, ) 0 0 0 C', 0 0 0 0 1 0 0 U C",X

00 0 1 M U 0 () 0 U 1)(

0 0 0 0 R1  R. 0 0 U o 0 0 o oAL
~'f~ 3,( i F(0. .Z, ) i, (3S) a-soctated %%ith thez e.imazed parameters. it %s sdI.',

exnrimental.: that te,.niJo h
Note the placement of th, measurements in the error d,- piacnicuters to about the inaan:iude of the t:he~u we

namics matrix F(--,, [i see Eqs. (6) and (IN]. E-(loc eou the minimumn and mnaxinwm %aiaes of thle -pAaameter, oe the
nient multiplies the co,-rrspondinc, piarmeter err er for that iflight envelope yielded -lie bc~t rc,ulis.
particular state. For example., thc acce!_leraun TrecasUrerent

Z4multiplies its correspondinig parameter error, ,- hl !). V.Cmptr Sinition and Control S'%te
No parameter associated wth any of tite staes e\.ceot acceler- Design Consitideration
ation and pitch rate is idenitifed," Since input c,- is niultiplicd The air_-raft simiulation routine prov,:des rhe MCGEKF
bv C, in the rows associta with state., X. xid A", thle routine with aceeberatioin j4. pitch rute c. comimanded, e'.;ator
estimated parameters axe now Dr and 14, rather tihan ',D, positioi c, , forward ielcicitv u. anut a] t,:.ide hi. T~x MOcEK17
and C2,H,. uses ilhe m-eauremelnts of 'A. q, ,.nd e, direcLt.%, %HeA the
The Process Noise Coiarianice M1atrix arnd Filtter"Tunin' wind gtust miodel uses u and h to calculte .v~rl. 2klt Cceciii-

Process noise is assumled for the para-meters [,see Eq. i2)] in cients inFe, i)
order to keep the filIter gain:; associated wvitb thL pa..uneters The simulation uses an exac t discrecte formn of th- con, 'im-
from going to zero. The values of the proce:s:; noise v-ariac ous dynt'Unic equations. The -rim biases are niot inclutdd Thne
for the paramieters are chosen oy !unirig the filter to obtain dynamic systemi is persis*,crtly excite-d by an o,,cillatorv ' dther
best performance. The discrete stochastic equation is of the elevator input in order to esionlat the parameters. The

dithor siional maintains tade t signal-to-noise ratio in the
X, F( 0, ) x, + w, (3) absece of pd' ot input, enabling the filter to differertiate

between the response or the dynmica systemi and noise on
where w, is composed of the s~x-d&inensionrl Nc::tor it- aO oc- the sN,Stemfl)
ated with the states and the eight-ciimer:ional vector w, Shape, amplitude, and frequency are the three inajor as.pects
associated with the parameters. Note that w.( O. *1 (') i 0) of the d~ther signal important to thle perfornmance of thle
and w,(i) are elemients of it, that ha'.c the sta-t,-depciident NIGEKF. A sinusoidal di~ther signal eomnposcd of three fre-
forms qc.cncies gavTe good results. T%%o frequencies are at the hiah

(4.3 rad/s) arid lot.w 1.8 rail'/s) ends of the expected short-
Cie -~ Ce,t,,( ) . period frequency of the aircraft over the flight envelore. The

third is at the firequency of the hihrodractuato:- (20
w,,( 0) C e -Ce 1 4 (i -1, w rad,/s) becauise exper::mentation indicaIted that the parameters

associated 'a.ith the control (S,. S7, D,, and 14,) are miore
i4~~(i) ~ = 0). 0i1 ( )= iasily identified if a frequency corresponding to tle natural

whil th reminig nise rocsse zreassmedindeendnt. frequency of the ae-turntor is included in the: dither. 1 3e of

hiThe remainin noise ronacee -ar a ,sumE idepnet, hs These frequencies results in the improved performance of tie
The .'rces noie cvanneematrx Q = t ~' w'has NIGKF. whiich allow, a decrc:ase in the ampl~tude of the

4 valuies along its diagonal and the only nonzero off-dia.ceonal dither signal while si ll niuntaining performance.
S..elements are In order to det-rminle thle effect of sensor accuracy on the

Q1 J Q4, D,' Ql.3performance of the filter, the acceleromeoter noise stan,lard
Q~ 42  D~,.Q* 3 deviations are alterniately ,et to 0.0'-03 and Or.03 -,. The pitch
Qs, = Q, R Rs~l~trate gyro noise staneard devi:ations are altcrn":clv ret to 0.W04

4 and 0.04rdee.'' Finallyv, three levels of clear air tuLulnc wIIIC -ere
Q3 I Q13,1 3 Q 1.3considered: a= \VG Z1, 5, and 15 ft.'s.

The ohjectis c of ouir numerteal experimeonts are to show
Q41 Q1 4 Qi4. i4 how the MOHEKF tracks the -tates and stabi!it\ deviations

throuc-h a chanc in 1ight conditions front ant ai i tdc of
0. C~e C~e~1 5.002 ft an a Mac:h nunmber of 0.6 to an aul~ idc o §(N4 ft

%khre he epedene n te trnesta!vi la.,bee l-p- and( a Mlach nuimoe- of OWii). In the linear .:intiia:io'n. the
psscreithe sop~ndic o the tf-imeoa stare . hfeQ, cf 1P-,n troM. lito'n fromn ,Tic '1Thi conidi ii 'i to thie other w%.i. foinied

pre~ed.Sin. 5 no of he f-d~eoal lemets f Qdepnd thet, as a s'cp or ai ramp.. The -atop is c-crutalls a linear
on the pararneters, or ,tatcs, the,, niu.t he approxinm ttd The in krj. Litio.- he' a.cen Ueparameters aIStOLiared %\1s iiC.it it
aIdaptive form of the process noise cos~anance niatri\ sue_- hl in:' vraVpro.Sneoi i r;:sz~

t vcested in Pef. uscs tile current estirniatce, of the parameters C., se IC' t.c iivra ft ii' ripe thle i rantion. it i, t. kp'',d i Vit iie
to adapt Q, pecrforinaimc '4ti's'n l1ei e is soniess hat coii,r\ai Sc,: \oCe

The first choice for the po!x.noise li:indard devlitin'n. chianics in !livht 'litlions reqluire Control lt0tti..t.kIAill
a associated %,Titlt the state' other than xind zuts %%.as ic s~et vpe-craic addtilnl a, e-Jeration and pi!,hI rate.

thern to zero, since no modeled prow e.. noi", cyist in aiei o)f The inn) ondt tont .f a~ 1- s nclronce run are kiled is
the Ntillestscept wlid ZUStS loser to entt.ince 'he 1A.( K 1 tie !n:ilt ofiien, fr eathi run Thit rcl i-,eniN , a dd
perforniarteeC ill the prcscnct If m''dcline' iraccur. Wo11 0ii'11, ''a' trtnte con'hii:' 'ii A tiir. Ohime Iroin one .it:,tiat

PO'sir spt~r ul dcnsiticl. e ii'. asUMid. Althoili:h~ thcoic hili ciiit'vt t' anther -'ciurs hitteenT 41) and P111 s. a
rci 'on i4 Lan he ki in 01t loINe9- the sliardold 1eii'n 'il 1: mee rl.Ide Ir,ni 1)o t ifi the d ou f tOw rwn at'

:1,%
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In the following figures. solid lines represent the estimated ESTIMATED PARAMETERS DYI=O.03 gs
parameter and the dashed lines represent the actual parame- .......... ACTUAL PARAMETERS DY2=0.04 deg! sec
ter. Also printed on these figures are DY1 and DY2, the
standard deviations of the measurement noise on the accel-0.3 - - -

erometer and the pitch rate gyro, respectively. WG is the rms
value of the wind gusts, which indicates the process noise on 0.02
the system. The sample frequency is 100 Hz. De J

Only the parameters D), and n,- are used to compare results 0.011

of variations in system design and model design, because D, is
a good indicator of the tracking characteristics of the other0.0
parameters associated with the acceleration equations and 11,
is a good indicator of the pitch rate parameters..-.
A step jump in flight conditions shown in Fig. 1 indicates He -

the step response characteristics of the MGEKF. The slow -0.2 .. _-__.

response in D, is characteristic of the parameters associated I I
with the acceleration state. This is due to the wind accelera- -0.3.0 4.0 a.0 12.0 16020.0
tion term in the acceleration equation. In contrast, note the
rapid response of the estimated parameter H,. TIME (SEC)

The Dryden wind gust model is obtained empirically from Fig. 5 Parameter tracking with a ramp change in flight condition%
man' atmospheric studies": therefore, the wind gust char- WG = 5 ft/s, reduced accuracy instruments, and lo-amplitude dither
acteristics of the real atmosphere will not exactly correspond signal.
to the assumed wind gust model in Eqs. (22) and (28). This
fact must be considered when analyzing the performance of
the MGEKF, since its performance may suffer if the actual

-ESTIMATED PARAMETERS DY1=O.03 g's

.......... ACTUAL PARAMETERS DY2=0.04 deg/sec

ESTIMATED PARAMETERS DYt=0.003 g's 0.03

.........ACTUAL PARAMETERS 0Y2=0,004 deg/sec

0.02
0.03 D, -

t -0.1

-0.00.02 ......

-0.1 
0

He -0.3 L

-0.2 0.0 4.0 8.0 12.0 16.0 20.0

F I TIME (SEC)
-0.3 Fig. 6 Parameter tracking with a ramp change in flight conditions,
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Detection Filter Design: Spectral Theory and
Algorithms

JOHN E. WHITE AND JASON L. SPEYER. FELLOW, IEEE

Abstract-A new formulation of the detection filter problem is known failure mode. These filters are known as detection filters,
generated by assignment of the closed-loop eigenstructure under certain but are actually a particular class of observers. Unlike the
constraints. Detection fillers, which are actually a specific class of directional failure signatures of the open-loop parity space
observers, fix the output error direction of the system so that it can be method, detection filters act in a closed-loop fashion to fix the

* associated with a particular failure mode and its known design failure output direction associated with plant And actuator failures 'A hue
direction. The derivation of detection filters from an eigensystem restricting sensor failure output directions to lie in a plane.
assignment approach permits a very transparent theory. The detection Furthermore, the output error magnitude never completely

- filler gains and closed-loop eigenectors are obtained from a set of disappears when a failure has occurred.
simultaneous equations. Necessary and sufficient conditior s for the The original theoretical development in detection filters wassolution of these algebraic equations are determined which produce a completed by 1973 [3], [4]. The intent of this paper is to
complete theory for detection filters, reformulate the detection filter theory of [31, [41 as an eigensys-

tem assignment problem. The algorithms of [31. [4] take the
relatively indirect approach of generating a cyclic space. The

1. INTRODUCTION current approach produces a straightforward derivation which
yields a system of simultaneous linear equations to be solved for

THE design of reliable, fault-tolerant control systems requires the detection filter gains and the closed-loop eigenvectors, oncelthat system failures be detected and identified within the closed-loop eigenvalues have been assigned. The detection
acceptable time limits, such that the system feedback is not filter terminology and certain referenced parts of this paper are
excessively corrupted. The principal tradeoff to be made in taken from [31, [41. Our results parallel those in multivariable
designing a redundancy management scheme is that of hardware control system design based on cnoosing the closed-loop eigen-

. ~, redundancy versus the complexity and robustness problems of the structure to determine a unique feedback gain matrix [51. Moore
software for analytic redundancy (i.e., combining the outputs of [51 has shown that, in addition to the usual freedom to choose the
dissimilar devices through analytic kinematic and dynamic rela- closed-loop eigenvalues, the closed-loop eigenvectors can be
tionships to obtain redundancy). A survey on design methods for chosen from an m-dimensional subspace when there are m control
failure detection is given in []. Analytic redundancy management inputs. Moore uses this flexibility in the choice of the eigenvectors
schemes are developed by forming and processing failure resid- to propose a design scheme for adjusting the distribution of the
uals. These residuals are essentially zero if no failure occurs and modes among the output components so as to shape the response~. are nonzero if a failure occurs. The residual formation techniques characteristics of the system. This paper demonstrates that similar
in the literature may be categorized into two broad groups. Open- eigensystem assignment freedoms and design algorithms exist forloop schemes 121 form one group. These schemes involve the a particular class of observers, known as detection filters, which
construction of a set of parity equations which represent all of the can be completely defined by specification of a set of closed-loop
analytical rejundancies of a system. These parity equations are eigenvalues along with appropriate constraints on the eigenvec-
simply all , the possible input-output relationships of a given tors. Although there is a good deal of literature on eigenstructurelinear system. A generalized parity space [21 can be formed from assignment for both state and output feedback, the constraints
the parity equations, and in the presense of a failure the resulting imposed here on the observer gains require alternate derivations

ie _ parity errors combine to provide a failure signature with direc- and algorithms. For additional detail, see [61.
tional characteristics in addition to the usual residual magnitude In the next section definitions to establish notation and to
information. Theoretically, these directional signatures should introduce basic failure modeling considerations are presented. In

, facilitate the failure detection and identification process. How- Section III the algorithm for determining the detection gains and
, ever. the open-loop parity error characteristics are of a highly closed-loop eigenvectors is established. However, this algorithm
, temporal nature and, therefore, the directional failure signature is assumes that the eigenvalues can be arbitrarily assig'iod. If a

not generally constrained. Furthermore, the failure magnitude of certain condition is not met, the algorithm must be furthersome or all of the parity residuals may disappear after n or fewer generalized. This is the topic of the subsequent sections. An
' sample-times (n is the dimension of the state space). These example is used to illustrate all the theory. Although the detection

_ problems would seem to limit the usefulness of the open-loop filter was analyzed in [31 and [41, the proofs of the theorems andparity space concepts. resulting algorithms for determining the detection gains and
The second category of residual formation techniques is that of closed-loop eigenvalues by the eigensystem assignment method

S-.€ closed-loop schemes. Although any linear filter residual could be are generally different.
,! processed, one particular type of filter produces residuals with
• " directional characteristics that can readily be associated with some [I. SYSTEM DEFINITION

Manuscript received July 21. 1986. reviscd February 12. 1987 This paper The open-loop dynamic model in the absence of failures is
is based on a prior si.,mission of October 5. 1984. Paper recommended by given by
Associate Editor. H L. Weineri.

