Dr. J.A. Majde

We measured the dielectric properties of materials (tissues, aqueous protein solutions, microemulsions, macroscopic suspensions) from 0.1-18 GHz. These properties are determined over this frequency range by the dielectric properties of water and by ionic effects. Analysis of the data shows that the dielectric properties of the suspending water differ from those of the pure liquid, presumably due to interfacial effects. Similar effects are seen in diverse transport properties and even in nonaqueous systems. The results suggest that water within a couple of monolayers from surfaces have motional correlation times that are tenfold or so longer than those of the bulk liquid. We suggest that this motional restriction is a physical effect due to the presence of relatively immobile surfaces, rather than from chemically-specific binding. This study has led to an improved understanding of the mechanisms of absorption of microwave energy in tissues, and shown the usefulness of comparative studies of transport processes in complex suspensions.
Introduction

This project studied the electrical properties of tissues and other biological materials at UHF-microwave frequencies. On a macroscopic level these properties determine (through the electromagnetic field equations) how an incident electromagnetic field will be diffracted and absorbed by tissue. On a microscopic level, they reflect the molecular processes that are responsible for the absorption of energy. Thus, in two quite different senses they provide direct information about the physical interaction of electromagnetic energy with biological systems.

As an additional benefit, these properties offer direct information about the physical properties of water in biological systems, a matter that has long been a matter of great controversy.

Goals

The specific goals of this project were to:

* Develop instrumentation and methods for the measurement of bulk electrical (dielectric) properties of biological and nonbiological materials from 0.1-18 GHz, using the microwave network analyzer;

* Study the dielectric properties of materials over this frequency range. The materials will include tissues, protein solutions and other biological materials, polymer solutions, "phantom" tissue materials, and other suspensions.

* Interpret these results using theory of heterogeneous dielectrics, to relate the dielectric properties of these materials to their structure and composition. Of particular interest are the dielectric properties of water in
these materials, as they are modified by interfacial effects.

* Study the physical properties of water in biological systems.
* Build up a data base of bulk electrical properties of tissues at UHF-microwave frequencies for future application.

Results

This project has been extremely successful, and has led to many papers and conference publications. These publications, listed below, describe the results in great detail. To summarize:

* We developed instrumentation and methods for the precise measurement of electrical properties of materials with such diverse physical properties as soft tissues, bone, as well as solutions and gels, over the frequency range 0.1-18 GHz.

* We analyzed the bulk electrical properties of these materials using conventional dielectric theories based on mixture theory, viz. the Maxwell and Hanai mixture equations. The bulk electrical properties of tissues at 0.1-18 GHz are determined principally by the water content of the tissue. A detailed analysis shows that the dielectric properties of this water are similar to those of the bulk liquid; however some changes are observed: there is some broadening of the absorption peak (relative to that of the pure liquid) and a slight increase in the mean of the dielectric relaxation time. These changes can be interpreted as arising from interfacial effects, in which the water within one or two monolayers of surfaces within the sample exhibit rotational relaxation times that are longer than in the bulk liquid by a factor of ten or so.
We studied and compared the dielectric properties of various suspensions and solutions: microemulsions, protein solutions, various polymer solutions. In all cases, the dielectric properties from 0.1-18 GHz were chiefly determined by the water content, with quite similar changes attributed to interfacial water.

We extended these studies to include a range of other transport properties in these same materials. The transport properties we measured were water self-diffusion (by NMR techniques), thermal conductivity (by a specially constructed apparatus), and electrical conductivity. All of these properties are subject to the same mixture theory, yet they reflect quite different combinations of rotational and translational correlation times at the molecular level. Thus, a comparison of these properties allows some separation of kinetic from geometrical variables in interpreting the data.

We compared these different transport properties using the simple Maxwell mixture theory. We found that all of these properties deviated from predictions of the Maxwell theory, but can be interpreted by the assumption that the water within a monolayer or so of surfaces is hindered in its mobility (as reflected in its various correlation times) by a factor of ten or so. The fact that extent of this reduction in mobility does not appear to depend on the nature of the surface (and was even observed in suspensions with solvents!) suggests that this a result of a physical effect rather than a chemical affinity between the interfacial water and the solvent (the so-called "bound water" effect).
The "bottom line" of these studies is that water in tissues and other biological materials shows pronounced interfacial effects due to presence of surfaces in contact with the water, but the extent of these effects does not seem to depend strongly on the nature of the surfaces themselves. Similar differences are found in a wide variety of nonbiological (and even nonaqueous suspensions as well. These effects are similar to changes in transport properties that have been reported by many other investigators and attributed to "bound water". However, a more careful analysis, based on the large set of diverse results obtained in this study, suggests that the underlying mechanism might be a physical hindering of the solvent due to the presence of relatively immobile surfaces, not a chemical binding between water and solid.

