UNSTEADY FLOW FIELD MEASUREMENTS
USING LDV

by

Steven Dale Hedrick
December 1987

Thesis Advisor: S. Bodapati

Approved for public release; distribution is unlimited.
Laser Doppler velocimetry, schlieren flow visualization, dynamic stall
Approved for public release; distribution is unlimited.

Unsteady Flow Field Measurements Using LDV

by

Steven D. Hedrick
Lieutenant, United States Navy
B.E., University of Mississippi, 1979

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1987

Author:
Steven D. Hedrick

Approved by:
Satyanarayana Bodapati, Thesis Advisor
M. F. Platzer, Chairman, Department of Aeronautical Engineering

G. E. Schacher
Dean of Science and Engineering
ABSTRACT

The primary goal of this thesis was the development of an experimental technique, and supporting software, for the acquisition and analysis of unsteady velocity data generated by an oscillating airfoil. This research was in support of a major investigation of the compressibility effects on dynamic stall.

The experimental procedure involved schlieren flow visualization for comparison of steady and unsteady flow fields, and for determination of parameters for further study. Laser Doppler velocimetry was employed for obtaining velocity data in the airfoil wake. For unsteady data, the airfoil was oscillated in pitch about its quarter chord.

The data analysis produced wake profile plots representing the flow field disturbed by the airfoil. Results were obtained for steady and unsteady conditions.
Table of Contents

I. Introduction ... 9
 A. Dynamic Stall .. 9
 B. Thesis Goals .. 10

II. Experimental Considerations 11
 A. Experimental Methods 11
 1. Laser Doppler Velocimetry 11
 2. Schlieren Flow Visualization 12
 B. Instrumentation and Equipment 13
 1. Equipment Setup 13
 2. Laser Doppler Velocimeter Subsystems 16
 3. Schlieren System 23
 C. Data Acquisition Automation 24

III. Data Acquisition ... 25
 A. Test Section Velocity 25
 B. Schlieren Photography 26
 C. Wake Velocities .. 26

IV. Results and Discussion 30
 A. Schlieren Photographs 30
 B. Data Analysis Software 32
 C. Wake Profiles ... 35

V. Conclusions and Recommendations 44

Appendix: Computer Programs 46
LIST OF REFERENCES ... 70
INITIAL DISTRIBUTION LIST 71
LIST OF FIGURES

2.1 Wind tunnel test section 13
2.2 LDV transmitting optics 16
2.3 LDV receiving optics 17
2.4 Two-component transmitting optics 18
2.5 Data collection and processing 22
3.1 Sample histogram .. 29
4.1 Steady state schlieren photograph 30
4.2 Unsteady flow schlieren photograph 31
4.3 Unsteady flow schlieren photograph 32
4.4 Comparison of mean and curve fit 34
4.5 Steady wake profile 36
4.6 Steady wake profile 37
4.7 Steady wake profile 38
4.8 Steady wake profile 39
4.9 Steady wake profile 40
4.10 Steady wake profile 41
4.11 Unsteady wake profile 42
4.12 Unsteady wake profile 43
ACKNOWLEDGEMENTS

The research program that provided the opportunity for this thesis was supported by the Army Research Office and the Air Force Office of Scientific Research.

I would like to extend my sincere appreciation to the Fluid Mechanics Laboratory of the NASA Ames Research Center for providing the facilities required for this research. The atmosphere created by its many dedicated professionals did much to stimulate my interests and increase my level of motivation. A special thanks goes to Michael Fidrich for the helpful assistance with the laboratory equipment and, in particular, for the development and construction of the hardware responsible for acquiring airfoil phase data.

I wish to gratefully acknowledge the assistance of Professor Satyanarayana Bodapati, my thesis advisor, for some much welcomed guidance during the course of this work.

I am especially thankful to Dr. M. S. Chandrasekhara, of the Navy-NASA Joint Institute of Aeronautics, for the invaluable assistance provided on this project. His expertise in Laser Doppler Velocimetry and experimental procedures were of tremendous benefit in completion of this research.

Finally, I want to thank my wife, Laura, for her constant support and undying faith in my ability to successfully complete this thesis. Her patience and understanding during
the difficult times did much to sustain my desire for this project.
1. INTRODUCTION

A. DYNAMIC STALL

The possible benefits and consequences inherent in dynamic stall have stimulated experimental investigations leading to significant progress in understanding this complex phenomenon. Much of the earlier work in this area was carried out by McCroskey using a two-dimensional airfoil section oscillating in pitch about its quarter-chord. The results of this effort succeeded in clarifying the features of dynamic stall up to a Mach number of 0.3 [Ref. 1].

Several significant distinctions between static and dynamic stall should be observed. Static stall is characterized by massive flow separation and loss of lift coinciding with some critical angle of incidence. The aerodynamic forces on the airfoil vary uniquely, or nearly so, with angle of attack. Dynamic stall, occurring during rapid increases in incidence, results in a delay of the associated loss of lift until well beyond the static stall angle. Dynamic stall also tends to be considerably more persistent. The flow field does not immediately adjust to reductions in incidence angle as with static stall. [Ref. 2]

Dynamic stall is characterized by the shedding and passage of a vortex over the upper surface of an airfoil. The production of this vortex begins shortly after the incidence
has exceeded that of static stall. A thin layer of reversed flow in the boundary layer, evolving into a vortex near the leading edge, represents the initial phase of a dynamic stall cycle. As this disturbance moves across the upper surface of the airfoil, large negative pitching moments, significant drag rise, and a nonmonotonic increase in lift result. The aerodynamic forces, reaching a maximum as the vortex approaches the trailing edge, decrease dramatically with the shedding of this vortex. Reattachment of the flow will then typically occur at some angle less than that corresponding to static stall. (Ref. 2)

B. THESIS GOALS

The research project generating this thesis represents a small part of a major investigation aimed at developing a thorough understanding of the effects of compressibility and pitch oscillation on dynamic stall. The primary goal of the research associated with this thesis was the development of an experimental procedure, and supporting software, for the acquisition and analysis of unsteady flows with a laser doppler velocimetry system. The procedure and software developed was to provide an initial analysis of possible areas of interest and a base upon which to build as the sophistication of the experimental methods increased. A successful attainment of this goal required obtaining velocity data in the wake of an oscillating airfoil and wake profile plots produced from this data.
II. EXPERIMENTAL CONSIDERATIONS

A. EXPERIMENTAL METHODS

1. Laser Doppler Velocimetry

Since its introduction in 1964, laser Doppler velocimetry has proven to be a highly reliable means for obtaining measurements in complex turbulent flows. The method is capable of performing instantaneous, non-intrusive velocity measurements under a wide range of conditions. Being relatively independent of fluid properties, accurate measurements are possible without the requirement of calibration. [Ref. 3]

The basic principle behind laser Doppler velocimetry is the measurement of the velocity of particles travelling with the fluid. These particles, when illuminated with a focused laser beam, become sources of scattered light. The Doppler shift of the scattered light is then used to determine the velocity of the particles and, depending upon how well the particles are following the flow, the fluid velocity as well.

As a minimum, six components are necessary for a complete LDV system: laser source, transmitting optics, receiving optics, photodetector, signal processor, and data processor. The function of the transmitting and receiving optics are focusing and light collecting, respectively. The photodetector serves to convert light signal to an electrical
signal which is then used by the signal processor to provide a measurement of the frequency. The capability of detecting reversed flows requires an additional component for frequency shifting.

Due to the wide range of disciplines involved, optics, electronics, light scattering, and signal processing, the implementation of this method can be difficult [Ref. 3]. Consequently, the expertise of the operator can have a profound impact on the results of LDV measurements. It is therefore imperative, to an even greater degree than many other methods, that considerable attention be given to applying correct measurement technique.

2. Schlieren Flow Visualization

Schlieren flow visualization systems provide a qualitative analysis of the density gradient in compressible flow fields. The fundamental concept of this method is the variation of the refractive index gradient of a fluid with density.

A basic schlieren system includes a light source, transmitting and receiving mirrors, a knife edge, and a focusing screen. The transmitting mirror serves to direct a parallel light beam through the test section and onto the receiving mirror. An image of the light source is then formed at the focal point of this mirror. The knife edge, placed in the plane of the light source image, cuts off part of the transmitted light and controls the contrast of the image focused on the screen. Changes in test section density,
therefore, produce variations of light intensity and provide a visual representation of the flow field. [Ref. 4]

B. INSTRUMENTATION AND EQUIPMENT

1. Equipment Setup

The experimental procedures for this research were conducted at the NASA Ames Fluid Mechanics Laboratory. A 25-cm by 13-cm indraft wind tunnel with a slotted wall test section was used. Figure 2.1 shows the test section with plenum chambers above and below the slotted walls. The adaptive wall design of this test section was developed for use in previous experiments. Although the technique was not

![Figure 2.1 Wind tunnel test section.](image-url)
used, the slotted walls were helpful in reducing wall interference.

The model for the experiment was a NACA 0012 airfoil with 2" chord. The airfoil, attached to the test section walls at quarter chord, was connected with mechanical linkage to an electric motor, as shown in Figure 2. A variable speed motor provided a means for oscillating the model about a pitch axis and obtaining unsteady data at various frequencies.

An optical encoder, also driven by the motor, provided 3,600 counts per revolution of 14-bit data on the phase angle of the oscillating airfoil. The characteristics of the encoder were absolute in that a whole word output, with a unique code pattern, represented each of the 3,600 discrete positions. This code was derived from independent tracks on the encoder disk corresponding to individual photodetectors.

Test section Mach number and velocity were obtained by using a 24-port Scanivalve with a differential pressure transducer. Calculation of these values required measurements from four of the ports, two for Mach number computation and two for calibration of the transducer. The linear relationship between the measured pressure and the corresponding voltage produced by the transducer was used for determining the pressures. In accomplishing this, one port of the Scanivalve, vented to the atmosphere, measured ambient pressure and a second port, tapped to a mechanical vacuum pump, measured a calibration pressure. A conversion factor
was then established by dividing the difference of the known pressures, atmospheric and calibration, by the difference in voltages produced by the transducer.

