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Preface

The purpose of this study was to examine the performance of distributed adap-

tive routing algorithms on concurrent class computers. The Intel Personal Super-

Computer (iPSC) was used as the test computer system. This study was limited to

implementing the routing algorithm at the applications layer of the iPSC. Functions

to interface between a user process and the routing process were written to imitate

the current system message passing functions. !
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Abstract
The purpose of this study was to examine the use of distributed adaptive rout-

ing algorithms on concurrent class computers. The Intel Personal SuperComputer

(iPSC) was used as the test computer system. The implemented routing algorithm

allowed each node to select the next node based on two criteria. The first criteria

was the fewest number of hops; the second was the smallest delay time.

This study was limited to the comparison of a distributed adaptive routing

algorithm, implemented at the applications layer, with the current static routing

and with a simulation of the current routing implemented at the applications layer.

The comparsion with the current routing algorithm provides a measure of the penalty

for the implementation at the applications layer. The comparsion with the simulated

current static routing provides a measure of the possible performance gain had the

'I €adaptive routing algorithm been implemented at the network layer.

In all three configurations were tested to formulate the comparisons. Each

configuration was comprised of four processes: a Host Process, a Routing Process. a

Ring Control Process, and a Network Loading Process. The Host Process controlled

the loading of the processes onto the iPSC, the Routing Process controlled the rues- 0'

sage routing, the Ring Control Process provided the baseline message passing, while

the Network Loading Process provided communications congestion on selected links.

The metric used to compare the Routing Process performance was the average delay

time for passing a message around the ring.
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I

IMPLEMENTATION OF A DISTRIBUTED ADAPTIVE

ROUTING ALGORITHM ON THE INTEL iPSC

I. Introduction !

Purposea.

The purpose of this thesis was to combine the study of distributed adaptive

routing algorithms and concurrent processing. In particular, this study simulates a

dist louted adaptive routing algorithm on the Intel Personal SuperComputer (iPSC).

Additionally, the developed program was modified to simulate the non-adaptive rout-

ing implemented on the iPSC. Therefore, a comparison of the two routing algorithms

could be accomplished. A 32-node version of the iPSC was used as the vehicle for

this research.

Genfral Background

Connecting physically separated computer resources is an effective way to solve
I

problems that require uneconomical amounts of time and/or resources on a single

computer. John Stankovic, in his paper on distributed computer systems, states that

"significant advantages, including good performance, good reliability, good resource

sharing, and extensibility [16, 1102]" can be acheived through the use of multiple

processors and an efficient communication network. An important factor of the

communication network is the routing algorithm that is used to "determine the path I
a message follows from its source to its destination" [16, 1107].

Routing Algorithms. These algorithms are generally classified in two major

categories: non-adaptive and adaptive [17, 198]. Non-adaptive (i.e., static) rout-

ing techniques are simple and easily developed, but they normally are not efficient

JI
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@ when communication loads vary on the communication paths [17, 199]. Message
traffic congestion and malfunctions that occur during the operation of the system1 99]

require alterations to the normal message routing. Adaptive (i.e., dynamic) routing

techniques have the ability to adapt to a changing network environment making it

possible to alter message routing based on current network communication loads.

Adaptive routing techniques are further classified into centralized and distributed

routing algorithms [17, 198]. Centralized routing is controlled by a central admin-

istrator that determines the best communication paths for each pair of source and

destination nodes in the network. 5

Distributed Adaptive Routing. A distributed adaptive routing algorithm-.

requires that each processor or node in a network have the ability to determine the

route to a particular destination. To determine the routing, the algorithm, which

is normally based on some performance metric, performs calculations on data that

is commonly stored in a table or database format. The data in the routing table

may represent a variety of information depending on the algorithm. According to eI

Stankovic, "the metric might be number of hops, some estimate of delay to the,

destination, or buffer lengths" [16, 1107]. Also according to Stankovic:

Such algorithms have the potential for good performance and reliability ,
because the distributed control can operate in the presence of failures
and quickly adapt to changing traffic patterns [16, 1107].

Supercomputing. The need for lower-cost supercomputing was expressed in an S
.2article by Justin Rattner, the Director of Technology for Intel Scientific Computers.

Rattner explains, the supercomputer is "an essential tool for research, design, and

development [12, 159]," but the cost of available supercomputers is too high for many

universities and commercial users.

A second problem involving current supercomputers is the requiremecnt for

vector operation types and array data types. Operation types are generally divided

2
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%.P Nt between scalar and vector operations. Rattner states, "existing supercomputers are

essentially vector processors," and these machines depend on their data "being in

the form of either vectors or arrays" [12, 159]. Vector processors efficiently handle

vector operations, but "a portion of any code will consist of scalar (single-quantity)

operations [12, 159]," these scalar operations create performance bottlenecks. There-

fore, these scalar operations force vector processors to operate at a fraction of their

peak performance [12, 161]. Because of operations and data type constraints, "ei-

ther programmers or sophisticated compilers [12, 160]," are required to vectoriz-

the code. These requirements are part of additional overhead necessary to achieve

optimal performance [12, 160].

Concurrent Processing. Concurrent processing offers solutions to these

problems. Rattner defines concurrency as "a high-level or global form of parallelism.

denoting independent operation of a collection of simultaneous computing activities"

[12, 160]. Therefore, a complex problem, that can be separated into a number of

smaller simpler problems, can be solved simultaneously on a concurrent machine

that "uses loosely coupled, multiple, interacting processors" [12, 160].

The sharing of the load by the multiple processors in a concurrent architecture

aids in achieving high computational efficiency. Significant cost/performance benefits

are achieved over vector processors that cannot operate at their peak performance

[12, 161].

The cost benefit of a concurrent machine is achieved through the cost reduction S

provided by very large scale integration (VLSI) advances and through the use of off-

the- shelf components verses custom built special purpose components. The reduced

cost allows for a larger number of units to be sold which tends to further reduce the

costs [12, 162].

The multiple processors can not perform their tasks in total isolation, there

must be high speed communications available so data can be exchanged when nec-

.- , V7,
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essary. Intel's Personal SuperComputer (iPSC) uses a static routing technique that

inhibits the passing of data when one communication path becomes congested with

messages. The implementation of a distributed adaptive routing algorithm should

provide a substantial increase in the throughput of the network under a communi-

cations bound condition.

Organization

Chapter II includes an overview of computer network routing algorithms, a tax-

onomy for routing algorithms, and a study of several distributed routing algorithms.

The routing algorithms studied are a research network developed by K. Brayer of the

Mitre Corporation, Digital Equipment Corporation's Digital Network Architecture

(DNA), and the Advanced Research Projects Agency's Network (ARPANET).

Chapter III examines the current message passing structure of the iPSC. The

examination includes discussions on the current routing algorithm, the current hard-

ware, and situations in which message passing is impeded on the iPSC.

Chapter IV contains a discussion about the adaptive routing algorithm that

was implemented, Appendix A and Appendix B contain the source code.

Chapter V contains the test plan, configurations, and procedures used to mea-

sure the effect of the implemented adaptive routing algorithm on the iPSC.

Chapter VI contains the results and analysis of the data obtained from the

testing performed in Chapter V. The chapter concludes with recommendations for

future study.

44
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I. Distributed Adaptive Routing Background

This overview of distributed adaptive routing algorithms for computer networks

begins with a look at the International Standards Organization's (ISO) model for

connecting heterogenous computers in a network. The second section of this chapter

consists of a taxonomy for categorizing computer networks and a general overview

of routing algorithms used in computer networks. The third section describes the

way three operational networks use distributed adaptive routing algorithms. The

first network is a research network developed by K. Brayer at Rome Air Devel-

opment Center. The second network is Digital Equipment Corporation's (DEC)

Digital Network Architecture (DNA). The last algorithm discussed is used for the

Advanced Research Projects Agency Network (ARPANET). The chapter concludes ',

with a summary of distributed adaptive routing algorithms.

Open Systems Interconnection Model

The reference model for Open Systems Interconnection (OSI) supported by the

ISO is a seven layer hierarchical view of computer networks [10, 144]. Figure 1 depicts

the different layers that were developed to "decompose data communications into

manageable pieces with well-defined interfaces" [10, 144]. While layer 1 supports

the actual physical connection of two or more nodes in a network, the remaining

layers are defined such that each layer has a "virtual connection to its distant peer"

while only exchanging information with layers above and below the laver of interest

[10, 144]. The network layer of the OSI model is the layer of interest for this research. a
Tanenbaum states, the network layer, also known as layer 3, "controls the

operation of the subnet" [17, 17]. In the OSI model, the network layer of the source

,: node accepts a message from layer 4, divides the message into packets, and then

routes the packets toward their destination [17, 18]. At an intermediate node. laYrer 3

**.,."**"*%".." ." ." , -. . . . . ," * , "** ' .". .-. " . """" ... '. ".". .", ." ... ' :v . ....-. ... - .,. -•..** '.'. . _....:,.i> ,:
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Figure 1. Reference Model for Open Systems Interconnection Source: [10, 145]

determines the next portion of the message's route. At the destination node. the

network layer passes the packets to layer 4, also known as the transport layer [17, 18].

Distributed Routing Overview

The routing algorithm contained in layer 3 of the OSI model is an important

factor in determining how the network wiU react to changes in topology and fluc-

- tuations in traffic load (17, 197,1. A wide range of routing algorithms have been%

developed to support network performance objectives. The reminder of this section

*reviews several routing algorithm characteristics.

Routing Taxonomy. H. Rudin developed a taxonomy for adaptive ruuting al-

gorithms that classifies routing algorithms by centralized vice distributed technique(

6
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and complexity, see Figure 2. Rudin defines centralized techniques as those. "in

which routing strategies are prepared centrally and then sent to the nodes for exe-

* cution" [13, 44]. He defines distributed techniques as those in which "the strategy is

*: prepared throughout the network" [13, 441. Since this research is concerned with dis- p.

tributed adaptive routing algorithms the remaining focus is on Rudin's distributed

techniques. According to Rudin, the two distributed techniques on the bottom of

Figure 2 are simple to design, but they are also rather inefficient. The simplest

distributed technique, known as flooding, transmits traffic on all outgoing lines. An-

other simple technique, known as random routing, transmits traffic on a randomly

selected outgoing line, irregardless of the best path to the destination node. Moving

up in complexity, Rudin's two isolated techniques are based on Baran's hot potato "

and backward learning algorithms. Bias is added to the shortest output queue, allow-

ing an additional weight to be added to the calculations for the queues in Baran's W

hot potato algorithm and symmetrical traffic is assumed in the backward learning

algorithm [13, 44].

CIO Rudin's most complex class of algorithms is the cooperative class that includes

periodic and asynchronous updates. In this technique the nodes report information

about their own status to all other nodes in the network. This information normally

includes the length of its output queues, time delay for message transmissions., or

the number of nodes between itself and the other nodes in the network [13, 44].

...
'I7
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Distributed Routing Algorithms. Tanenbaum, in his book Computer Networks. *1

categorizes routing algorithms in a different manner than does Rudin. Tanenbaum

separates routing algorithms into two groups: nonadaptive and adaptive. Nonadap-

tive routing algorithms cannot alter their connectivity in response to changes in

network traffic, but adaptive routing algorithms can alter their connectivity. Ihe

further subdivides adaptive routing into centralized and non-centralized algorithms
[17, 198].