The authors are with the Department of Aerospace Engineering and
Engineering Mechanics. The University of Texas at Austin. Austin. TX x=Ax+ Bu (I)
78712.

IEEE Log Number 8714979 where x is an n x I state vector The measurement equation in

0018-9286/87/0700-0593$01.00 © 1987 IEEE
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the absence of sensor failures is written as direction is defined. This definition requires that for arhtrarilv
placed filter poles, the gains be determined so that a failure

y= Cx (2) direction induces a unique measurement residual direction r,)
ensure that the fault directions are detectable, cerlain general

where yis an , x I measurement vector. The detection filter is assumptions are imposed on the system. In later sections., ,me of
assumed to have the form of a linear filter such that these assumptions are removed. The restrictions imposed on the

system by the assumptions and the requirement of detectabhity
force groups of eigenvectors to produce output residual directins

where i is the state estimate and D is the detection gain. If the identical to those produced by the various fault directions. rhe
. state error is defined as e x - i. then D is to be chosen such number of eigenvectors associated with each output residual
• that the output error, i = y - C.), has restricted directional direction is determined by computing the dimension of the

properties in the presence of a failure. The closed-loop dynamic associated detection space. If the sum of the dimensions of all the
equation becomes = GE when there are no failures, where detection spaces adds up to the dimension of the state space (his
eproperty is referred to as mutual detectabhtl, then the filter

G, G A - DC. (4) eigenvalues can be arbitrarily assigned, and a ,mple algorithm tor
determining the detection gains and the closed-loop clgcenectors

The occurrence of a plant or actuator failure can usually be is developed. In Section VI techniques for making nonmutuallv
modeled by a single term added to (1) to produce detectable problems mutually detectable are developed.

x = Ax + Bu +f;4, (5) A. Failure Detectability

wheref is the n x I design failure direction associated with the The development of the theory of detection filters from the
ith plant or actuator failure, and j., is generally a time-varying eigensystem assignment approach begins with a definition of the
scalar which may be a function of x(t) or u(t). A priori basic requirements for a detection filter. The definition of the
knowledge of ju, is not required in the design of a detection filter detectability of a failure with the design direction f, is given b-,

*. and it is assumed that ji,(t) is an arbitrary function of time. Beard [3] as stated below.
However, knowledge of the failure magnitude characteristics may Definition 1. The failure associated with f in the system
be useful for distinguishing between different failures with the described by (6) is detectable if there exists a filter gain matrix D
same output directions. For plant or actuator failures, the error such that

- system is rewritten as a) e(t) maintains a fixed direction in the output space, and
b) all eigenvalues of G can be arbitrarily specified, except for

the constraint on the conjugate symmetry.
The detection gain D will be determined in the following sections Condition a) forces the filter to have properties such that the
so that e is proportional to Cf, in response to a failure output error direction i can be associated with the design error
corresponding to that modeled by the direction f. This output directionf. Condition b) is imposed so that the filter can be made
direction is maintained during the transient (assuming that the stable, and also so that the response time of the filter can be
transients due to the initial conditions have settled-out before the adjusted. If condition b) is satisfied, the detection "filter" can

a, failure occurs) and steady-state phases of the error response due to also be used as a state estimation observer. The conjugate
" the system failure. symmetry constraint will restrict the closed-loop eigenvectors

The occurrence of a sensor failure can generally be modeled associated with complex conjugate eigenvalues.
with a single term added to (2) as

y = Cx + e, (7) B. System Qualifications

The assumptions upon which the analysis of Sections III-C to
where e, is an m X I unit vector corresponding to a failure in the III-E are based are

.,. ith sensor. For sensor failures the error system becomes 1) (A, C) is an observable pair.
2) CF - [Cf,"', CfJI is rank r.

i = G - d,,, i= Cf + e,A, (8) 3) r = m.
4) The closed-loop eigenvalues of G, X,, i = 1, 2, -•,n are

* where d, is the ith column of the detection filter gain matrix. The distinct.
* presence of di, in (8) is a potential difficulty since the d e disti n ct.. o 8 . iesnot known a s priothenotive oiffi thsign e detection The observability restriction is required for the usual state

gain is not known a priori. The objective of the design procedure estimation reasons. The assumption that CF be rank r will be
for a sensor failure is to determine two a priori directions referred to as the condition of output separability [31. The output
associated with a failure in the ith sensor such that the output separability condition produces a relatively uncomplicated closed-

.d. errors lie somewhere in the plane defined by Cd, and e,. loop structure(Lemma3). If CA'f, = 0forj 0, I,'.,5-
p Therefore, the closed-loop error system of (8) can be replaced by and if CA 6f, # 0, then all of the Cf, * 0 assumptions and

.a system of the form procedures can still be used if f, is replaced ever),, vhere by .A f
S = GE -f,*u,+f,, 4-= Cf (9) [31, [41, [61. Furthermore, if the output separability asurnpton is

not satisfied because two failure directions of interest have
wheref is any direction such that e, _', Cf and f* = Af. It is identical output directions, the dynamics of the ,ystem may still
shown in Section III-D that CAf lies in the plane generated by allow for the detection of the two failure directions with a sinle
Cd, and Cf. detection filter. As a design procedure. one or both of the original

The error system of (6) is used in the remaining analysis since it directions can be replaced %kith A If, for so(me j > 0 such that
. is easily generalized to sensor failures or other circumstances Assumption 2 is satisfied. The assumption is made in Sctions UII-

which are described by multiple failure directions. C to Ill-E that r = n since it is generally desirable to idcntifs, themaximum number of failures possible wh a single detectin

III. DETECTION FILTER DEStGN filter. The r < m case will be considered, however. in Sec tin
IV. The addition of a set of nonoutput-separable directions to I

In this section the algorithm for determining the detection gain will be described in Section VII. Some constraints on cicn%,ilue
D is developed. First, the notion of detectability of a fault assignability generally must be accepted to add these directiois ito

O-1
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the original set of r output separable directions. The analysis for left in D after satisfying DS = Q, and S (srs)-sr is the
the case where the eigenvalues are not all distinct will be given in Moore-Penrose pseudo left inverse [7].

S -Section V. A proof of this lemma is given in [3], [6]. The reader is referred
to [8] for a more thorough discussion of the generalized inverse

C. DetectabilitY and Closed-Loop Eigenvector Constraints problem.

p The following analysis imposes the requirements of Definition The solution of (D) is given by Lemma I as

I by placing constraints on the elgenstructure of the error systems.
The distinct closed-loop eigenvalues X, and eigenvectors , of (4) D (Af ' x ' (c) +D,P(Cf,) (15)
are determined by

(X,I --G)vj=0 (10) where P(S) I - SS* and S = Cf . Equation (15) cannot be
employed to directly solve for D since the summation term is

for j = 1, 2, •,n, where CV, * 0 since the system is assumed unknown. However. once D has been chosen so as to satisfy thej to be observable. The t, are independent and span the error detection filter constraint due to f in (13), a new system can be
,ariable state space. The design failure vector can therefore be defined with a filter gain of D,. This new system has the same
written as a linear combination of the closed-loop eigenvectors as form as the original problem and is useful because it allows the

, , detection filter designer to determine how many eigenvalues can
f= u (I1) be arbitrarily specified by the choice of D,, and the number of

eigenvalues associated with C!, in (12). The new system is
determined by substituting (15) into (4) to obtain

where the i superscripts denote those closed-loop eigenvectors and
r% coefficients which combine to form f,, and n, :_ n is the number A -DC= A,-D,C, (16)

of nonzero a'.,
An important restriction on the eigenvectors v is given by the "N following theorem which is proved in Appendix A. A, = A - Af,- X'v (17)
Theorem 1.: Condition a) of Definition I is satisfied if and only "

if Cf, and Cu' are colinear for all values of j = 1, 2, • • n,.
Remark. lt'will be convenient to normalize the v' such that Cv' C, = P(Cf,)C (18)

= C f, fo r allj = 1, .. , n,.
Since Theorem I can essentially be viewed as placing con- and is characterized by the following lemma.

straints on the closed-loop eigenvectors to achieve a unidirectional Lemma 2: If A,, C,, and D, are real matrices of dimension n x
output error while condition b) of Definition I requires that the n, m x n, and n x m, respectively, the number of eigenvalues of
eigenvalues be arbitrarily assignable, the detection filter problem (A, - D,C,) which can be arbitrarily specified by the free choice
becomes that of solving the set of equations of D, is equal to q, . rank (A,) where

S X;I-A D ]L0 [2(19)
C 0--AW, = [ (12) M, = [(C)T(CA,)T, . (CA -T-) . (19)
* The remaining v, A- (n - q,) eigenvalues of (A, - DC,) are

for the detection gain D. where w, Cf, = Cu' with j = 1, 2, equal to the corresponding eigenvalues of A,, which also are those
,, _ n, and i = 1, 2, m. However the number of eigenvalues of G associated with f,. The proof is given in

eigenvalues and eigenvectors fi, to be assigned to the Cf, Appendix B.
S constraints remains to be determined. The conditions under which Remark: Observe that Lemma 2 is not written in an imple-

a solution to (12) can be obtained for D and the vIs will be given mentable form for this problem because (17) contains the U's
in Sections Ill-D and III-E. These conditions are the same as those which are unknown. However, A, in (19) can be replaced by K,)
required by Beard for the solution of his formulation of the A[I - f,(Cf,) * C]. The equivalence between A, and K, can be
problem. Interestingly, the appropriate results are easily derived established by using C,K>v = 0 for k = 0, 1, ".., n - 1 [61.
here even though the formulation is different (i.e., (13) below Definition 2: The null space of M, is the detection space off,.

', differs from Beard's form of that equation). Definition 3: The dimension of the detection space of f, is
defined to be the detection order v, of!,, where P, = n - q,.

* D. Detection Spaces if Definition 4: The failure vectorf, is detection equivalent tof,

The calculation of the detection gain and fi, with respect to a a) every detection filter forf is also a detection filter forf, and
single design failure direction is now examined. Those equations b) Cf, = i3Cf, (Assumption 2 of Section III-B implies that Cf,
of (12) which correspond to the nonzero al's in (I1) can be * 0 and Cf, * 0) where J3 is any nonzero constant.
summed to obtain The detection space is a G-invariant subspace of the error

variable state space which represents that part of the system
DCf, Af,- a'X'u' (13) affected by f, or some detection equivalent direction. The

whee invariance property is clear from (13) since the summation termrepresents some vector in the detection space off, and the other
where the remark following Theorem I and (II) have been used to two terms can be combined to form Gf. This invariance property
show that E_ X> a' = I for all a' * 0 corresponding tof,. The implies that the controllable space of f, with respect to G, W,

d% form of the soluton of (13) can be used to obtain certain given in (A-I), is a subspace of the detection space off,, since ;V," information useful to the solution of (12). is the smallest G-invariant subspace containing f,. The fact that
. Lemma I: If D, S, and Q are matrices of dimension n x m, m W, is generally a proper subspace of the detection space is the

x r, and n x r, respectively, where n ?: m 2! rand rank (S) - result of the maximum rank of W, being constrained to be n, _ p,.
r. then the general solution of DS = Q, is given by This constraint on the rank of W, can be observed from the

~~ substitution of (11) and (10) into W,
D=QS* +DII-SSI) (14) The detection space off, contains f, and all of thef, which are

detection equivalent tof, since Cf, = 0 and K, = 0 imply that
where D is an arbitrary n x m matrix and represents the freedom f, and the detection equivalent f,'s lie it, the null space of M,.

,-% %
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Lemma 2 and Definition 3 imply that there are v, eigenvalues off, and 77 is an arbitrary constant. Cf* lies in the plane composed
whose corresponding eigenvectors span the detection space off. of CDCf, = Cd, = CAf, - E,'- 'ase, and e, where (13) is

, .' Since n, eigenvectors of (1 I) are known by Theorem I to lie in the used.
detection space. then v, > n, > 1. Therefore, since there are v,
eigenvectors which satisfy the collinear constraint of Theorem I IV. r < m FAILURE DIRECTIONS
for all detection equivalent fAs. then fi, = v, is the number of
eigenvalues and eigenvectors to be assigned to the Cf, constraint The assumptions of Section II-B are relaxed to allow r < m.
in solving the algebraic equation (12). The condition for mutual detectability of Theorem 2 must be

It remains to show that all n eigenvalues can be arbitrarily generalized. This is done by determining the 'detection space"
,., assigned asrequired by Definition 1. associated with the set F - (fl, ... , f,}. In a manner analogous

"'. Definition 5.: The vectors in the set Fare mutually detectable if to that for the single failure, the detection gain for multiple
,' there exists a D which satisfies the detectability conditions of failures must simultaneously satisfy r equations of the form of

Definition I for all f in the set F. (13). This set of equations can be written in matrix form as DCF
The condition for the set F to be mutually detectable is given in Qd where the columns of Qd are the right-hand sides of (13) for

Theorem 2 for the case when r = m. = 1, 2, "-,r. Lemma I gives the solution of DCF = Qd as
Theorem 2.' If the set of vectors in Fare output separable, then

the f's in Fare mutually detectable if and only if D = Qj(CF)* + DP(CF) (20)

where

,=1 A-DC=A-DCA A-Q(CF) C (21)

The proof is given in Section IV where the r < m case is C = P(CF)C, K A[I-F(CF) C). (22)
discussed. Procedures for making a system mutually detectable
when the condition in Theorem 2 fails is given in Section V. As per Lemma 2 and the following remark, the observability

matrix with respect to the system (A, C) is
E. Solution of the Algebraic Equation (12)

Al _1"(C) r, (CA)T, ... , (CA"-)rlr. (23)
The following theorem states the conditions under which (12)

can be solved for the detection gain D and the closed-loop The number of eigenvalues which are freely assignable by D is
eigenvectors. The proof is given because it is constructive in given by Lemma 2 to be rank (M) = q. The number of

. ~ developing an algorithm for the solution to (12). eigenvalues associated with making D a detection gain for the set
"-. Theorem 3: Given the system qualifications of Section III-B, of r failure vectors in F is therefore given by v = n - q.

then the condition E, v, = n implies that the system of (12) can Definition 6.' The dimension of the null space of M is P = n -
be solved for the detection gain matrix D and the closed-loop q and is defined to be the group detection order of the set F =
eigenvectors, ul, wherej = 1, 2, - .. , v,. {fU, ".,f}.

