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PREFACE

This report presents results of the development of an approximate method
to compute the spectrum of breaking waves in water of finite depth taking into
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by the Office, Chief of Engineers (OCE), US Army Corps of Engineers, under the
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Development, through 'Waves at Entrances' Work Unit 31673, at the Coastal
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ment Station (WES). Messrs. John H. Lockhart, Jr., and John G. Housley of OCE
were the Technical Monitors. Dr. Charles L. Vincent of CERC is the Program
Manager.

This report was prepared by Dr. Chi C. Tung of North Carolina State Uni-
versity, Raleigh, North Carolina, under TPA No. 86-22C and by Dr. Norden E.
Huang of the National Aeronautics and Space Administration Goddard Space
Flight Center, Greenbelt, Maryland, under Intra-Armv Order for Reimbursable
Services. The authors acknowledge and appreciate the review and comments pro-
vided bv the personnel of CERC.

The CERC contract monitor for this study was Dr. H. S. Chen, Coastal
Cceanographv Branch (CR-0), CERC, under direct supervision of Dr. Edward F.
Thempsorn, Chier, CR-0, and Mr. H. Lee Butler, Chief, Research Division; and
under general supervision of Mr. Charles C. Calhoun, Jr., and Dr. James R.
Houston, Assistant Chief and Chier, CERC, respectively. This report was
edited bhv Ms, Shirlev A. J. Hanshaw, Information Products Division, Informa-
tion Technologv laboratorw, WES,

Commander and Director of WES is COL Dwayne (. Lee, CF, and Technical
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BREAKING WAVE SPECTRUM IN WATER OF FINITE DEPTH IN THE

PRESENCE OF CURRENT

PART I: INTRODUCTION

1. There are many forms of wave energy spectrum. All of these spectra,
however, are for specific conditions. For example, the Pierson-Moskowitz
spectrum is for a fullyv developed sea, the Joint North Sea Wave Project
spectrum is for a fetch-limited developing sea, and the Wallops spectrum
(Huang et al, 1981) is derived based on wave dynamics but without considering
wave breaking.

2. When conditions differ from those for which these spectra are in-
tended or, as the waves move into regions where the conditions are changed,
thece spectra undergo corresponding changes. For example, as the steepness of
the wave increases, wave breaking occurs; the Wallops spectrum, which does not
consider wave breaking, must be modified. This problem was treated recentlv
bv Yuan, Tung, and Huang (1986) and by Tung and Huang (1987) for deepwater
waves,

3. As the waves propagate from deep to shallow water, wave breaking
takes place when they reach the surf zone. There have been a number of publi-
cations on the subject of wave breaking in shallow water such as those byv
Battjes and Janssen (1978) and Thornton and Guza (1983). These authors used
the energy flux balance equation including energy dissipation, and the results
are in good agreement with measurements. The equation, however, must he inte-
grated numerically, and the methods do not give the breaking wave spectrum
directlv,

4, Similarly, when a wave train encounters ar adverse current, wave
hreaking results. The method usually emploved to obtain the spectrum of the
waves interacting with current is to first resort -o the classical energv flux
balance equation without considering wave breaking (Huang et al. 1972 and
Hedges, Burrows, and Mason 197Y9). To account for %he effect of wave breaking
~n the wave spectrum, Hedges, Burrows, and Mason (1979) applied the equilib-
rium range spectrum to limit the spectral ordinates. The equilibrium range
spectrum, however, contains a numerical constant whose value is difficule to

specityv. Furthermore, the equilibrium range spectrum only applies to
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frequencies much higher than those corresponding to the peak of the spectrum
and therefore cannot be extended to cover the range of frequencies where most
of the wave energy resides,

S. In this study, we extend the method intrnduced earlier (Yuan, Tung,
and Huang 1986, Tung and Huang 1987) for a deepwater breaking wave spectrum to
waves in water of finite depth and apply the results to the situation where
the waves encounter a current. The method consists essentially of first
assuming that there exists an original ideal wave train at the locale under
consideration, the spectrum of which is obtained from the ecuation of energy
{1ux balance without considering wave breaking. By imposing the Miche wave
breaking criterion (Battjes 1974), an expression for the elevation of the
breaking waves is established in terms of the original ideal wave elevation
and its second derivative which are assumed to be jointly Gaussian. Based on
this breaking wave model, the expressions for the mean value, the mean-square
value, and the spectrum of the breaking waves are derived. These results are
then applied to the case in which a unidirectional deepwater wave train,
propagating normally toward a straight shoreline over a gently varving sea
bottom with straight and parallel ceontours, meets a steadv current whose tlow
velocity is uniformlyv distributed in the vertical direction. XNumerical
results are ohtained and given in graphical form. The simpler breaking wave
model for deepwater waves is first presented and modified for waves in water
of fYinite depth.

