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Summary

-~ Homing missile guidance is formulated as an optimal stochastic control
problem where the special nonlinear structure of the missile-target engage-
ment is exploited. Since this stochastic control problem assumes a nested
information pattern, the filter structure can be developed independently of
the guidance scheme. However, the guidance scheme is dependent on and
affects filter performance. Significant progress is being made on both the
estimation problem and the guidance problem.

~ Investigation of the nonlinear estimators especially tailored to the hom-
ing missile problem has produced not only a good deal of insight but re-
sponsive and mechanizable schemes. Although these schemes are applicable
to active sensors, our emphasis has been on the more difficult passive sensor
case where only angles are available. Recently-developed schemes based on
coordinate transformations and on an assumed probability density function
perform well, but the modified-gain extended Kalman filter seems to be the
most promising. Furthermore, this filter has been used as the basis of a
stochastic adaptive flight control scheme. In order to improve this class
of stochastic control schemes, new results have been obtained in control
synthesis for structured plant uncertainties.
~- Two important current efforts in missile guidance with bearings-only
information are in the development of the guidance schemes that enhance
an information measure by trajectory modulation and in target accelera-
tion detection. A mechanizable guidance law based upon linear-quadratic-
Gaussian theory which modulates the path initially to enhance the infor-
mation measure but which meets terminal miss constraints has been tested.
Finally, based upon deterministic detection filter design by spectral meth-
ods, a detection scheme for rapidly detecting target motion has been de-
veloped and is being compared with current designs.

Research Objectives and Status

A special class of stochastic control systems is being developed for the
guidance system of a homing missile by exploiting the special nonlinear
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o ‘I:c structure of the missile-target engagement. Improvements are required
B i1 . . . . . .
sl in the current guidance law, proportional navigation, because the guid-
)'\'l‘

ance system degrades under initial intercept geometries that produce large
nonlinearities about the homing triangle or due to active target motion
which also induces large nonlinearities. Our guidance law investigations
have emphasized measurements from passive sensors for which only bear-
ing information is available. This bearings-only guidance problem is most
challenging because the stochastic controller has the dual role of enhancing
filtler performance and achieving target intercept with minimal expected
terminal cost. However, this problem is somewhat simplified since the sep-
X0 aration theorem in the sense of Witsenhausen is satisfied. The separation
theorem states that the filter structure, given the classical information pat-
tern, is independent of the controller structure although the controller is
highly dependent on the predicted filter performance.

Motivated by the separation theorem, high-performance estimators have
been developed which are tailored to the special nonlinearities of the missile-
target engagement. One new estimator, called the modified-gain extended
Kalman filter (MGEKF), is applicable to two important engineering prob-
P lems: bearings-only estimation (1] and state and parameter estimation [2).
Although we consider the MGEKF a breakthrough in guidance filter devel-
' opment, the assumed-density filter [3] and the coordinate-transformation-
et based filter (4] have also shown considerable promise. Since the conditional
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) mean estimator is infinite dimensional, the finite-dimensional MGEKF is
i 5 proposed as the estimation processor for the homing guidance dual con-
;::'.; troller. Furthermore, the MGEKF is also proposed as the state and pa-
‘.;::: ﬁ rameter estimator for an explicit adaptive control law which is applicable
‘:0:‘ to flight control and autopilot design. In particular, the MGEKF has been
o applied to the problem of on-line state estimation and the identification
e % of aircraft stability derivatives [5]. An adaptive control loop using this es-

Co! timator is given in [6] where the essential parameter required is moment

Y . . . ..

coefficient due to elevator defection. The adaptive gain is inveresely pro-

portional to this parameter which seems well estimated by the MGEKF

even in moderately-high clear air turbulence. However, more elaborate

controllers will be required for bank-to-turn missiles. A multivariable syn- ‘
:t,o:: thesis scheme is suggested in [7] in which the LQG controller can be made
talt insensitive to a class of parameter variations. It is seen in [5,6] that the
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moment coefficients are estimated well but the force coefficents are not. In
particular, their estimation response is quite sluggish due to the effect of
high-frequency noise associated with the model of the clear air turbulence.
An adaptive system is being designed so that the controller is only sensi-
tive to the moment coefficients. This approach to autopilot design is being
considered for application to a bank-to-turn missile.

Both homing missile guidance and adaptive control schemes are cur-
rently designed based upon the certainty equivalence principle. That is,
a controller and estimator are placed in cascade where both are designed
independently of one another. These ad hoc controller structures are not
adequate in general, and improvements are sought through the dual con-
trol concept. The dual controller structure which has never been realized
by even the simplest stochastic control example needs much study. We
began our efforts by noting that the essence of the dual control problem
is captured in deterministic setting where the nonlinear observer perfor-
mance is enhanced by trajectory modulation. In particular, a measure
associated with the Fisher information matrix is maximized in order to
obtain an information-enhanced homing path [8,9,10]. In [10] not only is
the EKF performance improved by trajectory modulation over the propor-
tional navigation path, but the performance of the MGEKF along these
information-enhanced paths relative to that of the EKF is impressive.

Based on these results an ad hoc guidance rule which seems to pos-
sess the dual control property is proposed. It is seen that the trace of the
information matrix weighted by the range-to-go when combined with the
current control performance index reduces to a quadratic form. This form
differs from current forms in that the performance index due to the infor-
mation measure is not convex. Some preliminary results are given in [11].
It is noted that this simple guidance rule produces trajectories similar to
those generated in [8,9,10].

The essential difficulty in dealing with dual control problems is that the
sturcture of the controller is not well understood. For this reason, ad hoc
schemes pervade the literature, but no rational scheme is ever suggested.
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. For this reason, we have begun looking into asymptotic approaches to this
‘:‘.'f. * class of problems. For small measurement and process noise variances, the
) . . . .

R A optimal control law, obtained from the Hamilton-Jacobi-Bellman PDE of
e, a particular nonlinear problem, is determined in terms of an asymptotic
) v '!'.

- 3

*

" g

®

il X

- .. r - .‘F
J D 0 v Q 0 e N O d"q.{ (_HJ'
SRR |,’l.|',’|‘,s,f.o." ¥ A' l’ l.u’,l',‘a'w..l..l‘. .‘\'; .“.l‘\“_ “"Q’ BTN ATD R :d.bu.'t. ... '!“ N \



S ]

t > 3

expansion in the state estimate and state error variance. This problem is
chesen because the estimation process is conditionally Gaussian and the
deterministic problem (or zeroth-order solution of the Hamilton-Jacobi-
Bellman equation) is integrable. Since it is hypothesized that dual control
problems are not integrable, the expansion about the zeroth-order solution
should give valuable insight into the structure of the dual control problem.
The objective i1s to apply these ideas to both the homing guidance and
adaptive autopilot problems.

There is a real need to determine the effects of guidance system errors on
missile guidance. To do this, a measure of performance is used in [12] which
is associated with the optimal return function of the LQG problem and has
the property of a Lyapunov function. Since the guidance laws considered
to date are based upon the certainty equivalence principle, the control is
a function of the filter or observer output. The Lyapunov function is a
function of three terms, one associated with the LQ problem, one associated
with the observer, and one associated with the error in the control law due
to the inaccuracy of the state estimate from the observer.

Finally, the very important problem of target maneuver detection is
considered. Our approach is to develop target motion sensitive filters (ac-
tually observers). The theory has been developed for time invariant linear
dynamic systems [13,14,15]. The objective is to design the detection gain
so that the target motion can be associated directly with the measurement
residuals. Qur present effort is described in [15].
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Maximum-Information Guidance for Homing Missiles

D.G. Hull,” and J.L. Speyer?®
University of Texus at Austin, Austin, Texas

and

C.Y. Tsengf

Chung Shan Institute of Science and Technology,

Taipei, Tuiwan, Republic of China

A recentlv-defined information index is used to enhance the information contcat of minimum-control-cffort
trajectories tor the homing missile intercept problem. (Optimal planar intercept trajectories are obtained for a
performance index which is control effort weighted by position information content. The missile and target are
assumed to be operating at constant speed. The shooting method is used to compute ihe opiimal paths; but
because of the simplicity of the model, on-line optimization vielding a guidance law with information enhance-

ment should be possible.

Nomenclature

=c0sd/vg

= missile normal acceleration (fi/s?)
=sing/vy

= constant in measurement variance model (ft~?)
=augmented end-point function
=variational Hamiltonian

=range (ft)

=time (s)

=ratio of missile velocity to target velocity
= velocity

= weight

Y =planar coordinates (ft)
=nondimensional missile normal acceleration
=missile velocity angle
=time-dependent Lagrange multiplier
=constant Lagrange muliiplier
n =nondimensional relative coordinates

=nondimeansional range

=nondimensional time

=missile velocity angle

?(%ﬁ,?"blO"’ ek

AV M >DR

Superscripts

(") =derivative with respect to ¢
( )’ =derivative with respect to 7

Subscripts

= final point
=missile
=relative
=target
=initial point

eﬂxg\

Introduction

l N Ref. 1, the problem of enhancing the information con-
tent of angle mecasurements in a homing missile engage-
ment is considered. While the dynamics uvsed in the filter

Received June 11, 1984; presented as Paper Ad-1587 at the AIAA
Guidance and Control Conference, Seattle, Wash., Aug. 20-22, 1984;
revision received Sept. 20, 1984, Copynight & American Institute of
Acronautics and Astronauucs, Inc., 1484, All rights recerved.

*Protessor, Department of Aerospace Engineering and Enuineening
Mechanics. Associate Fellow ATAA,

tResearch Avsouviate.

development are linear in the states (rclative position,
relative velocity, and target acceleration), the measurements
are nonlinear in a rectangular coordinate frame. Hence, the
trajectory followed by the missile affects the measurement
sequence and, in turn, the ability of the filter to extract the
states from the measurements. A scalar performance index
representing a measure of the information content of the
missile path is developed, and a maximum-informanon in-
tercept trajectory is determined. Next, measuremenis are
created along the maximum-information path and processed
with an extended Kaiman filter. It is shown that the filter
performs considerably better for measurements made along
the maximum-information path than it does for
measurements made along a propertional-navigaticn path.
In fact, the filter diverges from the truc state along the

proportional-navigation path and converges to the true state
along the maximum-information path.

Since the trajectory determined from the scalar information
performance index reported in Ref. 1 induces gsreatly im-
proved state estimation results, its use in the development of
an information-enhancement guidance law is investigated.
Because of the complexity of the problem, the simplest-
possible intercept problem is formulated, that is, two-
dimensional motion or a constant velocity missile and target.
The performance index is taken to be the conirol effort
weighted by the information index. and solutions are obtained
by the shooting method. However, to obtain initial values of
the Lagrange multipliers required by the shooting method, the
problem of minimizing just the control effort must be con-
sidered first. Then. by solving the weighted problem in stages

(gradualiy increasing the weight from rero), the desired op-

timal trajectories can be obtained.

Statement of the Problem

The classical guidance law kaown as proportional naviga-
tion 15 a perturbation 2uidance law about a nominai intercept
triangle. The intercept triangle 18 essentially a mimmum-
control-etfort tratectory in the plane (see Fig. 1 for
nomenclature). For a constant velocity, steerable missile and a
constant velocity tarpet movine in i straght line, the opumal
control problem is stated as lollows:

Find the missile normal-acceleration history a(¢) which
minimizes

a1

| @t (h

S

S~
"
<

W 20 LY ‘
Sy ‘.0 Ol ‘.‘ " ":0"1',“0"'0’-"1 t".t"‘ O ‘0’. l' ‘l. {

. ‘! A th .‘ "."‘ .‘t
) f,‘;( ooy & c‘. QX ". 0 .' v .1.59.0,5.0.0.. ODOXOX

IS




< g S Uk

g =xx W

=23

»rF

TS

»

s
=

L

AR YR
SISO O v D
‘ '&"‘.“.‘ -".'u‘?'!‘f'é‘?‘b"';‘,’»"‘l ','I.'.‘

JULY-AUGUST 1983

subject to dynamical constraints
Xg = Vicoso - Vy,cosh

Yg = Vrsing — Vy,sinf

§=asvy

2)
and the prescribed boundary conditions
ty=0, Xg, =Ry, Yp,=0, 8y=free
= free, XRf=0, YRI:O' 0, =free (k)]

This optimal control problem? admits the solution a=0 or
0=const. However, along this path, the filter is not able 1o
estimate all of the states because the range along the line-of-
sight is unobservable. To enhance state estimation, it is possi-
ble to weight the tinal time with a term associated with infor-
mation content. The simplest form of this term is obtained bty
considering only the position-information part of the
performance index developed in Ref. 1. With this term includ-
ed, the performance index, Eq. (1), can be rewritten as

Wi dt
azdt— "’3 FOVEC IR
o 1+c(X3+ Y3)

_I—WS’}‘ )

‘0

where W is the weight and c is a constant associated with the
measurement variance model used in the filter. If W=0, Jis
the control effort; and if W=1, it becomes the information in-
tegral. Since a minimum is being sought and since the infor-
mation is to be maximized, the minus sign is introduced 10
convert the maximization problem to a minimization probiem.
Finaily, when actually implemented, it is envisioned that H~
would be related to the state estimation error covariance, in-
creasing as the covariance increases.

At this point, the following nondimensional variables are
introduced:

E=vVeXg,

r]=\/—C_YR, 1=f5VM1,

Ve=Vy/Vy, a=a/cV3, p=\iR )
In terms of these variables, the optimal control problem is to
find the missile normal-acceleration history «(r) which
minimizes the performance index

=ﬂs" o?dr— WS” _ 4 ©)
0 o 1+E +7?
subject to the system dynamics
£’ =cosd/vg —cosl,
n’ =sing/vg —sind,
0 =« @)
and the prescribed boundary conditions
19 =0, §r=04 Me=0 0,=free (8a)
r,=free, £,=0, n,=0, 0,=free (B

This optimal control problem does not yield an analytical
solution and is solved with the numerical optimization method
known as the shooting method. Because of the sensitivitv of
the shooting method (o initial guesses, the problem is solved
analytically for ¥ ::0 to obtain Lagrange multiphiers. Then,
with these multiphers as initial guesses, the shooting method is

“w

v!-‘ "y
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s

converged tor a small value of W. W is increased, and the
process is repeated with the last converged multipliers as iniual
gucsses.

Minimum Control-Effort Problem

For the case where W =0, the variationai Hamiltonian and
the augmented end-point function are given by

H=0a'/2+ N, (A—cosf) + X, (B—sind) + N\
G=u,k rv,m, 9)
where X (i=1,2,3) is a time-varying Lagrange muliiplier,

v, (i=12) is a constant Lagrange muitiplier, A =cos¢/v,,
and B =sino/vg. The Euler-Lagrange equations? for A lead to

A=-H=0 (10a)
N=—H =0 (10b)
A= —Hy= ~\,sinf + \,cosf (10c)

‘vhere the optimal control satisfies the optimality condition

H,=a+X\;=0 (1
Finally, the natural bouncary conditions are
)‘l/=GEf="l
)\"I=G"f =,
,\,I,=Gﬁf=0, Ay, =Gy, =0
H,:a}/2+)\,f (A ~cosb;)
+)\,I(B—-sin9,) +)\,fa,=0 (12)

It is observed that the absclute minimum control effort is
ahieved when «=0. Whether or not this can be the solution is
r ‘w investigated. Equations {10a) and (10b) indicate that X\,
2 .d A, are constants so that Eq. (10c) gives § = const. Hence,
t: 2 system equations, Eq. (7), can be integrated subject to the
final conditions of Eq. (8b) to obtain

0=(A—cosf)r,+&, 0=B—sind 13)
which determines ¢ and 7, as follows:
sinf=B,

Tf=EO/(cos()-—A) (14)

v,/
TARGET . ¢:CONST

.y il
T 3
|

v
'f/' ' \A
s | |
MISSILE \9 b
Sy DU E S
—— x. - _,.‘

X

Fig. 1 Two-dimensional intercept geometry.
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Next, Eq. (11) gives N, =0 which satisfies the natural hound- - W \ q )
ary conditions of Eq. (12). Finally, Eqs. (1) and (12) lead to TrEvnl + Ay (A =costy) + X, (B—sind) =0 (19)
A =0, A\ =0 (15) Unfurtu.nately. this optimal control problem does not yield
] ) ) an analytical result so that numerical methcds niust be
These values of A will be used to begin the solution of the employed. Here, the shooting method® is used to solve the cor-
information-weighted minimum cortrol-cffort problem.

responding two-point bounda:y-value problem (TPBVP)Y. It is

formed by solving Eq. (18) for the coatrol and clinunating o

. from the remaining equations to obtain the diffcrential systemn
Minimum Information-Weighted 4 ¢ yoe

Control-Effort Probiem

£ =.1—cost
For W0, the variational Hamiltonian and the augmented ]
endpoint functicns are defined as n’ =8B-sind
6 = — -
- w ' N /(1=-W)
= of — et N (A —€038) + )\, (B—sing) + N\«
2 1+E +9°

A= =2WE/(1+£2+77)°

G=viks+ vy A= —=2Wn/(I+E +0%)?

Next, the differential equations for the N's are given by Aj = —\,cos8 + \,sind (20)
M= —2WE/ (840t and the boundary cenditions
12 2402
M= =2Wn/ (1 + £ +9%)? =0 Eompe  mp=0 Ay =0
Aj = —X\;sinf + X\ cosé an =0, 2y =0, )\,/_-0
while the opti.nal control must satisfy W
(I=W)a+\, =0 (18) W—-+)\,/(A—cose,)+,\, (B—sind,) = (21)

Finally, the natural boundary conditions lead to The TPBVP is solved by using the initial Lagrange
multipliers for ¥ =0 and a small value of W. Then, as Wisin-

MNy=vy Ny=vy Ay=0, Ny =0 creased, the initial guess for the X's is the converged set for the

8 S
< E dw T
~ + W:0.00
a So 0 w:=0.0l
el ] “ O Wwe=0.l0 4
,_" x> A W=02|
- | z
a [~}
zs -8
— ) @~ h
4] + WwW=0.00 =
w O ws0.0I =
= o
Eg O w=010 831_// N
i a4 w=0.21 b + 4 + N — —d
Zen Ta¥ T b o
D « X Target o I %
o<
: i l
o ————— e — - — - — z".'j \/ :
g 8|
o v — — v v T — v —~—
0.00 4.00 8. 00 12,00 18. 90 22.00 0.00 4.00 8. 0¢ 1 18. 00 20.0)
NONDIMENSIONAL X

c 2. 00 .
NONDIMENSIONAL TIME

Fig. 2 Information-cnhanced optimal intercept paths. Fig. 3 Normal accelcration histories.

Table 1 Summary of numcrical resufis®

Information Control
1 05, deg N, )"‘c content cffort fr. s
000 22.6199 0.00 0.0n $.2632 9.0000 9 2079
0.01 17.5956 ~.002%9 -(.00330 £617) 028 G377
0.10 9 RINO -.02309 ~.01244 5.7I82 02 Y 6648
0.21 - .8789 - 04570 -.01342 5.4K2S L0268 1] 4H6

o = 4.5 (X000 [, gl 20 Nidey rp=tree, B tree
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80. 00
i

MAX INFO 1

MISSILE' 0. ©
TARGET: m

{(FT) =10’
0. 00

PRO NAV

-80. 00

-160. 00

~Y INEATIAL AXIS

-240. 00

i

o-320.00

. 00

80. 00 100. 30

=10’

Fig. 4 Maximum information path, horizontal plane.

20.00  40.00  80.00
X INERTIAL RXIS [(FT)

previous . This procedure leads to the results presented in
Table 1 and Figs. 2 and 3 for the case where the initial range is
3000 ft, the velocity ratio is vg = V\,/Vr=1.3, and the target
direction is ¢ = 30 deg.

It is noted from Table 1 that as W increases the control ef-
fort, the information content and the final time increase. The
corresponding trajectories are shown in Fig. 2. For increasing
W, the trajectories tend to move more toward a tail chase and
oscillate back and forth behind the target. Also, the normal
acceleration required to perform the maneuver, presented in
Fig. 3, increases with W. For W=0.21, the highest normal ac-
celeration required is approximately 6 g.

The trajectories of Fig. 2 are similar to those obtained in
Ref. 1 where the performance index is just information. For
comparison purposes, the horizontal projection of the max-
imum information path of Ref. 1 is illustrated in Fig. 4. Note
the similarity with W= .21 of Fig. 2.

A 4

0y,
AU Y
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Finally, solutions have only been obtained for values of ¥’
up to around 0.21. For W>0.21, the shooting method is
unable to converge to a solution. It is felt that the difficulty is
caused by the minus sign in the performance index of Eq. (6).
At some point, the missile can accumulate information faster
than spending control to accomplish the intercept. Hence, the

missile can wander around, accomplish the intercept at £, = o,
and generate J= — oo,

Discussion and Conclusions

A recently-defined information index has been used to
enhance the information content of minimum control-effort
trajectories for the homing missile intercept problem. Optimal
information-weighted trajectories have been obtained and
display the desired characteristic, that is, maneuvering for the
sake of increasing information content. Because of the
simplicity of the model assumed here, it should be possible to
compute these optimal trajectories on line and. hence, have a
mechanizable guidance law for information enhancement.
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A Stochastic Analysis of a Modified Gain Extended
Kalman Filter with Applications to Estimation with

Bearings Only

Measurements

TAEK L. SONG. veMBeR, 15EE, aND JASON L. SPEYER. FELLOW, IERE

Abstract—A new globally convergent nonlinear observer, called the
modified gain extended Kaiman observer (MGEKQ), is developed for a
special class of systems. This observer structure forms the basis of a new
stochastic filter mechanization called the modified gain extended Kalman
filter (MGEKF). A sufficient condition for the estimation errors of the
MGEKEF (o be exponentially bounded in the mean square is obtained.
Finally, the MGEKO and the MGEKF are applied to the three-
dimensional bearings-only measurement problem where the extended
Kalman filter often shows erratic behavior,

I. INTRODUCTION

HE construction of implementable observers for nonlinear

deterministic systems and nonlinear filters for nonlinear
stochastic systems remains a challenge. With a few notable
exceptions (e.g., [15]), implementation is based upon ad hoc
expansions and linearization techniques. For example, in [27] an
exiended linear observer is developed. In [26] a nonlinear
observer is implemented by augmenting the original state space by
new states composed of the quadratic terms resuiting from the
second-order Taylor expansion of the system nonlinearities. In
[24] the terms of a truncated expansion of linearly independent
functions, which approximate the system nonlinearity is used to
augment the state space and, thereby, construct an observer.
Similarly, in stochastic nonlinear estimation problems, numerous
filtering algorithms. based upon series expansions to realize
approximately the conditional mean, have been suggested (see the
bibliography of [8]). However, such techniques are prohibitive, in
general, even for low-order dynamical systems because of the
computational burden. Moreover, stability analyses of such
schemes are quite rare.

As a computationally realizable and practical filter, the EKF is
often used. Fortunately, there are many examples, especially in
high SNR problems. where the EKF is successful in producing
useful estimates. Except for a few particular cases, little is known
about the properties of the estimates (i.e., stability, unbiasedness,
and vonvergence) that it or its variants produce (5], (13]. To begin
to understand some of the properties of the structure of the EKF, a
nonlinear filter with a constant gain is proposed in [25] and also
forms the basis for the stochastic stability analysis of [20]. The
filter designed in [25] is based solely on stability considerations in
a probabilistic Hilbert space. Later, in [19] and [20] the stochastic
stability properties of the constant gain EKF (CGEKF) is
determined in the extended inner product space M,_. In this way a
certain margin of robustness is guaranteed by calculating the gain
of the CGEKF from the algebraic Riccati equation (ARE)

Manuscript received March 21, 1983; revised September 19, 1983, Apnil
30, 1984, and September 20. 1984, Paper recommended by Past Associate
Editor, A.S. Wilisky. This work was supported in part by Eglin AFB under
Contract FOB635 82.C-0090 and by the Joint Services Electronies Program
under Contract F49620-77-C 0101,

The authors are with the Department of Acrospace Engincering and
Engineering Mechanics, Umiversity of Texas at Austin, Austin, TX 78712

associated with a steady-state Kalman tilter based on a lincarized
model of the actual svstem. However. the convergence rate of the
CGEKF is tound to be too slow tor use in many real time
estimation problems. To enhance convergence a pan-scheduling
scheme is suggested [20]. but the stabiiny analyvsis no longer
applies.

The effort described here is restricted to a special class of
nonlinear functions which allows the stability analysis of {25] to
be applied to an estimator where the gain changes according to an
update tormula that is similar to that of the EKF. This special class
of nonlinear functions was motivated by the class of functions
which can be manipulated into a pseudomeasurement form [1],
[3]. [14]. [18]. [29]. For detcrministic systems these pseudo-
measurements are linear functions of the states of the system,
although the coetficient matrix is a nonlinear function of the
original measurements. By using the pscudomeasurements in a
linear observer structure {21]. global stability can be shown.
However, if the pseudomeasurement observer (PMO) is used in a
noisy environment as a pseudomeasurement filter (PMF) [1], [3].
[14), {18], biased estimates result. This property of the PMF 1s
also shown in the results of Section IV. In [21] 1t 1s shown tor a
particular example how the EKO (the extended Kalman observer)
can be manipulated into the form of the PMO. The essential
difference lies only in the calculation of the observer gains. A
modification of the gains of the PMO is suggested in [21] which
enables the EKO to achieve performance similar to that of the
PMO. This is called the modified gain EKO (MGEKO). The
essential idea behind the MGEKO is that the nonlinearities be
““modifiable.”” This notion is defined in Section I and is the
central idea used in developing the structure of the estimators.
This idea has some similarities with the development of the
pseudomeasurement function but it is not the same. For example,
the concept of modifiability also applies to nonlinear dynamc
systems [22]. [23].

The objective of this paper is ihreefold. First, the class of
nonlinear modifiable functions is defined in Section I, and then a
general form of the MGEKO is shown to be globally convergent
under certain conditions. Secondly. the stochastic stability of the
MGEKO used in the noisy environment as a madified gain EKF
(MGEKF) is analyzed in Section 1II. Since the gains are not
constant, this analysis is related but distinctly different from that
of [25]. [19]. [20]. Note also that since the MGEKF is based on
the algorithm for the EKF, the gain of the MGEKF is a function of
only past measurements. This differs from the gain of the PMF
which is a function of present and past measurements. Therefore,
by eliminating the direct correlation of the gain and measurement
noise process in the estimates of the MGEKF . the estimation bias,
so prevalent in the PMF. is scen by the simulation of Section IV to
be effectively eliminated. Therefore, the third objective 1s to apply
the MGEKEF to the bearings only measurement problem (BOMP)
(Section 1V) which has important applications in naval engage-
ments (1], [3]. (14]. [18] or for homing missile engagements
where passive seekers are used to track the target. Comparisons of

the estimation performance of the MGEKF with the EKF and
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PMF show that the MGEKF v very rapidly convergent and  Note that if we had the linear estimation problem with dynumics
. seemungly unbiased.
“ :r. g‘l'I:AlS‘.t+wl (21:)
-
R 1. THE MobiEED GaIN ExTENDED KALMAN OBSERVER
- ) ) i . and measurements
] (MGEKO) emen
A . . . . - . . ~ . = :" N+ . 3
! In this section. a class of nonlinear functions is defined which Yi=8AIr X +u, (2.13)
, forms the basis ot the glf\t’mlly convergent modified gain extended oL b L white noise sequences w, and v, have covariances Q, and
Kalman obserser (MGEl?O)' The gain structure mAlhe MGEKO v.. respectively . then (2.9)-(2.11) would be the precise equations
" for this p"_m;u“l\f Cll"'“ “'-?“"lm‘.“" syst:cm s csssnnally the sfsamhc for the covariances m, and p, of the one-step predicted and filtered
i as that ot the Aalman tilter, since the error dynamics of the . . - rerunmpivele re e v e . ap R
;, MGEKO are in the same form as those of a linear system. Even estimates of {,. rcspcu_nd). Here we are assuming that 2% and X
e, =R arean (e N T d> T0N LT AYSIET: are known. We will view Q, und v, as design parameters and will
; though this paper deals with discrete., finear system dynamics, the ) m, and p, the **pseudocovariances™ of ¢, and e,, respectively.
- ideas extend to the continuous-tume case and to discrete nonlinear If (A,, ) is uniformly observable and (A,, Q' %) is uniform]y
. e (22 3 v &0 i YN, A
1, F_ sysxem.dynamlcs (221. [_’;_l‘ ) h tem dynami controllable, it can be shown that the error dynamics of (2.7) and
g, R _ Consider the deterministic case where t U system (vnamnc: are 2.8y are globally convergent (o0 zero by using the Lyapunov
‘ linear, and the measurement 2,7 15 a nonlinear function of the  fp0i0n 1(e,) = e’p, ‘e ina way that is similar to the approach
oo states X, 1€, used by [17]. Note that since g, depends upon the specific state-
W -&1"( ‘. i =A @ space trajectory, the observability condition is also trajectory
[ Y Yoo =A% : dependent in general and this may be difficult to check.
' . Remark 1: In the next section white measurement and process
< F=h) 2-2)  poise sequences are added to the measurement (2.2) and dynamics
() . _ . al porithm of (2. s used 1 IS 8
B whered € 2. dthe nonnegative integers). & € a2 € g BT S AR 0L e wince the gain and the
) > Consider the following definition of “mOdlﬁdblmy' residual oLf (’; 5) ;'m: dkrcc(lv%orr‘lu(?j in zﬂnanncr si{rlnilu:m (hL-
0:3 Definition 1: A time-varying function a,: %" — 19 is modifi- seudomcas;}cmem ﬁlt*r'(PMFL' as shown in the Append :
0" able if there exists a ¢ X n time-varying matrix of functions g,: fg¢  pscudomea | ¢ i o et of the E Ppendix.
) X 5" — ;Y7 50 that for any x, X € R"and { € Z Theretore, a gain aigorithm similar to that of the EKF which
- ensures that the gain is a function of the past measurements only is
d. ) i S *qud
’(.v a,(x) - a9 =g (2%, X)x - %) 2.3) recommended. However, if the measurement equation is a

nonlinear function of the states. the useful relationship between
4‘: the observability Gramian and the p, matrix in (2.11) is no longer
b IS\ Note that the difference a{x) — a,(¥) is equal to g,(z*, ¥)(x —  available. This discussion motivates the assumptions required 1n
X) without any approximations. Notice also that g(z*, %) = the development of the modified gain extended Kalman filter

2.(h(x), ¥) # g(h(%). ¥). where this latter quantity is (if a, is (MGEKF) presented in Section III.

where z* = h,(x).

: differentiable) the differential of a, evaluated a1 X, as used in
' linearization. ) HI. Tue Mooiriep GaiN EXTENDED KaLMAN FILTER (MGEKF)
) The MGEKO has the following structure: _ _ ' _
Y In this section we develop the MGEKF and study its stochastic
SN X oa=Ax, (2.4) swability. As stated in Remark 1, the gain algorithm of the
e MGEKEF is altered from that of the MGEKO in order to reduce the
’: N £ =X+ k(22 - h(R)), (2.5)  biases due to direct correlations between the gain and the residual.
A . . . L Consider the stochastic case where the system dynamics are
. where %, can be interpreted as a propagated estimate at time /, £, [inear, and the measurement z, is a nonlinear function of the states
> = can be interpreted as an updated estimate, and £, is some gain  x e
N - sequence that may depend on past and present data. If A,(x) is
-:_ assumed modifiable, X, in (2.5) can be rewritten as Xi= A Xi1 w1 3.1
TN . . ] .
| ')\ ': xl=xl+’_‘lgl(z,‘v xl)(xl~xl) (26) Zi= h,(X,)+U,éz“+vl (32)
i’ '-- v v] v xn .
where g(z”. X)(x, - X) = h(x) - h(x),and g, € A9*". The where {w,} is a zero-mean independent process noise vector
Q . CFTOT € in the estimates is defined as sequence with finite second moment
' f-: :-" eléxl_fl E{w‘wlr}Qléu (33)
¥ =(T-k.g(z*, X))é =D.é 27 where 8,=1ifi = jand 8, = 0ifi # j, and where {v,} is a
Ry . zero-mean independent measurement noise vector sequence with
] :b where from (2.1) and (2.4), &, satisfies finite second moment
_ é =x,—X=A,_e . (2.8) E{U’UT}=7,6U- (3.4)
p, Since 2z is a deterministic quantity, (2.7) and (2.8) are exact 4
. <2 and they are in the same form as that of a linear estimation system. Fug::cr(rin::;c R(ch;;/k "]3"3]:/jrﬂ?tua:c“::pctﬁc'"Mpog"g;"lts altered
:‘ This provides us with motivation for choosing a pamcyla;l gaim o that of the MGEKO. Furthermore., since z* in (3.2) is ot
0 é‘ sequence based upon Kalman filter-type updates. Specifically. available because of the measurement noise v,, 2 is replaced by g,
. m=A .p AT +Q (2.9) in the gain formulation. If A,(+} is modifiable and differentiable,
! d TP TR the estimates of the MGEKF are obtained from the fol'owing
- algorithm:
SR k=mg(z* 2)T(g(zr, 2Ime(zr, 2)T+v)' (210
- » g Y.z, 2)mg (2r, %)+ ) ) f=A % 3.9)
A
- p=(-kgr apm-kg(z* XN+ kyk]. Q2.11) £=2+k(z,~ h(x) (3.6)
¥
@
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m=A,_p Al +0Q._, 3.7
k=mhl(h, mhl+~v)"' (3.8
p=U-kg(z, x)ymU-kg(z. ) +ky k] (3.9

where A, 2 dh(x)/dx,, ..,

Note that if the predicted measurement 4,(x,) is used in (2.10)
rather than z”, then the gain in (2.10) reduces to that of (3.8). In
this way, the gain of the MGEKF is in the form of the EKF which
ensures that the gain is only a function of the past measurements.
Since the stochastic estimator (3.6) can be rewritten in a
modifiable form without any approximation as

R =% +c(x,—%)+ kv, (3.10)
where ¢, 2 k.g.(2*, %), the error equations produced from (3.10),
(3.1), and (3.5) are exact. Although ¢, is not implementable. the
form of (3.10) is important for our analysis of the behavior of the
algorithm. Furthermore, it is critical to MGEKF performance that
g, in (3.9) be calculated using z,. In contrast, the EKF algorithm
[13] calculates g, using A,(%,) in (3.9). As a final note, in [28] the
MGEKEF is applied to an estimation problem where pan of the
state vector is composed of discrete valued random variables. For

this problem g,(z,, %) exists. The EKF cannot be applied to this
problem since the partial derivative A, does not exist.

A. Stochastic Stability of the Intermediate MGEKF

In order to facilitate the stability analysis of the MGEKF, as a
first step we employ an unreaiizable estimator, which used z* to
caiculate the gain k,. Although this scheme is not implementable
for the noisy environment, it forms a nominal to which the
implementable filter is compared. This estimator, called *‘the
intermediate MGEKF*’ for convenience, is given by the following
algorithm:

RX= A, 2% @3.11)

Er=Xr k- h(XN)=X*+K2g(T¥, XXX, ~ B*) + k*v,

AX¥+cr(x,—X*)+kry, (3.12)
m=A,_pr Al +Q ., (3.13)
kp=mrA2)TI(ALImM AT+ (3.14)
pr=U—-crym*(I-ct)T+krvkr" (3.15)

where the superscript * means that the estimates are obtained from
the gain algorithm with z* = A,(x,) in (3.2) instead of z,. The
essential change in forming the intermediate MEGKEF is that z.*
rather than z, is used to calculate p, and, therefore, (3.9) is
replaced by (3.15). The second equality of (3.12) uses the
important modifiability characteristics of A, to be exploited in the
following analysis.

First, we consider the stability of the intermediate MGEKF by
using Lyapunov’'s second method in the probabilistic Hilbert
space L,. The norm of a vector random variable x, is defined as

ped= | xTari) ax, (3.16)

where x(x,) is the probability density function of x,. Before
proceeding further, the following definition is introduced.

Definition 2 [25]: A discrete stochastic process x, is said to be
exponentially bounded in mean square with cxponent é, if there
exist constant 0 < § < I, K, = 0, and K; > 0 such that

Ixli2sK, +Ki(1-8) forall i€Z,.
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The errors in the estimates of the intermediate MGEKF can be
written as

er=x—x=A, e* +uw | 3.17)
where
er=x,— £r=(I-c*)é* ~k*u,. (3.18)
Define a Lyapunov function F,(éX) as
Vier)=er*Tme les. (3.19)

Before stating Theorem 1, the following assumptions are
needed.

Assumption 1; A, in (3.1) is uniformly bounded and invertible.

Assumption 2: LY = (I - ¢}) of (3.15) is invertible for all
i€ Z..

Assumption 3: Q, of (3.3) is uniformly bounded from below
such that Q, = a-/ > Oforalli € Z..

Assumption 4: m*™" is bounded from below by a constant
matrix c-/ such that

[V = llexTm*~"ex| =cller]*. (3.20

Remark 2: Assumptions 1 and 3 are not terribly restrictive.
Note that for the MGEKO described in Section II, the uniform
observability of (A,, g,) is sufficient to guarantee that D,, defined
in (2.7). is invertible and that m,! is uniformly bounded from
below where m, is defined in (2.9). The corresponding conditions
on L* and m¥ ' in Assumptions 2 and 4 are not unreasonable,
although there is no such simple sufficient condition that can be
checked.

Theorem I: The errors in the estimates of (3.17) and (3.18) of
the intermediate MGEKF are exponentially bounded in mean
square with exponent 6 under Assumptions 1-4.

The following proof of Theorem | is distinctly different from
the proof of [25. Theorem 4] where the stability of the esumates is
based on a constant gain nonlinear estimator.

Proof: Rewrite (3.17) by using (3.18) as

& =AL*e*~Aklv+uw,. 3.21)

Note that v, and L}, and w, and L are independent, since z* is

not a function of w, and %, is a function of the past measurements.