Centralized routing normally utilizes a directory or table that contains infor-
mation on how to forward messages between processors. The table is maintained a'

a routing control center (RCC) that receives information on the current status of the

network from the other nodes in the network. Using this periodic information, the

RCC makes the decisions determining the most efficient routes for traffic flow though

the network. The routing information is then redistributed to the other nodes in the

network [17, 201].

Unlike centralized algorithms, non-centralized algorithms maintain redundaw

information at each node. The node's ability to maintain their own information

makes the network more robust and fault tolerant [17, 205]. Tanenbaum divide,

non-centralized algorithms into isolated and distributed routing algorithms [17. 201.

Isolated algorithms are differentiated from distributed algorithms by their in-

formation gathering techniques. Isolated algorithms base their routing decisions on

information gained by analyzing traffic that passes through the node. Distributed

algorithms use specific routing information exchanged between the nodes in the net-

work [17, 202].

Tanenbaum discusses two types of isolated routing algorithms: Baran's hot

potato and Baran's backward learning [17, 202]. The hot potato algorithm places the

outgoing message in the shortest outgoing queue. The algorithm assumes that the

message will arrive at its destination sooner by leaving the current node sooner on

a randomly chosen route, than it would by waiting for a preselected route [17, "20"21.

.9



y,-. The backward learning algorithm uses information from incoming messages to de-

termine the best route for outgoing messages [17, 203]. One technique discussed by -

Tanenbaum requires each message to include identification of the first node capable

of altering the message route and a counter that is incremented at every additional '..

node capable of altering the route. These two pieces of data can be used by each

node in the path to calculate the number of hops to the message source [17, 2041.

The distributed routing algorithm discussed by Tanenbaum requires that a ta-

ble be maintained at every node instead of a RCC. The table contains the address

and preferred outgoing line for each node in the network, as well as, some measure

of the time it takes to get to the destination [17, 205]. The distributed routing tech-

niques enable more efficient use of resources than do the isolated routing techniques.

but they require more processing overhead and they add additional message traffic

to the network [13, 45].

Performance Objectives. By determining which nodes and links will be used

to exchange information, the routing algorithm is an important factor in determin-

ing if the network can meet its performance objectives [5, 7]. Computer network

performance objectives are based on speed and service of the network [9].

The service objective is based on four parameters: availability, data integrity.

message integrity, and security [9]. Tanenbaum places the service objectives into I le

network reliability performance constraint [17, 34]. The speed objective is measured .4

in terms of minimum delay and maximum throughput [9].

Unfortunately the two parameters, delay and throughput, are mutually exchl-

sive. Delay is defined as the "time between transmission of the first bit and delivery

of the last bit of a message" [9] and is measured in terms of "mean packet delay

not exceed a given number of milliseconds" [17, 34]. While throughput is defined as

the "number of bits sent divided by time between transmission of the first bit aIn(t

delivery of the last bit" [9]. When the throughput of the network is increased the

10
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: delay of an individual message will increase.

Operational Networks

As stated earlier, this section reviews three operational networks that use a

form of distributed adaptive routing for their routing algorithms. While not adding

additional theoretical information, this section was included to give expanded back-

ground in the ways distributed adaptive routing algorithms have been implemented

in operational networks.

Brayer's Research Network. K. Brayer of the Mitre Corporation developed

a research packet switch system that is loop-free and survivable. His algorithm is

divided into a mathematical algorithm to determine the shortest path and a set of

procedures (message routing and address finding sections) to control or utilize the .'

results of the mathematical algorithm [4. 93]. :%

Initially, each node transmits on its outgoing lines a special start up identi-

fication message telling its nearest neighbors its identification (ID), while scanning

inconfing lines to learn its nearest neighbor's ID. After the initialization period. each
node enters the message routing section of the algorithm and message transmissios,

may begin. If the location of a message addressee is unknown, the algorithm enters

the address finding section to determine how to route the message [4. 9.1].
4 ~.9

In the address finding section, the node holds the message while it transints -

a header message to its nearest neighbors. This header messag( requests a responds,

if the receiving node has the unknown address. A positive response is indicated by

an acknowledgement that the message may be sent. If the address is not known at

the neighbor node, the node adds its address onto the header message and transmit:-
the message to its neighbors that have not seen the message (indicated by the lack. .

of their address at the end of the message). When the addressee is located the i
header message returns to the original node (via the list of addresses at the cnd

% ... %,. 11
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of the header message). As the message retraces its course, all the nodes update

their routing table with the new routing information. The header messagc can be

retransmitted in the network a set number of times (normally determined by network

size), when that number is reached without a positive response the original node is

notified and queried if the sender wants to try later or let the network store the

message and automatically send the header message at a later time [4, 94].

The message routing section forwards messages by first checking its routing

table for an existing path. If a path exists the message is transmitted using the

path. Otherwise, the message routing section is able to randomly select a node and

-- forward the message to it. This random routing occurs in addition to the address

finding section attempting to determine a path [4, 94]. If a message timeout occurs.

the node can select a different node and retransmit the message or store the message

and retransmit at a later time. When the number of timeouts exceeds a specified

value, the routing tables are updated to avoid those links.

Figure 3 shows is an example of a network, stages of its connectivity matrix.

and its distance matrix. The source node is labeled down the left edge with the

destination labeled across the top. The distinction between source and destination

is important only when the links are unidirectional [4, 95]. As the figure shows each

node identifies its nearest neighbor with a path of length one. The remaining paths

are filled in one row at a time. A maximum of N - 2 iterations are required to

fill in the matrix, any remaining holes are caused by a disjointed network [4. 961.

The development of the connectivity and distance matrix forms the mathematical

portion of the routing algorithm.

". This protocol is considered survivable because each node can determine routes

on its own, but the protocol can not promise to use the shortest path every time,.

Although, if the network is stable for a reasonable length of time. it will determine

. the shortest path [4, 95].
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Digital Network Architecture. Digital Equipment Corporation's (DEC) Digital

Network Architecture (DNA) is implemented in a five layer hierarchy verses the seven

layer ISO model. The layers of the hierarchy are called the physical link, data link

control, transport, network services, and application [18, 516]. In Stuart Wecker's

description of DEC's DNA, he explains the routing algorithms are defined as part

of the transport layer. The transport layer also controls congestion and message

lifetime for the network [18, 520].

DNA's routing algorithm is based on information stored in two nxrm matrices.

where n is the number of other nodes in the network and m is the number of output

channels for the node. One matrix, called the HOPS matrix, contains the number of

hops from the current node to the other nodes in the network via its output channel-.

[18, 520]. The other matrix, called the COST matrix, is used to maintain the path
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cost from the current node to the other nodes in the network [18, 520].

The cost of the path is inversely proportional to the quality of the path

[18, 5201. Resource availability and processing capacity of the nodes; along with

delay, throughput, and error rate characteristics of the lines are used to determine

the COST matrix [18, 5201.

The best paths in the network are determined by a comparison of the two

matrices with each of the neighbors' matrices. For example, node A passes its best
paths to its nearest neighbors, if a neighbor detects an improvement they update their

matrices. After the neighbors update their matrices, they send the new inforniatioi -

to their nearest neighbors, where the process is repeated.

The updating of the best paths can create looping in the network. When a

loop is detected, a routing message is generated marking the node unreachable. A

loop is detected when the longest number of hops in the network is exceeded by an

entry in the HOPS matrix or the value of the visit count field of the routing header.

The contents of the visit count field are incremented by one at each node the message,

reaches [18, 521].

ARP4NET. The development of distributed routing algorithms was led by the

Advanced Research Projects Agency when it developed the ARPANET. McQuillan.

Richer, and Rosen describe problems with the original algorithm and changes us('l]

to correct some of these problems. They state:

The new routing algorithm is an improvement over the old one in that
it uses fewer network resources, operates on more realistic estimates of
network conditions, reacts faster to important network changes, and does
not suffer from long- term loops or oscillations [11, 712].

The algorithm is based on Dijkstra's form of the shortest-path-first (SPF)

routing algorithm. In distributed fashion each node calculates the best paths to all

other nodes in the network. The calculation uses a database that is maintained at

14



each node. The database contains information describing the network topology and

the network line delays. The database is updated every 10 seconds via routing updatt

messages that announce significant changes in the delays for the node's outgoing lines

[11, 7121.

The database contains two data structures, a tree and a list. The list structure

contains nodes that are adjacent to the nodes currently on the tree. Initially, the tree

structure consists of the current node as the root node. Since each node identifies

its outgoing line delays, new nodes are added to the leaves of the tree structure by
calculating the smallest total delay time. The algorithm builds a shortest path trec '

by cycling through the algorithm until all the nodes are accounted for [11, 712].

The new algorithm's delay measurement is calculated by time-stamping each v
packet when it arrives, when the first bit is sent, and when the acknowledgement

is received. The first-bit-sent time is overwritten when the packet is retransmitted.

After the acknowledgement is received, the first-bit-sent is subtracted from the arrival

time. The delay for the packet is calculated by adding the above difference with the

constant line propagation delay and the transmission delay, which is a factor of the

packet length and line speed [11, 714].

An average of all the packet's delays is computed every 10 seconds. The average

is then compared with the last average reported. If the difference exceeds a certai•

threshold the new delay is reported to the entire network [11, 714].

Problems still exist with the ARPANET routing procedure. Spinelli in his

thesis states, it is still difficult to determine optimum settings for "the maximum age

of packets, the minimum interval between creation of update packets, the maximum

interval between creation of update packets, etc." (15, 19].

Summary

This chapter has given a broad overview of distributed routing algorithms. I

has illustrated a taxonomy that can be used to classify and compare algorithms. I
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It also presented an overview of the some techniques used for distributed routing

algorithms. The chapter concluded with a review of several operational routing

algorithms.

In conclusion, some common threads run through all the distributed adaptive

routing algorithms. They include a means to measure certain parameters of interest.

a means to make a routing decision based on these measurements, and a means to

inform the other nodes in the network of their decisions.
1'
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III. iPSC Background

This chapter overviews the characteristics of the Intel iPSC architecture. hard-

ware, and routing algorithm. The first section provides an overview of concurrent

architecture by presenting Flynn's taxonomy, two processor-memory configurations.

and finally (possibly the most important for this thesis) an overview of interconnec-

tion networks. The second section of this chapter is a brief history and overview

of the Intel iPSC. With the background presented the remainder of the chaplel

" describes the current operation of the iPSC's message routing system.

"* Overview of Concurrent Architecture

The classic taxonomy for classifying computer systems was developed by Flvni

in his paper of 1966. Siegel in his text Interconnection Networks for Large-Scah Par-

allcl Processing, adds additional classification of concurrent machines by classifying

the processor-memory configuration, as well as, interconnection networks. And fi-

1nally, Feng in his survey of interconnection networks discusses various geometries for

internodal communication (i.e., the interconnection network). These three areas are

developed in more detail in the following section with emphasis on the categoiies

that describe the iPSC.

Flynn's Taxonomy. Flynn formulated four computer organizations based oil

two definitions, the Instruction Stream and the Data Stream. He defines them as

follows:

Instruction Stream is the sequence of instructions as performed by the
machine; Data Stream is the sequence of data called for by the instruction
stream (including input and partial or temporary results) [7, 1902].