f. Tt is emphasized here that the studies carried ocut in this report
are based on heuristic wave breaking models and ¢implitied current and coast
configurations. A number of approximations are introduced in the derivations,
but the results have not vet been checked against either field or laboratory
experiments., It is clear that the models have vet to be modified and that
more detailed studies should be performed te examine the effect of utilizing

various spectral forms tfor the original ideal waves.

o~
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PART 1I: BREAKING WAVE MODELS
7. Stokes (1880) showed that in deep water, when the vertical downward
acceleration at the crest of the wave reaches a value of 0.5g* (g being gravi-
tational acceleration), the wave breaks and its amplitude is reduced according
to the ratio of 0.5g and the magnitude of the acceleration of the original

ideal wave at the crest. The following equation expresses this relationship:

a, = a O.gg _ O.ig ()
aw W

where
ay = amplitude of the breaking wave
a = amplitude of the ideal wave
. = frequencv of this ideal wave

8. Longuet-Higgins (196%) applied this criteriorn to a narrow-band wave

train in which the amplitude of the breaking wave is given bv

where

I~ the characteristic wave frequenct and S(.) is the energv spectrum of the
ideal waves.

4, To obtain the spectrum of the breaking waves, we assume +Phillips
19X that the wave breaks whenever the local vertical downward acceleration
At anv poirt on the surtace reaches a fraction of the gravitational accelera-
tien. Keterring to Figure [, let 7(t) and :h(t\ represent, respectively,
the elevations ot the ideal and breaking waves at a fixed point in space where

o For converd nee, ovrkols and abbreviations are listed iu the Notation
fAppend i~ i,
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Figure 1. Wave profile

t is time. Wave breaking may take place at points such as A and B where

“(tY = 0 . ({Here. and hereafter, overdot denotes differentiation with respect
to time.d At peints such as A where £(t) > 0 and when T(t) < —Kg (K e
chewn to range between 0.4 and 0.5 (Ochi and Tsai 1983)), the breaking waue

elevation is given by

—KR

r Yy = 7(t)
,h(t “(t) T
“(th

This ecxpression is a restatement of Equation @I or Equation 2y that is, when
the wave hreaks, the local wave elevation is reduced accoerding te the ratio of
Yy amd the magnitude of the leocal acceleration of the ideal wave.

10, At point B where  “1tY - 0 and when “{ct ¢ ~Kg , the breaking

wiaive elevation ¢ given bv

I1l. Based on the above considerations and noting that no wave breaking
takes piace when (t) » -Kg , in which case it' remains unchanged, ‘h&t
may be written as

Kg .. . v e ) o N o

r = - {- — - - N r + = 2 (-~ = y - . - o Co

H g - H{~7 Kg)H(7) - % H( K H(=-) + "H(" + Ky '
6



where H(+¢) 1is the Heaviside unit step ftunction and, for brevity, the argu-
ment t in Lb(t) , o(t) , and () dis omitted. TIn FEquation 6, the first
and the second terms correspeond to the points such as A and B in Figure 1 wher
wave breaking occurs, and the third term merelyv states that ¢ remains un-
changed as long as r£(t) > -Kg regardless of the point under consideration.

12, In Equation 6, the breaking wave elevation is a nonlinear

function of 7 and 7 , the elevation and its second derivative of the
original ideal waves which are assumed to be stationary and jointly Gaussian
with zero mean values. The determination of the mean value, mean-square
value, and the spectrum of :b may therefore be achieved in a straightforward
manner (Papoulis 1965).

13. In water of finite depth, for a single wave, the breaking wave

amplitude is (Battjes 1974°

_ tanh kd
a, 0.44d 3 {(7)

where d i< the local water depth and k 1is the wave number. The above mav
be expressed approximatelvy in terms of k , the wave number in deep water;
0

that is, using

ko = k tanh kd 8\
and
ko= k\]canh k d (9)
[a} O
we have

. ranh k d
a, = 0.44 ——— - (10)

The deepwater wave number is




where w is the wave frequencv which remains constant

depth an, is related to the local wave elevation =~ and the surface

acceleration 7  at the point under consideration bv

14, For random waves in water
mathematical convenience, we replace
the denominator bv k = ~7/tg but

