
324 CONTINUITY OF SYMMETRIC STF49LE P*OCF$jjS(U) NORTH 1#76-t" COLmiH UNIV AT CHAPEL HILL CENTER S SOCHASTIC
PROCESMs J1 P NOLAN SEP 0? TR-2 W ROS-TR-87-±95

7 tNCLMSSIlFIED F4962-S-C-S144 F/O 12/23 M

I flflflfl..mon



UV-i

111.0 W

6" 1111 18.2
~fJI!I.25 IIILlA 16

iL

L6LI

'p2

1.8

- -- - - - w 1.25

5% I .. 7"

lA' l*wj



F~C ILE COP"'
C4

* CENTER FOR STOCHASTIC PROCESSES

<L Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

AFOMR-IT*. 8 7 1 ~5~

LVX 0

0*

PI

By TI
John . Noan E - E

JAN~p 1 198

Techncal epor #20

COTNIT FSYptmerC STABL HRCSE

-DT§7tfBUn0N ~k~b04t

87I

ByI

JonPLolnA G



j-ffAfClaIFATION OF TH'IS PAG4- 19/ 3o'
REPORT DOCUMENTATION PAGE

a. RLPT SECU? TYLASSIFICATION b. RESTRICTIVE MARKINGS
Ui asslleSLS"t 

ATO

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved fora Dlmlio -!2O ease
distribUt ion unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORINQm,,CLbI ATION REPORT NUMBER(S)
Technical Report No. 200 MV'U50.7* O Py - I )

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of North Carolina AF aOSRc/NeM

AFOSR/NM

ADDRESS ( State,. and ZIP Code 7b. AD2R&SSMCif State, and ZIP Code)
Center ?6r Stochastic Processes
321-A Phillips Hall, CB #3260 Bldg 410

Chapel Hill, NC 27514 BoilingA.FBDC 20332-"44

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicablj F49620 85 C 0144.

AFOSR INM

8c.AA i , State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Blng 4 B 20 ELEMENT NO. NO. NO. ACCESSION NOBoiling AFB DC 20332-6"48610F24 - )

I10F2304 h'
11 TITLE (Include Security Classfication)

Continuity of symmetric stable processes

12. PSONAL AJJ~pOR(S)

13a. FPEOF.REtORT 13b. TIM gE 8  4. e eDATE OF REPORT (Yar, Month, Oay) 5. PAGE COUNT

lreprinL FROM ' TO 9/30/871 September 198 N4

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identiNy by block numb.r)

FIELD GROUP SUB-GROUP Stable processes, continuous paths, socastic integral

representations, metric entropy.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The path continuity of a symmetric p-stable process is examined in terms of any

stochastic integral representation for the process. When 0 < p < 1, we give necessary

and sufficient conditions for path continuity in terms of any (every) representation.

When 1 < p < 2, we extend the known sufficiency condition in terms of metric entropy

and offer a conjecture as to the complete solution. Finally, necessary and sufficient

conditions for path continuity are given in terms of continuity at a point for 0 < p < 2.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. f.gt RITY CLASSIFICATION

0UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. ICE SYMBOL
Maj. Brian Woodruff (t202) 767-502SrJI

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF -HIS PAGE
All other editions are obsolete.

., .. ,- " ,'-



0/ omI~

CONTINUITY OF SYMMETRIC STABLE PROCESSES

by

John P. Nolan
University of North Florida

and
Center for Stochastic Processes

University of North Carolina, Chapel Hill

Abstract: The path continuity of a symmetric p-stable process is :

examined in terms of any stochastic integral representa-

tion for the process. When 0 <p <1, we give necessary

and sufficient conditions for path continuity in terms

of any (every) representation. When 1 sp <2, we extend

the known sufficiency condition in terms of metric en- -

tropy and offer a conjecture as to the complete solution.

Finally, necessary and sufficient conditions for path

continuity are given in terms of continuity at a point for O<p<2, -
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1. Introduction

A real valued stochastic process X {X(t),t 6T} on an arbi- 0

trary index set T is called stable if every finite linear combina-

tion Ea X(tj) has a stable distribution, e.g. Feller [l,VI.1].