Proof: By Theorem 2 the n eigenvalues required in (12) can For Fdefined by a set of r -- m failure directions Theorem 2
be arbitrarily specified v, at a time. while simultaneously being generalizes to
associated with a particular Cf, constraint. Therefore, for eachf, Theorem 4: Thef's in Fare mutually detectable if and only if

* , n linear combinations of the elements of D can be determined
'~ along with the ny, elements of v's. To determine these unknowns, (24)

there are nv, eigenvector equations and my, eigenvector con-
straints. When m,, - n, then those equations in (12) correspond-
ing tof can be used to completely solve for the corresponding vu's Proof is given in Appendix C. Note that if m = r, then CF is
and the associated set of n constraints on D. This is possible invertible and C = 0 in (22). Therefore, v n, and Theorem 4
because there are an equal number of independent equations and implies Theorem 2.
unknowns. However, if my, < n, then vi is representable as a The results of Theorem 3 must be slightly modified since q
linear combination of any basis for the ith detection space. Since eigenvalues and eigenvectors remain to be assigned after the

,j~ the ith detection space must be orthogonal to M, of (19), a basis detection filter has been designed for the f, i = I, 2, • •, r. q is
set for the detection space can be found by computing the the rank of M, which is defined by (23). These q eigenvalues and

* unobservable subspace of the (C,, K,) system [91. Hence, v can eigenvectors are freely assignable, provided that the eigenvectors
_ - be written as uj = 0,3; where l, is an n X v, matrix whose are independent of those which span the r detection spaces. All of

columns form a basis for the detection space with respect tof, and the solution techniques of Theorem 3 are also applicable for the
j3. is a i x I vector of coefficients. It is now shown that enough case of r _< m, since the developed techniques allow for the
iiindependent equations will exist for solution of the elements of the independent solution of the subset of equations in (12) correspond-
,, = 0,0; and the n constraints on D. The number of equations in ing to a single f, for the appropriate v, eigenvectors and n
(12) remains at np, + my, while the number of un[Knowns has been constraints on D [6].
reduced to P 

2 + n. If the number of equations can be shown to be
greater than or equal to the number of unknowns, it will be V. DETECTION FILTERS WITH NONDISTINCT EIGENVALUES
possible to solve for the 0' and the constraints on D. It will now be
assumed that this is true so that [(n + m),i >- [I + nj which The assumptions of Section Ill-B are also imposed on the
will be rewritten so that the validity of the inequality is clear, analysis of this section, except that nondistinct eigenvalues and r
When r !5 m, then n v,. This implies that n = v, + c where c !5 m are now allowed.
2! 0. Hence, [v, + (m + c)v,j >_ v2 + P, + cl. and then [m + Some interesting eigenstructure constraints are imposed by
civ, _> [v, + c]. Since m > I and v, _> 1, then the inequality is output separability when nondistinct eigenvalues are allowed.
valid. Hence, solution of (12) is possible and Theorem 3 is First, it is demonstrated that the detection spaces are independent.
proven. Lemma 3: If the failure vectors in Fare output separable, then

Remark: As discussed in Section II. sensor failures are the detection spaces of the f 's are pairwise independent. The
, ~ included by determining a priori fault directions f and f* such proof is given in Appendix D.

that Cf, = e,, and Cf lie in the plane composed of Cf, and Cd, The proof shows that there are no eigenvectors which span
Note that for 2 A f - q, where f lies in the detection space some overlap in the detection spaces. The implication of this

0-- -
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lemmnla on the Jordan form structure of G is that any Jordan block open-loop system in such a way that (24) is satisfied. If the
must be completely contained in the v,-dimensional part of the original open-loop system is a minimal realization, then it is both

Ci- Jordan structure corresponding to the ith detection space. even if observable and controllable (with respect to B). Although the new
the algebraic multiplicity of the eigenvalue is greater than v,. This open-loop system will be required to be an equivalent realization
requires that whenever identical eigenvalues are to be assigned to of the original system, the enlarged system will be observable but
k detection spaces. the eigenvalue must be assigned a geometric not controllable.
multiplicity of e to preserve the independence of the detection The motivation for enlargiftg- the state space to obtain a
spaces. This can he illustrated quite simply by falsely assuming mutually detectable set of failures requires a slightly more detailed
that v, and v. lie in different detection spaces when u, is a understanding of the structure of the excess subspace. Cv_,, where
generalized eigenvector of vi. By the definition of a generalized u, is any one of the eigenvectors spanning the excess subspace.
eigenvector, then it must be true that CGu, - XCu, = Cut which does not lie in any one detection r.pace. However, since Co. t 0
must be equal to (a is a constant scalar coefficient) cCf2 = Cf, if by the discussion with respect to ( 10) and is directly observable.
t, and c, are to lie in their respective detection spaces. However. then Cv, must then be some linear combination of the directions of
this is a contradiction by the definition of output separability. Cf, for i = 1, 2, • •., r. Each cigenvector in the excess subspace

The fact that the geometric multiplicity must be exactly k can be must have a component in two or more of the detection spaces.
shown b assuming falsely that two primary eigenvectors within a otherwise by Definition 4 and Theorem I the eleenvector %%ould
single detection space have the same eigenvalue. If these lie in and span some detection space. The removal of a fadurej .

, eigen'ectors are denoted by L', and t.,. then v, - v, must also be from the set F removes those eigenectors ot the excess subspace
Q,,. an eigensector. However. this implies a contradiction of the which have components along Cf,. The removal of some otherobservability assumption since C(t, - v,) = 0 by Theorem 1. failure direction other than f, may also remove some of the same

Hence. there can only be one primary eigenvector per detection eigenvectors that fk would remove. The essential idea of state-
• , space associated with a particular eigenvalue, space enlargement is to increase the dimension of the state space

If the system of (12) is rewritten to include generalized in such a way that the presence or absence of an f, in F does not
" eigenectors, then the results of Sections Il-C to III-E can be affect the dimensi,.: of the excess subspace of the enlarged state

confirmed to be valid when nondistinct eigenvalues are allowed space. This will be accomplished by the choice of a new open-loop
since Theorem I can be proven 161 for an f, defined in terms of system matrix such that the kth detection space is enlarged by an
primary and generalized eigenvectors. The results of Sections III- amount equal to the number of eigenvectors of the original excess
D and Ill-E can also be extended to the nondistinct eigenvalue subspace which have components alone Cf. %khi!e ensuring that
case by inspection if the summation term in (13) is modified. the new excess subspace eigenvectors hase no component along
Because of Theorem I, this modified term will drop out of an Cfk.
analysis similar to that used to obtain M, in terms of K, rather than Before other constraints on the enlargement of the state space
A, (see remark after Lemma 2). and the results of those sections can be considered, the requirements for an observable, equivalent
carries over to the nondistinct eigenvalue problem. realization (A, B, C) with a dimension of hi > n must be

The system of (12) is still valid for those values of] associated established and satisfied. The open-loop models of (4, B, C) and
with primary eigenvectors, while the right side of (12) must be (A, 9, C) are defined to be equivalent realizations (i.e., input-replaced b. [-(, -)r, w Tfor those values of] corresponding output equivalent) if CAB =Ci'j forj _s i, when ti > n. One
to generalized egenvectors. The results of Section IV are trivially form of the system (A, B, C) which can be observable and is
extended to the nondistinct eigenvalue case. input-output equivalent for any fi > n is given by

If .. V. NoNMUTUALLY DETECTABLE FAILURES C=[C 0 A, = A 8= 0 . (26)

Iftecondition oif (24) is not satisfied, then a solution to the
I L detection filter problem cannot be found which is detectable in the Let v,,, and PR represent the number of eigenvectors of the

sense of Definition I. In this case, (:,I P,) + q < n and there original excess space which have output components that lie and
, exists an excess subspace of dimension v, such that do not lie, respectively, along the direction Cf. The sum of these

1 , quantities is P,. The state space enlargement approach is made,, n - ,+ q =possible by the following theorem which is proved in Appendix E.[,) (25) Theorem 5: There exists an observable extension of (A, C), 'I into (A, C) of the form of (26) for fi ') n + Ve4 such that a) i,d

This excess subspace exists as a result of making the detection 0, b) , = P, + P,,, c) i, it P, for all j # k. and d) , _5 ,,,.ir , ' filter respond to the set of failure directions in F. which requires I Sufficient conditions for a) through d) to occur are that A,, and e
eigenvalues. while only being able to freely assign 1' v, A 2 be chosen as ;
eigenvalues with respect to the individual failure directions.
Hence. P, eigenvalues will be fixed by the choice of the system Ae'f A. ).. -o, (X,.,f -Jf)I, A, A
and the set F. When this occurs the system is said to be (27)" " nonmutually detectable (3) or restrictive [101.

The procedure 161 for obtaining a mutually detectable system by where N = ,, , summation term of (13) or the analogous
eliminating some of the f s in F essentially examines the nondistinct eienvalue summation term, and ,\' A,, are theV eigenvectors Awhich span the excess subspace so as to associate the eigenvalues in element and matrix (either diagonal or Jordan
removal of an f with the elimination of sonic of those excess form) representations that correspond to the eigenvector ul andeigenvectors. After examining each of the f, in such a manner, the eigenmatrix V,., respectively.
dimension of the excess subspace for all possible combinations of Remark: The scalar o's of (27) may be calculated as a' = kth

r.. the f, can be simply determined. Those combinations which row of (CF) Cvk.
produce an excess suhspace of dimension zero are those subsets of A sequential application of the Theorem 5 can be used to
the original set F xhich permit a mutually detectable problem. generate a mutually detectable system. Repeated application of
Note that (24) must be satisfied when r = I because M, = M and those results with respect to successive failure directions in F will. mutually detectable system always occurs. The removal of cause each of those directions in turn to be eliminated from those
failure directions from the original set of r directions may be eigenvectors which remain to span the excess subspace. Eventu-
a',crled by an alternate technique which was first suggested by ally. the excess subspace will be eliminated entirely and a
Jones (4[. This technique is that of adding dynamics to the original mutually detectable system will have been formed.

0*%
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Theorem 6: The nonmutually detectable system of (A, C, F) is defined to be of some dimension k, where £;k _< min (v,) for all
with output separable f,'s can be enlarged into an observable, i's corresponding to nonzero b,'s in (29) 161. The requirements for
equivalent realization (A, C,, P 1 [FT, 0] ) which is mutually output stationarity are summarized in Theorem 7. The proof is
detectable with respect to the same set of failure directions (the given in Appendix G.
fk's) with the minimal state-space dimension of Theorem 7: For a mutually detectable problem defined by A,

C, F, it is possible to make the nonoutput-separable direction hk
+output stationary with the directions in F if and only if twoM=n7 - (28) conditions are satisfied. First, k of (29) must lie in the union of

the detection spaces of the f's which correspond to nonzero 6,
(assume for notational simplicity that these correspond to i = 1,after r - I applications of Theorem 5. 2, " ", /). The second condition is that each group of v,

The proof is given in Appendix F. eigenvalues must contain the same set of s;, arbitrarily assignable
eigenvalues for i = 1, 2, " -, 1. If ik < v, for i = 1, 2, "",l,

VII. OUTPUT STATIONARITY then v, - i1k unassignable eigenvalues will exist with respect to the
ith detection space.If the freedom to arbitrarily choose the closed-loop eigenvalues Remark: Implementation of the results of Theorem 7, in the

is somewhat restricted, [4] has shown that more than m failure spirit of the previous algorithms, is quite straightforward. The
directions can be designed into the detection filter. By definition, first case to be considered is when zk = v, for all i = 1, 2, • •", 1.
these additional directions are not output separable with the In this case the determination of the detection gain matrix and the
original set of directions in F. If h, is a direction to be added to the closed-loop eigenvectors proceeds exactly the same way as with
set of m directions in F then (12), except that the eigenvalues with respect to the detection

M spaces of thef's for i = 1, 2, • •., I must be chosen as identical
hk = 8,f,+ k (29) sets of Vk eigenvalues. The eigenvalues with respect to the other

,= t detection spaces can be freely assigned.
The second case to be evaluated is when i k < v, for some or all

where some of the 6i may be zero and Ck 0. If hk satisfies of the f detection spaces for i = 1, 2, • 1. In this case the
certain conditions, then the output direction associated with hk can equations of (12) must be solved with the same eigenvalue
be made unidirectional by requiring that particular subsets of the constraints as in the first case. However, v, - 1k eigenvalues are

, closed-loop eigenvalues take on identical values. In the terminol- unassignable for each of the detection spaces where v, > i,.
2." ogy of [41 this is referred to as making hk output stationary with F. These unassignable eigenvalues complicate the solution of (12)

The simplest case of this occurs when m = n and all of the since there will be more unknowns than equations. This complica-
eigenvalues are chosen to be identical. Under these conditions, v, tion is eliminated by requiring that the system equations of (12) be= I for i = 1, 2, ---, n. Since v, = 1, then v, = f and the solved simultaneously with

eigen equations become Gf, = Xf. Here hk is just a linear
combination of the f's since k 0 is required for CQk = 0 to be ",
true. Now any hk can be detected by the detection filter for Fsince h, = 5; & u,. 6,& + ;. (30)
every hk will also be an eigenvector for G. ,- i-

t.~ A. Output Stationarity for a Single Additional Failure GA ,, , ,
Direction Ghk=, (31)

* The fully measurable case is a powerful motivation for
examining the general conditions under which additional failure along with the condition that & =0 for all j > i#k and i = 1, 2,
directions can be detected. This section will determine those • • -, 1. The 6i's of (30) and (31) are known a priori from (29) and
conditions which must be satisfied to make a single additional 'y is found from the representation t, = L, I y'' Equation
failure direction hk Output stationary with the failure directions of (31) requires that h, satisfy an equation of tie form'of (13) with
the set F. the same detection gain matrix as that used to fix the output

The following assumptions are made for the analysis to follow: directions in F. Also, all of these equations are expressed in terms
i) h, * 0, 2) r = m, 3) A, C, F imply mutual detectability, and of the eigenvalues and eigenvectors of the f, detection spaces and
4) distinct eigenvalues. The first assumption follows directly from are compatible with the unknowns of (12).