Moreover, since m},  in (3.13) is a function of 2 * and X, m}, , is

independent of v, and w,. Take the conditional expectation over
V,o(eh ) — Vieh), given Y* = {é7, ef, -+, &'}

E;,{VH I(ér, |)_ Vl(ér)}
=erTEY{LYTA]m? ALY —mt-t)ey

R

+E3{tr (kXTATm* |Akry )+t [m?1Q0}

e+

(3.22)

where E¥ { -} is a conditional expectation operator given Y. Note
that the terms inside the tr operator become strictly positive for Q,
> a-f > 0and if m* obeys Assumption 4. Define

K\, =Ey{tr (k*TATm* Ak y )+ [m* Q1) (3.23)
then (3.22) becomes
ET{V,.\(e ) - Vi(en}
=K, +e*TEL[LTATm* 1AL —m*-"Yer.  (3.24)

The term inside the E¥, operator on the right-hand side of (3.24)
can be written after some manipulations as

LtrArm‘-:A L*—m*-!

i t i+ t ] i
=LYATAprAT+Q) ‘AL -m*!
= el T .
=—stsrmrstT+4) s>

~L*Tp* A, QA Tpr AT A Tpr LY (3.29)
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where the matriv inversion lemma [13] is used. A, is assumed
invertible. and s* of the intermediste MGEKF sausfies

= e IR

SE=y kXL* Tmr ) (3.26)
Therefore, from (3.25)
eXi(L=TATm* 1A, L¥ —m* ")eé*<O. (3.27)
o Hence. there exists 0 < p, < 3, < 1 such that
e S‘ eXTL*TATm> 1A, L*é*=pérTmx*-1e*, (3.28)
»
""-, The existence of 3, is assured by Assumptions 2, 3, and (3.25).
" Now. (3.24) becomes
e 7 ¢, -
g ' LAV en ) - Heny s K-8 E(Pen)  (3.29)
X
::1:. ) where 0 < supyez, {I_(.}} < K, < »,and §, = 1 — p; such that
“:"‘ 0 < 3; = 6, < 1. The boundedness of K is obtained from
Assumptions 3. 4, and (3.14). Note that Assumption 3 implies that
iyt m?* ! is uniformly bounded from above.
oy .‘% By applying the nesting property of the conditional expectation
c’:,e e to (3.29), one can obtain
oy ) i
R Ef (V.o (€ )} = ES{E{V, (e 0}
ot & sKi+(1-8)ET{ET{V.(en)}}
' -
Q;'. =K|+(l—6,)E:‘0{ Vl(é,‘)} (330)
e
"'c." g Define 6 as § = inf,c,, {6,} and note that since 0 < 8, < §, <
;::'.:' 1, then 6 > 0. Applying (3.30) recursively results in
A
o'.,:o B < _
B ET AV @ DV =K S (1-8y + (1 —8) 'EX,{ Voled)) .
Iy /=0
A
[
.'!:Qt ; Use (3.19) and take an unconditional expectation over Y§ in
i (3.31). Then
) 5 ez, 3= K+ Kol =) (3.32)
.1;‘,.; where K, <K, S0 (1 - 8)//c=K,/cb and K, = E{Vy(e)} /c.
:, ‘l: Therefore, the exponential boundedness of the intermediate
NS MGEKEF is proved.
B
0 B. Stochastic Stability of the MGEKF
Thus far, the exponential boundedness only of the intermediate
Y s MGEKF has been proved. Now, our objective is to obtain
,a;:: > sufficient conditions for the MGEKF to be exponentiaily bounded
B in L, by comparing the estimates of the MGEKEF to those of the
r: d exponentially bounded intermediate MGEKF. Such conditions are
*',;’_'. ﬁ found again by using Lyapunov's second method and are similar
in concept to [6]. In this way the conditions for the deviation from
"’ the nommnal to belong to the set of nondestabilizing deviations
A (terminology excerpted from {19]) are obtained. .
.‘::.' The errors in the estimates of the MGEKF can be written from
':,‘:: (3.1), (3.5). and (3.10) as
‘t'(
:,'0:: n é,.,=x,.|-f,.1=A,€:+w: (333)
o
._. where
,-.‘,:: e=x,—%=(I-c)e,—kuv,. (3.34)
'8
-:.. X 0‘ Note that the only difference between (3.33) and (3.34) for the
:.'-:. x MGEKF, and (3.17) and (3.18) of the intermediate MGEKF,
e results from the algorithm for the calculation of the gain of each
» iy filter. That is, the MGEKF uses z, instead of zin the gain
®
Ny
N .

i 4 SO0
. W 0 OO Rl ICORONCNC
bR R N O GO R R A i X

(VR

algorithm. Theretore. N, | = {v), va, oo, v, 1} contributes to
the difference in the gains &, and K% since N | affects the
calculation of (3.9). Denote the gain of the MGEKEF as the sum ot
the gain of the intermediate MGEKF and the perturbed gain due to
N,

k= k*+ Ak,. (3.35)
Similarly. ¢, of the MGEKF is denoted as
¢ =c*+Ac,. (3.36)
Therefore, é,., in (3.33) can be written as
6. = ALY - Ac)8, - AUK* + Ak, + w,. 3.3

Consider the following sufficiency theorem.
Theorem 2: If Ak, in (3.35) is bounded and Ac, in (3.36)
belongs 10 the set of nondestabilizing deviations such that

1

+ 1

(L¥~Ac)"ATm* A(L*-Ac)-m*"'<0  (3.38)
for all 4, then under Assumptions 1-4, the error in the estimates of
the MGEKF is exponentially bounded in mean square with
exponent 8.

Proof: Introduce the Lvapunov function for the MGEKF as

% 5 -5 -1
Vl.l(e:ol)_e,r,lm,*,lenl

(3.39)
where m*[| is bounded from below by Assumption 4. Since L}~
Ac, in (3.37) is a function of 2*, £, and N,_,, L} — Ac, is
independent of v, and w,. Therefore, the conditional expectation of
V..(é.,) — V(e) for given Y, = {&, é, ‘-, &} becomes
[similar to (3.22)]
EY,{ Vn |(él* l) - V:(él)}
=eTEy (L} -ac)TAIm? |
+Ey{ur ((k*+28k)TATm
+tr (m 1} (3.40)

If Ac, satisfies (3.38) which is a modification of the left-hand side

(3.25) in the presence of Ac;, there exists 0 < 8 < g, < | such
that

AAL* - Ac)-m*}e,
* Ak + Ak

x-1
o+ 1l

x|
i +1

ET(LF — Ac)TATm* VALY - Ac)e, = Tm*~1e,. (3.41)

Therefore,

EY,{Z&I(&#I)_ r/l(él)}sgl—alEY‘{r/l(él)} (342)

where §, = 1 — 5, and 0 < K| = sup,ez, {Klj} where

*-1

x-1
t +1

FaQlh

(3.43)
and K, is bounded from above. since k* is bounded from above by
Assumptions 3, 4, and (3.14), and Ak, is bounded from the
hypothesis of the theorem. The remainde- of the proof is the same
as that of Theorem 1.

Remark 3: Note that the perturbations in (3.38) are due to
variations in the gain calculation and not in the system nonlineari-
ties as found in {19], [20]. Therefore. although condition (3.38) is
similar in form to a condition given [19, Sect. 4.5.2], the
derivation of this condition based on a time-varying algorithm
rather than a constant gain algorithm is different. Although this
global sufficiency condition is uncheckable analytically, it can be
used as a guide for engineering evaluation. For example, a local
test may be constructed for a given initial state and state estimate.
The MGEKF and the intermediate MGEKF algorithms can be run
for the same ensemble of measurement and process noise

K\, =Eyftr [(k}+ AkYTATm* VA (k* + 8k)y, )+t [m
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sequences. For each sequence the deviations of Ak, and Ac, can be
calculated and the boundedness of Ak, and the stability of the
MGEKEF via (3.38) can be assessed. This procedure was used in
evaluating the performance of the bearings-only problem de-
scribed 1n Section [V,

Remark 4: If the processes are ergodic. boundedness of A,(k *
+ Ak,) implies that the exponential stability of the MGEKF in L,
and the finite gain stability of the MGEKF in M, are equal by [12,
Theorem 7).

Remark 5: A time-varying function h:R" — 89 is called
approximately modifiable it there exist time-varying matrices of
functions g,: 229 X §" = f19%"and §,: 1" X A" — 19%" where é
=x — Xsothatforanyx, x € D C f"andi € Z,, h(x) —
h(X) = [g(z} %) + &,/(x, é))é where 2z} = h,(x) and where
lim.4.o [|€.0x, &)|/|g(zk £)}| — 0. The effect of the error £ (x,
é)é on stability is to contribute to the deviations Ac, and Ak, in
Theorem 2. For example, Ac, is replaced by the deviation AC, £
Ac, + (k' + Ak)E(x, é) in (3.37) and also (3.38). The gain
algorithm (3.7) and (3.9) uses the modifiable part g,. The
bearings-only measurements are shown to be approximately
modifiable for the three-dimensional problem in Section IV and
exactly modifiable for the two-dimensional case [21].

IV. APPLICATION TO BEARINGS-ONLY MEASUREMENT PROBLEM
(BOMP)

In [29] a new measurement model based on a transformation of
the original measurements, called pseudomeasurements, is pro-
posed which is linear in the states of the system with a coefficient
matrix composed of nonlinear functions of the original measure-
ments. By using the pseudomeasurements. observability criteria
are rigorously established for the BOMP [18]. However, as
shown in [3], the resulting estimates of a linear filter structure are
biased. The simulation results here demonstrate this as well.
Moreover, in the Appendix, the bias in the estimate of the PMF is
analyzed. By a different approach this analysis generalizes {3].
Since the PMF produces biased estimates and because of the
nonlinearities of the problem, most of the studies have been
conducted using various forms of the EKF for the two-dimen-
sional BOMP (see bibliography in [10] and [16]). Recently, [2]
reported successful results using the EKF for the two-dimensional
BOMP formulated in a modified polar coordinate when no
process noise is present. However, as shown by [9] through
statistical consideration, and by several others through simulation
studies, EKF for the BOMP formulated in a rectangular coordinate
still remains a problem. Fortunately, it can be shown that the
measurement equation from the two-dimensional BOMP formu-
lated in a rectangular coordinate is both transformable to a
pseudomeasurement form and a member of the class of modifiable
functions (see [21. Sect. 4.2]). For the three-dimensional BOMP
which is more realistic for homing missile engagement problems,
the measurement equations are approximately modifiable (see
Remark 5 of Section HI-B for the relationship with the previous
analysis).

A. System Dynamics and Pseudomeasurements for the
Homing Missile Problem

The deterministic system dynamics of the missile intercept
problem written in rectangular coordinates are linear

X1 =Ax,+Bu, 4.1)

where the state vector x is a nine-state vector composed of three
relative positions x] & [X, Y, Z|, three relative velocities V7T 2
{vx, vy, vz], and three target accelerations a” & [ay, ay, a;], and
where u” & [ay,, ay,, ay,] is the three-dimensional missile
accclerauon used here as the control vector since it is assumed that
the autopilot of the missile has zero-lag. Note that in implement-
ing the estimator, the missile acceleration is assumed to be

.t)b .
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measured perfectly from the accelerometers. The control u, is
generated from the homing guidance law which is derived by
using linear-quadratic theory [7] and is the basis for modern
homing missile guidance. The dynamic coefficients for (4.1) are

1 s
[3. A, F((”“"“/\A(—')I} "(..\1'/2)/}
1
A,= 0, ,3, X(l_e-UI)I} N B,: "A[I}
0, o0, e M 0
4.2)

where [/, is an n x n identity matrix, At is the time interval
between measurements. and A is determined from the bandwidth
of the target acceleration assumed as a band-limited colored noise
process. Note that A4, in (4.2) satisfies Assumption 1 in Section
III-A.

The intercept geometry, measurement angles, and relative
range are given in Fig. |. The azimuth and elevation angle
measurements tor the three-dimensional BOMP can be written as
(2.2) where z}* satisfies

az tan ! ke
= h(x) = X (4.3)
el tan~'4/(Xi+ Y12

By using simple trigonometric identities, the two measurements of
(4.3) are manipulated into the following pseudomeasurements

(] @D 2 b, v,
», | _ | sin az, —cos az, 0, - 0 )
v, | | sin el cos az, sin el sin az, cosel, 0---0 X
2H(z*)x,=[0,0}7. 4.4)

For the stochastic version of the system, the dynamics (4.1) of
the BOMP formulated in rectangular coordinates are corrupted by
additive process noise w; where w, is zero mean white noise with
second moment Q, = E{ww}. Since the target model is
assumed as a continuous first-order Gauss-Markov process along
each axis, Q, is obtained as the resulting discrete process noise
variance where Q* is the assumed power spectral density for the
continuous input process. Q, is written as

3
0= 50' S(At-7)CQ*CTeT(Al ~7) dr @.5)

where ¢(At — 1) is A4, with Ar — 7 replacing A¢. and C =
[0:0:1,)7. Note that Q, of (4.5) satisfies Assumption 3 of Section
III-A. Similarly, in the noisy environment, zero mean white noise
process v, = [v,, vy,]7 is added to A,(x,) in (4.3) as (3.2) to form
the noisy measurement equations where v, and v, are azimuth and
elevation angle measurement noise, respccuvely and E{vu7} =
¥, (= J!sz

The pseudomeasurement observer [21] can be extended to the
noisy environment. In that case, the pseudomeasurements [i.e.,
(4.4)] are corrupted by the state-dependent noises. These state-
dependent noises together with the gain structure of the pseudo-
measurement filter (PMF) (1], [21] cause the biases in the
estimates. In the Appendix, the biases in the estimate of the PMF
are analyzed by using the innovation processes for the case where
the process noise is included, whereas in [3], the bias analysis for
the no process noise case is studied by a batch estimation scheme.
Since the noise variance R, corresponding to the pseudomeasure-

LCH (‘!.. Q"‘:' 4 :':,t ‘: o"'t‘ .o ..h"...'
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, MISSILE POSITION note that sin az = Y,/dy, cos a2 = X,/d,,sin el = -Z,/d, and

) cos el = d,/d,, Theretore, Dy, = D (z!, %) and D, = Dy (27,
TARGET POSITION 2y Hence, o, and 3, in (4.9) satisfy

af_|D,. O sin azX, - cos az¥,
[B‘] B [ 0. Q:,] [sin eld) +cos elZ,] . (410

If we add and then subtract D, sin el/D, to (3, of (4.10), then

B,=Ds (sin el cos azX, +sin ef sin az¥,

+cos elZ,+sin el (d), - 1/D,)). (4.11)

The last term in (4.11), which we denote by 4,(x,, &), can be
bounded as

8.6, €Y (xis %)
=d\d\,~ (XX +Y,T)<(X,- X)?

+(Y,-Y)=éle

(4.12)

Xy where f{x,, X) = tan el/(d,d,, + Z,Z,). This bound is used to
show that the elevation angle measurement is approximately
modifiable. By using H(z*) given in (4.4), (4.10) becomes

a | e |, 0
Y' B, B; 5,(x,, €)

Fig. 1. Intercept geometry and measurement angles. D, 0 0
_1 Y, ©o
0." o, | s, ] - ¢
ment, as shown in the Appendix, is associated with the state-

. r . .
dependent noise (A.2) and v, is the noise variance of the original By using (o, ] of (4.13) and (4.4), the measurement residual in

.

4.9 i
angle measurement, v; and R, are related by (4.9) can be written as
v =D_lR D_T (4 6) h,(x,-)—h,(f,)z —EIHJ(z,*)(xi—il)+El[Ol al(xl’ e_l)/,_DZ,]r
where the range matrix D is 4.14
W 0 where
D= : @n (D), an"! )/, O
4] Xf+Yf+Zfr i 0, D, tan-! 8,)/B; 4.15)

Since the actual state x; is not available, v, is approximated as  If (4.13) is used explicitly in (4.15), then (4.14) takes on the
s b AT approximately modifiable form as defined in Remark 5 where the
7i=Di R.D; (4'8) modifiable part is gl(zr' f:)éi = —EI(ZI*) XI)HI(ZI*)e-i where EI is

where D, is D, calculated using the state estimates %, of the £, evaluated with §; rather §;, and the remainder term becomes
estimation algorithm. -{(E, - E)H(z"é, — EJO, §,(x;, é)/D,]7}. Note that the

nonzero element of E, — £, can be written as an explicit function
B. Modifiability of h(x,)

Of 6/ as (B: mn_l (6:/(1 + 616:)) - 6« tan-l Bl)/Qz,/BIBI' ThlS
In this section it is shown that the measurement equation of the  femainder has the property ascribed to the term &(x;, €)¢, in
‘two-dimensional BOMP is a member of the class of modifiable Remark 5 in an appropriate region D since as [[¢|] — O this

functions, and A,(x,) in (4.3) for the three-dimensional BOMP is  remainder is proportional to §,(x,, ) which has the quadratic
approximately modifiable. The measurement residual in (2.5) is

: error bound given in (4.12). By inspection of f,(x,, £), the region
now manipulated for the BOMP as D appears to be all of x, ¥ € 2° except for 1/(1/d,; + 1/d;, +

Y, , 1/lcos (el — el)]) < e where ¢ is some small positive number,
tan-! x|~ tan~! X and dz' and e/ are the values of d; and e/ using the state estimates.

hi(x,)~ (%) = ! For the noisy environment g,(z,, X,) is used to calculate the gain

-z _2 of the MGEKF, where z, in this case is of the form given in (3.2).
tan ! —d—' —tan' | —— Although the measurement e/ is approximately modifiable through
I T

B, of (4.13), the measurement az belongs to the class of modifiable
functions {21].

L

Py ['a"_: Z'] 4.9) C. Simulation Results and Comparisons
an-! B,

N The results given in {21] are for the two-dimensional BOMP
whered, = JX? + Y LetD,, 2 d, /(X X, + Y.¥)and D;, £ and noiseless environment. The simulation study given here
d,/(d\d,, + Z2) where d;, = JX? + Y! + Z!. Furthermore,

considers the three-dimensional BOMP where both the noisy and
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noiseless environments are included. The launch scenario is given
by

Xo=3500 ft, Y,=1500 ft, Z,=1000 ft
vx,= — 1100 fi/s, vy,= — 150 fus, vz =~ 50 fus
ar,=10 fus®, ar, =10 fUs?, ar, =10 fus?
and the initial estimates X, of the state x, are assumed to be
Xo=3000 ft, ¥,=1200 ft. Z,=800 ft
bxg= =950 fUs, by,= ~ 100 fs, dzy= ~ 100 fis
dry,=0 fs?, dr, =0 fi/s?, dr, =0 fus?.

The filters (or observers) are initialized with a diagonal P, matrix
where

(4.16)

The noise variance corresponding to the pseudomeasurement R,
(see the Appendix) is assumed constant such that R, = 0.1 [, and
the variance of the process noise Q, in (4.5) is found using the
power spectral density Q* = 0.1 /;. For the system dynamics,
A = 1 is used, and the sampling rate used in the simulation is S0
Hz.

The value of weighting between control effort and terminal
miss in the quadratic cost criterion to generate the guidance
command u, {7] is 10%. Clearly, in practice the control law is
mechanized by using the estimated value of the states rather than
the states themselves as implemented in our simulation. However,
since the emphasis here is on filter performance, the guidance law
is only used to establish trajectories from which the observers and
filters are tested and compared.

The performance of the observers (PMO, EKO, MGEKO) and
filters (PMF, EKF, MGEKF) is measured here by using the
histories of errors in the estimates. By comparing the error
histories of the observers to those of the filters, the biases, so
prevalent in the PMF, can be demonstrated to be effectively
reduced in the MGEKF.

As shown in Figs. 2-4 for the deterministic system, the
responses of the PMO and the MGEKO are quite similar,
although the PMO performs a bit slower than the MGEKO. If the
initial errors were reversed in sign, then the PMO performs a bit
faster than the MGEKO. Note that the responses of the MGEKO
in this case are obtained by using the same algorithm as the

MGEKF. Therefore, the gain &, is a function of the past
measurements. This is done to compare the performance of the
observer and filter with the same structure but used in different
noise environments. Clearly, the EKO performs poorly for these
relatively large initial errors.

For the stochastic environment, the results of 100 runs of
Monte Carlo simulation are presented in Figs. 5-7. The error in
the range estimate at a specific time { in Fig. 5, for example, is
plotted by using the value JE{ex,} ? + E{ey,}' + E{ex,}? where
E{ex,} is the averaged value of the error in the estimate of the X

over 100 runs of Monte Carlo simulation. Similar rms-type
quantities are plotted in the other figures. Figs. 5-7 show that the
estimates of the PMF are biased away from the deterministic
responses of Figs. 2-4. While the MGEKF shows good tracking
performance, the EKF remains poor. When the initial errors are
small, the three observers for the deterministic system perform
equally. However, for the noisy environment, the EKF and the
MGEKF perform similarly, while the PMF still shows biases
which are quite affected by P, as shown in (A.17). This is
particularly true for the short-time engagement problem of the
homing missile. Therefore, at least for this scenario, very
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Fig. 2. Errors in range cstimates of the PMO, EKO, and MGEKO for
noiseiess environment.
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accurate estimates of the nitial states are critical tor the PME and
the EKF. while the MGEKF pertorms welt under all conditions,
To determine the deviations 34 and Ac starting (rom the given
initial state and state estimate, the intermeduste MGERE was run
using the same ensemble of measurement and PrOCess noise
sequences as used in evaluating the MGERT  Ohver the ensemble
of reahzations of these deviations. the houndedness of AL,
required by Theorem 2 was never even ciose to beine violated and
the stochastic stability ot the MGERE ny condition (3 38) way
always satisfied.

V. CONCLUSIONS

A new observer, called the MGEKO tor a class of nonlincar
functions called modifiable functions. is designed such that it 15
globally stable. A stability analysis ot the MGEKF is performed
by introducing as an intermediate step a nominal filter called the
intermediate MGEKF. In Theorem 1. the intermediate MGEKEF is
shown to be globally stable in the probabilistic Hilbert space L,.
Sufficient conditions for the MGEKF to be globally stable are
found in a similar way to that of the intermediate MGEKF, but a
condition on the allowable deviations to be nondestabilizing is
required in Theorem 2.

The MGEKO and the MGEKF are applied to the three-
dimensional BOMP formulated in rectangular coordinates which
by Remark S is approximately modifiable. For the three-
dimensional deterministic formulation of the BOMP. the MGEKO
performs in the simulation aimost identically to the PMO.
However, the EKO can only estimate the states when the initial
errors in the estimates are small. For the stochastic formulation,
these observer structures are retained. While the estimates of the
PMF are biased, the EKF and the MGEKF show seemingly
unbiased characteristics in the simulation. However, the EKF
appears only stable in the small. Although the simulation results
indicate that the MGEKEF is stochastically stable, checking the

conditions of Theorem 2, with respect to an ensemble of
measurement and process noise sequences starting from a given

initial state and state estimate, produces additional evidence of
stochastic stability.

APPENDIX

The objective of this Appendix is to generalize the resuits of [3]
and to show the structure of the PMF used in the simulation and its
inherent biased characteristics in a stochastic environment.

The pseudomeasurement y,(z¥) in (4.4) is changed to the
following form in the noisy environment:

yi(z)= [8] = H(z)x;+ px;, v) (A1)

where the noise corrupted z; is from (3.2), and the state dependent
noise u, is

pilx, v)= =X+ Y)YV, (X2+ Y24+ 220, )T (A2)
vy, and v, are the original angle measurement noises defined in
Section IV-A.

The algorithm of the pseudomeasurement filter (PMF) (1],
[21]. similar to the Kalman filter, satisfies

£ =A%+ Bu, (A.3)
£=%+K(y(z)- H(z)%) (Ad)
P,=(I-KH()M, (A.5)
K=MH () (HIMH(Z) +R) (A 6)
M, =APAT+Q, (A7)
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Therefore, the error in the estimates e, of the PMF can be wrnitten,
by using (4.6), (A. 3, and (A 4), as

- i
e=vienr O b ad e = DU ks,

;v

(A.8)

L
where

(A.9)

Vi, = H (-KH)A =TT 1.4
k=g A=)

Since A, in (4.2} is a constant matrix. the subscript 1 is suppressed.

In order to understand the brased behavior of the PMF estimates. a

closed-form expression for the error e, is to be deternmined.
Introduce the transtormation 7, as

‘Uw _ ‘ul‘l

2 I R
_ A"r+H‘rR, ]H,QA r H"R, ]H‘A
- QAT A

1[%]

(A.10)

where U, € H™*", V, € 7" Let Uy = P, ', and Vy = 1.
Then,

(u’ — ... (110
eV’ =TTi-y TiTo .vo
é ¢T|.|(il 0) Pll !
=1 vn,6, 0 1]

Since the solution to the discrete Riccati equation is

Vo olis 0)

Yoz alis 0) (A1

Pl= [B'/rz',(i' O)PO_ ! + ‘J’vz‘z(i- 0)”¢"|'1(i| O)PU ! + ‘J’r].)_(iu 0)] -

(A1)
then P, = V.U '. L4 in (A.9) can be written in terms of U,,
after some manipulations, as

LA=u Tu’ . (A.13)

Now, ¢, due to y;’s can be written, by using (A.1), (A.8), (A.9).
and (A.13), as
(ei)“ = P,H,TRI‘ 'H,x’ +L AP, _ lH,rﬂ R 'H  x

I R I+'..

i
— -T THTR -
=PV TN VIHIR 'Hx,.
j=1

(A.1d)

Similarly, the e, due to w, and the ¢, due to &, can also be written as

i-1

(e).=PV Ty UTA 'u (A.15)
7=0
and
(et)eO = Plx”IA rp()’ Iel)' (A 16}
Therefore,

-1 '

e=PV T<P0 leg+ >, UTA 'w,+ 3 VTHIR, ',\-j>.

J=0 7=

WD %0
Wt LR . 'c':‘o':':'




i~
.

s

R R ¢
I

A |

2
)

P

SONG AND SPEYER: MODIFIED GAIN EXTENDED KALMAN FILTER

Because of the last term of (A.17) which is the error due to the
state dependent noise u. E[e,] is nonzero.
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The Modified Gain Extended Kalman Filter and
Parameter Identification in Linear Systems*

TAEK L. SONG* and JASON L. SPEYER+

A new nonlinear filter, developed for a special cluss of nonlinearities. has a universal
lincarization with respect to the measurement functions and supertor conversence and
stability characteristios when applied to state and purameter estvnation problems in

linearized systems.

Key Words  Estimation: filtering:
estimation: state estimation.

Abstract  For a special class of systems, a general formulation
and stochastic stability anuabysis of & new nonhinear tilter. called
the meditied gain extended Kualman filter (MGEKFL s
presented. Used as an obsenver, 1t iy globally exponentially
comergent. In the presence of uncertanties a  nomunal
nonreabizable tilter algorithm s developed for which global
stochastic stability 1s proven. With respect to this nominal tilter
algorithm, condiions are obtained such that the effective
deviations of the reabizable filter are not destabilizing. In an
appropniate coordmate Irame. the parameter identification
problem ofa linear system s shown to be a member of this special
class. For the example problems. the MGEKF shows superior
comvergence characteristues without evidence of instability.

1. INTRODUCTION
FOR A SPECIAL class of systems. a general
formulation and stochastic analysis of a new
nonlinear filter. called the modified gain extended
Kalman filter (MGEKF). is presented. The essential
idea behind the MGEKEF is that the nonlinearities
be “modifiable nonlincarities™ implying a type of
universal linearization. This simple notion, defined
in Section 2. is the central idea used in developing
the structure of the nonlinear estimator. The
analysis for the MGEKF was first given in Song and
Speyer (1985) for the case of linear dynamics and
modifiable nonlinear measurement function. Here,
the general MGEKF is presented for a stochastic
system where both the nonlincar measurement
functions and nonlincar dynamics are in the class of
modifiable functions. The stability analysis pre-
sented here is sutficiently different from that of Song

* Recenved 18 October. 1983 revised 19 June 1984 revised 16
July 1984 The ongmal version of this paper was not presented at
any  TFAC Mceeune  This paper was recommended  for
publicittion 1n revised form by Associate Fditor Y. Sunahara
under the direction of Fditor P2 Co Parks. This research was
partially supported by Eglin AFB under contract FO8635-82-C-
090, AFOSR under Grant AFOSR-X4-0371, and the Joint
Services Electronies Program under contract F49620-77-C-0101.

* Department of Acrospace Engineening and  Engineering
Mechames, University of Texas at Austin, Austin, TX "8712
USA
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and Spever (1985) to warrant presentation. This
generalization 1s parthy motvated by the purameter
identification problem in lincuar systems. Itis shown
that 1n an approprate coordinate frame. the
nonlinear dynamics, assoctated with an augmented
state vector which includes the unknown para-
meters, is a modifiable function.

Recursive identification of system parameters has
been widely studied mn recent vears. Among them are
the identification procedures developed by Landau
(1976) where his model reference adaptive systems
{MRAS) technique is analyzed solely on the bases of
deterministic stability considerations by applying
hyper-stability concepts to the equivalent feedback
representation (EFR) of the algorithm. Ljung (1977)
has developed a useful method. called the ordinary
differential equation (ODE) method. 1o analyze the
convergence of the recursive identification algor-
ithms in the presence of uncertainty. Ljung (1979)
has studied the convergence analysis of the
predicted state extended Kalman filter (EKF)
applied to the simultancous identification of the
states and parameters of lincar systems by using the
theory developed in Ljung (1977). Ljung (1979) also
suggested a modification 1o the predicted state EKF
algorithm to assure its asymptotic convergence. The
analysis in Ljung (1979) requires that the stability of
a nonlinear system be tested so as to insure that the
estimates  of the parameters are  stable  and
convergent to stationary values. These stationary
values arc obtained by keeping the currentestimates
of the parameters inside the stability domain detined
such that tie estimates of the states are exponen-
tially stable. Weiss and  Moore  (1980)  have
developed an exponentially convergent estimation
algorithm which does not require a stability test by
incorporating the Kalman gain calculations inside
the system matriy of the state estimates. The

convergence characteristies of the estimates are
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60 T. L. SONG and J. L. SPEYER

asymptotcathy equivalent to the modified algorithm
of Ljung (1979). However. the modification in Ljung
(1979) and Kulman gain calculations in Weiss and
Moore (1980) certainly require more computational

effort. Moreover. in those papers, the cause of

instability of the algorithm is rather overlooked
while concentrating on obtaining stable estimates.
In tins paper the MGEKF is applied to the
paramcter identification of lincar systems. In
Section 2. the globally convergent observer. called
the moditied gain extended Kalman observer
(MGEKO). is developed for a special system
composed of both nonlinear dynamics and non-
lincar measurements in an etfort to generalize the
result of Song and Spever (1985). The gain
algorithm of the MGEKO is the same as that of the
Kalman filter. By using Lvapunov's second method.
the resulting algorithm is shown to be exponentially
convergent. Another exponentiallv convergent
algorithm for the parameter identification problem
can be found in Anderson and Johnson (1982). In
Section 3. a stability analysis of the MGEKF is
studied in the probabilistic Hilbert space L, by
introducing an exponentially bounded nominal
filter called the intermediate MGEKF. Later.
sufficient conditions for the MGEKF to be
exponentially stable in L, are obtained by
comparing the esumates of the MGEKF with those
of the intermediate MGEKF. Besides the general-
ization of the results of Song and Speyer (1985). a
stability analysis for the parameter identification
problem is studied. In Section 5 two examples of the
application of the MGEKF to the parameter
identification problem are presented. A simple
example of Ljung (1979) illustrates that a modi-
fication in Ljung (1979) is similar to the MGEKF
algorithm, at least for the transient period which is
critical to stability of the estimates. Furthermore.
the filtered state EKF may have global stability for
this example. A convergence analysis of Ljung
(1979) is studied for the MGEKF using a simple
example and compared with the filtered state EKF
analvzed in Westlund and Tysso (1980) and Ursin
(1980). However, when the process noise variance is
not known exactly, the MGEKF has slightlv bigger
biases than the filtered state EKF. Finally, the
MGEKEF is applied to a pole identification problem
of a lincar time-invariant system excerpted from
Saridis (1974) where the EKF is shown to have poor
performance. This apphication also illustrates the
robustness of the MGEKF since statistics of the
process noise model are mismatched with that of the
actual norse. Note that since it is usual to model the
parameters as constants, the parameter estimator
gams for large time are inversely proportional to
time. and therefore. converge to zero. However, our
results extend to parameter models which for
example are Gauss Markov so that the parameter
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estimation gains remain finite.

2. THE MODIFIED GAIN EXTENDED KALMAN
OBSERVER (MGEKO)

In this section. a globally convergent observer
called the moditied gain extended Kalman observer
(MGEKO) 1s developed for a class of nonlinear
functions (Song and Speyer. 1985). Song and Spever
(1985} have developed the MGEKO for systems
with linear dynamics and nonlincar measurement.
This is generalized here to the case where both the
system dynamics and measurements are nonlinear
functions of the system states.

Consider the deterministic discrete-time non-
linear system governed by the following equations

(2.1

(2.2

'\‘l‘ i :,(\x’

sk =hix)

where i€ Z . (the non-negative integers). x, € 5" are
state variables, and z¥ € 29 are noiscless measure-
ments.

The notion of a modifiable nonlincurity is defined
as

Definition 1. A time-varying function ¢,: 2" — RPis a
modifiable nonlinear system function if there exists a
p x nume-varying matrix of functions #,: 74 x &"
— =""" 50 that for any x. YeZ"and e Z ..

alx) — ai(X) = 7 ZF.XHx — X)

(2.3)

where -* = Ii(x).

Note that #(z*. 5,)(x;, — X,) in (2.3) 1s a universal
linearization with respect to the measurement
function h;(x;) without any approximation. Notice
also  that  #,(zF.X) = U(h(x).X) # #(h(X). %)
where this latter quantity is (if g, is differentiable) the
differential of «; evaluated at X, as used in lincar-
ization.

Although the class of modifiable functions is
small. it contains nonlinear functions used in many
practical estimation problems. Two examples are
given below which illustrate a modifiable non-
linearity in the dynamics and in the measurement
function.

Example 1. Consider the simple lincar dynamic
svstem with an unknown coctlicient which s
analyzed for the noisy case in Section §.
Ul»l = “n -|* = .‘.l

Yoo = (),\V:- (24,

where ) = [y 00 This s into

modiftable form as

“n _"1‘ ()I,Fl ()l_vl - {)I.‘.l + Dl Y- {)l ,in
oot T 0 -0,

casth

put

= # (XN, =\ (2.5)
F AR T "" V| f\"ﬁ,‘r
bt W e e}
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where

Wi(z* X)) = 0. = S (2.6)
l('l*'l - 0 1 . A¥ T U,”_O, . -

Note z* =3; 1s used in (2.6). Note that since no
differentiation 1s assumed. parameters modelled as
discrete valued random variables can be included
(Marcus and Westwood, 1984).

Example 2. For the noiseless two-dimensional
bearings-only measurement problem (Nardon and
Aidala, 1981). the system equations are governed by

Xi-j} = .44\',‘ + Bll, (27)
F=tan (Y, X)) = hix) (2.8)

where 4 and B are known constant matrices. u; 1s a
known guidance command. and x, is the system
state consisting of two relative positions (X ,. 1;). two
relative velocities (vy.vy ). and two target accel-
erations (dr ., dry }such that x; = X, Yovy vyoar,,
ar,]!. Then the nonlincar measurement function
hi(x;) of (2.8) can be manipulated into the form f(x;)
— (h(X) = #dz*. X)) (x; — X;) where (Speyer and
Song, 1981)

Uz¥. X)) = Ditan " 'z) 2, HizF) (29}

where H(z*) = [sinz*, —cosz*. 0, 0. 0, 0].
D; = 1(cos=*X, +sinz*Y,). and =% = D,H(z¥*)X..
The three-dimensional bearings-only measurement
problem is shown to be an approximately
modifiable function in Song and Speyer (1985).
Other examples of modifiable functions are found in
Song (1983).

If the observer for the system of (2.1) and (2.2) is
selected in the form of the extended Kalman filter
(EKF), then

By = fi(%)
= Qi + kl(:I* -

(2.10)

h(3)) (2.11)
where X; is interpreted as a propagated estimate at
time i, X; is interpreted as an updated estimate. and
ki is some gain sequence that may depend upon past
and present data. Suppose /(+) and h(-) of (2.1) and
(2.2) are modifiable functions such that

JAx) = (%) = o qzE A, — %) (212)

and

hifx)) = h(X) =G (=X X Hx, = %) (2.13)

where </ (z*.X,)e 27" 4 (X % 0e 297" Then. the
actual errors in the estimates of the observer of

e L
).. L) r' l‘ l L '.('0' c.“j.“l, Y ‘l‘,’“'!‘. i.'.i, (l.“" .‘. ' ‘...‘ “ ,. .‘." .‘ “ 'Q. .l. "’.. L, “.‘."....'...' ) ‘\.‘.‘. " .‘. " ‘. WGP Y

M and (2.0 can be written by usmg (2.1),(2.2),
(2.10) and (2.1 1) as

Cooy SN, XL, = AAZE N,

(214

and

2N =X = — k4 (5500 = L, (2.15)
Stnce (2.14) and (2.15) ure written without any
approximations and thev are m the same form as
that of a hincar estimation system. a4 particular guin
scquence based upon Kulman filter-ts pe updates s
chosen. Specitically.

. A AT
ki =mz5. 50004,

X zE 0+ )
(2.16)
po=U = K52 5nmd — Ko z2x 3" + ko k!
(217
A N E N R R LA S B F Y

Note that if we had the lincar estimation problem
with dynamics

oo = AU+ o {2.19)

and mecasurements
=G AN oy (2.20)

where the white noise sequences o), and v, have
covartances  Q, and ;. respectively, then
(2.16)-{2.18) would be precise equations for the
covariances ny; and p, of the one-step predicted and
filtered estimates of &, respectively. Here we are
assuming that =* and ¥, are known. We will view Q,
and 7, as design parameters and will call m, and p,
the “pseudocovariances”™ of ¢, and ¢,, respectively.
If (+/,.%%.) is uniformly observable and (/.. Q! %)
is uniformly controllable. 1t can be shown that the
error dynamics of (2.14) and (2.15) are globally
convergent to zero by using the Lyapunov function
Viie) =¢/p/ e, in a way that is similar 1o the
approach used by Moore and Anderson (1980) and
McGarty (1974). Note that the uniformy obsers -
ability and uniform controllability imvolve a rank
test of the corresponding Gramiuans. Unfortunately,
t«/. %) and (+/,.Q! ") for modifiable nonhinear
systems are realization dependent such that the tests
are not g priori checkable.
Remark 1. In the next section white measurement
and process noise sequences are added 1o the
measurement (2.2) and dynamies (2.1 I the gan
algorithm of (2.16) is used i this stochastie
environment. biased estimates are expected. since
the gain and the residual of (2.01) are directhy
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correfated  (see Song and  Spever. 1985, for
additional detailr. Therefore. a gain algorithm
simtlar to that of the EKF which ensures that the
gain is a function of the pust measurements only s
recommended. However, if the measurement cqua-
tion 1s a nonlinear function of the states, the useful
relationship between the observability Gramian
and the p, matrix in (2.17) 15 no longer available.
This discussion motivates the assumptions required
in the development of the modified gain extended
Kalman tilter (MGEKF) presented in Section 3.

3 THE MODIFIED GAIN EXTENDED KALMAN
FILTER iMGEKE)

In this section we develop the MGEKF and study
its stochustic stability, As stated in Remark 1, the
gain algorithm of the MGEKF 1s altered from that
of the MGEKO in order to reduce the biases due to
direct corrclations between the gain and the
residual.

Consider the stochastic case where the nonlinear
system of {2.1) and (2.2) with additive noise becomes

'\‘(=/A|—l‘~\'|*!)+(')|'l (31'

o=l + v = F oy (3.2)
where again f(-) and h(-) are assumed to be
modifiable functions and where (¢} and v} are
zero-mean independent noise sequences with finite
second moments Q, and ;. respectively. It is further
assumed that the ;s and v;s are independent. Based
on Remark 1, the structure of the MGEKF for the
above system is similar to that of the MGEKO in
Section 2 except that the gain algorithm is altered.
Furthermore. since z* in (3.2) is not available
because of the measurement noise v, =¥ is replaced
by =i in the gain formulation. If h(-) and f,(-) are
modifiable nonlinear functions and h,(*) is differen-
tiable. then the algorithm of the MGEKF is
summarized as

‘{‘l=/l—l(*\=|*]) (33)

X,o= 8+ Kz = h(Tn (3.4)

m, = ’/l - l‘:, R R \:1 I’pl I"'/a' I(:: ~|--\‘A: -I)T + Ql 1
(3.5

k=l ih ! ! (3.6)

po= = ks gz 8ol = kG s’ + kok!
(3.7)

x|
where i, = ‘ '_'( ' )f =4 (%)%,
[Z5 VIR PRI

Remark 2. Note that if the predicted measurement
e s used in (2060 rather than 2F then the gainm
(2.16) reduces to that of (3.6 In this way. the gain of

. - . ! ; I A
oy ol PR YOO (" W 0
. .’..,‘.‘."."Q'T:" ,Z“."";’j.'?".ll."_|.¢l\'...’r‘.'l!“k"i’."v (1A "‘.‘"l ‘n‘.‘.‘"

the MGEFKE 15 m the form of the EKF which
ensures that the gam s only a function of past
measurements. Since the stochastic estimator (3.4
can be rewnitien m a moditiable form without any
approximation as

N, =\ o+ Gy, = X))+ Ay (38
where C 2, 4,025, %, the error equation produced
from (3.8 ¢3.1) and (3.3) are exact. Although C s
notimplementable. the form of (3.8) 15 important for
our analvsis of the behavior of the algorithm.
Furthermore, it is cernitical to the MGEKF
performance that 4, in (3.7} be caleulated using z,. In
contrast, the ERKFEF algonthm dJaswinski. 1970)
calculates 4, using /r,0x,) in (3.7}

3L Stability analvsis of the intermediute MGEKF
In order to facihitate the stochastic stability
analysis of the MGEKF. as a first step weemploy an
unrealizable estimator. which uses =X to calculate
the gain k. Although this scheme is not imple-
mentabice for the stochastic case. it forms 4 nominal
to which the implementable filter is compared. This
estimator. called “the intermediate MGEKF™ for
convenience, is given by the following algorithm.

XF=f08F ) (3.9)
XF o= AR - X)) (3.10)
ME = od, (L NE Rl L NE )

+ Qi (311
k* = g i mEine) + 07! (3.1
pr = (I — kr6 (2 SFnmEl — kXG5

+ kxo kX! (3.13)
where the superscript * is to distinguish the
estimates of the intermediate MGEKF from those
of the MGEKF. The essential change in forming the
intermediate MGEKF is that ¥ rather than -, 15
used to calculate m; and p, in (3.5) and {3.7).