During the past two decades there has been a considerable amount S

of interest in stable processes, in part because they are a

natural generalization of Gaussian processes. Some of the stable

results are identical to the corresponding Gaussian ones, some are 0

quite different. In this paper we are concerned with the continu-

ity problem for stable processes: when does X have a version with

continuous paths. 0

In this paper, only real, symmetric, separable p-stable pro-

cesses, 0 <p <2, on a compact metric or pseudo-metric space (T,T)

are considered. Such processes always have a stochastic integral

representation [2]: .. k

(1.1) X(t) = ff(t,U)W m(du),

where (U,U,m) is some sigma-finite measure space, f:T xU -IR is

a function with the property that for each t ET, f(t,') LP (UU,m),

and W is the p-stable noise generated by m. Conversely, given 0m
any (U,(U,m) and any kernel f(t,u) with {f(t,'),t <T) cLP(U,'Um),

(1.1) defines a p-stable process X. It is a basic fact [2, p. 386]

that the joint characteristic function of X is given by

n n
(1.2) Eexp(i [ a.X(t.)) = exp(-1 j a f(t .") ! ).j x~ I j  j J LP~uUm "

-- L =U,. , "

", "V
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Therefore if g(t,u') is any other representation for X with
{g(t,.),t ETI a subset of some LP(u',U',m'),

n n
(1.3) H [ ajf(tj,')II = II j g(tj,')L~ L (U , U ,m )  j=l L (U l' , ',m')

Since such norms (quasi-norms when 0 <p <1) are independent

of the representation (1.1), we may use the expression

II~a X(t )1I for the terms in (1.3). Note that in the Gaussian
P 2 1case (p =2), IJZajX(tj)II 2 = -Var(a.X(t.)

Let X and Y be p-stable processes, 0 <p <2, and suppose e

II==ajX(t.) p c(n) lIZ =lajY(tj)H lp, i.e. the ratio of both

sides is bounded above and below by a finite, positive number

c(n) that depends only on n. At least for a large class of pro-

cesses, this last condition forces the paths of X and Y to have

the same legree of irregularity, e.g. [7, Section 43 and [8, Cor-

ollary 3.4]. In the Gaussian case, it also forces X and Y to

be mutually continuous or discontinuous, but when p<2 this is

not the case [7, (3.8)]. So the continuity problem is more subtle.-

when p <2 than in the Gaussian case.

Rosinski [9] has shown that the paths of X are related to

the paths f(.,u), u EU, of the kernel in (1.1). An apparent

difficulty with this is the non-uniqueness of representations.

Under the separability assumption, it is always possible to take

the unit interval with- Lebesgue measure as our base space, but

we have no idea what the kernel function is or how it relates to

other representations. Or, if we start with a particular kernel

and define X through (1.1), what can other representations look
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like? Theorem 5.1 of [9] shows that there is a lot of rigidity

in the possible representations. We combine this result with

earlier work of Marcus and Woyczynski [6] and Marcus and Pisier

[41, [5].

In Section 2 the continuity problem is solved when O<p<l.

Necessary and sufficient conditions are given foi continuity in

terms of any (every) representation (1.1) as part of a more

general result showing there is a trichotomy on what kind of

trajectories stable processes possess when O<p<l. Section 3

considers the cases when 1 s p < 2. We extend the sufficiency

results for continuity in terms of metric entropy and conditions
on any representation. A conjecture is made for the complete

solution, i.e. the correct stable analog of the Dudley-Fernique

Theorem for Gaussian processes. We end with necessary and

sufficient conditions for path continuity in terms of continuity

at a point in Section 4.

.
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2. Continuity and boundedness when 0 <p <1.

Let X be a p-stable process and consider some representation S

(1.1) of X with kernel f(t,u). We'll say f0 (t,u) is a version or

modification of f(t,u) if for all t ET, f0(t,') =f(t,') m-a.e. on

U. Then X0 = {X0(t) =fuf0(t,u)Wm(dU) is a version of X by (1.3).

Define two conditions on the kernel f(t,s):

(Cl) f has a version f0 such that for every u EU, f0 (
. ,u)

is in C(T).

(C2) f*(u) =sup If(t,u)l is in LP(u,U,m).
teT

(By suplf(t,u)l we shall mean sup If(t,u)I, where T c T is a
tET tET 0

countable separant for X that is dense in (T,T).)

In [10], we showed that if (Cl) holds, then It6 and Nisio's

[3] results on oscillation functions generalize to p-stable

processes. This gives detailed information about what kind of

paths such processes can have, but it does not give conditions

on when those paths are continuous or bounded, nor indicate what

happens when (CI) does not hold. .4.