- el

. C

Eo = f"/g , the characteristic wave

such as A in Figure 1, the breaking wave elevation

that shown in Equation 4 where

ro

t
I
IRICRN

independent

ater

of finite depth, for reasons purely of

a in Fquation 10 bv

b

b

and &

substitute the came in the numerator b

number in deep water,

"k

K = 0.44 tanh k d
Q

which reduces to K = 0,54 in deep water,

waves, we sce that the hreaking wave elevation in water of

AiR0 piven by Hquation n with F o replaced bv Equation 17,

this expressiorn we have igneorved the

nedat ive wave clevation manv exceed the water depth. Ve chose
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such pessibility and restrice the application ot the modeld
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PART T11: MFAN VALUL, MEAN-SQUARE VALUE, AND SPECTRUM OF ‘7“3
17. Although the original ideal waves are a zero mean process, f{rom
Equation 6 it is obvious that the elevation of the breaking wave is not. From

Equation 6 (with the second term deleted), it is not difficult to show that

8E £
- — 1 2 \} 2
r[:b] = vr o7 - 1 - €7 Z2(8)
(14)
5
+ BNL - ¢ L<B, 0, - 1 - 52 >
/2
where
El+«] = expected value of the quantity enclosed in brackets

8 = wave breaking parameter (defined in equation 19)
¢ = gspectral bandwidth parameter (defined in Equation 18)
Z(*) = probability function (defined in Fquation 20)

Let

r =[S(u)dm (15)
(1) —f‘N\ES(u)du; (16)

4 ffs(w)d,_‘ (17)

o
]

where St.)  is the spectrum of the original ideal waves. The quantity

]

e =1 - =i (18)
rr

lies between zero and unity and is known as the bandwidth parameter of S(w)

(Cartwright and lLonguet-Higgins 1956) and




-

0 - K8 (19)

is a measure of the extent of wave breaking as will be shown later. The

functions

1 x” o
Z(x) = exp |- ;—) (20)
fT" “
y . T
o ¢, - px
L(Cl' c.,, p) = J[‘Z(X)Q(w)dx y W= ———— (2
)
|~
CI p
where
L (e, ¢, «) = probahility function
Cy» €, = parameters
p = parameter
(' = probability functicon
ard

O(x) = />§i(y\dy (200

X

are probability functions (Abramowitz and Stegun 1968), and

-v
b, () = /— € dv 03D
! _ v

i« the exponential integral (Abramowitz and Stegun 1908), and v i« a Jdumnmy
variable, It is secen that the mean value of ab is a2 nonzero constaect which
depends on the value of water depth d through ¥ in . in Fquation 1Y and

the zeroth, secend, and fourth spectral moments of the ideal waves.

10




18. Similarly, it may be shown that the mean-square value of Zh is

(with the second term in Equation 6 deleted)

e[c2] = rlace) - (- eDazn e o o

£ -eh L(e,o, -yl - 52)+ 5 ey

wh.ere

N =_/( Z(§) ol- Y=t ylax (25)
X
8

19, To obtain the spectrum of Cb , we first form its autocorrelation
function. For convenience, let subscripts 1 and 2 refer to quantities
evaluated at time instants t, =t + 1 (where 1 1is time lag) and tz =t ,

1
respectively. Furthermore, let H = H(r) , H: H(z + Kg) , and

H" = H(-7 - Kg) . By anticipating that ¢, 1is stationary, the auto-
correlation function of Cb , denoted Rb(T) , is, from Equation 6 (with the

second term deleted)

L 22

2 1
(- L - ~E " "
Rb ) E[cblcbzl (Kg) ™ E}— “1_”3_H1Hg

(26)

%1ty
< H" H" H + EI'CIC Hll H" ]

-2Kg E
Ke E -2+ 271+ 24

>

“1

The expected values in Equation 26 involve the random variables Ly v Ly oo

T and =, which are jointly Gaussian with zero mean values. These
expected values mav all be obtained, although the task is tedious, In Ap-
pendix A, the last expected value of Equation 26 is evaluated to illustrate

the techniques emploved in obtaining these expected values.

I
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20. The resulting autocorrelation function is a nonlinear function of

(2)

the correlation functions rIZ(T) = El¢ ], r, (1) = E[Qlcz] , and

(4)

T, (1) = E[ZIE?] of the original wave elevation ¢ and its second

152

derivative [ evaluated at time instants t and t, . The autocorrelation

| 2
function Rb(T) , viewed as a function of the correlation coefficient
ed
functions rlz(t)/r , rfg)(r)/r(z) , and rfg)(r)/r(a) may be expanded by

Tayvlor's series (Borgman 1965). By retaining only the zeroth and the first-

order terms of the series, it may be verified that the zeroth order term is

equal to the square of the expected value E[gb] of Ty, The first-order
approximate autocovariance function

() = R_(1) - Bz, ] (27)

hb T) = b(T - Cb 27
. , . (2) (4)
is therefore a linear function of rlz(T) » T, (t) , and L (1) the

L

Fourier transforms of which are, respectively, S(w) , -w S(w) , and

wAS(m) . Thus, by taking the Fourier transform of Equation 27, we have the

approximate spectrum of the breaking wave simply related to S(u) as

Sb(w) = F({w) S(w) (28)
in which
2 2
F 2w 1 9
(w) = A1 = - (29)
!

is a fourth order polvnominal function of w and may be looked upon as a
filter function which accounts for the effects of wave breaking on the
spectrum S(w) of the ideal waves.

