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1. INTRODUCTION

There are several models to predict the penetration of a shaped-charge
Jet. Most of them, and certainly the majority of early models, are one
dimensional in nature using a hydrodynamic approach which is mocified to
account for material strengths, viscosities, cutoff velocities, etci % on
the other hand, the inter-particle dispersion of jet particles is probably a
more realistic way (albeit a more difficult way) to account for the
deleterious effects of target standoff on jet penetration. Such three
dimensional inter-particle dispersion effects have been studied Dby
researchers, and have been codified into models by several of them.S5®

In Smith’s PENSO code®, a reverse engineering approach is employed
whereby jet dispersions are to be estimated knowing the penetration standoff
behavior for a type of charge. The dispersion characteristics of the jet are
defined ad hoc by the user. One hopes to gauge the “correctness" of the
dispersion coefficient estimates by comparing the predicted penetration
standoff curve to Known experimental values.

The approach taKen by Seeletess entails measuring jet dispersion
(l.e. drift velocities) directly {from jet radiographs. The wvalidity of the
dispersion measurements is gauged by feeding the data into a code (PENJET)
for estimating penetration based on a particular dispersicn distribution.

A primary limitation of any model which hopes to predict jet penetration,
while accounting for i{nter-particle dispersion of the jet, is the ability to
accurately assess the magnitude of inter-particle dispersion. To make this
assessment from jet radiographs ideally requires accurate information on the
placement and orjentation of the shaped-charge warhead as a coordinate
reference for the resulting jet. For the size of shaped charges of intsrest
in the laboratory, the required length of film needed to capture the image of
the charge and the resulting particulated jet becomes excessive, Also, flash
radiographic film cassettes can only be used to xX-ray lghtly confined
exploding charges (for fear of damaging both x-ray tubes and #£ilm cassettes),
and even then only with the use of blow away (non-stationary) £ilm cassettes.
Thus, it becomes impractical to routinely capture both the warhead and
particulated ja2t on the same piece of $ilm.

As a result of these practical limitations, the experimenter Is typically
limited to one or more pieces of film containing images of the following: a) a
portion of the particulated jet; and b) fiducial lines which are ostensibly
paraliel with the original charge axis of the warhead. Unfortunately, such an
experimental setup makes it impossible to locate where on the radiograph the
shaped charge warhead axis actually lies. As a result, Sealetes5 was able
t0 calculate relative drift velocities (l.e. drift velocities of Jjet particles
relative to some reference particle) as measured in a reference frame of the
radiograph fiducials (which are at best nearly parallel with the charge axis
of symmetry). The exact relationship between the assumed and actual jet axes
was however unknown, and the angular disparity between the two ixes was termed
the warhead tiit, or simply tilt.

In Segletes’ models. absolute drift velocities (needed for the
penetration calculation) were estimated by augnenting the relative drift
velocity of each particle by a drift velocity associated with the nreference
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particle, This reference drift velocity was calculated so as to equalize the
dispersion angles of all the jet particles with a minimum of scatter (the
dispersion angle is the angle between the assumed charge axis of symmetry and
the absolute velocity vector of the particle). The rationale for enforcing
the condition of equal dispersion angles was that a straight jet under the
influence of charge tilt would tend to produce exactly this distribution of
drift velocity. However, because the warhead tilt was not removed from the
absolute drift velocity calculations, the calculations were able to provide
only limited quantitative information on the inter-particle dispersion of jet
particles.

2. THE MODEL

The description of the three flash x-ray experimental facility for
radiographically recording jet flight is described by others (e.g. Blishe,
Simmons’ and Segletess). The method used presently to obtain relative
drift velocity of Jet particles (i.e. the drift velocity of Jjet particles with
respect to a resference jet particle) i{s identical to Segletes' original
method, with one smali difference; the reference particle for the Jet is
presently takKen as the lead particle of the jet, whereas the previous method
used an arbitrary particle near the rear of the jet. Unlike the original
method, absolute drift velccity calculated via this new method is insensitive
to the choice of reference particle, so the jet tip seems as good a choice as
any.

One of Segletes’ original results was to show that wariead tilt and/or
reference particle drift velocity were very significant and could not he
ignored in the calculation of jet particlie drift velocities from radiographs.
If the actual charge axis were misaligned from the assumed charge axis (the
charge axis i3 assumed parallel to a set of fiducial lines on the film) by an
angle of only one degree, a jet particle travelling axially at 9 Km/sec would
Je tilted into having a drift velocity in excess of 155 m/s.