Using these two definitions Flynn labels four computer organizations as:

17
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1) Single Instruction Stream-Single Data Stream (SISD)

2) Single Instruction Stream-Multiple Data Stream (SIMD)

3) Multiple Instruction Stream-Single Data Stream (MISD)

4) Multiple Instruction Stream-Multiple Data Stream(MIMD) [7, 1902].

Of these four labels the iPSC is best described as an MIMD computer [12, 163].

Processor-Memory Configuration. Siegel further defines an MIMD machine

as, a system of "N processors, N memory modules, and an interconnection network

[14, 30]." As shown in Figure 4 and Figure 5, processor-memory configurations

.'p

PE 0 PE 1 PE 2 PE N-1

PROC PROC2 PROC

MEM 0 MEM 1 MEM 2 MM,

' '.
,: INTERCONNECTION NETWORK

Figure 4. Processing-Element-to-Processing-Element MIMD-Machine Configurati,,
with N Processing Elements Source: [14, 31]

a-

typically come in two varieties. The first being a processing-element-to-processi g- ,

element (PE-to-PE), where the processing element is formed by a processor and



i.

PROC. 0 PROC. 1 PROC. 2 ------- PROC. N-1

IINTERCONNECTION NETWORK

II
MEM. 0 MEM. 1 M EM. 2---------ENI. N-i

Figure 5. Processor-to-Memory MIMD-Machine Configuration with N Process,- ""

and N Memories Source: [14, 311

memory pair and the interconnection network connects each independent element.
And the second being a processor-to- memory configuration, where the interconnec-

tion network connects the N processors to the N memories [14, 30]. The iPSC uses 

a PE-to-PE configuration as shown, in Figure 6, by the block diagram of an iPSC's

processing element. Each PE or node is centered around Intel's 80286 central pro-

cessing unit and also consists of the 80287 numeric processor, 512K Bytes of dynamic

RAM, and eight 82586 communication coprocessors [2, 61.

Interconnection Networks. Two basic categories of interconnection network-

are single-stage and multi-stage. Multi-stage networks enable passing of data froin

its source directly to its destination, where as, in the single stage network data may

have to recirculate through the stage several times to reach its destination []1. 2i1.

Siegel describes four configurations for single-stage networks used in both SI.I ) alil
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Figure 6. Block Diagram of an iPSC Processing Element Source: t2, 6]

MIMD machines. The configurations are the Illiac, the plus-minus 2' (PM2I). the

shuffle-exchange, and the cube. The cube, also known as an indirect binary n-cub.

or hvpercube, is the configuration used in the iPSC [12, 163].

Each of the configurations can be defined mathematically by an interconnection

function. The Illiac interconnection function is defined by four function as follows:

Illiac+,(P) = P +1 mod N (1)

Illiac_.(P) = P - I mod N (2

Illiac+,(P) = P + n mod N (3)

I, liac_,(P) = P - n mod N (4

where

N = number of nodes in the network

a0 20
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n = square root of N

P = current processor [14, 22]. all

Therefore, the topology of the nodes appears as an n-by-n array [14. 22].

The PM2I interconnection function is defined by 2m functions, where m is the

number of bits necessary to represent the number of nodes (N) in a binary number. "%

PM2+,(P) = P + 2' mod A' (.'

PM2_,(P) = P- 2' mod N (i

where

N = number of nodes in the network S

m = log 2 N

0 < I < M [14. 23].

The shuffle-exchange interconnection function is defined by two functions. The

shuffle equation is:

shuffie(pipm 2 "PIPo) =Pm-2Pm-3'PPoPm-1 (7,

and the exchange equation is:

ezchange(p,_IPm2 .. pIpo) Pm-IPm-2 PPo ('

where

m = log2 N [14, pages 24,25].

The cube network consists of m interconnection functions (m is also known a- V.,

the dimension of the cube) and is defined by:

cu ,(p,,,- . p,+ip,p,_ • po) = Pn- I " P,+iT),I-I ." • po en
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where

N = number of nodes

M = log 2 N [14, 26].

As shown in Figure 6, the iPSC system can attain a cube dimension of seven ,wi-

taining 128-nodes. An example of a 3 dimension cube is shown in Figure 7.

110]

010

00001

Figure 7. Three-Dimension Cube Structure

The communication channels are represented by edges in the graphical pic! t I,

while the nodes form the switching points [6, 110]. The nodes or processors iii tht,

iPSC are assigned binary numbers that serve as their node addresses. Using a gray

code numbering scheme, bidirectional links connect nodes whose addresses vary 1,v I
one binary digit.

Feng discusses interconnection networks and their role in providing corn-iii-

nication paths between processors and memory modules [6, 109]. Feng state- I1i,

selection of the proper architecture for an interconnection network should be ,,-
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on the operation mode, the control strategy, the switching method. and the network

topology [6, 109].

History and O'ervifw of the iPSC

The Intel iPSC concurrent computer is based on work performed by persomiw!

at the California Institute of Technology and NASA's Jet Propulsion Laboratory.

The Mark I ttypercube is a 64-node PE-to-PE system that utilized Intel 8086/,,7
*%0

processors and a multibus interboard (processor) connection structure. Refinerillt

of the Mark I led to the Mark II concurrent machine. The Mark II system te.

modularized design permitting one to four groupings of 32 PEs for a total of 12'

PEs. The multibus interboard connection of the Mark I was replaced with a sint.-

stage cube interconnection network. The iPSC further refined the Mark 11 machint'

by upgrading to the 80286/287 processors and refining the mechanism for passii

messages [8, 353].

Access to the PEs of the iPSC is controlled by an Intel 310 machine, referred

to as the Cube Manager. The Cube Manager provides a medium for uploading aind

downloading processes(programs) and data to the individual nodes. Rattner explai'-

that, the iPSC interprocessor communications is controlled by a Node Operating

System. The operating system "provides the system calls that enable processes t,-

send and receive messages" [12, 164]. In addition, message routing, node-to-Cub-

Manager I/O, and process debugging are handled by the operating system.

Current Message Routing. Currently. message routing at the node level of the,

iPSC is controlled in a non-adaptive manner by software interrupts of the 802S6

central processing unit, and is supported at the physical level by a pair of special

purpose integrated circuits. As shown in Figure 6, each node of the iPSC include,

eight Intel 82586 Local Area Network (LAN) Coprocessors. Seven of the 82,586s aa

dedicated to interprocessor communication, while the eighth 82586 supports a gldwl
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communication link. Therefore, each node has the capability for connection to seven,
other nodes on communication channels zero to six. The 82586 LAN Coprocessor

is matched with Intel's 82501 Ethernet Serial Interface chip, so that the IEEE 802.

3/Ethernet specification is realized [3, 1-2]. Layers one and two of the ISO's Refer- .

ence Model for Open Systems Interconnection (OSI) are implemented, as shown in

Figure 8, by the use of the 82586 and the 82501 chips [1, 3-5]..,'

TRANSPORT T T 80286
PROTOCOL

NE"WORK N N N

DATA LINK DL DL DL 2586

N MVSCAL 8250
LINK PL PL PL

U.

NODE A NODE 3 NODE C

Figure 8. Routing Through Intervening Node(s) Source: [1, 3-7]

Layers three and four of the OSI are currently supported by the Node Op-

erating System [1, 3-5]. The Node Operating System insures the interprocessor

communication latency does not exceed the dimension of the hypercube [12, 16-1].

Figure 9 illustrates the cube's interconnection and bi-directional communicatio 1

channel connection between nodes 0, 2, and 8. Each node of the iPSC is connected.

via the i-th channel, to other nodes whose respective addresses differ in the i-th bit

position [1, 3-3].
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Node board 16-

LAN Co.trollers

Node Ward 2 Node3L~ i 8oar

LAN Controllers~ LAN Controllers

0!1 2131415 6,G 0j11213 4j5j jG~

Figure 9. LAN Controller Interconnections Source: [1. 3-31

• °-

Summary

This chapter presented an overview of concurrent systems architecture alongz

with the iPSC's architecture. It has also presented a history of the developmienti

of the iPSC. FinalIv, the chapter illustrates how the Node Operating System ail,

supporting hardware Implements the cube interconnection function that defines thw

hy percube topology.

[ I 'I
.

'4.
I
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IV. Developed Routing Processes

This chapter develops the code used to implement the developed routing alg,,

ithm. The goal of the algorithm is to insure the routing process selects from amoin,

The shortest paths the one with the least delay. While it may inhibit selection of ,.

path with a smaller delay time, the algorithm eliminates the possibility of loopin, .

in the network.

The developed code is comprised of two parts: a set of interface routines ao:

the routing process. The interface routines, presented in the first section. elal,,"

the applications program to interface with the routing process. The routing proces-.

pre.,ented in the second section, selects the next node routing for an applicatio-

mes-sage. The selection is based on a local routing table that is periodically updated.

'lIhe source code for the routing process is listed in Appendix A, while Appendix 1H

1i' , tire source code for the interface routines.

All of the code was written in C and was designed for generic operation wi I.

minimal impact to the programmer. While the interface routines must be linked wi' K

the users node process(s), the routing process is a stand alone process loaded ont,,

the iPSC's nodes by the host process. The applications programmer is restri(t',l"

from using the process identification 32767. message types 32765 and 32767. andt ! I

maximum number of bytes in a message can not exceed 16372.

In( rfacf Routines

The interface routines are divided into two subsets: one set for sending n,'---

sages, and one set for receiving messages. Each set of interface routines is corrpri-'

of two routines that mirror the non-blocking and blocking versions of the stildL.

arid receiving routines found in the iPSC's library. The four interface roiutim..- ai,':e

asendw. arecvw, asend, and arecv. To simulate the current operation. the f lu"

,2I
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% routines use the same argument list currently used by the iPSC's routines. Addi-

tionally, dynamic memory allocation is used in the routines to keep memory usag(,,

to a minimum.

The asend and arecv routines simulate the send and recv routines by usihli
the iPSC flick routine to allow other processes to continue processing, so they ai,.

not true non-blocking routines. Except for the flick routine, the two send routimn,.

as well as the two receive routines, operate identically to each other. Therefore. onl\-

the asendw and arecvw routines will be discussed in the following sections.

Stnd Routint. As stated above, the asendw routine uses the same arguine-

list as the iPSC's sendw routine. The asendw routine sends messages of any data

type allowed by the iPSC, and it maintains the iPSC's global send capability. Tit,

asendw routine consists of two parts: an initialization section and a section to selcct

the iPSC routing or the adaptive routing.

The initialization portion is performed once (i.e., the first time the routine i-

called). It is used to determine the current node, the current process identification.

and the current size of the routing algorithm overhead. The final step initializes al"

integer array with the current node's nearest neighbors.

Based on the destination node parameter, the second part of the routine d(-
termines if the iPSC routing should be used or if the adaptive routing should 1,

selected. This decision is the first step in insuring that the fewest number of hop-

are performed. The routine compares the destination node of the message to the,

array of nearest neighbors. If a match occurs, the message is sent directly to 0-

destination using the iPSC sendw routine. This technique eliminates two intranud,

hops. The iPSC sendw routine is also used directly, if the destination node is the

current node or is negative (i.e., a global send). If no match occurs (i.e.. the des-

tination is more than one hop away) the message is passed to the adaptive routlil

process.
27
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For the routing process to handle the messages properly additional data nmst

be prefaced to the message. The overhead data includes, the destination node. the

destination process identification, and the destination message type; along with tle
°-

current node, the current process identification, and the original message length.

The prefacing of the overhead data to the message enables the routing process I,

locate the original message parameters for use in its next node selection process.