21. In Equation 29,

2 M .
1 Ay ] (D)
A = BN + Q(-8) > 0 (3N
12




and
B
- Vo2 % (E)
A, = BN - BZ(B)Q - . - + BZ(B) (32)
VZﬂ(l - 62)
where
- N 2
J ﬁ=fz(:)Q-——l—E:—€—-xdx (33)
B
i { 22. To examine the properties of the filter function F(w)
breaking wave spectrum Sb(w) » it is first noted that the value of , which
is the ratio of Kg and the standard deviation r(a) of the surface accel-

eration of the ideal waves, may be given a rough estimate. By referring to

Figure 1, let us assume that the acceleration in those portions of the sur-

tace, where ff; reaches or exceeds Kg , remains at the value of but
in the remaining portion of the surface the acceleration vanishes. The stan-
. NI . L —
dard deviation r( ) of 7 1is therefore equal to kgVAB/A , and
f 2 = I/VAB/A where AB and A are, respectivelv, the area of wave surface

stormyv situations, the ratio AB/A mav be as high as 1/4 giving
whereas in calmer situations, if the ratio AB/A is equal to 1/9,

approximately equal to 3.

variously the series representation and the asvmptotic behavior of

that A
the latter quantityv is in fact the characteristic wave frequency
Equation 3), it is seen that )
filter function F(w) 1is a monotonically decreasing function ~f

2
0« .« 1 decreasing from F(o) = AI to F(ml) = 0 . Bevond w

we

with 7' » Kg and the total area. The ratio AB/A is normally a small

23, Having established that + is larger than unitv, by employing

>> . in view of Equation 30. The

F(u.) increases indefinitely. The range of frequency of wind waves of

quantityv so that £ mav be expected to be larger than unity. For example, in

for

large values of its argument (Abramowitz and Stegun 1968), it may be verified

VLI /2
5 > 0 and AI/A” >> | . Since >r r - ‘ > )r r} and
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practical interest, however, is usually limited to within 0 < w < W (>> w)

as the numerical results to be presented later will show. The manner in which
F(w) varies with B , a measure of the sea state, may be seen by taking the

derivative of A1 with respect to B . It may be verified that A1 is a

monotonically increasing function of B8 , and A1 approaches unity as 8

approaches infinity which means that in mild seas 8 and w, are both rather

large so that F(w) =1 for 0 < < W) and Sb(w) = S{w) . No wave

breaking takes place, and the original ideal wave spectrum remains unchanged.
In high seas, on the other hand, A1 <1 and so is F(w) for 0 < w < “y
Thus, the original wave spectrum is reduced as a consequence of wave breaking,

as expected.

14
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PART IV: WAVE-CURRENT INTERACTIONS

24. Consider a unidirectional linear wave train entering a region of
current. Let the current be steady in time and the flow velocity [ , con-
sidered positive in the direction of the waves, be uniformly distributed in
the vertical direction. For each wave component, the apparent frequency W
in a stationary frame of reference, is related to the relative or incrinsic

frequency wr in the frame of reference moving with the current as

w = w + kU (34)
a r
where o and the wave number k are related as
2
woo= gk tanh kd (35)
25. Ignoring wave breaking and using the energy flux balance

(Huang et al. 1972) or the conservation of wave action (Hedges, Burrows, and
Mason 1979), it was shown that the wave spectrum S(wa) , under the influence

of current, is related to So(wq) , the spectrum in quiescent deep water, as

S(.) =82 Ts (L) (36)
a U+ ¢ @ o a
gr a
where
- 8 S
Cgo Y (37)
a
and
w
1 2kd r
= = + o ) —
Cgr IZQ sinh 2kd) k (38)

The subscript "o" {s used to refer to quantities evaluated in deep water in

zero current condition.
26. In the relative frame of reference, the wave spectrum §(Ar) mav
be obtained from S(ua) in Equation 36 by changing the frame of reference

(Hedges, Burrows, and Mason 1979) as




1.'&‘ eagugin

ey

- ~—— ——— Vg — —r

R dwa
S(mr) = S(wa) HB; (39)

27. The above is but a brief exposition of the basic equations for the
determination of the ideal wave spectra S(wa) and §(wr) for waves in water
of finite depth in the presence of current. Details of many of the considera-
tions and operations involved are well explained in Hedges, Burrows, and Mason
(1979). For example, the report gives an account of the solutions of Equa-
tions 34 and 35 given the values of wa , d , and U , discusses the cutoff
frequency of . (and ua) in a negative current (cgr = !U!), and shows a
numerical scheme bv which the transformation of the spectrum from the station-
arv to the relative frame of reference and vice versa may be achieved.