Segletes wag further able to show that using Just the relative drift
veiocities to calculate Jet penetration in the PENJET model severely
underestimated penetration. He believed that the discrepancy resulted from
warhead tiit and was only able to remedy this with the introduction of
reference particle drift velocity which tended to decr2ase inter-particle jet
disperasion (since the reference particle of a tilted charge would appear to be
drifting too). This technique was sufficient for inclusion in the PENJET
model since actual warhead tilt does not atffect penetration of the jet, but did
nothing to differentjiate what part of the drift velocity was caused by tilt
and what part was inherent inter-particle dispersion.

The relative drift {i.e. tranaverse) velocity of all the jet particles
can be broken down into x and y components Ve and Ve,
where j represents the index on jet particle, and can take on a value between
one and the number of digitized particles in the jet. Figure { depicts drift
velocities meazured relative to the jet tip pellet (the reference particle)
and in a reference frame parallel with the #ilm $fiducial lines. Let us further
represent the drift velocity components of the reference particle in the
assumed charge axis frame of reference (based on fiducial lines on the film)
by oVex and oVey. As such, the drift velocity of a Jet
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Figure 1. Calculation of Relative Drift Velocities in the Jet Tip/Fiducial
Reference Frame




particle would be represented by the sum of the relative drift of that
particle and the reference drift. In Figure 2, the reference particle drift
velocity is shown attached to the jet tip pellet (the reference particle),
though it is the case that the drift velocity of each jet particle in the
fiducial reference frame has its reiative drift velocity augmented by this
reference drift velocity.

This composite drift (relative plus reference) seen on the film is
actually made up of inherent inter-particle dispersion plus warhead tilt. One
may acquire just the inter-particle dispersion by subtracting out the tilt.
I1f the tangent of the tilt angle takes on some value K, such that the
projection of that angle onto the x-2 and y-2 planes (the X and y axes measure
transverse jet motion, the 2 axis measures axial jet motion) it Kx and Xy
respectively, then one concludes that the x and y components of absolute drift
velocity for particle j may be represented as

ﬁtx _,vtx + oVex - Kx Jva , and H

thy s ey s ey -ty v, (2)
where:

3¥tx 18 the x component ot absolute drift velocity for particie |,

Vw is the y component of absolute drift velocity for particle J, and
JVa 1s the axial velocity for particle J as measured from the radicgraphs.

In Figure 2, the components of drift velocity resulting from the wairhead tiit
are proportional to the axial velocity of the particles (i.e. proportional to
the distance downrange if one accepta the virtual origin approximation). When
the reference velocity is added to and the tilt induced velocity (s subtracted
from the relative drift, the resulting absolute drift velocity, as shown in
Figure 3, is measured with respect to the tiited charge axis. When used to
calculate particle dispersion angles (also shown in Figure 3), the absolute
drift velocities described by equations (1) and (2) glve a good measure of the
quality of the jet.

The four unknowns {n these two equations are the two components of tiit
and the two components of reference drift velocity. Because s.seletess
noted that penetration predictions were toc low unless reference velocity was
added as an attempt to remove inter-particle dispersiofi, and because the
algorithm should predict zero drift velocity for a straight jet whose charge
has been tilted, the reference velocity and tilt will be solved for in 2 way
which minimizes inherent inter-particle dispersion. This is accomplished by
minimizing the sum of the squares of the diapersion angles {actually thesr
tangents, which are nearly ldentical to the angle In radians for small angles)
for all the jet particles. Though one carn not be sure that the actual arift
distribution §s the one which minimizes inter-particle dispersion,

Seuetes5 showed that the actua) drift distridbution i3 much more clossely
approximated by the minimum-dispersion drift distribution than the unmodified
relative drift distribution.

The magnitude of darift velocity for particle J s
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CALCULATED JET
AXIS

Figure 3. Absolute Drift Velocities and Particle Dispersion Angles are Based
on Cailculated Jet Axis Instead of the Fiducial Axis




The (tangent of the) dispersion angle is the quotient of the drift and
axial velcocities for a particle. Squaring this value and summing over all n
particles yields

n (jVtx oVtx 2 iy oVty 2
A:Z(-——+-—-—--Kx] 0( +—-—-xy] o (&)
J=1 JVa JVa JVa JVa

In order to find the values of the two unKnown tilts and two unknown
reference drift velocities in a way which minimizes the dispersion function
A, merely take the partial derivative of equation (&) with respect to each
of the unknowns, and set the derivatives to zero. The resulting four
equations are:

