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The purpose of this study was to examine the performance of distributed ada)- E:‘\*
o
tive routing algorithms on concurrent class computers. The Intel Personal Super- w/
Computer (iIPSC) was used as the test computer system. This study was limited to
: : : : _ : : K7
implementing the routing algorithm at the applications layer of the iPSC. Functions A
to interface between a user process and the routing process were written to imitatc 4'
the current system message passing functions. !_;
\" \
. . . . . \I
I am indebted to my faculty advisor, LtCol Charles Bisbee, for his guidance o
~
o,
in the accomplishing of this research. I also wish to acknowledge my committec c.‘
f-Y
members, Capt Nathaniel Davis and Capt Bruce George, for their guidance and '
encouragement. Finally, I especially wish to thank my wife Cathy and my sons ::::‘
N
Jason, John, and Justin, for their understanding and support. -
)

2

o

Tommy C. Farinelli

¢
P
l' .l T

R A
3

Al
P

LT
“
-
AN N AL

R ."

.
TRy
’

Acerezsion

i -
INTLC P !

DU T .
Ut . e
s ai L 4 . . — }
. K4
i I

N
3 |

—— . - -

AN
.’

7/

s

h ]
L] .'
TN
CRp——.
La ‘-
L
LR}

.
A An

18
cela,
" o

i

A

.
(N

.
"'t' P

CUANT
A.’&.J '.}4

. . . T L T e U e o L S N T I L U
%r..f.‘f.\._\" ORI \,. I\I\\_'{\-.‘J“_-’...’_‘- N “J‘\J\- PRGOS L S ."\-".'J'_-.' .r o \-(' .r RO -P -\ \.r\. ~o

¢

A
x



O T T U O O Y Y Y U W U Y P R U T T T N SO O O Y3 O PO OO PO O O TR OO o WU Lbah Vo tal

Table of Contents

Page

Preface . . . . . . . . i

Table of Contents . . . . . .. . . . ... .. e iii

Listof Figures . . . .. . ... . ... . Vi

Listof Tables . . . . . . . . .. . .. . Vii

b Abstract . . . L e e e e e viil

I Introduction . . . .. ... L 1

Purpose . . . . . . . ... 1

General Background . . . . . .. .. ... o oL 1

#‘A‘ Routing Algorithms. . . . . .. .. ... ... ... ... 1

t Supercomputing. . . . . .. ... ... 2

! Organization . . . . . . .. .. .. ... ... 1

I1. Distributed Adaptive Routing Background . . . . . .. ... .. ... 5

4 Open Systems Interconnection Model . . . ... ... ... .. y

Distributed Routing Overview . .. ... ... ... ...... 0

Routing Taxonomy. . . . . . ... ... ... ..... .. G

Distributed Routing Algorithms. . . . . ... .. ... 9

Performance Objectives. . . . . ... . ... ... .. ... 10

Operational Networks . . . . . .. .. ... ... ........ 11

Brayer's Research Network. . . . . .. ... ... .... 11

Digital Network Architecture. . . . . . . .. ... ... 13

ARPANET. . . . . .. .. . oo 11

Summary . . ... 15
..;T;_'
g

it

-y

R - . . e s . i .oy i TS TR T AT T G T T T S R L N
TSSO P \}\,\,}_'.)_J.\{\, P .'..). __'-* ,‘_ o : vl'-'\-P ‘. '. N - RO W )-. AL

2
e

R as s

S I Y o
\r':‘\'-':\- o

o

S

5%

PR
AL

5Nt
CIE G IP AN,
PO

sy
AN

[
.

R

<

L T
P d"i:k AN

S
LA
L %

LNA AN YW
2224

&2

& i a
4

LG N Iy
,'u‘,‘,'. A LY

>,
L4

LA
s

I' .l

e A

.
)

-c'

2
d .

Ao
P

' e

X

7'1- £

"
' % % Y

b} |,:'.‘
v s

I g
£,

S

Lt



WY WOV UW U W USSR URI 2T ST Y SOOI OV N N Y W R WY WU WU W SV U SV Y WU WY I WU W W) B WU,

Page
@ III.  iPSC Background . . . . . .. e ot ve 17
Overview of Concurrent Architecture. . . . . .. ... ... .. 17
Flynn’s Taxonomy. . . . .. ... ... ... .. ..... 17
Processor-Memory Configuration. . . . . . ... .. ... 18
Interconnection Networks. . . . . .. .. .. ... ... .. 19
History and Overview of the iPSC . . . . . ... ... ... ... 23
Current Message Routing. . . . ... ... .. ...... 23
Summary . . . ... e e e e 25
IV.  Developed Routing Processes . . . . ... ... ............ 26
Interface Routines . . . . . .. .. .. ... ... ...... 26
Send Routine. . . . . . .. .. ... . ... ... ... 27
Receive Routine. . . . . . .. ... ... ... ... 28
Routing Process . . . . .. ... .. ... .. ..., .... 29
6‘. Data Structures. . .. ... ... ... ... ....... 29
Routing Algorithm. . . . . . . ... ... ... ...... 34
Application Messages. . . . ... ... ... ... ... 34
Routing Messages. . . . . ... ... ... ........ 36
Update Timing. . . . . . ... ... ... ........ 36
Summary . . . . . e e e 36
A\ Testing Methodology . . . . .. ... ... ... ... .. .. ..., 38
Topology . . . . . . . . . 3
Network Loading . . . . . .. .. ... ... ... ........ 40
Comparison Metric. . ... ... ... ... ....... 43 N
Configurations Tested . . . . . . ... ... ... ........ 44 :j-
Summary . . . ... 45 EE:
£
— .
e I
o -
v Z:

b




TN TR W IR, TN T ATV G W W WSRO WSS

,
Kx
y
,
3
s
l
4
{
|
)

L e an an a -

R vy
4

.
.

»»
.
-

.

A

-

ottt ts

Page
VI. Conclusions . . . .. ... .. .. .« e 46
Results . . .. ... ... . ... . . 46
Future Research . . . .. ... ... ... ... ......... 53
A. Routing Process . . . . ... ... ... ... ... ... ... 31
B. Interface Functions . . . . . . ... .. ... .. ... ... ... 62
C. Host Process for Adaptive Routing Testing . . . .. ... ... ... 72
D. Ring Control Process for Adaptive Routing Testing . . . . .. .. .. T
o
E Network Loading Process for Adaptive Routing Testing . . . .. .. &1 5
bY
f
F Makefile for Adaptive Routing Processes . . . . . . ... ... .. .. R7 '.":}
bt
-{:
Bibliography . . . . .. 89 o
v
d
Vita . o e e e 9 o
1ta 1 Et
-
“
;w
),
X
N
.\:'.\
s
~
'.

Lol

(R

Ta ) .I L 4

(AL

v,
I X XS

PR
/aV)?j

<
v
LS

<~

(R T
Vet RN Lot G



List of Figures

Reference Model for Open Systems Interconnection
Routing Algorithm Classification
Brayer’s Research Network

Processing- Element-to-Processing-Element MIMD-Machine Configura-
tion with N Processing Elements

Processor-to-Memory MIMD-Machine Configuration with N Processors
and N Memories

Block Diagram of an iPSC Processing Element
Three-Dimension Cube Structure

Routing Through Intervening Node(s)

LAN Controller Interconnections

Example Routing Table for Node 0 of a 3 Dimension Cube - After First

Example Routing Table for Node 0 of a 3 Dimension Cube - After
Second Update

Example Routing Table for Node 0 of a 3 Dimension Cube - After Third

Example Routing Table for Node 0 of a 3 Dimension Cube - After
Fourth Update

Developed Routing Algorithm

Example Ring Network with Intermediate Nodes
0-Byte Loading Message

4096-Byte Loading Message

8192-Byte Loading Message

12288-Byte Loading Message

16384-Byte Loading Message




T alaat  g¥a din Ahe S'as ot ol aadalal e dm e BT Bt SUa JVg Bt N R "]

n
W

T,

B AR
A

[ )
v

List of Tables

Table Page
Number of Hops for Each Node Pair . . .. ... ........... 39
Ring Message Length . . . . . . ... . ... ... ... ... ... . 4
Network Loads . . . .. ... ... ... .. ... ... ..., 4
Congested Links . . . . .. ... .. ... ... .. ... . ... .. 43
5. Test Configurations . . ... ...................... 41

6. Summarized Timing Measurements (in Seconds) . ... ... ... | 17

[l Tt a8 e legm N AN NPPPR B
=W -

A

240,

e,
s % "r 2y

b ST

f

v oo e e .
. a A

SO
Sl

Ll
=7
AY

vl

LGN

e
-

IR N A NN,

;f _:." .'..f

g

A

o - . s
NP LY, T S
A SR AT ML ST ACAC AN



Y T U Y PN U S U WU PV UW W TR UL A A VAU T U AT T T VTR R

e AFIT/GCS/ENG/87D-11

S

Abstract

The purpose of this study was to examine the use of distributed adaptive rout-
ing algorithms on concurrent class computers. The Intel Personal SuperComputer
(iPSC) was used as the test computer system. The implemented routing algorithm
allowed each node to select the next node based on two criteria. The first criteria

was the fewest number of hops; the second was the smallest delay time.

This study was limited to the comparison of a distributed adaptive routing
algorithm, implemented at the applications layer, with the current static routing
and with a simulation of the current routing implemented at the applications laver.
The comparsion with the current routing algorithm provides a measure of the penalty
for the implementation at the applications layer. The comparsion with the simulated
current static routing provides a measure of the possible performance gain had the

‘; " adaptive routing algorithm been implemented at the network layer.
®

In all three configurations were tested to formulate the comparisons. Each
configuration was comprised of four processes: a Host Process, a Routing Process. a
Ring Control Process, and a Network Loading Process. The Host Process controlled
the loading of the processes onto the iPSC, the Routing Process controlled the mes-
sage routing, the Ring Control Process provided the baseline message passing. while
the Network Loading Process provided communications congestion on selected links.
The metric used to compare the Routing Process performance was the average delay

time for passing a message around the ring.

................
...........
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= IMPLEMENTATION OF A DISTRIBUTED ADAPTIVE
! ROUTING ALGORITHM ON THE INTEL iPSC
1 I. Introduction
.
P Purpose
E The purpose of this thesis was to combine the study of distributed adaptive
; routing algorithms and concurrent processing. In particular, this study simulates a
distiivuted adaptive routing algorithm on the Intel Personal SuperComputer (iPSC).
Additionally, the developed program was modified to simulate the non-adaptive rout-
ing implemented on the iPSC. Therefore, a comparison of the two routing algorithms
could be accomplished. A 32-node version of the iPSC was used as the vehicle for
ﬁt. this research.
General Background
Connecting physically separated computer resources is an effective way to solve
problems that require uneconomical amounts of time and/or resources on a single
computer. John Stankovic, in his paper on distributed computer systems, states that
“significant advantages, including good performance, good reliability, good resource
sharing, and extensibility {16, 1102]" can be acheived through the use of multiple
processors and an eflicient communication network. An important factor of the
communication network is the routing algorithm that is used to “determine the path
a message follows from its source to its destination™ [16, 1107]. yo
-
Routing Algorithms. These algorithms are generally classified in two major ,'.'_:::
categories: non-adaptive and adaptive [17, 198]. Non-adaptive (i.e.. static) rout- é‘:‘;
L ing techniques are simple and easily developed, but they normally are not eflicient ;:;1
o N
1 -4
2
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when communication loads vary on the communication paths (17, 199]. Message

traffic congestion and malfunctions that occur during the operation of the system
require alterations to the normal message routing. Adaptive (i.e., dynamic) routing
techniques have the ability to adapt to a changing network environment making it
possible to alter message routing based on current network communication loads.
Adaptive routing techniques are further classified into centralized and distributed
routing algorithms [17, 198]. Centralized routing is controlled by a central admin-
istrator that determines the best communication paths for each pair of source and

destination nodes in the network.

Distributed Adaptive Routing. A distributed adaptive routing algorithm
requires that each processor or node in a network have the ability to determine the
route to a particular destination. To determine the routing, the algorithm, which
is normally based on some performance metric, performs calculations on data that
is commonly stored in a table or database format. The data in the routing table
may represent a variety of information depending on the algorithm. According to
Stankovic. “the metric might be number of hops, some estimate of delay to the
destination, or buffer lengths” [16, 1107]. Also according to Stankovic:

Such algorithms have the potential for good performance and reliability

because the distributed control can operate in the presence of failures
and quickly adapt to changing traffic patterns [16, 1107].

Supercomputing. The need for lower-cost supercomputing was expressed in an
article by Justin Rattner, the Director of Technology for Intel Scientific Computers.
Rattner explains, the supercomputer is “an essential tool for research, design, and
development [12, 159],” but the cost of available supercomputers is too high for many

universities and commercial users.

A second problem involving current supercomputers is the requirement for

vector operation types and array data types. Operation types are generally divided
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between scalar and vector operations. Rattner states, “existing supercomputers arc
essentially vector processors,” and these machines depend on their data “being in
the form of either vectors or arrays” [12, 159]. Vector processors efficiently handle
vector operations, but “a portion of any code will consist of scalar (single-quantity)
operations [12, 159],” these scalar operations create performance bottlenecks. There-
fore, these scalar operations force vector processors to operate at a fraction of their
peak performance 12, 161]. Because of operations and data type constraints, “ei-
ther programmers or sophisticated compilers [12, 160],” are required to vectorize
the code. These requirements are part of additional overhead necessary to achieve

optimal performance [12, 160].