The next theorem resolves these questions when 0 <p <1. One

surprising aspect of this is that there is no difference between

the stationary and nonstationary case, unlike the Gaussian situa-

tion. When 1 <-p <2, the situation is more complex and like the

Gaussian case, as we'll see in Section 3.

Theorem 1. Let X be a real, symmetric, separable p-stable pro- . -

cess, 0 <p <1, on a compact metric or pseudo-metric space (T,).

(i) X has a version with a.s. continuous sample paths if and

N%
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only if (Cl) and (C2) hold for some (every) representation (1.1).

(ii) X has a version with a.s. unbounded sample paths if and only

if (C2) fails to hold for some (every) representation (1.1).

(iii) X has a version with a.s. discontinuous, bounded sample

paths if and only if (Cl) fails to hold and (C2) does hold for

some (every) representation (1.1).

Proof: (i) Suppose (Cl) and (C2) hold for some representation

(1.1). Let f be a version of f guaranteed by (Cl) and set
0 0

N = {u U:f(tjij) f0 (tj1 u) for some t. cT 0 }

U {u EU:f(t j) f 0(ti U)}.j=l'

This is a m-null set since f is a version of f. Thus for u /N,
0

f*(u) = suplf 0 (tj'u)I =  suplf(t j 'u)I = f*(u).

Hence (C2) implies f* ELP(UUm) also. Since f0 
( ,u) is in C(T),

0 0t~

this says '- .

Sf0(',u)IIC(T) f(u)ELP(u,U,m). S

Now by Marcus and Woyczynski [6], X0 = {IufO(t,u)W(du); has a.s.

continuous paths.

Conversely, Theorem 5.1 of Rosinski [91 shows that X having

a continuous version implies (Cl) holds for every representation.

Furthermore, a corollary to Rosinski's theorem shows that a ver- -I

sion f of f satisfies (C2), i.e. f* Pu'm) The above argu-

ment shows f* =f* m-a.e., so (C2) holds for f also. ,V.
0 ,

%.
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(ii) By Theorem 6.2 of Samorodnitsky [11], (C2) is equivalent ,

to X having a version with bounded paths when 0 <p <1. Again

this result does not depend on the representation chosen.

(iii) Follows from (i) and (ii). -

The method of proving Theorem i Ci) applies to other Banach

spaces besides C(T). For example, let d be any pseudo-metric

on T that is continuous with respect to T, and define the possibly

infinite function on C(T) :

fI fI = sup f(s) -f(t)!
Lip(d) s,teT d(t,s)

I

Pick any t o T and let Lip(d) = {f EC(T):IIfli < } " This

is a Banach space with norm 9..

fH f f(t +0 + fILip(d). p

Rephrasing (Cl) and (C2) in terms of Lip(T) instead of C(T) gives

necessary and sufficient conditions for X to satisfy a Lipschitz

condition. •

Corollary 2. Let X be as in Theorem i. X has a version with

paths in Lip(T) a.s. if and only if for some (every) representa- t.

tion (1.1) 
"

(Lip(T) -1) f(t,u) has a version f (t,u) with f0 (.,u) ELip(T)
0

for every u,

and

(Lid(T) -2) H f0( ,u) i LP(U 'm) .

0.

, a- ' ""-- . h - " -" " % w 
" "

" " " "" " 4"-" " . ."• ; '...-'. .
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3. Continuity when 1 -p < 2.

We now consider the cases when I -p e-2. Let d be a metric

or pseudo-metric on T and let q be the dual index of p, i.e. e.

p +q i. The d-metric entropy is defined in the standard way:

for E > 0

(logN(d;E)) l/ q  2 <-q < co
Hlog +logN(d;E 

) q=

where N(d;c) =N(T,d;c) =minimum number of d-balls of radius E with

centers in T that cover T.

A particular pseudo-metric that is naturally associated with

a stable process X is

d (ts) (-log[Eexp(i(X(t) X(s))])

: jj f(t,) -f(s,') L
LP(U,U,m)

The last equality comes from (1.2) and shows that d and

H (d ;-) are independent of which representation (i.1) we are
q X'

considering.

Theorem 3. Let X= {X(t),t ET} be a real, symmetric, separable

p-stable process, I !5p <2 on a compact metric or pseudo-metric

space (T,r).