3A n [ jVtx  oVtx
_ :0:-2Z% —_—t - Kx ] R {S)
KX 3=t LyVa 4V,
EYN n (jVwx  oVtx 4
:0: 288 [—m ¢t — =KX | — . (6)
oVix =t \yjVa  4Va iVa
%A n (JVty oVty
—_— 2 0: =23 —_— ¢ — = Ky » and (7)
3Ky =t Lyjva gV,
Y n [jVty oVty {
:0: 8% | — 4 o— =Ky | — . (8)
oVty J=t L3V jVa Va

These four equations may be soived for the four unKnowns to give the
following resuits:

n o $Vwx n (3Vtx) n {
s A ) a5
J=1 \ 4Va J=1 Jva J=1 J'Va
Vix = v (9)
n { 2 n {
L)) A
J=1 \ 4vy J=1 JVaa
n (JVtx\ no n { $Vex
e 2l Al
321U gVa2 o astl gV ) J=t v,

|
EA IR

™M

‘ne

-
-




R XACEN AR AL R AR MR PTG  ITUNTUREUINGT 5 LA L LML SN Al LW AN Uy WSRO W R L IO XA WA M BTN A RN RO N e ML

oViy ¢ (11)

n 1y 2 n o ( i
GG 3G
52t U yvai ) Jz1 | 4vat

n ( jVty n 1 n {Jvty n |
(5E) Al 2] Bl
J=4 Jvaa J=1 Jva ,j:it JVa J=1 Jva?'

Ky = . (12)

n 1 2 n 1
AR A
3=t \ gV 321\ gv,8

The components of absciute drift velocity for every particie may be
acquired by substituting the two tilts and two reference drift velocities into
equations (1) and {2) for each particle.

Bacause the apove procedure minimizes the sum of the squares of the
tangentz of the dispersion angles of the particles, the average square of the
dispersion angle tangent will equal the sum of the squares divided by the
number of particles used in the calculation. AsS such, the average dispersion
may be mathematically expressed as:

b)
J=1

~ 2 ~ 2
n (Jvtx + iy ) 1/2

v . (i3)
Ja

n

This average dispsrsion angle for the jet gives a quantitative estimate
for the quality of jet. Ideally, thiz estimate is not influenced dy wiarhead
tilt, and would approach 2ero for a perfectly aligned Jjet, regardless of tllt.
In actuality, because of the fact that the complete jet is not usually
radiographed, the tilt estimates based on a partial jet are incomplete, and
may thus be in error.

Evan with 2 complete tfet, error may still be present since the model
inadvertantly masks out uniform drift components (a drift pattern whereby all
jet particles have the same drift velocity regardless of axial velocity)
However, such a uniform drift distribution is not lKely to result {from
typical warhead asymmetmese and in fact was only nominally achieved even
when producing such a distribution was the desired goal of the stud}r9.
This uniform drift distribution is however, implied when a shaped charge
device is operating in a2 fly-over mode of attacKk. Fly-over attack is not the
intended subject of this report, though modeling o¢ adverse effects of uniform
transverse velocity hag been considered bdy Secletesw and others., For the
fly-over scenerio however, the projectile velocity fa typically Known, and




need not be deduced from radiographic inspection. As such, if a sufficiently
significant portion of the Jjet is digitized, the present modeling scheme
should provide a substantial improvement over that used previously.

3. RESULTS

The proposad mode: has been exepcised on several shaped-charge jet
radiographs with good results. That is to say, rounds appearing straight
(though possibly tilted) on radiographs have lower average dispersion angies
than rounds appearing to be bowed or dispersed. The results for several
rounds are shown in Taltes { an7z 2, Theas tables include the drift velocities
for the particles relative tc¢ he reference particle (lead pellet of the jet)
and also the ahsolute drift velocities cnce reference drift ancd charge tilt
are taken into account.

To give an idea on how the analysis is dependent on the number of
particles used in the analysis (i.e., if only a partial jet is used in the
analysis), Figures 4 and S are included. Figure 4 depicts how three of the
dispersion parameters for round 3613 vary with the number of jet particles
used in the analysis, namely average dispersion, tilt and tilt direction.
Round 3813 consisted of a 65 mm diameter (uniform wail thicKkness of { mm),
42 degree coppar cone lcaded with unconfined LX-i4. It produced a Jet tip
velocity of approximately 5.2 Km/sec. Recali that a warhead i1t and a
referance transverse velocity are superimposed upon the relative drift
veiocity distribution {n such a way that the sum of the squares of the
dispersion angles is minimized.