The mechanisms for absorption of microwave energy in tissues thus are similar to those in other high water content materials: dipolar loss in the water and ionic conduction by dissolved ions. This work has shown the usefulness of comparative studies of different transport phenomena in the study of effects of interfaces on solvent properties.
Graduate Students Supported

Several graduate students have been wholly or partially supported by this project:
Erik Cheever
Benjamin R. Epstein
Amanda Hill
Jeffrey Kosterich
Jonathan B. Leonard
Jonathan Schepps
Susan Rae Smith

I note that Drs. Epstein and Schepps are working with industry as microwave engineers directly or indirectly on important aspects of the Navy AEGIS project.

Other Pertinent Information

K. R. Foster was recently elected Fellow of the IEEE for "contributions to determining the mechanisms of interactions between electromagnetic fields and biological systems". Most of the work leading to this award was supported by this Contract.
Papers and Presentations of Work Supported Entirely or In Part by this Contract:

SEMINARS/LECTURES/PRESENTATIONS

The state of water in tissue as determined by microwave dielectric spectroscopy. Baylor University, Department of Physiology, September 1980.


On the possible hazards of VLF radiation. Talk presented to a Workshop on VLF Radiation Hazards, Naval Medical Research and Development Command, Bethesda, MD, December 1981.

Dielectric properties of dispersed systems. Rice University, Department of Physics, May 1982.

Dielectric properties of biological materials at microwave frequencies. Drexel University, Center for Bioengineering, January 1983.


PAPERS PRESENTED AT PROFESSIONAL MEETINGS


Dielectric properties of brain tissue between 0.01 and 7 GHz. K. R. Foster, R. D. Stoy and H. P. Schwan. URSI Meeting, Helsinki, Finland, August 1978.


*Invited Presentation


*Invited Presentation


*Invited Presentation
Microwave dielectric properties of tissue: some comments on the rotational mobility of tissue water. H. P. Schwan and K. R. Foster.

"Bound water" in barnacle muscle as indicated by nuclear magnetic resonance studies. (Technical Comment) H. A. Resing, K. R. Foster and A. N. Garroway.

Effect of surface cooling and blood flow on the microwave heating of tissue. K. R. Foster, H. N. Kritikos and H. P. Schwan.


Dielectric properties of brain tissue between 0.01 and 10 GHz. K. R. Foster, J. L. Schepps, R. D. Stoy, and H. P. Schwan.

*RF-field interactions with biological systems: electrical properties and biophysical mechanisms.* H. P. Schwan and K. R. Foster.


UHF and microwave dielectric properties of normal and tumor tissues: variation in dielectric properties with tissue water content. J. L. Schepps and K. R. Foster.

Dielectric properties of tumor and normal tissues at RF through microwave frequencies. K. R. Foster and J. L. Schepps.


*Invited Paper*
Temperature profiles in spheres due to electromagnetic heating. H. N. Kritikos, K. R. Foster and H. P. Schwan. 

The effects of high power microwave pulses on red blood cells and the relationship of transmembrane thermal gradients. A. W. Friend, Jr., S. L. Gartner, K. R. Foster and H. Howe, Jr. 

*Microwave dielectric studies on proteins, tissues, and heterogeneous suspensions.* K. R. Foster, J. L. Schepps and B. R. Epstein. 


Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. R. D. Stoy, K. R. Foster and H. P. Schwan. 

Dielectric permittivity and conductivity of fluid saturated bone. J. D. Kosterich, K. R. Foster and S. R. Pollack. 


Microwave dielectric properties of ionic and nonionic microemulsions. B. R. Epstein, K. R. Foster and R. A. Mackay. 