Concurrent Processing. Concurrent processing offers solutions to these
problems. Rattner defines concurrency as “a high-level or global form of parallelism.
denoting independent operation of a collection of simultaneous computing activities™
[12, 160]. Therefore, a complex problem, that can be separated into a number of
smaller simpler problems, can be solved simultaneously on a concurrent machine

that “uses loosely coupled, multiple, interacting processors” [12, 160].

The sharing of the load by the multiple processors in a concurrent architecture
aids in achieving high computational efficiency. Significant cost/performance benefits

are achieved over vector processors that cannot operate at their peak performance

12, 161].

The cost benefit of a concurrent machine is achieved through the cost reduction
provided by very large scale integration (VLSI) advances and through the use of off-
the- shelf components verses custom built special purpose components. The reduced
cost allows for a larger number of units to be sold which tends to further reduce the

costs (12, 162).

The multiple processors can not perform their tasks in total isolation, there

must be high speed communications available so data can be exchanged when nec-
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essary. Intel’s Personal SuperComputer (iPSC) uses a static routing technique that
inhibits the passing of data when one communication path becomes congested with
messages. The implementation of a distributed adaptive routing algorithm should
provide a substantial increase in the throughput of the network under a communi-

cations bound condition.

Organization

Chapter II includes an overview of computer network routing algorithms. a tax-
onomy for routing algorithms, and a study of several distributed routing algorithms.
The routing algorithms studied are a research network developed by K. Brayer of the
Mitre Corporation, Digital Equipment Corporation’s Digital Network Architecture
(DNA), and the Advanced Research Projects Agency’s Network (ARPANET).

Chapter III examines the current message passing structure of the iPSC. The
examination includes discussions on the current routing algorithm, the current hard-

ware, and situations in which message passing is impeded on the iPSC.

Chapter IV contains a discussion about the adaptive routing algorithm that

was implemented, Appendix A and Appendix B contain the source code.

Chapter V contains the test plan, configurations, and procedures used to mea-

sure the effect of the implemented adaptive routing algorithm on the iPSC.

Chapter VI contains the results and analysis of the data obtained from the

testing performed in Chapter V. The chapter concludes with recommendations for

future study.
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II. Distributed Adaptive Routing Background

This overview of distributed adaptive routing algorithms for computer networks
begins with a look at the International Standards Organization’s (ISO) model for
connecting heterogenous computers in a network. The second section of this chapter
consists of a taxonomy for categorizing computer networks and a general overview
of routing algorithms used in computer networks. The third section describes the
way three operational networks use distributed adaptive routing algorithms. The
first network is a research network developed by K. Brayer at Rome Air Devel-
opment Center. The second network is Digital Equipment Corporation’s (DEC)
Digital Network Architecture (DNA). The last algorithm discussed is used for the
Advanced Research Projects Agency Network (ARPANET). The chapter concludes

with a summary of distributed adaptive routing algorithms.

Open Systems Interconnection Model

The reference model for Open Systems Interconnection (OSI) supported by the
ISO is a seven layer hierarchical view of computer networks {10, 144]. Figure 1 depicts
the different layers that were developed to “decompose data communications into
manageable pieces with well-defined interfaces” [10, 144]. While layer 1 supports
the actual physical connection of two or more nodes in a network, the remaining
layers are defined such that each layer has a “virtual connection to its distant pecr”
while only exchanging information with layers above and below the layer of interest

[10, 144]. The network layer of the OSI model is the layer of interest for this research.

Tanenbaum states, the network layer, also known as layer 3, “controls the
operation of the subnet™ {17, 17]. In the OSI model, the network layer of the source
node accepts a message from layer 4, divides the message into packets, and then

routes the packets toward their destination [17, 18]. At an intermediate node. layer 3
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Figure 1. Reference Model for Open Systems Interconnection Source: [10, 145] -
.
. . - . ’
determines the next portion of the message’s route. At the destination node. the _,.-%
o
network laver passes the packets to layer 4, also known as the transport layer [17, 18] .

P

Distributed Routing Overview

SRR
. .
.

The routing algorithm contained in layer 3 of the OSI model is an important
factor in determining how the network will react to changes in topology and fluc-

tuations in traffic load {17, 197). A wide range of routing algorithms have been

1{#({-’1(ﬂ
I aahhh

developed to support network performance objectives. The reminder of this section

.t
v |

reviews several routing algorithm characteristics.

atalatals s

Routing Tazonomy. H. Rudin developed a taxonomy for adaptive routing al-

»

gorithms that classifies routing algorithms by centralized vice distributed techniques
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and complexity, see Figure 2. Rudin defines centralized techniques as those. “in
which routing strategies are prepared centrally and then sent to the nodes for exe-
cution” [13, 44]. He defines distributed techniques as those in which “the strategy is
prepared throughout the network” [13, 44]. Since this research is concerned with dis-
tributed adaptive routing algorithms the remaining focus is on Rudin’s distributed
techniques. According to Rudin, the two distributed techniques on the bottom of
Figure 2 are simple to design, but they are also rather inefficient. The simplest
distributed technique, known as flooding, transmits traffic on all outgoing lines. An-
other simple technique, known as random routing, transmits traffic on a randomly
selected outgoing line, irregardless of the best path to the destination node. Moving
up in complexity, Rudin’s two isolated techniques are based on Baran’s hot potato
and backward learning algorithms. Bias is added to the shortest output queue, allow-
ing an additional weight to be added to the calculations for the queues in Baran’s

hot potato algorithm and symmetrical traffic is assumed in the backward learning

algorithm [13, 44).

Rudin’s most complex class of algorithms is the cooperative class that includes
periodic and asynchronous updates. In this technique the nodes report information
about their own status to all other nodes in the network. This information normally
includes the length of its output queues, time delay for message transmissions, or

the number of nodes between itself and the other nodes in the network [13, 44].
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CENTRALIZED TECHNIQUES

SIMPLE
FIXED FOR NETWORK CONFIGURATION

NETWORK ROUTING CONTROL CENTER

~d FIXED BETWEEN UPDATES
PROPORTIONAL

IDEAL OBSERVER (PRESENT)
SCHEDULING

PROBLEM
IDEAL OBSERVER (FUTURE)

<, COMPLEX
) DISTRIBUTED TECHNIQUES

e

COOPERATIVE, PERIODIC
OR ASYNCHRONOUS UPDATE

ISOLATED, LOCAL DELAY ESTIMATE

Ld ISOLATED, SHORTEST QUEUE + BIAS

RANDOM

FLOODING
SIMPLE

Figure 2. Routing Algorithm Classification Source: [13. 44]
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(’&'b Distributed Routing Algorithms. Tanenbaum, in his book Computer Networks.
categorizes routing algorithms in a different manner than does Rudin. Tanenbaum
separates routing algorithms into two groups: nonadaptive and adaptive. Nonadap-
tive routing algorithms cannot alter their connectivity in response to changes in
network traffic, but adaptive routing algorithms can alter their connectivity. He

further subdivides adaptive routing into centralized and non-centralized algorithms

17, 198].

Centralized routing normally utilizes a directory or table that contains infor-

mation on how to forward messages between processors. The table is maintained at

a routing control center (RCC) that receives information on the current status of the

network from the other nodes in the network. Using this periodic information. the

RCC makes the decisions determining the most efficient routes for traffic flow though

-
the network. The routing information is then redistributed to the other nodes in the EE-
network [17, 201]. ':‘:
Unlike centralized algorithms, non-centralized algorithms maintain redundam .:7
information at each node. The node’s ability to maintain their own information "_
makes the network more robust and fault tolerant {17, 205]. Tanenbaum divides :I
e

non-centralized algorithms into isolated and distributed routing algorithms [17. 201].

)
-'

Isolated algorithms are differentiated from distributed algorithms by their in-

c oy
PR
)

formation gathering techniques. Isolated algorithms base their routing decisions on

information gained by analyzing traffic that passes through the node. Distributed ;

algorithms use specific routing information exchanged between the nodes in the net- ;:

work [17, 202]. ':
Tanenbaum discusses two types of isolated routing algorithms: Baran's lot ;
potato and Baran's backward learning (17, 202]. The hot potato algorithm places the !’:::
outgoing message in the shortest outgoing queue. The algorithm assumes that the \',
message will arrive at its destination sooner by leaving the current node sooner on §
a randomly chosen route, than it would by waiting for a preselected route {17, 202]. '-
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The backward learning algorithm uses information from incoming messages to de-
termine the best route for outgoing messages [17, 203]. One technique discussed by
Tanenbaum requires each message to include identification of the first node capable
of altering the message route and a counter that is incremented at every additional
node capable of altering the route. These two pieces of data can be used by each

node in the path to calculate the number of hops to the message source {17, 204].

The distributed routing algorithm discussed by Tanenbaum requires that a ta-
ble be maintained at every node instead of a RCC. The table contains the address
and preferred outgoing line for each node in the network, as well as, some measure
of the time it takes to get to the destination [17, 205]. The distributed routing tech-
niques enable more efficient use of resources than do the isolated routing techniques.

but they require more processing overhead and they add additional message traffic

to the network (13, 45).

Performance Objectives. By determining which nodes and links will be used
to exchange information, the routing algorithm is an important factor in determin-
ing if the network can meet its performance objectives (5, 7]. Computer network

performance objectives are based on speed and service of the network [9].

The service objective is based on four parameters: availability, data integrity.
message integrity, and security [9]. Tanenbaum places the service objectives into the
network reliability performance constraint [17. 34]. The speed objective is measured

in terms of minimum delay and maximum throughput [9].

Unfortunately the two parameters, delay and throughput, are mutually exclu-
sive. Delay is defined as the “time between transmission of the first bit and delivery
of the last bit of a message™ [9] and is measured in terms of “mean packet delay
not exceed a given number of milliseconds” [17, 34]. While throughput is defined a<
the “number of bits sent divided by time between transmission of the first bit and

delivery of the last bit™ [9]. When the throughput of the network is increased the
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delay of an individual message will increase.

Operational Networks

As stated earlier, this section reviews three operational networks that use a
form of distributed adaptive routing for their routing algorithms. While not adding
additional theoretical information, this section was included to give expanded back-
ground in the ways distributed adaptive routing algorithms have been implemented

in operational networks.

Brayer’s Research Network. K. Brayer of the Mitre Corporation developed
a research packet switch system that is loop-free and survivable. His algorithm 13
divided into a mathematical algorithm to determine the shortest path and a set of
procedures (message routing and address finding sections) to control or utilize the

results of the mathematical algorithm [4, 93].

Initially, each node transmits on its outgoing lines a special start up identi-
fication message telling its nearest neighbors its identification (ID), while scanning
incoming lines to learn its nearest neighbor’s ID. After the initialization period. eacli
node enters the message routing section of the algorithm and message transmissions
may begin. If the location of a message addressee is unknown, the algorithm entcrs

the address finding section to determine how to route the message {4. 94].

In the address finding section. the node holds the message while it transmits
a header message to its nearest neighbors. This header message requests a response
if the receiving node has the unknown address. A positive response is indicated by
an acknowledgement that the message may be sent. If the address is not known at
the neighbor node, the node adds its address onto the header message and transmits
the message to its neighbors that have not seen the message (indicated by the lack
of their address at the end of the message). When the addressee is located the

header message returns to the original node (via the list of addresses at the end
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of the header message). As the message retraces its course, all the nodes update
their routing table with the new routing information. The header message can be
retransmitted in the network a set number of times (normally determined by network
size), when that number is reached without a positive response the original node is
notified and queried if the sender wants to try later or let the network store the

message and automatically send the header message at a later time [4, 94].

The message routing section forwards messages by first checking its routing
table for an existing path. If a path exists the message is transmitted using the
path. Otherwise, the message routing section is able to randomly select a node and
forward the message to it. This random routing occurs in addition to the address
finding section attempting to determine a path [4, 94). If a message timeout occurs.
the node can select a different node and retransmit the message or store the message
and retransmit at a later time. When the number of timeouts exceeds a specified

value, the routing tables are updated to avoid those links.

Figure 3 shows is an example of a network, stages of its connectivity matrix.
and its distance matrix. The source node is labeled down the left edge with the
destination labeled across the top. The distinction between source and destination
1s important only when the links are unidirectional [4, 95). As the figure shows each
node identifies its nearest neighbor with a path of length one. The remaining paths

are filled in one row at a time. A maximum of N — 2 iterations are required to

fill in the matrix, any remaining holes are caused by a disjointed network [4. 96).

The development of the connectivity and distance matrix forms the mathematical

portion of the routing algorithm.

This protocol is considered survivable because each node can determine routes
on its own, but the protocol can not promise to use the shortest path every time.
Although, if the network is stable for a reasonable length of time. it will determine

the shortest path [4, 95].
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Figure 3. Example Network, Connectivity Matrix, and Distance Matrix Source:
(4, 471)

Digital Network Architecture. Digital Equipment Corporation's (DEC) Digital
Network Architecture (DNA) is implemented in a five layer hierarchy verses the seven
layer ISO model. The layers of the hierarchy are called the physical link, data link
control, transport, network services, and application [18, 516]. In Stuart Wecker's
description of DEC's DNA, he explains the routing algorithms are defined as part
of the transport layer. The transport layer also controls congestion and message

lifetime for the network [18, 520).