The additional steps in the send routines include allocating memory to hold

the message and the routing algorithm overhead, storing the overhead data in the

allocated memory, and then appending the original message to the overhead data.

This is followed by calling the iPSC sendw routine, freeing the allocated memory.

and returning to the calling process.

Rfceic Routine. As stated above, the arecvw routine uses the same argument "a

list as the iPSC's recvw routine. Like the asendw routine, the arecvw routine >

consists of two parts. The first section receives the message and the second sectio"

determines the originating process's parameters.

The first section begins with an initialization that establishes the number of

bytes used by the overhead data. The initialization is followed by an allocation of

memory to hold the overhead data and the expected message. The first section

concludes with a call to the iPSC's recvw routine. The call is made using the

variables from the calling process's argument list.

After the receive is completed, the second section of the routine determines )i

the message came from the routing process or an application process. This deier-

inination is required because of the overhead data added to the front of a message

sent via the adaptive routing process, and is accomplished by checking the sendinlg

process identification parameter returned by recvw. If the message came from the

routing process; the message length, sending node, and sending process identifica-

tion parameters contained in the overhead data are assigned to the calling proces'

28
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arguments. Additionally, a temporary pointer is assigned to the beginning of t,"

message in the allocated memory space. If the message was not sent b. the routin- ..

process, no overhead data was added to the message, and the temporary pointer

is assigned to the beginning of the allocated memory space. The arecvw routille,

concludes by performing a character by character copy of the received message to

the calling process's message buffer, freeing the allocated memory. and returning to

the calling process.

Routing Process

This section develops the routing process by defining the data structures aii."

the algorithm used by the process. As discussed in Chapter II, three criteria must be.,

met to establish a distributed adaptive routing process. They are a local means of

determining the routing, a means of measuring the current traffic loads, and a means

of informing other nodes of the routing information. This routing process meets

these three criteria by means of a local routing table deLtimes and special messages

(DELA K.. TYPE) that are passed between nearest neighbor nodes identifying a nodc>

current routing information to the other nodes in the network. Additionally. th"

DELA Y..TYPE message is used as a medium to determine the current traffic loads.

this is detailed later.
'

Data Structures. The routing table is a two-dimensional array based on the

current dimension of the iPSC. Each row of the array represents a possible destination

node, while each column represents a nearest neighbor node. The i-th column of tlh e.

table represents the i-th nearest neighbor node. The columns of the table are updated

from information contained in the DELAY-TYPE messages that are passed between

each of the nearest neighbor nodes and from the time taken by the DELA YTYPI

message to return to its originating node.

The routing process utilizes two vector arrays to update the routing table.

29

'S. . , . .. -. ". -, ", , :, ": . "v . -.... . .: - .. , .. ;- .:,. .& :..... "-,, :. .:-.;.



.

The first array out-nodes is an integer array containing the nearest neighbor nod- %

of the current node. The purpose of the array is to provide the column index fol

the routing table. The second array start-times is used to store the time the latei

DELAY.TYPE message was transmitted to each neighbor. Both of these arrays are
-%5

indexed, such that information pertaining to a node connected via the i-th commu-

nication channel is stored using the i-th index of the array.

The measured times used by the routing process are determined locally through'

the use of the iPSC clock routine. The value returned by the clock routine is only

updated every 5 milliseconds [1, 3-24]. Since the clock routine in each of the node-

operates in a like manner and the measured times are relative times, the inaccura, \

of the clock should not effect the operation of the routing process.

Routing Table Formation. The routing table is initialized to a maxiinumii

default time (msec). The local round trip delay time is determined by subtracting

the time stored in the start-times array from the time the DELA Y TYPE message is

received back from that node. The round trip delay times are stored in the routimg'

table using the respective node and its index in the out-nodes array as the tWNv-

indices. For example, in Node 0 the delay time for Node 1 is stored in element (1.0

of the routing table. When a neighbor node's DELAYTYPE message is received.

the data is added to the current round trip delay to update the routing table.

For example, the data in Figure 10 represents the routing table for a 3 dimei-

sion cube (i.e., 8 nodes) after Node 0 receives each of its nearest neighbor node,-_

first DELAYTYPE message followed by the return of its first own DEL.4Y.TYPT..I- message. For simplicity, it is assumed the maximum default time is 6000 msec and

the round trip delay is 5 msec. The routing table starts with 6000 msec. to whicil

an additional 6000 is added from the received DELA K..TYPE message. for a routing 

table of 12000 msec. The reception of the first round trip delay message results iII

the updating of the nearest neighbor elements with the measured delay inforinatiuti,.
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It should be noted that after Node 0's second DELA Y_TYPE message is received by

Node 2, Node 2's routing table will reflect that Nodes 1 and 4 could be reached viai

Neighbor Nodes
1 2 4

0 12000 12000 12000
1 5 12000 12000

2 12000 5 12000
Destination 3 12000 12000 12000

Nodes 4 12000 12000 5
5 12000 12000 12000
6 12000 12000 12000
7 12000 12000 12000

Figure 10. Example Routing Table for Node 0 of a 3 Dimension Cube - After Fi1t
Update

Node 0 and that the round trip delay would be 10 msec. It should also be noted that.

since the routing table reflects round trip times, the actual time is approximatel\

one-half that shown in the table.

Continuing the updates, Figure 11 depicts the routing table of Node 0 after

the completion of the second set of DELA Y._TYPE messages returns, and all of the

nearest neighbor messages are received.

Figure 12 depicts the routing table of Node 0 after the completion of the third

iteration of DELAY.TYPE messages. It illustrates that after N update periods.

where N is the cube dimension, each node's routing table contains a computed delay

time for each possible destination node. Since the routing algorithm limits the

number of hops to N, message routes greater than N will not be utilizied. Ic

underlined entries in Figure 12 represent paths requiring more than N hops.

Although the paths will not be utilized, Figure 13 illustrates that after A' I

delay times the entire routing table will be filled with delay times arrived at by link

measurements.
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Neighbor Nodes
1 2 4

0 10 10 10
1 5 12005 12005
2 12005 5 12005

Destination 3 10 10 12005
Nodes 4 12005 12005 5

5 10 12005 10
6 12005 10 10
7 12005 12005 12005

Figure 11. Example Routing Table for Node 0 of a 3 Dimension Cube - After Secoui,
Update

5%*

.

Neighbor Nodes
1 2 4

0 10 10 10

1 5 15 15

2 15 5 15
Destination 3 10 10 12010

Nodes 4 15 15 5
5 10 12010 10
6 12010 10 10
7 15 15 15

Figure 12. Example Routing Table for Node 0 of a 3 Dimension Cube - After TIiJ (IFigure 12.Update
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Neighbor NodesI

0 10 10 10
1 5 15 15
2 15 5 15

Destination 3 10 10 20
Nodes 4 15 15 54'5 10 20 10

6 20 10 10
7 15 15 13

Figure 13. Example Routing Table for Node 0 of a 3 Dimension Cube - After Fo.in
Update
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s" ,Routing Algorithm. The following section depicts the algorithm for the routii,,

process. In particular, it details how the routing table is used to determine the nexi

node on the shortest delay path to the destination node. Figure 14 depicts tHit,

routing process algorithm used in this research. The first section of the procc.--

determines the current node, opens a send and a receive channel, determines th,

nearest neighbor nodes of the current node, initializes the routing table to a defaulh

time value, and then transmits the first set of delay messages to the nearest neighbr

nodes.

The remainder of the routing process is an infinite loop that repeatedly te-t-

for the reception of a user application message, the reception of a routing proce--

generated DELAYTYPE message, and the time to periodically generate a new

DELA Y_TYPE message to update the routing table. As indicated in Figure 14. all

user application messages are retransmitted before any DELA YTYPE messages arc

handled. While this may result in messages going down a channel already known tu

be congested, it insures that passing application messages remains a higher priority

than the processing of DELA Y_TYPE messages.

Application Messages. When an application message is detected, it is store,!

in a temporary buffer. The overhead information stored in the first portion of th,

message is retrieved to identify the original destination information. If the niessat,' i-

destined for the current node or a nearest neighbor node the message is transmitte,(

directly to its destination. Otherwise, the routing table is accessed to determine th,

next node.

Next Node Determination. The determination of the next node uses al

exclusive-or operation on the current node and the destination node. The resultit-

binary value is checked, starting with the least significant bit. The i-th bit posit il

of a detected "1" identifies the respective i-th communications channel is a valil

message path. The first "I" bit detected establishes a temporary minimum

34
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I. Initialization

Open Channels for Sending/Receiving

Determine Environment

Current Node
Current Cube Dimension
Current Number of Nodes

Initialize Tables

Determine Nearest Neighbors
Determine Start Times
Determine Delay Times

n:II1. Infinite Loop
While an application message is waiting

Process routing overhead
Determine next node
Send Message

While a routing message is waiting

If message from local node I
Process round trip delay

else

Retransmit message to sender
Update routing Tables

)

If it is time to send new routing message
send message

else
flick process

Figure 14. Developed Routing Algorithm
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delay time path and the next node on that path. As the remaining bits are e

tested, any detected "l's" are used to test for a new minimum delay time. If two

or more nodes have the same delay time to the destination node, the node with

the lowest index is used as the next node. After all the bits are checked. the node

corresponding to the minimum delay time is used as the next node for the message.

The exclusive-or operation insures the message path is limited to the fewest number

of hops and as a result, eliminates the possibility of looping in the network.
*1

Routing Messages. When an incoming message is a DELA Y-TYPE message.

the message is stored in a dedicated buffer. The sending node of the DEL.4 Y'TYI.

message is used to determine the column of the routing table and the element of

the other routing vectors. The element of the buffer corresponding to the current

maximum number of nodes in the network is checked to determine if the message..

originated at the current node. If the message originated at the current node the

round trip delay is calculated and the routing table updated with the round trip

delay. Otherwise, the elements of the data buffer are added to the current round

trip delay, and the sum used to update the respective column of the routing table.

Update Timing. Before checking for a new user application message., the node's

clock is checked to determine if another set of delay messages need to be sent.

Otherwise, the process flicks allowing the other process(s) to continue processing.

Summary

The code developed for this process was divided into two units, a main stand

alone routing process and a set of interface routines to pass messages from a user's

process to the routing process. It was designed to give each node the means to ac-

complish the three requirements for a distributed adaptive routing algorithm, stated

in Chapter II. Through the use of the iPSC's clock routine and the DEL.4 Y-"lI I
message the current node has the means to measure the current traffic load on its
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channels. The current node has the means to determine which neighbor nodes are oil

the fewest number of hops path and can then select the next node on the path with

the minimum delay time. Finally, using the DELA Y. TYPE message, the adaptive

routing algorithm has the means to pass its current routing information to other

nodes in the network.

It should also be noted that this routing process suffers from the bad ncu'

problem as depicted in Tanenbaum. Once a routing path is established the news

of its deterioration requires a number of update iterations to occur before the bad

news is known by the remaining nodes in the network. Since the developed process_

is an initial effort in investigating the routing on the iPSC, the additional codilg foi

correcting the bad news problem was left for a future enhancement.
4,.