Location of the LDV system probe volume, or beam crossing point, was controlled by a three axis traversing mechanism. A Summit Taskmaster numerical control computer, originally developed for controlling movements of industrial machine tools, was used for this task. The numerical control computer (NCC) was capable of manual operation, programmed operation, and, with software adaptation, operation from the computer workstation. The NCC provided control inputs to two sets of electric motors, one for the transmitting optics and the other for the receiving optics. The necessity of using different traversing motors for the transmitting and receiving optics placed a great demand on the synchronization of this system. Due to the high sensitivity of the LDV optics train, the synchronized movement was often inadequate for maintaining signal strength.

Phase encoder data and digitized velocity data from the LDV signal processors were channeled to a 3D-LDV Computer Interface (CI). The CI, multiplexing the inputs to a single digital data channel output, provided 16-bit parallel output data to the computer data bus. The CI was capable of accepting up to six channels of digital data and from one to three event pulses from the signal processors. The multiplexing cycle could be initiated by random event pulse inputs or synchronized inputs, the latter being necessary for unsteady
data acquisition. When operating in the synchronized mode, two or three pulses, as selected, occurring within a set time (coincidence time) would be required to initiate the multiplex cycle and feed data to the computer.

2. Laser Doppler Velocimeter Subsystems

A two component LDV system was used to obtain the flow field velocity data. Figures 2.2 and 2.3 show the general arrangement of the system components for the transmitting and receiving optics sides, respectively.

A 5 Watt Argon ion laser, Spectra Physics Model 164, was used for the system. The unit was operated in the

Figure 2.2 LDV transmitting optics.
multiline mode and produced a vertically polarized beam composed of all wavelengths inherent to this type of laser.

Figure 2.4 illustrates the sequence of steps required of the transmitting optics. A set of mirrors was first used to lower the multiline beam to the level of the optical components. After passage through a collimator, used to ensure collimation of the beam and subsequent crossing of the beams at their waists, the beams pass through an attenuator. The function of this component was to reduce the beam intensity without inhibiting transmission of any wavelengths, a possible consequence of simply reducing the power output of the laser. Prior to separation of the wavelengths by the dispersion prism, it was necessary to horizontally polarize
Figure 2.4 Two-component transmitting optics.
the beam by passing it through a half-wave plate, or polarization rotator, in order to obtain maximum light transmission. The two stronger wavelengths, 544.5 nm (green) and 488 nm (blue), were then guided by turning mirrors to the remaining optical components.

Before reaching their respective Bragg Cells, the green beam was split vertically and the blue was dispersed to the center of the component assembly, vertically polarized, and split horizontally. The relationship between the splitting and polarizing planes was driven by signal efficiency. High signal-to-noise ratio requires split beams to have equal intensities. The beams will be of approximately equal intensity when the polarity of the incident beam is perpendicular to the plane of the exiting beams [Ref. 3]. Therefore, the polarity of the vertically split beam was maintained as horizontal and that of the horizontally split beam was rotated to vertical. As later discussed, this difference in polarity was also necessary for separation of the two wavelengths by the polarization beamsplitter in the receiving optics.

Bragg Cells are acousto-optic devices used to generate a frequency shift in the beam and allow for resolution of the 180 degree directional ambiguity. One beam of each of the two wavelengths was directed through a Bragg Cell producing a 40 MHz shift. The unshifted beams were passed through glass rods to compensate for the path length difference experienced by the shifted beam. Due to the nature of
the Bragg Cell, the frequency-shifted beam was deflected from its initial alignment. Therefore, beam alignment prisms, or steering wedges, within the Bragg Cell modules served to bring the beams back to parallel.

A microscope objective, placed in the test section at the probe volume, was used to observe the beams as adjustments were made to ensure the beams focused to a common point. If the two probe volumes are not at the same location within the test section, then the measurements will be made at different points. The necessity for all four beams to overlap at the focal point was especially prevalent for the acquisition of unsteady data due to the need for a high coincidence data rate.

Receiving optics are designed to image, to the greatest extent possible, the light scattered at the probe volume onto the photodetectors. Since the scattered light intensity is the greatest in the forward direction, a forward scatter system is most often preferred for obtaining the greatest signal-to-noise ratio. The system used for this analysis was an off-axis, forward scatter configuration. Off-axis collection angles usually allow good noise isolation by admitting only light scattered at the sample volume and improve measurement resolution by reducing the probe volume length. [Ref. 27]

The first three lenses in the receiving optics were used to collect scattered light from the probe volume and collimate the beam (Figure 2.5). The beam was then directed
to a polarization beamsplitter for separation of the two colors. The two components were then passed through line filters, for blocking ambient light and preventing crosstalk, and to lenses used for focusing the beams into the pinhole aperture of their respective photomultiplier tubes. The photomultiplier tubes converted the light energy into electronic signals which were then passed to signal processing equipment. Preamplifiers were located in close proximity to the photomultiplier tubes and used to increase the signal level before the introduction of additional noise into the cables.

Signal processing was accomplished with Macrodyn counter processors. Counter processors operate by employing a crystal-controlled oscillator to time over a selected number of cycles within the burst signal. The clock count is initiated when the filtered signal exceeds a set threshold. The Doppler frequency is then determined by the time required to count a specified number of cycles. The Macrodyn processors use a 125 MHz clock and count over 8 or 16 cycles, as selected.

The Macrodyn processors use a periodicity check coupled with a three-level validation scheme to reject noise. The periodicity check uses two counters to make period measurements over a different number of cycles, 5 and 9 in this procedure. If the ratio of the two measurements is not within a specified percentage of 5:9, the signal is rejected. Three-level validation requires a signal to exceed a positive
Figure 2.5 Data collection and processing.
threshold level, pass through zero, and then exceed a negative threshold level before the next zero crossing. If these conditions are not met on any cycle the counter will reset and immediately process a new Doppler burst. This method prevents rejection of potentially good signals having noisy cycles at the beginning of the burst.

2. Schlieren System

The Schlieren system included two concave mirrors, each with a 120 inch focal length, a stroboscopic light source, a vertical knife edge, a focusing lens, and a polaroid film support for obtaining photographs of the flow field. The stroboscope, a type 3015 Strobrite, has a maximum output intensity of 200 million beam candles and, using an internal oscillator, can provide flashing rates in excess of 1,000 per second. By adapting a lens cover with a vertical slit to the stroboscope a slit source was obtained and the resolution of the image significantly improved.

To obtain the unsteady photographs a digital comparator was used to trigger the stroboscope and provide the light for the photographic imaging on the polaroid film. The comparator received 14-bit phase input from the optical encoder and provided the triggering pulse when the instantaneous phase angle of the airfoil coincided with the angle specified to the comparator.
C. DATA ACQUISITION AUTOMATION

A Digital VAXstation II minicomputer with graphics workstation was used to automate the data acquisition process. The signal path is illustrated in Figure 2.5 starting from the probe volume, through the signal processing phases, and terminating within computer memory. The main program used in accomplishing this task, 'LDV_Acq', was originally developed to read data from the analog to digital converter. This was later modified to obtain pressure data for calculation of the test section velocity and call supporting subroutines for the acquisition and analysis of the velocity data.

The subroutines assisting with various aspects of the acquisition process are listed below and included in the appendix of this report.

1) HWTRVT - allows control of the traversing mechanism from the computer terminal by sending character data to the interface.

2) HWWA - combined with an internally called subroutine, DAMUX, retrieves data from multiplexer, interprets phase and velocity information, creates data files, and generates histogram arrays and scaling parameters.

3) PT_PLOT - provides graphical display of computed velocity values corresponding to airfoil phase angles.

4) PPLOT - similar to PT_PLOT but provides the additional capability of allowing the user to vary the plotted velocity range.

5) MIST - plots a histogram of the percentage of data points which fall within specified velocity limits.
III. DATA ACQUISITION

A. TEST SECTION VELOCITY

The main program for the acquisition process, 'LDV_ACQ', was responsible for the calculation of test section velocity. In combination with scanivalve positioning subroutines, the program acquired pressure transducer data from 7 ports. As previously discussed, measurements from 2 of the ports were used for calibration. Pressure data from 3 ports was discarded, and the other two provided the static pressure at the entrance to the test section and the total pressure measured at the nozzle inlet. Assuming isentropic, perfect gas conditions, this supplied the necessary parameters for the Mach number computation by employing the following relationship:

\[M = \left(\frac{P_0}{P} \right)^{\frac{1}{\gamma - 1}} - 1 \left(2 - \frac{2}{\gamma - 1}\right)^{\frac{1}{\gamma - 1}} \]

with a value of 1.4 used for \(\gamma \). The test section velocity was then calculated by:

\[V = M \times a \]

where \(a \), the sonic velocity, was obtained as follows:

\[a = \sqrt{\gamma RT} \]

The temperature required for this calculation was read from a wall thermometer in the test cell and entered when prompted by the program.

The velocity values were transferred to data files and later used to normalize the LDV velocity data.
B. SCHLIEREN PHOTOGRAPHY

A qualitative analysis of the steady and unsteady flow fields was conducted at two Mach numbers, 0.3 and 0.5, and angles of incidence varying from 0 to 20 degrees. In accomplishing this, test section Mach number was set by adjusting the wind tunnel throat and verified with Scanivalve pressures and calculations from 'LDV.ACQ'. Final adjustments to the Stoboscope intensity and knife edge were then made to ensure optimum contrast.