*Invited Paper*


BOOK CHAPTER


BOOK EDITED

Transactions of 13th Northeast Bioengineering Conference (1987)

*Invited Paper
DISTRIBUTION LIST
Bioelectromagnetics Program
Annual, Final and Technical Reports (one copy each)

INVESTIGATORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. W. R. Adey</td>
<td>J. L. Pettis Memorial VA Hospital</td>
</tr>
<tr>
<td></td>
<td>11201 Benton Street</td>
</tr>
<tr>
<td></td>
<td>Loma Linda, CA 92357</td>
</tr>
<tr>
<td>Dr. Stephen Cleary</td>
<td>Virginia Commonwealth University</td>
</tr>
<tr>
<td></td>
<td>Box 694 - MCV Station</td>
</tr>
<tr>
<td></td>
<td>Richmond, VA 23298</td>
</tr>
<tr>
<td>Dr. C. C. Davis</td>
<td>Department of Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td>University of Maryland</td>
</tr>
<tr>
<td></td>
<td>College Park, MD 20742</td>
</tr>
<tr>
<td>Dr. Carl Durney</td>
<td>Department of Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td>University of Utah</td>
</tr>
<tr>
<td></td>
<td>Salt Lake City, UT 84112</td>
</tr>
<tr>
<td>Dr. Kenneth R. Foster</td>
<td>Bioengineering Department</td>
</tr>
<tr>
<td></td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19104</td>
</tr>
<tr>
<td>Dr. Reba Goodman</td>
<td>Columbia University</td>
</tr>
<tr>
<td></td>
<td>630 West 168th Street</td>
</tr>
<tr>
<td></td>
<td>New York, NY 10032</td>
</tr>
<tr>
<td>Dr. A. W. Guy</td>
<td>Department of Rehab. Medicine, RJ-30</td>
</tr>
<tr>
<td></td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td>Seattle, WA 98195</td>
</tr>
<tr>
<td>Ms. Carol Jordan</td>
<td>SAIC, 1710 Goodridge Drive</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1303</td>
</tr>
<tr>
<td></td>
<td>McLean, VA 22102</td>
</tr>
<tr>
<td>Dr. Adrianus J. Kalmijn</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td></td>
<td>Ocean Research Division, A-020</td>
</tr>
<tr>
<td></td>
<td>La Jolla, CA 92093</td>
</tr>
</tbody>
</table>

Dr. Bruce Kleinstein
Information Ventures, Inc.
1500 Locust Street
Philadelphia, PA 19102

Dr. Raphael Lee
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Dr. S. M. Lindsay
Department of Physics
Arizona State University
Tempe, AZ 85287

Dr. Thomas C. Rozzell
National Research Council, FG 424
2101 Constitution Avenue
Washington, DC 20418

Dr. Asher Sheppard
Research Service 151
J. L. Pettis Memorial VA Hospital
Loma Linda, CA 92357

Dr. Betty Siskin
Wenner-Gren Research Laboratory
University of Kentucky
Lexington, KY 40506

Dr. Arthur E. Sowers
American Red Cross
Holland Laboratory
15601 Crabbs Branch Way
Rockville, MD 20855

Dr. Shiro Takashima
Bioengineering Department
University of Pennsylvania
Philadelphia, PA 19104

Dr. Watt W. Webb
Department of Applied Physics
Cornell University
Ithaca, NY 14853
Annual Final and Technical Reports (one copy each except as noted)

ADMINISTRATORS

Scientific Officer, Biophysics Program
Code 1141SB
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Program Manager, Molecular Biology
Code 1141MB
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Administrator (2 Copies; enclose DTIC Form 50)
Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

Annual and Final Reports Only (one copy each)

DOD ACTIVITIES

Commander
Chemical and Biological Sciences Division
Army Research Office, P.O. Box 12211
Research Triangle Park, NC 27709

Director
Department of Microwave Research
Walter Reed Army Institute of Research
Washington, DC 20307-5001

Directorate of Life Sciences
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332

Program Manager
Radiofrequency Radiation Program
U.S. Air Force School of Aerospace Medicine
Brooks Air Force Base, TX 78235

Library
Armed Forces Radiation Research Institute
Bethesda, MD 20814-5145

Final and Technical Reports Only (six copies each)

Director, Naval Research Laboratory
Attn: Technical Information Division, Code 2627
Washington, DC 20375