'
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V. Testing Methodology

This chapter explains the procedures used to validate and measure the per-

forinance of the adaptive routing process that was developed for this study. The

testing of the routing process was accomplished in two phases. The first phase veri-

fied the routing process. This was achieved by insuring that predetermined message

routes were used by the process and that the message contents were unaltered b%

the routing process. The second phase of the testing established the data necessary

to compare the performance of the adaptive routing process with that of the currentr

static routing process. In this phase, various network loading schemes were devel-

oped to test the routing algorithm with a range of loading message lengths and a

number of communications bound paths.

The topology that was chosen for testing the network will be discussed in the

first section of this chapter. The second section discusses the network loading factor

used for the second phase of testing. The final section discusses the processes used

to perform the testing, while the results of the second phase of testing are presented

in Chapter VI.

Topology

For the adaptive routing algorithm to improve the performance of the network.

three conditions must be occurring in the network. There must be communications.-

occurring over multi-hop paths, there must be concurrent communications occurring

over some portion of the multi-hop paths, and there must be sufficient additional

communications bandwidth to offset the additional processing required by the adap

tive routing process. Therefore, the first requirement for testing was to establish

process(s) that provided the necessary communications.

38
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A ring topology was chosen as the test topology. The ring was formed using

the equation:

NN = (CN + 1) mod TN (10)

where

NN = next node

CN = current node

TN = total number of nodes in the network.

This ring topology was chosen because it provided the necessary multi-hop path>

and the routing was easily determined and verified. While the routing process cani

be used on any dimension cube, the testing was accomplished with the iPSC loaded

as a dimension five hypercube. Table 1 depicts the number of hops required betwcei

the node pairs for the 32-node system. With this topology a total of 62 hops are

Table 1. Number of Hops for Each Node Pair

1 2 3 4 5
(0,1). (2,3) (1,2) (3,4) (7,8) (15,16) V
(4,5), (6,7) (5,6) (11,12) (23,24) (31,0)

(8,9), (10,11) (9,10) (19,20)
(12,13), (14,15) (13,14) (27,28)
(16,17), (18,19) (17,18)
(20,21), (22,23) (21,22)
(24,25), (26,27) (25,26)
(28,29), (30,31) (29,30)

necessary for a message to pass around the ring.

The validation of the routing process was accomplished by appending the cur-
1

rent node address to a message as it was sent around the ring. When the message

returned to the initial node, it was sent to the host process for storage in a file and

post-test analysis. The message also provided proof that the routing process did ]lot

overwrite or otherwise alter the contents of the message being passed.

. N
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Figure 15 depicts the nodes of the ring network as they are visited by a messag.

being sent around the ring. The nodes represented on the inner ring are those node,

used by the static iPSC routing regardless of the network loading. The nodes on th-

outer ring represent nodes used during one of the test runs of the adaptive routing

process. The test congested 16 of the 62 hops in the ring. The particular congested

links are depicted by the double arcs in Figure 15. The method used to provide the

congestion is described in the next section on network loading.

Node 0 was programmed as the ring controller. It received data from the tlo. "

Process specifying the length of the message and the number of times to ,Dass I1,

message around the ring. The multiple trips around the ring were used to offM I

the inaccuracy of the iPSC clock routine. Since the value returned by the routilie

is only updated every 5 milliseconds [1. 3-241, each message was send through th.

network .5 times to establish an average value. Upon receipt of the message froli,

Node 31. Node 0 sent the message to the Host Process, which stored the data in an:

output file.

N uork Loading

Cormnunications loading for this research was provided by two processes. Th,' I

code for the first process called the Ring Control Process is listed in Appendix D. li

established the topology described above and part of the required multiple message

load. The Ring Control Process created a set of variable length messages for each

network loading test. The message length was varied to provide results that were not %
biased by any single message length. Table 2 lists the message lengths used by the

Ring Control Process. The particular lengths were chosen to force transmission ul

full packets (1024 bytes) after the addition of the adaptive routing process overhead.
4I0
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A - As stated earlier, the adaptive routing algorithm requires the presence of con-

current communications occurring over some portion of the multi-hop paths. The

code for the second process called the Network Loading Process is listed in .p-

Table 2. Ring Message Length

Number of Bytes/Msg.
=' 0

,4- 2036
qll .4084

6132
," 8180

10228
12276
14324
16372

pendix E. It provided the additional communications load on portions of the multI

hop paths used by the Ring Control Process. The Host Process passed to the Netww,11

Loading Process the desired number of congested links and the length of the nwt-

sage to be passed. Table 3 presents the number of congested links and the nessa,

lengths used by the Network Loading Process in the tests. Each of the differeli

message lengths were used in testing each of the different number of congested links.

Table 3. Network Loads
Message Lengths Number of

(Bytes) Congested Links

0 0
4096 4
8192 8

12288 12
1638-1 16

* --*4
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': The number of congested links was the value used by the Network Loadilt,

Process to determine which nodes would initially send a message and which nodes

would initially wait to receive a message. Table 4 presents the links congested foi

the various numbers. After the initial send/receive, each process called the oppositc

Table 4. Congested Links

Number of Congested Congested
Links Link Pairs

(0,2)
4- (1.3)

(4.6)
(5,7)

(8.10)
8 (9,11)

(12.14)
(13,15)
(16,18)

12 (17,19)
(20,22)

(24,26)
16 (25,27)

(28,30)
(29,31)

a.

function and in a ping-pong fashion the send/receive sequence was repeated. Nodes

not involved in sending or receiving used the iPSC flick routine to cancel th,-ii
S

processing time slice.

Comparison Metric. A complete test of the routing process consisted of the

Ring Control Process sending each of the message lengths. listed in Table 2. five

times for each of the 21 combinations of message lengths and number of congested

links as given in Table 3. The time required by the Ring Control Process to send a

message around the ring formed the basis of the data collected during the test inmg.

.4
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" :: .Each combination of message length and links congested by the Network Loadilil,_

Process was represented by the summation of the average times of each messag,.

length to be passed by the Ring Control Process.

Configurations Tested

Three configurations of processes were tested to measure and compare th,.

performance of the adaptive routing process with the current routing process. Table -i"

lists the configurations. Each of the configurations used the same Host Process and --

I

the same Network Loading Process. Only the Routing Process and the Ring Cor .

Process were altered. The Routing Process was altered to perform adaptive or stat i

routing. The Ring Control Process was altered to interface with the Routing Proces

othe current iPSC message passing routines. In each configuration, three proce-se

were running on each node of the iPSC. The results of the testing are compared il

Chapter VI to determine the effect of the adaptive routing algorithm. Table

Table 5. Test Configuration s h e P s

Configuration Description a e C

1 Distributed Adaptive Routing (DAR)stat,

2 Simulated Static Routing (SSR) '.

3 Current Static Routing with Added Process.

(CSR/AP) -..

I

o he Distributed Adaptive Routing (DAR) configuration was comprised of t.

Routing Process to route the messages according to its routing table, and the 1n1110

Control Process linked with the Routing Process's interface routines. The Simulated

Static Routing (SSR) configuration used a modified version of the Routing Process lo

intercept messages and route them according to the iSC static routing, and the R)li,

Control Process again linked with the Routing Process's interface routines. Bccalu,
44
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% ~ the adaptive routing process was implemented at the applications layer of the O.SI

protocol and not the network layer, the simulation of the iPSC routing process was

necessary to isolate the effects of the adaptive routing process. Therefore, the two

configurations --an be compared to determine the effect of the adaptive routing over

the static routing.

The Current Static Routing with Added Process (CSR/AP) configuration used

the iPSC anclaw and recvw routines in the Ring Control Process instead of the

adaptive routing process's interfaces asendw and arecvw. Since the Ring Control

Process was not linked with the Routing Process's interface routines the Routiing

Process could not intercept the message traffic. Because the other two coiifi'gu-

rations consisted of three processes, the Routing Process was also loaded in thk

comfiguration to keep the process loading equal. This third configuration call 1w

compared with the DAR configuration to establish the processing overhead caused

by the adaptive routing process.

Summary

This chapter has presented the testing methodology used in this research. toi-

clude how the metric (delay time) used in the study was established. It also presented

the topology and the various network loads used to establish the communications

load. This was followed by the various configurations developed to test and compare

the adaptive routing algorithm against the current iPSC routing performance. Thle

additional processes are listed in the appendices; Appendix C - the Host Process.

Appendix D - the Ring Control Process, and Appendix E - the Network Loading

Process. The Makefile used to compile and link the processes is listed in Appendix F.

Chapter VI presents the results and conclusions from the testing.

,, \
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VI Conclusions

The purpose of this study was to examine the effect of a distributed adaptive

routing algorithm on a concurrent class computer. The focus of the study involved

the comparison of an implemented adaptive routing algorithm, a simulation of the (

current static routing algorithm and the current static routing algorithm with an.

added process for load balancing. This chapter compares results obtained from the

testing methodology described in the Chapter V, and conclu-.es with recomrmenda-

tions for additional study.

Rfsults

Each of the three configurations described in Chapter V was tested using the

twenty different message loads listed in Table 3. In addition, a test of the three coil-

figurations was performed without any additional message traffic from the Network

Loading Process. Again, the three configurations were the Distributive Adapti](

Routing (DAR), the Simulated Static Routing (SSR), and the Current Static Rout-

ing with Added Process (CSR/AP).

Table 6 is the summation of the average delay times for the nine control message

lengths, of Table 2. Again the summation was done to measure the performance of

the adaptive routing algorithm unbaised by a fixed message length. Based on the

data formulated from the average delay times of the various traffic loads, five graphs.

Figures 16- 20, were developed to compare the message delay times of the three

* configurations.

The data in Table 6 indicates that for the network loads tested the adaptive

routing process was from 19.1-95.6 secs faster than the simulated iPSC static routing

process for the test cases used. Additionally, the current static routing was 69.5-

90.46 secs faster than the adaptive routing. Based on the data from the tetig I
performed with no loading messages, the overhead caused by implementing the

46
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Table 6. Summarized Timing Measurements (in Seconds) -

Conf. JNumber of Number of

_Bytes/Msg. Congested Links
0 4 8 12 16

0 78.83 116.71 151.21 182.45 219.37
1 4096 - 103.04 136.56 163.83 201.10

DAR 8192 - 101.81 134.87 159.81 202.84
12288 - 101.86 135.60 163.47 202.92
16384 - 103.05 133.56 161.98 200.75

'A 0 76.56 134.95 191.94 251.68 298.61

2 4096 - 120.47 187.94 252.82 302.37
SSR 8192 - 125.49 179.96 248.15 296.02

12288 - 120.20 179.11 248.16 307.42
16384 - 120.99 180.56 252.41 300.77

0 5.55 46.26 81.66 128.31 169.27
3 4096 - 30.65 55.53 80.67 101.65

CSR/AP 8192 - 34.67 56.49 76.58 102.23
12288 - 34.24 55.06 79.84 103.13

16384 - 33.08 51.79 83.51 98.42

4

-:. '5-'
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routing algorihtin at the applications layer was 71 secs. It should be note 1

that the current static routing process was from 88.64-186.1 secs faster than the le

simulated static routing.

Analysis of the five figures results in the following conclusions. Coniparii,-

configurations one (DAR) and two (SSR) indicates the adaptive routing process, a-

expected. has a smaller delay time than the SSR configuration. This is due to th,

additional communication channels available to the DAR configuration. The figures"

also reveal that the length of the congesting message did not have an impact oil i l

ring delay time. but the number of congested links did. This indicates that the liink,

were congested equally, regardless of the actual congesting message length.