C. WAKE VELOCITIES

With the desired wind tunnel conditions established and the probe volume in position for the data point, 'HWWA', a subroutine called by the main program, was employed for raw data acquisition and conversion to velocity and phase information. An internally called subroutine, 'DAMUX', acquired 4 or 6 channels of data, as selected, from the LDV Computer Interface (CI). The CI was capable of transferring either 2, 4, 6, or 8 channels of data, with the first two of the channels reserved for time and status information generated by the CI. During the acquisition of steady state velocities, 4 channels were selected to provide the 2 velocity components in addition to time and status data, which were discarded since they were not relevant for the experiment. For unsteady acquisition, 6 channels of data were transferred to accommodate the additional data channel required for phase input.
As previously mentioned, the signal processors determined the Doppler frequency by using the time required to count a specified number of cycles, 8 for this analysis. This raw data was transferred to the computer in 16 bits, with a 10 bit mantissa, a 4 bit exponent, and 2 nonessential bits used for controlling data flow. Due to the format of the time words, it was necessary to invert and reverse the bits before extracting the exponent and mantissa values. The signal period was then calculated as follows:

\[t_s = \left(\frac{1}{32} \right) (D9D8...D0) \times 2 \]

where D9D8...D0 represented the binary mantissa and EXP was the range selected with the processor, used to divide the number of clock counts in the Doppler burst.

The signal frequency, the inverse of the period, was obtained from:

\[f_s = \frac{(32 \times 1000)}{(2^{\text{EXP}} \times \text{mantissa})} \]

The signal frequency was composed of the Doppler frequency, the 40 MHz shift frequency, and the downmixing frequency. This allowed the Doppler frequency to be deduced as follows:

\[f_d = f_s - f_{\text{shift}} + f_{\text{mix}} \]

The 8 cycles counted within the Doppler signal physically represent 8 fringes crossed by a particle travelling with the flow. Consequently, the velocity component perpendicular to the fringe pattern may be calculated by the product of the Doppler frequency and the fringe spacing. The equation for the latter is:
\[\delta = \frac{\lambda}{2 \cdot \sin(\theta/2)} \]

where \(\lambda \) is the wavelength of the beam and \(\theta \) is the angle between the intersecting beams.

After obtaining a sufficient number of data points at a probe position (2,000 for unsteady flows), the velocity and phase data, as well as the probe position, test section velocity, and mixing frequencies, were stored in files for later analysis. The Taskmaster traverse controller was then used to move the probe volume and data collection continued.

The data acquisition software included two routines for on-line performance checks of the data. 'HIST' was used to provide a histogram of the percentage of data points which occurred within specified velocity limits. Figure 3.1 shows a sample plot provided by the subroutine. This data validation method is most useful for steady flow conditions, in which case a high percentage of data concentrated around the estimated velocity would be a positive indicator. For unsteady analysis 'PT_PLOT' provided a graph of computed velocity values corresponding to airfoil phase angles. With this information available, the data quality could be easily assessed and a determination made regarding the acceptance of these values.
Figure 3.1 Sample histogram.
A. SCHLIEREN PHOTOGRAPHS

The Schlieren photographs obtained from the analysis of the steady flow field were intended to provide information on the parameters corresponding to early flow separation and a reference for comparison with unsteady flows at the same conditions. Steady state separation was first observed at a Mach number of 0.5 and a 10 degree angle of incidence (Figure 4.1). Based on this, the parameters for the unsteady...
analysis were selected to be a Mach number of 0.5 and a phase angle corresponding to a 10 degree angle of incidence. Unsteady flow photographs were then obtained at oscillation frequencies of 5 and 25 Hz for comparison with each other and with wake profiles generated from LDV data (Figures 4.2 and 4.3).

From a comparison of the steady and unsteady photographs, it would appear that oscillating the airfoil reduces the size of the separated wake and, consequently, mitigates the effect of stalling. This is more apparent at the higher frequency.

Figure 4.2 Unsteady flow Schlieren photograph: f=5 Hz, α = 10 degrees.
oscillation, a logical result due to the greater effect of time unsteadiness at higher reduced frequencies.

B. DATA ANALYSIS SOFTWARE

The main program, 'ORGIZE', and its supporting subroutines were designed to provide wake profile plots from the data files generated during acquisition. To accomplish this, the data file corresponding to each point in the profile is input to the software. A series of routines first reorganizes the data files and discards statistically bad data points, those outside of two standard deviations from the
mean. Due to the oscillatory nature of the forcing function producing the unsteady data, a sinusoidal curve fit is then introduced to allow evaluation of the first harmonic of the velocity distribution over the phase. A unique sinusoid is generated for each data point within the profile.

A minor degree of uncertainty is introduced into the velocities by the data interpolation and curve fitting routines discussed above. However, unlike many other velocity measurement techniques, LDV data is obtained randomly due to the random arrival of the seed particles at the probe volume. Without this curve fit, it would be difficult to generate velocity information at the same desired phase angle for each data point in the profile.

During the generation of the wake profile the user is provided a comparison plot of mean values and the sinusoid curve fit. The mean values are provided by 'BDPTS' and computed within each 20 degree phase window, as illustrated in Figure 4.4. This was helpful in ascertaining the quality of the curve fit and, consequently, the quality of the wake profile results.

The data analysis routines are summarized below and included in the appendix of this report.

(1) ORGIZE - main program, calls supporting subroutines: sequentially organizes data to assist with subsequent analysis.

(2) PT_PLOT - provides graph of computed velocity values corresponding to phase.

(3) BDPTS - computes mean and standard deviation of velocities occurring within 20 degree phase windows;
Figure 4.4 Comparison of mean and curve fit.

discards data points outside of two standard deviations of the mean within each of these windows; provides standard deviation plots of data.

(4) AVG - averages data values occurring at same discrete phase.

(5) INTERP - provides a linear interpolation between data, resulting in 180 equally spaced points; necessary for input to FOURIER.

(6) FOURIER - computes coefficients for a sinusoidal curve fit of the data (adapted from June 1977 OCS Airfoil program).

(7) CVFIT - fits sinusoidal curve to velocity data (utilizes FOURIER).
PLOT - provides graphical comparison of curve fit with mean values generated by BDPTS.

PROPLOT - provides wake profile plots.

C. WAKE PROFILES

LDV data was obtained for steady and unsteady flows at a Mach number of 0.5 and a 10 degree angle of incidence. The steady profiles were collected at distances of 0.5, 1.0, and 2.0 inches behind the trailing edge of the airfoil. These values were non-dimensionalized by the chord length of the airfoil and are indicated as such on the profile plots. Due to time limitations, only one data profile was collected for the unsteady case, at two inches behind the trailing edge.

The wake profile plots are presented in the following pages of this section. A lack of data points in the lower part of the flow field will be apparent upon inspection of these results. This was due to a mechanical restriction on the traversing mechanism.

The curve fit of the plotted values of the steady data was approximated and hand drawn to aid the reader in observing the effects of the airfoil in the flow field. The software provides a spline interpolation fit between the data, as used in the unsteady plots. However, due to the amount of data scatter involved, this method was not used for these results.
Figure 4.5 Steady wake profile.
Figure 4.6 Steady wake profile.
Figure 4.7 Steady wake profile.
Figure 4.8 Steady wake profile.
Figure 4.9 Steady wake profile.
Figure 4.10 Steady wake profile.
Figure 4.11 Unsteady wake profile.
Figure 4.12 Unsteady wake profile.
V. CONCLUSIONS AND RECOMMENDATIONS

The purpose of the results obtained during the experimental phase of this thesis was to validate the technique and software developed. This was accomplished when unsteady data, generated by an oscillating airfoil, was successfully acquired, analyzed, and reduced to wake profile plots.

Throughout the course of this investigation hardware problems have posed a significant challenge to acquiring data within the existing time constraints. Consequently, the data obtained was accepted and included in this report without the opportunity to more carefully investigate regions of significant data scatter and improve, or validate, the data plots.

The results produced by these procedures confirm a sound technique, but also reveal several areas in need of additional emphasis. At present, an interpolation subroutine is required to produce data at equally spaced intervals before generation of the curve fitting coefficients by 'FOURIER'. Combined with the inability to utilize a large number of data points (< 300), this limitation will inherently introduce additional uncertainty into the results. A second software modification to be considered is the generation of the velocity data at various phase angles simultaneously. Currently, the data must be processed for each separate phase angle.
desired. This would eliminate the need for storage of large amounts of raw data and significantly reduce the processing time. By increasing the range of vertical movement of the traverse, the mechanical restriction that prevented the acquisition of data in the lower regions of the wake can be eliminated.

Continuation of this study will be accomplished with a newly developed test section currently being installed. This test section will enable schlieren flow visualization and LDV data acquisition at locations over the airfoil which were previously blocked by the mechanical linkage used for supporting and oscillating the airfoil. This, combined with the modifications suggested above, will enable an in-depth analysis of wake and boundary layer characteristics associated with the dynamic stall phenomenon.
APPENDIX
COMPUTER PROGRAMS

PROGRAM LDV ACQ

* Adapted from LABSTAR Example3.1 by S. D. Hedrick in May, 1987 for reading
* A-D data. Modified in August, 1987 to be used as the central program in
* the acquisition of unsteady velocity components with an LDV.

INCLUDE 'syslibrary:LIOSET.FOR'
C declare local variables
INTEGER sys_stat !status set by LIO calls
INTEGER dev_id, clk_id !LIO device ID
INTEGER data_length !number of bytes of data read
INTEGER 1, npt, dnpt
INTEGER chn, natepa, icr
REAL rate, volt(0:23), press(0:23), corfac
REAL sum, mean, calp, conv, amb, temp, mach, velo
CHARACTER*4 ans
CHARACTER*4 clock
LOGICAL home

C declare data buffers
INTEGER 2 raw data(501)
REAL VOLTAGES(501)

OPEN(UNIT=13, FILE='scani.dat', STATUS='NEW')

C write(*,*) 'ENTER A-D CHANNEL TO BE USED (0,1,8,9)'
read(*,*) chn
write(*,*) 'ENTER CLOCK RATE (.01 - 4500 HZ)--ALLOW FOR A',
1 read(*,*) rate
if (rate lt. .01 or. rate gt. 4500) then
write(*,*) 'RATE IS NOT WITHIN SPECIFIED LIMITS'
go to 10
end if
20 write(*,*) 'ENTER NUMBER OF DATA POINTS TO BE COLLECTED',
1 (500 max)
read(*,*) npt
if (npt lt. 1 or. npt gt. 500) then
write(*,*) 'NUMBER OR POINTS IS NOT WITHIN LIMITS'
go to 20
end if
chn = npt + 1
dnpt = npt * 2
write(*,*) 'ENTER CLOCK DEVICE (KZAO,KZBO)'
read(*, '(A4)') clock

C Attach the ADV11-D and set up for queued I/O
sys_stat = LIOSET(1, 'KZAO', 'KZBO')
if (.NOT. sys_stat) CALL LIB$SIGNALL(val(sys_stat))

C Set up the ADV for synchronous transfer on selected channel
Gain of 1
sys_stat = LIOSATTACH(dev_id, 'KZAO', LIOSR_SYNCH, 0)
if (.NOT. sys_stat) CALL LIB$SIGNALL(val(sys_stat))

46
sys_stat = LIOSSET_I(dev_id, LIOSK AD CHAN, 1, chn)
 IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))
 sys_stat = LIOSSET_I(dev_id, LIOSK AD GAIN, 1, 1)
 IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))

Get a raw data buffer.
Length of buffer and returned data length is in bytes.