DNA's routing algorithm is based on information stored in two nzm matrices.
where n is the number of other nodes in the network and m is the number of output
chanpels for the node. One matrix, called the HOPS matrix. contains the number of
hops from the current node to the other nodes in the network via its output channels

(18, 520]. The other matrix. called the COST matrix. is used to maintain the path
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I cost from the current node to the other nodes in the network [18, 520].
N

The cost of the path is inversely proportional to the quality of the path
(18, 520]. Resource availability and processing capacity of the nodes; along with

delay, throughput, and error rate characteristics of the lines are used to determine

*Ill

the COST matrix [18, 520]. )
g3
The best paths in the network are determined by a comparison of the two f:

matrices with each of the neighbors’ matrices. For example, node A passes its best
paths to its nearest neighbors, if a neighbor detects an improvement they update their '
matrices, After the neighbors update their matrices, they send the new information =

to their nearest neighbors, where the process is repeated.

The updating of the best paths can create looping in the network. When a
loop is detected, a routing message is generated marking the node unreachable. A

loop is detected when the longest number of hops in the network is exceeded by an

b .

entry in the HOPS matrix or the value of the visit count field of the routing header.
i. The contents of the visit count field are incremented by one at each node the message o
‘4’_\
reaches 18, 521]. o
.‘_:.

ARPANET. The development of distributed routing algorithms was led by the
Advanced Research Projects Agency when it developed the ARPANET. McQuillan.

. -
s te fala

a_ 4
P

Richer, and Rosen describe problems with the original algorithm and changes uscd

to correct some of these problems. They state:

tu

)

. . . . . D

The new routing algorithm is an improvement over the old one in that N
it uses fewer network resources, operates on more realistic estimates of :j.:
network conditions, reacts faster to important network changes, and does s

not suffer from long- term loops or oscillations [11, 712]. g

The algorithm is based on Dijkstra’s form of the shortest-path-first (SPF) o
routing algorithm. In distributed fashion each node calculates the best paths to all ';-\.
N

other nodes in the network. The calculation uses a database that is maintained at
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each node. The database contains information describing the network topology and
the network line delays. The database is updated every 10 seconds via routing updatc

messages that announce significant changes in the delays for the node’s outgoing lines

(11, T12].

The database contains two data structures, a tree and a list. The list structure
contains nodes that are adjacent to the nodes currently on the tree. Initially, the tree
structure consists of the current node as the root node. Since each node identifies
its outgoing line delays, new nodes are added to the leaves of the tree structure by
calculating the smallest total delay time. The algorithm builds a shortest path trec

by cycling through the algorithm until all the nodes are accounted for [11, 712].

The new algorithm'’s delay measurement is calculated by time-stamping each
packet when it arrives, when the first bit is sent, and when the acknowledgement
is received. The first-bit-sent time is overwritten when the packet is retransmitted.
After the acknowledgement is received, the first-bit-sent is subtracted from the arrival
time. The delay for the packet is calculated by adding the above difference with the
constant line propagation delay and the transmission delay, which is a factor of the

packet length and line speed [11, 714].

An average of all the packet’s delays is computed every 10 seconds. The average
is then compared with the last average reported. If the difference exceeds a certain

threshold the new delay is reported to the entire network [11, 714].

Problems still exist with the ARPANET routing procedure. Spinelli in his
thesis states, it is still difficult to determine optimum settings for “the maximum age
of packets, the minimum interval between creation of update packets, the maximum

interval between creation of update packets, etc.” [15, 19].

Summary

This chapter has given a broad overview of distributed routing algorithms. It

has illustrated a taxonomy that can be used to classify and compare algorithms.

-
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‘:.‘.:: It also presented an overview of the some techniques used for distributed routing >
A L "
algorithms. The chapter concluded with a review of several operational routing
algorithms.
¢ . . . .
3 In conclusion, some common threads run through all the distributed adaptive
! . . . . .
: routing algorithms. They include a means to measure certain parameters of interest.
‘ a means to make a routing decision based on these measurements, and a means to
- inform the other nodes in the network of their decisions.
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III. i{PSC Background

This chapter overviews the characteristics of the Intel iPSC architecture. hard-
ware, and routing algorithm. The first section provides an overview of concurrent
architecture by presenting Flynn’s taxonomy, two processor-memory configurations.
and finally (possibly the most important for this thesis) an overview of interconnec-
tion networks. The second section of this chapter is a brief history and overview
of the Intel iPSC. With the background presented the remainder of the chapte:

describes the current operation of the iPSC’s message routing system.

Overview of Concurrent Architecture

The classic taxonomy for classifying computer systems was developed by Flynu
in his paper of 1966. Siegel in his text Interconnection Networks for Large-Scale Par-
allel Processing, adds additional classification of concurrent machines by classifving
the processor-memory configuration, as well as, interconnection networks. And fi-
nally, Feng in his survey of interconnection networks discusses various geometries for
internodal communication (i.e., the interconnection network). These three areas arc
developed in more detail in the following section with emphasis on the categories

that describe the 1PSC.

Flynn’s Tazonomy. Flynn formulated four computer organizations based on
two definitions, the Instruction Stream and the Data Stream. He defines them as

follows:

Instruction Stream is the sequence of instructions as performed by the
machine; Data Stream is the sequence of data called for by the instruction
stream (including input and partial or temporary results) (7, 1902].

Using these two definitions Flynn labels four computer organizations as:
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N 1) Single Instruction Stream-Single Data Stream (SISD)
2) Single Instruction Stream-Multiple Data Stream (SIMD)
3) Multiple Instruction Stream-Single Data Stream (MISD)
4) Multiple Instruction Stream-Multiple Data Stream(MIMD) [7. 1902].
Of these four labels the iPSC is best described as an MIMD computer {12, 163).
Processor-Memory Configuration. Siegel further defines an MIMD machine
as, a system of “N processors, N memory modules, and an interconnection network
[14. 30)." As shown in Figure 4 and Figure 5, processor-memory configurations
PEO PE 1 PE 2 PE N-1
Y rroc]
- PROC 0 PROC 1 PROC 2§ (-~ PROC
[ T ] [
MEM 0 MEM 1 MEM 2| ||| MEM
3
i
o
INTERCONNECTION NETWORK o
hee
9
v
:_A
w3
Figure 4. Processing-Element-to-Processing-Element MIMD-Machine Configuratio n
with N Processing Elements Source: [14, 31] ~
tvpically come in two varieties. The first being a processing-element-to-processing- ';:
— element (PE-to-PE), where the processing element is formed by a processor aud ~1
.:;;I'-; ~
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Figure 5. Processor-to-Memory MIMD-Machine Configuration with N Processois
and N Memories Source: [14, 31]
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memory pair and the interconnection network connects each independent element.

And the second being a processor-to- memory configuration, where the interconnec-

Ly W w
LA

tion network connects the N processors to the N memories [14, 30]. The iPSC uses

a PE-to-PE configuration as shown, in Figure 6, by the block diagram of an iPSC's

.
s o m
”

processing element. Each PE or node is centered around Intel’s 80286 central pro-

;

cessing unit and also consists of the 80287 numeric processor, 512K Bytes of dvnamic

RAM, and eight 82586 communication coprocessors [2, 6].

Interconnection Networks. Two basic categories of interconnection networks
are single-stage and multi-stage. Multi-stage networks enable passing of data from
its source directly to its destination, where as, in the single stage network data mav
have to recirculate through the stage several times to reach its destination [11, 20,

Siegel describes four configurations for single-stage networks used in both SIMD and
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Figure 6. Block Diagram of an iPSC Processing Element Source: [2, 6]

MIMD machines. The configurations are the Illiac, the plus-minus 2 (PM2]). the

shuffle-exchange, and the cube. The cube. also known as an indirect binary n-cube

or hypercube, is the configuration used in the iPSC [12, 163).

Each of the configurations can be defined mathematically by an interconnection

function. The Illiac interconnection function is defined by four function as follows:

where

Hliac, (P) = P +1mod N

Illiac_y(P) = P —1mod ¥

Iliacyn(P) = P +nmod N

Illiae_,(P) =P —-nmod N

N = number of nodes in the network
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P = current processor (14, 22].

Therefore, the topology of the nodes appears as an n-by-n array [14. 22].

The PM2I interconnection function is defined by 2m functions, where m is the

(4

BRAs

number of bits necessary to represent the number of nodes (N\N) in a binary number.

AR 'l. 'l.
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PM2,(P)=P+2 mod N (5

.y
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PM2_(P)=P -2"mod .V (6

A

0

s

‘-.‘. Y _'.

»

where

& °,

N = number of nodes in the network

N
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The shuffle-exchange interconnection function is defined by two functions. The

R
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shuffle equation is:
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and the exchange equation is:

P
N

YA

exchange(pm-1Pm-2-"*P1Po) = Pm-1Pm-2"" “P1Do (%

where

m = log, N [14, pages 24,25].

The cube network consists of m interconnection functions (m is also known a~

the dimension of the cube) and is defined by:

C'Ubﬂ(Pm-l oD PP p()) = Pm-1"" 'P|+177:P|—1 Do (SH
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N = number of nodes
- m = log, N [14, 26].
P,
Y As shown in Figure 6, the iPSC system can attain a cube dimension of seven con- -]
. taining 128-nodes. An example of a 3 dimension cube is shown in Figure 7.
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) Figure 7. Three-Dimension Cube Structure
The communication channels are represented by edges in the graphical picturc.
7 while the nodes form the switching points [6, 110]. The nodes or processors in the
o
\ 1PSC are assigned binary numbers that serve as their node addresses. Using a grav
»
R}
:‘ code numbering scheme, bidirectional links connect nodes whose addresses vary by
one binary digit. e
® o~
f Feng discusses interconnection networks and their role in providing conimnin- Z_\‘
| A
' nication paths between processors and memory modules [6. 109]. Feng states the ~e
)
a®i
selection of the proper architecture for an interconnection network should be based .~
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Qe on the operation mode, the control strategy. the switching method. and the network
]

topology [6, 109].

History and Overview of the iPSC

The Intel iPSC concurrent computer is based on work performed by personne!
at the California Institute of Technology and NASA's Jet Propulsion Laboratory.
The Mark I Hypercube is a 64-node PE-to-PE system that utilized Intel 8086 /~0~7
processors and a multibus interboard (processor) connection structure. Refinement
of the Mark I led to the Mark II concurrent machine. The Mark II system u~es .
modularized design permitting one to four groupings of 32 PEs for a total of 12~
PEs. The multibus interboard connection of the Mark 1 was replaced with a single-
stage cube interconnection network. The iPSC further refined the Mark 11 machine
by upgrading to the 80286/287 processors and refining the mechanism for passing

messages (8, 353|.

‘O Access to the PEs of the iPSC is controlled by an Intel 310 machine, referred
to as the Cube Manager. The Cube Manager provides a medium for uploading and
downloading processes(programs) and data to the individual nodes. Rattner explain-~
that, the iPSC interprocessor communications is controlled by a Node Operating
System. The operating system “provides the system calls that enable processes to
send and receive messages” (12, 164]. In addition. message routing. node-to-Cuhe

Manager I/0, and process debugging are handled by the operating system.

Current Message Routing. Currently. message routing at the node level of the
iPSC is controlled in a non-adaptive manner by software interrupts of the 8028
central processing unit. and is supported at the physical level by a pair of special
purpose integrated circuits. As shown in Figure 6, each node of the iPSC include-
eight Intel 82586 Local Area Network (LAN) Coprocessors. Seven of the 82386x aic ~

dedicated to interprocessor communication. while the eighth 82586 supports a glohal :
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;:}; communication link. Therefore, each node has the capability for connection to seven
other nodes on communication channels zero to six. The 82586 LAN Coprocessor

is matched with Intel's 82501 Ethernet Serial Interface chip, so that the IEEE 802.

WA S Y Y Y xR
75
Ve plrl Ll

3/Ethernet specification is realized [3, 1-2]. Layers one and two of the ISO’s Refer-
ence Model for Open Systems Interconnection (OSI) are implemented, as shown in 1

Figure 8, by the use of the 82586 and the 82501 chips [1, 3-5].

<
'
_-I'
— .
TRANSPORT T T 80286 .
PROTOCOL
W .
NETWORK N N N K
.
DATA (INK DL oL DL 82586 ::
YN
‘.‘ PNYSICAL P 82501
’ LINK PL PL L

NODE A NODE 3 NODEC

Figure 8. Routing Through Intervening Node(s) Source: [1, 3-7]

.