, the previous assumption that Cf * 0, (29), and output separabil-
ity. The second assumption is made so that the maximum number VIII. EXAMPLES OF DETECTION FILTER DESIGN
of output separable failures will be designed into the detection
filter. This in turn assists in maximizing the number of hk's which Example (a): This is an example of the eigensystem assignment
can be made output stationary with the directions in F. Extension methods for detection filter design when the closed-loop eigen-

" of the results to the r < m case will follow trivially from the r = values are chosen to be distinct, r = m, and the A, C, F system is
m analysis. The third assumption requires that the system be mutually detectable. Let

s mutually detectable, either naturally or by the methods of Section r 1 1 1
VI. This assumption implies that no unassignable eigenvalues [0 3 4 [ -3
exist as a result of fixing the output directions in CF. This allows A = 2 , C= 0 0 f  

' f =1 1/2]
for the maximum possible flexibility in determining the conditions 2 5 [ 1/2
for output stationarity. Similarly, distinct eigenvalues are assumed I 0
because this aids in maximizing the freedom allowed in specifying Since the rank of CF is r = 2, then the failure directions off, and

L output stationarity criteria. Complete eigenvalue assignability is f2 are output separable. The test for mutual detectability using
the freedom sacrificed in fixing more than m failure directions. Lemma I and the following remark produces M, for i = i, 2 as

The output stationarity problem is concerned with fixing the h,
S detection subspace in the state space while simultaneously [00 I] M [70 1/2 1/21maintaining the detection subspaces with respect to the directions = 0 0 5 M= I1/2 7/2 5/2

in F. The detection space for some direction h,, which is to be 0 5 /
made output stationary with the output separable directions in F, 0 25 L7 / 2  91/4 63/4

6. . 1
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where the zero or redundant rows have been omitted. The rank of terms of those eigenvectors. As mentioned in Section VII-A, the
M, is I which implies that ,1 = n - I = 3 - I = 2. The rank of calculation of the eigenvectors and detection gain is complicated

-e M, is 2 and this means that P2 = n - 2 = 1. Since n = P, + P,, by the additional equations to be satisfied when making some
then the system .4, C, F is mutually detectable. The closed-loop vector output stationary with the directions in F. The system of
eigenvalues are now assigned to the respective detection spaces. (12) can be employed to write equations with respect to Xh = -2,
Since , = 2. the choices of X' = -2 and Xh = -3 are assigned X1 = unassignable, and X' = -2. The additional equations to be
to the detection space of fl. Likewise, the choice of X' 

= -4 is utilized for the output stationarity case are (30) and (31). The
made for the detection space of f2. The closed-loop eigenvectors additional constraint that 6, = 0 must also be enforced since V, >
and the detection gain, D. are now determined from (12). The two 5,. All of these equations can be solved to obtain

' .. sets of linear equations obtained for X: and X: can be solved to
obtain d,1 = 9. d,, = 7, d3 l = 2, while the two eigenvectors [-1 I4 [-2 2 I 1which span the detection space off, are calculated to be v DI= =, 3 V= 1 - 1/2 (32)
[3 1 0]", v2 = [2 1 01. The single equation of (12) for X, 2 7 0 0 1/2_
produces the detection gain elements as dl2 = 18, d,, = 6, and
d32 = 9 where the eigenvector is known to be f 2 since P2 = 1. with 6: = l, 6 - 0, 62 = 2, andX = +2.

Example (b): This example demonstrates the techniques of The reader should notice that the unassignable eigenvalue here
Section V for r = m. nondistinct eigenvalues, and a mutually takes on the same value as the excess eigenvalue of Example (c)
detectable system. This problem is a repetition of Example (a) where h, and f., of the above example were used as the design
except that here all of the eigenvalues are chosen to be identical. failure directions. This is an interesting check of the above output
Because of the detection space structure of this example, X will stationarity procedure, since any effort to design the directions of
have a geometric multiplicity of 2 but an algebraic multiplicity of h, and f2 into a detection filter must result in an unassignable
3, where X = -2. The system of (12) is used for X:, while for X, eigenvalue with a value of + 2. The comparison between this
(12) must be modified to accommodate generalized eigenvectors example and that of Example (c) may be further enhanced if
as discussed in Section V. These two sets of linear equations can Example (c) is recalculated with X2  

- 2. In this case. the gain
be solved to produce dt, = 7, d2 l = 6, d3, = 2, and v: = matrix and excess eigenvalue are identical to the gain matrix and

, A [3 1 0] r. For X2 (12) can be used where again the eigenvector is unassignable eigenvalue of Example (d). Furthermore. v, of the
constrained to be. 2 since 2 = 1. The detection gain elements are recalculated version of Example (c) will be identical to v' of
di. = 12, d.2 = 7, and d = 7. Example (d), which is associated with the unassignable eigenvalue

Example (c): This example deals with the implementation of X. Therefore, the state enlargement technique could be used as in
the detection algorithms of Section VI for the restrictive problem Example (d) to produce a mutually detectable system.
where distinct eigenvalues and r = m are assumed. The system of
Example (a) is used again here, except that f, = [0 0 1]r. From VIII. CONCLUSIONS
Lemma I and the following remark v, = 1. This problem is,
therefore, restrictive since , > P, + P2 = 2. The dimension of A derivation of the detection filter theory from an eigensystem
the excess subspace is n = 3 - 2 = 1. Since only two assignment approach has been presented. The motivations for and
eigenvalues are arbitrarily assignable, X1, = -2 and X2 = -3 the development of this theory are easily accomplished by this
with the excess eigenvalue left to be determined. The two systems approach. The analysis results in a set of simultaneous equations
of equations from (12) are solved for the detection gain matrix to be solved for the detection filter gains and the closed-loop

. where the first column of D is [- 3 3 11 T and the second column eigenvectors. Necessary and sufficient conditions for the solution
1!.1 of D is [4 3 71 From G of (4) calculate v, and X, from (10) as X, of this system of equations have been given. An example is

= 2 and u, = [12 4 11r, presented which illustrates and integrates all of the theory and
The results of Theorem 5 may be employed to enlarge the state associated algorithms.

space wherejf = X, v I = - 2[0 0 1 ] r. The enlargement technique
is applied with respect tof, in this example, althoughf 2 could just APPENDIX A
have easily been chosen. Now AI 2 of Theorem 5 can be written as PROOF OF THEOREM I
A, 2 = -5[2f, + 2f, I = [00 -20]rwhile A 22 = X, = +2.
This choice of the new open-loop system must enlarge the Theorem I has a two-part proof which is given below in the
dimension of the detection space off, by b) of Theorem 5, and form of two lemmas and their respective proofs.
must also enlarge the detection space of f2 by Theorem 6. This Lemma: Condition a) of Definition I is satisfied if and only if
problem is an example of the case where i, < P . The dimension rank (CW) = 1.
of both detection spaces will be enlarged by one and, hence, the Proof: This proof is due to Beard [3]. The controllable spacenew system will be mutually detectable, of f, with respect to G is spanned by the columns of the

Example (d): This example will demonstrate the techniques of controllability matrix WI,, where H', is defined as
Section VII. The objective here will be to make a single additional

! nonseparable direction h, = [0 0 11 r output stationary with the ;V, 1 [f, Gf, " ", G-'f]. (A.I)failure directions of Example (a). By definition the direction hi* can be written in the form of (29) as h, = f, + 2f2 + t, where 61 Sufficiency of the lemma can be established by noting that c(t)
. 1, 2 2. and k, L- [I 001 r. Because the h, direction coincides must lie in the range space of I,. Therefore, f(t) can be written as

with the direction of Example (c), the calculation of j;, here is a linear combination of the columns of W', as E(t) = Wg(t),unnecessary since the calculation of P, in Example (c) implies that where g(t) is an n x 1 vector of coefficients. The output error can
1", = I. From Example (a) it should be recalled that v, = 2 and v2  now be written as i-(t) = Cf(t) = CW,g(t). It is sufficient that

= I. Hence. the application of Theorem 7 will require that only CW, be of rank I to ensure that e(t) is unidirectional for any g(t).Pm .! one freely assignable eigenvalue be assigned to the detection The necessity of the lemma can be shown by observing that c(t)
i spaces of f, and f2, and it must be identical for both detection can be driven by !,(t) to any state in the controllable space off,

spaces. Because ;,, > III there will be one unassignable eigenvalue with respect to G. Hence, condition a) of Definition I is
with respect to the detection space off,. The other condition of guaranteed for arbitrary ,(t) only if rank CW, = I. E)
Theorem 7 which must be satisfied is that / lie in the union of the Lemma: Rank (CW,) = I if and only if Cf, and Cu' are
detection spaces off, and f2 . The requirement is clearly satisfied collinear for all] = 1, 2, , n,.
since the eigenvectors which span the detection spaces off, and f 2  Proof: The i superscripts on the v"s and the corresponding
will also span the state space and, therefore, , can be written in X;'s and cr;'s have been suppressed in ihis proof for the sake of
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notational simplicity-. Sufficiency can be demonstrated by replac- eigenvalues and eigenvectors are not constrained by the solutioning the f, in C ; with (11), and then (10) can be employed to of (13) and are freely assignable by the choice of D,. The proof of

obtain Lemma 2 is now complete. []

c~; a,~ , a1X Cu,.-I (A. 2) APPENDIX C

N I PROOF OF THEOREM 4

Now if Cv, and Cf are collinear for allj such that ct 0, then This proof is due to Beard [3]. Lemma 2 implies that there are q
C;; becomes eigenvalues that are freely assignable by D in (15) after D has

been constrained to be a detection filter for all thef in F. Output
CW,=[Cf, C,a, C, '"a,,_ ICf, (A.3) separability implies that the eigenvalues associated with the

detection space of each of the f, can be specified independently of
g where the cr* represent the coefficients of Cf after the summa- the other detection spaces (i.e., Lemma 3). Lemma 2 implies

tions have been executed. Clearly, the rank of CW, is one and from (15)-(18) that v, eigenvalues are associated with each
sufficiency has been proved, detection space. Condition b) of the definition of detectability

Necessity can be proven if it can be shown that i(t) is requires that n eigenvalues be arbitrarily assignable when D is
unidirectional only when the conditions of the lemma are satisfied. constrained to be a detection gain for all of the f in F. Hence.
The solution to (6) can be written as

1 E , + q~ (C.I1)
(t=eGi() eG(1-')f, A,(r) dr. (AA4)

The transient in (A.4) is considered to be zero, by assuming that Since , =! n - q, then Theorem 4 is proven. El
either f(0) = 0 or that the transient due to the initial condition has
settled out. (This requires that G be chosen to be stable.) Then, APPENDIX D
the substitution of (II) into (A.4) and the assumption that 14, is PROOF OF LEMMA 3
constant (any conditions obtained under this assumption must also
apply for an arbitrary ui,(I) since ju, = constant is still a possible The lemma can be proven if it can be shown that the
failure mode) gives eigenvectors that span the ith detection space are independent of

those that span the other detection spaces for i = 1, 2, , r. The
,(t)=- Ai ea1 I v, (A.5) independence of these sets of eigenvectors implies that there are

.,- 0 no eigenvectors which span some overlap in the detection spaces
and, hence, that the detection spaces are pairwise independent.

If (A.5) is premultiplied by C, exp [G(t - r)]vj = exp [X,(t - A proof by contradiction can be accomplished by assuming thatr)]v, is substituted into (A.5), and the integration of (A.5) is some dependency exists among the sets of eigenvectors that spanperformed, then the output error becomes the detection spaces. For the sake of notational simplicity it is

assumed that there are just two detection spaces and that the
overlap between the two is a two-dimensional subspace. Further-

S 0) -, Y [ ] CV,. (A.6) more, assume that v and v' are the two eigenvectors from the v1-
dimensional, first detection space which span the overlap.

By (A.6) the conditions of the lemma are necessary for i(t) to Likewise, assume that v2 and v1 are the two eigenvectors from the
--] [_ have a fixed direction and, therefore, for CW, to be rank 1. [] i,2-dimensional, second detection space which also span the

Theorem I combines the two lemmas of this Appendix. overlap. Since both sets of overlap eigenvectors span the same
subspace, then it must be possible to write v and v in terms of v2

APPENDIX B and v1. For instance, = WV + W2u" where the w,'s areconstant scalar coefficients. Premultiplication of this relationship
PROOF OF LEMMA 2 by C (recall that Cv' * 0) and the conditions of Theorem Iproduce Cf1 = (w, + W2)Cf 2, which is a contradiction by theThe definitions of q, and v, in Lemma 2 imply that the assumption of output separability. These arguments are easily

observability matrix with respect to (C,, A,) is of rank q, while the extended to the general case and by contradiction Lemma 3 is
null space or unobservable space is of dimension s,,. Hence, q, true.
closed-loop eigenvectors span M,, while the remaining P, closed-
loop eigenvectors span the null space of M,. These v, eigenvectors APPENDIX E
must by definition satisfy the condition of C,v; = 0 for all j = 1,
2, • •, v. This condition implies that these eigenvectors must be PROOF OF THEOREM 5
eigenvectors of A,. This can be observed by postmultiplying (16) The organization of this proof is as follows. First, b), c), and d)
by ; for all] = , 2, P to obtain will be shown to result from (27) in a very direct and simple way.