Attach clock and set rate.

home = .true.
nsteps = 0
Do 40 j=0,7
 call dlllab(home, nsteps, ier)
 sys_stat = LIOSATTACH(clk_id, clock, LIOS_CLKRATE, 1)
 IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))
 sys_stat = LIOSSET_R(clk_id, LIOS_CLK_RATE, 1, rate)
 IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))
 sys_stat = LIOSSET_I(clk_id, LIOSK TRIG, 1, LIOSK IMMEDIATE)
 IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))
 sys_stat = LIOSREAD(dev_id, raw_data, dntpt, data_length, cl)
 IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))
 sys_stat = LIOSDETACH(dev_id, cl)
 IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))

Convert the raw data to voltages.

Call LiSsformat_translate_adc(raw_data, voltages, npt, , ,)

Calculate the mean value of the voltages and detach the clock.

sum = 0.0
Do 30 i=2, npt
 sum = sum + voltages(i)
 30
Continue
mean = sum / float(npt-1)
volt(i) = mean
sys_stat = LIOSDETACH(clk_id, cl)
IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))
Continue

Detach from the A/D.

sys_stat = LIOSDETACH(dev_id, cl)
IF(.NOT. sys_stat) CALL LIBSSIGNAL(val(sys_stat))

Convert scanivalve voltages into units of pressure.

write(*,*) 'ENTER CALIBRATION PRESSURE (in. of Hg)' read(*,*) calp
write(*,*) 'ENTER REQUIRED CORRECTION FACTOR FOR CALIBRATION', 1
write(*,*) calp = calp * corfac
write(*,*) corfac = corfac
write(*,*) write('ENTER ATMOSPHERIC PRESSURE (in. of Hg)', 9)
read(*,*) amb
press(0) = calp

47
press(1) = amb
conv = (press(1)-press(0)) / (volt(1)-volt(0))
do 50 j=2,7
 press(j) = conv * volt(j) + calp - volt(0) * conv
 continue
50 WRITE(*,*) VOLT(0),VOLT(1),VOLT(2),VOLT(7)
 write(10,55)
 format(2X,'PORT',4X,'PRESSURE',//)
do 60 i=0,7
 write(13,'(3X,I2,5X,F9.4)') i, press(i)
 continue
 55 compute test section velocity
 write(*,*)'ENTER AMBIENT TEMPERATURE (deg. F)'
 read(*,*) temp
 mach=sqrt(ab^5.*((press(2)/press(7))**(.4/1.4)-1.))
 velo=mach*sqrt(1.4*53.3*32.174*(temp+459.67))
 write(*,*)'TEST SECTION MACH NUMBER AND VELOCITY--',mach,velo
 continue with LDV data acquisition? (Y/N, DEF=Y)'
 read(*,'(A1)') ans
 if (ans .eq. 'N' .or. ans .eq. 'n') go to 70
 call subroutine to move LDV traversing mechanism and acquire data
 call HWTRVT(velo)
 70 stop
 end
SUBROUTINE H1WA(XPOS,ZPOS,VELO)

ACRONYM: Hardware checkout - test of DRV11-WA

PURPOSE:
For LVIS, HWDVYB drives the acquisition of the LDV data.
It is a test program for the YB driver.

METHOD:
BEGIN
Install loadable drivers if necessary.
Read the various instrument types in succession, skipping those which
are not to be read.
Remove loadable drivers if necessary.
END

PARAMETERS:
ARG DIM TYPE I/O/S DESCRIPTION
COMMONS USED:
FILES USED: None
ERROR HANDLING:
IER = 1 means no "fatal" error.
NOTES:
LOCAL VARIABLES:
VAR DIM TYPE DESCRIPTION
EXTERNAL REFERENCES:
NAME DESCRIPTION AND SOURCE
DVWA Calls DRV11-WA device driver to acquire A/D data.
STANDARDS VIOLATIONS: None.
ENVIRONMENT: DEC VAX/VMS AND FORTRAN 77

DEVELOPMENT HISTORY:
DATE INITIALS DESCRIPTION
07/26/83 TML Adapted from DAPNT
12/12/85 CLH Modified to print results in either
ockal or integer.
02/25/87 GBG Modified for use with DRV11-WA and VMS
05/06/87 CLH Modified to accept "new" DAMUX1.
06/08/87 RRR Modified to subroutine + deleted CLH 5/87 Mod
JUL-AUG, 1987 SDH Modified to calculate velocities using variable
mixing frequency as user input, interpret phase
angle information generated by digital encoder,
transfer test section velocity and probe position
to data file, and generate histogram arrays
and scaling parameters

AUTHOR(S): Ted Lichtenstein, Informatics General Corp.

**

IMPLICIT NONE

49
PARAMETER NRAWMX=80000
PARAMETER LUNTI=5
PARAMETER LUNOUT=6

INTEGER*2 IRAWDT(NRAWMX), IFORM, MUXTIME(16384)
INTEGER*2 RAWDA(20000), RAWDB(20000)
INTEGER STATUS, IER, PHAN
INTEGER NCOLUMN, IYESNO, NRAWIN, I, J
INTEGER MRAWA, MRAWB, MRAWC, MRAWD
INTEGER IRAWD(MRAWA, MRAWB, MRAWC, MRAWD)
INTEGER IRAWD(MRAWA, MRAWB, MRAWC, MRAWD)
REAL FREQ(2), VEL(2), MIXA, MIXB, XPOS, ZPOS, VELO
LOGICAL DATASELCT(3)
CHARACTER*10 INFILE
CHARACTER*10 ANS
REAL*4 YU(160), YV(120), YUL(160), YVL(120), YMAXU, YMAXV
REAL*4 COUNT, XLOW, XHI
REAL X(4000), Y(4000)

INCLUDE '($SSYSSRVNAM)'

WRITE(*,*) 'ENTER DESIRED NAME OF DATA FILE--E.G., LDVXXX.DAF, WHERE THE "XXX" MAY BE USED AS A SERIAL ID FOR THE PROBE POSITION'
READ(*, '(A10)') INFILE
open (unit=11, file=INFILE, status='new')

CONTINUE
* Fill the raw data buffer with this bit pattern:
* "1010101010101010" This equals 125252(8), -21846(10).
DO 200 I = 1, NRAWMX
IRAWDT(I) = '125252'0
200 CONTINUE
DO I = 1, 16384
MUXTIME(I) = '125252'0
MUXSTS(I) = '125252'0
END DO

WRITE(*,*) 'Enter number of words to acquire:
READ(*,*) NCHANS
WRITE (*, 225)
FORMAT ('Enter number of samples:')
READ (*, *) NSAMPLES
IF (NSAMPLES .GT. 20000) THEN
WRITE (*, 226)
FORMAT ('The number of samples must be 20,000 or less.')
GO TO 224 END IF

230 CONTINUE
* Prompt for output format of data:
IFORM=2
IF (IFORM.LT.1 .OR. IFORM.GT.2) GO TO 230

Select the data to be returned.

DATSELECT (1) = .false.
DATSELECT (2) = .false.
DATSELECT (3) = .true.

Prompt for the mixing frequencies selected by user.
WRITE(*,'') 'ENTER MIXING FREQUENCIES FOR EACH COMPONENT - (blue,
orange) - in MHz
READ(*,'') MIXA,MIXB

Read and display the data one sample at a time.
IF (NCHANS .LT. 6) THEN
WRITE(*,'') 'ENTER AIRFOIL PHASE ANGLE (tenths of degrees, 14)'
READ(*,'') PHAN
DO 9 I=1,NSAMPLES
CALL DAMUX(NCHANS,1,DATSELECT,MIXTIME,MUXSTS,IRAWDT,IER)
IRAWDA(I)=IRAWDT(1)
IRAWDB(I)=IRAWDT(2)
IRAWDC(I)=PHAN
9 CONTINUE
GO TO 15 END IF

DO 10 I=1,NSAMPLES
CALL DAMUX(NCHANS,1,DATSELECT,MIXTIME,MUXSTS,IRAWDT,IER)
IRAWDA(I)=IRAWDT(1)
IRAWDB(I)=IRAWDT(2)
IRAWDC(I)=IRAWDT(3)
10 CONTINUE