It was anticipated that at a certain level of congestion the DAR confguratio"

would also have a smaller delay than the configuration three (CSR/AP). luf,,i-

tunatelv. this did not occur. Post-test analysis of the Network Loading Proces"

indicates that the link congestion was not the overriding communications factor. bu"

fthat the time-slicing of the different processes was the biggest factor in the delay

times of the messages. Not only did the time-slicing impede the messages. it al,'

decreased the arrival rate of messages into the network from the Network Loadiiy

Process, therefore, decreasing the communications load on the network.

Future Research

While the testing accomplished in this study attempted to cover a wide ran.,

of possible communications loads, additional testing should be performed. i,,uI'

research into how the iPSC sends messages when more than one process is operatuig.j

as well as, expanded testing with altered congesting techniques. Along with th,,

expanded testing of the message passing system, research into the operating systen

itself could yield a better understanding of the operation of the iPSC. Additional

study should also involve implementing the developed adaptive routing algoritlhm

developed at the network laver of the OS! protocol.
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Appendix A. Routing Process

* DATE: 09/20/87 *

* VERSION: 2.2 *

* TITLE: Simulated Distributed Adaptive Routing Process *
* FILENAME: route.c *

* PROJECT: Thesis *

* OPERATING SYSTEM: XENIX
* LANGUAGE: C
* FILE PROCESSING: compiled with options -ALfu *
* FUNCTION: This process provides an alternate routing *
* capability for the iPSC. It provides selection of the *
* next node by shortest path and smallest delay to the *
* destination node. If the destination node is an *
* adjacent node, the message is sent directly to *

* destination process. *
' * *************************** ***

#include "/usr/ipsc/lib/cnode.def"

#define MAXCUBEDIM 7
#define MAXNUMNODES 128

#define ROUTE-TYPE 32767
#define ROUTEPID 32767

#define DELAY-TYPE 32765
#define DELAYSIZE (4*(MAXNUMNODES+1))

#define MAX-TIME 6000
/* Time in msecs to identify bad link. */

#define ADJTIME 2500
/* Time in msecs to recalculate delay. */

#define BAD-NODE 3333

/* Used as a default bad node number. */
#define ROUTE-TEST 0

/* Used to collect msg path data.

54



#define MSG-SIZE 16384
/* Maximum number bytes in a message. */

* *********************** '..

* Program variables: *

int i,j;
int send-chan, recv-chan;
int my-node, next-node;
int cube-dim, numnodes;
int d-node, dpid, dtype;

nt rcnt, rnode, rpid;
int ad] time; 0 "

int outnodes[MAXCUBEDIM];
long update-time;
long deltimes[MAXNUMNODES] [MAXCUBEDIM];
long start-times[AXCUBEDIM]; I

long delay-buf[MAXNUMNODES + 1];

int recv-buf [MSGSIZE/2];
int *templ-ptr;
char *temp-str;

/ *********************************************************** / .

main()

/************************************** ~i!:

* Open channels for communicating *

* with the other nodes.

send-chan - copen(ROUTEPID);
recv-chan - copen(ROUTE_PID); "

/**************************************
* Each process identifies its node * I
* and determines adjacent nodes.

my-node - mynode();."
cube-dim - cubedim(); .

num-nodes = 1<<cube-dim; *.--'1

adj.time - ADJ_TIME + my-node;

55

*1

.................................................



%u -- * Initialize the routing table and *,"
*and send first set of delay msgs * "'

init..tables (my..node, cube..im ,num..nodes);•' '
update.time -clock );

get out.times(sendchan,my node,cube dim,numnodes); P

* BEGIN ROUTE CODE: *

for (;;) ]

" This section controls the passing of application

" messages to the desired destination node/pid. *

while (probe(recv-chan,ROUTETYPE) >= 0)

recvw(recv-chan, ROUTETYPE, recvbuf, MSGSIZE,
&rcnt, &rnode, krpid); 6

templ-ptr a recv-buf;

d-node - *templ-ptr++;
d-pid = *templ-ptr++;

d-.type = *templ-.ptr;

/****************************************************
* Used to id nodes traversed in path testing. * .1* Not used in time testing.* -"

*if (ROUTE-TEST) -

for(iO; recv.buf[i] >- 0; i++)

%
recv.buf[i] my-node; b

lendif

j = node-index(d-node,cubedim); ties
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if (j < ube-im) (d-nde m-nod))P

ifext-nodue..dm a nod(myd,d_no my..node))
sendw(send.chan, ROEtype, recvbuf,

rcntrcnt dnodede dOUpid);)

* eaxptho dentnodeion noded...oecb~i)

end(end.chan, DELAY-TYPE, ecvy-buf,DEA-I ,
krcnt, nexnode, rOUTid PD)

Ge Thssctione contrx olspsslntofm etwoar eay

j node-index(ruode,cube.dim);

if Ci< cube-.dim)

if (delay-.buf[numn-nodesj my..node)

del..times~rnode] [j]
clock() - start-.times[j];

start..timesej] -0;

else

sendw(send.chan, DELAY-TYPE, delay-buf,

rcnt, mnode, rpid);
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' II'"% for(i=O; i < numnodes; i++)

del-times[iJ [j] =
delay.buf [i] + deltimes[rnode] [j];

else.'

sprintf(temp.str, Vw

"Rec'd delay msg from invalid node %d",rnode);
syslog(ROUTE_PID,temp-str);
}

* This statement controls the frequency of *
* updates to the routing table. *

if (clock() - update-time > adj.time)
{
update-time - clocko;
get-out-times(send-chan,my-node,cubedim,num-nodes);

}

else
flicko;

} /* End of infinite for-loop
/* END OF MAIN FUNCTION */

* BEGINNING OF FUNCTION DEFINITION SECTION *
**************************************************

I*********************************************************** *

* Function to initialize the routing table arrays: *

* out-nodes[], start-times[], and del-times[] []. *

init-tables(my-node,cube-dim,numnodes)

int my-node;
int cube-dim;
int num-nodes;

-<- ;.
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Nint i, j;:

for( i-0; i < cube-dim; i++)

j -1<< i;
- out-nodes [i] - my-node "j;,

start-times[i] = 0;

I}

for( i=O; i < num-nodes; i++)
for( j=O; j < cube-dim; j++)

del-times[i] [j] a MAX_TIME;
/* End of init-tables function *

*Function node-index is used to return the index into *
*the del-times and out-nodes arrays.*

int node-index (test-node, cube-dim)

int test-node;
@ int cube-dim ;

-'S {

int j;

for( j0; testnode +outnodes[+] &) j < cube-dim; j++)

return (j) ;
t/* End of nodeindex function

* Function get-out-times used to update the delay times. *
* It resets starttimes and sends the DELAY messages
* to the neighboring nodes.

inf getouttimes(ci ,mynode, cube_dim,num_nodes)

int ci, my-node;
int cubejdim, numnodes;

int i ;
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* ~~get..delay-.buf (my-.node, cube-.dim ,num-nodes);

for ( i-0; i < cube-.dim; i++)
if (star-t..times[i] == 0)

start-times[i] = clocko;
sendw(ci, DELAYTYPE, delay-.buf,

DELAY-.SIZE, out..nodes~i], ROUTE-PID);

} 1* End of get..out..times function *

* Function get-delay-.buf is used to retreive the data *

* necessary information to build the delay-buf message.*

int get ..delay-.buf (my-.node, cube~dim ,nuin-nodes)
int my-.node, cube-.dim, num-.nodes;

int i, j, adj..time;

long min;

0 for( j0O; j < cube-.dim; j++)
if (start..times~j] != 0)

adj-.time -ADJ-TIME + my..node;I
for( i0O; i < num..nodes; i++)

del-.times~iJ [j] += adj..time;

for( i-0; i < num..nodes; i++)

for( j-0; j < cube-.dim; j++)

if (del-.times[iJ[jJ < min)

min = del-.times[i][jJ;I
delay.buf[i] -min;

delay-.buf[iJ - my-.node;J

delay-.buf[my-.node] = 0;

4 } /* End of get-.delay-.buf function *
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* Function n-node determines the next node in path *
* to destination or assigns a default node. *
* If variable out-node isn't reassigned, the *
" original destination is returned as the next node. *

int n-node(currnode,dest-node,cube-dim)

int currnode;
int dest-node;
int cube-dim;
{ '

int i = 0;
int j = 1;
Sint empnode, outnode;

long min;

/*****************************************
* Establish time and default node
* used to determine a congested link. *

min = MAX-TIME + 1;
out-node a BAD-NODE;

temp-node = curr-node dest-node;

for ( i=0; i < cube-dim; i++){ .

if ( (temp-node k j) kk
(min > del.times[dest-node] [i]))

{I
min - del-times[dest-node][i];
out-node out-nodes[i];~}

i" <<- I

return((outnode 'm BADNODE) ? outnode dest-node);
}/ End of n-node function */

END OF FUNCTION DEFINITION SECTION */
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Appendix B. Interface Functions

* DATE: 09/20/87 *
* VERSION: 2.2*

* TITLE: Blocking Send for Adaptive Routing Process *

* FILENAME: asendw.c *
* PROJECT: Thesis •

* OPERATING SYSTEM: XENIX *

* LANGUAGE: C *

* FILE PROCESSING: compiled with options -ALfu *
* FUNCTION: This fuction can be linked to any program *
* using the follwing parameters: *

* int ci; •
* int type; *

* char bufrn]; *

* int len; *
* int node; *

* int pid; •
" * *

#define ROUTE-TYPE 32767
#define ROUTEPID 32767

#define MAXCUBEDIM 7
#define OVRHEAD 6

asendw(ci, type, buf.ptr, len, node, pid)

int ci; /* channel value for message sending
int type; /* type value of the message

char *buf-ptr; /* pointer to buffer holding message
int len; /* length value in bytes being send
int node; /* value of the destination node
int pid; /* value of the destination process id */

int *malloc);
void freeo;

6?
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'" int *send-buf-ptr;

int *ovr.headptr;

char *temp1_ ptr;
char *temp2_ptr; -'

int i, j; "
int out-len;

static int initialized -0;

static int my-node, my.pid, cube-dim;

static int overhead-size;
static int nearest-nodes[MAXCUBEDIM];

if (!initialized)

my-node = mynodeo;

mypid - mypido;
cube-dim - cubedim();

over-head.size - OVRHEAD * sizeof(int);

for (i-O; i < cube-dim; i +)
{ "-
jl ( 1<i;

nearest-nodes[i] my-node j;
} .

initialized 1;
} 4

" Code to allow direct transmission of a message to *

" itself, a neighbor node, or make a global .
" transmission without using the routing routine. *

for(i=O; node - nearest-nodes[i] & i < cube-dim; i++)

if(node ==my-node 11 node < 0 IIi < cube-dim)

sendw(ci, type, buf-ptr, len, node, pid); :1
else
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# * This portion of the code prepares the message *

*overhead so the message can be properly*
*handled by the routing process. The routing *

*overhead is stored in first six integers of
message buffer.*

out-len aover-.head-.size + len;
ovr.head..ptr a malloc(outjlen);
send-.buf-.ptr = ovr-.head-.ptr;

*ovr-.head-.ptr++ -node;
*ovr-.head-.ptr++ - pid;
*ovr..head-.ptr.. - type;
*ovr-.head-.ptr+4. - my-.node;
*ovr.head-.ptr++ - my..pid;
*ovr-.headptr++ - len;