Layers three and four of the OSI are currently supported by the Node Op- v"
erating System [1, 3-5]. The Node Operating System insures the interprocessor ', ¢
communication latency does not exceed the dimension of the hypercube {12, 164 . :
Figure 9 illustrates the cube's interconnection and bi-directional communications ‘1
channel connection between nodes 0, 2, and 8. Each node of the iPSC is connected. ‘
via the i-th channel. to other nodes whose respective addresses differ in the i-th bit ::i

o position [1, 3-3]. « s
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Summary
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This chapter presented an overview of concurrent systems architecture along

4 N

with the iPSC’s architecture. It has also presented a history of the development

of the iPSC. Finally, the chapter illustrates how the Node Operating System an!

e

supporting hardware implements the cube interconnection function that defines the
PP g P

hypercube topology. :1
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IV. Developed Routing Processes '
X N,
» ~'
: This chapter develops the code used to implement the developed routing algo- &
Y rithm. The goal of the algorithm is to insure the routing process selects from amone Q”
)
' the shortest paths the one with the least delay. While it may inhibit selection of w
A path with a smaller delay time, the algorithm eliminates the possibility of loopin:
' in the network.
[53
]
The developed code is comprised of two parts: a set of interface routines an! N
. -:l'
: the routing process. The interface routines, presented in the first section. enall \
the applications program to interface with the routing process. The routing proces~. :'.-:
presented in the second section, selects the next node routing for an application- .
)
# message. The selection is based on a local routing table that is periodically updated. =
. - ‘..
- The source code for the routing process is listed in Appendix A, while Appendix B -
od . - - l'.-.
! - lists the source code for the interface routines. .
| ;
All of the code was written in C and was designed for generic operation witl. hY
minimal impact to the programmer. While the interface routines must be linked witl: ‘*"'
' thie users node process(s). the routing process is a stand alone process loaded ont« Wt
)
. the iPSC’s nodes by the host process. The applications programmer is restricted s
from using the process identification 32767, message types 32765 and 32767, and th :::"‘
’ maximum number of bytes in a message can not exceed 16372. o
o ‘e
'
Interface Routines "
y The interface routines are divided into two subsets: one set for sending mes- R
' ~
sages. and one set for receiving messages. Each set of interface routines is comprise’ y
of two routines that mirror the non-blocking and blocking versions of the sendine T:::
and receiving routines found in the iPSC’s library. The four interface routines are:
asendw. arecvw, asend. and arecv. To simulate the current operation. the fun .’\
RS -
: e T
. *e
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L7 S,
:’, ::i:::- routines use the same argument list currently used by the iPSC's routines. Addi- :
| ’ tionally, dynamic memory allocation is used in the routines to keep memory usage .
$ to a minimum. :
3 2
:: The asend and arecv routines simulate the send and recv routines by usiug )
i the iPSC flick routine to allow other processes to continue processing. so they arc '
o not true non-blocking routines. Except for the flick routine. the two send routines. ".
E as well as the two receive routines, operate identically to each other. Therefore. only ';
:'! the asendw and arecvw routines will be discussed in the following sections. x
o Send Routine. As stated above, the asendw routine uses the same argument -4
_..:' list as the iPSC’s sendw routine. The asendw routine sends messages of any data :i
S tvpe allowed by the iPSC, and it maintains the iPSC’s global send capability. Thie -
:-: asendw routine consists of two parts: an initialization section and a section to select i
f the iPSC routing or the adaptive routing. }
- ('.'” The initialization portion is performed once (i.e., the first time the routine i~ A
;5 ’ called). It 1s used to determine the current node, the current process identification.

f. and the current size of the routing algorithm overhead. The final step initializes an

:’: integer array with the current node's nearest neighbors.

-:_‘ Based on the destination node parameter, the second part of the routine de-

E: termines if the iPSC routing should be used or if the adaptive routing should be

: selected. This decision is the first step in insuring that the fewest number of hop-

-~ are performed. The routine compares the destination node of the message to the

array of nearest neighbors. If a match occurs, the message is sent directly to it~

,.‘ destination using the iPSC sendw routine. This technique eliminates two intranode

" hops. The iPSC sendw routine is also used directly. if the destination node is the
& current node or is negative (i.e., a global send). If no match occurs (i.e.. the des-

:§ tination is more than one hop away) the message is passed to the adaptive routing

) process.
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For the routing process to handle the messages properly additional data must

be prefaced to the message. The overhead data includes, the destination node. the

destination process identification, and the destination message type; along with the

current node, the current process identification, and the original message lengtl.

The prefacing of the overhead data to the message enables the routing process to

locate the original message parameters for use in its next node selection process.

The additional steps in the send routines include allocating memory to hold

the message and the routing algorithm overhead, storing the overhead data in the

allocated memory, and then appending the original message to the overhead data.

This is followed by calling the iPSC sendw routine, freeing the allocated memory-.

and returning to the calling process.

o . B .
. Receive Routine. Asstated above, the arecvw routine uses the same argument

list as the iPSC’'s recvw routine. Like the asendw routine, the arecvw routine

t'-,. consists of two parts. The first section receives the message and the second section
| J

determines the originating process’s parameters.
g gp p

The first section begins with an initialization that establishes the number of

bytes used by the overhead data. The initialization is followed by an allocation of

memory to hold the overhead data and the expected message. The first section

concludes with a call to the iPSC’s recvw routine. The call is made using the

variables from the calling process’s argument list.

After the receive is completed, the second section of the routine determines if
the message came from the routing process or an application process. This deter-

mination is required because of the overhead data added to the front of a message

sent via the adaptive routing process, and is accomplished by checking the sending

process identification parameter returned by recvw. If the message came from the Oy

> ‘1
NSO

S

routing process: the message length. sending node, and sending process identifica-

._\%
[

tion parameters contained in the overhead data are assigned to the calling process’s
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Y arguments. Additionally, a temporary pointer is assigned to the beginning of the |
‘o Y,
message in the allocated memory space. If the message was not sent b the routing "
. process, no overhead data was added to the message, and the temporary pointer '_-:
: is assigned to the beginning of the allocated memory space. The arecvw routinc g ‘
concludes by performing a character by character copy of the received message to &
v the calling process’s message buffer, freeing the allocated memory. and returning to >
. )

X the calling process. N
. RS
. t'.
Routing Process '

pt

This section develops the routing process by defining the data structures and o

‘-~

the algorithm used by the process. As discussed in Chapter II, three criteria must be

4

a v ¥,
»

met to establish a distributed adaptive routing process. They are a local means of

SO E)

Tl ssw P P

Ol

'.\
determining the routing, a means of measuring the current traffic loads, and a means ; )
of informing other nodes of the routing information. This routing process meets ::

“. these three criteria by means of a local routing table del_times and special messages i‘

': n (DELAY_TYPE) that are passed between nearest neighbor nodes identifying a node- I:::
) current routing information to the other nodes in the network. Additionally. the .
3 DELAY_TYPE message is used as a medium to determine the current traffic load-. - )
2 this is detailed later. N
; Y
: Data Structures. The routing table is a two-dimensional array based on the \:
. current dimension of the iPSC. Each row of the array represents a possible destination -
node, while each column represents a nearest neighbor node. The i-th column of the :

table represents the i-th nearest neighbor node. The columns of the table are updated E

from information contained in the DELAY_TYPE messages that are passed betwecr ;,

each of the nearest neighbor nodes and from the time taken by the DELAY.TYPL

message to return to its originating node. E

s The routing process utilizes two vector arrays to update the routing table. ::E
R e
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. The first array out_nodes is an integer array containing the nearest neighbor nodec-
of the current node. The purpose of the array is to provide the column index fo
the routing table. The second array start_times is used to store the time the latest
DELAY.TYPE message was transmitted to each neighbor. Both of these arrays are
indexed, such that information pertaining to a node connected via the i-th commu-

nication channel is stored using the i-th index of the array.

The measured times used by the routing process are determined locally througl:
the use of the iPSC clock routine. The value returned by the clock routine is only
updated every 5 milliseconds [1, 3-24]. Since the clock routine in each of the node~
operates in a like manner and the measured times are relative times, the inaccuracy

of the clock should not effect the operation of the routing process.

Routing Table Formation. The routing table is initialized to a maximum
default time (msec). The local round trip delay time is determined by subtracting
the time stored in the start_times array from the time the DELAY_TYPF message is
received back from that node. The round trip delay times are stored in the routing
table using the respective node and its index in the out_nodes array as the twc
indices. For example, in Node 0 the delay time for Node 1 is stored in element (1.0
of the routing table. When a neighbor node's DELAY_TYPE message is received.

the data is added to the current round trip delay to update the routing table.

For example, the data in Figure 10 represents the routing table for a 3 dimer:-
sion cube (i.e., 8 nodes) after Node 0 receives each of its nearest neighbor node’s
first DELAY_TYPE message followed by the return of its first own DELAY_TYPE
message. For simplicity, it is assumed the maximum default time is 6000 msec and
the round trip delay is 5 msec. The routing table starts with 6000 msec. to whicl
an additional 6000 is added from the received DELAY_TYPE message. for a routing

table of 12000 msec. The reception of the first round trip delay message results n

v Vet e,
AR

the updating of the nearest neighbor elements with the measured delay information.

O,
] »
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::::{f It should be noted that after Node 0's second DELAY_TYPE message is received by :
 Ws 2
Node 2, Node 2’s routing table will reflect that Nodes 1 and 4 could be reached via L
oy
.'-‘-
’\
Neighbor Nodes :-';
! 2 4 o
0 [ 12000 12000 12000 ;,}
1 5 12000 12000 e
21 12000 5 12000 ':i':
Destination 3 | 12000 12000 12000
Nodes 4 | 12000 12000 5 N
5112000 12000 12000 )
6 | 12000 12000 12000 o
7 {12000 12000 12000 N
Figure 10. Example Routing Table for Node 0 of a 3 Dimension Cube - After Fir« R
Update
Node 0 and that the round trip delay would be 10 msec. It should also be noted that. :
6’; since the routing table reflects round trip times, the actual time is approximatelyv v
N one-half that shown in the table. ‘.:'_:]
Continuing the updates, Figure 11 depicts the routing table of Node 0 after ::',I:_:
the completion of the second set of DELAY_TYPE messages returns, and all of the .']
A
nearest neighbor messages are received. ,:
Figure 12 depicts the routing table of Node 0 after the completion of the third ;:'.::']
. . . . . e
iteration of DELAY_TYPE messages. It illustrates that after N update periods. :"
where N is the cube dimension, each node’s routing table contains a computed delax A 4
time for each possible destination node. Since the routing algorithm limits the ..-'J
number of hops to N, message routes greater than N will not be utilizied. The Sy
underlined entries in Figure 12 represent paths requiring more than N hops. :;_.3
a0
Although the paths will not be utilized, Figure 13 illustrates that after N + | ::Jj
.\- ,
delay times the entire routing table will be filled with delay times arrived at by link ;\‘2,'
. measurements. ’, :
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t:. Neighbor Nodes -
'.': 1 2 4 -
i 0] 10 10 10 _
N 1 5 12005 12005 -3
t‘j 2 | 12005 5 12005 .
t‘: Destination 3 10 10 12005 R
M Nodes 4 | 12005 12005 5 -
5 10 12005 10
6 | 12005 10 10 0
7 {12005 12005 12005 "
.
Figure 11. Example Routing Table for Node 0 of a 3 Dimension Cube - After Seconl ',::
Update
-
-~
4‘\
-
=
~
o
Neighbor Nodes ]
1 2 4 .
0 10 10 10 N
1 5 15 15 %
2 15 5 15 Y
Destination 3 10 10 12010 "
Nodes 4 15 15 5 -
5 10 12010 10 :
6 | 12010 10 10
7 15 15 15
Figure 12. Example Routing Table for Node 0 of a 3 Dimension Cube - After Thiid
Update o
x5
-
3
N
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Neighbor Nodes
1 2 4
010 10 10
1 5 15 15
2115 3 15
Destination 3|10 10 20
e Nodes 4115 15 5
“9 5010 20 10
6120 10 10
7115 15 15

Figure 13. Example Routing Table for Node 0 of a 3 Dimension Cube - After Fouii
Update
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Routing Algorithm. The following section depicts the algorithm for the routing
process. In particular, it details how the routing table is used to determine the next
node on the shortest delay path to the destination node. Figure 14 depicts the
routing process algorithm used in this research. The first section of the process
determines the current node, opens a send and a receive channel. determines th
nearest neighbor nodes of the current node, initializes the routing table to a defauh
time value, and then transmits the first set of delay messages to the nearest neighbor

nodes.

The remainder of the routing process is an infinite loop that repeatedly test~
for the reception of a user application message, the reception of a routing process
generated DELAY_TYPE message, and the time to periodically generate a new
DELAY_TYPE message to update the routing table. As indicated in Figure 14. all
user application messages are retransmitted before any DELAY_TYPE messages are
handled. While this may result in messages going down a channel already known to
be congested. it insures that passing application messages remains a higher priorit,

than the processing of DELAY_TYPFE messages.

Application Messages. When an application message is detected. it is stored
in a temporary buffer. The overhead information stored in the first portion of the
message is retrieved to identify the original destination information. If the message is
destined for the current node or a nearest neighbor node the message is transmitted
directly to its destination. Otherwise, the routing table is accessed to determine the

next node.