DO 19 I=1,NSAMPLES
IRAWA=0

PIRAWB=0
PIRAWC=0
PIRAWD=0
PIRAWA=1000*PIRAWB+100*PIRAWC+10*PIRAWD
CONTINUE

DO 20 I=1,NSAMPLES
PIRAWDA(I)=NOT(PIRAWDA(I))
PIRAWDB(I)=NOT(PIRAWDB(I))
PIRAWDTA=0
PIRAWDTB=0
PIRAWDTC=0
PIRAWDTD=0
PIRAWDTF=0
PIRAWDTA=IIBITS(PIRAWDA(I),10,4)
PIRAWDTB=IIBITS(PIRAWDA(I),11,10)
PIRAWDTC=IIBITS(PIRAWDA(I),0,10)
PIRAWDTD=IIBITS(PIRAWDA(I),10,4)
PIRAWDTE=IIBITS(PIRAWDA(I),0,10)
PIRAWDTF=IIBITS(PIRAWDA(I),10,4)
IF (PIRAWDTC.EQ.0) THEN
WRITE(*,*)'PIRAWDTC=0'
GO TO 20
END IF
FREQ(1)=((32.*10.*3.)/FLOAT(PIRAWDTC))-40.*MIXA
PIRAWDTD=IIBITS(PIRAWDB(I),10,4)
PIRAWDTE=IIBITS(PIRAWDB(I),0,10)
PIRAWDTF=IIBITS(PIRAWDB(I),10,4)
IF (PIRAWDTF.EQ.0) THEN
WRITE(*,*)'PIRAWDTF=0'
GO TO 20
END IF
FREQ(1)=((32.*10.*3.)/FLOAT(PIRAWDTF))-40.*MIXB
VEL(1)=FREQ(2)*0.5145/(2.*SIN(TAN(13./(2.*482.6))))
VEL(1)=VEL(1)/.3048
VEL(1)=VEL(1)/.3048
VEL(2)=VEL(2)/.3048

WRITE(11,700) VEL(1),VEL(2),PIRAWDA(I)
CONTINUE
WRITE(11,900) XPOS,ZPOS
WRITE(11,950) VELO,NSAMPLES
WRITE(11,975) MIXA,MIXB
WRITE(*,*)'DO YOU DESIRE A HISTOGRAM OF THE VELOCITIES OBTAINED? (Y/N), DEF=N'
READ(*,'(A1)') ANS
IF (ANS.EQ. 'Y' .AND. ANS.NE. 'Y') THEN
GO TO 35
END IF
CLOSE(UNIT=11)
OPEN(UNIT=11,FILE=INFIL,STATUS='OLD')
DO 40 I=1,NSAMPLES
READ(11,800) X(I),Y(I)
CONTINUE
XLOW=-200
XHI=-195
DO 60 J=1,160
COUNT=0
DO 50 I=1,NSAMPLES
 IF (X(I) .GE. XLOW .AND. X(I) .LT. XHI) THEN
 COUNT=COUNT+1
 END IF
50 CONTINUE

YU(I)=FLOAT(COUNT/NSAMPLES)*100.
XLOW=XLOW+.5
XHI=XHI+.5

Calculating a scaling parameter for the horizontal velocity histogram

DO 62 I=1,160
 YU(I)=YU(I)
62 CONTINUE

DO 63 I=1,160
 DO 65 J=1,159
 IF (YU(J) .LT. YU(J+1)) THEN
 SAVE=YU(J)
 YU(J)=YU(J+1)
 YU(J+1)=SAVE
 END IF
65 CONTINUE
63 CONTINUE

YMAXU=YU(160)+10.0

Calculating a scaling parameter for the vertical velocity histogram

DO 82 I=1,120
 YV(I)=YV(I)
82 CONTINUE

DO 83 I=1,120
 DO 85 J=1,119
 IF (YV(J) .LT. YV(J+1)) THEN
 SAVE=YV(J)
 YV(J)=YV(J+1)
 YV(J+1)=SAVE
 END IF
85 CONTINUE
83 CONTINUE

YMAXV=YV(120)+10.0

CALL HIST(YU,YV,YMAXU,YMAXV)

CLOSE(UNIT=11)
WRITE(*,*) 'DO YOU DESIRE A PLOT OF THE COMPUTED VELOCITY?',
VALUES? (Y/N - DEF=Y)
READ(*,'(A1)') ANS
IF (ANS .EQ. 'N' .OR. ANS .EQ. 'n') THEN
 GO TO 30
END IF
CALL PT_PLOT(NSAMPLES,INFILE)
WRITE(*,*) 'DO YOU DESIRE TO VARY THE PLOTTED VELOCITY RANGE?',
VALUES? (Y/N - DEF=Y)
READ(*,'(A1)') ANS
IF (ANS .EQ. 'N' .OR. ANS .EQ. 'n') GO TO 30
CALL PLOT(NSAMPLES,INFILE)

WRITE(*,*) 'Again?
30 WRITE(*,*) 'Again? (0=NO, 1=YES)
READ (LUNIT,*) YESNO
IF (YESNO .EQ. 1) GO TO 100
RETURN

C * Formats
700 FORMAT('X,9.4,IX,F9.4,IX,F9.4,14)
800 FORMAT('X,F9.4,IX,F9.4)
900 FORMAT('/,,2X,'XPOS=',F6.2,2X,'ZPOS=',F6.2)
950 FORMAT('2X,'TEST SECTION VELOCITY='F5.1,2X,'SAMPLES')
975 FORMAT('2X,'BLUE AND GREEN MIXING FREQUENCIES--',2P,F5.1,'(MHz)')
END
SUBROUTINE PTPLOT(NSAMPLES, INFILE)

* Written by S. D. Hedrick in July, 1987 to plot computed velocity values corresponding to airfoil phase angles. This subroutine is intended to provide the user with graphical information on acquired LDV velocities and assist in making a determination regarding the adequacy of the data obtained at the current probe position.

IMPLICIT NONE
INTEGER NSAMPLES, I
REAL*4 XVAL(4000), YVALU(4000), YVALV(4000), XCONTR(4), YCONTR(4)
CHARACTER*10 INFILE
CHARACTER*11 XLABEL
CHARACTER*15 YLABEL
CHARACTER*19 TITLE
CHARACTER*1 DUMMY
OPEN (UNIT=11, FILE=INFILE, STATUS='OLD')
DO 10 I=1, NSAMPLES
READ(11,100) YVALU(I), YVALV(I), XVAL(I)
XVAL(I)=XVAL(I)/10.0
10 CONTINUE
100 FORMAT(5X,F9.4,1X,F9.4,8X, F4.0)

Set up the coordinate axis

XLABEL='PHASE ANGLE'
YLABEL='VELOCITY (ft/s)'
TITLE='COMPUTED VELOCITIES'
XCONTR(1)=6.0
XCONTR(2)=0.0
XCONTR(3)=360.0
XCONTR(4)=45.0
YCONTR(1)=6.0
YCONTR(2)=-200.0
YCONTR(3)=600.0
YCONTR(4)=100.0
CALL LGPSPLT(1, 'EXSY', XVAL, YVALU, 0, XLABEL, YLABEL, , , XCONTR, 1, YCONTR, , TITLE)

Plot the individual data points on the axis

CALL LGPSPOINT(1, XVAL, YVALU, 03, 3, NSAMPLES, , ,)
CALL LGPSPOINT(1, XVAL, YVALV, 03, 4, NSAMPLES, , ,)
CALL LGPSPUT_TEXT(1,4.5,5.75,' * U-COMPONENT', ,)
CALL LGPSPUT_TEXT(1,4.5,5.5,'0 V-COMPONENT', ,)

WRITE(*,*), 'Press <CR> to terminate plot'
READ(*,200) DUMMY
200 FORMAT(A1)
CALL LGPSTERMINATE_PLOT(1,1)
CLOSE(UNIT=11)
RETURN
END
SUBROUTINE PPLT(NSAMPLES, INFILE)
IMPLICIT NONE
INTEGER NSAMPLES, I
REAL VMIN, VMAX, INTV
REAL*4 XVAL(4000), YVALU(4000), YVALV(4000), XCONTR(4), YCONTR(4)
CHARACTER*10 INFILE
CHARACTER*11 XLABEL
CHARACTER*15 YLABEL
CHARACTER*19 TITLE
CHARACTER*1 DUMMY
OPEN (UNIT=11, FILE=INFILE, STATUS='OLD')
DO 10 I=1,NSAMPLES
READ(11,100) YVALU(I), YVALV(I), XVAL(I)
XVAL(I) = XVAL(I) / 10.0
10 CONTINUE
100 FORMAT (5X, F9.4, 1X, F9.4, 8X, F4.0)

C Set up the coordinate axis
WRITE(*,*) 'ENTER VELOCITY RANGE DESIRED (min, max)'
READ(*,*) VMIN, VMAX
INTV = (VMAX - VMIN) / 5.
XLABEL = 'PHASE ANGLE'
YLABEL = 'VELOCITY (ft/s)'
TITLE = 'COMPUTED VELOCITIES'
XCONTR(1) = 6.0
XCONTR(2) = 0.0
XCONTR(3) = 360.0
XCONTR(4) = 45.0
YCONTR(1) = 6.0
YCONTR(2) = VMIN
YCONTR(3) = VMAX
YCONTR(4) = INTV
CALL LGPSPLOT(1, 'EXSY', XVAL, YVALU, 0, XLABEL, YLABEL, , , , XCONTR,
1
, YCONTR, , TITLE)

C Plot the individual data points on the axis
CALL LGPSPPOINT(1, XVAL, YVALU, .03, 3, NSAMPLES, ,)
CALL LGPSPPOINT(1, XVAL, YVALV, .03, 4, NSAMPLES, ,)
CALL LGPSPUTTEXT(1, .05, , , 'ASTERISK-U COMPONENT', ,)
CALL LGPSPUTTEXT(1, .05, , , 'CIRCLE-V COMPONENT', ,)
WRITE(*,*) 'Press <CR> to terminate plot'
READ(*,200) DUMMY
200 FORMAT (A1)
CALL LGP$TERMINATE_PLOT(1,1)
CLOSE(UNIT=11)
RETURN
END
SUBROUTINE HIST(YU,YV,YMAXU,YMAXV)

* Written by S. D. Hedrick in August, 1987 to plot a histogram of the percentage of data points which fall within specified velocity limits. The subroutine produces histograms for each of two velocity components. Scaling parameters for the vertical axis and data arrays are computed within a preceding subroutine (HWWA).