*Code to copy message into new data buffer.*

templ..ptr - (char *)ovr.head.ptr;
I. temp2-.ptr = buf-.ptr;

for(i-O; i < len; i++)

*templ-.ptr++ = *temp2-.ptr++;

sendw(ci, ROUTE..TYPE, *end.buf..ptr,
4,44 outilen, my-.node, ROUTE-PID);

free(send-buf-.ptr);

} * End of asendw function *
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" DATE: 09/20/87*
" VERSION: 2.2*

* TITLE: Blocking Receive for Adaptive Routing Process *

* FILENAME: arecvw.c*
* PROJECT: Thesis
* OPERATING SYSTEM: XENIX*
* LANGUAGE: C*
* FILE PROCESSING: compiled with options -ALfu*
* FUNCTION: This fuction can be linked to any program *

* using the foliwing parameters:*
* mt ci;
* mt type;
* char buf[n);*
* mt len;
* mt cnt;
* mt node;*
* mt pid;

#define ROUTE..PID 32767
#define ROUTE-TYPE 32767

#def ine OVR-.HEAD 6 .

arecvv(ci, type, buf..ptr, len, pt..cnt, pt-.node, pt..pid)

.5 mt ci; /* channel value from calling programming *
mnt type; /* type value from calling programming
char *buf-.ptr; /* pointer to calling program buffer space *
mnt len; /* length value of buffer from calling prg *
mnt *pt..cnt; /* pointer to count of rec'd message
mnt *pt-.node; /* pointer to source node of rec'd message *
mnt *pt..pid; /* pointer to source proc. id of rec'd mesg *

mnt *malloco;
5% void freeo;
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int i, buf..size;

char *templ-ptr;
Cj char *temp2-ptr;

static jut initialized =0;

static jut over..head-.size;
if (!initialized)

over-,head size = OVR_.HEAD *sizeof(int);Iinitialized m 1;.0

buf..size - over.head.size +' len;
recv-.bu-ptr - malloc(buf..size);

recvv(ci, type, recv-.buf-.ptr, buf-.size,
pt-.cnt, pt-.node, pt-pid);

if (*pt-pid -- OUTE-.PID)

ovr..head..ptr - recv.buf.,ptr + 3;

*pt..node m *ovr-.head..ptr+.;
*pt..pid a*ovr..head..ptr..;
*pt-cnt -*ovr-.headptr++;

else

ovr-.head-.ptr recv-.buf..ptr;

templ-ptr U(char *)ovr..head-ptr;
temp2-.ptr *buf-.ptr;

for(inO; i < *pt-cnt; i++)I
*temp2-.ptr+. a *templ.ptr+.4;

* free(recv.buf-.ptr);
-' return;I

} * End of arecvw function *
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* DATE: 09/20/87 *

* VESON .

* TITLE: Non-Blocking Send for Adaptive Routing Process *

* FILENAME: asend.c *

* PROJECT: Thesis *

* OPERATING SYSTEM: XENIX *

* LANGUAGE: C *

* FILE PROCESSING: compiled with options -ALfu *

* FUNCTION: This fuction can be linked to any program *

* using the follwing parameters: *

* int ci; *

* tin type; *

* char buf[n]; *

* tin len; *

* int node; *

* int pi:; *
* *

#define ROUTE-TYPE 32767
#define ROUTEPID 32767

#define MAXCUBEDIM 7
#define OVRHEAD 6

asend(ci, type, bufptr, len, node, pid)

int ci; /* channel value for message sending
int type; /* type value of the message */
char *buf-ptr; /* pointer to buffer holding message
int len; /* length value in bytes being send
int node; /* value of the destination node
int pid; /* value of the destination process id */

int *malloc);

void freeo;

int *send-buf-ptr; 1
67
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int *ovr.head-ptr;
char *templ-ptr; ,

char *temp2_ptr;
int i, j;
int outfen;

static int initialized = 0;
static int my-node, mypid, cube_dim;
static int overheadsize;
static int nearest-nodes[MAXCUBEDIM];
if ('initialized)

{N
my-node - mynodeol;
my-pid = mypido;
cube-dim - cubedimo; -"

over-head-size - OVRHEAD * sizeof(int);

for (i=O; i < cube-dim; i++)

j 1 < i;.
nearest-nodes[i] a my-node j;_} .'U-'

initialized = 1; S

" Code to allow direct transmission of a message to *

" itself, a neighbor node, or make a global *
" transmission without using the routing routine. *

for(i-0; node u nearest-nodes[i] A& i < cube-dim; i++)

if(node *u my-node II node < 0 II i < cube-dim)
{
send(ci, type, buf.ptr, len, node, pid);
while(status(ci)) flicko;

}
else

*%o%
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* DATE: 09/20/87 * -*

* VERSION: 2.2 *

* TITLE: Non-Blocking Receive for Adaptive Routing Process *

* FILENAME: arecv.c *

* PROJECT: Thesis *

* OPERATING SYSTEM: *

* LANGUAGE: C •

* FILE PROCESSING: compiled with options -ALfu * 4

* FUNCTION: This fuction can be linked to any program *

* using the follwing parameters: *

* int ci; *

* int type; *

* char buf [n]; *

* int len; *

* int cnt; *

* int node; *

* int pid; *

* *

#define ROUTEPID 32767
#define ROUTE-TYPE 32767

#define OVRHEAD 6

arecv(ci, type, buf.ptr, len, ptcnt, ptnode, ptpid)

int ci; /* channel value from calling programming */
int type; /* type value from calling programming */

char *bufrptr; /* pointer to calling program buffer space */

int len; /* length value of buffer from calling prg */

int *ptcnt; /* pointer to count of rec'd message
int *pt.node; /* pointer to source node of rec'd message */ "
int *pt-pid; /* pointer to source proc. id of rec'd mesg */

int *malloco;F.[  void free();
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int i, buf-.size;
int *ovr-.head-.ptr;
int *recv..buf-.ptr;
char *templ-.ptr;%
char *ternp2-.ptr;
static int initialized -0;

static int over-.head~size;

if ('initialized)

over-.head-.size aOVR-HEAD *sizeof(int);
initialized a 1

buf..size over-.head..size + len;
recv-.buf-.ptr =malloc(bufsize);

recv(ci, type, recv.buf..ptr, buf..size,
pt-cnt, pt..node, pt-pid);

while(status(ci)) flicko;

if (*pt-pid ==ROUTE-PID)

ovr-.head,.ptr - recv-.buf-.ptr +3;

*pt-node - *ovr-.head..ptr++;
*pt-pid = *ovr-head-.ptr++;
*pt-cnt =*ovr-.head-.ptr++;

else
ovr-.head-.ptr =recv.buf-ptr;

tempi-.ptr - (char *)ovr-head.ptr;
temp2..ptr = buf..ptr;

for(i0O; i <*pt-.cnt; i++,

0 *temp2..ptr++ - *templ-.ptr++;

free(recv-buf-.ptr);
return;

}/* End of arecv function *



'p

,'p

Appendix C. Host Process for Adaptive Routing Testi,,q

* DATE: 09/20/87 *

* VERSION: 2.2 Based on iPSCs Host Process for Ring Ex. *
* *

* TITLE: Sequential Ring Host Process *

* FILENAME: host.c *

* PROJECT: Thesis *

* OPERATING SYSTEM: XENIX *

* LANGUAGE: C *

* FILE PROCESSING: compiled with options -ALfu *
* FUNCTION: This is the Host code for the ring demo. *

* It loads 3 processes: *

* a) the routing process *

* b) the node process *

* c) the loading process *

* It reads 2 files for testing input: *

* a) Information for the load process *
* 1) the number of links to be congested
S* 2) the length of the message for the load process *
* b) Information for the node process *
* 1) the number of times to go around the RING. *
* 2) the length of the message in bytes *
* It opens 1 file for output: *

* a) the number of links congested *

* b) the length of the message in the load process *
* c) a ring "count" each time the ring message *
* goes past node 0, *

* d) the time it took the message to go around *

* the ring the specified number of times. *
* e) the average time per pass through the network *

**** ****************************************************** ***/

#include "/usr/ipsc/lib/chost.def"
#include <stdio.h>

/******************************************************
* Program definitions and varibles. *

*************************************************************



% #define HOST-PID 1

#define NODEPID 2

#define ROUTEPID 32767
#define LOADPID 3010

#define ALL-NODES -1
#define ALLPIDS -1

#define INITTYPE 10

#define INITMSGSIZE 4
#define CNTMSGSIZE 2

#define TIMEMSG-SIZE 4

#define MAXMSGSIZE 16384

#define ROUTE-TEST 0

* Program variables: *

int ci, type;

int cnt, frnode, frpid;

int i, j, ring-count;

int msgbuff [8192];
int msg.len;

it num-links, msg_load;

long time-buff;
float ring-time;

char CARRIAGE1RETURN 13;

FILE *fpin, *fp-out, *fp-load;

main()
{

printf("LOADING THE CUBE WITH ROUTE ...

printf("ONE MOMENT PLEASE\n");

load("route", ALL-NODES, ROUTEPID);

printf("LOADING THE CUBE WITH NODE ...
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printf("ONE MOMENT PLEASE\n");
-2" load("node", ALL-NODES, NODE_PID); I

* pen a channel for the host-to-node communications. *

p ci = copen(HOSTPID);

* Open node input and test data output files.

fpload
fopen("/usr/eng/tfarinel/mydata/loaddata","r");

fopen("/usr/eng/tfarinel/a-routing/out-data" w

" ~/********************************************************** ';

* BEGIN MAIN PROGRAM LOOP TO CONTROL LOAD PROCESS: *

for(;;)

printf("**************** START LOAD **************\n");

.:, . *******************************************************

* get the number of links for the load plcess: *

printf("Number links for load process "";

printf("(neg. value quits): ' '1
fscanf (fpload,",d", &numjlinks); -!
printf("%d\n",num_1inks);

/ ******************************************************.

* If num_links is < 0, break out & clean up: *

/ ******************************************************-".
if (num-links < 0) break; .

* get the number of bytes in the load message: *
le

4. ****************************************************** .,-.;,

printf('Number of bytes in the message (0-16384): "); 4'-

fscanf (fpload,"%d", &msgjload);

7,1
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**********************************************r I%~% printff$"%d\n",msg.load);

" Include num-links and message length in the Y

*~ message to the load process: *"

msg-buff[0 - numjlinks; A4
msg-buff[l] = msgjload;

if (num-links != 0)

printf("LOADING THE CUBE WITH LOAD ...");

printf(" ONE MOMENT PLEASE\n");

load("myload". ALL-NODES, LOAD_PID);

* Sn h esg ufrt l h oe:*************************************************** -.i-Send the message buffer to all the nodes: *:'.

sendmsg(ci, INITTYPE, msgbuff,

INIT.MSGSIZE, ALL-NODES, LIADPID);

fprintf(fp.out,"\n Number Message Ring");

fprintf(fp.out," Message Total Average\n");

fprintf(fp.out," Links Length Count Length");
fprintf(fp.out," Time Time\n\n");
/*******************************************************
* Open node process input data files. *

fpin =
fopen ("/usr/eng/tfarinel/mydata/indata","r");

* BEGIN MAIN LOOP TO CONTROL NODE PROCESS: *

for(;;)

printf("**************** START RING ***********\n");

get** he*num****o**times*to*g**a**und*the*ring:
* get the number of times to go around the ring: *

printf("Number of times to go around the ring ");,
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printf("(neg. value quits): ");
fscanf (fp.in,"Xd", &ring.count);

printf("%d\n", ringcount);

/********************************************~**
If ring-count is negative break out of loop.