* (i) If X has a version with a.s. continuous paths, then (Cl)

and (C2) hold for every representation (1.1). Furthermore, when

p >1

lim Ell (dx ;) = 0
C0 qd
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(ii) Assume (Cl) and (C2) hold for some representation (1.1) of
00o

X and that foHq(dx;)ds <-. If fo is a version of f satisfying

(CI) and

(3.1) fil f0(" u) 11p. m(du) < '' Lip(d )

then X has a version with continuous sample paths.

Before proving Theorem 2, we would like to state the follow-

ing conjectures.

Conjecture I. Condition (3.1) can be dropped in Theorem 3 (ii),

i.e. (Cl), (C2) and fOHq(dx;a)dc <- imply X has continuous paths. -

Conjecture 2. Assume T is a locally compact abelian group and X

is stationary. X has a.s. continuous paths if and only if (C),

(C2) and f0 H (d ;E)dE <- for some (every) representation.
0 qX

Both conjectures are true for harmonizable processes (random

Fourier transforms) by [4], where (Cl) and (C2) are automatic.

Counterexamples showing foH (d ;c)dE <- is not sufficient for

continuity, e.g. Remark 1.7 [4], do not take (Cl) and (C2) into

1/2account. If X(t) is stationary sub-Gaussian, i.e. X(t) =Z Y(t)

where Z is a (p/2)-stable positive r.v. and Y(t) is stationary
0

Gaussian, then X is continuous when and only when Y is continuous, e

which occurs when and only when J0 H,
(dx;c ) dc <-, not

!OH (dx; q d <(. Initially, this seems to doom the above con-

jectures. However, Hardin [2] shows that one representation for

sug-Guassian processes is to use the paths of Y(t) as the kernel

in (1.1), i.e.
N

";..'.'-."'V .,'..'.,. '..",, ',, '.,'v .-:.'..'. "o.. "'V ,,'.'.",V .',,.' .." ,, ." ' '[,-.'-,;-- -" .'.."• -- - - - ". -. ',., ", .- ",'",

"] , %', '' . F " %"'', '
' " " ' ", ' "," § '\" *""" - ' 

-
" " "' ""
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X(t) = fY(t, W)Wpd).

For this representation, (Cl) requires that Y is a.s. continu-

ous, which is equivalent to the correct f0 H2 (dx;E)dE <-. So the

conjectures are plausible.

Proof of Theorem 3: (i) As in Theorem I (i), (Cl) and (C2)

hold for every representation. Theorem 2.6 of [41 shows

limEiH (d ;I) =0 when p >1.
EO q X

(ii) Let f0 be the version of the kernel f that satisfies (Cl) ,.

and (3.1). We will show that X0 (t) =fuf0 (t,u)Wm(du) has a con-

tinuous version. First we note that (Ci) and (C2) imply

d (t,s) -0 as T(t,s) -0. This is so because (Cl) impliesx
f0'(t,u) 0(s,u) as T(t,s) -0 for each u, and

,f0 (t,u) -f 0 (s,u) -u 2f*(u), so (C2) and a dominated convergence

argument show dx(tis) =(!ff(tu) -f(su)IPm(du)) I/ p  0 as
'p"

7(t,s) -0. Thus it suffices to show X is a.s. continuous with

respect to d . The remainder of the proof follows from Proposi-
x

tion 4, which also gives a modulus of continuity.

The next result is basically Theorem 3 (ii) with d replaced
x

by an arbitrary d. We are indebted to Professor Gennady

Samorodnitsky for pointing out that this generalization was im-

plicit in the original proof of Theorem 3.

We define a few more terms. For 2 -q O, 5 >0 and a pseudo-

metric d on T, the metric entropy integral on (0, ) is

J (d;') =0fH (d;,)d-:.

ciq

J% I
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The d-diameter of T is d= sup d(s,t). Define for v >0,
s,tE T

r V(lOg+log(i/v))1 / q  2 sq < o%

q ov(iog log log(l/v)) q L

For real random variables Y in the weak L spaces, we will use the

function A (Y) =sup(PP(lY >X))" / p .

p X>0
For the rest of this section, (T,d) will be the pseudo-metric

space of concern, not the original (T,T) we've dealt with so far.

In particular, C(T) stands for functions that are continuous with

respect to d; hence, (Cl) should be interpreted in this sense.