IMPLICIT NONE
REAL*4 YU(160),YV(120),XCONTRU(4),XCONTV(4),YCONTRU(4)
REAL*4 YMAXU,YMAXV,YCONTRV(4)
REAL XLOW,XHI,XLOWU(160),XHIU(160),XLOWV(120),XHIV(120)
INTEGER I
CHARACTER*29 UTITLE
CHARACTER*27 VTITLE
CHARACTER*10 XLABEL
CHARACTER*18 YLABEL
CHARACTER*1 DUMMY

Setting up the coordinate axis

XLABEL='VELOCITIES'
YLABEL='PERCENTAGE OF DATA'
UTITLE='HORIZONTAL VELOCITY HISTOGRAM'
VTITLE='VERTICAL VELOCITY HISTOGRAM'
XCONTRU(1)=6.0
XCONTRU(2)=200.0
XCONTRU(3)=600.0
XCONTRU(4)=1000.0
XCONTV(1)=6.0
XCONTV(2)=300.0
XCONTV(3)=1000.0
XCONTV(4)=1000.0
YCONTRU(1)=6.0
YCONTRU(2)=0.0
YCONTRU(3)=YMAXU
YCONTRU(4)=10.0
YCONTV(1)=6.0
YCONTV(2)=0.0
YCONTV(3)=YMAXV
YCONTV(4)=10.0
CALL LGPSPL(1,'IXSY',,YU,0,XLABEL,YLABEL,,XCONTRU,
1 YCONTRU,,UTITLE)

Setting up arrays for horizontal and vertical histogram bar parameters

XLOW=-200.0
XHI=-195.0
DO 10 I=1,160
XLOWU(I)=XLOW
XHIU(I)=XHI
XLOW=LOW+5.0
XHI=XHI+5.0
10 CONTINUE
XLOW=-300.0
XHI=-295.0
DO 20 I=1,120
XLOWV(I)=XLOW
Ploting the horizontal velocity histogram

CALL LGPSHIST(1,XLOW, XHI, YU, 160, , 2)
WRITE(*,'(A)') 'PRESS <CR> TO TERMINATE PLOT'
READ(*, '(A)') DUMMY
CALL LGPSTERMINATE_PLOT(1,1)

Repeating the procedures to plot the vertical velocity histogram

CALL LGPSPLOT(1,'iXY', YV, XLABEL, YLABEL, , , XCONTRV,
1 YCONTRV, YTITLE)
CALL LGPSHIST(1,XLOWV, XHIV, YV, 120, , 2)
WRITE(*,*) 'PRESS <CR> TO TERMINATE PLOT'
READ(*, '(A)') DUMMY
CALL LGPSTERMINATE_PLOT(1,1)
RETURN
END
* Written by S. D. Hedrick in July, 1987 to sequentially organize data files to obtain a least value of phase angle (third column of data) and associated velocities, at top of file. This rearrangement of data was desired to assist with subsequent manipulation and analysis. In September, 1987, this routine was incorporated as the central program in the processing and analysis of unsteady LDV velocity data generated by an oscillating airfoil. The program calls assisting subroutines to discard bad data points and provide wake profile plots.

IMPLICIT NONE
REAL X(4000), Y(4000), XPOS, ZPOS, VELO, UVEL, VVEL, UNDIM(30), VNDIM(30)
REAL PIPO(30), SAV1, SAV2, MENU, MENV, PREJ, MEANU(18), MEANV(18)
REAL MPHAVG(18)
INTEGER Z(4000), NSAMPLES, PHASA, I, J, K, M, SAVE, REJ, STDY
CHARACTER*10 INFILE
CHARACTER*1
ANS
STDY-0
WRITE(*,*) 'IS ANALYSIS FOR NON-OSCILLATING AIRFOIL? (Y/N)'
READ(*, AI) ANS
IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') STDY=1
WRITE(*,*) 'ENTER NUMBER OF DATA ACQUISITION POINTS IN PROFILE', 1 (30 maximum)
READ(*,*) N
WRITE(*,*) 'ENTER PHASE ANGLE DESIRED FOR ANALYSIS (degrees)' READ(*,*) PHASA
DO 70 K-1, NSAMPLES
WRITE(*,*) 'ENTER NAME OF INPUT DATA FILE (LDVXXX.DAT)' READ(*, AI) INFILE
WRITE(*,*) 'ENTER NUMBER OF SAMPLES IN DATA FILE'
READ(*,*) NSAMPLES
OPEN(UNIT=11, FILE=INFILE, STATUS='OLD')
DO 10 I-1, NSAMPLES
READ(11, 100) X(I), Y(I), Z(I)
10 CONTINUE
READ(11, 200) XPOS, ZPOS
READ(11, 300) VELO
IF (STDY .EQ. 1) THEN
CLOSE(UNIT=11)
CALL STEADY(NSAMPLES, INFILE, MENU, MENV)
UNDIM(K)=MENU/VELO
VNDIM(K)=MENV/VELO
GO TO 80
END IF
M=NSAMPLES-1
DO 20 J=1, NSAMPLES
DO 30 I=1, M
IF (Z(I+1) .LT. Z(I)) THEN
SAVE=Z(I)
SAV1=X(I)
SAV2=Y(I)
Z(I)=Z(I+1)
X(I)=X(I+1)
Y(I)=Y(I+1)
Z(I+1)=SAVE
X(I+1)=SAV1
Y(I+1)=SAV2
END IF
20 CONTINUE
30 CONTINUE
I r
CONTINUE

OPEN(UNIT=15, FILE=INFILE, STATUS='OLD')
DO 40 I=1, NSAMPLES
WRITE(15,100) X(I), Y(I), Z(I)
40 CONTINUE
CLOSE(UNIT=15)
WRITE(*,*) 'DO YOU DESIRE A VELOCITY/PHASE PLOT OF DATA? (Y/N--DEF=Y)'
READ(*,'(A1)') ANS
IF (ANS .EQ. 'N' .OR. ANS .EQ. 'n') GO TO 50
CALL PT PLOT(NSAMPLES, INFILE)
50 CALL BOPTS(NSAMPLES, INFILE, MENU, MENV, REJ, PREJ, MHA)
1 CALL AVG(NSAMPLES, INFILE)
WRITE(*,*) 'DO YOU DESIRE INTERPOLATION OF THE DATA?'
READ(*,'(A1)') ANS
IF (ANS .EQ. 'N' .OR. ANS .EQ. 'n') GO TO 55
CALL INTERP(NSAMPLES, INFILE)
55 CALL CVFIT(NSAMPLES, INFILE, PHASE, VVL, VVL, RENU, MENV, MEAN, MHA)
ZPOS(K)=ZPOS(K)-VELO*VND(K)
CONTINUE
CALL PROPLOT(UNDIM, VNDIM, ZPO, XPOS, N)

Format statements
100 FORMAT(5X,F9.4,1X,F9.4,8X,14)
200 FORMAT(/,7X,F6.2,7X,F6.2)
300 FORMAT(2X,F5.1)
STOP
END
SUBROUTINE BDPTS(NSAMPLES,INFILE,MENU,REJ,PREJ
MEANU,MEANV,MPHAVG
REAL X(4000),Y(4000),MEANU(18),MEANV(18),STDUV(18)
REAL STDVU(18),MPHAVG(18),MINU,MINV,MAXU,MAXV,MEANU,MEANV
INTEGER Z(4000),PHASE,PHASEB,SUM,COUNT,NSAMPLES,NSAMP,REJ
REAL*4 XCONTR(4),YCONTR(4),PREJ
CHARACTER*10 INFIL, DUMMY, DUMMY
CHARACTER*11 ANS, DUMMY, DUMMY
CHARACTER*11 XLABEL
CHARACTER*19 YLABEL
CHARACTER*18 TITLE
OPEN(UNIT=15,FILE=INFILE,STATUS='OLD')
NSAMP = NSAMPLES
DO 10 I= 1,NSAMP
READ(15,100) X(I),Y(I),Z(I)
10 CONTINUE
100 FORMAT(5X,F9.4,1X,F9.4,8X,4)
PHASEA=0
PHASEB=200
DO 20 I=1,18
SUMU=0.
SUMV=0.
PHAVG=0.
DO 30 J=1,NSAMPLES
IF (Z(J) .LE. PHASEB .AND. Z(J) .GE. PHASEA) THEN
SUMU = SUMU + X(J)
SUMV = SUMV + Y(J)
PHAVG = PHAVG + (FLOAT(Z(J))/10.)
SUM = SUM + 1
END IF
30 CONTINUE
IF (SUM .EQ. 0) THEN
MEANU(1)=0.
MEANV(1)=0.
MPHAVG(1)=1.0/FLOAT(PHASEA)/100.10.
VARU=0.
VARV=0.
GO TO 40
END IF
MEANU(1) = SUMU/FLOAT(SUM)
MEANV(1) = SUMV/FLOAT(SUM)
MPHAVG(1) = PHAVG/FLOAT(SUM)
VARU=0.
VARV=0.
DO 40 J=1,NSAMPLES
IF (Z(J) .LE. PHASEB .AND. Z(J) .GE. PHASEA) THEN
A1=X(J)-MEANU(1)
A2=Y(J)-MEANV(1)
B1=A1**2/FLOAT(SUM)
B2=A2**2/FLOAT(SUM)
VARU = VARU + B1
VARV = VARV + B2
END IF
40 CONTINUE
STDVU(1)=SORT(VARU)
STDVV(1)=SORT(VARV)
PHASEA=PHASEA+200
PHASEB=PHASEB+200
CONTINUE
WRITE(*,*) 'DO YOU DESIRE A STANDARD DEVIATION PLOT? (Y/N - DEF=Y)'
READ(*,200) ANS
IF (ANS .EQ. 'N' .OR. ANS .EQ. 'n') THEN
 GO TO 50
END IF

Setting up the coordinate axis for the plot
XLABEL='PHASE ANGLE'
YLABEL='HORIZONTAL VELOCITIES'
YLABEL='VERTICAL VELOCITIES'
TITLE='STANDARD DEVIATION'
XCONTR(1)=6.0
XCONTR(2)=0.0
XCONTR(3)=360.0
XCONTR(4)=45.0
YCONTR(1)=6.0
YCONTR(2)=-200.0
YCONTR(3)=600.0
YCONTR(4)=100.0
CALL LGPSPLOT(1,'EXSY',MPH0AVG,MEANU,0,XLABEL,YLABEL, , ,XCONTR,
 1
 YCONTR, ,TITLE)