Next Node Determination. The determination of the next node uses au
exclusive-or operation on the current node and the destination node. The resulting
binary value is checked, starting with the least significant bit. The i-th bit position
of a detected “1" identifies the respective i-th communications channel is a valid

message path. The first “1” bit detected establishes a temporary minimum
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-
. . s
Open Channels for Sending/Receiving )
ot
Determine Environment >
Current Node RS
. . A\
Current Cube Dimension N
B . N
Current Number of Nodes <7y
Ny
Initialize Tables ;-"
Determine Nearest Neighbors K,
- . .‘-
Determine Start Times -
Determine Delay Times .
rea
ey
11. Infinite Loop N
'
While an application message is waiting fa
{ 3
o
. .
Process routing overhead o
. ¢
Determine next node ;‘“
Send Message hadh
} f::j
. . . . . .-'\
While a routing message is waiting o
b
{ )
If message from local node
)
Process round trip delay paly
else =
{ =y
Retransmit message to sender ) )
Update routing Tables NN
} %
o . N
If it is time to send new routing message LR
send message %.
’
else -\.’%
: %
flick process RN
SN
AN
AN
!.’1
Figure 14. Developed Routing Algorithm NN
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delay time path and the next node on that path. As the remaining bits are
tested, any detected “1’s” are used to test for a new minimum delay time. If two
or more nodes have the same delay time to the destination node, the node with
the lowest index is used as the next node. After all the bits are checked. the node
corresponding to the minimum delay time is used as the next node for the message.
The erclusive-or operation insures the message path is limited to the fewest number

of hops and as a result, eliminates the possibility of looping in the network.

Routing Messages. When an incoming message is a DELAY_TYPE message.
the message is stored in a dedicated buffer. The sending node of the DELAY_TY I
message is used to determine the column of the routing table and the element of
the other routing vectors. The element of the buffer corresponding to the current
maximum number of nodes in the network is checked to determine if the message
originated at the current node. If the message originated at the current node the
round trip delay is calculated and the routing table updated with the round trip
delay. Otherwise, the elements of the data buffer are added to the current round

trip delay, and the sum used to update the respective column of the routing table.

Update Timing. Before checking for a new user application message, the node’s
clock is checked to determine if another set of delay messages need to be sent.

Otherwise, the process flicks allowing the other process(s) to continue processing.

Summary

The code developed for this process was divided into two units, a main stand
alone routing process and a set of interface routines to pass messages from a user's
process to the routing process. It was designed to give each node the means to ac-
complish the three requirements for a distributed adaptive routing algorithm. stated
in Chapter II. Through the use of the iPSC’s clock routine and the DELAY_T'YPL

message the current node has the means to measure the current traffic load on it~
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channels. The current node has the means to determine which neighbor nodes are on
the fewest number of hops path and can then select the next node on the path with
the minimum delay time. Finally, using the DELAY_TYPE message. the adaptive

routing algorithm has the means to pass its current routing information to other

nodes in the network.

It should also be noted that this routing process suffers from the bad neus
problem as depicted in Tanenbaum. Once a routing path is established the news
of its deterioration requires a number of update iterations to occur before the bad
news is known by the remaining nodes in the network. Since the developed process
is an initial effort in investigating the routing on the iPSC, the additional coding for

correcting the bad neus problem was left for a future enhancement.
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V. Testing Methodology

This chapter explains the procedures used to validate and measure the per-

formance of the adaptive routing process that was developed for this study. The

testing of the routing process was accomplished in two phases. The first phase veri-

fied the routing process. This was achieved by insuring that predetermined messag¢

routes were used by the process and that the message contents were unaltered by

the routing process. The second phase of the testing established the data necessary
to compare the performance of the adaptive routing process with that of the current
static routing process. In this phase, various network loading schemes were devel-
oped to test the routing algorithm with a range of loading message lengths and a

number of communications bound paths.

The topology that was chosen for testing the network will be discussed in the
first section of this chapter. The second section discusses the network loading factors
used for the second phase of testing. The final section discusses the processes used

to perform the testing. while the results of the second phase of testing are presented

in Chapter VI

Topology

For the adaptive routing algorithm to improve the performance of the network.
three conditions must be occurring in the network. There must be communications
occurring over multi-hop paths, there must be concurrent communications occurring
over some portion of the multi-hop paths, and there must be sufficient additional
communications bandwidth to offset the additional processing required by the adayp
tive routing process. Therefore, the first requirement for testing was to establish

process(s) that provided the necessary communications.
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A ring topology was chosen as the test topology. The ring was formed using

the equation:
NN=(CN+1)modTN (10)

where
NN = next node
CN = current node

TN = total number of nodes in the network.

This ring topology was chosen because it provided the necessary multi-hop path-
and the routing was easily determined and verified. While the routing process can
be used on any dimension cube, the testing was accomplished with the iPSC loaded
as a dimension five hypercube. Table 1 depicts the number of hops required betweer

the node pairs for the 32-node system. With this topology a total of 62 hops arc

Table 1. Number of Hops for Each Node Pair

I 1 2 3 4 5 |
(0.1). (2,3) (1.2)  (34) (78) (15,16)
(4.5). (6.7) (56) (11,12) (23,24) (31,0)
(8,9), (10.11)  (9,10) (19,20)

(12,13), (14,15) (13,14) (27,28)

(16,17), (18,19) (17,18)
(20,21), (22.23) (21,22)
(24,25), (26,27) (25,26)
(28,29), (30,31) (29,30)

necessary for a message to pass around the ring.

The validation of the routing process was accomplished by appending the cur-
rent node address to a message as it was sent around the ring. When the message
returned to the initial node. it was sent to the host process for storage in a file and
post-test analysis. The message also provided proof that the routing process did not

overwrite or otherwise alter the contents of the message being passed.
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Figure 15 depicts the nodes of the ring network as thev are visited by a messag

being sent around the ring. The nodes represented on the inner ring are those nodes :‘
used by the static iPSC routing regardless of the network loading. The nodes on the E._
outer ring represent nodes used during one of the test runs of the adaptive routing EE
process. The test congested 16 of the 62 hops in the ring. The particular congested E"
links are depicted by the double arcs in Figure 15. The method used to provide the ::::
congestion is described in the next section on network loading. ‘_.-:,

L)
e

27

Node 0 was programmed as the ring controller. It received data from the Host

Process specifying the length of the message and the number of times to pass the .\_Q:
message around the ring. The multiple trips around the ring were used to offsc -:1
the inaccuracy of the iPSC clock routine. Since the value returned by the routine ,..\'.E
is only updated every 5 milliseconds {1, 3-24], each message was send through the '4
network 5 times to establish an average value. Upon receipt of the message fron, J
Node 31. Node 0 sent the message to the Host Process, which stored the data in an ;J
output file. i)'i

e
Netuwork Loading -

Communications loading for this research was provided by two processes. The

code for the first process called the Ring Control Process is listed in Appendix D. I
established the topology described above and part of the required multiple messagc
load. The Ring Control Process created a set of variable length messages for cacl
network loading test. The message length was varied to provide results that were not
biased by any single message length. Table 2 lists the message lengths used Ly the

Ring Control Process. The particular lengths were chosen to force transmission o

full packets (1024 bytes) after the addition cf the adaptive routing process overhead.
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Figure 15. Example Ring Network with Intermediate Nodes
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(S',:_:: As stated earlier, the adaptive routing algorithm requires the presence of con-
current communications occurring over some portion of the multi-hop paths. The
; code for the second process called the Network Loading Process is listed in Ap-
:
2 |
Table 2. Ring Message Length
! { Number of Bytes/Msg. |
o
> 0
d 2036
¥ 4084
6132
8180
10228
12276
14324
16372
pendix E. It provided the additional communications load on pertions of the multi-
‘ .. hop paths used by the Ring Control Process. The Host Process passed to the Network
Loading Process the desired number of congested links and the length of the mex-
sage to be passed. Table 3 presents the number of congested links and the messac:
lengths used by the Network Loading Process in the tests. Each of the differens
message lengths were used in testing each of the different number of congested links.
Table 3. Network Loads ;'_:'.
Message Lengths Number of e
(Bytes) Congested Links -
0 0 0
4096 4 .
8192 & lja
12288 12 0
16384 16 ;
>
— .
._'--_',- . K|
<o T
- 'J
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The number of congested links was the value used by the Network Loading

Process to determine which nodes would initially send a message and which nodes
would initially wait to receive a message. Table 4 presents the links congested for

the various numbers. After the initial send/receive, each process called the opposite

Table 4. Congested Links

Number of Congested | Congested
Links Link Pairs

0.2)

4 (1.3)

(4.6)

(5.7)

(8.10)

8 (9.11)

o
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function and in a ping-pong fashion the send/receive sequence was repeated. Nodes

Va0

not involved in sending or receiving used the iPSC flick routine to cancel thei

processing time slice.

Comparison Metric. A complete test of the routing process consisted of the

Ring Control Process sending each of the message lengths. listed in Table 2. five

",

- times for each of the 21 combinations of message lengths and number of congested
al . . . . . . .
- links as given in Table 3. The time required by the Ring Control Process to send a
] . . . .
o message around the ring formed the basis of the data collected during the testing.

S
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Each combination of message length and links congested by the Network Loading
Process was represented by the summation of the average times of each message

length to be passed by the Ring Control Process.

Configurations Tested

Three configurations of processes were tested to measure and compare the
performance of the adaptive routing process with the current routing process. Table 7
lists the configurations. Each of the configurations used the same Host Process and
the same Network Loading Process. Only the Routing Process and the Ring Contro!
Process were altered. The Routing Process was altered to perform adaptive or stati
routing. The Ring Control Process was altered to interface with the Routing Process
or the current iPSC message passing routines. In each configuration, three processe~
were running on each node of the iPSC. The results of the testing are compared in

Chapter V] to determine the effect of the adaptive routing algorithm.

Table 5. Test Configurations

| Configuration | Description |
1 Distributed Adaptive Routing (DAR)
2 Simulated Static Routing (SSR)
3 Current Static Routing with Added Process
(CSR/AP)

The Distributed Adaptive Routing (DAR) configuration was comprised of the
Routing Process to route the messages according to its routing table, and the Ring
Control Process linked with the Routing Process’s interface routines. The Simulated
Static Routing (SSR) configuration used a modified version of the Routing Process to
intercept messages and route them according to the iPSC static routing. and the Ring

Control Process again linked with the Routing Process’s interface routines. Because
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the adaptive routing process was implemented at the applications layer of the OS]
protocol and not the network layer, the simulation of the iPSC routing process was
necessary to isolate the effects of the adaptive routing process. Therefore. the two

configurations -an be compared to determine the effect of the adaptive routing over

the static routing.

The Current Static Routing with Added Process (CSR/AP) configuration used
the iPSC ~an<w and recvw routines in the Ring Control Process instead of the
adaptive routing process’s interfaces asendw and arecvw. Since the Ring Control
Process was not linked with the Routing Process’s interface routines the Routing
Process could not intercept the message traffic. Because the other two configu-
rations consisted of three processes, the Routing Process was also loaded in this
comfiguration to keep the process loading equal. This third configuration can he
compared with the DAR configuration to establish the processing overhead caused

by the adaptive routing process.

Summary

This chapter has presented the testing methodology used in this research. to in-
clude how the metric (delay time) used in the study was established. It also presented
the topology and the various network loads used to establish the communications
load. This was followed by the various configurations developed to test and compare
the adaptive routing algorithm against the current iPSC routing performance. The
additional processes are listed in the appendices; Appendix C - the Host Process.
Appendix D - the Ring Control Process, and Appendix E - the Network Loadiug
Process. The Makefile used to compile and link the processes is listed in Appendix F.

Chapter VI presents the results and conclusions from the testing.
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o VI. Conclusions
: The purpose of this study was to examine the effect of a distributed adaptive
: routing algorithm on a concurrent class computer. The focus of the study involved
the comparison of an implemented adaptive routing algorithm, a simulation of the L
: current static routing algorithm and the current static routing algorithm with an i
j added process for load balancing. This chapter compares results obtained from the ;
v testing methodology described in the Chapter V, and conc'u. es with recommenda- ::\
tions for additional study. ::'_-:
Results
Each of the three configurations described in Chapter V was tested using the "
twenty different message loads listed in Table 3. In addition, a test of the three cou- :
figurations was performed without any additional message traffic from the Network ,\
i.. Loading Process. Again, the three configurations were the Distributive Adaptive ’:\

¥ Routing (DAR), the Simulated Static Routing (SSR), and the Current Static Rout-
ing with Added Process (CSR/AP).

Table 6 is the summation of the average delay times for the nine control messagc '
lengths, of Table 2. Again the summation was done to measure the performance of
4 the adaptive routing algorithm unbaised by a fixed message length. Based on the :_::-'
- data formulated from the average delay times of the various traffic loads. five graphs. o~

Figures 16- 20, were developed to compare the message delay times of the threc

e,
LIS |

X configurations. 2
< B
. -~
) The data in Table 6 indicates that for the network loads tested the adaptive N
)
routing process was from 19.1-95.6 secs faster than the simulated iPSC static routing T
process for the test cases used. Additionally, the current static routing was 69.5- -
-7
90.46 secs faster than the adaptive routing. Based on the data from the testing :‘;f.

performed with no loading messages, the overhead caused by implementing the :

|
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Table 6. Summarized Timing Measurements (in Seconds) !_._
Conf. Number of Number of ~l
Bytes/Msg. Congested Links
0 4 8 12 16
07883 116.71 151.21 182.45 219.37
1 4096 - 103.04 136.56 163.83 201.10
DAR 8192 - 101.81 134.87 159.81 202.84
12288 - 101.86 135.60 163.47 202.92
16384 - 103.05 133.56 161.98 200.75
6“. 0]76.56 134.95 191.94 251.68 298.61
: 2 4096 - 120.47 187.94 252.82 302.37
SSR 8192 - 12549 179.96 248.15 296.02
12288 - 120.20 179.11 248.16 307.42
16384 - 12099 180.56 252.41 300.77
0| 555 46.26 81.66 128.31 169.27
3 4096 - 3065 55.53 80.67 101.65
CSR/AP 8192 - 34.67 56.49 76.58 102.23
12288 - 3424 55.06 79.84 103.13
16384 - 33.08 51.79 83.51 98.42
) -
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routing algorihtm at the applications layer was 71 secs. It should be noted
that the current static routing process was from 88.64-186.1 secs faster than the

simulated static routing.