Proposition 4. Let X = {X(t),t ET} be a real, symmetric, separa-

ble p-stable process, I sp <2, on a compact metric or pseudo-

metric space (T,d). Assume (CI) and (C2) hold for some repre-

sentation (1.1), that J (d;) <- for some 5 >0 (p +q =1)
, q

and that for a version f0 of the kernel guaranteed by (CI),

K(p,d) ( ( I I f (" u)I p  (du))I/P <' Lip (d)m
UI

Then X has a version Y with a.s. continuous (with respect to d)

sample paths satisfying

.p( sup IY(S) -Y(t) ) - c(p)K(p,d) [Jq (d;6) +d q (6/4d)]
d(s,t)< '6
s,tET

for some constant c(p) depending only on p.

Proof: Let f be a version of the kernel f that satisfies our
0

hypothesis. We will define a normalized representation in terms

'"

I



of f Pick any h EC(T) with Ifhill C(T) -1 and define a new

kernel

h (f =ff0u) ,=0
10

h0 C otherwise,i 0 U ) CI ( T )

and a new measure

u(du) = 1! f0 (
',u) C(T)m(du).

Then Y(t) = uh(t,u)W (du) is a version of X because of (1.3).

The representation in terms of h is normalized in that it has

the following properties:

(3.2) h(',u) is continuous for every u.

(3.3) (U) = f" f0 (',u) (T.m(du) < by (C2).

(3.4) h*(u) = h(',u) C(T) 1, hence h* ELP(U,LI,b,) by (3.3).

_ P(3.5) 1 (d; ) <

(3.6) f h(',u) P ( du) <U Lip (d)'u(u

since for each u,

h(.,u) I Lip(d) = 0 ,u) Lip(d)/ f0(''u) C(T)

and ,(du) =>f C* U)P m(du). In fact, the integral (3.6) is
0'',C(T)

exactly K(p,d). Taking (3.2)-(3.5) together we can induce a

finite measure v on the boundary of the unit ball of C(T). A

technical point is to verify that , is indeed a measure on the
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correct sigma-field, i.e. the Borel sets on C(T). Since the

Borel sets on C(T) coincide with the cylindrical sigma-field on

C(T) (see the discussion at the beginning of Section 5 of [9)),

it suffices to show the measure makes sense on cylinders of the

form C = tg EC(T):(g(t1),...,g(t n)) EB n}, where B EBorel(IR n).

For such sets, (u EU:h(-,u) EC} = {u EU:(h(t,u),...,h(t ,u)) EB n }
n nl

is a U-measurable set since each h(t.,u) is measurable in u. '

Next we claim that we can assume v is symmetric. If it isn't

then look at its symmetrization v* =v*v. This is equivalent to

looking at the measure induced on C(T) by {h(.,u ) -h(.,u 2) EU xU}

with product measure xw. This corresponds to a representation

for Y* =Y _y1, where Y is an independent copy of Y. Since Y was

symmetric to start with, Y* 2Y and we may as well take v to be

svmmetric.

We now have a finite, symmetric measure v on the boundary of

the unit ball of C(T). Let M be the p-stable noise generated by
,_.-5

on CCT) and define

Z(t) =Cf x(t)M V(dx)
C(T)

as in the discussion preceeding Theorem 1.6 of [5]. This is a

version of X also. Condition (3.5) is unchanged and condition

(3.6) can be rephrased as

(3. 7) f I !x (dx) <Lip (d)'
C(T)

Now apply Theorem 1.6 of [5] to conclude that Z, and hence X, has
.,\'

a version with continuous paths. (Note that [5] left out the S

condition (3.7) in the statement of their theorem.) .

% %-
%,
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4. Path continuity and continuity at a point

A Gaussian process with continuous covariance is path continu-

ous if and only if it is continuous at each point. The stable

analog follows.

Theorem 5. Let X= {X(t),t ET}, be a p-stable metric or pseudo-

metric space (T,T) , 0 <p< 2. Then X is path continuous if and only if ,

(Cl) holds for some (every) representation and X is continuous -

at each point.

Proof: Necessity is straightforward using Theorems I and 3. 4

Sufficiency follows by assuming (Cl) for some representation.

Then the oscillation function [10] of X is nonrandom. It is zero
at a point t if and only if X is continuous at t. If X is

continuous at each t, then the nonrandom oscillation function is

identically zero and the process is path continuous. 7

In this result and in the oscillation function results of [10],

(Ci) plays the role that the continuous covariance condition

plays in the Gaussian case. Perhaps (Cl) is the correct general-

ization of continuous covariance, not simply that dx is continu- N'

ous. Recall from the proof of Theorem 3.2, (Cl) and (C2) implies

dx is continuous with respect to T.

.4-
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