28. To account for wave breaking, the spectrum §(mr) given by Equa-
tion 39 mav be used as the original ideal wave spectrum in place of S(u)

2 )
r(‘) and r(A' from

in Equations 15, 16, and 17 for the calculation of r,
which the mean value E[Cb] and the mean-square value E &i] of the breaking
waves ( are obtained from Equations 14 and 24, respectively. Similarly,
the breaking wave spectrum in the relative frame of reference, denoted by

§b(wr) mav be obtained from Equation 28 with the ideal wave spectrum S(w)

replaced by S(.) in Equation 39, Finally, the breaking wave spectrum in
r Y

the stationary trame of reference is determined from
S, (w = 8 (w e
(=) (w )

(40)

bv changing the frame of reference.
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PART V: NUMERICAL RESULTS

29. The preceding development enables a consideration of the effect of
wave breaking on the mean value, the mean-square value, and the spectrum of a
unidirectional deepwater wave train that is free of current, propagating over
a gently varying sea bottom with straight and parallel contours normally
incident toward a straight shoreline, where it meets an adverse horizontal
variable current steady in time and uniformly distributed with depth. The
following computation, though not entirely realistic, treats the current speed
as a constant.

30. Let the deepwater wave spectrum be the Wallops spectrum

(Huang et al. 1981) which takes the form

2 w
- 98 _mr o
So(w) m S-m exp 4 < w> (41)

where

coefficient defined in Equation 44

[
1]

@y parameter of Wallops wave spectrum

The quantity m gives the magnitude of the slope of the spectrum (on log-log

scale) in high frequency range and is given by

log(2n2§2)

log 2 (42)

where

§ = (43)

-
2
A

0

is the significant slope of the waves, AO = ZH/EO berng the characteristic

wave length. The quantity ««~ is given by

17
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m-1
— 2
o = m 4 (2W§) (44)
s B2 r (m—-1)
4 4

where T(+) 1is the Gamma function (Abramowitz and Stegun 1968). The Wallops

spectrum, therefore, is seen to depend on two parameters, § and uo , the

frequency corresponding to the peak of the "single-peak" Wallops spectrum.
31. For current speed of U = -2m/sec , § = 0.015 (the value of §

rarely exceeding 0.025 in the field), and w, = 0.6 rad/sec , the quantities

2
eley) . E[o]
water depth d . The solutions are carried out in an iterative manner; that

J , §b(mr) , and Sb(wa) are computed for various values of

is, upon obtaining §b(ur) in Equation 28, it is treated as the original
ideal wave spectrum, and the solution process is repeated until convergence is
reached. Based on the final values of §h(¢r) , the quantities E[gb] ,

E ;E , and Sb(ma) are then determined. The results presented in the
following are obtained after four cycles of iteration. It should be mentioned
that the above iterative scheme, strictly speaking, is not valid since some of
the assumptions underlying the derivation of these quantities are viclated
because it was originallyv assumed that the ideal waves must be zero mean and
Gaussian. Our results show, however, that the mean value of Cb is insig-
nificantly small, and preliminary investigation indicates that the breaking

wave elevation Qb deviates but slightly from Gaussian.
32. In Figure 2, E[;b] is plotted as a function of kd for End
o
- -9
ranging between 3 ard 0.5 where ko = . /g 1is the characteristic deepwater

wave number, being given bv Fquation 3 with S{.) replaced bv So(h) .

. = - 172 =
the Wallops spectrum. If we denote by k = ko/tanh / kod according to
Fquation 8, these values of Ejd correspond to kd = 4.1 and I (or d =
(&

m m . . .
81.3 and 13.6). Tt is seen that FE[r is alwave negative, as expected,

bl
and indeed very small.