We consider the stability of the intermediate
MGEKF by using Lyapunov’s second method in
the probabilistic Hilbert space L,.

Before  proceeding  further.  the

definition is introduced.
Definition 2 (Tarn and Rasis. 1976). A discrete
stochastic process v, is said to be exponentiaily
bounded in mean square with exponent o, if there
existsconstants ) < 6 < 1, K = 0.und K, > Osuch
that

following

it e Ky e Kol - oy REES
5017 i (3 14y s detined in the probabibstic Hilbert

space Ly such that

i, = vVivreody, (RERY
™ L TS VTR 10, YO IO 7, )
'.Qq,l"," ‘u “Q\ AN LA D a‘l}‘!ﬁ WL —".-'l “
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where 7tx,) is the probability density function of x,.

The errors in the estimates of the intermediate
MGEKF can be written from {3.1). {3.2). (3.9) and
{3.10) as

SE o * — —% ok x ,
e =N, = &= st X et ooy

(3.16)

er = v, — ¥ = (I — KF6,(c5.X0)8F — kX,

-f e

e -

* . % o >k K. *
Ll"/l‘l(“l' l~<\l—l)‘l~~l - I\i Vi + Li(')l—l

(3.17)

where [* is defined as [* = [ — k¥4 (z*.x*). and
where (3,161 1s introduced.

Lyapunov functions for ¢f and ¢F are in the form
of

’ — T k1 %
‘l“’l*) =¢r D €

(3.18)
and

Tuexy = e*Tmx'e*. (3.19)
Before stating Theorem 1. the following assump-
tions are needed.

Assumption 1: o/ (¥ X*) of (3.16) is uniformly
bounded and invertible.
Assumption 2: [* in (3.17) is invertible for all ie Z ..
Assumption 3: Q, 15 uniformly bounded from below
such that @, 2 2 I >0forallieZ..
Assumption 4: p*~ ' in (3.18) is bounded from below
by a constant matnx x -/ for all ie Z, such that
Vel = ller "pr et = el (3.20)
Remark 2. Assumptions | and 3 are not terribly
restrictive. Note that for the MGEKO described in
Section 2. the uniform observability of (.</,.%;) is
sufficient to guarantee that L, defined in (2.15), 1s
invertible and that p, ' is uniformly bounded from
below. The corresponding conditions on I} and p, !
in Assumptions 2 and 4 are not unreasonable.
although there 1s no such simple a sufticient
condition that can be checked.
Theorem 1. The errors in the estimates of the
intermediate MGEKF for the system of Equations
(3.1) and (3.2) are exponentially bounded in mean
square with exponent o under Assumptions 1, 2, 3
and 4.

Proof. See Appendix 1.
The objective of the following s to show that
when the measurement equations of (3.2) 1s linear in

s . OGO ORI .40 OO0
RN "A"-.'."J!'w‘ WY 'I’c%’a!“x‘Sx"'ﬂ“!".‘.l L) "0.,"'.‘,'\‘!'4‘
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X, Le.

o= Hx, +, (3.2
Assumptions 2, 3 and 4 can be relaxed. Instead an
observability assumption 1s used. Relaxing Assump-
tion 3 is important when applying the MGEKF to
the parameter identification problem. The algor-
ithm of the intermediate MGEKF for this case can
be written as

XK = (xR (322
XF=XF 4+ AM, - HIE (323
mF = o/ (zE NP (s N

+0Q, - (3.24)
k* = m*HI(Hm*HD + ) ! (3.25)
p*¥ =1 — k¥H,m®. (3.26)
For the linear measurement case.  since

H, =4, = h,. the update formula for p* of the
intermediate MGEKF is essentially the same as that
of the Kalman filter. Therefore. positive definite-
ness of @, in Theorem | can be refaxed 1o show the
global stability of the intermediate MGEKF. Witha
small modification of the method suggested by
Moore and Anderson (1980). the invertibility of
o/ {zF, ¥*¥)can be relaxed to prove the stability of the
intermediatec MGEKF. However. here the in-
vertibility of .o/,(z¥. X¥) 1s kept to develop Theorem
2

An important aspect of the case of linear
measurements is that for k* = p*H!+, ' the
following inequality holds for every Q, 2 0 and
nonsingular ./, (see the Appendix in Moore and
Anderson, 1980, for a more general casc)

P.‘:xl — ] II-:TP(* A,

2o/ THE T HLE o (327)

where [* = (I — k*H,). Moreover. il (/. H,) 1s
uniformly observable, p*~ ' is uniformiy bounded
from below. Therefore, Assumptions 2. 3 and 4 are
not needed in the prool of the exponenual
boundedness of the errors for the intermediate
MGEKF.

Note that the Riccati equation for the in-
termediatc MGLEKFE can also be obtained from
minimizing J

v
Jy=xiph g+ Y XJH TH
[ |
+w/Q, 'w, (3.28)
subject to v,y = </ x, + b, The mimmum value
of Jyis vipt vy Notethat @, of (3251 related to
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Q. n the algorithm of the intermediate MGERF as
Q. = h0hb! and Q, can be factored as Q. = Q, 0, .

Lemma |
Q-"pt Q- is umformly bounded forall N =/ .

Proof. If one chooses x = Q v where ve 27 then
x.€ Range (1) where Range (1) denotes the range
space of the controllability Gramian W Since
Range (18) = Range 10, x. 1s a controlluble state.
Therefore. from the fact that the mimmum cost of
{3.28) s finite for any controllable stutes, x/pt 'y,
=3TQpt Qv < M <« forall N=2Z . and for
all ve 3"

Before stating Theorem 2 consider the following
observability assumption.

Assumption 3: For every A and some N > 0, there
exists a § > (), such that

k+N
Sk',\.k = E (DI’,‘I\I{[[[I(:)I.I\ % l;l >0 (3:9'
L=k
-1 )
where ¢, = I1 o/, (Note that Assumption 35
=k

implies Assumption 2.)

Theorem 2. If the measurement equation is lincar as
{3.21). Assumptions 1 and 5 are satisfied. and the w s
and v;s have finite second and fourth moments, then
the errors in the estimates of the intermediate
MGEKF are exponentially bounded in mean
square with exponent o for positive semidefinite Q.

Proof. See Appendix 1.

3.2 Stubility analyvsis of the MGEKF

So far the exponential boundedness only of the
intcrmediate MGEKF has been proved. The
objective of this section is to obtain sutficient
conditions for the MGEKF to be exponentially
stable by comparing the estimates of the MGEKF
with those of the exponentially stable intermediate
MGEKF. Such conditions are found again by using
Lyapunov’s second method. In this way. the
conditions for the deviation from the nomimal to
belong to the set of nondestabihzing deviations
{Safonov, 16..) are obtained.

The errors in the estimates of the MGEKE can be
written from (3.1)., (321 (3 3) and (34) a8

R I URY B SN - [ TR S (3.30)

whee

6= % -, =,

. Ty
it ."’\".'t".l

L) B R ndUalinG
AR NS "-‘.0'&

The only difference between (3301 and (3.31) of the
MGEKE. and 13160 and (3.17) of the intermediate
MGEKE. results from the algorithm for the
caleulution of the gan filter. That s, the MGEKF
uses 2 instead of 2 m the gaim algorithm. Therefore.
N, = Dvpoves ov. L contnibutes to the diference
in the gwn caleulation and consequently N,
aflects the estmates. </, ., and  4,. Smce
Cr=A7%z707) o evaluated by the inter-
mednite MGERED then 1t s comvemient 1o
write O = A vz v of the MGEKE as used
in (230) as the sum of C* and the perturbation
AC oS

C, = CF - AC, (3.3

where AC s dependent on = and N, . Similarly.
<L, s X, prand A, of the MGEKF 1s defined as

'-/, 1':,‘ ].\‘, = '/, 1(:,* ].,\.',*,]’*‘A.’/,‘].
(333
Kk, = A¥ + Ak, (3.34)

Consider the following sutficiency theorem which
states the conditions for the deviations AC, and
A/, 1 10 belong to the set of nondestabilizing
deviations such that the errors in the estimates of the
MGEKF are exponenually bounded.

Theorem 3010 Ak, in (3.34) is bounded and AC, in
(3.32y and A+, ., in (3.33) belong to the set of
nondestabilizing deviations such that

(I~Cr=AC) ' pr "U-C*-AC)Y=-mF '<0
(3

(%)

3

(o (2 LX)
+ A/ ) mE N, cE LR

+ A,y —pr <0 (3.36)

where p*.oom* and pf | are quantuties from the
intermediate MGEKFE . then under the Assumptions
1. 2. 3and 4 for the system of (3.1) and (3.2}, or the
Assumptions 1 and 5 for the system of (3.1} and
(3.2, theerrorsin the estimates of the MGEK F are
exponentially - bounded in mean  square with
exponent o,

Proof. See Appendin 1,

Remark 34 Conditions (235) and (3 36) can be
combined as

(d |+ A, |)’l1".' *A(',)'p“ !
(X = ACH/, \+ A/
-ttt 0 (337
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where o/, L} =
quantities from the intermediate MGEKF. If the
measurement equation is linear in x, as (3.21).
4, = H, and AC, = Ak H, are used in the above
inequality.

[ — k¥4 z¥. 55 prand pr are

Remark 5. Although the global sufficiency con-
ditions (3.35) and (3.36) or (3.37) are uncheckable
analytically, they can be used as a guide for
enginecring evaluation. For example. a local test
may be constructed for a given initial state and state
estimate. The MGEKF and the intermediate
MGEKF algorithms can be run for the same
ensemble  of measurement and  process noise
sequences. For each sequence the deviations of Ak,
and AC, can be calculated and the boundedness of
Ak, and the stability of the MGEKF via (3.35) and
{3.36) or (3.37) can be assessed.

4 MODIFIABILITY OF THE SYSTEM DYNAMICS OF
THE PARAMETER IDENTIFICATION PROBLEM

Consider the following scalar dvnamic model

:1‘ +xl:l*’| + ... +1n::* ’lzlfl“l*l

+ o+ P, (4.1)

where n1s assumed known and minimal, and u; -y is
a known scalar input at time § — 1. The x5 and ;5
are the constant parameters to be identified. The
observable canonical form (Chen. 1970) of (4.1) 1s
obtuined in the state space =" as

v, = Ay, + Bu,

(4.2)
= Cy,

where v, = [Viovae. .. vall and where A, B and C

satisfy
0. 0 -1, 5, 0
.0 x| B={p, . c'=]0
0. 0 1 -1 B, I
(4.3

If unknown %,s and fi,s are augmented to the
ongnal state space 2" the augmented vector v in

poRL

15

o= v vt B B (d.4)
where x, satsties a nonlincar dynamic system
expressed in (2.1) but with the addition of a known
mput u,.

It 1s shown below that f () corresponding to (4.2).
mantpulated in the augmented state space =7 is

AUT 22:1-E

“OI“?" ' R “t‘ ’ﬂ '5' \Q ..i ﬂ" 9 “.' Q,‘) "I"‘ 'l‘ Wy

0
L ! AR E !

moditiable. Constder

Av, o+ Buoy — ~‘f. Vo B, U
= ~f, R R B I ;I‘A Y

+(B -8B, wu (4.5)

—Xg *+ jn

- — Xn l+in*l
(4 - -41—1))'1~l ==z

x

-1

-2 + X !
(4.6}

Therefore. .o/, _; in (2.12) for this case can be written
as

o (S X))

_ [_4—'1 Lot “‘.“‘,’"J (4.7)
0 lln

where [, is the ¢ x ¢ 1dentity matrix,

5. APPLICATIONS

5.1 Relation to Ljung's modification and
convergence analysis

Asymptotic behavior of the predicted state EKF
as a parameter estimator for lincar systems is
analyzed in Ljung (1979). In Ljung (1979). the
estimate J; of the parameter ¢ is sought for the
system

Vier = Ay + (5.1
=Clhy, + v (5.2)

where ), and v, are zero-mean white noise with finite
second moments @, and ;. respectively. The
structure of the predicted state EKF. which 1s an
example of the recursive prediction error (RPE)
algorithm (Moore and Weiss. 1979), is

Yoo = L8+ Kz = (&) (5.3)
here the estimate of the augmented state

w
i‘, = [#. 0] ] If the derivative of /,{+) with respect to
X, dghngd as

A7,
(R ay A ,
Cu_ A, é[t‘)‘ \ll} (5.4)
(X,
0 !

and the derivative of In () with respect to X, is defined
as

Chix, 0, ) .
( ;._.\ b [('(0.) CCiy, ]g (€.} D,). (5.5)

X, 0,

Lo A clhad dhed

bt

AV AR
J‘h’e‘ﬂ e’




o
B
E

o e
L)

[N

0
l.-,t',lol‘olo,'a,
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and Ejv,!]t =0 for all i.j. then the gain K, of the

predicted state EKF of (3.3) is obtained from the
following algorithm.

K, = [4P,.CT + MPLC! + 4P, D!
+ M.P, DS

Si=c.pP,Cl+CP,D] + DPLC!
+DP, DI +

L =[Picl+pP,D!iS!

= AP AL+ 4P M+ M P A
+ MP M - KSKT + 0,

P, = AP, + MP; — KS.LT

P,\, = PJ. - LlSlL{

-1

P,

il

where the partition of covariance matrix P; of the

state v,
P, P,
Pi: K -1
o 2]

1s used in the algorithri and the initial value of the P,
matrix is Py = diag [P,.. P3, ]

5.4.1 Ljung's modified EKF. As shown in Ljung
(1979). the predicted state EKF is not asymp-
totically stable. This fact is analyzed from the
stapility of the ordinary differential equations
obtained by decouphing the estimates and co-
variance of the state of (3.3) under the assumption
that the stationary (or equilibrium) value of 0 is
obtaincd. However. the stability domain, defined
such that the estimates of the system are
exponentially stable, ts not explicitly specified in
Ljung (1979). In Ljung (1979) the estimator of (5.3)
is also modified to be asymptotically stable at the
stationary point. This modification includes the
change in the gain K, (see Theorems 7.1 and 8.1. and
Corollaries 7.1 and 8.1 of Ljung, 1979} such that

K, = (AP, CT + M*PLCT + 4,P, D7
+ lvl‘*PZ.D‘T]S;] (56,

where

‘K

MP=M 4+ =2, - CF) (5.7)
)

where K und 0 are stationary values of K, and 0,
respectively, and (K 70 is obtained from an
approximated algorithm (Equation (7.8) of Ljung,
1979). Since the modified gain K; of (5.6) is a
function of the present measurements, biased
estimates are expected during the transient period
where P, is nonzero (Song and Speyer. 198S:
Aidala and Nardon. 1982). For example, in
Westlund and Tysso (1980) and Ursin (1980). a

, - ‘
R R R AR

s 'l. ‘Q ..0..".:

simple example from Ljung (1979), i.c.

Vier = ”x,\.x + )

0,.,=14, (5.8)

1s used to show how the filtered state of the EK F (the
usual EKF) has asymptotic convergence charac-
teristics by using the same method of Ljung (1979,
However, if Ljung’s modification (3.6} is applied to
the above example. M* in (5.7) becomes

P
Mrxi o+ —{z =)
Pl i

which can be written us M* = ¥, + {2, - V) =zl
Py >

In order to avoid biases in the estimates, the
estimator of (5.3} with the modified gain K, of (5.6) s
changed to the form of the filtered state EKF, ie.

-{.1 =,’i*l(-\:l—l)

Ni= %, 4 ks - HR,).

where x = [1.0]". and H = [1.0]. For the filtered
state EKF. Ljung's modification would turn out to
be the algorithm of the MGEKF. at least for the
transient period which is critical to the stability of
the estimates.

Note that /() of the above example is modifiable
such that .«/; in (2.12) for the system of (3.8) can be

written as
0 -*
oSz y=" T 9

In order to calculate the gain of the MGEKF,

0, =z
A= 7 S.10
i X5) [0 1] { )
is used. while
‘_4’_":[“" ‘] G.01)
X, 0 1

is used in the EKF to calculate the gain. Since the
original system of (5.8) is lincar. (3.9). (5.10) and
(5.11) are similar in form. Since the intermediawe
MGEKF, which uses .o/; in (5.9) to calculate the
gain, is globally stable in the mean square sense by
Theorems | and 2 of Section 3, the exponential
boundedness of the EKF for this example can be
obtained by a procedure similar to that used to
prove Theorem 3. The result is that the EKF for this
example is exponentially bounded if AA,. which is

(RO ' >
A e, .0 1N

o r,\( \‘4'.
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the difference between k* of the intermediate
MGEKF and &, of the EKF. is bounded and if the
tnequality

‘.J:) (= kH) pF M~ kH) (’«——)
(AT (Xi-y
—pr <0 forallieZ. (5.12)

1s satished where p¥ and p}_ | are calculated from the
intermediate MGEKF. and ¢f;- | ¢x;_, and k; are
evaluated from the estimates of the EKF. If the
above conditions are always satisfied. then the EKF
for this case ts globally stable. Otherwise. the regions
of satisfaction of (3.12) provide the stability domain
for the filtered state EKF. If the condituons of
Theorem 3 are satisficd. the errors in the estimates of
the MGEKF are exponentially bounded in the
mean square and the stationary value of the
estimate of parameter (1 is obtained in that sense.

5.1.2 Convergence unalysis of the MGEKF. The
following 1s a convergence analysis of the MGEKF
for the scalar system of (3.8). A convergence analysis
of the predicted state EKF for the same system was
given originaily by Ljung (1979). and similar
analyses of the filtered state EKF are found in
Westlund and Tysso (1980) and Ursin (1980).
Satisfaction of the regularity conditions necessary
for the proof of convergence is relegated to
Appendix 1 of Ljung (1979). After some manipu-
lation, the MGEKF algorithm which estimates the
augmented state x; of the system (5.8) yields

Yi=r+ Gl =¥) (5.13)
Fo=0,_1Fio (5.14)
0; =0 + Lz~ T) (5.15)
0, =0,_, (5.16)

Gi=my(m, +73)" ' Em st (5.17)

Li=my(my, + 7)) " (5.18)
The matrix m; is partitioned as
m, = [""' m;‘] (5.19)
ny, g,
and cach partition satisfics

my = [0, — s ",

I

!

+ 20ztmy — s 0],

+ {ztmy — sy maynd
t 3 2 N o

+Q, (5.20)

my, = [y —mys ‘myy,

+ [ztry = mes sy,

m,, =0 (5.21)

o
U

lv‘l.

) o )
AN 4 l', l' s’q'l'.‘l'c (L C.‘,, q"’!. '. l,. BN l. OO

my = [y — s tma oo {3.22)
The objective i1s to demonstrate the local con-
vergence properties of the MGEKF using the
lincarized differential equation of Ljung (1979)
about the stationary point.

[t can be shown that m> and m, tend to be zero as
i— x (Ljung, 1979: Moore and Weiss, 1979).
Therefore, for Q =5 =
(5.20) reduces to

I as i— »w, my,—m; and

Wy = 07, = mitm + )7+ L (5.23)

This implies that

L S (5.24)

where 0 is the stationary value of the estimate of the
parameter obtamned under the assumption that the
conditions of Theorem 3 are satistied. Therefore. G.
which is the hmit value of G, as i — . satistics using
(5.17)

mny
= — (5.25)
my, + 1
By using (5.22) in (5.21). m,, satisfies
m, = (0, — 0.Gomy, + zmy . (5.26)
The process W satisfying
W., =0 =06, + (5.27)

1s related to the m, process given by (5.26) as 1 —
with the assumption of constant s, (Ursin. 1980).
Le.

> = THimg {5.2%)

where i1, = im,, and iy = imy . From (5.15) and

(5.16)
R . 5
()l’ [ ()1 = I‘ll:l (5:‘))
1

where L, =il,, and &, =z, —0,_,¢ ;. From the
assumption of ergodicity of the processes and the
relation

L = (), + 1) ', (5.30)

the RHS of the differential equation associated with
f) at the stationary point in Ljung (1979) will be

EVLT = Elngm, + 1V VHEL (530

' ‘n
...0'..0.“ I ‘0‘ U

o"' n'.'o -.aﬁ. n, 0‘:‘0' ‘o ‘0.0 OO0 .o'\‘



v, 0
PN
e 'ﬁ
Y
e
“!" 5
..Q' \.".
Y
K

:".-; g G
ek &AL

Bovy
AN
"_.&J‘-‘
f

)

[ ﬁ
[\

=

Vg S
Axd "2
)

' 0
o

2 &
£

|

(]
>

1)
';‘:
) o
o

L W
h",

.'

¢ :

S
o »
ﬁ) ::.
W

.:;,

4
)
+

w
W \';
l". o
s.'.l
#
.
R
\).'\
"‘....I DY
NN ,‘c Wy

O .l‘..l‘-',a,l';q' l’_\' !. Y
".b‘l":,'l'!
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Asshown in Ljung (1979). the sign ol £ W E! decides
the stability of & since i omy + 1171 > 0.

In order to caleulate E! W%! analvtically. transfer
functions for W' - and ¢ = are needed. From (3.27)
I - satisfies

where ¢ ' isa one-step delay operator and K = 0G.
Note that using the predicted state EKF in Ljung
(1979), ' - is KH,(4)* and for the filtered state
EKF W zis GyH (¢). From the refation (limiting
equation for (5.13) and (3.14))

Vi = 0_\‘.1—1 + G(:l - 0}11— 1 ).
¥ = 1s obtained as
v G
L ———— — 5.34
= 1 =@-Ky! (5-34)
Therefore,
£ I — nq
~=Hi\g) = T RuT 5.35
: 2y) R ( )

Finally. E!f1Z] is obtained from

1 d
r{; = 7§H1(t1‘1)’1:(¢1)‘1’::(t1) il
T Je [}
(5.36)

Jm = E}

-~

where ¢ is the unit circle in the ¢ domain, and where

D(g) =1+ 2, [1 = g0H1 = Bo7q)]  (5.37)
where 0, is the actual value of the system paramcter
and 4 is the actual process notse variance, while unit
variance is used in the gain calculation of the filter.
Note that (5.37) is derived from (5.8) with 7 = 1 and
the actual process noise variance 4. After evaluation
using residue calculus, f,, yields

S = Jm + fom, (5.38)
where
| A0, — 0,
T I /N Y/ T TR
(5.39)
g DI = SO0 = Ba) + 2]
T =N = L0~ 0)
where =0 —-K=0(+0*2+ 0":17%1). o

can be cumpurgd to the results of Ihc filtered state
EKF of Ursin (1980) where f, of the EKF satisfies {,

=k we =/, + /., where
Jor = Gl (1 = [0)
) _ s (5.40)
.’x’: = G/mg (1 —j>'~

Figures 1 and 2 show the comparison of /,, and f,
for ¢, =0.2. 04, 0.6 and 0.8 and for ~. =1 and
.. = 10. The results show that there is only one zero
crossing for both the filtered state EKF and the
MGEKEF indicating that there is only one point to
which the estimator will converge. Note that for
~ = 10 for mismatched process noise variance, the
parameter estimate of the MGEKEF is only slightly
more biased than that of the filtered state EKF.
Although the figures show that |/, > |/.] and
|df,, d0} > |df. dfll, this does not indicate that the
MGEKEF has faster convergence that the EKF, as
would be supposed by the analysis of Ursin (1980).
The local convergence of the estimators 1s given by
evaluating E[LZ} in (5.31) which includes s and
not just by f,, or f.. Although it can be argued that
near the equilibrium point /5 1s a constant. its value
is different for each of the filters and is obtained from
Ljung (1979)

Myt 2G0)= E[31)

1 d
= —'§D Hig 'y~ "Higrb..{q) .l {5.41)
2ny J. 9

where H(q) is given by H, in (5.32) for the MGEKF,
by GgH,(q)® for the filtered state EKF. and by
0GH (q)? for the predicted state EKF. All three
filters may have similar asymptotic rates of
convergence since #iy of the MGEKTF is less than
that of the filtered state EKF, which in turn is less
than that of the predicted state EKF. If mj; is
asymptotically the estimation variance. then this
indicates that the MGEKF is locally. relatively
more efficient than the other EKFs.

5.2 Pole identification

Consider the following example of a discrete-time
single-input, single-output linear time invariant
system excerpted from Saridis (1974)

Civt = Al + d“'.

{5.42)
=0+
where
1 0 0 0 1
I 0 1 i 0
A= d = CcT =
0 1 0
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FiG. 1. The functions /() and 1.(8) for Uy = 0.2, 0.4, 0.6 and 0.8 with - ;

and the noises are zero-mean white Gaussian with
finite second moments such as

o b — 3
E,u,\\“ =0,

Elviy,) = 0250,

According to Saridis (1974), the EKF used to
identify the a;s. j = 1....4 performs poorly even for
the case where it s stable. A direct application of the
MGEKF to the above system is infeasible. since the
nonhinear system dynamics are not modifiable when
the unknown parameters are augmented t- the
original state Z,. Therefore, the stochastic system
(5.42) is first transformed into the input output
transfer function using the Z-transform technique
as

Ay g% —dsg + (1 —ay) L (544)

qory g’ 3 2
wily) ¢ —dgq” — dyd” — dag — d

This form is consistent s il b Tre arnariaiite
canonical form (Chen. M7 & ~cativant un

X,« HAREE A AN
N INBRDI
where

00 0 o . T
-~ 0 0 [ ~ - - M')’,

A= . (/ : . (':r = i
0 1 0 u, Lo : fo
00 1 o S
4 - PO
.46)

This is the form suggenc:t i ¢42) Lt 083 5
unknown parameters s e and oy e
augmented to the originu 4utlsas v, v ot - g v .
respectively, then the awmmnudinoniimenr -vstem
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o 1 . . .
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) 2 . N . A .
AT from f(x,) = f,IN,) 18 For simulation, the actual values for aps
SIS . are  selected  as [agidsdyast = [ = 066,078,
17 - - . . .
,:\' [0 0 0 X, xy, O 0 O —0.18.1.0 7 as givenin Saridis (1974). The matriy O,
R 1 00 x5 0 x, 0 0 in (5.48) 15 selected for the matched and mismatched
. 0 0 ' 0 0' 0 ’ case. An ¥ x 8 0, matrix for matched process noise
:ﬁ: ; l v Y4, statistics, denoted Q,.,. satistics
4 ) 0 01 x5, 0 0 0 xy
.‘i' "-.:(‘ A AZE X)) = 002 :
R ¥ 000 0 1 0 0 0 (ISP, —1IX LIS
. i
o 000 0 O 1 0 0 ~ 118 . I —1 0
"1 Q 000 0 0 O 0 L . =1 . 1 . (5.504
L]
oy 000 0 0 0 0 1] Qu=1| s e
2 L
R (5.49) 0 0
o+ A
0 \ , o
A % where =¥ = x,. Note that </(z.xX;). which is
obtained from replacing x4 in (3.49) by ;. is used to For the mismatched case. the first two diagonal
» :" calculate the gain of the MGEKF. while ¢f; (¥, elements of Q, are increased by 20, 40, 60, 80 und
,0: " which is in the same form as (3.49) but with x, 100°,. A series of simulations 15 executed with
’,: - replaced by ¥, is used to calculate the gain of the matched and mismatched process noise statistics.
-,0:' . EKF. Figure 3 shows the results of 10 runs of Monte Curlo
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simulation of the errors in the parameter estimates
with the muaiched process noise statistics, while
Fig. 4 shows those of the 100", mismatched cascs

where
(1.669)°, —2.36 1669 }
-23 , 2 ~1414 0
1669 . —1414. 1
Qe = |=mmmmmmmmm e
L 0 0

(5.5

1s used. For all of the simulations. the initial value of
truestateis X, = [0,0,0,0, —0.66,0.78. —0.18.1.0 .
the initial value of the u priori estimation of the state
s X§ = [5.5.5,5. =1.32. .56, —0.36. 2. and the
initial value of p; is p, = 10I4. Finally, for the
purpose of comparison with the results of Saridis
(1974}, Fig.5 shows the convergence rates of the
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MGERKE with Q.. 0, and the adapine
calculations of O, For adapuve calculattons ol Q,.
the following @, s used

L=y L =Nal =6 =% ]
! S N Ng .= N ()j
; (1 —x-) — Ny 1
0= . S—
L 0 0
(3.52)

The results here show a remarkable improsement
over those reported in Saridis (1974) for the EKF
using the stochastic system (5421 The average
normalized parameter error was reduced by three
orders of magnmitude of the EKF of Saridis (1974
and.nfact. theresultof the MGEKF isequnalent to
the best purameter wdenutication scheme reported
here.
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Section 3.1, the EKF applicd to observable

. and adaptive calculations of Q..

oo

ties as the filtered state EKF which differs markedly

:‘:: g canopicul form (5.45)may have global SFHbi“[_\' since from that of the predicted state EKF (Ljung. 1979).
‘ the difference between -/ (=¥, X,) of the intermediate The MGEKF is applied to a pole identification
- 2 MGEKF and ¢, 0%, of the EKFissmall if xg, — X, problem of a fourth order system where the previous
7:-:: for the EKF is small such that (5.12) in Section 3.1 reported results for the performance of the EKF are
i:«: A holds. poor. By choosing the observable canonical form of
::z:. é the state. the resulting svstem dynamics are
.,::: ~ 6. CONCLUSIONS modifiabie such that the MGEKF is readily applied.
M An exponentially convergent observer called the Monte Carlo simulation indicates that for the case
.") 5 MGEKO@ dgrived for lhc'problcm where both the of matched noisc'variance and for the case of the
ol . nonlinearities in the dynamics and measurement are adaptive calculations of the noise variance, the
::c. assumed modlﬁablg The _cquncnnal convergence MGEKF has excellent convergence characteristics.
.::. . ofA the MGEKF is studied in the probabilistic In the case of mismatched noise variance without
o2 % Hilbert space L,, by introducing the exponentially the adaptive feature, the MGEKF has decent mean

! bounded nominal filter called the intermediate square error performance characteristics.
L X MGEKF. and sutficient conditions for the MGEKF
z}.:. § to be globally stable are obtained from the analysis. N
:;.::‘ b The intermediate MGEKF can also serve as a . REFERENCES _
,.::, nominal filter for the stability analysis of the filtered A'dg(')u‘ TV(;C 3;&5 sfl;d?\?;ffr"fr :L{‘zfnﬂ- ﬁg*:rscjl}‘ggm;:::g
“::l ¢ state EKF used for the modifiable systems. These z(,,f:im.(. and E[(,f.),,,,,,,(. Svst.. ,u-;s-lsgm o o
o results generalize the work reported in Song and Anderson. B. D. O. and C. R. Johnson (1982). Exponential
,,, Speyer  (1985) for the case where only the L;::'\);I;f;_::l. (I);;l((ljz;p(ncidcnuﬁcunon and control algorithms,
! __:r: o {ncusurcmcm funcllqn was _nonlmc"lr qnd modi- Ch‘cn. C. T l|.97()l. hzlnulm‘lmn to Linear System Theory. Holt,
1 \‘:. NA hublg. The ‘slochasuc Slil‘blh(_\' analysis for the Rinchart & Winston. New York. _
SYLEE continuous time MGEKF is found in Song (1983). Landau. 1. D. t1976). Unbiased recursive idenufication using
) ";:' These generalized results are now applicable to the ?‘:,ﬁ":,trf?f}nff:,dd"pmc techniques. [EEE Trans. - dut
L parameter identification  problem  where  the Ljung. L. (19771 Analysts of recurstve stachastic algotithms.
~ _ measurement is lincar and the dynamics are L lljfx”L 7("1"‘;'7‘;,,'1"\"\(,;'"::’()['.QS'-ZZ m;f he extended Kal
,q:::l nonlm'f‘ur and modifiable. if the proper coordinate J!i[lir :n§u puru‘n:c\('cr cr.:l‘lrnl:lotr :';l)\rll‘n)rr]c(urls;sltc:n’fI;LEE;':2:2
':.:'. o frumc ls.choscn. o . Aut. Control. AC-2441).
B Ljone'sconsergencenalysissapriid oascalue - My 8 1 i e v on ot
.:::,. paramcter |dcnt|t1c:1tl()n‘prohlcm. The results show TE0C Trienmal Congress. Vol V1L pp. 36p4| Budapest,
.L that the MGEKF has similar convergence proper- Hungary,
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APPENDIX 1: PROOFS OF THEOREMS 1. 2 AND 3
1. Proot of Theorem |
Take the conditional expectation over Fie¥) — 1(éF) given
Y= lef. ot et e8! as
Efibiery = Diary, = etEu L pr ' —mt 7 et
+r (Eg R pr k) (A1}

Py

L J

#1- isa conditional expectation operator given Y.*. L% is defined
in (3.17). and tr is a trace operator for matrices. The derivation of
(A.1) uses the facts that =* is not a function of ws,, X* is a function
of the past measurements such that [* in (3.17) and p¥ arc
independent of v,. and v, is a zero-mean independent notse
process with finite second moment ;.. Note that the term inside
the tirst E4% operation of the RHS of (A 1) satssties the following
equation

Lpr il = = Tt ) <0 (A.2)
where v of  the  mtermediate MGEKFE  satisties
= AL T2 The last imequaluy of (A.2) comes from
the tact that s & <4 " isat most ot rank ¢. Equation (A 2 mplies
that there exists 0 < gy < | such that
ervistpr e =

[',.U,"N]," lor = ;:l‘l-;(('.". (A}

Therefore. (A 1y becomes

Efibaery = Bier)y = Ko = (1 — p EpTUer), (A4

where Ay o1y defined as Ky =t (Ef A pe TAs T and

Caae e

0< KNy <M< o Similarly. tuke the conditional expectation

- » N A W

over baesr — b e preven Yt ehaeloet N

Ey* Hl,lt,’) b et
»l

= IEL‘::'/" N ]’/. -t St

1 By om0 (AS)

where use s made of the facts that 2* s nota function of o,
O s a function of the past medsurements such that 7,
= o/, 0zf  XF prand mF areindependent ofes,. andes, s
a zero-mean. independent noise process with fimite second
moment Q, . The term instde the first £, * | of the RHS of 1ALS)
satisties

(-

fl.l—l'”-‘ !f/: I i Vll = —-pr 1]'-/[[)((‘), I|
o hpe sy v e 1.6}

Equation (A 6 mmplies that there exists O« i« o < | such
that

i . -
el ome Ve L= pettpt et AT}

The evstence of f§, 15 assured by Assumpuons 3 and 4. Theretore,

(A.3) becomes

Evt Faeny = b ek o,

=K, —tl = pky = e (AN

e

where Ko =trE,* 'm* 'Q, ;1% and V< K, <N < /.
Now, tuke the conditional expectation over (A4 for ginen 1*
and use the nesting property of the conditional expectation. then

Ey* biery = ety = Byt Ev bier) = Baer
= ’\l. - - I‘l.’bi. ,:"/1— e+ l’lw\‘l'“,‘ '
(BRI RN Y
=K, —(l —per E* .l’/,'rl'”f Lty
— (1 — g 0K, (A9)

where the fact that e, -y 1s independent of </, - and mi 1s used.
From (A9) and (A.8)

Eyr hel) = Ve
=K, — 1 = py)Ey* ‘. l("-tl':
= (1 = py et 1[1), N AT Lo el

+m K: <K, —<).11n»1| Caleroy ), ’ (A 1D

where0 < sup (K, + p, K, <K, < x.ando, = 1 — p; such
.

that 0 < fI, < ¢, < . The boundedness of K, is obtained from
Assumptions 3 and 4. and the gain AF algorithm of the
intermediate MGEKF. Note that Assumption 3implies m* s
uniformly bounded from above.

By applying the nestung property of the conditional
expectation to {A.10) one can obtuin
Eibien = EyUE S hiehn)

<K, -1l ,(,,,,.;, bt ol

=K, « (1 ok b er (A1)

Detine 0 as o = ant Jo,,. then o s uniformly greater than 0

/.
Applyimg (A1) recursively results i

[
Efibien) <K, ¥

;o

(L= o + 1l = oL baen

(A12)

Use Assumption 4 and take an unconditonal expectation over
VA 1Y) Then,

RO NP N (A 13)

- C W o X0y
(et
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where Ky <Ky Yl -0V e =K, o and Ky = ElTuet) ¢
o
Therefore. the claim of Theorem 115 proved. fq.ed.)

2. Proot ot Theorem 2
Define a Lyvapuno l'umuon as bilery = o pEter Alter
some manipulations, using (3,27} for each intervalin Ak - N

it can be shown that the conditonal evpectation of l‘ ek, \u

— befyanen 3 o= tebet L or) satisties
L=\ o ]
Eribiov~=to < = By S v,
FIERN
A+N
S o kpr ket pr QL
AR S|
[ Y - ) ?
=2t N B U] Y .y,JT,\~
A=l L t=a-1 P
A= ) ] L
+ S E.’f' S Tu,:Hu,,I, (A1
skl -k J

where  H,=HI'J'H., T=kiv—Ley, and

it
= [1I%., /. Furthermore. ¢f = v ,ef — 1 w, T and the

t=1 -1
fact that the v,s and 5 are zero-mean, 1rl1dcpcndcnl noise
sequences are used in the derivation. Note that in the last two
terms of (A.13). there s correlation between v, and the random
notses. [f Schwarz's inequality 1s applied 1o each clement of the

vector £y*in,; where w; = w/ A, ¥y T it cun be shown
Pk
that the E,*!w,; is bounded. Since Assumption 3 is satisfied
tobsenvability condition), pf 1s bounded from above such that A*
1s bounded. Note that the vis and es are zero-mean independent
white noises with finite second moments. Therefore, there exists a
k=N

constant vector 3, such that ¥ Ey)w,! = B, Similurly. if

LR
Schwarz's inequality and the hypothesis of the boundedness of
fourth moments of the noises are applied to the last term of (A1),
1t s possible 1o tind a constant K, which bounds the tast term of

{A.14). Note also that since Assumption 3 15 satistied. the
argument of the expectation operator of the tirst term ol the RHS
of (A.14) is strictly uniformly positive definite. The terms

involving the tr operator in (A.14) can be written as

”[}'/'lH/p/‘(H/I]‘*'"[PJ IQ/'l_’ /-II,IQI
+H,,J,7'H,[J,'r THO, (A1S)

ey

.d t‘ W, x' Ny

5

Then. from Lemma | n Section 2otrip* Q0 1 of 1A 1358
uniformiy bounded lrom above. Theretore, the RHS of (A T4ihas
the form ol —ul Lk + Ko o= 2o Bowhere 10 2 o1 - 0und
K. < M < ». Furthermore thereexsts amatrin C - x -0
for some x > 0 and a constant O < K -7 s for all Ae Z. such
that

x1

—ef et =B et Cer < K. (A.161
Ifwedenote theindeshass — Land A = Nase - Lothenitiseasy
o see that (AT satisties (ALTO) Theretore, (A 121 can abso be
obtained. T'he rest of the proof s the same as that of Theorem |

(ged)

3 Proot of Theorem 3

Introduce a primary Lyapunoy function tor the MGEKE as
l;'!',) = (‘,I[’,' 7(', (AT

where p# ' s bounded from below by Assumptions dor Sand p*
15 a function of =5 and 2 such that p? s not correlated with
Now a secondary Lyapunov function for the MGEKE s
introduced as

e =« 'me Y (A 1%
e L ,

where m* s a function of zf , and " such that m® s
independent of o, . Tuke the conditonal exypectation over
Fiey = Faep for gnen b= cep,. o oo, Then trom the
hy pothesis (3.35)

EpVite) — F4e0 = Ky =1 = gy by i 1A 19y
where K, is defined as
Ky =ttt Ey (A = Sha'ps YA « M, AL

and K, 1s bounded lrom above by the hypothesis of the theorem
Note that (A 1911 simifar to (A4 of Theorem 1 Simubariy f the
hypothesis (3.36) 15 saushied. the conditional expectation over
Fueo — 3 qte,_pfor gnen Y, | = lewdp. e, ) satishies an
equation similar to (A8). The remaimder of the proot s the same
as that given in Theorem 1.
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ASSUMED DENSITY FILTER WITH APPLICATION TO HOMING MISSILE GUIDANCE

86-2262

S.N. Balakrishnan*
University of Missoun-Rolla
Rolla, Missoun

and

J.L.Speyer**
The University of Texas at Austin
Austin, Texas

ABSTRACT

A maximum likelihood estimation method is developed for a class of
problems where the dynamics are linear and the measurement function 1s
nonlinear. In this method. called the assumed density filterf ADF), the form
of the conditional probability density functiontCPDF) is selected to be a
function of a finite number of quantities. These quantities which describe
the approximate shape of the CPDF around the mode are propagated
through each measurement interval. At the measurement the CPDF is
updated using Bayes theorem and its mode, computed numerically. is
defined to be the best estimate of the state. The posteriori CPDF is then
approximated by a Taylor series expansion about its mode to preserve the
assumed functional form. The numerical results for a target-intercept
problem indicate that the ADF is superior to the extended Kalman filter.
Howe-er. the ADF has a negative range bias. It is analytically proved,with
some approximations, that the maximum likelihood range estimates are
smailer than the mean range estimates.