Then it will be shown that the definitions of (27) imply a), because
A,u;=(A -DC)"+D,CL". (B.I) the new excess space will not have any output component along

the direction 01k = Cf,, wherefI = if r, 0] ". This form off, is
This equation reduces to required by the way in which a failure physically enters the

problem.
A,uv; = X;v + AC, v; (B.2) The determination of the detection space of fk with respect to

the system (A, 0) is analogous to the procedure of Section III-D.by (10). The last term in (B.2) is zero for all of the eigenvectors in The quantities
the null space of M, and. therefore, they must all be eigenvectors
of A,. Hence, P, eigenvalues and eigenvectors of A, are specified [K, A 1'Ck,=[IC* 01, Rk= E.1by the solution of (13) (i.e., with respect tof). These eigenvalues [0 A (
and eigenvectors cannot be affected by the choice of D, since the
last term in (B.2) is always zero. However, the remaining q, are easily derived for the enlarged state space from equations of0t4
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the form of (18) and (17) W ith (j, C) replacing (A, C) and where 5
ek A [Sr , I where I is a vk x ,k identity matrix which is

.k replaces fk. Now a matrix similar to (19) can be written and chosen argitrarily. If it can be shown that S,, is independent of the
expanded in terms of E. 1) to obtain presence offk by the choice of AI, and A22 of (27), then a) will

have been proven.

A k (E.2) enlarged state space dimension as
0, TkA,' (Ck(KkA 2 +-A.A 22))T , . E.2 Eqatio (S) al erwitnskstob ossetwt h

Because the definition of A 12 in (27) makes A 12 lie in the null [0] 1 A,k
space of Ak. the second column of terms in (E.2) is zero. Hence,
the rank of Alk is equal to that of Mk. This implies that 6k = i -

4 = fi - qk = n + Vek - qj = Vk + P, and that b) is true. Z a(x f,), , "Xef,'.
A matrix similar to (23) for the enlarged system can also be + IN (E.6)

defined for Ml. This matrix will have a form analogous to that of [lk' k

(E.2) and similar arguments imply that = , + Vek. This fact in 0
conjunction with b) and the form of MA for j * k imply that c)
and. therefore, d) must be valid.

The final step is to show that a) is valid because the excess The assumed form (Theorem 5) for j can be expanded to obtain
subspace has no components that lie in the kth detection space. [1

The proof requires a detailed look at the structure of the excess ha no cm n At
subspace.

Any eigenvector, vi, which lies in the original excess subspace
can be represented as a linear combination of some or all of the r + (E.7)
failure directions plus some vector, ss, which lies in the null space 0
of C. Hence, v1 = E ,&f, + s, where some of the a) may be
zero, and s, cannot be zero for vJ to be independent of the and then added to (E.6) to produce
detection spaces eigenvectors. Furthermore, each excess eigen- [ ((Xf,
vector must have an s, vector which is independent of the other s, 0, ('elf,-1,),
vectors. Therefore, V,, is represented as AISe, = SekAe, + I 1N

N V ka 0 ,,[ of + s , ..., o f , + s (E .3)I
N (E.8)

ilk I

where the Iis for 1, 2, Pk represent different subsets of where the index k has now been eliminated from the l to give I.

ther vle/s f = 1, 2, e, ere di fr i s ube to a cause CS-_= 0, the detection space directions of interest aremember ofeachsubset. Also, each s must satisfy de0 for] given by ASk. Since the right-hand side of (E.8) has no1,2,•b•-, Vea. Equation (10) for j/c can be CS component in the kth detection space, the new excess space will1 ,2 as A V,= V Eqation10) + D Vwhich can be ewritten in matrix form be independent of the presence of fk.
as A Vk = VkAk + DCVk which can be rewritten from (E.3) The case where i7e < vM can be handled in exactly the same
and (13) as manner as the above case. The only difference here is that now

one or more of the vectors in fi x v-dimensional Se will now lie
AVek= Vk4 ek + a,1 (Af -f)'', .N(Af -f) in and partially span an enlarged detection space with respect to

N one or more f, forj * k, rather than all of the vectors spanningk the new excess space as in the previous case.
(E.4) The hypothesis of a) in Theorem 5 has now been proven and the

Since the .s, for] j 1,2, Me must be independent,then proof of Theorem 5 is complete, except for a discussion regarding
ianother basis for the excess subspace is defined by S, en, the the observability of (A, C). The enlarged system must be

a bobservable as a result of the enlargement construction of Theoremsi. The subset of vectors Sk in S, which originate with V~k must 5. This can be verified by recalling from the proof of part b) that
*span the same excess subspace with respect to the new basis tenl pc fMms aeadmnino ~,adi

representation, since the same group of failure directions create known to be spanned by z eigenvectors which either span one of
that part of the excess space. The existence of a basis representa- the r detection subspaces or the excess subspace that exists after
tion for the excess space which lies in the null space of C is the enlargement process. If any one of these eigenvectors is
guaranteed by the fact that thef are output separable and only r multiplied by C, then the constraint of Theorem I or the nature
nonzero output directions can be fixed by the detection spaces. of the excess space [e.g., see (E.3)] requires that the resulting
Terms from the left and right sides of (E.4) can be canceled to vector be equal to one of the C1 directions for i = 1, 2, • •., r, or
form some linear combination thereof. Hence, the subspaces which

-l compose the null space of Rare observable by the construction of
AS,,=S,kA,,+ a , ),. ,(X'f -,) Theorem5, since 10, = Cf * Oforall i = 1,2,'"', r. Ifr <

IN  m, then the remaining q eigenvectors can be freely chosen,
provided that they are independent of those with respect to the r

(E.5) detection subspaces and the excess subspace, and are selected to
. which is now in terms of a new basis for the excess subspace due span an observable subspace. Hence, the enlarged system of (A,toi . C) is observable, and the proof of Theorem 5 is complete. L

;1 = v, is now assumed. This assumption means that
enlargement of the state space does not change the dimension of APPENDIX F

,V the excess subspace. This in turn implies that some P,,- PROOF OF THEOREM 6
,~ dimensional basis. S,, must exist in the ri-dimensional state space

to span the excess subspace that had previously been spanned by From Theorem 5 i7k = 'k + Pk and any increase in the
- Se, in the n-dimensional state space. Such a basis can be written as dimension of some other detection space must come as a result of

kS.
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an equal reduction in the excess space dimension. Any increase in 1, 2, •, 1. The implication of equating hA written in terms ofa'

% the dimension of v, to i7, must come as the result of a and i' from the analogous form of (11) with (30) is that
corresponding decrease in j% to i,. Hence. 5. u ( , i +... + (G. )

(F. 1) 1

Hence, the structural requirements for the output stationarity of h,
for all j # k. Since the total increase in the dimension of those are that the closed-loop eigenvectors of the detection spaces of the
detection spaces other than that off, must equal the reduction in hA and the f for i = 1, 2, • •, I be linearly related as in (G. 1).
the excess space dimension, then it must be true that Although these arguments have been based on the assumption that

;k = P,, the proof to follow will show that the unassignable
o ( =eigenvalues that occur for 17 < P, become fixed as the result of

') );I,) = P,- Ie (F.2) preserving the relationship of (G. I) to fix the output direction of=1Ch, .

where j * k is a constraint on the summation terms. Equations The proof will show in the spirit of Theorem I that the

similar to (F.I) and (F.2) can also be written for the second hypothesized conditions are necessary and sufficient for the output

and successive extensions, although some of the terms in the direction of h, to be fixed by the same detection gain as for the

summations of (F.2) will be zero since some directions will have directions in F.

been removed from the excess subspace. The necessity of the conditions in Theorem 7 can be shown in a

For notational simplicity it is assumed here that r = 3. The manner analogous to that of th - proof of Theorem 1. An equation

state-space dimension must be enlarged to fi, = n + v,1 + );2 derived like that of (A.5) but in terms of h, and the eigenvalues

after r - I applications of Theorem 5 and where k = 1, 2, • . on and eigenvectors with respect to its detection space is

successive applications. The reason for r - I rather than r
applications of Theorem 5 will become clear. / \ k

The first state-space enlargement removes the components C=tA / [1 -ek'Cv, (G.2)

along f from the excess space and (F.2) can be employed to write s
,- (v,: - ,) + (v,3 - .). Substitution of this equation where Co Ch, for a fixed output direction by Theorem I.

into the previous equation produces fi, = n + I- P) - Pe + Similarly, an output error equation can be written for h, in terms
(,;, - 173) which has the form of (28) except for the final two of the eigenvalues and eigenvectors of the detection spaces of the
terms. These two terms are equal and cancel each other out. Since f's [i.e., from (30)1 for i 1, 2, , /as
the first enlargement removes all excess space components along

. fl, the new excess space of dimension 7, cai have cumponents
only along f, and f 3. Since each excess eigenvector must have a [- . [.
component in two or more detection spaces (otherwise the ox ( )
eigenvector would lie in and span some detection space), then 17,

r = "2 = ;". The second state-space enlargement will remove fz [-
components from the excess space and also enlarges the f + ( ) eX''t (G.3)
detection space. Hence. the excess space will be eliminated after r ,=i ,,.
- I applications of Theorem 5.

The above analysis may be repeated for an arbitrary r and, The form in which (G.2) is written clearly indicates that when );
therefore, Theorem 6 is proven. = , and X' = X' then (G.I) implies that (G.3) and (G.2) are

identical anJ the o'utput direction of ChA is fixed if the directions

APPENDIX G Cf1, "", Cf, have been fixed by Theorem 1. If i;I < v,, the
output stationarity of h, can only be ensured if X' = X, forj = I,

PROOF OF THEOREM 7 2, "', s;,, and the Vs of the second term in (G.3) are chosen
such that the corresponding V;'s are zero. This is the reason why ,

The conditions under which output stationarity is possible are - SA eigenvalurs must be unassignable for each detection space
intimately related to the relationships between the closed-loop where v; < P,. The necessity of the Theorem 7 conditions for
eigenvector sets of the 0 1 s and the i,'s, as well as between the output stationarity has now been shown.
closed-loop eigenvalues 'of Xk and X1. The Xk's and the i0 's The sufficiency of the conditions in Theorem 7 can also be
represent the closed-loop eigenvalues' and eigenvectors of the shown in a manner similar to that of the proof of Theorem I. An
filter designed as if hk was one of the original output separable equation analogous to that of (A. I) in terms of h, becomes W, =
failure directions. Because of the assumption that k, lies in the [hA, GhA, " ", G"- hI where CIV must be of rank I if the
union of the detection spaces of the f for i = 1, 2, - •., 1, then , output direction Ch, is to be fixed. An equation in terms of the h,
and h, can be written as in the remark after Theorem 7. The eigenvalues and eigenvectors can be written which is analogous to
implication here is that h, or any detection equivalent direction (A.2) as
can be written as a unique linear combination of the eigenvectors
which span the detection spaces of the f, for i = 1, 2, . • ", /.

The detection space of hk also has a fundamental role in the CW,= ciCul, Icc, . , A x'
A ~ development of the output stationaity conditions. The projection
.0i of the hk detection space onto each and every detection space with
,, respect tof for i = I, 2, • • • can be shown to be of dimension 7, (G.4)

[61. The implications of this are that there are only );k eigenvalues
which may be assigned to the detection spate of hk. Since the where the conditions of Theorem I would imply that CI, is of

". detection space of hk has );,-dimensional projections on each of the rank I since Ch, - CC'. Similarly. (30) can he used to rewrite W,,
I detection spaces of the f of (29) which comprise hk, it may be in terms of the eigenvalues and eigenvectors of the detection
deduced that the same arbitrarily assignable set of sik eigenvalues spaces of the f, 0r i I, 2, 1 as
must be a subset of the P, eigenvalues in each of the I detection
spaces since ik < P,. The unassignable nature of the v, - [-, -

, eigenvalues when j;k < v, will become apparent later in the proof. HA = X' ' . G, , (G.5)
The temporary assumption is made here that v, = ,for all i= ,- , ,

. ' . . , . . . .. . ;.
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If now the Sj = 0 for ail i > i'k when P, > ik, and the 1k freely [101 J. S. Meserole. Jr., "Detection filters for fault-tolerant control of

assignable eigenvalues are chosen such that X Xk, then (G.5) turbofan engines." The Charles Stark Draper Laboratory, Cambridge,
"'., d\ = .MA, Rep. T-751, June 1981.
-~P can be rewritten as
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Modeling of Parameter Variations and Asymptotic
LQG Synthesis

\MINJEA TAHK, XIFXBFR, Ii -, ,AF D JASON L. SPEYER. IIi (0W. I

. .shtract-Coneniional approaches in modern robustness and sensi- methods have been proposed %khich address the robustness

tisit% tieor, are not adequate for the problems associated ,,,ith parameter problem of parameter uncertaint\ within the tranc%ork of state-
sarialion since the structure of parameter ,ariations cannot be modeled space representation. A matching condition is crucial in
properh or included in the sntheis procedure. A new modeling Lvapunov-function approaches [231, [251 so that the class of
technique is proposed to handle a class of structured plant uncertainties in parameter variations to be considered is severelv limited, although

' a direct ",a%. Uhe ke. is to treat deterministic parameter sariations as an some relaxation was obtained in 1241. The matching condition

internal feedback loop so that the structure of parameter sariations is assumes that a parameter variation of the state matrix AI. denoted

embedded in its model. An as .,mplotic LQG design snthesis based on as AA. is spanned by the input matrix B or the output matrix C.
this modeling method is also presented. An important relationship The special characteristics of this type of parameter uncertainty

between the structure of plant uncertainties and the I.QG weighting will be discussed later. Another approach which deals with a
matrices is obtained. This relationship clearly specifies the kind of larger class of parameter variation is the stochastic modeling

parameter ,arialions allowable for the LQG, LTR method, method using state-, control-, and measurement-dependent multi-
plicative noises [261. 1271. This method leads to a direct s.nthesis
which requires the coupled solution of two Riccati equations and

1. . Itwo Lyapunov equations. Hosever, this stochastic modeling
,_.NTROLCTION method does not directly address the robustness problem associ-

, NE aspect of current development of MIMO multiiput ated with modeling errors such as parameter variations. Other

Siultioutput) feedback s,stem theory has been concerned %ith synthesis methods related to parameter uncertainty are found in

stability robustness and sensitivity to plant perturbations. Impor- [28], 1291. Most of these state-space methods simply describe a

tant deelopments in this field are found in the LQG'LTR (loop parameter variation as a difference between the state-space
transfer recovery itechniques [11-[41 and H'-optimization theory representation of the nominal system (or. model) and that of the

associated tith robustness and sensitivity [51-[81. Although these perturbed system (or, real system). Thereby, one objective of this

modern techniques are useful in treating unmodeled dynaniics and paper is to better understand the role of the structure of parameter

stochastic uncertainties such as disturbances and sensor noises, variations in the development of robust synthesis techniques.