Plotting the horizontal velocity data points on the axis
CALL LGPSPOINT(1,MPH0AVG,MEANU,03,4,18, ,)

Plotting the horizontal standard deviation
CALL LGPSSTDDEV(1,MPH0AVG,MEANU,STDVU,18,)
WRITE(*,*) 'PRESS <CR> TO TERMINATE PLOT'
READ(*,200) DUMMY
CALL LGPSTERMINATE_PLOT(1,1)

Plotting the vertical standard deviation
CALL LGPSPLOT(1,'EXSY',MPH0AVG,MEANV,0,XLABEL,YLABEL, , ,XCONTR,
 1
 YCONTR, ,TITLE)
CALL LGPSPOINT(1,MPH0AVG,MEANV,03,4,18, ,)
CALL LGPSSTDDEV(1,MPH0AVG,MEANV,STDVV,18,)
WRITE(*,*) 'PRESS <CR> TO TERMINATE PLOT'
READ(*,200) DUMMY
CALL LGPSTERMINATE_PLOT(1,1)

COUNT=1
PHASEA=0
PHASEB=200
DO 60 I=1,118
 MINU=MEANU(I)-2.0*STDVU(I)
 MINV=MEANV(I)-2.0*STDVV(I)
 MAXU=MEANU(I)+2.0*STDVU(I)
 MAXV=MEANV(I)+2.0*STDVV(I)
 DO 70 J=1,NSAMPLES
 IF (Z(J) .LE. PHASEB .AND. Z(J) .GE. PHASEA) THEN
 IF (X(J) .LT. MINU .OR. X(J) .GT. MAXU) THEN
 COUNT=COUNT+1
 ELSE
 IF (Z(J) .EQ. 1) GO TO 70
 END IF
 END IF
 IF (J .EQ. NSAMPLES) GO TO 70
60 CONTINUE
70 WRITE(*,*) 'PRESS <CR> TO TERMINATE PLOT'
READ(*,200) DUMMY
CALL LGPSTERMINATE_PLOT(1,1)
DO 80 K=0, J-2
 X(J,K)=X(J,K-1)
 Y(J,K)=Y(J,K-1)
 Z(J,K)=Z(J,K-1)
80 CONTINUE
 GO TO 70
END IF
IF (Y(J) .LT. MINV .OR. Y(J) .GT. MAXV) THEN
 COUNT=COUNT+1
END IF
IF (J .EQ. 1) GO TO 70
DO 85 K=0, J-2
 X(J,K)=X(J,K-1)
 Y(J,K)=Y(J,K-1)
 Z(J,K)=Z(J,K-1)
85 CONTINUE
END IF
70 CONTINUE
 PHASEA=PHASEA+200
 PHASEB=PHASEB+200
60 CONTINUE
 CLOSEUNIT=15)
 OPENUNIT=12, FILE=INFILE, STATUS='OLD')
 DO 90 I=COUNT, NSAMPLES
 WRITE12, (100, X(I), Y(I), Z(I))
90 CONTINUE
 NSAMPLES=NSAMPLES+1-COUNT
 CLOSEUNIT=12)
 OPENUNIT=13, FILE=INFILE, STATUS='OLD')
 SUU=0.
 SUV=0.
 DO 95 I=1, NSAMPLES
 READ13, (100, X(I), Y(I), Z(I))
 SUU=SUU+X(I)
 SUV=SUV+Y(I)
95 CONTINUE
 NSAMPLES=NSAMPLES+1-NSAMPLES
 MENV=SUU/NSAMPLES
 PHASEA=0
 PHASEB=200
 DO 96 I=1, 18
 SUM=0
 SUMU=0.
 SUMV=0.
 PHAVG=0.
 IF (SUM .EQ. 0) THEN
 MEANU(I)=0.
 MEANV(I)=0.
 MPHAVG(I)=0.
 GO TO 98
 END IF
 MEANU(I)=SUMU/(FLOAT(SUM))
 MEANV(I)=SUMV/(FLOAT(SUM))
 MPHAVG(I)=PHAVG/(FLOAT(SUM))
98 PHASEA=PHASEA+200
 PHASEB=PHASEB+200
96 CONTINUE
RETURN
END
SUBROUTINE AVG(NSAMPLES, INFILE)
REAL X(4000), Y(4000), Z(4000), COUNT, SUM, NSAMPLES
INTEGER NSAMPLES, COUNT, SUM, NSAMPLES
CHARACTER*10 FILE
FILE = 'INFILE'
COUNT = NSAMPLES - 1
OPEN(UNIT=12, FILE=INFILE, STATUS='OLD')
DO 10 I = 1, NSAMPLES
READ(12, 100) X(I), Y(I), Z(I)
10 CONTINUE
FORMAT(5X, F9.4, 1X, F9.4) C, X(I), Y(I), Z(I)
DO 20 I = 1, NSAMPLES - 1
IF (Z(I) .EQ. Z(I-1) .AND. Z(I+1) .NE. Z(I)) THEN
COUNT = COUNT + 1
X(I) = (X(I-1) + X(I)) / 2.0
Y(I) = (Y(I-1) + Y(I)) / 2.0
DO 30 J = 0, I - 2
X(I-J) = X(I-J-1)
Y(I-J) = Y(I-J-1)
Z(I-J) = Z(I-J-1)
30 CONTINUE
END IF
20 CONTINUE
IF (Z(NSAMPLES - 1) .EQ. Z(NSAMPLES)) THEN
SUM = 1
DO 25 J = 2, NSAMPLES - 1
IF (Z(J) .EQ. Z(J-1)) THEN
SUM = SUM + 1
END IF
25 CONTINUE
DO 27 J = 1, SUM
X(I) = X(I + SUM) / (I + SUM)
Y(I) = Y(I + SUM) / (I + SUM)
27 CONTINUE
DO 28 J = 1 - 1, 1
X(I+SUM-J) = X(I-J)
Y(I+SUM-J) = Y(I-J)
Z(I+SUM-J) = Z(I-J)
28 CONTINUE
COUNT = COUNT + SUM
END IF
20 CONTINUE
CLOSE(UNIT=12)
OPEN(UNIT=14, FILE=INFILE, STATUS='OLD')
DO 40 I = COUNT, NSAMPLES
WRITE(14, 100) X(I), Y(I), Z(I)
40 CONTINUE
NSAMPLES = NSAMPLES - 1 - COUNT
CLOSE(UNIT=14)
RETURN
END
SUBROUTINE INTERP(NSAMPLES, INFILE)
IMPLICIT NONE
CHARACTER*10 INFILE
REAL X(3600), Y(3600)
INTEGER Z(3600), NSAMPLES, I, J, COUNT, NSA, FAC
CHARACTER*1 ANS
OPEN(UNIT=11, FILE=INFILE, STATUS='OLD')
DO 10 I=1, NSAMPLES
READ(11, 100) X(I), Y(I), Z(I)
10 CONTINUE
COUNT=0
NSA=NSAMPLES
DO 20 I=1, 3600
IF (COUNT .GE. NSA) THEN
 Z(I)=I-1
 X(I)=(X(I)-X(I-1))/(Z(I)-Z(I-1))
 Y(I)=(Y(I)-Y(I-1))/(Z(I)-Z(I-1))
 NSAMPLES=NSAMPLES+1
GO TO 20
END IF
IF (Z(I) .EQ. I-1) COUNT=COUNT+1
IF (Z(I) .NE. I-1) THEN
 NSAMPLES=NSAMPLES+1
 DO 30 J=0, NSAMPLES-I-1
 X(NSAMPLES-J)=X(NSAMPLES-J-1)
 Y(NSAMPLES-J)=Y(NSAMPLES-J-1)
 Z(NSAMPLES-J)=Z(NSAMPLES-J-1)
 30 CONTINUE
END IF
20 CONTINUE
CLOSE(UNIT=11)
WRITE(*, 'A1') 'DO YOU DESIRE TO REDUCE THE NUMBER OF INTERPOLATED DATA POINTS BY AN INTEGER FACTOR OF 3600? (Y/N)'
READ(*, 'A1') ANS
IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') THEN
 READ(*, '*') FAC
 FAC=20
 DO 34 I=FAC, NSAMPLES, FAC
 WRITE(12, 100) X(I), Y(I), Z(I)
 34 CONTINUE
 NSAMPLES=3600/FAC
 CONTINUE
END IF
C DO 40 I=1, NSAMPLES
C WRITE(12, 100) X(I), Y(I), Z(I)
C 40 CONTINUE
CLOSE(UNIT=12)
RETURN
END
SUBROUTINE FOURIER(F,M,A,B,N)

DIMENSION F(0:M), FA(0:300), FB(0:300)

DATA PI/3.14159265,
H=2*PI/M

DATA TYPE, H

J=0

DO 2 I=0,M

C=4

IF (I .EQ. J) C=2

IF (I .EQ. J) J=J+2

FA(I)=F(I)*COS(N*M+I)

FB(I)=F(I)*SIN(N*M+I)

IF (I .EQ. M) T3=FA(I)

IF (I .EQ. M) TT3=FB(I)

IF (I .EQ. M-1) T2=FA(I)

IF (I .EQ. M-1) TT2=FB(I)

IF (I .EQ. M-2) T1=FA(I)

IF (I .EQ. M-2) TT1=FB(I)

IF (I .EQ. M-3) TO=FA(I)

IF (I .EQ. M-3) TT0=FB(I)

IF (I .EQ. 0) GO TO 2

FA(I)=FA(I-1)+C*FA(I)

FB(I)=FB(I-1)+C*FB(I)

2 CONTINUE

A=H/3./PI*(FA(M)-T3)

B=H/3./PI*(FB(M)-TT3)

IF (J .NE. M+1) GO TO 3

A=H/3./PI*(FA(M)-4.*T3-2.*T2-4.*T1-T0)

A=A-3.*H/8./PI*(T0+3.*T1+3.*T2+T3)

B=H/3./PI*(FB(M)-4.*TT3-2.*TT2-4.*TT1-TT0)

B=B-3.*H/8./PI*(TT0+3.*TT1+3.*TT2+TT3)

3 CONTINUE

RETURN

END
SUBROUTINE CVFIT(NSAMPLES, INFILE, PHASA, UVL, VVL, MENU, MEANU, MEANV, MPHAVG)

* Written by S. D. Hedrick in October, 1987 to fit a sinusoidal curve to LDV velocity data generated by an oscillating airfoil. The subroutine, utilizing FOURIER, adapted from June 1977 OCS Airfoil program, fits a single cycle sine wave to the data and computes the u- and v-velocity components at a phase angle specified for the analysis.