33, Figure 2 also gives the standard deviaticon VT (see Fquation 15)

— 2 2 _
of the elevation of the ideal waves and Vrb = \[?yﬁ;}- E[r, ] that of the

b b
breaking waves. While Ty decreases monotonically from deep to shallow
water, »r first decreases slightlv. Bevond k Jn= 0.6 shoreward, however,

it begins to rise because of sheoaling. Owing to the relativelv small value of

18
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Figure 2. Mean value E[g ] of breaking waves, standard deviations s

b
of ideal waves, and ¢?; of breaking waves plotted against kod for

§ = 0.015 , v, = 0.6 rad/sec, and U = -2 m/sec

§ and the strong negative current speed used, wave breaking is seen to occur

evervwhere but more so in shallower than in deeper water,

34. For kd=23,2, 1 and 0.5, the spectra S (. ) , S(. ) , and
o o r r

il

h('r) are in Figures 3, 5, 7, and 9, respectivelv, and those in the

stationarv frame of reference S (w ) , S{w ) , and S _(u_ ) are giver in
: o a a b a

Figures 4, 6, 8, and 10, respectivelv. An adverse current teeds energv inte
the wave svstem so that the ideal wave spectra alwavs exceed these in deep
witer where there is no current. Wave breaking, however, dissipates wave
energv, and the breaking wave spectra are seen to fall helow Sn(') . Close
examination of these spectra alsc shows that this pattera of variatjon with
wiater depth is consistent with that of the standard deviations <hown in
Figure 2.

35, As mentioned earlier, the quantitv gives an indication ot the
extent of wave breaking and is expected to he larper thar nrity, with the
larger values corresponding to milder sea state. 1t was al=o shown that the

quantitv w, , the cutotf frequencv of the breaking wave spectrum piven ir

1
Equation 30, is expected to be much larger than . , the characteri~tic wave
frequencv. It is, therefore, of interest to examine the variation ot theew

two quantities as the waves move toward the shore, In Fivure 1l the

1o
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Figure 3., Deepwater wave spectrum So(wr) , ideal
wave spectrum S(mr) , and breaking wave spectrum
Sb(wr) in relative frame of reference for kod
=3,0, § =20.015, w = 0.6 rad/sec, and

U = -2 m/sec

Figure 4. Deepwater wave spectrum
So(ma) , ideal wave spectrum S(ma) s

and breaking wave spectrum Sb(“R)
in stationary frame of reference for
E0d= 3.0, § =0.015 , «

o
= 0.6 rad/sec, and U = -2 m/sec
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Figure 5. Deepwater wave spectrum So(Ar) , ideal

wa.e spectrum S(ur) , and breaking wave spectrum

) in relative frame of reference tor kod

il
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Figure A, Deepwater wave spectrum

S (w ) , ideal wave spectrum S(. @ ,
o "a a

and breaking wave spectrum Sb(A?)

in stationary frame of reference for

kd=2.0, §=0.015, .
O

0
= 0.0h rad/sec, and U = =2 m/sec




Figure 7.

Deepwater wave spectrum So&” ),
r

wave spectrum  S{u ) , and breaking wave spectrum
r
Ql(‘rj in relative frame of reference for Lk d
3 4l
= 1.0, §=0,015, w = 0.6 rad/sec, and
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Figure 1. Wave breaking parameter £ and cutoff frequency Wy of breaking
wave spectrum plotted against Eod for § = 0.015 , woo= 0.6 rad/sec , and

U = -2 m/sec

quantities R and w, are plotted against Eod . The value of £ decreases

from 1.8 in deep water teo about 1.4 at Eod = 0.5 and that of wy from
6.0 to 4.0 rad/sec.

36. Although our primaryv objective in this study is to devise a method
for the calculation of the breaking wave spectrum under the influence of an
adverse current, the method, as is obvious, may be applied te the special case
in which there is no current. The results presented in the fellowing are for
r=0, §=0.015, and <o T 0.6 rad/sec for Eod = 3 to 0.5 correspeonding
to kd = 3 to 0.74 .,

— —_ , - . -
37. 1In Figure 12, E[gb] , ¥Yr , and ~r are given as functions of

b
knd . As expected, E[g}] is alwavs negative and even smaller than when
, A
U= -2 m/sec in Figure 2. Because of the small value of signiticant slope
§ = 0.015 used, the two curves vr and Vrb are practically indistin-

O

puishable until k d < 1.5 <Ed < 1.6, d < 41.7m> when wave breaking becomes

noticeable and thev begin to diverge from each other.
18. The variation of the quantities £ and ) with kod Is shown in
Figure 13. The value of £ changes from 2.9 to 1.9, and that of - from

20 rad/sec to 3 rad/sec as Eod goes from 3 to 0.5. Comparison of Figure 13
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with Figure 11 for the case of U = -2 m/sec shows that the quantities F
and Wy undergo more variation in the present case of U =10 than in the case
U' = -2 m/sec because in the latter case the current dominates the [low field

so that wave breaking is uniformly present regardless of the locale under
consideration.