I they may not be adequate in handling structured par This paper circumvents some of the difficulties and drawbacksvariations. In their recent paper [181. Shaked and Soroka showed of existing methods by using a modeling method which is able to

ihat an LQG controller designed by the LQG!LTR method suffers characterize the structure of parameter variations in a simple way.

from a stability robustness problem due to a small parameter In this method, a parameter variation is represented as an

vartation. Since an LQG;LTR controller is known to recover the equivalent fictitious feedback loop called the internal ftedback

guaranteed stability margins of an LQ regulator or a Kalman- loop (IFL). In particular, we are using the fact that a feedback and

Bucy filter [31, their result implies that a conventional usage of a parameter variation are indistinguishable when input-output
stability margins is no guarantee against a disastrous loss of relations are considered. The advantages of the IFL modeling
stability. mmethod over the existing methods are: 1) it is simple; 2) the

a i stability.
The existing modeling methods, on which the current robust- associated stability criterion has no restriction on the cosed-right-

ness and sensitivity studies are based, are external descriptions of half-plane (CRHP) poles and zeros as in other methods [17[; 3)
' the plant uncertainties, in the sense that plant uncertainties are the structure of parameter variations is maintained; and 4) several

modeled at the exterior fextra at modern design methods can incorporate the IFL model directly.the input, at the outputo of the plant by assigning blocks a In IFL modeling a parameter variation AA is decomposed into
theinpt.at heoutput, or around the plant as feedback or

feedforward loops [I11. In practice, these modeling methods are three parts: the input. output, and feedback matrices. This

not convenient at all in handling parameter uncertainty. Many decomposition is called the itpu/loutput (1/C) dcomposition.
The idea of the IFL representation or the lO de :omposition is not

difficulties arise fromt the fact that parameter uncertainties are ne.Rctlvrosahrsaeemoydhiieaihr
usually given in state-space forms while the conventional uncer- new. Recently, various authors have emplcd this idea either
tainty models are based on transfer function descriptions. In implicitly or explicitly in order to stud, parameter uncertainty

Section II we discuss these drawbacks in some detail and identify [141, [201. 1301-[321. However, Mita and Ngakajornvivat 133]
the inadequacy of the conventional uncertainty models for seem to be the first to use the concept of the I/O decomposition to

', parameter uncertainty as a source of robustness problems. develop a synthesis method, which was generalized later byApart from the well-known modern synthesis methods, other Shaked [341. Their studies were limited to state-feedback prob-lems and the major concern was pole sensitivity rather than
robustness. Section II briefly discusses the IFL modeling tech-

Manuscript rccci.ed March 12. 1986, rSed February t I. 1987. Paper nique which transforms a perturbed closed-ssten into a two-
recommcnded lh, Past Associate diior. S. P Bhatijchars,,,a This ork has input, two-output (TITO) system. The idea of representing
supporicd i part h, General D)narncs Ft W ,orh tiviion and the Air Force general plant uncertainties as a feedback loop was also previously
Office if Scientific Research under Grant AVOSR-4-0171.

A NI Tahk s, v iih the t)cp.Ornmnt ,oi Aerospae Eneincermnn andi suggested in [121, but parameter uncertainty was not explicitly
.J EnincerinL! Mechanics. The t'nnicr,i, ol Texas at Aiiin, . Austin. TX treated.

4 . 787 12 tHe is noA with tniceraied SNtern. Santa Clara. C.A 95054. The main purpose of this paper is to propose an asymptotic
J. L S'vcr is wi h he Depanmnent it Aerospace Engneering and LQG design synthesis based on the I/O decomposition of

Encinecring Mechancs. rhe Lniert, of Te as ai Auslin. Au .tin. TX
78712 parameter variation. Section III shows that, by selecting proper

I-FE Loi Numb'er 8715824 weighting matrices for the Riccati equations, either the regulator
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part or filter pat of an LQG controller can be nade asvniptoti- \&here each norm is assumed to be defined appropriately. Whill
calls robusttO a .,iren paraenter \drtation. In tact. there e\ists all the decree ot parameter %ariation is djrccti 2cn h, 6., tI
explicit relationhip heiss ccn the LQG tcilhtin- matrices and the relationship betvxeen 6, and 6, or betsxcen 6. and 6,, is extremel
structure ot tile parameter .ariation. The stahilht robustness of complicated ecen for a singlC parameter variation. except f)r 6,

_ the LQG control syxstem is then determined solely by the other = 0 if 6, = 0 (or. 6, = 0 if 6,,, = 0). Apart front its complexit
nona~s mptomtc part. This implie, that an observer based onl the and inconvenience, the use of conentitina error model.,, fo
Kalman filter can be designed b\ selecting suitable covariance parameter \ariations leads to a loss (if infurmation about th
matrices, in order to rccoxer the robustness of the LQ regulator magnitude of parameter variation let alone the loss of its structura
Ajth respect to a gisen parameter variation. This ass mptoUcal information.
procedure generalizos the LQG [TR design to a larger class of The inadequac, of the conventional frequency-domain erro
parameter ,ariations. This paper also shows that the class of models or parameter uncertaint is important in light of stahilit,
parameter %ariations .hich can be safefv treated by the LQG LTR robustness since their use in robustness analysis may lead to a
method is limited b% the structure of the input and output matrices, incorrect conclusion on the stability robustness of a sstem bein
Sonic numerical results based on [IS are also gixen ii Section IV considered. For example, the stabilit margins, Awhich are closely

_, to illustrate the ads antace of this as, iptotic LQG desien, synthesis related to the multiplicative error model E,(s). are not useful if a
oser the conentional LQG LTR technique in the presence of small parameter sariation possibl% produces a verv large gain
parameter uncertainty. variation or phase variation. For this case, a substantial amount of

gain margin or phase margin cannot be a guarantee for good
I. MOD1 LING OF P.ARAMETER Vs.RAsrloNs robustness. A good example tor this situation is found in [181. as

Txso important classes of plant uncertainties are unmodeled discussed in Section 1.
dsnamics (or truncated hieher order d~nanics) and parameter Another draxxback of the conventional methods lies in the
u'nerainty Sitrncte ghes e r refronamthenacuraeteor limitations in applying stability criteria based on the conventionaluncerainty. Since these uncertainties arise from tehe inaccuracy orb- i ol
incompleteness of mathematical models, they are often called error models. hhe basic assumption of Lethomaki's stability
modeling errors. In this section, we are concerned with the criteria 101, Jill, which is the basis of the MINe stability
modelingz of modeling errors rather than the modeling of real m concept is that the perturbed plant has the same numbersplants, of poles and zeros as the nominal plant in the CRHP. Thisplants. restriction on the perturbed plant was pointed out and compared to
A. Drawbacks of Con 'entionial deling Techniques the inverse-Nyquist-based stability criteria [171. which alsoA assumes that the nominal plant and the perturbed plant share the

Let G(s) and G(s) be the real plant and its reduced-order model, same number of zeros. Thus. the class of plant uncertainties
respectivelv. Suppose that exact system parameters are known and properly described by any of the conventional error models is
the only plant uncertainty is unmodeled dynamics. For G(s) to be limited by this requirement. It is important to note that those
an acceptable model, the frequency behavior of G(s) should constraints on the perturbed plant result in a certain clas of
approximate that of G(s) in a reasonable manner over a certain parameter variations, which may destabilize the system. bein,
frequency interval specified by the designer. Mathematically. the excluded from consideration. Therefore, we see that the unstruc-
modelimn error due to unmodeled dynamics can be specified in tured plant uncertainties considered in [101 are not strictly
several was. Txo common models of modeline errors are unstructured, but there exists a definite requirement on the

structure of plant uncertainty. For general parameter variations, a
, En(s) = (s) - G(s) small parameter variation does not necessarily induce small gain

and phase variations li.e., a small E_(s)1. and does not necessar-
which is additive, and ily keep the same number of CRHP poles and zeros.

- These observations lead us to the conclusion that the conven-
EM(s) := G(s) [(s)- G(s)] tional modeling methods for plant uncertainties and the associated

wi i li practice, t exac.form of E. or stability criteria may not be a reliable tool when parameter
,~., wntcnL is multipuicatise. In pa th e exact uncertarainty ". -rahe ta unidee daic is inole incnto

E,,(s) is neither available nor necessary. Instead, norm bounds of unce-atv rater man unmode dvnanics is ivolved in control
t *i !': these error models are usually sufficient for analysis and desien systen design.

• ," .K " s,.nthesis. Usually. unmodeled dynamics are assumed to be of ,n aai
-dominant in the high-frequency range and te norm bounds of Bi

Es(s) and E,,(s) are determinedl in rather empirical ways. By the 10 decomposition. a parameter variation is qUisa-entl'
Now consider the parameter variation case. Suppose that (G(s) represented as an internal feedback loop, and then the perturbed

, and G(s) are of the same order but some parameter uncertainties plant is depicted as a TITO s\ stein where one feedback- loop :s the
Sare present. i.e.. (s) =G(s, 5) and G(s) = G(s, p) where p is nominal feedback loop, and another feedback loop is for the
.1% the nominal parameter vector used in the model and / is the real parameter variation. This representation of parameter variation is

parameter vector. Then, the error models E,(s) and E,(s) become attractive in many ways: I) there is no restriction on the number of
CRHP poles or zeros of the perturbed plant: 2) the structure of theE,(s) = G(s, P) - C(s, p ) parameter variation is easily embedded into the input matrix and

0. Es Gs, -'[Cs. r" G(s, "" output matrix of the IF: and 3) the naunmtude of the parameterE(s. G= (s, P) G (s, P- (, PI- variation is directlY described by the itiinitude of the feedback
Suppose that the parameter uncertainties are parameterized by r gain of the I L.
independent variables I, . . . . , • - = . Consider a linear. tme-invariait system s"hereI .. ) '.,n ,:p nu nt~ rlnte : (+, , "" i.e.,.p - p = JU - " -"
This parameterization can be done easily with the state-space
representation. if the model and the real plant are assumed to be "= " u

i,,Al ,!i gi.en as (/I, B, C) and (A, B, C), respectively. Then. the I - CX
r parameter uncerlainties. AA = A - A, AB = B - B. andAC

= ( - C. are ixe n as .1A = .A(f ) .B = AB(c nd AC = represents a nominal Sten. and
ACW(, . Hoxxever. it is readily observed that the computation of

N k Eo', or E,.,(s, i Is not an easy task. Let r= -I * Bu

, , (s, ',, 6,.= E,,(s, ), vf )!

%0%

-% "
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represents its perturbed system. The vectors x G ;', u i '. u g g]

and Y E R,' denote the state, the input, and the output, w g21  g 22  Y
respectively. We assume that -A ,4 - A t 0. but AB:= B
--B = 0 and AC: = C - C = 0. i.e. onlv the state matrix is
subject to variation. It will be shown that .1B or .%C can be
embedded by an approximation procedure into a AA of an L
augmented system. a

Suppose that AA is parameterized as a function of r variables
= {f, E,) and given as + K(s) 911  1

- W g2 1 g22

AA (= S,

where the S,'s are constant matrices. By decomposing S, as S, =
MN,, we can rewrite AA as (b)

AA () =-ML (E ),V G11 G12  Y

where M E Xt' P and V E J
q 

4 are constant matrices W G2 , G22  Z

determined by M,'s and A,'s, and L(e) E RP"' is a matrix
function of e = {eI, - ", e,}. The decomposition described above L(t)
is called here an 1.0 decomposition of AA. Note that the I/O
decomposition is not unique. To avoid problems with an unneces-(c)
sarily large M or N, we assume that the decomposition is such that Fig. 1. TITO system representations of the perturbed system.
M and Nare full rank; i.e., Mand Nare of minimal dimensions.
This nonuniqueness is not important in stability analysis and conventional methods, are also examined. This stability criterion
design synthesis, as shall be discussed later, is also independent of the 1/0 decomposition. Suppose that -

Given an I/O decomposition of AA(e), the perturbed plant can ML(E)N is an 1/0 decomposition of the AA. Then
be written as

.-x=Ax+Bu+Mw det [I+ aL(4)Gz:(jw)]

y = Cx =det [I+coL(c)N(0-oBK(I+g11K)-'C0)MJ

z =Nx =det [I+ciML(E)N(0-oBK(I+g,,K)-'C0)]

w= - L(f)Z = det [ I -aAA (0 -OBK( I + gI K)-'C6 )I.

where two variables z and w are introduced, respectively, as an Therefore, the lack of uniqueness of the decomposition does not

auxiliary output and an input connected to the internal feedback affect this stability criterion.
"-*loop with a gain L(e), as shown in Fig. l(a) where

loopwitha gain N  as shown inFig.](a)wC. Parameter Variations of the Matrices B and C
9 1B :=M =For parameter variations in B and C, the I/O decompositions

can be obtained in several ways. One way is to construct the state-
and 6 = (sI -A)-. space representation of the closed-loop system (A,., B, C,.) and

Let K(s) be a compensator. Then, it is easy to see that the (A,. , C,.), and to obtain an I/O decomposition for AA,. = A
perturbed closed-loop system shown in Fig. l(b) is equivalent to - Ac. However, this method requires a state-space representa-
Fig. l(c) where tion of the feedback compensators. Or we can construct aug-

mented state-space representations (Aa, Bo, C.) and (A,,, B, C)
[y]I [Gi G12I ]  whereB 0 = B0, C0 =C, butAA= A 0 - A.approximatesAB

Z =GI G22] w and AC. The latter is more favorable since a unified approach is
possible for all kinds of parameter variations so it will be

and discussed in detail in this section. Some other methods for AB and
G, GAC are also found in 1201, 1361.