The dispersion reppiresents the average angular deviation of a jet particle
ftrom the actual jet axis. HNote that this parameter has been magnified by a
factor of (00 for plotting in Figure &, thug indicating how small the inter-
particle dispersion c¢an be with respect to warhead tilt. This fact explains
why tilt must be accounted for in the assessment of jet digpersion. The tilt
represen’ts the angle between the intended axis of symmetry and the actual axis
of symmetry. If one then takes the plane containing both the {ntended and
actual axes of symmetry and intersects it with the plane normal! to the
intended axis of symmetry (this will be the plane of the target for normal
impact), one acquires a line (in the plane of the targest). The direction of
this line indicates the direction of the warhead tit. In Figure 4 the
reference line was chosen for tilt direction to give an angle o3 gzero for the
analysis which included 66 jet particles,

In order for confidence in the calculation to be greatest, both tilt and
tilt directions should reach steady state as the number of particles included
in the analysis is {ncreased. For round 3813, the tilt angle is still
decre#asing, but appears to be approaching an asymptote, However, the
direction of tilt is not nearly 20 siationary. Honetiheless, the sensitivity
of dispersion on the direction of tilt {s much less than ths zensitivity of
dispersion on tilt {tself, so that the greater variability {n tilt direction
should not cause undue alarm.

Figure 5 and Table 2 depict a similar anaiysis which has been done on
round 3499. This round contained a 76.2 mm hemispherical copper liner
{unifore wall thickness of 1.9 anm), 10aded with unconfined ¥5/25 Gclol ot o8y




Experimental value of penetration is 2.45 CD at 24.25 CD standoff
X, Y drift velocity of reference particle (m/s): oVoy = 203.92 oVyy = -91.82

X, Y tilt angles in degrees: atan(Kx) = 1.08 atan(XKy) = -0.47

Average Drift Dispersion (degrees): & = 0.05682

Relative---—---- +
PARTICLE DRIFT ANGLE
NUMBER VELOCITY (DEGREES)
M/S)

i 0.0 0.0
2 18.6 153.2
3 23.3 154.2
4§ 26.8 153.2
) 26.7 154.4
6 31.0 156.14
7 33.5 153 .4
8 36.6 154.7
° 38.2 155.¢2
10 39.9 154.9
14 44,0 152.8
12 46,1 152.7
1o 46.9 152.7
14 1.4 153.0
15 52.6 183.3
N 55.7 154. 4
17 §7.8 154 .1
{9 6. i 153.7
i9 62.0 154.3
29 6.7 154.2
el 57 .4 152.7
2é 88.3 153.9
24 b4 W 154.0
24 3.6 183.9
25 76.8 154.9
26 78.8 153.8
27 83.0 154.2
23 85.2 154. 4
2 80.4 152.9
k14 89.9 154 %
kB 90.8 155.1
32 93.7 154.3
33 JR. 2 154. 4
34 100.7 154.7
35 103.14 155.6
36 103.9 165.0
k) 105.6 155.1
38 106.4 154.9
39 106.7 154.6
40 109.7 154.6

1able 1., Jet Particle Dispersion Susmary for Round 3843

10

o= Absolute-----~ +
DRIFT ANGLE
VELOCITY (DEGREES)

Ms)
3&.7 332.3
16.2 331.3
14,2 330.14
11.5 33¢.4
if1.4 329.6
10.0 3es.2
9.7 332.2
7.5 326.0
5.8 319.9
7.0 324.9
5.5 339.2
4.7 342.9
4.7 J4e2.8
2.6 348.6
2.4 345.0
1.9 320.5
1.0 328.1
1.0 358.1
0.6 ir2.4
0.5 152.4
1.9 18.)
i.2 129.4
a.9 kY. &
3.1 i43.6
3.7 i64d &
5.4 i45.1
6.0 149.9
6.9 152.0
7.3 132.6
7.4 182.0
4.4 Wa. i
5.3 146.9
6.1 147.5
7.9 i52.8
7.0 167.9
7.4 155.4
7.8 157.6
7.7 154.3
6.9 149.3
7.5 152.95

AR




$oommms Relative------- + oo Absolute------ +

PARTICLE DRIFT ANGLE DRIFT ANGLE
NUMBER VELOCITY (DEGREES ) VELOCITY (DEGREES )
/s) M/8)
41 110.7 154.8 7.8 151.4
4z 112.6 155.3 7.7 158.5
43 114.0 154.5 6.0 143.6
44 115.5 154.4 5.5 139.7
45 116.8 154.5 5.4 140.9
46 117.3 154.6 3.5 136.2
47 119.0 154.4 3.5 128.4
48 120.8 154. 4 3.6 128.0
49 122.4 154.9 3.5 143.4
50 122.8 154.8 2.8 136.6
54 121.3 156.0 2.0 ai7.4
52 i2e2.6 156.0 1.7 246.1
53 iée.o0 155.7 1.4 282.8
54 124.6 156.0 2.1 283.1
55 126.8 155.8 1.4 286.3
56 129.0 155.6 1.5 313.4
57 130.7 155.6 1.0 302.8
58 131.5 185.5 1.9 324.5
59 134 .4 155.5 2.6 327.4
60 134.9 155. 4 1.2 335.6
61 136.9 155.8 2.9 3149
62 139.7 155.8 3.3 319.6
63 142.5 155.6 3.5 329.0
64 144.6 165. 4 4.2 336.3
65 145.3 155.2 5.8 J4q2.2
66 146.6 155.1 5.4 345.6

Table { (cont.)