1_INTRODUCTION

Tactical weapon systems require accurate tracking of
maneuverable vehicles such as submarines and airplanes. Dunng the
last several years, there has been an active interest in the
development of sophisticated filtering algorithms for tracking with
beanngs-only as the observations. Mathematically,this problem can
be descnibed in an inential rectangular coordinate frame by a linear
dynamical model and a nonlinear discrete observation model or in
an mertial polar coordinate frame by a nonlinear dynamical model
and a linear discrete observation model. Satisfactory results for this
class of problems have been difficult 1o obtain using current
mechanizable filters because of the nonlinearity and the passive
nature of the observations. As a result, considerable research has

been going on to improve the existing methods in order to obtain
better estimates.

2 APPROXIMATIONS IN NONLINEAR FILTERING THEORY

The target tracking problem is stochastic in nature.
Analyses of stochastic problems are possible through statistical
interpretations. In order to obtain mathematical expressions for the
statstics, assumed to represent the best estimates of the states
assocrated with a problem, knowledge of the underlying probabuliry
density function (PDF) is essential.

If the system dynamics and/or the measurement
function are nonlinear,a finste set of statisucs sufticient 10 descnibe
the conditional probability density funcuon (CPDF) is not available
(1.2,3). Even if the initial states and the process noise are assumcd
Gaussian.the nonlinear dynamical system results in a non-Gaussian
CPDF. Second,the propagation equation for the condinonal mean
consists of expectations of nonlinear functions that are very difficult
to evaluate. Third,since the CPDF is not Gaussian, the system of
equations to describe the conditional moments and.hence.the tiler
as a whole becomes coupled and infinite-dimenstonal.
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To circumvent these difficulties,approximations have
been attempted to realize esnmation methods consisting of a finite
number of equations. The Edgeworth series expansion has been
used by Sorenson and Stuberrud(4) in developing a finue-
dimensional filter for a discrete scalar system. The Edgeworth
series (5) is described by an asymptotic expansion about a kemel
and it consists of Hermite polynomials (5) and their coefficients are
given by quasi-moments which are related to the ceatral moments.
Sorenson and Stubberud have chosen a Gaussian kemel for their
applications and approximated the CPDF by an Edgeworth senes
truncated after the fourth term. Thus.the first four quasi-moments
define the CPDF. The problem of expectations of nonlincar
functions in the propagation equations has been handled by senes
expansions. The state and measurement equations were
approximated with second-order perturbations using a Taylor seres.
Due to the nonlinear term in the measurements,the update equations
across the measurements become very involved requiring further
approximations. Note that the filter developed in this paperdoes not
have such approximations for the nonlinear measurements.
Furthermore,Sorenson and Stubberud have reported that the

approximations associated with the nonlinear measurment 1erm are
of "critical impornance” to stabilise the behavior of the second and
the fourth moments and thereby, to the performance of their filter.

A similar method of parametrizing the CPDF has been
reported by Willsky (6). He has used the study of random processes
on the circle effectively to formulate,using Founer series,a vanety
of nonlinear estimation problems  ansing in the field of
communications. He has discussed a few finite-dimensional
approximations for a scalar continuous time problem (6). The
results of approximating the CPDF with the first three coefficients
of Fourier series when applied to a phase-tracking problem were
found to be very poor. The reason according to Willsky was that
the truncated terms of the series might not have been negligible.

This was shown by an example assuming perfect knowledge of the
phase.

An alternate method to completely neglecting the
higher-order moments or coefficients is discussed by Kushner (3).
Instead of truncation of the higher order moments, he has devised a
method to replace them with lower order moments. The method,
called the ¢moment sequences’, involves picking an ‘n’ parameter
moment approximation to the CPDF. When moments of order
higher than *n’ are encountered, they can be computed in terms of
the first *n’ moments resulting in a better approximauon than
assuming them to be zero. Kushner has discussed the conditions to
be saustied for picking the moment sequence for a scalar problem.
It is not clear from his paper as to how the moment sequences could
be picked for a general muludimensional problem.

Some other formulations of parametnzing the CPDF
with moments have been reported (1,7). An approximation has
been made by assuming the CPDF as Gaussian and neglecung the
even moments of order higher than four. The system and
measurement nonlincanties in this method are carnied to second-
order. The resulting filter is known as the Gaussian second-order
filter (1,7). A shghtly different version of this filter has been
denved assuming that the CPDF is almost symmetric and
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concentrated near its mean. Such a basis allows for ignonng the
fourth central moment.resulung 1n what i1s termed as the truncated
second-order filter (1,7). The basic difference between the two
filters is in the propagation equation for the second moment. The
modified second-order filter (1) is the version of these two filters
without the measurement term, which contains random noise,
included in the covariance equaton. This is done in order (o prevent
the covanance from taking negative values. The most popular
method in the applications of noniinear filtering theory is the
extenicn of the Kalman filter methodology (1,8), which is optimal
for linzur systems, to nonlinear problems through linear pesturbation
thecory. The resulting filter is called the extended Kalman filter (1).
However, it 1s not known how the statistics of the CPDF relate to
the extended Kalman filter (EKF). Simulation results for a scalar
problem using the second-order filters discussed here and the EKF
have been reported by Schwartz and Stear (7). Their results showed
no particular merits of any second-order or any distinct superiority
o7 the second-order filters over the EKF.

Another technique to approximate the CPDF involves
the idea of cumulants (6,9). The advantage of the cumulants over
the moments is that while the higher order moments may not tend to
zero ,it is reasonable to assume that the higher order cumulants tend
to zero. Nakazimo (9) has assumed a Gram-Charlier expansion (5)
for the CPDF characterized by cumulants. He has also derived the
dynamical equations for the cumulants for a nontinear continuous
time problem that are infinite-dimensional in nature and discussed
finite-dimensional approximations by truncation. Willsky (6) has
referred to the possible approximation of the CPDF using cumulants
for the nonlinear estimation problems in communication theory.
Both have not discussed any numerical results.

3 ANEW FILTER FORMULATION AND ITS REIATION TO
PREVIOUS WORK

All the approximate filters, described in Section 2,
claim to estimate the conditional mean. A major difticulty in the
estimar: n of the conditional mean s the computation of the
normalizing constant of the CPDF at the measurement update for
the nonlinear problem (1). In this study,new filter structures which
are more complex but mechantzable are proposed. The conditional
mode is assumed to be the closest representation of the state. thus,
eliminating the normalizing constant from the computations.
Also,there is no approximation to the nonlinear measurement
function as in the EKF. The basic idea is to choose the form of the
CPDF to be a function of a finite number of quantities and to project
these quantities through each measurement interval. These
quantities descnbe the approximate shape of the CPDF around the
mode. The vector which maximizes the approximate postenion
CPDF at a measurement is defined to be the best estimate of the true
state. This method is referred to in this paper as the assumed density
filter (ADF). The ADF is applicable to a class of problems where
the dynamics are linear and the measurement functions are
nonlinear. The equations that define the ADF are developed and the
ADF is applied to a homing missile problem. The results are
explained and the inherent biases in certain formulatuons are

indicated. The performance of the ADF is also compared to the
widely-used EKF.

3.1 Assumed Form of The Density Function

In this section, an assumed form of the unnormalized
CPDF is presented. Then, the procedure for processing
measurements 1s developed, and the equations for propagaung the
quanunes required for measurement processing are discussed. To
avoird having to develop a theory for three-dimensional matnces, a
mixed matnx-indicial notation 1s used. Hence, throughout this
section, a repeated index denotes summation. The equations are
developed in rectangular coordinates where the propagation
equation for the approximate conditonal mode is linear.

There are two considerations in the selection of the
form of the PDF. First, the density function should be a function of
a finite number of parameters. Second, the functional form of the
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density should be preservable dunng the processics of a
measurement. These conditions can be accomplished by prcking an
exponenttal form for the densuty function and by wnting the
argument of the exponent 1n the form of a Taylor senes ahout the
mode and neglecung terms higher than a predotermines order
Hence, the assumed torm of the PDF of an n-state vector xas given
by

plxa)=Crexp([-f(x.1)] nH
where C 15 a normalizing constant and f(x.t) is a npon-necytive
valued function of x. The tunction f(x,t) 1s assumed expand.ahle 1n 2
Taylor senes about the mode of the PDF, m, and expressed as

fx0)=f (mo)y+f (mae-m H"ll'(!’”l )Tfu(m.l)(x—m)
+%(z—m )wa‘(m XX, =m Y x-m)

1
+4—!(I ‘
Here, for example, the term f,, denotes the pamial deavative of
the matrix f,, with respect to the componem state x, Also, note
that f and its denvatives are evaluated at the mode and are functions
of the time, as is the mode.

)T £ e (X = Y =M X =)

The development of the ADF requires the equations for
processing a measurement and the equations for propagaung the
terms f, f,. fx €IC.. to the next measurement ume. However, at
the mode, p, =0 50 that f (m)=0 everywhere. In addition. 1t
turns out that the term f(mt) does not have any eftect on the
processing of the measurements; hence, 1t dees not have to be
propagited between measurements.

The remaining items needed for the development of the
filter are the system dynamics and the measurement-state relation
The system is assumed to be hnear. Hence, the dynamics are
governed by the equation

x(t)=Fx(t)+b()+w(r) (3)
where x is the n-state vector, F is nxn matnx of constants, b 1s a
time-varying n-vector control, and w is a Gaussian zero-mean
white-noise process with a constant power spectral density Q and t
denotes the time. The relauonship between the measurement and the
state is represented by the vector equation

y=h(x)+v &)
Here,z; is the p-vector measurement, h is the p-vector known
nonlinear functions of the state x;, v; is a p-vector Gaussian zero-
mean sequence of random vanables with vanance V, and the
subscript { denotes the time at which the measurement 15 made.

3.2 Update Equations

The approximatz CPDF pnor to the measurement z is
given by

1 —_- 7T —_
P(x11Zi1}=C 3t exp (=3 (x=m) fa(x=m)

- —;T(x Y f 5, =77, (=)

- L Fan AN ()
where C,=C, exp(—f)Jn is the apnon mode the bar denotes

quantities evaluated at m, and Z;.| denotes the measurement history
upto {-1.

In processing the measurement z;, the approximate
conditional density function is updated using Bayes theorem which
leads to

px/Z) = Cyexpl=f (x.2))] A )
where C4 is the postenon normalizing constant which is not a
funcuon of x but only of Z; and where
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.s, N Fe) = 2em U ek + e (eem ) el wnt o S P QS v (12)
\ -' - -
1 I — _
:::h #;(x-m)rfm,(x,—m/)u-m) (7 r=12..n
n ! ) : where the fifth-order terms have been discarded.
—rr _ _ _ R
AR e S g (6= )xg—m fx—m )+ The boundary condions for the propagation equations
W ) ) are the values of m P and £, obtained after processing the last
W Y At this point. Eq.(6) 1s maximized with respect 10 , to measurement. These propagation equations are then integrated upto

obtain the postenon mode m; which i1s the maximum likelihood
estimate ot the state. For some problems, the maximizaton can be

: camed out analyucallv. howeverat thus 1s not possible, a numencal
W) method such as the Newton-Raphsont 10}

.
L]

the _ next _ measurement tume to  obuun  the values of
m, P, and f,,. needed for the next measurement update.

i
2"

34 A Second-Order Assumed Densiny Filter

) method must be emploved. Note that the mode does not depend on
) & C ;. Finaliv. the postenon conditional density function s expanded A second-order ADF is developed 1n order to to
"q ) ":.. in a4 Tavlor senes about the postenon mode to obtain tllustrate the adaptive nature of the ADF. Note that in the
> : terminology of the ADF. the EKF 1s a second-order tilter because ot
)
.’0' e 2= C _1‘ TS - the lincanzed measurement-state relation and the assumption of a
4:l:v o pLeZn=Cuerpl- Soiem VS ule=m) Gaussian probability distnbution,
g
;:.w:. In, ... A If the Taylor senes expansion 1s truncated after the
= =mY f (y-m ) (x-m) second-order terms, the exponent of the posterton density function,
3! / b
i ) Eq.(7), becomes
ey IR S .
"o 2, - F e (8= =) x—m ) + (8 5 LIPS S ! —\Tpel =
‘ : == -h)Y Vi(z=-h)+ —(x-m)' P (x-m) (13)
AR (x) 2( MET
; J . S he Cop-ly, . . .
» where C g = C yexp—f ) and the carat denotes a quantity evaluated where the substitution fy; =P "has been made. Then, the
N ¢ . s when £, = hy
:;.0. ) at m Note that the denvatives of f consist of the measurement =, posternion mode occurs when f, =0 or when
¢ ! _
M E The ﬁmcnor}al form of the density function after the [Hz=h)Y VA, + (1"’_')Tp_l|x=;.. =0 (19)
[ ] | measurement, Eq.(8) , after the approximations 1s the same as that
‘A betore the measurement. Eq.(5). Hence, the functional form has Finallv, if Eq.{13) is expanded in a Taylor senes about 7t and terms
__.‘, A been preserved. higher than second-order are dropped (see the discussion betore
N Eq.(8)) , the following result is obtained.
\ :’-‘, s~ 3.3 Propaganon Equations a-(8)) § ¢
Xy ; - - 5-10-1
e 'S The differential equations for propagating the mode and P = (A, V 'h, = (2,~h)V ll/khku P | (15)
D the necessary denivatives of f are derived by repeated differentiation Here, the subscripts on V7' refer to the elements of V7' - Also, P,
’ of Eq.(1), Kolmogorov's equation (1)/ which is the inverse of the curvature at the likehhood point, must be
DL positive definite.
K ;
‘:t : pr=-pir (F)—p,T(Fx+b)+ %Qlkpm,, 9) With regard to the propagation equations, Eqs.(10) and
KT *:: and by use of the fact that p, = 0 at the mode. The argument t of x (11) reduce to
“-: 3\ PP and p, have been dropped for convenience. For a Gaussian mo=Fm +b (16)
o i probability distribution, the derivative f. is the inverse of the =fm
wb covanance matrix. Hence, to be able to compare the results of the P<=FP +PFT + 0 an
) F ADF with those of the EKF, the equations for propagating f,, is L ] . 14 s
.') :‘_ replaced by an equation for propagating fal=P. Only, the The initial conditions are obtained from Egs.(14) and (15).
5? T equations through f,, are presented because this is the highest- Eq.(15) points out the adaptive nature of the ADF. The
» order derivative present in the differential equation for the mode. second-order term Ay, allows the ADF to adapt to the measurement
LAY 1 . . . . residuals. This feature can be very useful when the measurement
\j . :J': V';: .Of ‘the ;bove discussion, the equation for uncertainty is inaccurately modeled or when the states are
':h.: oo propagating the moce is given by inaccurately inittalised.
)
® 4. HOMING MISSILE-INTERCEPT PROBLEM
R« ; 1 A ifi licadon of interest for the filterin
S - +b ~ =P T specific application rest bl
AETR N m=Fm 7P Qfar) . (10) technique liscussed in Section 3 is in the estimation of the states of
L Then, the equations for propagating P can be written as a homing missile relative to a target and the target acceleration. A
(o 1 1 six-degree-of-freedom computer program (11), which simulates the
AR SR > = —P f_ PO f +FP +PFT interception of a maneuvering target by a bank-to-turn, short-range,
‘;‘ ! .V 2 o AR air-to-air homing missile has been used to test the ADF and the
{ " P 1 EKF. The guidance scheme to compute the commanded missnle
> G| + EP(Q,:‘U',,J Tartfanf Tatfuf Tox (1 acceleration has been based on an ‘optimal’ lincar guidance
SOSE law(12).
n.:b i m
f iy ! ; d in this analysis is described
Y - P - —P The launch geometry used in this analy
...l i fanel 2 PQS s, in Figure 1. For this inertral system, the Z; axis is directed towards
oo i the earth’s center, the X; axis is aligned parallel with the missile’s
:' A initial launch direction, and the Y; axis is chosen to make the
N . inertial system right-handed. The engagement geometry used in this
’. Note that P must be inverted m order to obm}n the fo terms analysis is charactenzed by the iniual conditions: range, 3000 feet;
: :.. needed to perform this integrauon. Finally, the differential equation altitude, 10,000 feet; aspect angle (0,), 120 degrees: and off-
o -, for f uu 15 the following: boresight angle (8,), 0.0 degree. The measurcment and the state
':'t. B . 1 1 noise models and their statistics are the same as in (13). The initial
:.‘0: by For=Y e Fot 5 fen@uf et 5o Tane state covanance are the same as in (14). The number of Monte Carlo
.o".c - “ trials is ten. A second-order ADF is used in all the numencal
& v, B
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e expenments. poslenon"smte error covanance.becomes indetinite. Invesnhgation
R »” In the first atempt to validate the ADF using the  ©Of the history 0{ the mngcdc:'ogs smhowghéhat the f‘f"jl”m of
SN selected engagement geometry, the ADF fuils to converge near the converg;:unce IS a w;ys l;;‘mc? N al y e_‘ f; r ;;ompuu. n.’lgfc
ety - end of the trajectory because P, defined as the approximate ~ 2PProachung zero when the actual range 1s far from zero. s
.l A covanance matnx, becomes indefinite. In trying to determine why phenomenon leads 1o the conjecture that there might be a negative
N e S . _ bias in the range computed by the ADF.

of the ADF behaves this way, it is found that towards the end, the

" residuals become large. This phenomenon occurs because the true This section deals with the analysis of the bias in the
X range vector and the estimated range vector have their components maximum likelihood estimates of the states of a system. Two
"‘-ﬂ" in different quadrants. Although the error in the range is not very inequalities relating the ranges from different methods are
’.:l' large. the difference between the meaurement which is made on the established. They are

:l ': ) true trajectory and the filter-computed measurement is of the order .

0".6 :'i of 180 degrees. Consequently, the optimization process does' not )RASR (18)
0:"0 ’ converge. The optimization process is terrminated on the condition where K, is the unconditional maximum likelihood range estimate

that the changes to the azimuth and elevation angles become smaller
than 107® . At this point, the curvature of the likelihood function
need not be positive- definite and as a result P defined as the inverse

of two Gaussian variables x and y and R is the uncondiuonal range
obtained from the same Gaussian distribution.

o
L < o

of the curvawre is also non-positive definite. Note that if the
residual dependent term is not included in the updating of P, it
always remains positve-definite as in the case of the EKF. In fact,
in the formulations of the Gaussian and truncated second-order
filters (1), this random term is dropped in order to avoid the
covariance from becoming non-positive definite. In this analysis,

2) Rn <R, <Ry, (19)
where R, is the conditional maximum likelihood range of two .
random variables x, and y, with a CPDF p(r,,y,/Z) R, is the
conditional mean of the same CPDF and Ry is the conditional
maximum likelihood range of p(R,,6,/Z,) , the CPDF of {R,0 }

obtained from the CPDF of {x.y}.
however, the random term is retained so that it could add more

Y lEN information to the the covaniance. To circumvent the convergence 5.1 Relationship Between The Mean Range And The Maximum
] £ problem, the measurements that cause large non-converging Likelihood Range For An Unconditional Densitv Function

X A . : . . . > - :

X 1.: residuals are discarded. The undgrlymg_ reasoning i that if a The relative magnitudes of the mean range and the
! o measurement causes P to become indefinite, then it increases the

maximum likelihood range of the two Gaussian random variables x
and y are compared in this section. Expressions for the mean range
and the maximum likelihood range are obtained and Minkowski's
inequality (18) is used to prove that the mean range is always equal
1o or greater than the maximum likelihood range.

uncertainty of the esumates which P represents. Consequently, it
does not help the filtering process and ,therefore, is ignored. The

propagated states and the covariance are used to continue to the next
- measurement time.

AT The error histories of the ADF and the EKF for various - e
i\ »."; conditions are given in Figurés 2 through 8. The error is defined as and y is give/:sbs;me that the joint PDF of two random variables x
K _.: Ny the difference between the magnitudes of the true and the estimated
L, range vectors. The magnitude of the estimated range is obtained by _
;:Q:Q averaging over the ten Monte Carlo runs. p(xy)=C exp [—%(x —x,y-5)y P! {x_f ]] (20)
. E The range emors for the nominal case are given in Y
» 4 Figure 2. The ADF tracks better than the EKF during most of the where
{ flight. However, it exhibits a negative range bias. The range error == _ .
: - history when the initial range has perturbations of 500 feet in the X‘)};; lgzdml;in;;iifrze zor::ﬁzgeg;mx of xandy
P ’ positive and negative directions are given in Figures 3 and 4 c ; a normalising constant
: : 'Ji'» respecm;_ely, In t;oth cases, the performance of the ADF is supenior The maximization of the joint PDF with respect to x and y leads to
.::’ to that of the EKF. the minimization of the negative part of the argument of the
v Since the filter does not know the actual measurement exponent, called the likelihood functon, L.
) noise variance, a measurement mismatch, defined as the ratio of the B
‘. % actual value to the assumed measurement covanance in the filters is L=@x-xy-)Pt |* % @n
w0 hypothesized in genzrating the measurements. The range errors of - y-y
,: < the simulations with a measurement mismatch of 0.1 is presented in For companson and later use. the likelihood function L is defined
JOL " Figure 5. The performance trends of both filters are similar to the in terms of the range, R, and the azimuth angle ® , as -
7.0:: ;-\ nominal case in Figure 2 except that the ADF performs better
:‘l‘;‘ b dunng the later part of the flight. For the higher mismatch of ten. the e — =1 | RcosB-%
p performance of the ADF, as can be observed from Figure 6, is much L =(Rcosb—x Rsin6—y) P Rsinb—v (22)
‘a - worse than that of the EKF. Y
i& .': To simulate actual situations where uncenainties ‘in where R =(x2+y2)“2 and0=[an"0'/x ).
[ both the states and the noise statistics can occur, experiments are The values for the range, R,.and the azimuth angle8,, .that
: made with perturbations to the inital states and measurement minimize L are obtained by setting the partial derivatives of L with
.,l-,_' . mismatches. The range error history with an initial state error of 500 respect to R and 9 to zero,to yield
*‘,\ o ft and a measurment mismatch of 0.1 is presented in Figure 7. With . A
\ the same inual error, and a measurement mismatch of ten, the 'm = Rmc0s0,, =x and
X results in the range errors are given in Figure 8. The ADF tracks . A '
s .- better than the EKF in both cases. From these numerical Ym =R 5100, = (23)
& _'.f expenments, it can be seen that the ADF shows a high sensitivity to where x, andy, are the values of x and y which minimize
(' .:-3 a higher measurement mismatch. This can, however, be alleviated L.Also,
'» by adaptively estimaung the measurement noise covariance (15,16).
‘.::‘ The EKF performs well when the ‘nvoise smti‘sucg are uncertain. = (X 2ty V2 (24)
,o'. .?\ However, its response 1o imperfect initial conditions is poor. The bias in the maximum likelihood estimate of the
o.. range R,,. is shown by comparnison with that of the mean value of
"5 5. BIASES IN THE MAXIMUM LIKELIHOOD FILTERS the range R which s given by
.'Jl . . o oo
Ny e As discussed in Section 4, the ADF fails to converge - .
‘-: o near the end of the trajectory because P.defined as the approximate R=E[R]= ,[ I(x 2 )V (xy ) dx dy (25)
"‘. e —oo—00
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'p(Rnellzl-l) =

where E() is the unconditional expected value operator.

Minkowski's inequality (18) can be used to state the following
inequality.For x Ey .

(JJe oy pxyrdr dyP2([ [xplry)de dyy?

+(f [ypayydeayt. (26

The terms on the right hand side of Eq.(26) are the mean values of
xandy. Thatis,

Jrpxy)dady =E(x]=%

and

[ypxy)dedy =E(y)=¥.

——

With the aid of Eqs.(26),(27),and (28),the inequality starement can
be rewnitten as

(ERV2%*+5°=R?.

@
Since the range is always positive.Eq.(29) implies that
R=E{R12R,20. (30)

5.2 Approximations To
Function

The Posteriori Conditional Densitv

With the assumption that the measurement noise
variance is very small (a reasonmable practical assumption) the
conclusion of Eq. (30) is shown to be valid for the posteriori PDF
conditioned on the measurement. In order to compute the
conditional mean range, an expression for the posteriori CPDF is
required. Assuming that the apriori CPDF of x; andy; and the
measurement noise distribution at time i are known, the posterion
CPDF can be computed using Bayes rule. In doing so, however, the
evaluation of p (2;/Z;_,), an integral which is a normalising constant
is difficult. Consequently, Laplace's technique (17) is used to
approximate p(z;/Z,_,) with the assumption that the measurement
variance V is very small. To facilitate easier computation of the

conditional mean range, the CPDF is obtained in polar coordinates
Rand 6.

Assume that the apriori joint PDF of the state variables
x and y at stage i, conditioned on the measurement history Z;_;
upto stage (i-1),is Gaussian with means x and y and is given by

1 1 - - - I-;,'
iVilZig) = = —— (xi=x;,y,~y:) Pi - 31
P (xi\yi'Ziy) 2"“”:"4 exp [~ (i=%iyi~)) [y_y‘. ]l (31
where
5 -1 _ | S sn
Po=Si= [-"zl sn J

The PDF of v, , the measurement noise in Eq.(4), is expressed as

32)

1 1 -1
Vi)= ———— exp(-—vV7).
P @i P2
In order to make the computation of the mean range
simpler , the CPDF of the rectangular coordinates x; and y, is first

transformed to the polar coordinates R, and 8, . The result is

(33

R empl-7(@ 75,0 (34

.
2r|lP)|
where

. R, "
) ‘::‘u!‘:lt‘#":'f’:'!‘-"‘o’?’?"'l‘- el el

B AR Tl LR ol A

o = R,cos0,—x,
*7 | Risind, -y, |”
In processing the measurement 2, the CPDF is updated
using Bayes' ruleas

p(:s/Ruenzl-l)p(Rn'Ox/zn-l)

RIVOI t) =
p( Z) p(z:/ZA-l)

(35)

By examining on the right hand side term by term.it can be noted
that p(R,,9,/Z;_|) already known. From the joint PDF of z, und v,,
the marginal CPDF p (z;/Z,_1) can be reduced as (19) ’

p(lezr—l) = jP ((ZI‘VI)/Zn—l)P (Vn') dvl

= Cu ]:[ ! + 36
e vinz L a @)
bi(9) BA®)  mos 1 s
m exp( 0.0) Y(5)F+8)] exp[-<v. V7ldy,
where ¢ =z,—v; and

o
x*
A= | exp(5lde .
b,

d\‘q

Also,

a,(0) = 5,080 + 25 ;55inBc0s + 5 535in%0 and

5,(0) =cosB(s 11X + 5127 ) + SinB(s 12X +522¥) 37
The integral on the right hand side of Eq.(36) is

approximated by using Laplace’s method (17). The idea is to use

the assumption that the measurement vanance is small and,
therefore, V! is large. The main contribution to the integral, then,

comes from the region where the dominating term, exp(—; viivh
is maximum. The term multiplying the dominant term is expanded
in a Taylor series about the maximum point and the integral is then

evaluated term by term. To first order, the approximated value of
p(z,/Z;,_,) [Appendix A.1]is given by

p(z/Z;))=C; K(0;) (38)
where

1 5%(0) 5% @), mun
K=l 2@ +—‘1F,2—(9—)61P(7i(—9)-l((—2') +A) ] 39)

By the substitutions of Eqs.(34),(36), and (39) into Eq.(35), it can be
shown that

Ri_ expl=1/2(a,7S; 0, +Hz,8,)V"")]
2x] P @IV |N'2C,K 1i(8)
5.3 Determination Of The Conditional Mean Range

pR.O8IZ)H=

(40)

. With the expression for the approximated CPDF in
Eq.(40), R, the conditional mean range at i, is computed in this
section. Approximations have to be made to the integrals in the
expression for R; assuming that the measurement vanance is very
small. The mean value of the posterion range is given by

R =R p(RIZ) R;
[¢]

P-(ZJR: '9: 'Zl—l)p-(Rn 'ol/zl‘l)
P-(zl/zl-l)

=[[R d0, dR, (1

=0
By the substitution of Eq.(40) in Eq.(41) it can be shown {after
some manipulations) that R, reduces to '(19)

- : e
¥ o) r\‘-\f f.'( Nf "( f = 5"'\"\‘ \:-VQ.J\.’
::!.l"‘ 0 '2\“ i LA lnr oM N |.O. iR
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R.-——+l— lexp (b, Y2a) + (= )"-]+—exp(b 424V

(exp(-b,%/2a,) +b,/a,"? «%)m +4)) (42)

where the terms containing a; and b; are evaluated at 0, =2 . For
future companson.it is observed that when b,%2a, is large
exp(=b, 324,)= 0 and Eq.(42) reduces to

b, 1

Tt 43)
‘(1 +(;)”A.)

.
By an asymptotic Zexp:msion for A, (17) and neglectng terms

containing exp (

: , A, can be imated as
2(J") ca approxima

A =V2rw. (44)

By substitution of A; from Eq.(44) into Eq.(43) , the expression for
R, 15 reduced to

g=le ) @s)
T
Yoa, 3b;

Note that both terms on the right hand side of Eq.(45)
are positive. The first term will be shown to be common to
R and Ry, However, comparison of the second term of R; with
that of R,,,. and RM will establish the biases ofR and RM‘

5S4 Determination Of The Range That Minimizes The Likelihood
Funcuon.

An expression for the maximum likelihood range of
p (x,.¥,/Z, ;) is obtained in this section for comparison with R, given
in Eq.(45). Maximization of the CPDF for x;andy, amounts to
minimization of the likelihood function which is defined as (19)

= _[(ZA ex )2V_l + anai - ZRxbi + Ci] . (46)
where

o T2 — =2
=5 X +2s 12%); + 5 227

The values of K, and 6, which minimize L(in the process of
maximizing the PDF) are obtained as (19)

R bi 47

m = a e,-é. ( )
and
8, =z—V(R2a,-2R.b, )],u (48)

8,=0n
da, d b,’ L da C ith th
’ = — = t

where a; 80, an 30.- onsnslent Wl e argumen in

approximating R;, the measurement noise variance V is assumed ta
be very small. Consequently, the term containing V in Eq.(48) is
ne :lected. The result is

. =z (49)
Eq.(49) leads to
. b,
Rm. = 7 a (50)
1 =7,

By comparing the expression for R, with that of R, %n Eqg.t45), 1t
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can be concluded that R, ,the conditional maximum likelihood

estimate given by Eq.(50).1s always smaller than'R, the conditionl
mean range ,subject to the assumptions made.

5.5 A Method Of Modifyine The Likelihood Estimate

Since the maximum  hkelihood esumate s
biased.techniques for the reduction of the bias are developed. One
method is determined by considering the apriori PDF transformed
from x and y to R and 8 which can be written as

1 1
R,8,/Z;_|)=———=r R, exp(—= (R a,~2R,b+c,)). 51
p( 1 anv,‘“ exp( 2( a )] (51)

After processing the measurement, z; the posteriori CPDF can be
computed as

1

S
Rnellzl >~
PO =Rz

R exp(- —l(~.-0 yv-

+R2a,-2R b+c,]) . (52)

The transformed CPDF given by Eq.(52) iy used to
obtain the maximum likelihood estimates of R; and 8, instead of
defining R = (xn2+ym )" where x,, and ¥, are the maximum
likelihood estimates of the posterion CPDF in x and y . It can be
proved now that,Ry, ,the range thus obtained is always greater thun
Ry

The maximization equations for p(R,6,/Z;) ‘eadto (19

. b, + (b + 4a,)}?
R —_——
8,=0y

= 53
M, 2a; (53

and

O =2 -V [Rlza.'—-?.R,b,']]R, A (54)

6,=91
The assumption that the measurement noise covanance, V, is small,
is used in Eq.(54) to obtain an approximation to 8, as

95,‘ =z .

(55
Substitution of Eq.(55) into Eq.(53) is made to yield
. b, + (b2 +4a)”
M= 2a, . (56)

8,=2,
The right hand side of Eq.(56) is now rewritten and expanded to
show that Ry, is always greater than R,,, .

. b; i
R = (1 +4—
M= et 2 ( b‘z)
bt bi 1 1 4(1,' 0 alz
=——t— (l+=——+O0(— 57
et 7 (b‘m (57
a,z
where O(F) contains terms of the series of order equal to or

! 2

al
higher than (2—4) . This binomial expansion is valid for
:

2 < land this conditon is usually satisfied in actual cases
1

aA
(Appendix A.2). Neglecting terms of order higher than (F) the

range R,y can be approximated as

s b,
Ry, = (— +-—) . (58)
a, b, 8,=6,=1,

This expression on the right hand side of Eq.(58) is always greater
than R, in Eq.(50) because a, and b, are always positive.
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’a.,“ ‘»X Companson oqu given by Eq.(58) with R in Eq.(45) o l_n order to prove that 6(0)20 the likelihood function L

g-_‘. :.-_ shows that R;, 1s also biased. However, a positive bias as with R.,, is writen as follows:

N may be less detnmental to the performance of the filtenng process 1
S :103n the nenalme b:;s of K., because the range goes 1o zero in the L= 2 a(ONR-R\)(R-R ) (A.8)

. ming mussile problem.

where
L
' { ’
g”:’ 6. CONCLUSIONS R +R.z2 b(g) 4 (A.9)
Y In this study, the problem of obtaining estimates of the LTI

W v, states of a linear system for the case where the measurement
0,'. 4~ function 1s nonlinear has been considered. A new maximum R\R;= —<_>p A.10
o, likehhood filter has been formulated based on the Taylor series a(8) (A1)
B expansion of the posteriori conditional probability density function
=y & around its mode. The performance of the resulting assumed density Sinc: both a(8) and c are positive. Ryand R are such that they
“l.: i filter is analysed by tracking a manuevering target with signals from she.ald sansty one of the following conditions:

g.! - a passive sensor for which only angle information is available. The

‘s numencal results show that the error histones of the new assumed ~ £1=0 R250 (A.11)
;;" by density filter are better than that of the widely-used extended

J:h ﬂ Kalman tilter for inttial conditions which are off-nominal. The' R0 R,y=0 (A.12)
v.. assumed density filter is, however, negatively biased with respective

to range. Ry<0 R;<0 (A.13)
. .\(’ ,:.] The numencal results are corroborated by approximate R120 R,20. (A14
_},;.: vl analvtical €Xpresstons for the conditonal and unconditional A
:,: N .o estimates of the mean and maximum likelihood range. In addition to the restricuons on L, a, and ¢. note that in addition
,':.,' R20. This means that the value of R comesponding to the
:": maximum va!ue of L is also equal or greater than zero. Therefore,
U0 APPENDIX A ték chly4possxble values are given by Eq.(A.14) . In order to sausty
('. This appendix deals with some derivations that are used /(A1) it can be observed from £q(4.9) that b (9)20.
" in Section V. 2. Approximations Of p (2;/Z,_,)

: ":' s: The aprioi PDF of z is given by
‘Wl 1. Proofs To Show That a()>0 and b(8)20

! P(2/Zi)=C [T+ Ty} (A.15)
‘.'a‘ Consider the likelihood function L in terms of x and y. .
a ﬁ It is given by where

‘.?_," 1 - - [x -I] 1 T

[ L=—(x-xy-y)S = —— L

‘o ¥y) - Al Ty = —— exp[~>u V7 d

S i y D ey Lo ewigutv
S A
':':‘: after» dropping the subscripts for convenience. In Eq.(A.1), the A19)
:'.,:' matrix S, being the inverse of the apriori curvature at the maximum T b(9) b‘Z(C’) 1

Vit of the CPDF is posinve. Given the quadratic form of the right hand Ty= 2 \V“ 172 I ) 2 Jexp(=—-u,*V ~)du,

) i side of Eq.(A.1), it can be concluded that L is always greater than or @rivih'® < a, W) @ 2

s :qual xodzero In terms of R and 8 ,the likelihood function can be (A7)
‘2 xpressed as

g ’ and
'; l" - 1 X

s 7 — (RcosB-X R sinB~y RcosB-x N 1

‘:':'. g =3 v) S R sin65 (A.2) Cu= ZM\P,H exp (—zc,) (A.18)
Sred ; _ !

RS where R =(x2+y%'%and 8=tan" (). The right hand side of . .

‘ Eq(A.2) is expanded to yield x and ¢ =z;—u;. 'I;he integration of the term T is considered first.
::;.' & 1 The term exp(—;u,ZV") is maximum at u; =0 and becomes very
::' ‘ e - 5 (a(O)R2=-2b(BIR + ) (A3) sbr:all rapidly for any non-zero values of &, because V is assumed to
i very small. Note that for all values of 0 a,(0) is bounded. Under
';‘: . where these conditions, an approximation to p(z /Z, 1) is sought usmg
,':‘ & ;aplace s melhold (17). Laplace's method involves the expansion of
i _ s R L, e term multiplying the dominating exponential term in a power
. : a(8) =5,,c05"0 + 25 ;2c05051n0 + 5 575in’0 (A.¢)  series and the evaluation of the resulting series of integrals term by
v _ _ _ _ term to any desired accuracy. In order to use the method the right

! = v - g ! S
‘.:# ¥ 1:(:31) CosB(s 13X +5 129 ) + SinB(s5 ;X +5337) (A.5) ;‘%nd snd;a pf Eq.(A.16) is expanded in a Taylor series about u,=0.
PO e result is
& "'

NS : c =S5l 25, Ay + ;! -

o, 1" Sz xy +53y° (A.6)

: ot . T= —_ ¢ ” 2

o ., ol ] Note that a(8) from Eq(A.4) can be wnitten in the ' 2n] vily? _J;IA‘(OH;; (O, +g 7 (O, +....)

¢ ollowing form:

' _ cosf exp(—=112u V1) d

\..' a(8) = (cosb.5in0) § nd (A7) xp 2u, } du, (A.19)

)

!;:‘ "'; Since cos@ and sin® cannot both b th

b ot both be zero at the same time, a(0)>0. = J ifterenti

::::‘ -~ By similar arguments, it can be shown that ¢20. where £(9)= a,(0) and primes denote partial difterentiation with

: ’.: respect to ¢. All functions of ¢ are evaluated at ¢ =z, Evaluation
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of the integrals in Eq (A. 19) is carried out to yield

Ti=g(®+g"(@)V +0 (VD). (A.20)
evaluated at 6=z, Since V is small, the terms containirg V are
neglected and the approximated expression of Ty is given by

1
T\ = s(¢)}c=,. =— (A2])
a,(z,)
In evaluating T, it is recognised that the term
multiplying exp(~1:2u4""') also has an exponential term.

2a,(¢)
expanded in senies. Each term in the expansion can be multplied

with

However, exp( } is bounded for all values of ¢ and it can be

and the resulting integrals can be evaluated as in the

b,(0) b2(0)

exp (
a2 P 24,0
expanded in a Taylor series about u, =0 and the resulting
expression for T, is

a>%(9)

case of T|. In other words, the term ) can be

1

= ————

Crlvip!? [ g 10008 ' (@utg (@) 4.

—oe

exp (~1/2u2V Yy du, (A.22)

where

b2(9)

bi(0)
P e

E—j— €.
a (%)

81 (A23)

and the primes denote partial differentiation with respect to ¢. All
functions of ¢ are evaluated at ¢ = z,. Evaluation of the integrals in
Eq.{A.22) yield
T:=g.00)+g "'V + 0O (V). (A2
As before with T, the second term is proportional to V, the third
term is proportional to V* and so on. Neglecting the terms
containing V, T can be approximated as

b,(z)) b2(z;)
2% P e,y

T,=g 1(¢)]°=l‘ =
(A.25)

By substitution of Eq.(A.21) and (A.25) into Eq.(A.15) gives an
approximation for p (z,/Z;_;) is obtained as

( 1z ) C 1 bl(zl) blz(zl)
zl - = 1 e
Plte-r=m ey Ve P e

(A.26)

b2(8)
3. Arguments To Show That 2.(0) Is "Usually” Greater Than
Unity At The Maximum l
2

The expression for a—' at the maximum of the CPDF

is given by

[cos 9,,,(.\' 11;4-5 17_\7)4'5“'19,,‘(5 IZ;""‘ 21)'-)]2

(A.27)
511€0520,,+25 | 30058, 5in0,, +5 23500,

after suppressing the arguments and the subscripts of a.b ¥, and ¥
. b*

for convenience. In order to analyse the magnitude of —, it is
a

assumed that the values of the trigonometric functions of the apriori
and the posterion estimates of the beanngs are equal. That 1s,
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cos0,, =cosh and sinQ,, = sind (A.2%)
where

0= tan” (F/X).