Suppose that the ith column of B is subject to a perturbation.
: G, G22 JThen we augment the state vector x by an extra state Xb which

follows the input u, fast enough so that its dynamics are negligible
= (I+g1 1 A'P'1g11K (I+g,1 K)-' 12  when compared to other modes of A. Effectively, u, becomes a

g2,(IA'Kg 1 ),-'K g22-g 2,K(I+g11K) 'g12  state, and the plant is approximated by

For a given E. a sufficient condition for closed-loop stability is [? A bl x + Bo
that [.cJ Lo -'J [t, b, u

det [I+aL(f)G2 '(jw)I*0 where a is a sufficiently large positive number, b, is the ith

for all a E [0. I1 and w E it [121, [141. When only parameter column of the matrix B, and
uncertainty is considered. the above criteria gives not only input-
output stability but also the internal stability of the closed-loop B=B-[0 0 . b" O0

system 1191. In other words, the stability of the unobservable
or uncontrollable modes, which cannot be studied by the b0=10 0 .. a 01.
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In fact. the transfer function from u, to x' becomes Definition 2 (Similar Parameter Variations): Consider
nominal plant (A, B, C) and its perturbed plant (,, B, C) wher

.sAA = A - A = - MLN. Then, AA is said to be input-simnila
xt(s) - 14,(s), a .

S+a if A! is column-similar to B, and it is said to be output-similar i
N is row-similar to C. It is also called smilar if it is input-simila

Similarly, for the jth row of C. which is subject to a or output-similar.
perturbation, we can augment the state space as An important characteristic of similar variations is that they d

not perturb the zeros of the plant. Let Z, and Zd be the sets o
x A 0 x transmission zeros and decoupling zeros of the nominal plant (A,

X = + u X 0B, C). respectively. Similarly, we define Z, and ,1 as the sets o
transmission zeros and decoupling zeros of the perturbed plant
(A, B, C). (We will follow the definition of zeros given in 1161,

[A'] [221.)IC C. Lemma 1. If AA is similar (i.e., input-similar or output-
[x I similar), then

where T > I, c is the jth row of C, and
Z, U Z., = Z, U Z.,,.

raCno=C-tO " el". 0 Br' Ths aumentaioh ivesProof'For input-similar variations,[ d

This + aumntton0..I* a= rank _

y,(s) =- x,(s), r .1. Therefore. the system zeros are invariant. The proof is similar for
S+7r output-similar variations. C

It is easy to prove that controllability and observability are not
affected by the above state augmentation procedures. The poles B. Asymptotic Pole Sensitivities
and zeros of the original system are also those of the augmented Consider an output feedback system with a constant gain
system. and the only alteration is the addition of some poles on the feedback given as
negative real axis, which are well beyond the bandwidth of the,plant. The proofs are simple and left to the reader. Since ,AB and A+BAC can be approximated as AA, of an augmented system, it is x=Ax+ Bu

assumed from now on that the perturbed plant does not have
perturbations in B and C, i.e., B = B and C = C. y= Cx

III. AN ASYMPTOTIC LQG DESIGN SYNTHESIS U = v-kFy

".'p This section introduces an asymptotic LQG design procedure where B E 11",,, C E IV"'", F E P""', are assumed to be full
based on :he internal feedback modeling method described in the rank, and k E Rl. The numbers of the input and output are
prevtous section. It is shown that the finite poles of either assumed to be the same.
the regulator or filter of an LQG control system can be Jesigned to Lemma 2: Suppose that G(s) = C(sl - -i 'B has j, finite
be asymptotically insensitive to a specified parameter variation via transmission zeros. Then ], poles of the closed-loop system, A -
a suitable selection of LQG weighting matrices. These weighting kBFC, asymptotically approach the transmission ], zeros of G(s)
mtrices turn out to be closely related to the structure of a as k - oo.
particular class of parameter variations. The robustness of the This is a well-known feedback property for single-input, single-
l.Q(J control system is essentially determined by the remaining output (SISO) systems. Lemma 2 'mplies that the number of the
,Cn.,iMwe part ot the LQG compensator. In other words, the finite eigenvalues of A - kBFC as k - oo is equal to j, + id
r.,,usmess of the LQG control system recovers either the where Jd is the number of decoupling zeros corresponding to

S r,,.e, of the LQ regulator or that of a Kalman-Bucy filter. unobservable and/or uncontrollable modes and j, is the number of
I no- routness problem again reduces to determining the robust- asymptotically finite closed-loop poles. For the MIMO case, its

t , tner the I.Q regulator or Kalman-Bucy filter. Fur'er- formal proof can be found in [21, Theorem 4.3].
• . 1 ,. ; lI LTR procedure may be considered a special case Theorem I. Consider the above output feedback system.

, ., rt 1,,, 1.QG method, although the explicit connection Suppose that the state matrix A is perturbed by a parameter
-,.int uncerlaintes and the LQG weighting matrices had variation given as AA = - MLN. Then, as k -- c, every finite

eigenvalue of A - kBFC is asymptotically insensitive to theparameter variation - MLN if AA is similar.
, rtttor Proof: Consider a similar variation - IAMLN where 13 E

[0, 1]. Let P(j3, k) be the set of finite eigenvalues of A - OWtLN
.',;,tured parameter variations has great - kBFC and Z(O) be the set of zeros of (A - OMLN, B, C).

.e i.% rnpiotic hchavior of LQG poles. For the nominal system (0 = 0), we denote them as P(0, k) and
r, n.., ire vi.en here. Z(0). respectively. Lemma 2 implies that P(O3, k) - Z(i3) and

.. M. E, . ..l. .-2, N, E P(0, k) - Z(0) as k - oo. However, fron. Lemma 1, Z(3) =
,d to be column-sintlar to Z(0). Thus, limk.,,, P(3, k) = limk... P(0, k). Suppose that p E

tr ml , s ,aid tw be row-similar P(O, k) and f, E P(,6, k) approach z E Z(0) as k - o. Then,
there exists a constant k(6) for any 6 > 0 such that Iz - p1 I 6

.. 1 M.1trx P such that M, = and 'z - 6 < 6 for all k > k(6). Therefore. I - 61 < 26 for
.tf o',, vi. trc exwists a matrix k > k(b). The continuity of eigenvalues of A - OAILN -

S,.liTr t,. kBFC with respect to 0 completes the proof. C

& +'I
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60 C. Asymptotic Robustness of a Full State Regulator with Then, P,(s) = P(s) + P.(s). Suppose that Z,, is a finite zero of
Observer P(s). Let a(-) and d(') denote the minimum singular value and

maximum singular value, respectively. Then. o(P,,(Z,,)) = 0.
Theorem I states that the finite poles are insensitive to a From the sinvular-value inequality a(A) - 6(B) :_ _r(A + B) _5

- parameter variation when .A is similar. This property is not c(A) + d(B), we have
readily useful since the closed-loop stability is not guaranteed by
simple output feedback. However. the results of Theorem I give a(PO(Zo)) - 6(P(Zo)) - o(P,(ZJ) a o(Po(Zo)) + 6(P,(.Z)).
some insight into the asymptotic robustness of observer-based
control systems. Consider a full-state feedback regulator with Then, a(P(z)) - 0 as -y - o since lint., d(P(zo)) = 0.
observer (FSRO) for which the state matrix of the closed loop Therefore. z, is also a zero of P(s) in the limit so that the finite
system is given by closed-loop poles are determined by the zeros of P(s). Let

~= A BK K ] HI (s) :=O(si -A0) -BI.
A -KC A -k -KCl Then, a simple calculation gives

where 4 = A - MLN, A E rl"'", B E ;"m, C E R'n", M
E !I" P, NE fjq"', L E ,pq, and K, E R"' and K1 E H,(s)=C(sI-Y)-{I+ LN(s-A+BK)-}£/.
.h are the regulator and observer gain, respectively. For the
rest of this paper. we assume that B, C, Kf, K,, l, and N are of Since M is column-similar to 9,. there exists a matrix P such that
full rank and (A, B, C) is minimal. If AA = 0. then the closed- M = KiP. Then, Hs) can be written as HI(s) = H(s)H(s)
loop poles are determined by A - BK, and A - KC. The choice where
of K, only affects the regulator part while K affects only the
observer part. If aA # 0 (i.e.. A # A), then the perturbed Hf(s) :=C(sI-A)-l'1
closed-loop poles are no longer determined by A - BK, and A -
KfC. However, the following theorem shows that the coupling H,(s) :=I+PLN(sI -A +BK,)
between the regulator and the filter can be eliminated asymptoti-
cally. Consider H,(s) first. Since

Theorem 2. Consider the above FSRO system with a parameter
variation AA = - MLN. Suppose that det [H,(s)= det [I+ PLN(sI- A + BK,)- 19f1

K= -K,=/+ K (-y) =det I+ (sl- A + BK,)-'A/PLN]

where /Kf is a finite matrix and (l/y)Kfo(y) - 0 as -y -_ w. =det (si-A +BK) -' det (si-A +BK,+KfPLN)
Suppose ihat M is column-similar to K. Then, as y - co: 1) A -
BK, determines half of the closed-loop poles: 2) there are =det (si-A + BK,)-' det (sl- A + BK),
asymptotic poles approaching the zeros of (A, K, C); and 3)
these asymptotic poles are asymptotically insensitive to the the zeros of H,.(s) are the eigenvalues of A - BK,. This shows
parameter variation AA = - MLN. that all the nominal regulator poles, which are determined by A -

Proof.- Since BK, are perturbed to the eigenvalues of A - BK, = A - MLN

rv BK, 0 0 implies that the zeros of H(s) = C (sl - A) -',are the zeros of
r .~~- I A =  ' C C1, C (sl - A )- K since M is input-similar for the system (A, k/,

0 A-BK 9f +- Kf.( ) C). Thus. the asymptotically finite poles of the observer part of
[ 1 oY j the perturbed system go to the zeros of C(sl - A)-I Kf, which

3 completes the proof of part 2). Finally, using the same arguments

Lemma 2 implies that, as o - cx, the finite closed-loop poles as used in Theorem 1, we can easily show that part 3) is true. 0
The following properties are direct from Theorem 2; I) theapproach the zeros of asymptotic pole locations are determined by the dominant part of

sI-A -B 0 the observer gain, Kf; and 2) the regulator poles are perturbed in
Hs) [ s -BK, 0 1 +the same way as a state-feedback system A - BK, is perturbed by

0 sI-A +BK - K+!K() AA when AA is column-similar to 9f. Since the asymptotic

[ 'Yf observer poles are insensitive to AA in this case, we may suspect
Let that the robustness of the FSRO controller is determined by its

Sregulator part. This is true, but we have not considered the
Ao= 1 BK,] CO:=C sensitivities of asymptotic infinite poles yet. This robustness

0 A-BK, , [C Ci. property becomes explicit in Theorem 3 to follow. We first
- consider the next lemma for its proof.

r r Lemma 3." Suppose that A, B, C are matrices such that A + B
0 I0 + C is invertible. Then,

,+ K ,( B:) - Ko(y) A+B(A+B+C) 'C=(A+C)(A+B+C)-'(A+B).
I Proof' Let D = (A + B + C) -', then

Define A+BDC=ADD '4BDC

PG o 0 PS o[si- 1 [si-A 0  BI 1 ADA + ADB +ADC +BDC.
Po(s): 1 -c0 B P(s):= -C 0  0 ' Using (A + B + C)DC = Cand CD(A + B + C) = C, we

M 0  ] obtain
0 0 " ADC- BDC z CA4A CDB.
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Therefore, as -y - o. Therefore, we see that

ADA + ADB + ADC+ BDC=.4DA + ADB+ CDA + CDB K,(jwI-A + K/C)- M--0 as -0

, (A + C)D(A + B). C1 and

Theoremn 3. Consider the robustness function G2,(s) of the lirn G22(jw,) = N(jwI- A + BK,)-M
asymptotic FSRO control system of Theorem 2. Suppose that the
nominal closed-loop is stable and C(sI - A)- ' f has no zeros inthe CRHP. Then, as -' -. 0 for all to, E ,fl. Finally, we need to consider the case for which A

has some eigenvalues on the imaginary axis so that 0 = (sl -

G:(jw)-N(jw I-A +BK,)-'M A)-' is not defined for w E PFl. However, this difficulty can be
avoided as follows. Let A' = A + KoC be a matrix without

pointwise for all w E J2. eigenvalues on the imaginary axis. Since (A, C) is assumed to be
Proof: For an FSRO compensator, K(s) is given as observable, there always exist such a K,. Then,

K(s)=K,(sI-A + BK,+KC)- 'Kf. si-A +KC=sI-A' +(K+K)C-osI-A' +K C

Thus, the robustness function G22(s) becomes where K' = yKf + K1 0(-y) + K = 7/y' + K,,(-y). Then, we
can apply the same procedure as above. El

Gr(s)=N -NBK(I+ GK)-COM The robustness function G: 2(jw) given in Section H-C deter-

= N(sI -A + BK,(sI- A + BK, + KC) - 'KfC)- IM mines the robustness of the FSRO control system. However, N(sl
- A + BK,)-'M is indeed the robustness function of a state-

= N(si- A + BK,) - '(sI- A + BKc + K/C) feedback regulator subject to AA. (It can be shown easily by
(si-A+KfC)-'M constructing a TITO system for the state-feedback regulator.)