****************************************************

if (ring-count < 0) break;

* get the number of bytes in the message: *

printf("Number of bytes in the message (0-16372):");
fscanf(fpin," %d", &msg_len);
printf(" %d\n",msglen);

/****************************************************
* Include ring-count and message length in the *
* message to the ring process: *

msg-buff[0J - ring-count;
msg-buff[1] = msg-len;

* Send the message buffer to node 0:*

C. sendmsg(ci, INITTYPE, msg.buff,

INITMSGSIZE, 0, NODE_PID);

* Get the current ring count from node 0 *

* and report to user:

for (i-i; i<ring.count; i+ )

recvmsg(ci, &type, msgbuff,
CNTMSG_SIZE, tcnt, &frnode, &fr.pid);printf("Ring count: %d %c", msg-buff[O],

,. CARRIAGE.RETURN) •
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*Get the RING time from node 0 & report to user:*

recvmsg(ci, &type, &time.buff,

TIME_.MSG..SIZE, kcnt, &fr.,node, kfr~pid);
ring-.time = (float)time..buff/1000 .00;
printf("\nRing time :%0.2f secs.\n", ring-time); A

fprintf(fp-.out,"%4d %9d %6d %8d %7.2f %7.2f\n",
numjlinks, msg-load, ring-count, msg-.len,
ring~time, ring-.time/ring.count);

*if (ROUTE-.TEST) :
* ~recvmsg(ci, &type, msg..buff, MAX_.MSG_.SIZE,

&cnt, &fr.,node, &fr..pid);

for(i-0; msg-.buff[iJ >- 0; i++) I
if(msg-.buff[iJ -- 100) *

fprintf(fp-out ,"\n\n");

jz0;

fprintf (fp..out ,"%5d%c" ,msg-buff [i],

Qj%10 -a 9) ? J\nl:

j += 1;

4 ~fprintf(fp-.out I\fl\fU);

#endif

}/* END OF MAIN PROGRAM LOOP FOR NODE PROCESS. *

* fclose("/usr/eng/tfarinel/mydata/in-data");

}/* END OF MAIN PROGRAM LOOP FOR LOAD PROCESS. *

.d."I 
j
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* Appendix D. Ring Control Process for Adaptive Routing Tc.011iu(y

* DATE: 09/21/87
* VERSION: 2.2 Based on Intel's example RING program. *

* TITLE: Sequential Node Ring Process *

* FILENAME: node.c *

* PROJECT: Thesis *

* OPERATING SYSTEM: XENIX ,
* LANGUAGE: C *

* FILE PROCESSING: compiled with options -ALfu *

* FUNCTION: This process passes variable length messages *

* from node 0 to all other nodes in the iPSC before *

* returning to node 0. Each node increments the node *

* address by modulo(cubedim(). For cubedim of 3, the *

path taken is 0-1-2-3-4-5-6-7-0. ,

* Node 0 will play the role of "controller" node. *

* It waits for a message from the host telling it: *

* a) the number of times to go around the RING. *

* It then sends a message to node I and counts the times *

* the message goes around the RING. *

* At the end, Node ) reports back to the Host the time it *

* took the message to go around the RING. *

#include "/usr/ipsc/lib/cnode.def"

#define HOSTNID Ox8000
#define HOSTPID 1
#define INITTYPE 10
#define NODE-TYPE 20
#define TIME-TYPE 30
#define COUNT-TYPE 40

#define INITSIZE 4
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e, S #define TIME-SIZE 4 ,
#define COUNT-SIZE 2

#define MAXMSGSIZE 16384
#define ROUTE-TEST 0

Program variables: "

int host_chan, node_chan;

int i, count, ring_count;

int msg_len;
int initbuff [2];
int msgbuff [81923;
int my-node, my-pid;
int next_node, next-pid;

int num-nodes;
int rcnt, rnode, rpid;
int limit, j; /* Not used in time testing */

long starttime, ring-time;

main(){

* Each process identifies the node its *

* running on and its pid: *

my-node = mynodeO; A
mypid - mypid();

* Each process determines the node id *

* & and the pid of the node following *

* itself in the RING:

num-nodes - 1<<cubedim();

next-node - (my-node + 0%Y num-nodes;

next.pid = my-pid;
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* Open channel for communicating with *

* the next node in the RING. *

node-chan = copen(mypid);

• BEGIN NODE 0 CODE: *
* **************************************** / "

if (my-node 0)

* Open channel for communicating *

* with the host. *

host-chan copen(my-pid);

/ **************************************-"

* NODE 0 MAIN LOOP: *

for (;;){

recvw(hostchan, INITTYPE, init buff,
INITSIZE, &rcnt, &rnode, Arpid);

ring-count - init-buff[O];

msg-len - init.buff[l];

" Used during path testing. *

" Not used during time testing. *

" Initialize message to all -l's. *

#if (ROUTE-TEST)
{ .

limit = (msg-len / 2) + 1;

for(i=0; i < limit; i++) ".-

msg.buff[i] = -1;

#endif
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S ring-.time 0;

for~imi ; i~ring-.count; i++)

*if (ROUTE-TEST) .,

for(j0O; msg..buff[j] >= 0; j++)

msg-buff[j) my-node + 100;

Sendif

start-time =clocko;

* Use routing interface calls asendw()
* and arecvv() instead of sendw() and *

*recvw() as defined in iPSC manual. *

asendw (node.chan, NODE-TYPE, msg-.buff,
msgjlen, next..node, next.pid);

arecvw (node.chan, NODETYPE, msg-buff,
MAX-.MSG-.SIZE, krcnt, &rnode, &rpid);

ring-.time += (clock() start..time);
count

sendw(host~chan, COUNTTYPE, &count,
COUN-SIZE, HOST..NID, HOS-PID);

sendw (host-chan, TIMETYPE, &ring-t ire,
TIME-.SIZE, HOST-NID, HOST..PID);

*if (ROUTE-TEST)
sendw(host~chan, NODEJTYPE, msg..buff,

msgjlen, HOST-.NID, HOSPID);
#endif
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else

{

-. * BEGIN OTTER NODES' MAIN LOOP: *
V. ******,***********

for (;;)
{
arecvw(node-chan, NODE-TYPE, msgbuff,

MAXMSGSIZE, &rcnt, &rnode, &rpid);

#if (ROUTE-TEST)
{
for(j-0; msg-buff[j] >= 0; j+ )

msg-buff[j] - my-node + 100;
} ,.

#endif

asendw(node-chan, NODE-TYPE, msg.buff,
rcnt, next-node, next pid);

-- -

} /* End of Sequential Node Ring Process */
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Appendix E. Network Loading Process for Adaptive Routing T",.,011 /

* * a-....

a,

* DATE: 09/20/87 *

* VERSION: 2.2 , 1

* TITLE: Load Process for Adaptive Routing Process *

* FILENAME: myload.c *

PROJECT: Thesis *

* OPERATING SYSTEM: XENIX , I
* LANGUAGE: C *

* FILE PROCESSING: compiled with options -ALfu *

* FUNCTION: This process provides a communications load *

* to compare current iPSC routing and the distributed *

* routing process. This loading process is loaded on all * I
* nodes of the iPSC. It causes congestion by forcing *

* additional messages to be passed between neighboring *

* nodes on the cube. *
* * -,

* The number of links and the message size to use is sent * .
* from the "host" process. This process determines *

* which nodes form the communication's bound links, based *

* on the value of the number of links parameter. The *

* number of linnks must be an even number between *

* 2 and 16, inclusive. *

#include "/usr/ipsc/lib/cnode.def"
I

#define INITTYPE 10
#define NODE-TYPE 30

#define MAX-SIZE 16384
I

* Program variables: *

int i, temp;
int nodechan, host-chan; ]
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.7:

int msg buff[MAXSIZE/2];
int num_links, msg_load;

int my-node, my-pid;
int nextnode;
int send-node - 0;
int recvnode = 0;
int rcnt, rhode, rpid;

* Beginning of main routing, that waits for a message from *

* the host specifing the number of links to be congested *

* and the message length to be used. This also allows the *

* host program to determine when the loading should begin. *

main()

* Each process identifies its node *

* & its pid: *

my-node - mynode);
my-pid - mypido;

host-chan = copen(my.pid);

recvw(host-chan, INITTYPE, msgbuff,

MAX-SIZE, &rcnt, &rnode, &rpid);
num-links = msg-buff[O];
msgload a msg-buff[l];

_**** * .********* **************** ****** ****** :
* Determine sending nodes and receiving *

* nodes for the loading process. *

for (i-0; i < num-links/2; i++)

temp = i * 4;

if (my-node == temp II my-node == temp + 1)

send-node = 1;
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' next-node =my-node + 2",;

%" break;

else if (mynode temp + 2 Imy-node = temp + 3)

{ )p.

recvnode = mynde.2
break; "

else iet

" Open channel for communicating with the *'
r next node in the RING.

nodechan =copen(mypid);'

el sen-oe

f

I********************************************r

* en chane orcounictn withTPE the *f

* nxt odeiE thexnoe RING. *

no e.c ncope-n NOpDE-YE,;g-u

* Each node determines & to send, receive, *
* or allow other processes to continue. * "

* for (; ;)

{
if (sendtnode)

{
sendw(node_chan, NODE_TYPE, msg..buff,

MAXSIZE, nextnode, my~pid);

recvw(nodechan, NODE_TYPE, msg.buff,
MAXSIZE, &rcnt, &rnode, &rpid);

I

else if (recvnode)
{
recvw(node.chan, NODETYPE, msg~b f.

MAX_.SIZE, &rcnt, &rnode, &rp:d
sendw(node~chan, NODETYPE, ssg tt:

rcnt, mode, my~pad);
}

else

flick();

/* End of myload fur. t.
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Appendix F. Makefile for Adaptive Routing Processes

OFLAGS -- Alfu -K

# NOTE: This makefile uses the default rule for the C
S compiler for node.c

all: host node route myload
rtest: host node route

help:%

@echo "make all - makes all processes" '

* echo "make host - makes the host process" IS

@echo "make node - makes the node process"
Cecho "make clean - cleans up"

host: host.c

cc -Alfu -o host host.c /usr/ipsc/lib/chost.a

node: node.o
ld -M1 -o node /lib/Laeg.o /uor/ipsc/lib/LcrtnO.o\
node.o\
/usr/eng/tfarinel/lib/obj /asendv.o
/usr/eng/tfarinel/lib/obj /arecvv. o
/usr/ipsc/l ib/Ll ibcnode .a
/usr/ipsc/lib/Llibcel .a

0 /usr/intel/lib/cel287. a

* route: route.o '

id -Ml -o route /lib/Lseg.o /usr/ipsc/lib/LcrtnO.o\
route .o
/usr/ipec/lib/Llibcnode .a
/usr/ipsc/lib/Llibcel a
/usr/intel/lib/cel287 .a
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myload: myload.o
w. ~ id -Ml -0 myload /lib/Lseg.o /usr/ipsc/lib/LcrtnO.o\

*yload.o
/usr/ipsc/lib/Llibcnode a

* /usr/ipac/lib/Llibcel a
/usr/intel/lib/cel287.a

cleani:
-rm *.o *log
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