By substitution of Eq.(A.28) into Eq.(A.27), an approximation for

is obtatned as

b

tcos® (s WX #5125 + $in0 (5 15T + 5 257))
b

by = " RN
511€05°0 + 25 1,51n8c0s0 + 5 725100

o — -2
=s”x2+2s12xy +S5a0y " (A.29)

. . . . b
Without losing the generality, the magnitude of — can
a

be analysed by examining s y;¥. At the beginning, the initial range
considered in a typical tracking or a homing missile problem 1s
3000 feet or more and , therefore, x is of the order of 10’ . Though
the initial value of the covanance is assumed to be high, Lhen:b},
making s;; small, the product s1x2is usually greater than unity.
As the problem proceeds, x becomes smaller in the homing missile
problem. However, with more information through the
measurements, the covariance matrix is also becomes smailer and,

therefore, s;; bigger. Consequently, the magnitude of% 1s
greater than unity.
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Coordinate-Transformation-Based Filter for
Improved Target Tracking

S. N. Balakrishnan*

~
:: a\ :j University of Missouri—Rolla, Missouri
.c::.| - and
RN Jason L. Spevers
Y ason L. Speyer
— 5 The University of Texas at Austin, Texas
. L]
¥ ".-, . A n|a:‘(imum likeiihood .estimation method is developed for applications to the target tracking problem hased
o A Iy on bearings-vnly ohservations from a single observer. The n.ethod involves propagation of states in rectangular
f',:l'.. *d coordinates in which the linear dynamics permis a closed form solution. At the measurement times the stafes
are converted to a special polar coordinate system in which the measurement is modeled as linear in the
- transttormed state and lfpdaled using the Kalman methodology. The coordinate transformation is choscn so that
3:' “, the dfrect transformation of the maximum likelihood estimate is approximately preserved. The numerical
:' O t‘, experiments for a tarpet-intercept problem are presented, which show that the performance of this coordinate
RS :: transformation bused filter is superior to that of the Cartesian system based extended Kalman filter. Approvimate
.'0. ! analytical results also corraborate the numerical results.
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Introduction
ACTICAL weapon systems require accurate tracking of ma-
neuverable vehicles such as submarines and airplanes. During
the iast several years there has been an ¢ctive interest in the de-
velepment of sophisticated {iltering algorithms for tracking with
bearings-only observations. Satisfactory results have been difficult
to obtain using current mechanizable filters because of the non-
linearity and passive nature of the observations. In practical cases,
the high level of uncertainty in the initial states of the submarine
and the rapidly accelerating target in the missile-intercept problem
make accurate estimation of the states even more difficult to ac-
complish. Considerable rescarch has been going on to improve
existing methods. The single dominant method used, in the ap-
plications of the nonlinear filtering methods to the tracking prob-
lems, has been the extended Kalman filter (EKF). '3
An approach to achiecving a better nonlinear estimator is to
determine a state-space, which may be diffcrent from Cartesian
coordinates, for which improved estimation occurs.®® '* The aim
of this paper is to develop a better and suitable maximum likelihood
filter based on transformations of state spaces {or application to a
target-intercept problem. The formulated pelar coordinate filter
(PCF) uses a nonlinear transformation of the state spaces. How-
ever. the choice ot the coordinate systems is such that the ap-
proximatc conditional mode {which represents the estimates of the
states) is, except for one state, unaltered by the nonlinear trans-
formations. This is appromm.\tclv true 1n @ three-dimensional co-
ordinate frame and exactly truc in a two-dimensional frame. The
development of the PCF, numecrical results from the applicatien
of the PCF to a homing missile problem. and analyses arce used
to explain the resulis of the numenical experiments. In all analyses,
the Cartestan based EKF has been claded tor comparison.

Development of the Polar Coordinate Filter

The basts for the PCF is the avatlubility of two convepent
mathematical deseriptions of the tracking pioblenn. [ Cantesian
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coordinates are used, the state cquation i lincar and the corre-
sponding measurement equation 1s nonhinear. 1Y polar conrdinates
are selected, the model has a nonlincar stute cquztion bu® a bincar
measurement equation. The ides achind the PCEF v 1o expion
available linearity in both ceordinate systems. This sdea has beg

used in the past by Mehra® and Sammons ' to solse trecsing prob-
lems. The algorithms of Mckra” and Sammons® use the standard
Kalman update and propagation tormulus where a neniinedr trans-
formation is used for the covariances. In contrast. the approxi-
mations used in the PCF are made directly 1o the conditional
probability density function (CPDF). and the approumate con-
ditional mode is assumed to represent the best evtimiate of e state.
In all of the available work involving transtermutions of the state
spaces,™ 87 it 15 tacitly assumed that the transformation between
the approximate CPDFs preserves the approxiniage condition.:l inean.
However, this is not the casc. In the PCE. the coordinate ystem
is chosen so that the approximate conditional mode 1s least atfected
bv the nonlinear transtormation.

System Model

The nine-clement state vector daseribing the missile-terget en-
gagement contains a three-dimensional relative position vester, a
three- dimensional refative vefocity vector, and a lth dimenstonal
target acceleratton vector modeled as a first order Markos process!
The evolution of the state vector in the mertial trame i~ writtea n
matrix netation as

x : Fv+« h +n 1y
where xis the state vector 1 ar arve rary nertial frome consistine
of the porution vector teg, g, 2y, and the s o ond accetoration
comporents are represented by e spcelement vestor o F
9 > 9 matnx ef censtants, The mine-clemont vector & contare
the components of the misele secelcration ector i the et
s and i pven as b o= 10,0, 00 gy, . SO0 0] The
anly ron-zero components o the nme-elemen: vec e e conesoand
to the tarecet acceleration cor PONCRts W Crtus s oo nican
el denan (0

corrapted ansic obscivations ae

[ANN)

tyr o Ly

WHIC Nowe process with 4 power see
The diserete ronhinear nojs,

exvprassed et pular coordinates as
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where - and Z- are the measurements, vand veoare Gaussian
Zero-medn sequences of random vaniables with a varnance V', and

subsenipt ¢ denotes the time at which the measurement 1 made.

Transformations of the Approximate Conditional Prabability
Density Functions

Stnce the syatem dynunues are hinear. s approvimate condi-
tonal mean and moede are propagated trom stage ¢ = D to stage

1 by

T (i < | e nibinnds 13

where o Drs the state transition matrin, 171 s the a prion
condittonal mode at . onven /
o= boand

. the medsurement history ap o
Vi the a pestenent conditona maode at e enven /Z

The propasation cuaatien 0f IR aPPTONIMUIC 4 PIION state error
COVATIANCTS Tar v s

S ™

(4)

where £ s the hnown aeprovmuate o posterion conditional co-
varanee ot 0 - b Poomdicates ne imverse of the curvature of
the CPDE around the Theretote., hetore o measurenient
update. the approvimaie o priont CPDE of voas assumed 1o be of
the torm

mode

pr o - Toexpl =il rafp Tal 15)

where a0 = [ = T ve = 4. 3k — T sf = 37 und
Te. To. und v are detined to be the a priort modes of vy vg.
I oand v oorespectinely O s g normaiiZing constant.

The trunstormation tfrom the Cartesian coordinate svstem to a
polar coordinate system s given in a tunctional form by v = gt
where voncludes the two measurement functions ¢ and &, The
choice of the other states 1> dictated by the need to mantain rat
least approximatelyy the direct transtormation ot the maximum
likelthood esumates between the CPDE's of 1 and v. In order to
achieve this, one of the states in v s the cube of the runge R3 and
the other s 5. The transtormed state vis given by v 2[R3, 4. &, 57|
and

Ty

U0 = [(xg = v + )7 tan Mg tg).

tan '(—zg txz = 2z) ) 57T

6)

The chotee of R3 will be motivated in discussing the transtormation
of the CPDF. The inverse transtormation from v to ¢ s given by
¢ = hiv) where v 2 (xp. vp. 25, 5T and

INMPROVED TARGET TRACKING FITTER N

where

B = [RY cosdh, cost, ~ Y. RY cond sinb, - T,

R3Y ‘sind, = Ty s, — 517

It the determunant of the Jucobian of the transtormation between
the v and v systems iy constant. the maodes ot the approsimate
CPDEs of both systems can be related by the transtormation
¥, = ¢ Since the determinant of the Jucobian s not constunt.
approximiations o the conditonal modes of the v system need to
be determined. Since cos ¢, multiplies the exponentials in kg 191,
the approximation to the conditional mode tor ¢ is of concern.
The approximate conditional mode &, is obtned by setuny the
partial denvative of poy, Z, . with respect o é,, o zero as

{ips, 2

Al b = c—und — BIPIirpy 2, ) = 0

(1)
where ro 208 ad.. The usual Kalman update formulas for esu-
mation are obtained 1t tan &, were not present or neglected. In the
homing missile problem. which motvates our work, the iniual
launch geometry s assumed to be coplanar in the x-v plane. which
means that the il value ot & is zero. Throughout a typicul
engagement, the magnitude of &, is not greater thun 435 deg and
the magnitude of tand, 1s less than unity. [n compartson with the
other terms 1in Eq. (10), which contain terms ot the order of the
range (K3 = R) or higher. tand, is negligible. With this ap-
proximatton, the approximate conditional modes of ptyv, Z, ) are
obtained as ¥, = ¢(X,).

This particular choice of transtormation variables tfrom Eg. 16)
approximately preserves the conditional modes of the initial and
the transtormed approximate CPDFs. There are some examples in
the literature ™ *~ ¥ where transformations ot the variables of in-
terest have been used to form new state spaces where the EKF has
pertormed better. In all of these sets of state spaces the assumption
of a Gaussian form tor the CPDF does not allow the nonlinear
transtormations to preserve the approximate conditional means
(which are used to represent the estimate of the states) in the
transtormed coordinate svstems.

[f the CPDF can be approxamated by a Gaussian torm for K3,
6,. &,.. and s,. then the states can be updated using the Kalman
rule' at the measurement. In order to accomplish this, the argu-
ment of the exponent in Eq. (9) is expanded n a Taylor series
about the approximate conditional mode up to second order. In
neglecting the higher-order terms. it is assumed that the CPDF is
approximately Gausstan, with the mean approximately equal to
the mode. The resulting approximated CPDF

POIZ_ ) = Trexpl —va(8]P18)] (rh

where 8, 2 v, — §,.¢ 2 Vacos &, expl = f(5)]. and the mnth

2
element of P! s given by

) (P Nwn = 1S () = Tog cosdp] [ax,atxp gl (1)
:2 hiv) = (R37 cond costh, R3™ cosd sin,
~R3"snd. 577 (7)

o

\d — ~

- The CPDF of v, can be obtained from that of v, as""

. Py = piZoo 0 g (%)

! where J ' the determinant of the Jacobian of the transtormation.

1s found to be 1/3 cosd,. With this value of /' | the CPDF of B .

o ¥, can be written in terms of R3,. 6,. &,. and s, as

w5 )

v P2, ) = Voeosdc expl - v Bipt o)

o 2 Vicosd, expl - f(yv)] 9 Fig. 1 Launch geometry.
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In Eq. (1D, P! represents the curvature of this CPDF at the a
priort mode _'\", The presence of the te xm exptlogeosd,) in kq.
(9) prevents a simple expression tor P, ', Therefore, its eftect is

examined. The only term that log cos d), .mu.(s is (P74, and 1t
1s given by

(pr')_n = ),b_(—log(u)swj + f(y, ))l!

=¥,

Il

sec~d, + R37F (13

where F 15 a function of P!, sind,. and cos@,. Note that the
term sec”d, in Eq. (13) varies between 1 and 2 as &, changes from
zero 10 45 deg. Compared to the other terms, which have a mug-
nitude of the order of range, sec=@, is small and therefore ne-

glected. Since the expression for P;,‘,‘ in Eq. (11) can be reduced
o

Pii=(g. Pl (14)
where g. 2 dg(x,)/dx, is evaluated at x,

CPDF represented by Eq. (11) is Gaussian.
In the coordinate systems employed by Mehra? and Ssmmons,?

t,. the approximate

v 2[RI, 0. &, 5] where RI 2ixj + yi + z3)'°. The trans-
formed CPDFs have the turctional form
p(¥/iZ,.\) = &(¥))exp(f(3)) (15)

since the determinant of the Jacobian for their transformations is
a function of v/, Furthermore. the determinatz of the Jacobian is
not even approximately justifiable as a constant since it contains
the range. When the argument of the exponential is approximaied

up to second order, the resulting approximated CPDF is of the
form

FUYLZ -y = eDexpl =207 - FOT P70 - F1 (16)
whicn is clearly not Gaussian. Consequently the applications of
Kalman methodology in their algorithms are not valid.

Updating the Conditional Density Functions and Estimation in Polar
Coordinates

The a priori CPDF for R3., 8,. ¢, and s, given by Eq. (11) can
be updated by using Baves' rule.!® The a posteriori CPDF, atter
some manipulation, can be reduced to a Gaussian CPDF

P(y/Z) = ciexpl— 120y, = ¥)P, ' = ¥0) (IT)
The objective is to update the conditional mode as if it were the
conditional mean with the curvature at the conditional mode used
as the inverse of the conditional covariance. The update cquations
used 0 process a measurement arc given by the Kalman rules as

)"l. = .\—'x

+ P HIV, (2, = 0,2 - &) (18)

P, = (P! + HIV 'H,) (19)
H. is a constant vector or partial derivative of the measurement
with respect to v, evaluated at ¥v,, and ¢, 1s a normalizing constant.
There 15 no further approximation anvolved in the update process.

After the update 1 the polar coordinate system, the conversion
back to the Curtestan systemn 1s obtained by tracing the <ame steps
and makmyg smilar approximations to the value of &, as before.
The PCF 1s computed by the propagation Egs. (3) and (4). truns-
tormation Eqs. (61 and (14, filter update Eqs. (18 and (193, und
transformation back to the vsystem given by {, = h(v ). The state
covariance of the x system v obtamned in a mananer simelar to kq.
(14), where

! (20

4
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Numerical Results

A six-degree-ui-treedora computer program. ! which simulates
the Intercept of « mancuveneg target by a bank-to-tum. short-
range, air-to-air homeg misstle has been used 1o test the PCE Lnd
the EKF. The guidance scheme that computes ihe conmand: !
mussile acceleration is based on an “optimal ™ hinear gridance aw !

The launch geometry used i this analysis s desenibed 1 D
1. For this inential system, the Z; axas s directed toward the Eustn <
center, the X, anis 1s aligned parallel to the nussie’s il laueeh
direction, and the Y, axis 1s chosen o make the mertial system
rieht handed. The engagement is characterized by the il con-
ditons: range, 3000 fto altitude, 10,000 1t aspect anele 14,0, 120
deg: and off-boresight angle (4.), 0.0 dee. Tae number of Moot
Carlo trials is ten. The runge-dependent measurement norse medel
and the state noise model and their statisties are the same as Ret,
12. The diagonal elements of the intial state covanances are 107 10,
cotresponding to wxa, 107117, to rp and to . 100 f1° ece
for the velocity compornents, and 10 tt=sec? © the tarzet acec
eration components. The off-durgonu! elements are zero
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The error histories of the PCF and the EKF for various conditions
are given in Figs. 2-8. The error is defined as the difference
between the magnitudes of the true and estimated range vectors.
The magnitude of the estimated range is obtained by averaging
the ten Monte Carlo runs. The estimated range in the PCF is
computed as (R3)".

The range-error histories for the nominal case are presented in
Fig. 2 for the PCF and the EKF. The performances are quite
similar. The range error history when the initial range has pertur-
bations of 500 ft in the positive and negative directions are given
in Figs. 3 and 4. respectively. The PCF clearly out-performs the
EKF. Since both the observer and target are constantly mancu-
vering, the PCF. having states measurement functions. is able to
utilize the information better than the EKF. By comparing the
performances of the EKF in Figs. 3 and 4. it can be observed that
the range errors, with a positive initial perturbation in range. are
much worse than those with a negauve inthal perturbation. Thus
the EKF 15 biased. The performance ot the PCF, hawever, 1s more
even with positive and negative perturbations.

IMPROVED TARGET TRACKING FILTER
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Since the tilter does not know the actual measurement noise
varlance, a measurement mismatch. detined as the ratio of the
actua! value to the assumed measurement covariance in the filters
is hypothesized in gencraung the measurements. The range errors
of the simulations with a mcasurement mismatch of 0.1 is presented
in Fig. 5. The performance trends of both filters are similar to the
nominal case in Fig. 2. For the higher mismatch of ten. both the
PCF and the EKF are equally affected. as seen in Fig. 6.

To simulate actual situations, where uncertainties in both the
states and the noise statistics can occur, experiments are made
with perturbations to the initial states and measurement mis-
matches. The range error history with an initial state error of 500 ft
and a measurement mismatch of 0.1 is presented in Fig. 7. With
the same initial error and a measurement mismatch of ten the results
in the range errors are given in Fig. 8. It is clear that in both cases.
the PCF has a better response to perturbations than the EKF.

Biases Associated with Different Formulations of the Extended
Kalman Filter .

Observe from the given range error histories that the range
estimate R, of the EKF has a larger bias than the range estimate
of the PCF. This phenomenon can be explained by developing and
comparing the expressions for the square of the a posteriori range
estimate of the EKF with that of the PCF. For simplicity. the
differences in the expressions tor the conditional range estimate
are provided from a two-dimensional tracking problem. In this
case. the polar coordinate for the PCF is (R, &) where R is the
range. The posterioric estimate of the range in the PCF is defined
as R, 2 R:. where R3 is the estimate of R®. In order to illustrate
the ditferences in the estimates of range with a different polar
coordinate system. the expression for R, the estimated range from
the filter with a transtormation from {x. v} to (R, 6} is derived.
Itis proved that R, = R, and shown that R, = R,. This incquality
helps explain the smaller range biases of Mehra's polar coordinate
filter” over the EKF for a reentry problem.

The Approximate Conditional Range from the EKF

It is assumea that x] = (xg. vg ) is the state vector to be
estimated with known s,,. The expressions for the a posterion range
estimate are developed at the tirst measurement where the known
a priori conditions for all the filters are assumed to be the same.
The state x,, has a Gaussian probability density function with mean
¥, and covanance P . The EKF for the estimation of x,, is given
by

X, =%, + Ax, Q2n

S AR AR -
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where Ax, 2 P HT V 'u,, P_ is the a posteriort conditiconal
covariance matrix; M is the rirst pustial derivative matnix of the
measurement function with respect to the state evaluuted at ¥, and

v, equals [z, — A(X,)]. The a posteriori estimate of the square of

the range. R, is computed from the EKF e<timates
R 2 xli, = xIx, + 2377x, + AxTAx, (22)

The Conditivnal Range Estimates from the PCF

The transformation equations from the Cartesian system to a
new polar system y, = [R; . 6,)7 is given by v, = gix,) where
g(x,) = [(xz, + vk tan™! (yg/xg,))". This new polar coordinate
system 1> chosen so that the Jucobian of the transtormation 1s
constant without approximations. Therefore, the condittonal modes
are invariant under this transtormation.

The updates of the state ¥, and the covanance P, at the first
measurement are calculated with Egs. (18) uad (19). Tne partial
derivative of the measurement funciion in the v and x systems can
be related at H,, = (88,)i(3y,) = H_ <! This expression for
H, . and Eq. (20) for P,,” are substituted into Eq. (13) for ¥, to
yield

Yo = §, + 2l Ax, (23)

The posterioric estimate of B2 is given by (R = T3,
R, = R = 2ilAx, (24)

The bias in the polar formulation can be demenstrated by dif-
ferences in values of R} from Eq. (24) and from B given by
Eq. (22

R} — R = AdlAy, (2%

This resalt is significant in the context of the numeri.al rasults of
Figs. 3 and 3. The range error histories, in response (o position
perturbations it Fige. 3 and 4 sherw that the EKE scems postively
brased. Since the analvical results show that B - £ the relative
performance of the PCEF seems loss biased than the EKE,

The Conditional Range Estimate of the Filter with R and 0 as States

A formulation 1s now attempted along e wame hines as S -
mons’ polar coordinate hiter. e transturmation ot the rectimeutar

stutes 1o a polar svstem 3 IR0 whore the mcasusenients

,'.,4'_’&’ Y "‘A"'c‘ t"‘

Fig. 8 Rurge ereor history (mismatch = 10, 7 = 500 fo.

are Lincar in the states is given by v, = gix ) where

Qlx,) = [0, +35) L tan ™t (vgoxe t)T (26)
The update equation tor the range @i a measurement is piven
by

R, = R, + g Ax, 27

where g;, contains the elements of u related to the B cloment,
andis given by ¢, = [T R, .Tp R ] The sguare of the sstimated
range computed by this tilier 1 (mr;nn:d 1er comperison weh tnat
of the PCF.

R =R =~ 2R, 2. dx. + Axjgl o Ax, (28
where
GRS ke
e 2. L m '_~A—;« (29}
e Ip e R VL R
Note that the determinant of the mainx ¢f 18 2oro, theretore.,

one cigenvalue is zero. Also. the tace o1 J v b oumty, and,
therefore, the second cigeavalue 1s one. Consequently, ¢f o can
be written as

ool .
ETE] - [" {‘“ I’J'n [

whare the celumns of I oare the efeenvectors ot v oo The expios
ston tor R trom Bg o 0281 s revnition with e cupression o
¢l ¢ from by, (A0 By replasing R with

. , R ETIT) e
R’ 'Y’T“*ZY,,_\\,'»A\‘I,L) ‘|l, v G

By subtracting 27 trom R given by La (240 the diftercrces m
the range estimatos obtamed throweh the two diftcrent polar for
mulations cuin be shown
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Note that the nght hand stde of kg, (321 is nonpositive. Theretore,
R, =R

By ditferencing B2 in Eq. (31 trom R (Eq. 22) an important

result 1 obtatned as
NN
a0
vy

The right hand side of Eq. (33) in this case is always non-negative.
Therctore. the estimate of the range R, with the Cartesian for-
mulation of the EKF is usually greater than the range R, obtained
with an R and A transtormation for x and .

Mehra’ reported results from a reentry tracking problem where
the range estimates of the EKF tormulated in a rectangular Carte-
stan tframe are always more positively biased than his polar co-
ordinate filter. The inequulity K, = R, helps to explain Mchra's
results.

S s 0 0
ki =& 0|
0
0

(33

Conclusions

The problem of obtatning estimates of the relative states of 4
homing missile with respect to a target and the target aceeleration,
using beuarings as the only measurements. has been considered. A
new maxmum likelihood tilter has been formulated. This polar
coordinate tilter exploits the fact that the system dynamics are
linear in rectangular coordinates and the measurements are linear
in polar coordinates. The polar state space has been chosen so that
the direct transtormation ot the maximum likelhhood estimates
between the spaces is preserved in two dimensions and. under
certain assumptions. approximately in three dimensions. The nu-
merical results show that the estimates of the range by the extended
Kalman filter have a larger bias thun that of the polar coordinate
filter. Expressions for the posteriort estimates of the range for
these filters have been denved and compared to corroborate the
numerical results.
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On-Line Aircraft State and Stability Derivative Estimation
Using the Modified-Gain Extended Kalman Filter

Jason L. Speyer * and Edwin Z. Cruest
University of Texas, Austin, Texas

A new on-line state and parameter identification algorithm called the modified-gain extended Kalman filter
(MGEKF) is applied to the problem of on-line state estimation and identification of the stability derivatives of a
F-111 type of vehicle. The conceptual basis for the MGEKF is the existence of a class of nonlinear functions that
allow a universal linearization with respect to the measurement function. This class includes the problem of
identification of linear systems. The previous single-output formulation is extended to a multioutput formulation
where the only available measurements are acceleration and pitch rate, but not elevator deflection. The filter
formularion includes a simplified Dryden wind gust model. The inclusion of the wind gust model results mainly in
a slowed response in the estimation of the stability derivatives associated with the acceleration state: estimates of
the stability derivatives associated with the pitch rate still respond very quickly. The accuracy of the acceleration
stability derivatives depends upon the amplitude and frequency components of the persistently exciting dither

signal.

I. Introduction

HE historical development of aircraft parameter identifi-

cation is given in Refs. 1-3. These studies are designed
primarily for off-line use. A verv complete study of recursive
identification schemes for on-line use is given in Ref. 4.
However, the usual assumption that the parameters be con-
stant produces gains that are asvmptotically inversely propor-
tional to time and therefore become vanishing small. These
schemes are not applicable to aircraft systems that must
operate continuously and identify changes in the stability
derivauves as the flight conditions change. One motivation for
this type of on-line state and parameter estimation scheme is
for use in adaptive flight control svstems.

In Ref. 5, various schemes for identifving constant system
parameters are compared on a common problem. Among
these schemes is the extended Kalman filter (EKF) whose
performance is shown to be relatively poor. This problem was
again analvzed in Refs. 6 and 7, where a new estimation
scheme called the modified-gain extended Kalman filter
(MGEKF) is used. For a special class of nonlinearities of
which state and parameter estimation in linear systems is a
member, there exists a universal linearization of these special
nonlinearities with respect to the measurement function. In
order to obtain nonlinearities in this class, the observability
coordinate system rather than the controllability coordinate
frame is used for the problem in Ref. 5. The results given in
Ref. 7 indicate a remarkable improvement in performance.
The MGEKF described in Ref. 7 is applied here to the
problem of on-line state estimation and identification of the
stability derivatives of an F-111 type of vehicle.

Section Il presents the definition of a modifiable nonlinear
system function that forms the basis of the MGEKF al-
gorithm. A simple illustration of a modifiable nonlincarity is
given before the general form of the MGEKF algorithm is
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stated. The essential features of this algorithm are then dis-
cussed. The dynamic system model for the aircraft is pre-
sented in Sec. III. The short-period longitudinal mode of the
aircraft is expressed in acceleration and pitch rate states to be
consistent with the measurements. In addition, a first-order
model for the actuator and a second-order simplified Dryden
wind gust model are descnibed. In Sec. IV, the mechanization
of MGEKEF using this aircraft model is discussed and, in Sec.
V, the performance of the MGEKF algonithm using accel-

erometer and pitch rate gyros is presented. Conclusions and
recommendations are given in Sec. VL.

II. The Modified-Gain Extended Kalman Filter
Algorithm
The dynzmic nonlinear system model used for combined
state and parameter estimation is presented first. The defini-
tion of a modifiable nonlinear system function, used as the
basis of the MGEKF algorithm, is stated. Then the MGEKF
algorithm is presented and its properties discussed.

Dynamical System and Modifiable Nonlinearities

The discrete dvnamic system model used for combined state
and parameters identification is

)’l"l=A(0l)-vl+8(01)u(+!I (l)

:

0.,,=8+w (2)
and the scalar measurement is
zl = Hv‘ + Ul = :l‘ + U' (3)

where v is an n-dimensional state vector, 6, is a vector of
maximal dimension 2n of unknown parameters representing
the elements of the matrices A(8) and B(6,), 4(4,) is an
n x n matrix. and B(6,) is an n vector where both contain up
to n unknown elements represented by the elements of 6,

is a known scalar input, z* is the scalar measurement func-
tion, H is a known 1 X n measurement matrix, and w,, W,
and v, are zero-mean white noise sequences with variances @,
Q.. and v,, respectively. The formulation given here is for a
single-input /single-output svstem consistent with the results
of Ref 2. Although the extension to more than one input is
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trivial. the extension to more than one output takes some
innovation. This extension is done in the following sections.

The nonlinearity in this problem is 4(8,)y. For conveni-
ence define

xT& [y, 87) (4)

and the nonhineanity as

; (5)

i

A0 )y + B(8
/(.\-,);[ﬂ ).+ B( )]

where x, has maximal dimension of 3n.
Modifiable Nonlinearities

The notion of a modifiable nonlinearity is that there exists
universal lincanzation of the function f(x,) with respect to
the measurement function = *.

Definition : A function f: R? —» R” is a modifiable nonlin-
ear svstem function if there exists a p X p matrix F: R X R’
— R7 "7 so that for anyv state x, and known estimate of the
state %,

f(x) = /(%) =F(:

where - * = Flx,_.

Note that F(z, *.%,)x, - %) in Eq. (6) is a universal lin-
carization of f( xl) ‘with respect to the measurement function
2,* without any approximation. Notice that the known func-
tion Feer, )= F(Hx,, %)# F(H%,, %), where the latter
quantity is the differential of f evaluated at %, as used in the
linearization.

The noiseless case of a simple linear dvnamical system with
an unknown coefficient illustrates the idea of a modifiable
nonlinearity. The system is represented as

(X - &) (6)

Y 0‘ 0l‘l=0l‘ :I'=.vl (7)

where y, is a scalar state at stage i and 6, the unknown
parameter at stage i. The nonlinearity is put into modifiable
form by writing

. 8,5, 6,3,
(‘tl‘l_‘x1‘|)=[ 0‘ ]— é“

8.5, -6,y,+8y 465

)

F(z*, % )(x, - %) (8)

where x” 2 [.8,]. 7 and § are the estimated values of y and

6. and
Rzt )—[ ](r—x)—[ _;] )

Note that the estimation error in Eq. (8) is propagated
without approximations by a linear equation. Since the mca-
surements are lincar. the update formula for the error is also
lincar. In the noiseless case where this filter reduces to a
nonlinear observer, the error of this observer is shown to be
cxponentially convergent by Lyapunov's second method.®” In
the noise-corrupted case where only the noisy measurement is
available and not the measurement function, under certain a
priori uncheckable conditions the MGEKF is shown to be
exponentially bounded in the mean square sense.®’

The MGEKF Algorithm

The discrete formulation of the MGEKF from Ref. 7, based
on the dynamic system [Eqs. (1-3)] using Eqs. (4) and (5), is

”‘t"“ﬂ‘f‘ T

0 q
.'n Lty ,'n WY .;. um P .Q‘I..'l 000 .'o.. i.. O .'
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summarized as

=A%) (10)
X, =X +K(:z-Hx) (11)
K = MM + ) (12)

M = F(z 8 PF(5.5) 0, (13)

P‘=(I~I\’,Il),\ll(l—l\',ll)r+l\’,y,l(," (14)
where ¥, is the propagated state and parameter estimates. K,
the modified Kalman gain caleulaed by Egs. (12-14),
the propagated pseudo error-covariance matrix, P, the up-
dated pseudo error-covanance matrix, (), the process noise
covariance matrix composed of diagonal matrix elements Q,
and Q,. and y, the measurement noise covariance matrix.
The functions f( %) and F(:,, k,) can be expressed in a
simple way when the dimension of 8, is assumed to be 2n.
Note that B(6,) becomes just the last n elements of 6.
Furthermore, the function F(:*, ,) obtained from a modifi-
able nonlincar function f(x,) becomes

A !
A(BY 1 z*1 1 ul,
F(zr &)= | oonton Dl 0 (15)
OZan | lln
where 7, is an n X n identity matrix and 0. isa2nxn

2nxn

matrix of zeros. In Ref. 7, this matrix is obtained in the
observability canonical form where the unknown parameters
lie in the last column of the 4 matrix. It should be noted that
in the gain algorithm for propagating the pseudo error-covari-
ance matrix [Eq. (13)]. the actual measurement :z, is used
rather than the measurement function = * in Eq. (15). Finally,
for use later when describing the MGEKF for the aircraft
application

() =F(0.%)% (16)

The key to applying the MGEKF to the parameter estima-
tion problem is to ensure that those unknown parameters
being identified enter the dynamic equation so as to
multiply the states or controls that are dircctly measured. As
shown in Ref. 7, this means that the coordinate frame must be
chosen carefully. Furthermore, the results given in Ref. 7
apply to only a single output problem. The results here give an
example of how the MGEKF can be extended to two or more
outputs.

II1. The Aircraft Dynamical System

The linear longitudinal dynamics representing the short
period motion are

a=Za+Zq+Ze—Za;+b, (17)
g=Ma+Mqg+Me—-Ma,+b, (18)

where a is the total angle of attack, g the pitch rate, e the
elevator deflection, a; the angle of attack due to wind gust, b,
and b, the trim biases associated with the steady-state condi-
tions of a and g, respectively, and Z,, Z,, Z,, M,, M,, and
M, the aircraft stability derivatives.

Transformation of State Space

Aircraft, such as that in Ref. 8 and the F-111 type, have
normal acceleration and pitch rate measurements available
from an accelerometer and pitch rate gyro. Therefore, it is
advantageous to convert from angle of attack to acceleration
in the dvnamical representation of the aircraft for MGEKF
applications.

The accelerometer measures the combined acceleration of
the center of mass and the acceleration relative to the center
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of mass due to the mement arm X, . This relationship
between A, ¢, and a is

A=B(q-a)+Byg (19)
where A is the normal acceleration (in g's) and

2mru 2 X,
Bt s P* g (20)

where u is the aircraft velocity (in ft/s), g the gravitaticnal
acceleration, and X, the X distance from the aircraft c.g. to
the accelerometer.

Equations (17-19) can be used to derive a new set of

dynamical equations using A and ¢.* The new dynamical
system is

A=DA+Dg+De+ Dyag+Q,é+Q:ac+ B, (21)

g=HA+Hgq+He+ Hgag+ B, (22)
where
MQ
D,&2Z,+ o, 4
M. Q. Q
D,=Z,Qa—ZaQ:+M,Qq—T"—, s=gq,e,G
M MQ
HAATZ-E; H,-‘l-M,—-Q"—J, s=q,¢,G
Q;éﬂZMx—BlZs Saa'e'G
N ,
Qq=BZ‘Mq+Bl(1 —Zq)
Q Bv a Blba—Bqu
ﬂ - -_Bl B, Bq=—9—— bq

Note that Z; and M, are the stability derivatives for
acceleration and pitch rate associated with wind gust effects.
It can be seen from Egs. (17) and (18) that Z;= - Z, .'md
M, = — M,; if these relationships hold, they imply that D;; =
and H; = 0. Interestingly, this results in only the acceleration
equation being directly affected by the wind gusts and then
only by &g. Although not directly affected by wind gusts, the
pitch rate is affected by the wind gusts through the accelera-
tion term. The aircraft dynamics can now be written as

A=DA+Dg+De+R.é-Qa;+B, (23)
g=H,A+Hq+He+B, (24)

Note that B, and B, are biases associated with 4 aad gq,
respectively. In the next sections, the elevator actuator and
wind gust models are described.

Elevator Dynamics

A measurement of the elevator deflection is not available.
The first-order elevator actuator dvnamics, which determune
the actual position of the elevator 1n response to an clevator
command e, ., are assumed to o¢ of the form

é= —He+ He, (25)

where H, and /. reflect the dominant dynamucal charactens.-
tic of the elevator actuator. As in Pef. 8, the actuator d,nanic
coctficients are assumed to remwn constand; therefore, /1, ard
H, necd not be estimated. However, since the actuai elesator
deflection is not measured, 1t must be estimated on-line.

- .r, :r\l(
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Wind Gust Dynamics

The wind gust model is also included in the fermutation.
Two commonly accepted wind gust models used in the analy-
sis of aircraft motion are the Drvden and the von Kirmin
models.® For estiination purposes, a sumplified Drvden
modecl®! which compares very well with the Drvden model, is
used. The simplified Dryden wind gust model is

¢=Ka;+ Kia;+w;(1) (26)

where w; is a zero-mean white noise process with spectral
density K;Q,, and

C, o°L, X 1+ 38 (1+[})“3
Q.= 2?:‘7 R S G= g
b h
B=3r.- h~lojTr
u? u
Ki=-Cary Ki=-Cr.  K=0G—
* —31: - L, l'

where b is the altitude (in ft), h, = 2500 {t, L =2000 ft, b
the wing span (in ft), « the aircraft velecity (in ft/s), and o
the rms gust velocity (in fi/5). By letting o) = a; and a, = &,
the followinz set of linear equaucns is obtained from Eq. (26):

& =a, n

d, = Ky, + K.a, + Ky (1) (28)

Augmented State Variables and Maodified ~onlinearities

If Egs. (27). (28), and (25) are augmented to the dynamiics
of Eas. (23) and (24), then the dynamical system is exparded
to fifth order in the states A, ¢. ¢, a,, and o,. I in addition,
the constant tiases B, and [, are augme nted as states, then
we obtain a seventh- order svﬂern

However, the system dynamics arc not modifiable since the
unmcasured state e muitiplies some of the paramcters to be
estimated. However, the system dynamics can be made mod-
ifiable by replacing state e with rwo new states defined as

X, 2De, X,2H,e (29)
where D, 2 D, — I1,Q,. Notc that ¢, the commanded cievator

position, is availubl: and is assumed to be known perfectly.
This results in the following modifiable dynamical system:

il [po b, 1 o o -2 1 0]
q H, fH, 0 1 0 0 01
X, 0 0 i 0 0 0 0
X, 0O 0 o0 -H 0 0 0 0
g |71 0 0 0 0 0 1 00
a, 0 0 0 K K, 00
B, 0 0 0 0 0 0
B, 0 0 0o 0 0 v

i { 1 Q' 1 ) Y] ]

q € 0

X, H,n N

Y, mn 0
<)o |+ 0 e+l (1)

my 0 u,

a, 0 0
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where Q2 1.Q .

and H, are now multiplied by ¢ . which 1s a known 1nput.

Thus, with acceleraton and pitch rate measurements. the

nonhneanties are modifiable nonlinecanties. As stated in Ref.
7. it is important that the svstem be observable. By using the
observability test in Ref. 11, it can be shown that thus svstem
is observable. ’

Transformation from Continuous to Discrete Form

Since the discrete version of the MGEKF will be imple-
mented, the aireraft dynamical equations must be transformed
into discrete form. By assuming the sample ume Ar to be
sufficiently small. the discrete dynamucal equations arc ap-
proximately

[ 4] (b, b, 1 0o 0 R, A 0]
q H, H, 0 0 0 Ar
X, 0 0 ¢ 0 0 0 0 O
X, -lo o 0o ¢ 0 o 0 0
a, 0 0 0 0 1 A 0 ©
a, 0O 0 0 0 R R, 0 O
B, o 0 0 0 0 0 1 ©

8,1, Lo o o o o o o 1]

EREN [0 ]
q S, 0
X, C.D, 0
X, C.H, 0
Xlea | T 0 e ™| w, (1)
a. 0 W,
B, 0 0
T A U ) | 0}
D, =D,At+1, D, =Dt
D, =Dt H,=H\\
H,=HAr+1, = H,At
A
S, = H, [Qf(DA,+l)+Df']T

S, = Hy(QH, +H, )A’

Note that x, =D, e, and x, = H, e, and that the following
parameters are assumed known at each time step i:

H,
C=e ™ G=7(1-0)

wy = Rymg. Wy = Ryng

R, = KAt R,=K,Ar+1, = —-Q At
K.(Ar)’ (2+ K, 30K,

Ro==—5—, sET 2

where n,; is a zero-mean noise sequence with variance Q_/A¢.
In making the discrete approximation, the exact discrete form
is used when convenient: otherwise, the above is the first term
of a Taylor series in At.

1V. Implementing the MGEKF
The MGEKEF algorithm, formulated in Egs. (10-14), is to
be applied to the problem of estimating the aircraft states and
parameters. This algorithm is extended from a single output to
the output of acceleration and pitch rate. We have alrcady
shown that the dynamic nonlinearities are modifiable nonlin-
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earitics. The acceleration and pitch rate measurements are

2,=A e

[

=4, (32)

where ¢, and ¢, are constant standard deviations associated
with the measurement noise of 4 and g, respectively, so that

i 0
v=|" (33)
0

The formuiation of the MGEKF algorithm requires that the
matrices F(z .30 Hoand f( 1)) be formed {rom the aircraft
dvnamic svstem {Eg. (31)] and measurements [Eq. (32)]. Since
we did not include the bases (B, B,) 1n our Lincar simula-
uon, thev are not included 1n the state space detined now as

VE[4.9. X XN, DD, M H,S,.S,. D],

(23)

and the measurement is defined as the two-vector

5 T 5
52 ,0,] (35)
Then
H=[I.,.,0,.,] (36)
——— ESTIMATED PARAMETERS DY1=0.003 g's
--------- ACTUAL PARAMETERS DY2=0.004 deg/sec
0.03
N
0.02 r ’
De ! P
0.01
0.0
-0.1
He
-0.2
-0.3
0.0 4.0 8.0 12.0 16.0 20.0
TIME (SEC)
Fig. 1 Parameter tracking with a step change in flight conditions,

WG = 1 ft /s, accurate instruments, and low-amplitude dither signal.