39, The spectra of the deepwater waves So(m) , the local ideal waves
S(w) , and the breaking waves Sb(w) will not be shown; but the peak values

(in square metres per second) are recorded in the following tabulation:

k_d S, (w) S () Sy ()

3 2.3 22.0 21.7

2 22.3 21.1 20.8

1 22.3 19.5 18.3

0.5 22.3 20.7 15.0
- — . -
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PART VI: CONCLUSTON

40. We have given in this report a method to compute wave spectra iIn
water of finite depth taking into account the effect of wave breaking and con-
sidering the presence of current. The breaking wave spectrum is simply
related to that of the original ideal waves. The method, however, is approxi-
mate because the following is assumed: (a) there exists an ideal original
wave train which is linear and Gaussian; (b) the wave breaking model is
heuristic, and some approximations have been introduced; and (c) the higher
order terms in the expression of the breaking wave spectrum are ignored. As
such, the model should onlv be applied te the energv containing part of the
spectrum and must not be used for points too close to the shore where all the

assumptions underlving this model will be violated.
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APPENDIX A DERIVATION OF F[ | 2H1+H2+]

1. Tec cbtain E[:lquY+Hg+] , the concept of conditional probability

and conditional expectation to reduce the number of random variables is used,

thus (Papnulis 1965),%*

“ (- - 1l LI T " " NN [ r
RETERUIPLI E{let}{?Jrh[’lj'[’l ’ zﬂ (AD)
where
J’ . . - ‘
s op ; = -y . s - dr ")
E[w%zl’“l’ _] f] RACOESIE I s dnydry (A
b . _
is the conditional expected value of ilﬁ‘ given o and -, , and
f | o (4,20,) = !
R LI RET R 2\
S G 172
(1\““\
Nt 2
1 ! 2T . LT\ T W
exp (- 5 * -2

is the joeintly Gaussian conditional prebability density function of 3 and
T, wiven ;I and 1, , where
Cl“ = conditional covariance coetficient function of '1 and 7,
1’ ol
. *, = conditional variance functions of Cl and 7,
My ks T conditional mean value functions of g and 7

]
ta

The tive parameters, o S s B p] , and ., , may all bhe

l 7

determined using the linear mean-square estimation technique (Papoulis 1965);

that i«

e

- ——y e - —— -

* References cited in the Appeadix can be found in the References at the end
nf the main text.
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on the condition
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3. In the above, r = rw_,(o) , T L (o), and r
are given in terms of S(.) as indicated in kquations 1%, 16, and
(2
tively. The argument 1 (the time lag in rl"('\ R rl‘ v, and
i« omitted for brevity. The quantities b booe T . » and
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all functions of r_ _ (1) , ri;)(r) , and rig)(r) and hence are functions of

12

/.

4, The conditional expected value E[;150|g1,52] is seen to be the

conditional correlation function of and and is therefore by defini-

T Lo

tion given bv

E[C;ICZ‘CI)C;)] = U]UZ + 0120102

(A1)
[ 2 R S A
= + b o
(al 1) B T At T R )T P
The expected value sought is, therefore, from Equation Al,
N 3 2 o 0
bo- - HY HY = a, + by )r, + S+ rT )+ A La3,0
RS [f (‘1 bl)fw@: albl(gl ﬁ) *'1231('2}
_Kg
(A12)
f?c'l,l"z (5 »7,)drde,
where 0 il,;q\ is the jointlv Gaussian probability density function
SRR 2
ot the zero-mean random variables fl and fq whose variances are
2 LD (! - ’
F['}J = E(:;] =r “) , and whose correlation ccoefficient function is 0523(7)
[S Lo~ -
- ‘ fan (4) / ()
I =rL S
5. The above integrals mav all be carried out giving
Lo - HY HY o= (a° + }12>}' + 2a,b F, + ~,F (A1)
R TR LS P G RS U A T Rl I B SR R ’
where
gL/
§) AT (4 ' 7
Foos - (1) ATFAEE 3%01‘:)7.(83\)(11) * cl(i)?,, (AT4)
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(A15)
2
(4) o ]
- Bl + (OIQ Z(E)Q) + PB
and
- 4 .
F3 = L(—t, -, o;z)> (AlF)
. . . Ay
(see Abramowitz and Stegun 1968). Here, the argument 1 in by (71 s
omitted
D
1 RS L/2
, T e |-
R AlLT)
A SRR
] + 13
12
and ~ , Z(*} , and Q(+*) are defined in Equations 19, 20, and 22,
respectively,
6. The expected value in Fquation Al is a nonlinear function of
2y (4)
rlq”\ , riw (1) , and Tyo () and mav be expanded by the Tavlor series.
Pvoretaining onlv the zeroth and the first order terms, it is given
approximately by
’ ' o (4 40 . P
LI :Hy+h:+} =y ,"’z‘(r) + at r(“>pi: [=22() + O(=8))
(:\I?“l
/, gl
+ ’alblr“) QU=FY[=FZ(s) + O(=031 + IR )
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r r