Analysis of the five figures results in the following conclusions. Comparing
configurations one (DAR) and two (SSR) indicates the adaptive routing process. a-
expected. has a smaller delay time than the SSR configuration. This is due to the
additional communication channels available to the DAR configuration. The figures
also reveal that the length of the congesting message did not have an impact on the
ring delay time. but the number of congested links did. This indicates that the link-

were congested equally, regardless of the actual congesting message length.

It was anticipated that at a certain level of congestion the DAR confguration
would also have a smaller delay than the configuration three (CSR/AP). Unfui-

tunately. this did not occur. Post-test analysis of the Network Loading Proces-

indicates that the link congestion was not the overriding communications factor. but
“. that the time-slicing of the different processes was the biggest factor in the delay
times of the messages. Not only did the time-slicing impede the messages. it als.
decreased the arrival rate of messages into the network from the Network Loading

Process, therefore, decreasing the communications load on the network.

Future Research

While the testing accomplished in this study attempted to cover a wide range
of possible communications loads. additional testing should be performed. More
research into how the iPSC sends messages when more than one process is operating.

as well as, expanded testing with altered congesting techniques. Along with the

expanded testing of the message passing system, research into the operating system ..

itself could yield a better understanding of the operation of the iPSC. Additional

study should also involve implementing the developed adaptive routing algoritlm ::

or

developed at the network laver of the OSI protocol. -
e ;’-31
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Appendix A. Routing Process
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s
DATE: 09/20/87 e
)
VERSION: 2.2 -

LI 4

¢
N

TITLE: Simulated Distributed Adaptive Routing Process
FILENAME: route.c

PROJECT: Thesis

OPERATING SYSTEM: XENIX

-'.’.l-,’.
v,

T

"
LANGUAGE: C ﬁt
FILE PROCESSING: compiled with options -ALfu ﬁ
FUNCTION: This process provides an alternate routing -

-

capability for the iPSC. It provides selection of the
next node by shortest path and smallest delay to the
destination node. If the destination node is an
adjacent node, the message is sent directly to
destination process.

¥ % X X O OX X % OH X X X X X X * »
E I B S _BEE TR IR S I T SN R N R L

****************************************#*******************/ ! R
#include "/usr/ipsc/lib/cnode.def"

#define MAX_CUBEDIM 7 Y
#define MAX_NUM_NODES 128 -

#define ROUTE_TYPE 32767
#define ROUTE_PID 32767

#define DELAY_TYPE 32765 N
#define DELAY_SIZE (4*(MAX_NUM_NODES+1)) '

#define MAX_TIME 6000
/* Time in msecs to identify bad link. */
#define ADJ_TIME 2500 X
/* Time in msecs to recalculate delay. */ ,
#define BAD_NODE 3333 N
/+ Used as a default bad node number. =/ N
#define ROUTE_TEST O
/* Used to collect msg path data. */ B
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#define MSG_SIZE 16384
/* Maximum number bytes in a message. */

/*tt##t#t##***t###****##

* Program variables: =
T T T Y T Y
int 1,3;

int send_chan, recv_chan;
int my_node, next_node;
int cube_dim, num_nodes;
int d_node, d_pid, d_type;
int rcnt, rnode, rpid;

int adj_time;

int out_nodes[MAX_CUBEDIM];

long update_time;

long del_times[MAX_NUM_NODES] [MAX_CUBEDIM];
long start_times[MAX_CUBEDIM];

long delay_buf [MAX_NUM_NODES + 1];

int recv_buf [MSG_SIZE/2];
int *templ_ptr;
char *temp_str;

/*#****#*#*‘*##“‘#*‘***“#“‘*##*#‘********#******t*#******/
main()

/**#*t#***#****###*#‘*#*####t#****#***

* Open channels for communicating *
* with the other nodes. *
#*####**‘#‘*#‘###**##t‘t##t**t##*#*#t/
send_chan = copen(ROUTE_PID);
recv_chan = copen(ROUTE_PID);

/**###t‘*‘#####*“‘##**#*#tt#*###**l!Ut
* Each process identifies its node =
* and determines adjacent nodes. *
#*#tttt#‘#*t##“‘#ttt##t#t#####t#*ttt/
my_node = mynode();

cube_dim = cubedim();

num_nodes = 1<<cube_dim;

adj_time = ADJ_TIME + my_node;
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* Initialize the routing table and *
* and send first set of delay msgs =
t*t#t##‘*‘t####‘**#*#ttt##t#t*‘**#***/
init_tables(my_node,cube_dim,num_nodes);
update_time = clock();
get_out_times(send_chan,my_node,cube_dim,num_nodes);
/##***#*‘****#*#*#*##*##**#t######t***
* BEGIN ROUTE CODE: *
***#t**********#**##t*t#**##t#*******/
for (53;)
{
/*t**#****‘t**#***##***##**t*#*#*###*******tt******#**
* This section controls the passing of application =
* messages to the desired destination node/pid. *
********#******#*****#********#*#*******#***t********/
while (probe(recv_chan,ROUTE_TYPE) >= 0)
{
i recvw(recv_chan, ROUTE_TYPE, recv_buf, MSG_SIZE,
a‘" &rcnt, &rnode, &rpid);
3
{ templ_ptr = recv_buf;
d_node = stempl_ptr++;
d_pid = *templ_ptr++;
d_type = *templ_ptr;
/##******#****‘***#****t********#*t*****tt*t********
* Used to id nodes traversed in path testing. *
* Not used in time testing. *
*“#***#t#**‘**####***#******##********************/
#if (ROUTE_TEST)
{
for(i=0; recv_buf[i] >= 0; i++)
’
recv_buf[i] = my_node;
}
#endif
j = node_index(d_node,cube_dim);
5.
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if ((j < cube_dim) || (d_node == my_node))
sendw(send_chan, d_type, recv_buf,
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rcnt, d_node, d_pid);

else

{

bt
iy YNy

P b

P

next_node = n_node(my_node,d_node,cube_dim);

sendw(send_chan, ROUTE_TYPE, recv_buf,
rcnt, next_node, ROUTE_PID);
}

¥

/##‘***tt#t#**t#t#‘*##*##“t#“*####t#‘##“‘*t##t##t##t

3
»

whﬁﬁﬁf

LY

This section controls passing of network delay

information that is used to determine least
delay path to destination node.

##*#*****#‘*##‘######*‘*##t##*#**‘#*#****#*t**###**##*/

vhile (probe(recv_chan,DELAY_TYPE) >= 0)

l‘. .\. l\.[

{

recvw(recv_chan, DELAY_TYPE, delay_buf, DELAY_SIZE,

&rcnt, &rnode, &rpid);

/**#**##****#‘##tt####t#tt#‘#**##*********

* Get channel index for del_times array. *
##‘####t*###‘*‘######*t#t##‘t‘#**####t#**/

j = node_index(rnode,cube_dim);

if (j < cube_dim)

{
if (delay_buf[num_nodes] == my_node)
{
del_times(rnode] [j] =
clock() - start_times(j];
start_times[j] = 0;
}
else
{

sendw(send_chan, DELAY_TYPE, delay_buf,
rcnt, rnode, rpid);
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;::: for(i=0; i < num_nodes; i++)
- del_times[i)[j]
delay_buf{i] + del_times{rnode][j];
}
}
else
{

sprintf(temp_str,

"Rec’d delay msg from invalid node %d",rnode);
syslog (ROUTE_PID, temp_str);
}

' /***#**#***********************************************
; * This statement controls the frequency of *
* updates to the routing table. *
****#*#‘#***##*#******#*#*****************************/
if (clock() - update_time > adj_time)

{

update_time = clock();

get_out_times(send_chan,my_node,cube_dim,num_nodes);

}
else
flick();
} /* End of infinite for-loop */
} /* END OF MAIN FUNCTION */

/*****#t**##‘#*t**#*************t*#*#*#*****#**###

* BEGINNING OF FUNCTION DEFINITION SECTION *

ok ok o oo ok o R o R oK R oK ko KK R K Rk kK [

/*******#***#t******‘##*##***t#t**t*#***#*****t***##t*#****‘*
* Function to initialize the routing table arrays: *
* out_nodes(], start_times(], and del_times[][]. *
****#tt#*‘*#tt#t###**#####*#####*#‘*‘*#tt*#t#*“#*#lt#t#t#tt/
init_tables(my_node,cube_dim,num_nodes)

int my_node;

int cube_dim;

int num_nodes;
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int 1, j;

for( i1=0; 1 < cube_dim; i++)
{
j=1<< 1
out_nodes[i] = my_node " j;
start_times{i] = 0;

}

for( i=0; i < num_nodes; i++)
for( j=0; j < cube_dim; j++)
del_times[i][j] = MAX_TIME;
} /* End of init_tables function */

/************************************************************
* Function node_index is used to return the index into *
* the del_times and out_nodes arrays. *
********************#*******#*******************************/
int node_index(test_node,cube_dim)

int test_node;

int cube_dim;

{

int j;

for( j=0; test_node != out_nodes[j] && j < cube_dim; j++)

return(j);
} /* End of node_index function  */

/00 3 oo o o ook R ok o ok e o e K o ok sk R o ok o o oK o ok o o ok o ko oK oK o o K ok ok K

* Function get_out_times used to update the delay times. *
* It resets start_times and sends the DELAY messages *
* to the neighboring nodes. *

****##*t***t****##***************#**************************/
int get_out_times(ci,my_node,cube_dim,num_nodes)

int ci, my_node;

int cube_dim, num_nodes;

{

int i;
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get_delay_buf (my_node,cube_dim,num_nodes) ;

for ( i=0; i < cube_dim; 1++)
if (start_times[i] == 0)
{
start_times[i] = clock();
sendw(ci, DELAY_TYPE, delay_buf,
DELAY_SIZE, out_nodes[i], ROUTE_PID);
}

/* End of get_out_times function */

/************************************************************

* Function get_delay_buf is used to retreive the data *
* necessary information to build the delay_buf message. *
*******#***#*****‘t**#***###*****###*****************#******/
int get_delay_buf (my_node,cube_dim,num_nodes)
int my_node, cube_dim, num_nodes;
{

int i, j, adj_time;

long min;

for( j=0; j < cube_dim; j++)
if (start_times[j] '= 0)
{

adj_time = ADJ_TIME + my_node;
for( i=0; i < num_nodes; i++)

del_times[i][j] += adj_time;
}

for( i=0; i < num_nodes; i++)

{

min = MAX_TIME;

for( j=0; j < cube_dim; j++)
if (del_times[i][j] < min)

min = del_times[i] [j];
delay_buf[i] = min;
}

delay_buf[i] = my_node;
delay_buf [my_node] = 0;
/* End of get_delay_buf function */
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* Function n_node determines the next node in path * A
* to destination or assigns a default node. * 1?
' * If variable out_node isn’t reassigned, the * .
* original destination is returned as the next node. * f

*****#**###*#*#**#**#*****#*‘*t*#******t**********t*********/
int n_node(curr_node,dest_node,cube_dim)

int curr_node;

int dest_node;

int cube_dim;

{

[NERE AL )

r v s s

int 1 0;

int j =1;

int temp_node, out_node;
long min;
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/*******t****t*#****#**#*********#*****i*
* Establish time and default node *
* used to determine a congested link. *
***********##****tt#t**#**#**##*##t*#***/
A min = MAX_TIME + {;
® out_node = BAD_NODE;

.
Y

.
RN

Bh aatad A 8

.

temp_node = curr_node -~ dest_node;

T a"a
e

for ( i=0; i < cube_dim; i++)
{
if ( (temp_node & j) &&
(min > del_times([dest_node][i]))
{
min = del_times[dest_node][i]:
out_node = out_nodes[i];

1
)
]
1

}
j <<= 1;
}

return((out_node '= BAD_NODE) ? out_node : dest_node); *q
Y /= End of n_node function x/ Cj
~ .1
~
~

A%

/* END OF FUNCTION DEFINITION SECTION */
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Appendix B. Interface Functions

/***************#**********************************t*********

DATE: 09/20/87
VERSION: 2.2

*

*

*

*

* TITLE: Blocking Send for Adaptive Routing Process
* FILENAME: asendw.c

* PROJECT: Thesis

* OPERATING SYSTEM: XENIX

* LANGUAGE: C

* FILE PROCESSING: compiled with options -ALfu
* FUNCTION: This fuction can be linked to any program
* using the follwing parameters:
* int ci;
* int type;
* char buf[n];
* int len;
* int node;
* int pid;
*