ESTIMATED PARAMETERS
.......... ACTUAL PARAMETERS

DY1=0.003 g's
DY2=0.004 deg/sec
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0.02} R P SO e
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L

16.0

4.0 8.0 12.0
TIME (SEC)
Fig. 2 Parameter tracking with a ramp change in flight conditions,
WG =1 {t /s, accurate instruments, and low-amplitude dither signal.
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J‘:- ~ F(3,)=F{0.3)3, (38) associated with the estimated parameters, it was discovaied
2 experimentally that setting the stondacd doviaton of the
v N Note the placement of the measurements in the erier dy- parameaters to about the magniude of the difivrenc: botwern
teigh ﬁ namics matrix F(z,, 1) {see Eqgs. (6) and (131]. Lach measure- the munimum and maxinium values of the parameters over the
" - ment multiplies the cerrespending parameter errer for that fiight envelepe vielded the best results.
7 particular state. For example, the acceleration weasurzment
' =, multiplies its correspeading parameter error ( Dy =~ D). V. Computer Simutation and Control Sy stem
VIR No parameter associated with uny of the states excent acceler- Design Consideration
B o ation and pitch rate 1s identitied. Since input ¢, s multiplied The aircraft simulation routine provides the MGEKE
. by G, in the rows associated with stales . and X, the coutine ",',‘“}‘ 'x.cc-'i\;r:‘tiur:(;‘ p:tchlr;th;\)g(‘:x;}na"‘l:'d‘ R ,J..Lﬁor
a" Lo Z;%mg:fg parameters are niow D, and H, rather than ¢ D, position ¢, forward velocity w, and 2luiude k. The MGEXNF
h’ {3 =t uses ihe measurements of 4. ¢, and e, diracty, while the
S5 The Process Noise Covariance Matrix and Filter Tuning “.vmd aust modil uses voand A to calcuiate wino gust coefli-
':: ) Process noise is assumed for the parameters [see Eq. «2)] in cients ‘E‘.'H‘:". N ) _ ] .
W 9y order to keep the filter gains associated with the parameters T}TC SIMUIAUOR UseS an exact dxsurctg form of the conunu-
¥ . from going to zero. The values of the process noise variance ous dynamic cquations. The trim bases are not inchuded. The
" for the parameters are chosen vy ‘uniag the flter to obtain dynamiic system is persisiently excited by an exciliztory citaer
best perfermance. The discrete stochastic equution is of the clevator :nput 1n order to esiimate the parameters. The
dither signal maintains an adegquate signal-to-noise ratio in the
x,., = F(0,x)x, +w, (39) absence of piiot input. cnabling the filter to diflerertiate
between the respomse of the dyramical system and noise on
where w, is composed of the six-dimensiona] veztor w, assoct- the system.* .
ated with the states and the ecight-dimersional vector i, Shapc.'a‘mplm_zdc. and frequeacy are the three mugor aspects
associated with the parameters. Note that wi (i), (1) wele) of the dither signal important to the performance of the
and w, (1) are elements of i, that have the state-dependent MGEKF. A sinusoidal dither signal composed of three fre-
forms quencies gave good results. Two frequencies are at the hizh
(4.3 rad/s) and icw (1.8 rad/s) ends of the expected short-
\ wi(H) =(Cle+ Cie,),w: (1) = Don ) period frequency of the aircraft over the flight envelope. The
o ‘ third is at the frequency of the higher-nrder actuator (20
:'|. ] wa( i) =(Cie+ Coe Y wi (1)~ How (1) rad/s) becuuse experimentation indicated that the paramscters
,-') B _ associated with the control (§,, Sge D..and H,) arc mere
. L ws(1) = wu (1), we (i) =, (1) casily ideaufied if a frequency corresponding to the natural
‘0" 3{ . o ) ) . frequency of the wctustor 1s included in the dither. Usie of
X N , while the remaining noise processes are assumed 1_"“1CPCIN€'Y‘-‘- these frequencies results in the improved performance of the
R Thg Process noise covanance matrix Q) ::E“,"-"', | has MGEKF, which allows a decrease in the ampl:tude of the
g N values along its Jdiagonal und the only nonzero ol-diazenal dither signal while sl maintaining performance.
& 1 I elements are In order to detxrmine the effect of sensor acceracy on the
2 performance of the filter, the accelerometer notse standard
L ] Qra=0a: =D H.Qu s deviations are alternately <t to 0.003 and 0.0 g The pitch
:}\' - 0s. =0, = RRO, /A1 rate gyro noise standard deviations are alternuzelv set to 0.004
3 \ - - ’ and 0.04 dears, Finally, three levels of clear air turbulence were
‘ Eb, i Qs =013 =805 1, considered: o= WG =1, 5, and 18 ft's.
b o The ohjective of our numerncal experiments are o show
!:. :_".‘ Ci1a=0ias =601 14 h'ow the MGEKE tracks the -tates and stability deviations
AL _ throuch a change in flight conditions from an aititude of
o. e=Ced Ge, 15.005 ft and a Mach number of 0.6 to an aluiude of 300 {t
s . . and o Mach number of 069, In the hncar smuianen, the
. .':‘ \\n‘crc‘ lhg d.cpcndcncp on t‘hc. time '“‘?""‘“ ¢ has been wup- transitten from one ikt condition to the other was formed
LA oy pru;:d. Smcc‘s(::nc of }h:ﬁ«wll-}?}igunz‘xl c};g:n'xcnts of ¢, depend AT a8 a step or a ramp. The rump s exsernually a hincar
b ‘ (:Svl lcv‘:’a;afr‘:‘l“; o}:"‘dlf\_"l ¢ mlf“ t.d_[?pm'x‘.mAucq The interpolaton betacen e parameters assovated with cadh
.r:, . ;j']"ndl ¢ l;lf‘ o gl- ¢ }p‘n“s'\» m)i“. (.(W\:’.lr‘l.l;'lClL ‘n’ldl'l"l\ sug- Maht cond:ton aver a 6« nerod. Since oniy the ditlies siznal
o {‘ (gg’\ti xln()\u - 2uses the current estimates of e parameters enertes the .Hl'f_'lt.lfl dunies the transition. 1t 1s capes ted that the
®. | o “p_ ' ' ‘ performance shown bere iy comewiat consemvative, snee
O The first chotce for the process noise standard deviations changes in flight ¢ pdiions require control inputs that wall
! : 3 associated with the dtates other than wind gusts was e set generate addivonal o czleration and prech rate.
' :.v them to zero, since no modeled proce.s notees exist on aay of The tinal condions of 4 190 Converpence run are used as
RN the states exeept wind gusts However, toy enhunce the Y1GERKF the mmnal conditions for cach runs This repoosents o sead-
9 |: ! performance i the presence of madehnz iraccurocies, meatl vate startin: condition A ramp change from one wireraft
M ‘I power spectral denstties are assumed. Althoush the <ame theht conditon to ancther occurs between 40 and 160 < with
0. reasoming can be used in choosnz the stardand deviations no changes made from 100 <o the end of the run ar 2o
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In the following figures. solid lines represent the estimated
parameter and the dashed lines represent the actual parame-
ter. Also printed on these figures are DY1 and DY2, the
standard deviations of the measurement noise on the accel-
erometer and the pitch rate gyro, respectively. WG is the rms
value of the wind gusts, which indicates the process noise on
the svstem. The sample frequency is 100 Hz.

Only the parameters D, and H, are used to compare results
of variations in system design and model design, because D, is
a good indicator of the tracking characteristics of the other
parameters associated with the acceleration equations and H,
is a good indicator of the pitch rate parameters.

A step jump in flight conditions shown in Fig. 1 indicates
the step response charactenstics of the MGEKF. The slow
response in D, is charactenstic of the parameters associated
with the acceleration state. This is due to the wind accelera-
tion term in the acceleration equation. In contrast, note the
rapid response of the estimated parameter H,.

The Dryden wind gust model is obtained empirically from
many atmosphenc studies'’; therefore, the wind gust char-
acteristics of the real atmosphere will not exactly correspond
to the assumed wind gust model in Egs. (22) and (28). This
fact must be considered when analvzing the performance of
the MGEKF, since its performance may suffer if the actual

——— ESTIMATED PARAMETERS
--------- ACTUAL PARAMETERS

DY1=0.003 g’s
DY2=0.004 deg/sec

0.03

0.02}
De .
0.01

-0.3
0.0 4.0 8.0 12.0 16.0 20.0

TIME (SEC)

Fig. 3 Parameter tracking with a ramp change in flight conditions,
WG =5 ft /s, accurate instruments, and low-amplitude dither signal.

—— ESTIMATED PARAMETERS
"""" ACTUAL PARAMETERS

DY1=0.03 §g’s
DY2= 0.04 deg/sec

0.03

0.02 }

D
€0.01 : ml

0.0

0.2 AR

0.0 4.0 8.0 12.0 16.0 20.0
TIME (SEC)
Fig. 4 Parameter tracking with a ramp change in flight conditions,

WG =1 ft/s, reduced accuracy instruments, and low-amplitude dither
signal.
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ESTIMATED PARAMETERS
.......... ACTUAL PARAMETERS

DY1=0.03 g’'s
DY2=0.04 deg/sec

0.03

0.02
Oe
0.0t

0.0

-0.1 b

He
-0.2

0-%% 4.0 3.0 12.0 16.0  20.0

TIME (SEC)

Fig. 5 Parameter tracking with a ramp change in flight conditions,
WG =5 ft /s, reduced accuracy instruments, and low-amplitude dither
signal.

ESTIMATED PARAMETERS
.......... ACTUAL PARAMETERS

0.03

DY1=0.03 g's
DY2=0.04 deg/sec

0.02

0.01} /‘/‘

0.0

|
|
-0.1 ~.

-0.2 }

-0.3
0.0 4.0 8.0 12.0 16.0 20.0

TIME (SEC)

Fig. 6 Parameter tracking with a ramp change in flight conditions,
WG =5 ft /s, reduced accuracy instruments, and increased-amplitude
dither signal.

—— ESTIMATED PARAMETERS
------- ACTUAL PARAMETERS

DY1=0.03'g’s
DY2=0.04 deg/sec

Q.03

0.02F | b | o deed s
De

0.01 S "’—_'*P—'

0.0

-0.1 ‘\._4\
He TN

-0.2} "y l,_T " u»u\m

-0.3

0.0 4.0 8.0 12.0 16.0 20.0
TIME (SEC)

Fig. 7 Paramcter tracking with a ramp change in flight conditions,
WG =5 ft/s in filter, WG =1 ft /¢ in simulation, reduced accuracy
instruments, and low-amplitude dither signal.
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e
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—— ESTIMATED PARAMETERS

DY1=0.03 g's this study indicate thut the MGEKF displavs reasonable

R

E o~ e ACTUAL PARAMETERS DY2=0.04 deq/sec pcfl'orm;mcc 1n the arcas of convergence characteristics. dis-
o ’ turbance rejection, and response to systemn changes. The slow
'a:} : response of the parameter estimation error associated with the
s v c.e3 e 3 acceleration equation is due mostly t¢ the inclusion of the
] Co ! ‘ i ' ] high-frequency gust acceler~tion term. Improvements might
! 6.0z R S T 1 ' ...... be made by adding an angle-of-attack meter that measures the
; D ! i |,L [ I Ay relative miotion between the aircrait and the air mass. There-
‘. . 0.01 "»‘—«.T,‘»..:\_\'\‘J/\__‘:ﬂy/’/«f\.”‘—j i fore, the MGEKF scems well suited to application in an
LU ) I l t ] | adaptive comrpl scheme. The MGEXF can provide state and
N o 0.0 —— T R parametzaf estimates to a sct_of cantrol laws that use these
b C ] | ] N estimates to adapt to changing flight conditions. The coa-
A : "l , -0.1 “""“—x‘\{\ | [ ’ troller should be designed to relv most heavily on the parame-
R ' He | ; !"--\.‘\l\‘ ’ ‘ ; ters associated with pitch rate. This is not unreasonable since
' . -0.2 Co ‘\\,__N_ _____ H,. which 1s essentially the change in moment duc to clevator
S ‘ ot T deticction. is estimated well and is important in designing
o -0.3 responsive flight control systems.
Q , 0.0 4.0 8.0 120 16.0  20.0
!

TIME (SEC)
Fig. 8 Parometer tracking with a ramp change in flight conditions,
WG =35 ft/s in filter. WG = 15 ft /5 in simulation, rcduced-accuracy
instruments, and low-amplitude dither signal.
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Detection Filter Design: Spectral Theory and
Algorithms

JOHN E. WHITE anp JASON L. SPEYER. FeLLOW, IEEE

Abstract—A new formulation of the detection filter problem is
generated by assignment of the closed-loop eigenstructure under certain
constraints. Detection filters, which are actually a specific class of
observers, fix the output error direction of the system so that it can be
associated with a particular failure mode and its known design failure
direction. The derivation of detection filters from an eigensystem
assignment approach permits a very transparent theory. The detection
filter gains and closed-loop eigenvectors are obtained from a set of
simultaneous equations. Necessary and sufficient conditiors for the
solution of these algebraic equations are determined which produce a
complete theory for detection filters.

[. INTRODUCTION

THE design of reliable. fauit-tolerant control systems requires
that system failures be detected and identified within
acceptable time limits, such that the system feedback is not
excessively corrupted. The principal tradeoff to be made in
designing a redundancy management scheme is that of hardware
redundancy versus the complexity and robustness problems of the
software for analytic redundancy (i.e., combining the outputs of
dissimilar devices through analytic kinematic and dynamic rela-
tionships to obtain redundancy). A survey on design methods for
failure detection is given in [1]. Analytic redundancy management
schemes are developed by forming and processing failure resid-
uals. These residuals are essentially zero if no failure occurs and
are nonzero if a failure occurs. The residual formation techniques
in the literature may be categorized into two broad groups. Open-
loop schemes [2] form one group. These schemes involve the
construction of a set of parity equations which represent all of the
analytical redundancies of a system. These parity equations are
simply all < the possible input-output relationships of a given
linear system. A generalized parity space [2] can be formed from
the parity equations, and in the presense of a failure the resulting
parity errors combine to provide a fajlure signature with direc-
tional characteristics in addition to the usual residual magnitude
information. Theoretically, these directional signatures should
facilitate the failure detection and identification process. How-
ever, the open-loop parity error characteristics are of a highly
temporal nature and, therefore, the directional failure signature is
not generally constrained. Furthermore, the failure magnitude of
some or all of the parity residuals may disappear after n or fewer
sample-times (n is the dimension of the state space). These
problems would seem to limit the usefulness of the open-loop
parity space concepts.

The second category of residual formation techniques is that of
closed-loop schemes. Although any linear filter residual could be
processed. one particular type of filter produces residuals with
directional characteristics that can readily be associated with some

Manuscript recerved July 21, 1986. revised February 12, 1987, This paper
is based on a prior stbmission of October 5, 1984. Paper recommended by
Associate Editor. H. L. Weinert.

The authors are with the Department of Aerospace Engineening and
Engineering Mechanics. The University of Texas at Austin, Austin, TX
78712.

IEEE Log Number 8714979

known failure mode. These filters are known as detection filters,
but are actually a particular class of observers. Unlike the
directional failure signatures of the open-loop parity space
method, detection filters act in a closed-loop fashion to fix the
output direction associated with plant and actuator tailures while
restricting sensor failure output directions to lie in a plane.
Furthermore, the output error magnitude never completely
disappears when a failure has occurred.

The original theoretical development in detection filters was
completed by 1973 {3], [4]. The intent of this paper is to
reformulate the detection filter theory of [3], [4] as an eigensys-
tem assignment problem. The algorithms of [3], [4] take the
relatively indirect approach of generating a cyclic space. The
current approach produces a straightforward derivation which
yields a system of simultaneous linear equations to be solved for
the detection filter gains and the closed-loop eigenvectors, once
the closed-loop eigenvalues have been assigned. The detection
filter terminology and certain referenced parts of this paper are
taken from [3], {4]. Our results parallel those in multivariable
control system design based on cnoosing the closed-loop eigen-
structure to determine a unique feedback gain matrix {5}. Moore
(5] has shown that, in addition to the usual freedom to choose the
closed-loop eigenvalues, the closed-loop eigenvectors can be
chosen from an m-dimensional subspace when there are m control
inputs. Moore uses this flexibility in the choice of the eigenvectors
to propose a design scheme for adjusting the distribution of the
modes among the output components so as to shape the response
characteristics of the system. This paper demonstrates that similar
eigensystem assignment freedoms and design algorithms exist for
a particular class of observers, known as detection filters, which
can be completely defined by specification of a set of closed-loop
eigenvalues along with appropriate constraints on the eigenvec-
tors. Although there is a good deal of literature on eigenstructure
assignment for both state and output feedback. the constraints
imposed here on the observer gains require alternate derivations
and algorithms. For additional detail, see [6].

In the next section definitions to establish notation and to
introduce basic failure modeling considerations are presented. In
Section III the algorithm for determining the detection gains and
closed-loop eigenvectors is established. However. this algorithm
assumes that the eigenvalues can be arbitrarily assigned. If a
certain condition is not met, the algorithm must be further
generalized. This is the topic of the subsequent sections. An
example is used to illustrate all the theory. Although the detection
filter was analyzed in [3] and {4], the proofs of the theorems and
resulting algorithms for determining the detection gains and
closed-loop cigenvalues by the eigensystem assignment method
are generally different.

II. SYSTEM DefFINITION

The open-loop dynamic model in the absence of failures is
given by

xX=Ax+ Bu (n

where x is an n X 1 state vector The measurement equation in
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tayy! - the absence of sensor failures is written as direction is defined. This definition requires that for arbitranly
a4 ::‘ p!accq ﬁlger poles, thg gains be dclcrmmcq so that a fadure
MDA y=Cx (2)  direction induces a unique measurement residual direction. To
~ i .. ensure that the fault directions are detectable, certain general
1y » where v is an /m X 1 measurement vector. The detection filter is assumptions are imposed on the system. In later sections. some of

assumed to have the form of a linear filter such that these assumptions are removed. The restrictions imposed on the

: . . system by the assumptions and the requirement of detectabibty
X=AxX+ Bu+ - F o y
" Bu+D(y-CX) G force groups of eigenvectors to produce output residual directions

where £ is the state estimate and D is the detection gain. If the identical to those produced by the various fault directions. The

state error is defined as € = x — £ then D is to be chosen such number of eigenvectors associated with cach output residual
_ direction is determined by computing the dimension of the

that the output error, € = y — CX, has restricted directional iated - : )
properties in the presence of a failure. The closed-loop dynamic ~ 3550¢iate detection space. If the sum of the dimensions of all the
detection spaces adds up to the dimension of the state space (this

equation becomes € = Ge when there are no failures, where Spetes -
property is referred to as mutual detectabihity), then the filter

-

“»
A
= g

-
s R N

J G = A-DC. @) eigenvalues can be arbitrarily assigned, and a simple algorsthm tor
o) determining the detection gains and the closed-loop eigenvectors
‘o The occurrence of a plant or actuator failure can usually be is developed. In Section VI techniques for making nonmutuaily
o }, modeled by a single term added to (1) to produce detectable problems mutually detectable are developed.

'. '.‘ .

-t x=Ax+Bu+fp () A. Failure Detectability

DA where f, is the n x| design failure direction associated with the The development of the theory of detection filters from the
" '\-:: = ith plant or actuator failure, and y, is generally a time-varying eigensystem assignment approach begins with a definition of the
] :.' ~ scalar which may be a function of x(f) or w(r). A priori paic requirements for a detection filter. The detimtion of the
i knowledge of u, is not required in the design of a detection filter detectability of a failure with the design direction f, is given by
: »> and it is assumed that u,(t_) is an arb!trary funcuon_ o.f time.  Beard 3] as stated below.

o ‘,:. However, knowledge of the failure magnitude characteristics may Definition 1: The failure associated with £, in the system

be useful for distinguishing between different failures with the
same output directions. For plant or actuator failures, the error
system is rewritten as

é=Ge+fu,

described by (6) is detectable if there exasts a filter gain matrix D
such that

a) €(f) maintains a fixed direction in the output space. and

b) all eigenvalues of G can be arbitrarily specitied, except for
the constraint on the conjugate symmetry.

Condition a) forces the filter to have properties such that the
output error direction € can be associated with the design error
direction f,. Condition b) is imposed so that the filter can be made

€=Ce. 6)
The detection gain D will be determined in the following sections
so that € is proportional to Cf, in response to a failure
corresponding to that modeled by the direction f,. This output

Ya

direction is maintained during the transient (assuming that the
transients due to the initial conditions have settled-out before the
failure occurs) and steady-state phases of the error response due to
the system failure.

The occurrence of a sensor failure can generally be modeled

stable. and also so that the response time of the filter can be
adjusted. If condition b) is satisfied. the detection **filter’” can
also be used as a state estimation observer. The conjugate
symmetry constraint will restrict the closed-loop eigenvectors
associated with complex conjugate eigenvalucs.

et with a single term added to (2) as
D) L B. System Qualifications
i y=Cx+eu ®) _ . _ _
'.'0" ~ . . ) The assumptions upon which the analysis of Sections III-C to
:‘ where e, is an m X | unit vector corresponding to a failure in the  III-E are based are
e < ith sensor. For sensor failures the error system becomes 1) (A, C) is an observable pair.
Yo , 2) CF £ [Cf,, *-+, Cf,] is rank r.
l:. o 6=G(—d,y,, '=Cf+e1“’- 8) 3) r=nm.
o - where d, is the ith column of the detection filter gain matrix. The di;:i)n;l;he closed-loop eigenvalues of G, A.. i L2, «are
‘ "\C j\ presence of d, in (8) IS a potenua! dxfﬁculty smce'lhe detection The observability restriction is required for the uvsual state
e gain is not known a priori. The objective of the design procedure estimation reasons. The assumption that CF be rank 7 will be

for a sensor failure is to determine two a priori directions

. R . ) . referred to as the condition of output separability [3]. The output
) associated with a failure in the ith sensor such that the output P P

separability condition produces a relatively uncomplicated closed-

'.:.'. ::- errors lie somewhere in the plane defined by Cd, and €. |oop structure (Lemma 3). If CAf, = Oforj = O, 1, +++, 6 - |
[y Therefore, the closed-loop error system of (8) can be replaced by 404 if A 5f, % 0. then all of the Cf, # 0 assumptions and

0. a system of the form procedures can still be used if £ is replaced everywhere by A/,
.- e=Ge—f*u+f, é=Ce ) [3]. [4]. [6]. Furthermore, if the output separability assumpuon 1

EO N not satisfied because two failure directions of interest have
LG AN where f, is any direction such thate, = Cf and f* = A4 f,. Itis identical output directions, the dynamics of the system may sull
j\- shown in Section I11-D that CA £, lies in the plane generated by  allow for the detection of the two failure directions with a single
> Cd, and C/.. detection filter. As a design procedure, one or both of the oniginal
W o The error system of (6) is used in the remaining analysis since it directions can be replaced with A/f for some j > 0 such that
| X is easily generalized to sensor failures or other circumstances  Assumption 2 is satistied. The assumption s made e Sections -
oy which are described by multiple failure directions. Cto lII-E that r = m since it is generally desirable todenuty the
e maximum number of failures possible wrth a single detection
J':.-‘, -:' l" DETECTION FILTER DESIGN ﬁlter‘ The r < m case will he considered. however. 1in Section
:.:: e IV. The addition of a set of nonoutput-separable directions to £
g In this section the algorithm for determining the detection gain  will be described 1n Section VII. Some constramts on cizenvalue
‘e D is developed. First, the notion of detectability of a fault  assignability generaily must be accepted to add these directions 1o
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.V: .. the onginal set of r output separable directions. The analysis for  left in D after satisfving DS = Q, and §* £ (S75)-!S7 is the
.‘{5 -~ the case where the eigenvalues are not all distinct will be given in - Moore-Penrose pseudo left inverse [7].
DA T Section V. A proof of this lemma is given in [3], {6]. The reader is referred
: : to [8] for a more thorough discussion of the generalized inverse

L, Ly D
RS T i A P

C. Detecrability and Closed-Loop Eigenvector Constraints

The following analysis imposes the requirements of Definition
1 by placing constraints on the eigenstructure of the error systems.
The disunct closed-loop eigenvalues A, and eigenvectors v, of (4)
are determined by

(NI-Ghy, =0 (10)
forj = 1,2, -+, n, where Cv, # 0 since the system is assumed
1o be observable. The v, are independent and span the error
variable state space. The design failure vector can therefore be
written as a lincar combination of the closed-loop eigenvectors as

(1

where the i superscripts denote those closed-loop eigenvectors and
coefticients which combine to form f,, and n, < 7 is the number
of nonzero a.

An important restriction on the eigenvectors uj is given by the
following theorem which is proved in Appendix’A.

Theorem 1: Condition a) of Definition 1 is satisfied if and only
if Cf, and Cv' are colinear for all values of j = 1,2, -+, n,

Remark: [t will be convenient to normalize the v, such that Cv;
=Cfforallj =1, -, n,.

Since Theorem | can essentially be viewed as placing con-
straints on the closed-loop eigenvectors to achieve a unidirectional
output error while condition b) of Definition 1 requires that the
eigenvalues be arbitrarily assignable, the detection filter problem
becomes that of solving the set of equations

e Sl [2]

for the detection gain D, where w, ¢ Cf, = Cu/’ withj = 1, 2,
‘oo, A, 2 nand i o= 1, 2, --- m. However, the number of
eigenvalues and eigenvectors #, to be assigned to the CY,
constraints remains to be determined. The conditions under which
a solution to (12) can be obtained for D and the v,’s will be given
in Sections [II-D and [II-E. These conditions are the same as those
required by Beard for the solution of his formulation of the
problem. Interestingly, the appropriate results are easily derived
here even though the formulation is different (i.e., (13) below
differs from Beard's form of that equation).

(12)

D. Detection Spaces

The calculation of the detection gain and A, with respect to a
single design failure direction is now examined. Those equations
of (12) which correspond to the nonzero a;'s in (11) can be
summed to obtain

DCL:A[,—Ea')\’u‘ (13)

VA
sl

where the remark following Theorem | and (11) have been used to
show that L7ty o) = 1 for all a’ # 0 corresponding to f,. The
form of the soluton of (13) can be used to obtain certain
information useful to the solution of (12).

Lemma {:1£ D, S, and Q are matrices of dimension n x m, m
x r,and n x r, respectively, where n = m = rand rank (S) =
7. then the general solution of DS = Q, is given by

D=QS* +D{I-55*} (14)

where ) is an arbitrary n x m matrix and represents the freedom

S Lol

e

problem.
The solution of (13) is given by Lemma 1 as

D=<Aﬁ-§:a;A,‘u;>(Cf,)‘+D,P(Cf,) (15)
=1

where P(S) 2 I — 8§§* and § = Cf,. Equation (15) cannot be
employed to directly solve for D since the summation term is
unknown. However, once D has been chosen so as to satisfy the
detection filter constraint due to /, in (13), a new system can be
defined with a filter gain of D,. This new system has the same
form as the original problem and is useful because it allows the
detection filter designer to determine how many eigenvalues can
be arbitrarily specified by the choice of D,, and the number of
eigenvalues associated with Cf, in (12). The new system is
determined by substituting (15) into (4) to obtain

A-DC=A,-D,C, (16)

A, éA—(AL—Ea}%/’v,)(Cf,)‘C (17)
adl

C = P(C)C (18)

and is characterized by the following lemma.

Lemma 2: 1f A,, C,, and D, are real matrices of dimension n x
n,m x n,and n X m, respectively, the number of eigenvalues of
(A, — D,C)) which can be arbitrarily specified by the free choice
of D, is equal to q, 2 rank (M,) where

M & [(C)T,(CA)T, -, (CA-)T|T, (19
The remaining », & (n — q,) eigenvalues of (A, - D,C) are
equal to the corresponding eigenvalues of 4,, which also are those
eigenvalues of G associated with f,. The proof is given in
Appendix B.

Remark: Observe that Lemma 2 is not written in an imple-
mentable form for this problem because (17) contains the v''s
which are unknown. However, A, in (19) can be replaced by K's
All - f(Cf)*C]. The equivalence between A4, and K, can be
established by using CKfv! = Ofork = 0,1, ---, n — 1[6].

Definition 2: The null space of M, is the detection space of f,.

Definition 3: The dimension of the detection space of f, is
defined to be the detection order v, of f,, where v, = n - q,.

Definition 4: The failure vector /) is detection equivalent o f,
if

a) every detection filter for f, is also a detection filter for f,. and

b) Cf, = BC/, (Assumption 2 of Section I1I-B implies that C7,
# 0 and Cf, # 0) where @ is any nonzero constant.

The detection space is a G-invariant subspace of the error
variable state space which represents that part of the system
affected by f, or some detection equivalent direction. The
invariance property is clear from (13) since the summation term
represents some vector in the detection space of f, and the other
two terms can be combined to form G/,. This invariance property
implies that the controllable space of f, with respect to G, W,
given in (A-1), is a subspace of the detection space of f,, since W,
is the smallest G-invariant subspace containing f,. The fact that
W, is generally a proper subspace of the detection space 1s the
result of the maximum rank of W, being constrained to be n, < ,.
This constraint on the rank of W, can be observed from the
substitution of (11) and (10) into W,.

The detection space of f, contains f, and all of the J, which are
detection equivalent to f), since C.f, = O and K./, = 0 imply that
J, and the detection equivalent £,'s lie in the null space of M,.
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Lemma 2 and Definition 3 imply that there are », eigenvalues
whose corresponding eigenvectors span the detection space of f,.
Since n, eigenvectors of (11) are known by Theorem 1 to lie in the
detection space, then v, = n, = 1. Therefore, since there are »,
eigenvectors which satisty the collinear constraint of Theorem 1
for all detection equivalent f;'s, then 7, = v, is the number of
eigenvalues and eigenvectors to be assigned to the Cf, constraint
in solving the algebraic equation (12).

It remains to show that all n eigenvalues can be arbitrarily
assigned as required by Detinition 1.

Definition 5. The vectors in the set F are mutually detectable if
there exists a D which satisfies the detectability conditions of
Definition 1 for all f; in the set F.

The condition for the set F to be mutually detectable is given in
Theorem 2 for the case when r = m,

Theorern 2: If the set of vectors in F are output separable, then
the /,'s in F are mutually detectable if and only if

m
E vi=n.

1=1

The proof is given in Section IV where the r < m case is
discussed. Procedures for making a system mutually detectable
when the condition in Theorem 2 fails is given in Section V.

E. Solution of the Algebraic Equation (12)

The following theorem states the conditions under which (12)
can be solved for the detection gain D and the closed-loop
eigenvectors. The proof is given because it is constructive in
developing an algorithm for the solution to (12).

Theorem 3: Given the system qualifications of Section III-B,
then the condition £7 | », = n implies that the system of (12) can
be solved for the detection gain matrix D and the closed-loop
eigenvectors, "1‘ where f = 1,2, -+, »,.

Proof: By Theorem 2 the n eigenvalues required in (12) can
be arbitrarily specified », at a time. while simultaneously being
associated with a particular Cf, constraint. Therefore, for each f,,
n linear combinations of the elements of D can be determined
along with the nv, elements of v)'s. To determine these unknowns,
there are nv, eigenvector equauons and my, eigenvector con-
straints. When my; = n, then those equations in (12) correspond-
ing to /, can be used to completely solve for the corresponding v;'s
and the associated set of n constraints on D. This is possible
because there are an equal number of independent equations and
unknowns. However, if my, < n, then v’ is representable as a
linear combination of any basis for the ith detection space. Since
the ith detection space must be orthogonal to M, of (19), a basis
set for the detection space can be found by computing the
unobservable subspace of the (C,, K,) system [9]. Hence, v’ can
be written as v, = (1,8, where Q, is an n X », matrix whose
columns form a basis for the detection space with respect to f;, and
3; is a »; X 1 vector of coefficients. It is now shown that enough
independent equations will exist for solution of the elements of the
u} = Q,B; and the n constraints on D. The number of equations in
(12) remains at ny, + myp, while the number of unknowns has been
reduced to »? + n. If the number of equations can be shown to be
greater than or equal to the number of unknowns, it will be
possible to solve for the 3 and the constraints on D. It will now be
assumed that this is true so that [(n + m)v,] = [»? + n] which
will be rewritten so that the validity of the inequality is clear.
When r < m, then n = v,. This implies that n = v, + ¢ where ¢
= 0. Hence, [#2 + (m + c)v| 2 {v2 + v, + c|. and then {m +
clv, = [v, + ¢]. Since m = | and v, = 1, then the inequality is
valid. Hence, solution of (12) is possible and Theorem 3 is
proven.

Remark: As discussed in Section II. sensor failures are
included by determining a priori fault directions f, and J* such
that Cf, = e, and Cf* lie in the plane composed of Cf, and Cd,
Note that forf‘ A, - nf, where f, lies in the detection space
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of f,and n is an arbitrary constant. Cf* lics in the plane composed
of CDCf, = Cd, = CAf, - ...,"‘,u)\e and e, where (13) is
used.

IV. r < m FAILURE DIRECTIONS

The assumptions of Section III-B are relaxed to allow r < m.
The condition for mutual detectability of Theorem 2 must be
generalized. This is done by determining the **‘detection space’*
associated with the set £ = {fi, -+, f,}. In a manner analogous
to that for the single failure, the detection gain for multiple
failures must simultaneously satisfy r equations of the form of
(13). This set of equations can be written in matrix form as DCF
= Q4 where the columns of Q, are the right-hand sides of (13) for

i=1,2, , . Lemma 1 gives the solution of DCF = Q, as
D=Q,CF)* +DP(CF) (20)

where
A-DC=A-DC, A = A-QuCF)*C n
C =2 P(CF)C, K = A[I-F(CF)*C). (22)

As per Lemma 2 and the following remark, the observability
matrix with respect to the system (4, C) is
12O, (CA)YT, -+, (CA- )T T (23)

The number of eigenvalues which are freely assignable by D is
given by Lemma 2 to be rank (M) = q. The number of
eigenvalues associated with making D a detection gain for the set
of r failure vectors in F is therefore givenby v = n ~ g.

Definition 6: The dimension of the null space of Misv = n —
q and is defined to be the group detection order of the set F =
{flv * . }

For Fdef‘ned by a set of r < m failure directions Theorem 2
generalizes to

Theorem 4: The f.’s in F are mutually detectable if and only if

r

v=2 .

i=1

(24)

Proof is given in Appendix C. Note that if m =
invertible and C = 0 in (22). Therefore, v =
implies Theorem 2.

The results of Theorem 3 must be sllghlly modified since g
eigenvalues and eigenvectors remain to be assigned after the
detection filter has been designed forthe f,, i = 1,2, -+, r. q s
the rank of M, which is defined by (23). These g eigenvalues and
eigenvectors are freely assignable, provided that the eigenvectors
are independent of those which span the r detection spaces. All of
the solution techniques of Theorem 3 are also applicable for the
case of r < m, since the developed techniques allow for the
independent solution of the subset of equations in (12) correspond-
ing to a single f, for the appropriate », eigenvectors and n
constraints on D [6].

r, then CF is
n, and Theorem 4

V. DETECTION FILTERS wWiTH NONDISTINCT EIGENVALUES

The assumptions of Section lI[-B are also imposed on the
analysis of this section, except that nondistinct eigenvalues and r
=< m are now allowed.

Some interesting ecigenstructure constraints are imposed by
output scparability when nondistinct cigenvalues are allowed.
First, it is demonstrated that the detection spaces are independent.

Lemma 3: If the failure vectors in F are output separable, then
the detection spaces of the f's are pairwise independent. The
proof is given in Appendix D.

The proot shows that there are no eigenvectors which span
some overlap in the detection spaces. The implication of this
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lemma on the Jordan form structure of G is that any Jordan block
must be completely contained in the »,-dimensional part of the
Jordan structure corresponding to the ith detection space. even if
the algebraic muluplicity of the eigenvalue is greater than v,. This
requires that whenever identical eigenvalues are to be assigned to
k detecuon spaces, the eigenvalue must be assigned a geometric
multiplicity of & to preserve the independence of the detection
spaces. This can be illustrated quite simply by falsely assuming
that ¢, and v, lic in different detection spaces when vy is a
generalized eigenvector of vy. By the definition of a generalized
eigenvector, then it must be true that CGu, — ANCu; = Cy, which
must be equal to (a 1s a constant scalar coefficient) aCf, = Cf, if
vy and v, are to lie in their respective detection spaces. However,
this is a contradiction by the definition of output separability.
The fact that the geometric muttiplicity must be exactly & can be
shown by assuming falsely that two primary eigenvectors within a
single detection space have the same cigenvalue. If these

eigenvectors are denoted by v, and v, then v, ~ v, must also be
an eigenvector. However. this implies a contradiction of the
observability assumption since C(v, - v;) = 0 by Theorem 1.

Hence, there can only be one primary eigenvector per detection
space assoctated with a particular eigenvalue.

If the system of (12) is rewritten to include generalized
eigenvectors, then the results of Sections [1I-C to HI-E can be
confirmed to he valid when nondistinct eigenvalues are allowed
since Thearem [ can be proven [6] for an f, defined in terms of
primary and generalized eigenvectors. The results of Sections -
D and HI-E can also be extended to the nondistinct eigenvalue
case by inspection if the summation term in (13) is modified.
Because of Theorem 1, this madified term will drop out of an
analysis similar to that used to obtain M, in terms of K, rather than
A, (see remark after Lemma 2). and the results of those sections
carries over to the nondistinct eigenvalue problem.

The system of (12) is still valid for those values of J associated
with primary eigenvectors, while the right side of (12) must be
replaced by [~ (v1 )7, w]}T for those values of j corresponding
to generalized etgenvectors. The results of Section [V are triviaily
extended to the nondistincr eigenvalue case.

V1. NosMUTUALLY DETECTABLE FAILURES

If the condition of (24) is not satisfied, then a solution to the
detection filter problem cannot be found which is detectable in the
sense of Definition 1. In this case, (¥7_,v) + g < nand there
exists an excess subspace of dimension v, such that

This excess subspace exists as a result of making the detection
filter respond to the set of failure directions in F. which requires »
eigenvalues. while only being able to freely assign 7 _, v,
eigenvalues with respect to the individual failure directions.
Hence, v, eigenvalues will be fixed by the choice of the system
and the set F. When this occurs the system is said to be
nonmutually detectable (3] or restrictive [10].

The procedure [6] for obtaining a mutually detectable system by
ehimmating some of the f;'s in F essentially examines the
cigenvectors which span the excess subspace so as to associate the
removal of an f, with the elimination of some of those excess
ergenvectors. After examining each of the f, in such a manner, the
dimension of the excess subspace for all possible combinations of
the f, can be simply determined. Those combinations which
produce an excess subspace of dimension zero are those subsets of
the original set F which permit a mutually detectable problem.
Note that (24) must be satisfied when 7 = 1 because M, = M and
a mutually detectable system always occurs. The removal of
falure directions from the original set of r directions may be
averted by an alternate technique which was first suggested by
Jones [4]. This techmique is that of adding dynamics to the original

25)
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open-loop system in such a way that (24) is sausfied. If the
original open-loop system is a minimal realization, then it is both
observable and controllable (with respect to B). Although the new
open-loop system will be required to be an equivalent realization
of the original system, the enlarged system will be observable but
not controllable.

The motivation for enlargifip- the state space 10 obtain a
mutually detectable set of failures requires a slightly more detailed
understanding of the structure of the excess subspace. Cu,, where
v, is any one of the eigenvectors spanning the excess subspace.,
does not lie in any one detection space. However, since Cv, # 0
by the discussion with respect to (10) and is directly observable.
then Cu, must then be some linear combination of the directions of
Cf.fori = 1,2, -+, r. Each eigenvector in the excess subspace
must have a companent in two or more of the detection spaces,
otherwise by Detinition 4 and Theorem 1 the eigenvector would
lie in and span some detection space. The removal of a failure f;
from the set F removes those eigenvectors of the excess subspace
which have components along Cfi. The removal of some other
failure direction other than f, may also remove some of the same
eigenvectors that f; would remove. The essential idea of state-
space enlargement is to increase the dimension of the state space
in such a way that the presence or absence of an /, in F does not
affect the dimensic:: of the excess subspace of the enlarged state
space. This will be accomplished by the chowce ot a4 new open-loop
systemn matrix such that the &th detection space 1s enlarged by an
amount equal to the number of eigenvectors of the oniginal excess
subspace which have components along Cf,. while ensuring that
the new excess subspace eigenvectors have no component along
Cfe.