. The integration in Fquation All mav also be facilitated by emploving

the Hermite pelvrominal series representation (Frdelv et al. 1953) as fellows:

SN R [ S s T 10
Vool 2= pT)
(A22)
. n
= 2~ E Ph (x)h (V70xVZ(v)
n n-
n=0
wWiere
d”ﬁkx\
R 3 S ) e
R 1/2 72(x) )

in!)

is the Hermite polvnominal function. Upon expanding the fointlv Caussian

prokabilite density function f 0 (2,7 ) into the Hermite ceries

1ol b
representation, it is seen that the integrals in Fquation Al2 mav be carried
ot oeasilv, By retaining onlyv the terms involving n = 0 and |1 in the

series, FEgquation Al8 mav be obrained,
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APPENDIX B NOTATTON

Total wave surtface area and wave
Tl Kg

Duantities detined in Fquations
respectively
Amplitudes of ideal and breaking

Quantities detined in Equations
approximate values are given in
Quantities defined in Equations
approvimate values are given in

surface

31 and 32,

ared

with,

waves, respectively

A6 and A7
Equations

A7 and A6
Equations

whose
A1Q and

whose
AZD and

Group velocities defined in Equations 37 and 38,

respectively
Parameters used in Equation 2]

Water depth

I'xpected value of the quantity enclosed in the

hrackets

Conditional expected value

Exponential integral defined in Fquation 23

Quantities defined in Fquations

Al4, AlS,

Filter function detined in FEquation 29

Joint probability density function of the Gaussian

zero-mean random variahles

1

Conditional joint probabilitv density function of

1 :
Gravitatienal acceleration

“

and 7, given fl and

Heaviside unit step function

Ahhxcviatiﬁns for H(ZY H(: +
(-7 - Kg) , respectively

Hermite polvnominal function defined

Coefficient defined in Fauation

Autocovariance function o!f breaking wave elevation

b )
h(r,

Wave nurber and characteristic wave

and %,

Eed o, and

13

tively, in water of finite depth

Wave number and characteristic wave

tivelv, in deep water

Proba ilitv function defired in Fquation 2

ki

number,

number,

and Alh

in Yquation

1

A0

AlG

Al

respec-

respec-
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r
|
. T
1
\
K
. |
'
e,

-~

71

Mavnitude ot the wlope of i
Jeepwater waves in the higl
Pow scnle given In Kquation

e wWallope
frequercy

e

5

vuantities detined in Fquations 5 o

respectively

Summy index

Parameters used in Equations 21 and AL

Probability function defined

Autocorrelation function of breaking wav

- (e
h )

Guantities defined in Equatione 195, 16,

Variance of hreaking wave c¢levatinn

in Fountiorn .

e oeles

1.

Correiation functions  Ef- b B ; s
?jf‘;)§ ot the Heal waves, respective’y
Ddeal and breaking wave spectra, reapective:
Woave cpectrir in deep water
deal oand breaking wave spectri, rospective!s
retative frame of reterence in the presence o
current
Tire
Time instants vt + -~ and ¢ | respective !y
Current speed
Cuantity detined in Fouation )
Pummy o variables
Probability function defined in Pguatrier U0
Coefticient detfined in Fquatiown 10

breaking paramcter defined v Fovatine
The varma funct {on
tusntity defined in Fquation AR
“pectral bavdwidth parameter detined fn Paunat
Flevations ot ideal and broeaking waves, r

Characteristic wave length

Conditional mean value functions of

recpectively, given '] ane

Cenditional covariance coefticient

and 7 piven ~I and -

=

-

hl

in Equat

fur

10t

for

ien

Ao

o




o(g) Correlation coefficient function of f] and EZ
01, 02 Conditional standard Qeviation“of Ll and LZ y
respectively, given C] and Cz
T Time lag
& Quantityv defined in Equation Al7
w Wave frequency
« Characteristic wave frequency defined in Equation 3
S Y Wave frequency in stationary and relative frames of
reference, respectively
w, Parameter of Wallops wave spectrum
wy Cutoff frequency of breaking waves given 1in
Fquation 30
Subscripts
1, 2 Quantities evaluated at time instants tl and t2 ,
respectively
o Quantities evaluated in deep water in zero current
condition
Symbols
. Differertiation with respect to time
§ Significant wave slope defined in Equation 43
B3