*

% ¥ OB ¥ X X X X X * ¥ F X ¥ % ¥ X X *

*#‘#*#***#**#****‘*###*#*#****#**#****#*##**#****##*####***/

#define ROUTE_TYPE 32767
#define ROUTE_PID 32767

#define MAX_CUBEDIM 7
#define OVR_HEAD 6

asendw(ci, type, buf_ptr, len, node, pid)

int ci; /* channel value for message sending x/
int type; /* type value of the message */
char sbuf_ptr; /# pointer to buffer holding message */
int len; /* length value in bytes being send */
int node; /* value of the destination node */
int pid; /* value of the destination process id x/
{

int *malloc();
void free();
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int *send_buf_ptr;
int ®ovr_head_ptr;
char *templ_ptr;
char *temp2_ptr;
int i, j;

int out_len;

static int initialized = 0;

static int my_node, my_pid, cube_dim;
static int over_head_size;

static int nearest_nodes[MAX_CUBEDIM];

if ('initialized)
{
my_node = mynode();
my_pid = mypid();
cube_dim = cubedim();
over_head_size = OVR_HEAD * sizeof(int);

for (i=0; i < cube_dim; i++)
{
J =1 <« i,
nearest_nodes[i] = my_node ~ j;
}
initialized = 1;

}

/#*t***#**t##*#***#******t******#***#t*#****#**********
* Code to allow direct transmission of a message to *
* itself, a neighbor node, or make a global *

* transmission without using the routing routine. *
#**#t*t***#****##*###*##**tt#**t**###*#*****t****##***/

for(i=0; node '= nearest_nodes[i] && i < cube_dim; i++)

.
4

if(node == my_node || node < 0 || i < cube_dim)
{
sendw(ci, type, buf_ptr, len, node, pid);
}

else

{
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Ry This portion of the code prepares the message *

- * overhead so the message can be properly *

' * handled by the routing process. The routing *

> * overhead is stored in first six integers of *

& * message buffer. *
’ ********#*tt*##*#**************#t***##**********t**/
| out_len = over_head_size + len;
oy ovr_head_ptr = malloc(out_len);

- send_buf_ptr = ovr_head_ptr;
K
D *ovr_head_ptr++ = node;

*ovr_head_ptr++ = pid;

: *ovr_head_ptr++ = type;
.} *ovr_head_ptr++ = my_node;

2 *ovr_head_ptr++ = my_pid;
N *ovr_head_ptr++ = len;
! :. /#***********t#*#***********t**#****************
2t * Code to copy message into new data buffer. =
‘-:. ****#***#****##**#*#t***#***#***#**********#***/
W templ_ptr = (char *)ovr_head_ptr;

(. temp2_ptr = buf_ptr;
) -
- for(i=0; i < len; i++)
:: *templ_ptr++ = stemp2_ptr++;
)
. sendw(ci, ROUTE_TYPE, send_buf_ptr,
AN out_len, my_node, ROUTE_PID);
E: free(send_buf_ptr);
- }
} /% End of asendw function #/
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DATE: 09/20/87
VERSION: 2.2

TITLE: Blockin
FILENAME: arec
PROJECT: Thesi

LANGUAGE: C

FUNCTION: This
using the follw
int c¢i;
int type;
char bufin];
int len;
int cnt;
int node;
int pid;

# ¥ O O X R R X X X X O X X X X K X X *

ok ok ok o e 3ok o o Ok K ok ok K ok

#define ROUTE_PID

#define OVR_HEAD

arecvw(ci, type, b

int ci; /*
int type; /*
char *buf_ptr; /*
int len; /*

int *pt_cnt; /=
int *pt_node; /=
int *pt_pid; /=

int *malloc();
void free();

""\u-‘t "'\
e A A, MR P e PN Y,

OPERATING SYSTEM: XENIX

FILE PROCESSING:

\"“I\I“
o

e g o o o ok K oK ol ok ok o o ko ok o sk ok K ok ok ok ok ool Kok ok sk ok 3K kR K

g Receive for Adaptive Routing Process
vv.c
s

compiled with options -ALfu
fuction can be linked to any program
ing parameters:

R SR SR IEE IR N NEE B I R I ST I R S I 2R R R

a0 o oo o ok ok ok o o ok ok oo o e K ook ok KKk o ok Kk oo ok K ok ok ok ok ok /

32767

#define ROUTE_TYPE 32767

6
uf_ptr, len, pt_cnt, pt_node, pt_pid)

channel value from calling programming  */
type value from calling programming */
pointer to calling program buffer space */
length value of buffer from calling prg =/
pointer to count of rec’d message */
pointer to source node of rec’d message */
pointer to source proc. id of rec’d mesg */
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int i, buf_size;
int *ovr_head_ptr;
int *recv_buf_ptr;

char *templ_ptr;
char *temp2_ptr;

static int initialized = 0;
static int over_head_size;
if ('initialized)

{
over_head_size = OVR_HEAD * sizeof(int);
initialized = 1;
}
buf_size = over_head_size + len;

recv_buf_ptr = malloc(buf_size);

recvw(ci, type, recv_buf_ptr, buf_size,
pt_cnt, pt_node, pt_pid);

if (*pt_pid == ROUTE_PID)
{

ovr_head_ptr = recv_buf_ptr + 3;

*pt_node = *ovr_head_ptr++;
*pt_pid = *ovr_head_ptr++;
*pt_cnt = =ovr_head_ptr++;

}

else
ovr_head_ptr = recv_buf_ptr;

templ_ptr = (char *)ovr_head_ptr;
temp2_ptr = buf_ptr;

for(i=0; i < #*pt_cnt; i++)
s*temp2_ptr++ = s*templ_ptr++;

free(recv_buf_ptr);

return;
/* End of arecvw function =/
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_ * DATE: 09/20/87 * P
g * VERSION: 2.2 * o
‘ - " ‘Qf
* TITLE: Non-Blocking Send for Adaptive Routing Process = i
* FILENAME: asend.c * N
; * PROJECT: Thesis * -
* (OPERATING SYSTEM: XENIX *
* LANGUAGE: C * '
* FILE PROCESSING: compiled with options -ALfu * ;
* FUNCTION: This fuction can be linked to any program * T
* using the follwing parameters: * o
* int ci; * o
* int type; * o
* char buf[n]; * ;z
* int len; * :
* int node; *
* int piq; *
* *

*********t***************##**t*****##****t********#*********/

#define ROUTE_TYPE 32767
#define ROUTE_PID 32767

#define MAX_CUBEDIM 7
#define OVR_HEAD 6 5;

asend(ci, type, buf_ptr, len, node, pid)

int ci; /* channel value for message sending */ N

int type; /* type value of the message */ !H

char *buf_ptr; /* pointer to buffer holding message */ ‘

int len; /* length value in bytes being send */

int node; /* value of the destination node xf

int pid; /* value of the destination process id */ -

{ L
int *malloc(); -
void free(); f:
int =*send_buf_ptr; )

: AN R N AN
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1

int =#*ovr_head_ptr;
char *templ_ptr;
char *temp2_ptr;
int i, j;

int out_len;

static int initialized = 0;

static int my_node, my_pid, cube_dim;
static int over_head_size;

static int nearest_nodes[MAX_CUBEDIM];
if (linitialized)

{
my_node = mynode();
my_pid = mypid();

cube_dim = cubedim();
over_head_size = OVR_HEAD * sizeof(int);

for (i=0; i < cube_dim; i++)
{
J =1 << 1,
nearest_nodes[i] = my_node "~ j;
}
initialized = 1;

}

/#tt#lttl‘l*‘##t‘*“#‘t#t*#t#t#**t##t#t*#*#****t***#tt****
* Code to allow direct transmission of a message to *
* itself, a neighbor node, or make a global *
* transmission without using the routing routine. *
*‘l‘l#*#*###**#*##lt***####*##t***##***#*#t#*#*t*t*#t#*t*/
for(i=0; node !'= nearest_nodes[i] && i < cube_dim; i++)

if(node == my _node || node < 0 |] i < cube_dim)
{
send(ci, type, buf_ptr, len, node, pid);
while(status(ci)) flick();
}

else

{
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/*#‘#****##‘*t**###*###‘t###‘*t#*##t#****#*****##***

v

* Code to save routing overhead in first six * -
* integers of message. * -
‘#‘*“###*#***#****‘#*‘*‘#****#‘*#***#****tt‘t*#***/ -::‘
out_len = over_head_size + len; -
ovr_head_ptr = malloc(out_len); ;
send_buf_ptr = ovr_head_ptr; i
g
*ovr_head_ptr++ = node; "
*ovr_head_ptr++ = pid; hﬁ
*ovr_head_ptr++ = type; i:j

*ovr_head_ptr++ = my_node;
*ovr_head_ptr++ = my_pid;
*ovr_head_ptr++ = len;

»
LN

LRl
PP oY

/“*####**‘****‘*#‘*‘********‘**‘*‘##t#“#t#‘##ﬁ -:'::
* Code to copy message into new data buffer. = ]
**************#‘***#***#****‘****###**‘*****‘**/ :-q
templ_ptr = (char *)ovr_head_ptr; ég
temp2_ptr = buf_ptr; R
-.:.1

for(i=0; i < len; i++) N
*templ_pir++ = *temp2_ptr++; e

=

send(ci, ROUTE_TYPE, send_buf_ptr, z
out_len, my_node, ROUTE_PID); i:

while(status(ci)) flick();

free(send_buf_ptr); S

l"-"".l s '-.-' ;":‘

} o

} /+ End of asend function  */
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/*****#***##**#***#*##‘***#*‘###t##t*#*#t**‘***#**‘#*********

R Iy

.

*
DATE: 09/20/87 *
VERSION: 2.2

Y
A e

PR
4,

x,

*

*x

*

*

* TITLE: Non-Blocking Receive for Adaptive Routing Process
* FILENAME: arecv.c
* PROJECT: Thesis

* OPERATING SYSTEM:
= LANGUAGE: C

* FILE PROCESSING: compiled with optioms -ALfu
*

*x

*

*

*

*

*

*

*

*

*

¢
(]

- EPE R
4, ‘.-ﬁ‘ﬁ‘p K D

.
"

*

*

*

*

*

*

*

*

FUNCTION: This fuction can be linked to any program *
using the follwing parameters: * .

int ci; *

int type; *

char buf[n]; *

int len; *

int cnt; *

int node; *

int pid; *

*

/

ok ok o oo ok o ok s o ok e ok ok ok e ok ok ok o o ok ok ok K ok e 3k o ok ok ok ok ok ok o 3k ok kol ok ok K oK ok ok ki K OK K ok koK

#define ROUTE_PID 32767
#define ROUTE_TYPE 32767

#define OVR_HEAD 6

arecv(ci, type, buf_ptr, len, pt_cnt, pt_node, pt_pid)

int ¢i; /* chanrel value from calling programming */

int type; /* type value from calling programming */

char *buf_ptr; /* pointer to calling program buffer space =*/ >

int len; /* length value of buffer from calling prg =/ -

int *pt_cnt; /* pointer to count of rec’d message */ ]

int *pt_node; /* pointer to source node of rec’d message */ i-

int *pt_pid; /* pointer to source proc. id of rec’d mesg */ o

{ 7
int *malloc(); :ﬁ
void free(); A
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b int i, buf_size; ;%ﬁ
. int *ovr_head_ptr; Ly

int #recv_buf_ptr; zﬂ.

char *tempi_ptr; :Eﬁ

char *temp2_ptr; :;:

static int initialized = 0; ::\

static int over_head_size; ;_:'
“w

e

1f ('initialized)

{
over_head_size = OVR_HEAD * sizeof(int); '
initialized = 1; o
! } t-.
buf_size = over_head_size + len;

recv_buf_ptr = malloc(buf_size);
recv(ci, type, recv_buf_ptr, buf_size, .
pt_cnt, pt_node, pt_pid); Pt

vhile(status(ci)) flick();

if (*pt_pid == ROUTE_PID) B
o { ’
ovr_head_ptr = recv_buf_ptr + 3; :
*pt_node = *ovr_head_ptr++; -
*pt_pid = *ovr_head_ptr++; "
*pt_cnt = *ovr_head_ptr++; .
} [
else

o
)
2

ovr_head_ptr = recv_buf_ptr;

templ_ptr = (char *)ovr_head_ptr;
temp2_ptr = buf_ptr;

for(i=0; 1 < *pt_cnt; i++)
*temp2_ptr++ = stempl_ptr++;

o O A LSS e @ .

free(recv_buf_ptr);
return;
} /* End of arecv function =/

* e
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Appendix C. Host Process for Adaptive Routing Testing .
/****‘**##*********************#*#****#****###*****#t#******* ::i
DATE: 09/20/87 o
VERSION: 2.2 Based on iPSCs Host Process for Ring Ex. -
TITLE: Sequential Ring Host Process &:
FILENAME: host.c :j
PROJECT: Thesis s
OPERATING SYSTEM: XENIX .
LANGUAGE: C o
FILE PROCESSING: compiled with options -ALfu {:
FUNCTION: This is the Host code for the ring demo. :;
It loads 3 processes: o
a) the routing process .
b) the node process -
c) the loading process -i
It reads 2 files for testing input: N
o

1) the number of links to be congested
2) the length of the message for the load process
b) Information for the node process
1) the number of times to go around the RING.
2) the length of the message in bytes
It opens 1 file for output:
a) the number of links congested
b) the length of the message in the load process
c) a ring "count" each time the ring message
goes past node O,
d) the time it took the message to go around
the ring the specified number of times.
e) the average time per pass through the network

¥ R R OB R O OB O X R X OE O X X OE O O ¥ X X KX X X £ X * ¥ X *

%
*
*
*
*x
*
*
*
*
*
»
*
*
*
*
*
a) Information for the load process * N
w
t 3
*
*
x
*
*
*
*
*
*
*
*
*®
/