11




Experimental value of penetration is 0.61 CD at 20.0 CD standoff
X, Y drift velocity of reference particle (m/s): oViy = ~658.96 ,Viy = 0.00
X, Y tilt angles in degrees: atan(Ex) = -6.70 atan(Ky) = 0.00

Drift Dispersion Factor (degrees): & = 0.20103

$om———- Relative------- + $=———-= Absclute-—-——-- +
PARTICLE DRIFT ANGLE DRIFT ANGLE
NUMBER VELOCITY (DEGREES VELOCITY (DEGREES )
M/S) (M/8)

{ 0.0 0.0 48.6 180.0
2 18.8 0.0 28.3 180.0
3 44,6 0.0 15.3 180.0
i 4.7 0.0 4.9 180.0
5 97.8 0.0 5.7 0.0
6 106.8 0.0 12.5 0.0
7 127.8 0.0 10.7 0.0
8 147 .4 0.0 12.9 0.0
9 156.8 0.0 20.9 0.0
10 i73.9 0.0 15.4 0.0
11 193.9 0.0 6.4 0.0
12 208.2 0.0 4.5 0.0
13 247.8 0.0 6.2 0.0
14 222.5 0.0 11.6 0.0
15 236.5 0.0 9.9 0.0
16 241 . 4 0.0 12.3 0.0
17 25e.¢2 0.0 1.8 0.0
18 254.9 0.0 3.2 0.0
19 264.9 0.0 9.7 160.0
20 269.1 0.0 9.4 180.0
24 274.9 0.0 7.2 160.0
ae 273.8 0.0 16.8 180.0

3
!".

Table 2. Jet Particle Dispersion Sumary for Round 3499
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mm diameter. The jet tip velocity was 5.2 Km/sec. What maKes this round
unique is that the explosive was intentionally detonated off of the axis of
symmetryﬁ. The offset was such that the line through the detonation
point and the center of the hemisphere formed a six degree angle with respect
to the axis of symmetry of the charge, The experimental apparatus was limited
in such a way that the jet could be viewed from a single angle only. As such,
it was necessarily assumed that Jet dispersion was confined to the plane of
the film (since both the charge axis of symmetry and the detonation point lay
in the plane of the film).

LiKe round 3813, the average dispersion angle for round 3499 is a
fraction of the tilt angle, HNote however that the magnitude of dispersion is
roughly three times that of round 3813. This larger dispersion i{s not
unreasonable considering that round 3499 was detonated in an asymmetric
manner. The penetration of round 3499 was approximately one quarter that of
round 3813 at similar charge diameter standoffs. Also of great interest is
the fact that the tilt angle for round 3499 appears to be approaching six
degrees in somewhat of an asymptotic fashion. Considering the geometry of the
explosive initiation, one would expect the Jjet axis to be nominally tilted six
degrees from the original charge axis.

4. CONCLUSIONS

The ability to compute drift velocities for the particles of a jet is one
way to ascertain the quality of the jet formation. Such Knowledge provides a
means to better predict the subsequent penetraticn performance of the jet.

The new technique which has been devised to calculate the drift
velocities of shaped-charge jets offers substantial improvements over a
technique originally proposed Dby SegletesS. Segletes’ original
formulation calculated Jjet particle drift velccities which were biased by
warhead tilt, and was thus of limited value in assessing the gquality of the
shaped-charge jet. The new technique is able to predict the magnitude and
direction of the reference particle drift velocity and warhead tilt in a way
which minimizes inter-particle dispersion. Though one can not be sure that
the actual drift distribution is the one which minimizes inter-particle
dispersion, Segletesd showed that the actual drift distribution is much
more closely approximated by the minimum-dispersion drift distribution than
the unmodified relative drift distribution. As a consequence of being able to
remove the tilt bias from the computation, a measure more closely related to
the quality of the jet may bLe determined.

The quantification of Jjet quality from a radiograph is an important
central link between nonideal penetration and imperfections in the warhead
construction. Analyses of this type will reveal alignment and precision of
assembly requirements necessary to maximize warhead performance.
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