Before other constraints on the enlargement of the state space
can be considered, the requirements for an observable, equivalent
realization (A, B, C) with a dimension of i > n must be
established and satisfied. The open-loop models of (A, B, C) and
(AT. B, C) are defincd 10 be equivalent realizations (i.e., input-
output equivalent) if CA’B = CA’B forj < #iwhensi > n. One
form of the system (A, B, C) which can be observable and is
input-output equivalent for any A > nis given by

c-ic o a-[3 3] s (0]

Let v, and vz represent the number of eigenvectors of the
original excess space which have output components that lie and
do not lie, respectively, along the direction Cf;. The sum of these
quantities is v,. The state space enlargement approach is made
possible by the following theorem which is proved in Appendix E.

Theorem 5: There exists an observable extension of (4, C)
into (4, C) of the form of (26) for /i & n + v such that a) 5, =
0,0) 7y = v + vy, 0) 5, 2y forallj £ k. and d) 5, < »,.
Sufficient conditions for a) through d) to occur are that 4,, and
A;; be chosen as

A S0\ fi=Ji) oy —a O fi=Fol. Axn =

(26)

l\.;‘
(27)

where N 2 w,, fi & summation term of (13) or the analogous
nondistinct eigenvalue summation term, and Ao Aw are the
eigenvalues in element and matrix (either diagonal or Jordan
form) representations that correspond to the eigenvector vl, and
eigenmatrix V.., respectively.

Remark: The scalar )'s of (27) may be calculated as o) =
row of (CF)* Cv/, .

A sequential application of the Theorem § can be used to
generate a mutually detectable system. Repeated application of
those results with respect to successive failure directions in F will
cause cach of those directions in turn (o be eliminated from those
eigenvectors which remain to span the excess subspace. Eventu-
ally. the excess subspace will be eliminated entirely and a
mutually detectable system will have been formed.

kth
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Theorem 6: The nonmutually detectable system of (4, C, F)
with output separable f’s can be enlarged into an observable,
equivalent realization (4,, C,, F 2 [F7, 0]7) which is mutually
detectable with respect to the same set of failure directions (the
Ji’s) with the minimal state-space dimension of

A=n+ E ek — Ve 28)
k=1

after r — 1 applications of Theorem 5.
The proof is given in Appendix F.

VII. OUTPUT STATIONARITY

If the freedom to arbitrarily choose the closed-loop eigenvalues
is somewhat restricted, [4] has shown that more than m failure
directions can be designed into the detection filter. By definition,
these additional directions are not output separable with the
original set of directions in F. If A, is a direction to be added to the
set of /m directions in F, then

hie=3) 8.Si+k (29)
=1

where some of the §; may be zero and C¢, 2 0. If h, satisfies
certain conditions, then the output direction associated with A, can
be made unidirectional by requiring that particular subsets of the
closed-loop eigenvalues take on identical values. In the terminol-
ogy of [4] this is referred to as making A, output stationary with F.
The simplest case of this occurs when m = n and all of the
eigenvalues are chosen to be identical. Under these conditions,
=lfori=1,2, -+, n Since v, = 1, then v, = , and the
eigen equations become Gf, = Af,. Here h, is just a linear
combination of the /'s since £, £ O is required for C£, = 0 to be
true. Now any A, can be detected by the detection filter for F since
every h; will also be an eigenvector for G.

A. Output Stationarity for a Single Additional Failure
Direction

The fully measurable case is a powerful motivation for
examining the general conditions under which additional failure
directions can be detected. This section will determine those
conditions which must be satisfied to make a single additional
failure direction h, output stationary with the failure directions of
the set F.

The following assumptions are made for the analysis to follow:
Dhe #0,2)r = m,3)A, C, Fimply mutual detectability, and
4) distinct eigenvalues. The first assumption follows directly from
the previous assumption that Cf; # 0, (29), and output separabil-
ity. The second assumption is made so that the maximum number
of output separable failures will be designed into the detection
filter. This in turn assists in maximizing the number of A, s which
can be made output stationary with the directions in F. Extension
of the results to the r < m case will follow trivially from the r =
m analysis. The third assumption requires that the system be
mutually detectable, either naturally or by the methods of Section
VI. This assumption implies that no unassignable eigenvalues
exist as a result of fixing the output directions in CF. This allows
for the maximum possible flexibility in determining the conditions
for output stationarity. Similarly, distinct eigenvalues are assumed
because this aids in maximizing the freedom allowed in specifying
output stationarity criteria. Complete eigenvalue assignability is
the freedom sacrificed in fixing more than m failure directions.

The output stationarity problem is concerned with fixing the 4,
detection subspace in the state space while simultaneously
maintaining the detection subspaces with respect to the directions
in F. The detection space for some direction A,, which is to be
made output stationary with the output separable directions in F,
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is defined to be of some dimension ¥, where v, < min (v,) for all
i's corresponding to nonzero 6,'s in (29) [6]. The requirements for
output stationarity are summarized in Theorem 7. The proof is
given in Appendix G.

Theorem 7: For a mutually detectable problem defined by A4,
C, F, it is possible to make the nonoutput-separable direction A,
output stationary with the directions in £ if and only if two
conditions are satisfied. First, £, of (29) must lie in the union of
the detection spaces of the f;’s which correspond to nonzero §,
(assume for notational simplicity that these correspond to i = 1,
2, -+, ). The second condition is that each group of v,
eigenvalues must contain the same set of J; arbitrarily assignable
eigenvalues fori = 1,2, -+, L If 5, < v, fori = 1,2, -+, {,
then », — ¥, unassignable eigenvalues will exist with respect to the
ith detection space.

Remark: Implementation of the results of Theorem 7, in the
spirit of the previous algorithms, is quite straightforward. The
first case to be considered is when 5, = p,foralli = 1,2, -+, [
In this case the determination of the detection gain matrix and the
closed-loop eigenvectors proceeds exactly the same way as with
(12), except that the eigenvalues with respect to the detection
spaces of the f,'s fori = 1, 2, - -+, / must be chosen as identical
sets of J; eigenvalues. The eigenvalues with respect to the other
detection spaces can be freely assigned.

The second case to be evaluated is when 7, < », for some or all
of the f, detection spaces for i = 1, 2, ---, /. In this case the
equations of (12) must be solved with the same eigenvalue
constraints as in the first case. However, », — v, eigenvalues are
unassignable for each of the detection spaces where », > 7.
These unassignable eigenvalues complicate the solution of (12)
since there will be more unknowns than equations. This complica-
tion is eliminated by requiring that the system equations of (12) be
solved simultaneously with

[
h=3 X 6,8,

im| y=]

(30

A t t
= + .
= 6,0/ v,

%
Ghe=Y, 3 §nive,

im) j=l

> 8=4, €3]
J=1

along with the condition that §, = Oforallj > s, and i = 1, 2,
-« -, 1. The §;"s of (30) and (31) are known a priori from (29) and
y, is found from the representation £, = £/ T, y'v'. Equation
(31) requires that A, satisfy an equation of t}ie form of (13) with
the same detection gain matrix as that used to fix the output
directions in F. Also, all of these equations are expressed in terms
of the eigenvalues and eigenvectors of the /, detection spaces and
are compatible with the unknowns of (12).

VIII. ExAMPLES OF DETECTION FILTER DESIGN

Example (a): This is an example of the eigensystem assignment
methods for detection filter design when the closed-loop eigen-
values are chosen to be distinct, r = m, and the A, C, F system is
mutually detectable. Let

034 -3 1
A=1}1123 .C=[g(')?].f,= H fa=) -122
025 0 172
Since the rank of CF is r = 2, then the failure directions of f; and

JS2 are output separable. The test for mutual detectability using
Lemma 1 and the following remark produces M, for i = 1, 2 as

00 1 0 172 172
M=10 0 S5 |,M=|1/2 712 572
0 0 25 7/2 91/4 63/4
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where the zero or redundant rows have been omitted. The rank of
M, is | which impliesthaty, = n — 1 = 3 — | = 2. The rank of
M,is 2 and thismeansthat v, = n — 2 = 1. Since n = », + v,
then the system 4, C, F is mutually detectable. The closed-loop
eigenvalues are now assigned to the respective detection spaces.
Since »; = 2, the choicesof A! = —2and A! = -3 are assigned
to the detection space of f;. Likewise, the choice of )\ = —-4is
made for the detection space of f;. The closed-loop elgenvectors
and the detection gain, D. are now determined from (12). The two
sets of linear equations obtained for A} and A} can be solved to
obtaind,, = 9, d;, = 7, d;, = 2, whlle the two eigenvectors
which span the detection space of f; are calculated to be v} =
(310}, uz =21 O]r The single equation of (12) for )\.
produces the detection gain elements as d;; = 18, dy; = 6, and
dy; = 9 where the eigenvector is known to be f; since v, = 1.

Example (b): This example demonstrates the techniques of
Section V for r = m, nondistinct eigenvalues, and a mutuaily
detectable system. This problem is a repetition of Example (a)
except that here all of the eigenvalues are chosen to be identical.
Because of the detection space structure of this example, \ will
have a geometric multiplicity of 2 but an algebraic multiplicity of
3, where A = —2. The system of (12) is used for \!, while for A)
(12) must be modified to accommodate generalized elgenvectors
as discussed in Section V. These two sets of linear equauons can
be solved to produ..e dy =7,dy =6,dy, =2, and v =
[310]7. For >\ (12) can be used where again the exgenvector is
constrained to be /2 since »; = 1. The detection gain elements are
dlZ = 12, d:: = 7, and d}z =17.

Example (c): This example deals with the implementation of
the detection algorithms of Section VI for the restrictive problem
where distinct eigenvalues and r = m are assumed. The system of
Example (a) is used again here, except that f; = [0 0 1]7. From
Lemma 1 and the following remark », = 1. This problem is,
therefore, restrictive since » > », + vy = 2. The dimension of
the excess subspace is n = 3 - 2 = Since only two
eigenvalues are arbitrarily assignable, \! = -2 and A} = -3
with the excess eigenvalue left to be determined. The two systems
of equations from (12) are solved for the detection gain matrix
where the first column of D is [—3 3 1]7 and the second column
of Dis (4 37]7. From G of (4) calculate v, and A\, from (10) as A,

=2andv, = [1241]7.

The results of Theorem may be employed to enlarge the state
space where f; = Aw! = —2[00 1]7. The enlargement technique
is applied with respect to f in this example, although f; could just
have easily been chosen. Now A, of Theorem S can be written as
Ap = =5[2fi + 2fi] = [00 —20]7 while A;; = N\, = +2.
This choice of the new open-loop system must enlarge the
dimension of the detection space of f, by b) of Theorem $, and
must also enlarge the detection space of f; by Theorem 6. This
problem is an example of the case where ¥, < »,. The dimension
of both detection spaces will be enlarged by one and, hence, the
new system will be mutually detectable.

Example (dj: This example will demonstrate the techniques of
Section VII. The objective here will be to make a single additional
nonseparable direction A, = [0 0 1)7 output stationary with the
failure directions of Example (a). By definition the direction A,
can be written in the form of (29) as A, = f, + 2f; + ¢, where &,
£1,6, =2,and &, & [100}]7. Because the A, direction coincides
with the /| direction of Example (c), the calculation of #, here is
unnecessary since the calculation of »; in Example (c) implies that
V) = 1. From Example (a) it should be recalled that v, = 2 and »,
= 1. Hence, the application of Theorem 7 will require that only

one freely assignable eigenvalue be assigned to the detection
spaces of f; and f;, and it must be identical for both detection
spaces. Because »; > 5| there will be one unassignable eigenvalue
with respect to the detection space of f;. The other condition of
Theorem 7 which must be satisfied is that £, lie in the union of the
detection spaces of f, and f;. The requirement is clearly satisfied
since the eigenvectors which span the detection spaces of £, and f;
will also span the state space and, therefore, £, can be written in
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terms of those eigenvectors. As mentioned in Section VII-A, the
calculation of the eigenvectors and detection gain is complicated
by the additional equations to be satisfied when making some
vector output stationary with the directions in F. The system of
(12) can be employed to write equations with respectto A| = -2,
A} = unassignable, and N2 = ~ 2. The additional equauons to be
utilized for the output stanon.mly case are (30) and (31). The
additional constraint that 6‘ = 0 must also be enforced since v, >
7. All of these equations can be solved to obtain

-1 4 -2 2 |
D=| 2 3|.,v=| 11 -1n2 (32)
2 7 00 122
with 81 = 1,8] = 0,6} = 2,and \} = +2,

The reader should notice that the unassignable eigenvalue here
takes on the same value as the excess eigenvalue of Example (¢)
where h; and f; of the above example were used as the design
failure directions. This is an interesting check of the above output
stationarity procedure, since any effort to design the directions of
A, and f; into a detection filter must result in an unassignable
eigenvalue with a value of +2. The comparison between this
example and that of Example (c) may be further enhanced if
Example (c) is recalculated with AZ = —2. In this case, the gain
matrix and excess eigenvalue are identical to the gain matrix and
unassignable eigenvalue of Example (d). Furthermore, v, of the
recalculated version of Example (c) will be identical to v! of
Example (d), which is associated with the unassignable eigenvalue
A}. Therefore, the state enlargement technique could be used as in
Example (d) to produce a mutually detectable system.

VIII. CoNcLusioNS

A derivation of the detection filter theory from an eigensystem
assignment approach has been presented. The motivations for and
the development of this theory are easily accomplished by this
approach. The analysis results in a set of simultaneous equations
to be solved for the detection filter gains and the closed-loop
eigenvectors. Necessary and sufficient conditions for the solution
of this system of equations have been given. An example is
presented which illustrates and integrates all of the theory and
associated algorithms.

APPENDIX A

PROOF OF THEOREM 1

Theorem | has a two-part proof which is given below in the
form of two lemmas and their respective proofs.
Lemma: Condmon a) of Definition 1 is satisfied if and only if
rank (CW;) =
Proof: Thxs proof is due to Beard [3]. The controllable space
of f; with respect to G is spanned by the columns of the
controllability matrix W, where W, is defined as

W, e/, Gf, -+, G L)

Sufficiency of the lemma can be established by noting that ¢(r)
must lie in the range space of W,. Therefore, ¢(f) can be written as
a linear combination of the columns of W, as «(r) = W,g(n),
where g(f) is an n X 1 vector of coefficients. The output error can
now be written as é(f) = Ce(t) = CW,g(t). It is sufficient that
CW, be of rank | to ensure that é(f) is unidirectional for any g(r).
The necessity of the lemma can be shown by observing that e(¢)
can be driven by y,(f) to any state in the controllable space of
with respect to G. Hence, condition a) of Definition 1 is

(A.D

guaranteed for arbitrary u,(f) only if rank CW, = 1. ]
Lemma: Rank (CW,) = l if and only if Cf; and Cv) are
collinear forall j = 1, 2, , n;.

Proof: The i superscripts on the u;‘s and the corresponding
A;'s and a;'s have been suppressed in this proof for the sake of
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’::0': -" notational simplicity. Sufficiency can be demonstrated by replac-  eigenvalues and eigenvectors are not constrained by the solution

: :j ing the f, in CH, with (11), and then (10) can be employed to  of (13) and are freely assignable by the choice of D,. The proor of
:::0 obtain Lemma 2 is now complete. J

e

()

pACLA

- CW,= a,Ce,, S a\Cu o, S A toy | . (A2) APPENDIX C

o g [JE e ; e 2}: " ’:I PROOF OF THEOREM 4

'

:'.‘: Now if Cv, and Cf, are collinear for all j such that &, # O, then This proof is due to Beard [3]. Lemma 2 implies that there are g

..'! A CH’, becomes eigenvalues that are freely assignable by D in (15) after D has
(N o~ been constrained to be a detection filter for all the f, in F. Output
l:.. A CW.={a\Cf,, a:Cf,, -+, an_,Cf] (A.3) separability implies that the eigenvalues associated with the
Ve ) detection space of each of the f, can be specified independently of
oy o where the a, represent the coefficients of Cf, after the summa- the other detection spaces (i.e., Lemma 3). Lemma 2 implics

.' R tions have been executed. Clearly, the rank of CH, is one and from (15)-(18) that », eigenvalues are associated with each

sufficiency has been proved. detection space. Condition b) of the definition of detectability
Necessity can be proven if it can be shown that €(r) is requires that n eigenvalues be arbitrarily assignable when D is
unidirectional only when the conditions of the lemma are satisfied.  constrained to be a detection gain for all of the f, in F. Hence,

".‘.' WX
; :5 .

e The solution to (6) can be written as .
Ll S <E ) -
‘ vi | +q=n. C.h
s(l)=ec’e(0)+§o eCt-n £ (1) dr. (A4) i=1
Wy . i
:t: d The transient in (A .4) is considered to be zero, by assuming that Since v 2 n — g, then Theorem 4 is proven. O
é either €(0) = 0 or that the transient due to the initial condition has
" settled out. (This requires that G be chosen to be stable.) Then, ApPENDIX D
o] o the substitution of (11) into (A.4) and the assumption that g, is PROOF OF LEMMA 3
WM ".‘ constant (any conditions obtained under this assumption must also
{ apply for an arbitrary u,(f) since u, = constant is still a possible The lemma can be proven if it can be shown that the
AT failure mode) gives eigenvectors that span the ith detection space are independent of
' -, " those that span the other detection spaces fori = 1,2, ---, r. The
' ~ e(():E ma, "l eCt =1 dry . (A.5) independence of these sets of eigenvectors implies that there are
K Y s=1 0 ! no eigenvectors which span some overlap in the detection spaces
".. and, hence, that the detection spaces are pairwise independent.
,."‘ If (A.5) is premultiplied by C, exp [G(1 — Ny, = exp [\(f - A proof by contracjiction can be accomplished by assuming that
v, is substituted into (A.5). and the integration of (A.5) is some dependency exists among the sets of eigenvectors that span
el performed, then the output error becomes the detection spaces. For the sake of notational simplicity it is
: ' n assumed that there are just two detection spaces and that the
1 - -7 overlap between the two is a two-dimensional subspace. Further-
:.‘ - €N=-wy (fl)“ - e'1Cu,. (A-60)  more, assume that v! and v} are the two eigenvectors from the »,-
t": o =1 dimensional, first detection space which span the overlap.
{!,.0_ By (A.6) the conditions of the lemma are necessary for &() to Likewise, assume that v?and v§_are the two eigenvectors from the
) E have a fixed direction and, therefore, for CW, to be rank 1. [J *:-dimensional, second detection space which also span the
e Theorem 1 combines the two lemmas of this Appendix. overlap. Since both sets of overlap eigenvectors span the same
o'y subspace, then it must be lposmble lzo write v, and v, in terms of v3
and vl. For instance, v! = ww? + wu?® where the w,'s are
" o AppENDIX B constant scalar coefficients. Premlllltiplicatibn of this relationship
'..,iu' {': PROOF OF LEMMA 2 by C (recall that Cv' # 0) and the conditions of Theorem 1
f‘.oﬁ » N ) ) produce Cf, = (@ + w;)Cf:, which is a contradiction by the
° The definitions of g, and » in Lemma 2 imply that the assumption of output separability. These arguments are easily
s Y observability matrix with respect to (C,, A,) is of rank g, while the  extended to the general case and by contradiction Lemma 3 is
K] - null space or unobservable space is of dimension »,. Hence, ¢, (rye. O
o - closed-loop eigenvectors span M,, while the remaining »; closed-
0,‘ ) loop eigenvectors span the null space of M,. These », eigenvectors APPENDIX E
: s I must by definition satisfy the condition of Cv, =0forallj =1,
|,I;‘ Yo 2, - -+, v This condition implies that these eigenvectors must be PROOF OF THEOREM 5
®. ' g;gi?‘;-gcrt:ll’lsj(')LA'l' ghls. c.:z.m Eet:t:)s;;v;d by postmultiplying (16) The organization of this proof is as follows. First, b), ¢), and d)
P~ ' ' v will be shown to result from (27) in a very direct and simple way.
b Then it will be shown that the definitions of (27) imply a), because
:’ :._~ A'u;z(A _DC)UI'+D,C,U;. (B.1) the new excess space will not have any output component along
> the direction Cfy = Cf,, where fT = [T, 0]7. This form of f, is
*,5 This equation reduces to required by the way in which a failure pkysically enters the
¢ e problem.
> o Av)= AMui+D,Cu; (B.2) The determination of the detection space of f; with respect to
] . ' ) _ the system (A, C) is analogous to the procedure of Section 1I-D.
~ by (10). The last term in (B.2) is zero for all of the eigenvectors in  The quantities
)-:. o, the null space of M, and, therefore, they must all be eigenvectors
::-_: < of A,. Hence, v, eigenvalues and eigenvectors of A, are specified ¢ R Ky Ay
“ by the solution of {13) (i.e., with respect to f,). These eigenvalues «=[Ci 0], Ky= 0 Ay (E.D
(- A and eigenvectors cannot be affected by the choice of D, since the
A - last term in (B.2) is always zero. However, the remaining g, are easily derived for the enlarged state space from equations of
4
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the form of (18) and (17) with (A, €) replacing (A, C) and where
fi teplaces f,. Now a matrix similar 10 (19) can be written and
expanded in terms of (E.1) to obtain

- Cl(CKIT, (GKDT, -+, T E.2
10, (Cedin) T, (CulKeAp+ ApAp) T, -+, - &2

Because the definition of A, in (27) makes A,, lie in the nuil
space of M,._the second column of terms in (E.2) is zero. Hence,
the rank of M, is equal to that of M. This implies that o, = A —
q-k =1 - G = N+ vy — G = v + v,kandthatb)istru&

A matrix similar to (23) for the enlarged system can also be
defined for M. This matrix will have a form analogous to that of
(E.2) and similar arguments imply that # = v + v,. This fact in
conjunction with b) and the form of M, for j # k imply that ¢)
and, therefore, d) must be valid.

The final step is to show that a) is valid because the excess
subspace has no components that lie in the kth detection space.
The proof requires a detailed look at the structure of the excess
subspace.

Any eigenvector, v/, which lies in the original excess subspace
can be represented as a linear combination of some or ali of the 7
failure directions plus some vector, s,, which lies in the null space
of C. Hence, v/ = E7_, ¢/f, + 5; where some of the ¢/ may be
zero, and s, cannot be zero for v/ to be independent of the
detection spaces eigenvectors. Furthermore, each excess eigen-
vector must have an s, vector which is independent of the other s;
vectors. Therefore, V,, is represented as

5 a;"f,+s~] (E3)

Vtk= [E a"ﬁ+3|. e
N

i "
where the I/’s for j = 1, 2, + -+, v, represent different subsets of
the values of i = [, 2, ---, r where i = k is by definition a
member of each subset. Also, each s, must satisfy Cs, = 0 forj =
1,2, -+ -, vu. Equation (10) for V,, can be written in matrix form
as AV, = VA4 + DCV, which can be rewritten from (E.3)
and (13) as

AV =Valdec + 2 U,'(Af:‘f:)- T E U,N(Aj;—j;') .
1 w
(E.4)

Since the s, for j = 1, 2, ---, », must be independent, then
another basis for the excess subspace is defined by S, 2 [s), - *°,
sn|. The subset of vectors S, in S, which originate with V, must
span the same excess subspace with respect to the new basis
representation, since the same group of failure directions create
that part of the excess space. The existence of a basis representa-
tion for the excess space which lies in the null space of C is
guaranteed by the fact that the f, are output separable and only r
nonzero output directions can be fixed by the detection spaces.

;l’enns from the left and right sides of (E.4) can be canceled to
orm

ASe=Seher+ [E LSV NEIRN WAL N7 -m]
N

)
Ty e

(E.5)
which is now in terms of a new basis for the excess subspace due
t0 f,.

¥, = v, is now assumed. This assumption means that

enlargement of the state space does not change the dimension of
the excess subspace. This in turn implies that some -
dimensional basis. S,., must exist in the fi-dimensional state space
to span the excess subspace that had previously been spanned by
S« in the n-dimensional state space. Such a basis can be written as

OO0
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S 2 [SL, 717 where [ is a vy X vy identity matrix which is
chosen arBitrarily. If it can be shown that S, is independent of the
presence of f; by the choice of A;; and A, of (27), then a) will
have been proven.

Equation (E.5) can be rewritten so as to be consistent with the
enlarged state space dimension as

A [56*] = [56*] Ack

-
P CSTAES A IEEER WA O A A

+ ,}r ,.;/ (E.6)

0

=

The assumed form (Theorem 5) for A can be expanded to obtain

1L

. [_a;o;kfk-m —om:kfk—fk)] &7

Aek

0
and then added to (E.6) to produce

s s Eo}()‘:‘f:—f,), "'.Eaf"()\’;’f,_j;)
AS,/,=S(kA,k+ Il [N
0

(E.8)

where the index & has now been eliminated from the 7, to give /.
Because CS,,_= 0, the detection space directions of interest are
given by AS,. Since the right-hand side of (E.8) has no
component in the kth detection space. the new excess space will
be independent of the presence of f,.

The case where 7, < v, can be handled in exactly the same
manner as the above case. The only difference here is that now
one or more of the vectors in i X »,,-dimensional S,, will now lie
in and partially span an enlarged detection space with respect to
one or more f; for j # k, rather than all of the vectors spanning
the new excess space as in the previous case.

The hypothesis of a) in Theorem 5 has now been proven and the
proof of Theorem 5 is complete, except for a discussion regarding
the observability of (A, C). The enlarged system must be
observable as a result of the enlargement construction of Theorem
5. This can be verified by recalling from the proof of part b) that
the null space of M must have a dimension of # = » + »,,, and is
known to be spanned by # eigenvectors which either span one of
the r detection subspaces or the excess subspace that exists after
the enlargement process. If any one of these eigenvectors is
multiplied by C, then the constraint of Theorem 1 or the nature
of the excess space [e.g.. see (E.3)] requires that the resulting
vector be equal to one of the Cf, directions fori = 1,2, ---, r, or
some linear combination thereof. Hence, the subspaces which
compose the null space of M are observable by the construction of
Theorem 5, since Cf, = Cf; # Oforalli = 1,2, -, rlfr<
m, then the remaining g ecigenvectors can be freely chosen,
provided that they are independent of those with respect to the r
detection subspaces and the excess subspace, and are selected to
span an observable subspace. Hence, the enlarged system of (A4,
C) is observable, and the proof of Theorem $§ is complete. O

APPENDIX F
PROOF OF THEOREM 6

From Theorem 5 #, = v, + v, and any increase in the
dimension of some other detection space must come as a result of
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an equal reduction in the excess space dimension. Any increase in
the dimension of », to 5, must come as the result of a
corresponding decrease in v,, to 5, Hence.

U=, = 0, ~ Ve (F.1)
for all j # k. Since the total increase in the dimension of those

detection spaces other than that of f, must equal the reduction in
the excess space dimension, then it must be true that

r r

E (F/—vj)=2 (Vey= Ve, ) =ve— 7,

=1 =1

(F.2)

where j # k is a constraint on the summation terms. Equations
similar to (F.1) and (F.2) can also be written for the second
and successive extensions, although some of the terms in the
summations of (F.2) will be zero since some directions will have
been removed tfrom the excess subspace.

For notational simplicity it is assumed here that r = 3. The
state-space dimension must be enlarged to /i, = n + v, + ¥y
after r — 1 applications of Theorem 5 and where k = 1, 2, -

successive applications. The reason for r — 1 rather than r
applications of Theorem S will become clear.

The first state-space enlargement removes the components
along f, from the excess space and (F.2) can be employed to write
v, = Uy = (Vo1 — Vp3) + (v.3 — V,3). Substitution of this equauon
into the previous equation produces /i, = 21 + (2 | Vek) — Ve t
(», — v,3) which has the form of (28) except for the ﬁnal mo
terms. These two terms are equal and cancel each other out. Since
the first enlargement removes all excess space components along
/i, the new excess space of dimension v, can have cumponents
only along f; and f5. Since each excess eigenvector must have a
component in two or more detection spaces (otherwise the
eigenvector would lie in and span some detection space), then 7,
= 4, = »,3. The second state-space enlargement will remove f5
components from the excess space and also enlarges the f
detection space. Hence, the excess space will be eliminated after r
— 1 applications of Theorem 5.

The above analysis may be repeated for an arbitrary 7 and,
therefore, Theorem 6 is proven.

ArPENDIX G

PROOF OF THEOREM 7

The conditions under which output stationarity is possible are
intimately related to the relationships between the closed-loop
eigenvector sets of the §¥'s and the v ;'s, as well as between the
closed-loop eigenvalues ‘of A* and A!. The A¥'s and the o*'s
represent the closed-loop cugenvalues and eigenvectors of the
filter designed as if h, was one of the original output separable
failure directions. Because of the assumption that £, lies in the
union of the detection spaces of the f, fori = 1, 2, . 1, then &,
and A, can be written as in the remark after Theorem 7. The
implication here is that A, or any detection equivalent direction
can be written as a unique linear combination of the eigenvectors
which span the detection spaces of the f, for i = 1, 2,

The detection space of A, also has a fundamental role in the
development of the output stationa. ity conditions. The projection
of the A, detection space onto each and every detection space with
respect to f, fori = 1, 2, - - - can be shown to be of dimension #;
[6]. The implications of this are that there are only ¥, eigenvaiues
which may be assigned to the detection space of 4. Since the
detection space of A, has 5,-dimensional projections on each of the
1 detection spaces of the f, of (29) which comprise h,, it may be
deduced that the same arbitrarily assignable set of 5, eigenvalues
must be a subset of the », eigenvalues in each of the | detection
spaces since 5, < v, The unassignable nature of the », - 7,

eigenvalues when #; < », will become apparent later in the proot.
v, foralli =

The temporary assumption is made here that 5, =

IEE
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1, 2, - -+, I. The implication of equating A; written in terms of a*
and v} from the analogous form of (11) with (30) is that

ph=(S v} + - +blv)/al. (G.1)
Hence. the structural requirements for the output stationarity of A,
are that the closed-loop eigenvectors of the detection spaces of the
h, and the f, for [ = , { be linearly related as in (G.1).
Although these arguments have been based on the assumption that
#, = v, the proof to follow will show that the unassignable
eigenvalues that occur for #; < v, become fixed as the result of
preserving the relationship of (G.1) to fix the output direction of
Ch,.

The proof will show in the spirit of Theorem 1 that the
hypothesized conditions are necessary and sufficient for the output
direction of A, to be fixed by the same detection gain as for the
directions tn F.

The necessity of the conditions in Theorem 7 can be shown in a
manner analogous to that of th> proof of Theorem 1. An equation
derived like that of (A.5) but in terms of A, and the eigenvalues
and eigenvectors with respect to its detection space is

g _k ¥
- N
= — i E <%1—>[1—e e
7

s=1

1,2,

(G.D)

where Cﬁf = Ch, for a fixed output direction by Theorem 1.
Similarly, an output error equation can be written for A, in terms
of the eigenvalues and eigenvectors of the detection spaces of the
Sfslie., from (30)] fori = 1,2, -+, [as
-4+ SIUI)]
s

Vg _k
-~ - al> Xy 1 £ [
€= — i wl [l—é’;]C[—_—(é'v +
[E (5 ar 40
(G.3)

+'_ZU§:‘I< }> (1-e* ]Cu;]

The form in which (G.2) is written clearly indicates that when s,
= v, and )\‘ = )\; then (G.1) implies that (G.3) and (G.2) are
ldenucal and the output direction of Ch; is fixed if the directions
Cfi, -+, Cf; have been fixed by Theorem 1. If 5, < v, the
output stauonamy of A, can only be ensured if A* = ! forj = 1,

2, »+-, ¥ and the A}’s of the second term in (G.3) ‘are chosen
such that the corresponding 6‘1‘5 are zero. This is the reason why v,
~ ¥, eigenvalues must be unassignable for each detection space
where 5, < v,. The necessity of the Theorem 7 conditions for
output stationarity has now been shown.

The sufficiency of the conditions in Theorem 7 can also be
shown in a manner similar to that of the proof of Theorem 1. An
equation analogous to that of (A.1) in terms of A, becomes W, =
[hi, Gh,, -+, G" 'h] where CW, must be of rank | if the
output dircction Ch, is to be fixed. An equation in terms of the A,

eigenvalues and eigenvectors can be written which is analogous to
(A.2) as '

"
CW,= [E at
;-

4 i

Gt Y athicat, :
=1 =1

(G.9)

where the conditions of Theorem | would imply that CW, is of
rank | since Ch, = C¢7. Similarly. (30) can be used to rewrite W,

in terms of the crgcn\aluu and cigenvectors of the detection
spaces of the f, fori = 1,2, -+, [as

(G.5)
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If now the §, = O for all j > 5, when », > ¥, and the 7, freely
assignable elgenvalues are chosen such that )\’ = )\" then (G.S)
can be rewrnitten as

] (6.6

such that premultiplication by C and (G.1) produce (G.4). Hence,
CW, can be made rank 1 if the directions Cf;, - - -, Cf; have been
fixed by Theorem 1, and the sufficiency of the Theorem 7

conditions for the output stationarity of h, with F has been
proven.

L]
W),=' [E E S;U'

Jj=l =l

225,,,

jmli=l
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Modeling of Parameter Variations and Asymptotic
LQG Synthesis

MINJEA TAHK. sesmBer, 1E8E, AND JASON L. SPEYER. reLrow, 1kEE

Abstract—Conventional approaches in modern robustness and sensi-
tivity tireory are not adequate tor the problems associated with parameter
variation since the structure of parameter variations cannot be modeled
properly or included in the synthesis procedure. A new mogeling
techniyue is proposed to handle a class of structured plant uncertainties in
a direct wav, The hey is to treat deterministic parameter variations as an
internal feedbach loop o that the structure of parameter variations is
embedded in its model. An asymptotic LQG design synthesis based on
this modeling method is aiso presented. An important relationship
between the structure of plant uncertainties and the LQG weighting
matrices is obtained. This relationship clearly specifies the kind of
parameter variations allowable for the LQG,/LTR method.

1. INTRODUCTION

NE aspect of current development of MIMO (multiinput,
Omulnuutpuu feedback system theory has been concerned with
stability robustness and sensitivity to plant perturbations, Impor-
tant developments in this field are tound in the LOG'LTR (loop
transter recovery) techniques [1]-(4] and A *-optimization theory
assoctated with robustness and sensitivity [S]-[8]. Although these
modcern techmques are usetul in treaung unmodeled dynaniics and
stochastic uncertaintics such as disturbances and sensor noises.
they may not be adeguate in handling structured parameter
variations. In their recent paper { 18], Shaked and Soroka showed
that an LQG controller designed by the LQG/LTR method suffers
from a stability robustness problem due to a small parameter
variation. Since an LQG/LTR controller is known to recover the
guaranteed stability margins of an LQ regulator or a Kulman-
Bucy filter [3], their result implies that a conventional usage of
stability margins is no guarantee against a disastrous loss of
stability.

The existing modeling methods, on which the current robust-
ness and seasitivity studies are based. are external descriptions of
the plant uncertainties. in the sense that plant uncertainties are
modeled at the exterior of the plant by assigning extra blocks at
the input. at the output, or around the plant as feedback or
feedforward loops [11]. In practice. these modeling methods are
not convenient at all in handling parameter uncertainty. Many
difficulties arise from the fact that parameter uncertainties are
usually given in state-space forms while the conventional uncer-
tainty models are based on transfer function descriptions. In
Section II we discuss these drawbacks in some detail and identify
the inadequacy of the conventional uncertainty models for
parameter uncertainty as a source of robustness problems.

Apart from the well-known modern synthesis methods. other
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methods have been proposed which address the robustness
problem of parameter uncertainty within the framework of state-
space representation. A matching condition s crucial in
Lyapunov-function approaches [23], [25] so that the class of
parameter variations to be considered is severely limited. although
some relaxation was obtained in [24). The matching condition
assumes that a parameter variation of the state matnix . denoted
as AA. is spanned by the input matrix 8 or the output matrix C.
The special characteristics of this type of parameter uncertainty
will be discussed later. Another approach which deals with a
larger class of parameter variation is the stochastic modeling
method using state-. control-. and measurement-dependent multi-
plicative noises [26]. [27]. This method leads to a direct sy nthesis
which requires the coupled solution of two Riccati equations and
two Lyapunov equations. However, this stochastic medeling
method does not directly address the robustness problem associ-
ated with modeling errors such as parameter variations. Other
synthesis methods related to parameter uncertainty are found in
[28]. [29]. Most of these state-space methods simply describe a
parameter variation as a difference between the state-space
representation of the nominal system (or. model) and that of the
perturbed system (or, real system). Thereby, one objective of this
paper is to better understand the role of the structure of parameter
variations in the development of robust synthesis techniques.

This paper circumvents some of the difficultics and drawbacks
of existing methods by using a modeling method which is able to
characterize the structure of parameter variations in a simple way.
In this method, a parameter variation is represented as an
equivalent fictitious feedback loop called the internal feedback
loop (IFL). In particular, we arc using the fact that a feedback and
a parameter variation are indistinguishable when input-output
relations are considered. The advantages of the IFL modeiing
method over the existing methods are: 1) it is simple: 2) the
associated stability criterion has no restriction on the closed-right-
half-plane (CRHP) poles and zeros as in other methods [17]; 3)
the structure of parameter variations is maintained; and 4) several
modern design methods can incorporate the IFL model directly.

In IFL modeling a parameter variation AA is decomposed into
three parts: the input. output, and feedback matrices. This
decomposition is called the input/output (1/Cj decomposition.
The idea of the IFL representation or the 1O de :omposition is not
new. Recently, various authors have employed this tdea cither
implicitly or explicitly in order to study parameter uncertainty
[14], [20]. [30]-[32]. However, Mita and Ngamkajornvivat [33]
seem to be the first to use the concept of the 170 decomposition to
develop a synthesis method. which was generalized later by
Shaked [34]. Their studies were limited to state-feedback prob-
lems and the major concern was pole sensitivity rather than
robustness. Section II brietly discusses the IFL modeling tech-
nique which transforms a perturbed closed-system into a two-
input, two-output (TITO) system. The idea of representing
general plant uncertaintics as a feedback loop was also previously
suggested in [12], but parameter uncertainty was not explicily
treated.

The main purpose of this paper is to propose an asymptotic
LQG design synthesis based on the 1/O decomposition  of
parameter variation. Section I shows that. by sclecting proper
weighting matrices for the Riccati equations, cither the regulator
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part or filter part of an LOG controller can be made asvmptoti-
calhy robustto g gnven parameter varnation. In tact. there exists an
exphait relationship between the LQG weighting matrices and the
structure of the parameter vanation. The stabihity robustness of
the LQG control system 1y then determuned solely by the other
nonasymptotie part. This aimplies that an observer based on the
Kalman tilter can be destgned by selecting suttable covariance
matrices, in order 1o recover the robustness of the LQ regulator
with respect to a given parameter varaton, This asymptotcal
procedure generahzes the LQG LTR design to a larger class of
parameter varations. This paper also shows that the class of
parameter variations which can be sarely treated by the LQG LTR
method s limited by the structure of the input and output matrices.
Some numenical results based on [18] are also given in Section [V
to tllustrate the advantage of this asymptotic LQG design synthesis
over the conventional LQG LTR technigue in the presence of
parameter uncertaimty.

II. MODFLING OF PARAMETER VARIATIONS

Two importart classes of plant uncertainties are unmodeled
dynamics (or truncated higher order dynamics) and parameter
uncertainty. Since these uncertainties arise from the inaccuracy or
incompleteness of mathematical models, they are often called
modeling errors. [n thiy section, we are concerned with the
modeling of modeling errors rather than the modeling of real
plants.