IMPLICIT NONE
CHARACTER*1 ANS DUMMY
CHARACTER*10 INFILE
INTEGER NSAMPLES, IPHASA, NSA REJARG
REAL FU(0:3600), FV(0:3600), AU, AV, BU, BV, PI, X(3600), Y(3600)
REAL UVL, VVL, MENU, MEANU, MEANV, MPHAVG
DATA PI '3.1415927/
WRITE(*,* 'DESIRE A VELOCITY/PHASE PLOT OF THE REFINED DATA?'
READ(*,* 'Y/N--DEF=Y')
IF (ANS .EQ. 'N' OR. ANS .EQ. 'n') GO TO 7
 CALL RPLOT(NSAMPLES, INFILE, PREJ)
7 OPEN(UNIT=11, FILE=INFILE, STATUS='OLD')
DO 5 I=1, NSAMPLES
5 CONTINUE
READ(11,100) X(I), Y(I)
100 FORMAT(*X,F9.4,1X,F9.4)
CLOSE(UNIT=11)
DO 10 I=1, NSAMPLES
FU(I)=X(I)
FV(I)=Y(I)
10 CONTINUE
NSA=NSAMPLES-1
CALL FOURIER(FU, NSA, AU, BU, 1)
CALL FOURIER(FV, NSA, AV, BV, 1)
DO 20 I=0, NSA
FU(I)=MENU*AU*COS((2.*PI/FLOAT(NSAMPLES))*FLOAT(I))
FV(I)=MENU*AV*COS((2.*PI/FLOAT(NSAMPLES))*FLOAT(I))
BV=SVIN((2.*PI/FLOAT(NSAMPLES))*FLOAT(I))
20 CONTINUE
WRITE(*,* 'PLOTS WILL NOW BE PROVIDED TO COMPARE SINUSOID WITH',
READ(*,* 'VELOCITY DATA. PRESS <CR> TO CONTINUE.'
CALL PLOT(NSAMPLES, INFILE, FU, FV, MENU, MEANU, MEANV, MPHAVG)
ARG=NSAMPLES*(FLOAT(PHASA)/360.)
WRITE(*,* 'ARG = ', ARG)
UVL=FU(ARG)
VVL=FV(ARG)
RETURN
END
SUBROUTINE PLOT(NSAMPLES, INFILE, FU, FV, MENU, MEANV, MEANU,
 1 MEANV, MPHAVG)

* Written by S. D. Hedrick in October, 1987 to plot a comparison of velocity
* data and a sinusoidal curve fit.

IMPLICIT NONE
INTEGER NSAMPLES, I, BOUND, STOPU, STOPV
REAL*4 XVAL40001, YVALU40001, YVALV40000, XCONTR(4), YCONTU(4)
REAL*4 YMINU, YMAXU, YMINV, YMAXV, MENU, MEANV
CHARACTER*10 INFILE
CHARACTER*11 XLABEL
CHARACTER*15 YLABEL
CHARACTER*21 UTITLE
CHARACTER*19 VTITLE
CHARACTER*1 DUMMY
OPEN(UNIT=11, FILE=INFILE, STATUS='OLD')
DO 10 I=1, NSAMPLES
 READ(11,100) YVALU(I), YVALV(I), XVAL(I)
 CONTINUE
10 CONTINUE
100 FORMAT(5X,F9.4,1X,F9.4,8X,F4.0)
XLABEL='PHASE ANGLE'
YLABEL='VELOCITY (ft/s)'
UTITLE='HORIZONTAL VELOCITIES'
VTITLE='VERTICAL VELOCITIES'
YMINU=MENU-150.
YMAXU=MENU+150.
YMINV=MENU-150.
YMAXV=MENU+150.
XCONTR(1)=6.0
XCONTR(2)=0.0
XCONTR(3)=360.0
XCONTR(4)=45.0
YCONTU(1)=6.0
YCONTU(2)=YMINU
YCONTU(3)=YMAXU
YCONTU(4)=50.0
YCONTV(1)=6.0
YCONTV(2)=YMINV
YCONTV(3)=YMAXV
YCONTV(4)=50.0
CALL LGPS(PLOT(1, 'ESY', XVAL, FV, NSAMPLES, XLABEL, YLABEL), . .
 1 XCONTR, YCONTU, UTITLE)
CALL LGPS(PLOT(1, MPHAVG, MEANV, .03, 3, .18, . .
 1 XCONTR, YCONTV, VTITLE)
WRITE(*,'*') '* Press <CR> to terminate plot'
READ(*,200) DUMMY
CALL LGPST(RMINATE PLOT(1,1)
CALL LGPS(PLOT(1, 'ESY', XVAL, FU, NSAMPLES, XLABEL, YLABEL), . .
 1 XCONTR, YCONTU, UTITLE)
 CALL LGPS(PLOT(1, MPHAVG, MEANV, .03, 3, .18, . .
 1 XCONTR, YCONTV, VTITLE)
 WRITE(*,'*') '* Press <CR> to terminate plot'
 READ(*,200) DUMMY
200 FORMAT(11)
CALL LGPST(RMINATE PLOT(1,1)
CLOSE(UNIT=11)
RETURN
SUBROUTINE PROPLOT(UNDIM, VNDIM, ZPO, XPOS, N)
IMPLICIT NONE
REAL*4 UNDI, M1, VNDI, ZPO, XCONTU, XCONTV(4)
REAL*4 XCONTR(4), UNDIM(3000), VNDIM(3000), ZPO3000)
REAL*4 XPOS
INTEGER N
REAL*4 XLABEU, XLABEV
REAL*4 YCONTR
REAL*4 XCONTU, XCONTV
REAL*4 XPO, XPOS
CHARACTER*29 XLABEU, XLABEV
CHARACTER*31 YLABEL
CHARACTER*25 UITLE
CHARACTER*25 VITLE
CHARACTER*9 XPO
CHARACTER*6 XPOS
REAL*4 XLABEU = 'X-AXIS VELOCITY RATIO U/INFIN';
REAL*4 XLABEV = 'Y-AXIS VELOCITY RATIO V/INFIN';
YLABEL = 'PROBE POSITION IN. FROM CENTER';
UITLE = 'HORIZONTAL VELOCITY PROFILE';
VITLE = 'VERTICAL VELOCITY PROFILE';
XPOS = XPOS(30)
WRITE UNIT=16, FMT='(F4.1)', XPOS
XPO = X PO
XCONTU 1 = .0
XCONTU 2 = 0.0
XCONTU 3 = 0.2
XCONTU 4 = 0.4
XCONTV 1 = 0.0
XCONTV 2 = -0.7
XCONTV 3 = -0.7
XCONTV 4 = 0.2
XCONTR 1 = 0.0
XCONTR 2 = 0.0
XCONTR 3 = 1.2
XCONTV 4 = 1.2
CALL LZPSPLCT(',EXSY',UNDIM,ZPO,0,XLABEU,YLABEL,
XCONTU,YCONTR,UITITLE)
CALL LZPSPLINT(1, VNDIM,ZPO,0,3,3,N...)
CALL LZPSPUTCTEXT(1, 4,5,5,XP0,
CALL LCPSPLOT(1,'EXSY',UNDIM,ZPO,0,XLABEU,YLABEL,
XCONTU,YCONTR,UITITLE)
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Recipient</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Defense Technical Information Center</td>
<td>Cameron Station, Alexandria, Virginia 22304-6145</td>
</tr>
<tr>
<td>2.</td>
<td>Library, Code 0142</td>
<td>Naval Postgraduate School, Monterey, California 93943-5000</td>
</tr>
<tr>
<td>3.</td>
<td>Satya Bodapati, Code 67 Bu</td>
<td>Department of Aeronautics, Naval Postgraduate School, Monterey, California 93943-5000</td>
</tr>
<tr>
<td>4.</td>
<td>M. F. Platzer, Chairman</td>
<td>Department of Aeronautics, Naval Postgraduate School, Monterey, California 93943-5000</td>
</tr>
<tr>
<td>5.</td>
<td>Steven D. Hedrick</td>
<td>608 Airwood Dr. W. E. Alton, Illinois 62024</td>
</tr>
<tr>
<td>6.</td>
<td>D. P. Bencze</td>
<td>Chief, Applied Aerodynamics Branch, NASA Ames Research Center (M. S. 227-6), Moffett Field, California 94035</td>
</tr>
<tr>
<td>7.</td>
<td>Chief, Fluid Mechanics Laboratory</td>
<td>NASA Ames Research Center (M. S. 260-1), Moffett Field, California 94035</td>
</tr>
<tr>
<td>9.</td>
<td>Dr. M. S. Chandrasekhar</td>
<td>NASA Ames Research Center (M. S. 260-1), Moffett Field, California 94035</td>
</tr>
</tbody>
</table>
10. Directorate of Aerospace Sciences
 Attn: Hank E. Helin, Program Manager
 AFOSR/NA
 Bolling Air Force Base
 Washington, DC 20332-6448

11. Naval Air Systems Command
 Attn: Harry Berman, Program Manager
 AIR-931K
 Washington, DC 20341-9320

12. Office of Naval Research
 Attn: Spiro Lekoudis, Program Manager
 Code 1132F
 800 North Quincy Street
 Arlington, Virginia 22217-5000

13. David Taylor, NSRDC, Code 8
 Attn: Jim Nichols
 Aviation and Surface Effects Department
 Bethesda, Maryland 20084
END
DATE
FILM
4-88
DTIC