Therefore, Theorem 3 implies that a regulator with an asymptotic
=N(sl-A + BK)- 'M+ N(sl-A + BK,)- tBK, full-order estimator recovers the rmoustness of a regulator with

full-state feedback. Furthermore, we see that the sensitivities of
(sl-A + Kf C)- IM asymptotic infinite poles of the observer part do not contribute to

where Lemma 3 is used in the third equality, and all the inverses the robustness. Although they may be sensitive to AA, these

exist along the imaginary axis since the closed-loop is stable. Now infinite poles cannot be perturbed to the CRHP by AA. An exact
M = P since M is column-similar to/. Let/ (l/)K,. dual of the above asymptotic property exists as the regulator gainFrom K1 = nce + Ko( i), we Kbta. K9f (/ K, instead of Kf becomes infinitely large (i.e., K, = 3K, where 3

y K,- obtain M kP - (I/ -. o, and K, is chosen as N = QK, where Q is a finite matrix).
-y)Kfo()P. Then, Ifp > I and Mis full rank, we cannot find a K such that M -

K,(sI- A + KC)- 'M IP. Similarly, if q > m and N is full rank, there does not exist
K, such that N = Ql,. Therefore, the above asymptotic property
cannot be obtained ifp > land q > m, i.e.. the rank of the input

=KJ0-d3"7/(+-YC09 I)-C0] fP--Kfo(-y)P matrix B and the output matrix C, which are assumed to be full
( CY P) rank, limit the rank of M and N in applying the asymptotic, partial

KIf [ I - - (I + -y Ceok) -Cokl IP desensitization procedure described above.
In Theorem 3, the conditions seem to be redundant since we

.,[. -K 0_ykf(I + -yC4f)_Col I_ Kf.o(-y)P only use the fact that A - BK, and A - KfC do not have pure
Y' imaginary eigenvalues and C (sI - A) - 'l is not singular along

the imaginary axis. However, the closed-loop system should be
=K,0f(I+-yCeolk)-P- 1 K9 OKfo(y)P stable for any robustness issue to be meaningful. Also, C(sI -

3' A) -i9f should not have CRHP zeros since those zeros determine
+ K OIk/(I+ -yC 6)- 'C0Kpo(-)P the asymptotic closed-loop poles. In the next section, the

F mu tasymptotic observer with closed-loop stability can be obtained via
where 0 = (s - A) For the time being, suppse that A has no a Kalman-Bucy filter (KBF) design.
eigenvalues on the imaginary axis. Since CoK has no CRHP
zeros, q(COKl) > 0 along the imaginary axis. Using the singular D. Asymptotic LQG Design Synthesis
value inequality used in the proof of Theorem 2, we can show that

Consider a KBF problem stated as
lim 0(C46(/)=q(C01f).
-'* x=Ax+Bu+R ,

A g a in , 
= C u + Rq

!< q( t+ tCO 1 ) - yC )x+ I. x=Afr+ Bu + K/(y - C)

Thus. 4(l + yCi lkf) -- o as -Y - o0 since q(yC0KI1 ) = with a cost
q(COKf) -" - as y -. 0. Then, as y -" oJ

6(,+ C" kf) - q-'(I + _YC0Kf) -0.T- T~i r- E [  r x - )0
-  Id

Also, where and 77 are unit-strength Gaussian noises of appropriate
dimensions. Under the assumption that (A, R) is stabilizable and

dI(!+"C¢,)')-C¢ K(y)l-(I+CtOIP' d(CAKfo(y)) (A, C) is detectable, the optimal filter gain A7 is obtained as

-.- I(C'Aokd (4 I K,,(-O) 0 = CT
.V.

*I
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,Ahere K, is the positise definite solution to a Riccati equation recovery %% here the loop transfer function of the KBF is recovered
at the output bN an asi ptotic regulation of the output y. = CX.r r r I The other is robustness recovery v here the loop transfer function"L T- of LQR is recovered at input by an observer design based on an

asymptotic KBF with a shite noise iniected at the input (i.e., R =
Theorem 4: If there exists a full rank R G .,;," such that MI is B). Note that observer insenstjvit, to parameter variatuons

column-similar to R, (A, R) is stabilizable. and C(sl - A) 'R requires that M be coluin-similar to R. Therefore. in the LQG/has no CRHP zero. then. as L' - 0 the asyvmptotc properties of' LTR method. te asymptotic finite poles are guaranteed to beTheorem 3 are obtained. insensitive only to either input-similar or output-similar parameter
Proof- AS V - 0. K, - (l/v)R W 5%here W is a nonsineular variations. For example. the robustness recovery procedure

matrix. if (A, R) is stabilizable. (A, C) is detectable, and C (SI - makes the observer part insensitive to input-similar variations,
A)- 'R is minimum phase. The proofs of these properties are and the stability robustness to such variations is solely determined
given in [31. [91. [151 and not repeated here. Let I = (I/v). Then by the regulator part. Thus. the LQG'LTR procedure works well
whe see that the asymptotic gain assumes the form Kf as K - if the structure of parameter variation is related to the structure ofyRIV + Kf, where (1/))Ko - 0 as -y - oo. Let Kz = RWf'. the input matrix B or the output matrix C. i.e.. AA is similar for
Then. if M is column-similar to R. there exists a matrix P such the (A, B, C). However, if A = - MLN is neither input-
that I! = RP and M = RP = 1Kj1V- P. Therefore. M is also similar nor output-similar, all the closed-loop poles are perturbed
column-similar to R .Finally. the closed-loop stability is automat- when the LQG; LTR procedure is used, and there is no guaranteed
icallv satisfied by aLQG design. EZ stability robustness to the parameter variation in spite of the

Suppose that s = z, is a zero of (A, M, C). Then the system guaranteed stability margins. It is noted that the matching
matrix condition of the Lyapunov-function methods 1231, [251 requires

that parameter variations be similar. This observation may imply[z) I-A M that robust stabilization with similar parameter variations is less
,-C complicated than with other types of parameter variations.

The relationship between the error models of Section II-A andis rank deficient, and there exist vectors p, E 11""' and p: E similar parameter variations is now discussed. For an input-!IP'I such that similar variation (M = BP)

(zoI-A)pI+Mp,=O., Cp=O. , I=gI -g,L((+-gL)- g2
Since span {M} C span {R}. we can find a vector p3 EI C 6 I
such that =COB- CoBPL(I+NoBPL)'NB

(zol-A)p +Rp1 =O, CpI=O. =g=0(I+PLNB)- .

This implies that the zeros of (A, M, C) are also the zeros of (A, The perturbed plant is expressed as a multiplication of the plant
R, C). In other words, C(sl - A)-IR is minimum-phase only if and a transfer function placed at the input, which is similar to the
C(sl - A)-'M is minimum-phase. Therefore, we can apply the conventional uncertainty model E,,(s) discussed in Section II-A.
asymptotic LQG synthesis only for minimum-phase C(sI - Similarly, an output-similar parameter variation has a structural
A" A - M .  similarity to a conventional uncertainty model placed at the

The dual of Theorem 4 is obtained by considering a LQR output. It is noted that these multiplicative forms cannot be
prob!em but is not treated here. The importance of Theorem 4 is obtained if AA is not similar. We consider the robustness function
that there exists a direct structural relationship between the G12 associated with the input-similar parameter variations to
parameter variation and the optimal LQG weighting matrices for examine the implications of this structural similarity. Suppose that
robustness (M and R for the above asymptotic procedure). As far M is input-similar. Then there exists a matrix P such that A =

- as an observer design is concerned, these results can be BP, and
. interpreted as follows: 1) given M, which gives partial informa-

tion on the structure of AA, we can choose -yRRT as the G 2 2=NOM-NOBK(I+ C6BK)-'C( M
covariance of the process noise (a natural choice is R = M ifp =
1); and 2) as Y * o, the stability robustness is determined =NOBP-NOBK(I+CoBK)-'C ,BP
through the regulator gain K, (Theorem 3) while the nominal
observer poles become insensitive to AA. Although the robust- =NB(I+KG)-'P
ness of the LQ part depends on the regulator gain K, and AA. a
general theory is not available for finite regulator gains. However, where G = CB. Since P and NOB are arbitrary for general
it is possible to apply the asymptotic procedures to the regulator input-similar variations, the robustness to input-sitrilar variations
and observer part at the same time. Using a similar method to the is optimized by minimizing 6[(I + KG)-'] , or equivalently
one used in Theorem 3, we can prove that absolute robustness maximizing q[(! + KG)]. Also, the robustness to output-similar
(i.e.. G,, = 0) is obtained asymptotically ifM and N are used for parameter variations can be improved by increasing a[(I + KG)j.
the observer and regulator design, respectively. Finally. we can These singular values arc, in fact. the robustness measures used in

1,4 show that the nonuniqueness of the 1/0 decomposition is the conventional singular-value methods [10], [11]. From this
-4" irrelevant to the asymptotic LQG design. For example, if %lLV is observation, we can conclude that the robustness to the uncer-

an 1/O decomposition of AA. so is MT, T1 ILT T,.N. Then. we tainty modeled at the input (at the output, respectively) is
see that an R satisfying the conditions of Theorem 4 for M also equivalent to the robustness of the class of input-similar (output-
satisfies them for MT. similar, respectively) variations. The close relationship between

similar parameter variations and conventional multiplicative
IA E. Remarks on the LQG/L TR Method uncertainties also shows the limitation of the existing multiplica-

tive uncertainty models in modeling parameter variations that only
This section shows that LQR/LTR is a special case of the similar 6ariations arc properly represented by these models.

asymptotic weighting strategy discussed in the previous section. Therefore. the LQG!LTR methods based on these uncertainty
Two tpes of LQG,'I.TR procedures. which are dual to each other. models may fail when applied to a general parameter variation
have been studied in various works [ 11-141. One is sensitivity problem.
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IV. NUMERICAL Ex.t\.sIpfys

We consider the example presented in 1181. The plant is given A (=-0.5 o
by 0 0.000,o 0, + =0.5

A=[ -2 0 B= 2 -2 -0 0 -3 -I 
t:'o -so -l -. ~

C=[3 3 31 AC= [c 0 0]. wf,=o.oo .

The transfer functions of the nominal system and perturbed Wfb=1°000
~~,s . sstem are given as

C~s) 6 6s 6+ ((s +2)(s +3) 
-poeueG (s) 3 6 (s + ) 2)(s + 3) Fig. 2. Root loci of the robustness recover procedure.

i . (s +1)(s +2)(s +3) , Gs (s + )(s +2)(s +3)'

respectively. It is noted that an arbitrarily small parameter A (=-0.50
ariation creates a pair of zeros at infinitv. For E > 0. these zeros

are located ats = o along the real axis. Ife < 0. then we have + =o.o.
two complex zeros at s = -2.5 ± jo. Although these zeros ± t.o-
affect very little the low-frequency characteristics of the plant. the
plant becomes very uncertain in the high frequency range since -4
thev' introduce large gain and phase variations. 20.0 -15.0 -10.0 -5 0.0

By using the state augmentation procedure described in Section
Il-C we obtain the augmented system such that ,=.0

I 0 0 0 , Wf 00.00 50
-2 0 ] B,=F__1 r ]

0 0 -3 001 0,

3+E 3 3 -T 0 Fig. 3. Root loci of the LQG design using Band At.

0 5.0
M= 0 N= 0 =0.00

0 0 + 1=0.50

geb-20.0 -15.0 -1oo -5.0 0.0
where r = 1000 for computation. For the LQ part, the cost isg iv e n b y % , 0 .

J= lim I r (zTz+p2uTu) dwb=00-
T- T lo

where the weightings are chosen as z = y = Cx and p = 0.1.
This produces three nominal regulator poles s = - 4.52 and s= Fig. 4. Root loci of the asymptoic LQG design using M.
- 2.26 ± j2.87. For the filter part, the weighting matrix is given
as zeros of C(sl - A0 ) - 'M, and. by Theorem 2, are insensitive to

AA, as si,, - co.
2Q= wyMMT+ w' B B. Note that the regulator poles are also insensitive in Fig. 4. By aQo f jb 'direct evaluation of K(s) we can show that K(s) -. 0 as W,,, - 0.If wi,,, = 0 and wft -. o, then we have a robustness recovery This implies that the optimal robustness for this example isprocedure, which is one of the LQG/LTR procedures. The obtained without feedback rather than using high feedback gain. Itweighting wiv, = 0 and w-,,, o corresponds to the asymptotic is because the output matrix C of the original problem is assumedLQG based on the structure of the parameter variation, to be totally uncertain (i.e., only M is used for the filter-partFigs. 2-4 show how the sensitivity of the LQG system is weighting) while any variation of C does not perturb the poles ofreduced by using the structure of the parameter variation in the plant. This result is valid, if trivial, as far as robustness isselecting the weighting matrix of the filter Riccati equation. The concerned. The matrix Ncan be used for the asymptotic regulatorfar-left poles induced by the state augmentation are not shown in without resulting in a trivial K(s) as shown in Fig. 5. In this case.these figures. In Fig. 2 the root loci are plotted for the robustness the use ofNcorresponds to the assumption that the first column ofrecovery procedure when I(J 1 0.5. The filter poles are shown to the augmented A matrix is uncertain. The regulator statebe very sensitive as pointed out in 1181. The sensitivity of the weighting matrix now used is

LQG/LTR procedure is due to the sensitivity of the filtcr because
M is not similar to B.. Fig. 3 shows that these poles become less Q, = wt, N r N+ ,,. CC.
sensitive when w,,, increases from 0.0 to 10.0. The sensitivity is
considerably reduced by the addition of the weighting w2 1Mr If Is,,. - o and s,,, = 0. then the LQG,'LTR robustness propertyassociated with the parameter variation AA.. 0 i. show s  is obtained = 0 and is oo. then the
that the filter poles are completely insensitive when Al is used regulator is made insensitive to the parameter error in C.
instead of B. for the weighting matrix. In this example. the threefilter poles s = - I, -2, - 3 are the open-loop poles. These V. Co'ct.tusloNSpoles correspond to stabilizable but uncontrollable modes of the In thi,,- paper, the plant uncertainties are divided into twopair (A,, , Al) of the augmented system. They are the decoupling groups: unstructured uncertaintlies such as unmodeled dsnamcs
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Sept, 1985+
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