A. Drawbacks of Conventional M- deling Techniques

Let G(s) and G(s) be the real plant and its reduced-order model,
respectively. Suppose that exact system parameters are known and
the only plant uncertainty is unmodeled dynamics. For G(s) to be
an acceptable model. the frequency behavior of G(s) should
approximate that of G(s) in a reasonable manner over a certain
frequency interval specified by the designer. Mathematically. the
modehing error due to unmodeled dynamics can be specified in
several ways. Two common models of modeling errors are

E,s):= G(s)-G(s)
which s additive, and
En(s) 1= G(s)'[G(s) - G(s)]

which is multiplicative. In practice, the exact form of E,(s) or
E.(5) is neuher available nor necessary. Instead. norm bounds of
these error models are usually sufficient for analysis and design
synthesis. Usually, unmodeled dynamics are assumed to be
dominant in the high-frequency range and the norm bounds of
E,(s) and E.(s) are determined in rather empirical ways.
Now consider the parameter variation case. Suppose that G(s)
and G(s) are of the same order but some parameter uncertaintics
are present, Le., G(s) = G(s, p) and G(s) = G(s, p) where pis
the nominal parameter vector used in the model and 5 is the real
parameter vector. Then, the error models E,(s) and E,,(s) become

E,(s) := Gt(s, p)-Gis, p)
E,(5):= G(s, p)"'(G(s. p) - G(s, p)l.

Suppose that the parameter uncertaintics are parameterized by r
independent varables € = {e), €2, -, 6, ), ie..p — p = fle).
This parameterization can be done casily with the state-space
representations it the model and the real plant are assumed to be
given as (A, B, C) and (A, B, C), respectively. Then. the
parameter uncertamnties, A4 = A - A, AB = B - B and AC
=C - C.arcgivenas AA = AA(e), AB = AB(e). and AC =
AC (). However, it is rcadily observed that the computation of
E s, ey or E. (s, €) 1s not an casy task. Let

&= e, by E s, ), b= E (s,

where cach norm iy assumed o be defined appropriately. Whil
the degree of paramcter varation is directly given by 6, 1
relationship between 4, and 6,. or between 6, and 6, is extremel
complicated even for a single parameter variation, except for §,
=01, = 0¢or. 6, = 0110, = 0). Apart from its complexit
and inconvenience, the use of convenuonal crror models fol
parameter variations leads to a loss of information about th
magnitude of parameter variation let alone the loss of its structural
information.

The inadequacy of the conventional frequency-domain erro
models for parameter uncertainty s important 10 Light of stabilit
robustness since their use in robustness analysis may lead to a
incorrect conclusion on the stability robustness of a svstem being
considered. For example. the stability margins, which are closely
refated to the multiplicative error model £,(s). are not usetul if a
small parameter variation possibly produces a very large gain
variation or phase varaton. For this case, a substanual amount of
gain margin or phase margin cannot be a guarantee for good
robustness. A good example for this situation is found in (18], as
discussed in Section I

Another drawback of the conventional methods lies in the
limitations in applying stability criteria based on the conventional
error models. The basic assumption of Lethomaki's stability
critertia (10, {11}, which is the basiy of the MIMO suabilny
margin concept, is that the perturbed plant has the same numbers
of poles and zeros as the nominal plant in the CRHP. This
restriction on the perturbed plant was pointed out and compared to
the inverse-Nvquist-based stability criteria [17], which also
assumes that the nomunal plant and the perturbed plant share the
same number of zeros. Thus. the class of plant uncertainties
properly described by any of the conventional error models is
limited by this requirement. It is imponant to note that those
constraints on the perturbed plant result in a cenain clasy of
parameter variations, which may destabilize the system. being
excluded from consideration. Therefore. we see that the unstruc-
tured plant uncertamties considered i [10] are not strictly
unstructured. but there exists a definite requirement on the
structure of plant uncentainty. For general parameter variations, a
small parameter variation does not necessarily induce small gain
and phase variations [i.c., a small £.(s)]. and does not necessar-
ily keep the same number of CRHP poles and zeros.

These observations lead us to the conclusion that the conven-
tional modeling methods tor plant uncertainties and the associated
stability criteria may not be a reliable tool when parameter
uncertainty rather than unmodeled dyvnamics is involved in control
system design.

B. Internal Feedback Modeling of Parameter Variations

By the IO decomposition. a parameter variation is equivalent]y
represented as an internal feedback loop. and then the perturbed
plant is depicted as a TITO system where one feedback loop is the
nominal feedback loop. and another feedback loop is for the
parameter variation. This representation of parameter variaton is
attractive in many ways: 1) there is no restriction on the number of
CRHP poles or zeros of the perturbed plant: 2) the structure of the
parameter variation s casily embedded into the input matrix and
output matrix of the IFL: and 3) the magmitude of the parameter
vanation is directly described by the magnitude of the teedback
gain of the IFL. )

Consider a lincar, time-invanant system where

xX=cx+ Bu
yv=Cx
represents a nomunal system, and
x= v+ Bu

v=_Cx
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represents its perturbed system. The vectors x € jt°, v € 2™,

u =

£ and v € ' denote the state. the input, and the output, w :” :" .
NN respectively. We assume that Ad := A - A = 0. butaB:= B O B P =
P N - B=0and AC:= C — C = 0, i.e.. only the state matrix is
5 subject to variation. It will be shown that 3B or AC can be
i . embedded by an approximation procedure into a AA of an

n augmented system. ()
R Suppose that A4 is parameterized as a function of r variables ¢
L\ = {e), **, €} and giver as -
¢z ;u- ,
BN A40=7 S
" i=1
! - . where the S,’s are constant matrices. By decomposing S, as S, =
:’2.‘ X MN,, we can rewrite AA as
:i:ﬁ Ad(e)= ~MLON -G, ¢, >
v‘ b’y 3
:l::: % where M € §1"*% and NV € RI*" are constant matrices _OL> G2y G -
SN determined by M’s and N's, and L(e) € 57*7 is a matrix
function of € = {¢;, - -, ¢,}. The decomposition described above

Ky is called here an 1'O decomposition of AA. Note that the I/O
-.".‘v [)‘4 decomposition is not unique. To avoid problems with an unneces- (c)
oy S sarily large M or /V, we assume that the decomposition is such that . v " )

;“‘:: M and N are full rank; i.e., M and NV are of mﬂ"nimal dimensions. Fig- 1. TITO system representations of the perturbed system.

o:::. N This nonuniqueness is not important in stability analysis and ventional hod I ined. Thi .y .
W y{ design synthesis. as shall be discussed later. _conlen go(rjm metho s.fa;‘e a /so examined. This stability criterion
A Given an 1/O decomposition of AA(e), the perturbed plant can 15,2150 independent of the /O decomposition. Suppose that —
1 @ be written as ML()N is an /O decomposition of the AA. Then

)

-h

ta x=Ax+Bu+Mw det [7+aL(e)Gu(jw)]

'S '_h‘

i y=Cx =det [/+al(e)N(¢-oBK(I+g,K) 'Co)M]

Y

'L i z=Nx =det [ I+ aML(e)N(¢—¢BK(I+g,,K) 'C¢)]
"‘, w= - L(e)z =det [[—aAA(¢—BK(I+g,K) 'Co)].
«
:¢ o where two variables z and w are introduced, respectively, as an Therefore. the lack of uniqueness of the decomposition does not
::0 o auxiliary output and an input connected to the internal feedback affect this stability criterion.
o O loop with a gain L(¢), as shown in Fig. 1(a) where
" C. Parameter Variations of the Matrices B and C
- . .| &u gz2| | CeB CoM - . -

) & £:= [821 gzz] = [Nqu N¢M] For parameter variations in B and C, the /O decompositions
‘;::i can be obtained in several ways. One way is to construct the state-
4.. and ¢ = (s] —A)"". space representation of the closed-loop system (A, B, C.) and
,..': " Let K(s) be a compensator. Then, it is easy to see that the (A,, B., C.), and to obtain an [/O QCcomposition forAA. = A,
i,::n :.,- perturbed closed-loop system shown in Fig. 1(b) is equivalent to — A.. However, this method requires a state-space representa-
| o Fig. 1(c) where tion of the feedback compensators. Or we can construct aug-
*y! mented state-space representations (A,, B,, C,) and (A,, 8,,C)

Y2 G, Gp, v where B, = B,, C, = C,but A4, = A, — A, approximates AB
,0;! 5 z Gy Gyn w and AC. The latter is more favorable since a unified approach is
) Py possible for all kinds of parameter variations so it will be
:. and discussed 1n detail in this section. Some other methods for A 8 and
st AC are also found in [20], [36].
Q:' p G = G G Suppose that the ith column of B is subject to a perturbation.
.1y ﬁ ' Gu On Then we augment the state vector x by an extra state x, which

~
-

A%

X

-
-

- A SOL00 .
DLW R ML O R LAY
R PRI -“.:","'.&"\3' o

(% hl

, [<1+g../\')-'g.,k' (7+20K) '8, ] .

gl +Kg) 'K gn-gaK(I+81K) '8

For a given ¢, a sufficient condition for closed-loop stability is
that

det [I+aL(e)Gy(jw)]#0

foralla € [0, 1] and @ € 2 [12], [14]. When only parameter
unceruainty is considered. the above criteria gives not only input-
output stability but also the internal stability of the closed-loop
system [19]. In other words. the stability of the unobservable
or uncontrollable modes, which cannot be studied by the
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follows the input #, fast enough so that its dynamics are negligible
when compared to other modes of A. Effectively, u, becomes a
state, and the plant is approximated by

][0 )2

where ¢ is a sufficiently large positive number, b, is the ith
column of the matrix B, and

B,=B-[00 - b - 0]

be=[00---¢ - 0).
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L In fact. the transfer function from u, to x, becomes

Al SN g
e Xp(s)=—— u,(s), a®» .

g S+o

o A

" Similarly, for the jth row of C. which is subject to a

-‘

perturbation, we can augment the state space as

3 HEERHEHE

o e
5 x
.l‘. yz[co Ca] Xr]
',"v' J where 7 » 1, ¢, is the jth row of C, and
: Lk
"“” C — C_ e T... T
. = (00 ¢ 0]
5 ’
W IR =[00 -7 ---01T
"l:. ! = T 1
This augmentation gives
S
o .,
ﬁ" o Ys)=——=xJ(s), 7 L
=~ S+r1
R . " .
N ; It is easy to prove that controllability and observability are not
affected by the above state augmentation procedures. The poles
and zeros of the original system are also those of the augmented
: :- » system. and the only alteration is the addition of some poles on the
‘SN negative real axis, which are well beyond the bandwidth of the
L o plant. The proofs are simple and left to the reader. Since AB and
" AC can be approximated as AA, of an augmented system, it is
-\i . assumed from now on that the perturbed plant does not have
! i ‘ perturbations in B and C, i.e., B = Band C = C.
";;" III. AN AsympTOTIC LQG DESIGN SYNTHESIS
!"', o This section introduces an asymptotic LQG design procedure
J::x :‘:J based on the internal feedback modeling method described in the
"y previous section. It is shown that the finite poles of either
‘s the regulator or filter of an LQG control system can be Jesigned to
L be asvmptotically insensitive to a specified parameter variation via
A a suitable selection of LQG weighting matrices. These weighting
- matrices turn out to be closely related to the structure of a
f‘ particular class of parameter variations. The robustness of the
. LOG control system is essentially determined by the remaining
"- .'.’ sensiive part ot the LQG compenrsator. In other words, the
.

' ropustness of the LQG control system recovers either the
ronoatness of the LQ regulator or that of a Kalman-Bucy filter.
s [re robustness problem again reduces to determining the robust-
', ne oot entner the 1O regulator or Kalman-Bucy filter. Fur“er-
=oeeehe LOG LTR procedure may be considered a special case
' Cocaserentange LOG method. although the explicit connection
| sy asee cnt uneertaimties and the LQG weighting matrices had

N e e pde

) e Praeameter Varations

i+ o stouctured parameter variations has great
b Cofe ot e gsvmptotic behavior of LQG poles.
T terstios are given here.

AL E T ML E i N E
[sen A s wad ta be column-similar to
L 4 A and N s sad o be row-similar

'
'

votaomatri P osuch that M =
v A that there exasts a matrx
A Ltnigr o \':

.
' >
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Definition 2 (Similar Parameter Variations): Consider
nominal plant (4, B, C) and its perturbed plant (A, B, C) wher
AA =A ~ A = ~MLN. Then, AA is said to be input-simila
if M is column-similar to B, and it is said to be ourpur-similar i
N is row-similar to C. It is also called zumilar if it is input-simila
or output-similar.

An important characteristic of similar variatiuns is that they d
not perturb the zeros of the plant. Let Z, and Z, be the sets o
transmission zeros and decoupling zeros of the nominal plant (A,
B, C), respectively. Similarly, we define Z, and Z, as the sets o
transmission zeros and decoupling zeros of the perturbed plant
(512,]8, C). (We will follow the definition of zeros given in [16],
[22])

Lemma 1: If AA is similar (i.e., input-similar or output-
similar), then

Z U 2,=2, U Z,.

Proof: For input-similar variations,

sI-A+BPLN B | _ sI-A B
rank[ -c 0]—rank[_c 0].

Therefore. the system zeros are invariant. The proof is similar for
output-similar variations. a

B. Asymptotic Pole Sensitivities

Consider an output feedback system with a constant gain
feedback given as

X=Ax+ Bu
y=Cx
u=v~-kFy

where B € "™, C € R™*", F € }™*™ are assumed to be full
rank, and & € §. The numbers of the input and output are
assumed to be the same.

Lemma 2: Suppose that G(s) = C(sI - <, 'B has J, finite
transmission zeros. Then j, poles of the closed-loop system, 4 —
kBFC, asymptotically approach the transmission j, zeros of G(s)
as kK — oo,

This is a well-known feedback property for single-input, single-
output (SISO) systems. Lemma 2 .mplies that the number of the
finite eigenvalues of A — kKBFC as k — o is equal to j, + Jjy
where j, is the number of decoupling zeros corresponding to
unobservable and/or uncontrollable modes and Jj, is the number of
asymptotically finite closed-loop poles. For the MIMO case, its
formal proof can be found in [21, Theorem 4.3].

Theorem 1: Consider the above output feedback system.
Suppose that the state matrix 4 is perturbed by a parameter
variation given as AA = —MLN. Then, as k — o, every finite
eigenvalue of A — kBFC is asymptotically insensitive to the
parameter variation — MLN if AA is similar.

Proof: Consider a similar variation — BMLN where 8 €
[0, 1]. Let P(B, k) be the set of finite eigenvalues of A — BAMLN
— kBFC and Z(8) be the sct of zeros of (A — BMLN, B, C).
For the nominal system (8 = 0), we denote them as P(0, &) and
Z(0), respectively. Lemma 2 implies that P(3, k) — Z(3) and
PO, k) = Z(0) as k = oo. However, fron. Lemma 1, Z(3) =
Z(0). Thus, limy~o P(8, k) = limi~a P(0, k). Suppose that p €
PO, k) and p € P(B, k) approach 2 € Z(0) as k — oo. Then,
there exists a constant k(5) for any 6 > Osuchthat [z — p| < &
and |z — p| < éforall k > k(8). Therefore, |p — p| < 25 for
k > k(8). The continuity of eigenvalues of A — BMLN -
kBFC with respect to 8 completes the proof. 0
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) d C. Asymptotic Robustness of a Full State Regulator with  Then, Pis)= P(5) + P.(s). Suppose that z, is a finite zero of

) Observer Pu(s). Let g(-) and d(*) denote the minimum singular value and

o . ) - maximum singular value, respectively. Then, a(P(z2,)) = 0.

IS Theorem 1 states that the ﬁmlc poles are insensitive t0 @ From the singular-value inequality o(A) - 6(B) < (A + B) <
N o~ parameter variation when A A is similar. This propernty is not

r vana ar. 1 a(A) + d(B). we have
\ readily useful since the closed-loop stability is not guaranteed by
¥

simple output feedback. However, the results of Theorem | give
some insight into the asymptotic robustness of observer-based
control systems. Consider a full-state feedback regulator with Then, ¢(P(2,)) — 0 as y — o since lim, .. 6(Px(z)) = 0.
observer {(FSRO) for which the state matrix of the closed loop Therefore, 2, is also a zero of P\(s) in the limit so that the finite
system is given by closed-loop poles are determined by the zeros of Pi(s). Let

i= A BK.
ol =1 -K,C A-BK.-K,C
where A = A — MILN, A € R ", B € mm C € " M
€ RPN € R9*", L € 379, and K, € 73™*" and K, €

I(Py(20)) = (P:(2) < a (P, S 0 Pyl(2,)) + 3 (P:(2,)).

-
-
-

Zx T
L

H\(s) :=Co(sI - Ap) " 'B,.

Then, a simple calculation gives

-
w1

Hi(s)=C(sI~A) " { I+ MLN(sI-A+BK,) '} K,.
'v R are the regulator and observer gain, respectively. For the -
\ . rest of this paper. we assume that B, C, K, K., M, and N are of Since M is column-similar to K. there exists a matrix P such that
4% A full rank and (A, B, C) is minimal. If A4 = 0, then the closed- M = K, P. Then, H(s) can be written as H(s) = H,(s)H(s)
1 loop poles are determined by A — BK.and A — K,C. The choice where
& of K. only affects the regulator part while K affects only the R
: _ observer part. If A4 # 0 (i.e.. A # A), then the perturbed Hi(s) :=CsI-A) 'K,
o x closed-loop poles are no longer determinedby A — BK.and A — ~
. PR K,C. However, the following theorem shows that the coupling H(s) :=1+PLN(sI- A+ BK.)"'K,.
o between the regulator and the filter can be eliminated asymptoti-
B cally. Consider H.(s) first. Since
\ P‘ Theorem 2: Consider the above FSRO system with a parameter
M) A variation A4 = —MLN. Suppose that det [H (s)) =det [/+PLN(sI- A +Bl\’c)"l\’/]
oA Kr=vK+ Kp(y) =det (/+(s/- A+ BK,)"'K,PLN}
:. " where K, is a finite matrix and (1/9)K/,(y) = 0 as y —~ o. =det (s/-A+BK.)"" det (s/~ A+ BK.+K,PLN)
:.l' w Suppose that M is column-similar to K. Then,asy = : 1) A — i . ;
0 BK. determines half of the closed-loop poles. 2) there are =det (s/-A+BK;)™' det (s/ - A+ BK,),
::.' asymptotic poles approaching the zeros of (4, K, C); and 3) . . . .
SN these asymptiotic poles are asymptotically insensitive to the the zeros of H.(s) are the eigenvalues of A — BK.. This shows
. parameter variation A4 = —MLN. that all the nominal regulator poles, which are determined by A —
‘;- Proof: Since BK., are perturbed to the eigenvaluesof A — BK, = A — MLN
S — BK.. This proves part 1). For the observer part, Lemma 1
I LY _ 0 implies that the zeros of H,(s) = C(s] — A) 'K, are the zeros of
¢. - A= A BK, ] _ ylC C]. C(sl - A) 'K, since M is input-similar for the system (A, K,
NS < 0 A-BK, g +_1_ Kna(y) C). Thus, the asymptotically finite poles of the observer part of
¥y AL the perturbed system go to the zeros of C(s/ — A)~'K;, which
’ l completes the proof of part 2). Finally, using the same arguments
ey N - . } as used in Theorem 1, we can easily show that part 3) is true.(J
: Lemmahzl}’,mphes thz}t. as vy oo, the finite closed-loop poles The following properties are direct from Thpcorem 2; 1) the
PO approach the zeros 0 asymptotic pole locations are determined by the dominant part of
Y- af pa
o) e . » 0 the observer gain, K,; and 2) the regulator poles are perturbed in
b H(s) :=[C C] sI-A - BK. the same way as a state-feedback system A — BK. is perturbed by
0 slI- A+ BK; 4 +1K ) AA when AA is column-similar to K,. Since the asymptotic
~y fo observer poles are insensitive to AA in this case, we may suspect
4 & Let that the robustness of the FSRO controller is determined by its
WS regulator part. This is true, but we have not considered the
r A= [A BK, ] Co:=(C C] sensitivities of asympt(')ti‘c jnﬁni!c poles yet. This robustness
) 0 0 A-BK.|' ™ . property becomes explicit in Theorem 3 to follow. We first
.~:’ 4 consider the next lemma for its proof.
N Lemma 3: Suppose that A, B, C are matrices such that 4 + B
i 0 o 0 + Cis invertible. Then,
¥, 1 By:= , B =[I€]'Bz—
::: ‘ #. I\’/+;K,,,(7) / ;I\’/o(v) A+B(A+B+C) 'C=(A+C)A+B+C) (A +B).
:.’: o7 Proof: Let D = (A + B + C)', then
0
ek % Define A+BDC=ADD '+BDC
+ N1
: - - =ADA + ADB+ ADC + BDC.
. ' Po(s):=[SI CA° %”] , Pl(s):=["’ o ’f)'] . ‘
X 0 Using (A + B+ C)DC = Cand CD(A + B + C) = C, we
..Q

LA

p(;)-—[o B:] obtain
27 lo oo |

e ag e o A/
_ ~ A L n 2 ; By
S N u.".g*a“"“{“ |“».t§’ﬂ ’.\“u".l‘*o’,‘t’. o‘i“o%\‘ﬂt‘t i *‘. ).‘?-""'-"P! ) e'_‘,‘.?'&..'w' s

ADC -+ BDC=CDA+ CDB.

. . 1 (]
) O OO L
‘l_l“!"‘!q:u."."t.!.‘ '?'q ‘.'-“‘»“,'r.- VOO Wb
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Therefore,

ADA+ ADB+ADC+BDC=ADA + ADB+ CDA + CDB

=(A+C)D(A + B). O

Theorem 3: Consider the robustness function Ga(s) of the

asymptotic FSRO control system of Theorem 2. Suppose that the

nominal closed-loop is stable and C(s/ — A)~ 'K, has no zeros in
the CRHP. Then. as y = oo,

Ga:(jw)*N(jwl - A+ BK.)"'M
pointwise for all w € 7.
Proof: For an FSRO compensator, K(s) is given as
K(s)=K.(sI-A+BK.+K,C)'K,.
Thus, the robustness function G;:(s) becomes

G(s)=NoM-NO6BK(I+ GK) 'CoM
=N(sI-A+BK.(sI-A+BK.+K,C)~'K,C)"'M
=N(sI-A+BK.)"\(sI-A+BK .+ K;C)

- (sI-A+K,C)'M
=N(sI-A+BK,)"'M+N(sI-A+BK.)) 'BK,

- (sI-A+K,C)"'M

where Lemma 3 is used in the third equality. and all the inverses
exist along the nmamnary axis since the closed-loop is stable. Now
M = K, P since M is column-similar to K. Let K, = (1/7)K;.
From K, -y)s/ + Ky(y), we obtain M K/P - 1/
Y)Kp(v)P. Then,

K(sI-A+K,C)"'M

" 5 I
=K 1¢- 7K (I1+yCoK,)~'Co) (K/P—; K/a(v)P>
=K.0K,/[I-v(I+YCoK;) 'CoK/|P

- - 1
~Kelo - ovR/(I+7CoR)™'Co) ~ Knn)P

- > 1
= c¢K/(1+ ‘ch)K/)_ IP"; ch)K/a('Y)P
+ KR (1+vC6K;) 'CodKpo(y) P
where ¢ = (sf — A)~'. For the time being, suppose that 4 has no
eigenvalues on the imaginary axis. Since CéK, has no CRHP

zeros, g(CoK,) > 0 along the imaginary axis. Using the singular
value inequality used in the proof of Theorem 2, we can show that

lim ¢(C¢Ky)=g(CoKy).
7—~m
Again,
a(yCoK)) - 1<s0(I+yCoK,)<o(yCoK,) +1.

Thus, o(/ + yCoK;) — o as y = o since g(yCoK,) =
vg(C®K;) — o asy — o. Then, as y — o,

G(1+yCoKy) ' =g (I +yCoK,)—0.
Also,

G{(1+yCdK;) 'COR o (Y) < 6(1+vyCBK,) '6(COK ()

s 1
~q" l(CéA!)U‘ <C¢ ; A’/,,(‘Y))“’O

OAOB0RCE . ¥
At AL .‘.“l’k'ﬁ l,-«

1 \', & »' i' ¥ D N LOURI

as v — oo, Therefore, we see that

K.(jul~A+K,C) 'M—0 as y— o

and
lim Gy(jw)=N(juwl-A+BK)'M
Yo

for all w € §1. Finally, we need to consider the case for which 4
has some eigenvalues on the imaginary axis so that ¢ = (s/ -
A)~!is not defined for w € #. However, this difficulty can be
avoided as follows. Let A° = A + K,C be a matrix without
eigenvalues on the imaginary axis. Since (A, C) is assumed to be
observable, there always exist such a K,. Then,

sSI~-A+K,C=sI-A'+(K;+K,)C=sl-A’ +I\’,’C

where K/ = = vk + Kpo(y) + K, = vR, + K, (y). Then, we
can apply the same procedure as above a
The robustness function Gj;( jw) given in Section II-C deter-
mines the robustness of the FSRO control system. However, N(s/
— A + BK_.)"'M is indeed the robustness function of a state-
feedback regulator subject to AA. (It can be shown easily by
constructing a TITO system for the state-feedback regulator.)
Therefore, Theorem 3 implies that a regulator with an asymptotic
full-order estimator recovers the rcbustness of a regulator with
full-state feedback. Furthermore, we see that the sensitivities of
asymptotic infinite poles of the observer part do not contribute to
the robustness. Although they may be sensitive to AA, these
infinite poles cannot be perturbed to the CRHP by AA4. An exact
dual of the above asymptotic property exists as the regulalor gain
K. instead of K, becomes infinitely large (i.e., K. = 8K, where 8
-+ oo, and K. is chosen as N = QK where Q is a finite matrix).
pr > [and M is full rank, we cannot find a K, such that M =
K P. Similarly, if ¢ > m and N is full rank, there does not exist
K such that N = QK. Therefore, the above asymptotic property
cannot be obtained if p > fand ¢ > m, i.e., the rank of the input
matrix B and the output matrix C, which are assumed to be full
rank, limit the rank of M and N in applying the asymptotic, partial
desensitization procedure described above.

In Theorem 3, the conditions seem to be redundant since we
only use the fact that A — BK.and A ~ K,C do not have pure
imaginary eigenvalues and C (sl - A)~'K,is not singular along
the imaginary axis. However, the closed- loop system should be
stable for any robustness issue to be meaningful Also, C(sI -
A)” 'K, should not have CRHP zeros since those zeros determine
the asymptotic closed-loop poles. In the next section, the
asymptotic observer with closed-loop stability can be obtained via
a Kalman-Bucy filter (KBF) design.

D. Asymptotic LQG Design Synthesis

Consider a KBF problem stated as

x=Ax+Bu+R¢
y=Cx+wy

£= A%+ Bu+ K, (y—Cx)
with a cost

1 T
J=lim 2 E So (- $)T(x-£) dt

where ¢ and 7 are unit-strength Gaussian noises of appropriate
dimensions. Under the assumption that (.4, R) is stabilizable and
(A, C) is detectable, the optimal filter gain K is obtained as

| -

K==cCT

v

A - "
EOLOUOC O b M) LR TSy
et "‘!4!1.‘7"?‘,'&.‘ ‘t‘v.'::n‘l‘,,'le.‘;f,‘s_.w.,'o'. AE.';.,':‘.'(‘JO._
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where A is the positive detinite solution to a Riceati equation

SAT+ AN T« RRT— L
=

TCTCL=0.

Theorem 4: If there exists a full rank R € 717 such that M is
column-similar to R, (A, R) 1s stabilizable, and C(s/ - A) 'R

has no CRHP zero, then. as v — 0, the asymptotic propertics of

Theorem 3 are obtained.

Proof: Asv = 0. K, = (1/v)RW where W is a nonsingular
matrix. if (A, R) is stabilizable, (A, C) is detectable, and C(s1 -
A) 'R is minimum phase. The proofs of these properties are
given in [3], [9]. [15] and not repeated here. Lety = (1/v). Then
we see that the asymptotic gain assumes the form K, as Ky =
YRW + K, where (1/9)R;, = Oas y = o. Let K, = RW.
Then, if M is column-similar to R. there exists a matrix P such
that M = RPand M = RP = 1\’/ W -'P. Theretore, M is also
column-similar to A,. Finally. the closed-loop stability is automat-
ically satisfied by a LQG design. O

Suppose that s = g, is a zero of (A, M, C). Then the system

matrix
I-A M
o[22 ]

is rank deficient, and there exist vectors p; € jt"*! and p, €
£17*! such that
(ol—A)p+Mp:=0,  Cp;=0.
Since span {M} C span {R}, we can find a vector p; € §'*!
such that
(@o/-A)p +Rpy=0,  Cp,=0.
This implies that the zeros of (4, M, C) are also the zeros of (A4,
R, C). Inother words, C(sI — A)"'R is minimum-phase only if
C(sI = A)~'M is minimum-phase. Therefore. we can apply the
asymptotic LQG synthesis only for minimum-phase C(s/ -
A) M.

The dual of Theorem 4 is obtained by considering a LQR
problem but is not treated here. The importance of Theorem 4 is
that there exists a direct structural relationship between the
parameter variation and the optimal LQG weighting matrices for
robustness (M and R for the above asymptotic procedure). As far
as an observer design is concerned, these results can be
interpreted as follows: 1) given M. which gives partial informa-
tion on the structure of A4, we can choose yRRT as the
covariance of the process noise (a natural choiceis R = Mifp =
1); and 2) as v — o, the stability robustness is determined
through the regulator gain K, (Theorem 3) while the nominal
observer poles become insensitive to AA. Although the robust-
ness of the LQ part depends on the regulator gain K, and AA, a
gencral theory is not available for finite regulator gains. However,
it 1s possible to apply the asymptotic procedures to the regulator
and observer part at the same time. Using a similar method to the
one used in Theorem 3, we can prove that absolute robustness
(i.e.. Gy, = 0) is obtained asymptotically if M and N are used for
the observer and regulator design, respectively. Finally, we can
show that the nonuniqueness of the I/O decomposition is
irrelevant to the asymptotic LQG design. For example, if MLN is
an /O decomposition of A4 sois MT, T 'LT ' T, N. Then, we
see that an R sausfving the conditions of Theorem 4 for A also
satisfies them for MT,.

E. Remarks on the LQG/LTR Method

This section shows that LQR/LTR is a special case of the
asymptotic weighting strategy discussed in the previous section.
Two tvpes of LQG/LTR procedures. which are dual to cach other.
have been studied in various works [1]-|4]. One is sensitvity

799

recovery where the loop transter tunction of the KBF is recovered
at the output by an asymptote regulation of the output v = Cx.
The other is robustness recovery where the loop transter function
of LQR is recovered at input by an observer design based on an
asymptotic KBF with a white notse injected at the input (ie., R =
B). Note that obscrver insensitivity  to - parameter variatons
requires that M be column-similar to R. Theretore. in the LQG/
LTR method. the asymptotic finite poles are guaranteed to be
insensitive only to either input-similar or output-similar parameter
variations.  For example. the robustness recovery procedure
makes the observer pan insensitive to mput-similar vanatons,
and the stability robustness to such variations is selely determined
by the regulator part. Thus. the LOQG/LTR procedure works well
if the structure of parameter variation is related to the structure of
the input matrix B or the output matrix C, i.e.. AA is similar for
the (A, B, C). However, if A = —MLN is neither input-
similar nor output-similar. all the closed-loop poles are perturbed
when the LQG/LTR procedure 1s used., and there is no guaranteed
stability robustness to the parameter variation in spue of the
guaranteed stability margins. It is noted that the matching
condition of the Lyapunov-function methods [23], [25] requires
that parameter variations be similar. This observation may tmply
that robust stabilization with similar parameter variations is less
complicated than with other types of parameter variations.
The relationship between the error models of Section 11-A and
similar parameter variations is now discussed. For an input-
similar variation (M = BP)

gu=8n—8rL(I+gnl) gy,
=CoéB—-CoBPL(I+N6BPL)"'\N¢B
=gu(/+PLNoB)- .

The perturbed plant is expressed as a multiplication of the plant
and a transter function placed at the input, which is similar to the
conventional uncertainty model E.,(s) discussed in Section II-A.
Similarly, an output-similar parameter variation has a structural
similarity to a conventional uncertainty model placed at the
output. It is noted that these multiplicative forms cannot be
obtained if AA is not similar. We consider the robustness function
Gy, associated with the input-similar parameter variations to
examine the implications of this structural similarity. Suppose that

M is input-similar. Then there exists a matrix P such that M =
BP, and

Gy =NoM—NGBK(I+CoBK)"'CoM

=N¢BP-N¢BK(I+CoBKR) 'CoBP
=NoéB(I+KG) 'P

where G = C¢B. Since P and NoéB are arbitrary for general
input-similar variations, the robustness to input-similar variations
i optimized by minimizing 6[(/ + KG)-']. or equivalenty
maximizing g[(/ + KG)]. Also, the robustness to output-similar
parameter variations can be improved by increasing o[(/ + KG)).
These singular values are, in fact, the robustness measures used in
the conventional singular-value methods [10], [11]. From this
observation, we can conclude that the robustness to the uncer-
tainty modeled at the input (at the output, respectively) is
equivalent to the robustness of the class of input-similar (output-
similar, respectively) variations. The close relationship between
similar parameter variations and conventional multiplicative
uncertainties also shows the limitation of the existing multiplica-
tive uncertainty models in modeling parameter variations that only
simitlar variations are properly represented by these models.
Theretore, the LQG/LTR methods based on these uncentainty
models may tail when applied to a general parameter varistion
problem.

NOADA AJCARTLIH
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o IV. NUMERICAL EXAMPLES N
o 2o
1:‘.:s' R We consider the example presented in |18). The plant is given 4 27050 '\ 5.0
ol e by ® £=0.00 \
o'z SRV = 1
vy -1 0 0 1 + ¢ =0.50
Moy 4
A% A=10 =2 0 B=1 -2 o ——o——of
s ‘ 0 0 -3 I . 15.0 10.0 -5 0.0
1y C=(333] AC=[c 00). We n=0.00 u /
':: S , . w,=100.00 -s.0
o The transfer functions of the nominal system and perturbed e
i .? system are given as /‘
f:h' - 6 6+ ¢(s+2)1s+3)
) G(S) =, G(S) =‘:’-——— . F'g- 2. Root loci of the robustness recovery procedure.
'l;_. ﬁ (S+1I)s+2)s+3) (s+1)s+2)s+3)
‘l'" : respectively. It is noted that an arbitrarily small parameter £=-0.50
", a&. variation creates a pair of zeros at inﬁnily. For e > 0. these zeros e (=0.00 5.0
R o are located at s = * oo along the real axis. If e < 0. then we have 0.50
af&.v‘ \% two complex zeros at s = —2.5 % joo. Although these zeros + =0
tt IR affect very little the low-frequency characteristics of the plant, the
plant becomes very uncertain in the high frequency range since TN 5 i ﬁ
e they introduce large gain and phase variations. ’ ’ 0. -5 . 0.0
"l, t.r By using the state augmentation procedure described in Section
s - I1-C we obtain the augmented system such that Wi n=10.00
'.:::. . 210 o0 o ' 0 w.,=100.00 5.0
:::!'. "\ /i,= 0 -2 0 0 B,= 2 C;= 0
it = 0 0 -3 0 1 0
%. 3+¢ 3 3 -7 0 T Fig. 3. Root loci of the LQG design using B and Af.
NI
i RN A £2-0.50
;Q ot 8 _Ol ® =0 (;0 1>
3 — T_ £=0.
WOR M=lo| ¥ 0 + £=0.50 °
! 1 0
. ﬁ -20.0  -15.0  -10:0 5% *** o0
:;,'Q:; where 7 = 1000 for computation. For the LQ part, the cost is .
A":’l" o given by w,,=100.0
':':' n 1 o7 Wy =0.00 T 50
:o":s 'b J=lim = j ZTz+0%uTu) dt e
';":"‘ T-o T 0
")‘ where the weightings are chosenas z = y = Cxand p = 0.1. Fig. 4. Root loci of th i . _
el This produces three nominal regulator poles s = —4.52and s = 8. 4. Root foci of the asymptotic LQG design using 1.
R % - -+ ele 3 o1V
";.: - 2.26 + ;2.87. For the filter part, the weighting matrix is given zeros of C,(sI — A,)~'M., and. by Theorem 2. are insensitive to
l:.a: R AA, as wy, = o,
:‘.\. ;:* Oy=w? MMT+w2.B,BT. Note that the regulator poles are also insensitive in Fig. 4. By a
‘,.::‘( Al Jm fa direct evaluation of K'(s) we can show that K(s) — 0 as Wi = 0.
AN if wi, = 0and wy — oo, then we have a robustness recovery This implies that the optimal robustness for this example is
procedure, which is one of the LQG/LTR procedures. The obtained without feedback rather than using high feedback gain. It
.e';‘o. 3.'. weighting wp, = 0 and w,,, — o corresponds to the asymptotic  is because the output matrix C of the original problem is assumed
4 A LQG based on the structure of the parameter variation. oo pe gotally uncertain (i.e., only M is used for the filter-part
-.:," Figs. 2-4 show how the sensitivity of the LQG system is weighting) whllc any variation of C does not perturb the poles of
.',:. . reduced by using the structure of the parameter variation in the plant. This result is valid, if trivial, as far as robustness is
‘:I". '.:J' selecting the weighting matrix of the filter Riccati equation. The concerned. The matrix N can be used for the asymptotic regulator
_j.’b'o. Sﬁ far-left poles induced by the state augmentation are not shown in  without resulting in a trivial K(s) as shown in Fig. 5. In this case.
" these itgures. In Fig. 2 the root loci are plotted for the robustness  the use of N corresponds to the assumption that the first column of
o recovery procedure when [e] < 0.5. The filter poles a_rc(shown to (he' uu.gmemcd‘ A matrix 18 uncertain. The regulator state
‘:30" ?' be very sensitive as pointed out in {18]. The sensitivity of the weighting matrix now used is
i )': LQG/LTR procedure is due to the sensitivity of the filter because . .
"" B M is not similar to B,. Fig. 3 shows that these poles become less Q.=w, NTN+w! CIC,.
: o ' sensitive when wy,, increases from 0.0 to 10.0. The sensitivity is ’ ) ' ’
3 "’ ) ‘ considerably reduced by the addition of the weighting w2 AZMT 1f W = cand w,, = 0. then the LQG/LTR robustaess property
Al S8 associated with the parameter variation AA,. Fig. 4 also shows 15 obtained atthe system output. If w,. = 0 and w,, = o, then the
.| that the filter poles are completely insensitive when Af is used  regulator is made insensiuve to the parameter error in C.
«; instead of B, for the weighting matrix. In this example. the three B
‘,:a:. Q filter poles s = —1, -2, ~3 are the open-loop poles. These V. Conerusions
fe

poies correspond to stabilizable but uncontrollable modes of the
pair (A,, M) of the augmented system. They are the decoupling
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In this paper. the plamt uncertanties are divided into two
groups. unstructured uncertainties such as unmodeled dvnamics

. SR LRI AN v
AT T AT A T Aty Lo

L ¥R,




€y

=

4 S

Rl )

gt J

- .%ﬂ-’-:;
=% &

T
R =

E

-

el

£

TAHK AND SPEYFR MODE LING OF PARAME [FR VARIATIONS
a t=-5.0
® =0.00 5.0

+ =0.50 ‘.+

N

200 -15.0 <100 -5r** oo
w,.=100.00
We =0.00 1-5.0
w,=1.00
w(,=10.00

Fig. 5. Root loci of the asymptouc LQG design using N.

and structured uncertaintics such as parameter variations. These
two groups are compared to each other, and the inadequacy of the
current modehng methods tor parameter variations 1s discussed.
Based on the 1 O decomposition of parameter variations, a new
modeling method :s then introduced to solve this problem. An
asymptotic LQG procedure is proposed for desensitizing the
closed-loop poles when parameter variations are present. The
class of parameter variations to which an asymptotic LQG is
robust (or insensitive) is determined by the structure of the
weighting matrices. This implies that, if the structure of a
parameter variation is known, then the robustness can be
improved by this asymptotic LQG procedure. As shown in
Section [V the robustness of the overall system is not affected by
the filter part but determined by the controller part. which is
independent of the asymptotic filter gain K;. Therefore. for
parameter variations. the LQG synthesis for robustness reduces to
a synthesis problem of the nonasymptotic LQ controller (or the
Kalman-Bucy filter in the dual problem). It is then shown that the
LQG/LTR procedure is a special case of this asymptotic ap-
proach. In fact, the guaranteed stability margins of LQG/LTR
controllers are not meaningful for the general class of parameter
variations considered here but for the even smaller class of
variations such that the parameter structures are similar to the
input matrix or output matrix of the plant.
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