AR AR AR R R R AR kR kR kKRR R kR Rk kK

#include "/usr/ipsc/lib/chost.def"
#i1nclude <stdio.h> e

AR T T T e T T T T T T

* Program definitions and varaibles. * N
t*****“#‘#tt‘-#t‘##t‘*#**##ttttt#*‘#‘#tt###t‘*ttt##tt#t#tuw/
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#de
#de
#de
#de

#de
#de

#define INIT_TYPE 10
#define INIT_MSG_SIZE 4
#define CNT_MSG_SIZE 2
#define TIME_MSG_SIZE 4
#define MAX_MSG_SIZE 16384
#define ROUTE_TEST 0

/***********************

*
*okk
int

> int

‘ int

int

int
int

lon
flo

char CARRIAGE_RETURN = 13;

FIL

/%

mai

{

fine HOST_PID 1
fine NODE_PID 2 )
fine ROUTE_PID 32767
fine LOAD_PID 3010

fine ALL_NODES -1
fine ALL_PIDS -1

Program variables: =*
o o oo oo oo ok ok ok
ci, type;
cnt, fr_node, fr_pid;
1, J, ring_count;
msg_buff [8192];
msg_len;
num_links, msg_load;

g time_buff;
at ring_time;

E *fp_in, =*fp_out, *fp_load;
**#****#*#**#**#****#**************#*********************/
n(Q)

printf ("LOADING THE CUBE WITH ROUTE ... ");

printf ("ONE MOMENT PLEASE\n");
load("route'", ALL_NODES, ROUTE_PID);

printf(”LOADING THE CUBE WITH NODE ... ");
"3
o
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printf("ONE MOMENT PLEASE\n");
load("node", ALL_NODES, NODE_PID);

/990 o o o oo ko ok ok o o ok o o o o o o o o ko ok ok ok ok ok o ok ok oK ok oK o o oK K
* QOpen a channel for the host-to-node communicaticns. *
0 o o ok o o ok o o o o A oK o K o o ok o ok ok o o o ook o o oK K o ok ok ok Rk koK Kk ok ok ok /
ci = copen(HOST_PID);

/oo K KRR K K KK R R KK KKK K KKK K KK
* Open node input and test data output files. *
A oA K KK KK KKK o o oK A K K KKK KKK o o KK KR KoK o
fp_load =
fopen("/usr/eng/tfarinel/mydata/load_data","r");
fp_out =
fopen("/usr/eng/tfarinel/a_routing/out_data","w");

/23 o ok o ok ok o ok KK o oK o ol o ok ok e o ke ok ok KK K oKk sk ok ok o 3 K oK ok ok ok ok oK
* BEGIN MAIN PROGRAM LOOP TO CONTROL LOAD PROCESS: *
30 o ok ko ok o o ko ok R o o o o o o o o o o ok ok o o R K ook ook ok ok K oK KoK Kk Kk ok /
for(;;)

{

printf("**************** START LOAD **************\n“);

/******************************************************

* pget the number of links for the load process: *
****#****#*****#**************************************/

printf ("Number links for load process ");
printf("(neg. value quits): ");

fscanf (fp_load,"%d", &num_links);

printf ("%d\n",num_links);

/093 e o s oo oo o o oo ok oK K o o ok ook ok oKk oK R ok sk K K 3 oK oK ok ok
* If num_links is < 0, break out & clean up: *
**l‘l********************************#******************/
if (num_links < 0) break;

/******************‘***********************************
* geot the number of bytes in the load message: *
o o oo o oK ook oK o ok o K R oK K o oo sk ek ok K K K sk ok ook KKK o ok Rk /
printf ("Number of bytes in the message (0-16384): ");
fscanf(fp_load,"%d", &msg_load);
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printf("%d\n",msg_load);

/#t#*********t#*#****#*****#***************************
* Include num_links and message length in the *
* message to the load process: *
##**#***#*#*#**##**********##*********#***#****‘****!*/

msg_buff[0] = num_links;
msg_buff (1] = msg_load;

if (num_links !'= 0)
{
printf ("LOADING THE CUBE WITH LOAD AL I
printf (" ONE MOMENT PLEASE\n") ;
load("myload", ALL_NODES, LOAD_PID);

/t***********#***#**#t*******#*#**********t******#**
* Send the message buffer to all the nodes: *
******#********#***#******t*#**********************/
sendmsg(ci, INIT_TYPE, msg_buff,

INIT_MSG_SIZE, ALL_NODES, LOAD_PID);
}

fprintf(fp_out,"\n Number Message Ring");
fprintf(fp_out," Message Total Average\n');
fprintf(fp_out," Links Length Count Length");
fprintf(fp_out," Time Time\n\n");
[ Aok o Rk ok ok o ok o AR Ok O KK K
* (Open node process input data files. *
**#******##************************#******************/
fp_in =

fopen("/usr/eng/tfarinel/mydata/in_data","r");

/*********#*****#****#*********************************

* BEGIN MAIN LOOP TO CONTROL NODE PROCESS: *
A K o o o oK K o R R ol o oK oK K R R ok R Rk ok ok ok

for(;;)
{

printf ("esxkxssnnsksnknn START RING #xxxmsuxsxxx\pn");

/****####**#***##**#****‘**t*##**‘****##t*##***#*#**

* get the number of times to go around the ring: *
o oo o ok oo ok o ook ok o o o R o o R o o ok ok ok ok ok ok o ok ok K R ok ok

printf ("Number of times to go around the ring ");
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printf("(neg. value quits): ");
fscanf (fp_in,"%d", &ring_count);
printf ("%d\n",ring_count);

/*#******#*##****#**##*******************#*#***#****
* If ring_count is negative break out of loop. *
*******t***#**#**#*********************************/
if (ring_count < 0) break;

/**********#*****#******#***************************
* get the number of bytes in the message: *
*************#***#***#*#**##***#************#******/
printf("Number of bytes in the message (0-16372):");
fscanf(fp_in," %d", &msg_len);

printf(" %d\n",msg_len);

/***************#*****************************#*****
* Include ring_count and message length in the *
* message to the ring process: *
**t******t#****t*******#****#***#***********#t**#**/
msg_buff[0] = ring_count;

msg_buff (1] = msg_len;

/#*****###*#t***#***‘*t***************************t*
* Send the message buffer to node 0: *
**************‘***‘*#**********#********#**#*#t***t/
sendmsg(ci, INIT_TYPE, msg_buff,

INIT_MSG_SIZE, 0, NODE_PID);

/**************#*************************#******#***
* Get the current ring count from node 0 *
* and report to user: *
**************#************************************/
for (i=1;i<=ring_count;i++)

{
recvmsg(ci, &type, msg_buff,
CNT_MSG_SIZE, &cnt, &fr_node, &fr_pid);
printf(“Ring count: %d %c", msg_buff[0],
CARRIAGE_RETURN) ;
}
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/***************************************#*‘**‘*t****
*x Get the RING time from node O & report to user: *
************************#*********************#****/
recvmsg(ci, &type, &time_buff,
TIME_MSG_SIZE, &cnt, &fr_node, &fr_pid);
ring_time = (float)time_buff/1000.00;
printf("\nRing time : %0.2f secs.\n", ring_time);
fprintf(fp_out,"%4d %9d %64 %84 %7.2f %7.2f\n",
num_links, msg_load, ring_count, msg_len,
ring_time, ring_time/ring_count);

/***************************************************
* Used to get path data. *
* Not used in time testings. *
o oo oS R oo Rk ook s Ao R o oo R oKk o o kR ook ok ok
#if (ROUTE_TEST)
{
recvmsg(ci, &type, msg_buff, MAX_MSG_SIZE,
&cnt, &fr_node, &fr_pid);
for(i=0; msg_buff[i] >= C; i++)
{
if (msg_buff[i] == 100)
{
fprintf(fp_out,"\n\n");
J=0;
}
fprintf(fp_out,")5d/c" ,msg_buff[i],
(j%10 == 9) ? '\n’ : * ?);
e
¥
fprintf(fp_out,"\n\n");
}
#endif

} /* END OF MAIN PROGRAM LOOP FOR NODE PROCESS. =*/

fclose("/usr/eng/tfarinel/mydata/in_data");
1kill(ALL_NODES,LOAD_PID);
lwaitall (ALL_NODES,LOAD_PID);

/* END OF MAIN PROGRAM LOOP FOR LOAD PROCESS. */
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}

/***#*******#****###*t#*#t***#***#*t**‘***************#*#*

* CLEAN UP TIME! *
* Close data files. *
*#****#**#t#**#‘t**##t**t*#**tt**####****tt****#*********/

fclose("/usr/eng/tfarinel/mydata/load_data");
fclose("/usr/eng/tfarinel/a_routing/out_data");

/**********#*****t*********##*t****##*******##*#***#******
* Kill RING processes in cube: *
**********#**********************#***********************/

printf ("CLEARING THE CUBE ...\n");

1kill1 (ALL_NODES,ALL_PIDS);
lwaitall (ALL_NODES,ALL_PIDS);

printf ("sxsxxkaknkknnnnkrhak DONE #*kksskksksdsrksrsxx\n");

/* END OF HOST PROGRAM */
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Appendix D. Ring Control Process for Adaptive Routing Testiny N

: N

) J R o o R K R KK KKK KRR R KRR Rk Rk kR K K KK ~

CRY
a1 B
s

DATE: 09/21/87
VERSION: 2.2 Based on Intel’s example RING program.

A f.'f.'

TITLE: Sequential Node Ring Process
FILENAME: node.c

PROJECT: Thesis

OPERATING SYSTEM: XENIX

LANGUAGE: C

N -
P
)

FILE PROCESSING: compiled with options -ALfu o
X FUNCTION: This process passes variable length messages ::

from node 0 to all other nodes in the iPSC before o

returning to node 0. Each node increments the node '

address by modulo(cubedim()). For cubedim of 3, the
path taken is 0-1-2-3-4-5-6-7-0.

Node 0 will play the role of '"controller" node.

It vaits for a message from the host telling it:
a) the number of times to go around the RING.

It then sends a message to node 1 and counts the times
the message goes around the RING.

X X K R K X X OKOE K X OE R X X R OF X X X K X ¥ X ¥ ¥

PO ST T T 2 T T TR T R Y N NS T N L R I A

- At the end, Node ) reports back to the Host the time it o
. took the message to go around the RING. -

g * o
! o oK o R K o ook o o 0o o o o oo K o ko o R o o K o o o o o o ok e kR ok oK Kok ok ok [ j

#include "/usr/ipsc/lib/cnode.def"

[ #define HOST_NID 0x8000

1 #define HOST_PID 1
#define INIT_TYPE 10 ’
#define NODE_TYPE 20
#define TIME_TYPE 30
#define COUNT_TYPE 40

I\.
o~
#define INIT_SIZE 4 ’
? - v
- ._.’:_.‘.
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#define TIME_SIZE 4
#define COUNT_SIZE 2
#define MAX_MSG_SIZE 16384
#define ROUTE_TEST O

[ A Ao oK A K KR KKK
* Program variables: «
ko Rk kR Rk Rk Rk
int host_chan, node_chan;
int i, count, ring_count;
int msg_len;

int
int
int
int
int
int
int

init_buff[2];
msg_buff [8192];
my_node, my_pid;
next_node, next_pid;
num_nodes;

rcnt, rnode, rpid;

limit, j; /* Not used in time testing

long start_time, ring_time;

/*#***#*****#**********t************************************/

main()

{

/K A KK oK oK K K e o ok o KK o ok
* FEach process identifies the node its *
* running on and its pid: *
A AR KA KK KKK R kK R KRk Kk
my_node = mynode();
my_pid = mypid();

/********##*******************************
* FEach process determines the node id  *
* & and the pid of the node following *

* itself in the RING: *
e 0 o ok o o oo oo oo o o oo o o o o ko oKk Rk ok ok /

num_nodes = 1<<cubedim();
next_node = (my_node + 1)’ num_nodes;
next_pid = my_pid;
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?j?; /*###‘********#**####*##*#**###t##‘*#*###* i.

e * Open channel for communicating with  * >
* the next node in the RING. * :Q
T L P e L e Ty o
node_chan = copen(my_pid); -

/****##‘****#*#*******##**#**#**##*#t*t##t

* BEGIN NODE O CODE: *
AR ok R KKk ok K KK R Rk ok R Rk ok

if (my_node == 0)

N
B4

PR
«

/#***###t**##**##***t###**###**#####**#
* (Open channel for communicating * :
* with the host. *

******##*#***#t*#*#*##t#*####**t#t#tti/

host_chan = copen(my_pid);

/****#***###*ttt###t*###***##ﬁ*‘tt#tt#*

* NODE 0 MAIN LOOP: *
‘*******‘#*****“*******“‘***‘*#‘**#*/
o for (;;)

C X {
recvw(host_chan, INIT_TYPE, init_buff,
INIT_SIZE, &rcnt, &rnode, &rpid);

ring_count = init_buff[0];
msg_len = init_buff[1];

/#t*#t*t**#‘*************t***t*******
* Used during path testing. *
* Not used during time testing. *
* Initialize message to all -1i’'s. =
#*#***tt*******#*‘******************/
#if (ROUTE_TEST)

{

limit = (msg_len / 2) + 1;

Pl I AP
r A

.
2

for(i=0; i < limit; 1i++)
msg_buff [i]

“
K
D

l*l 'v.\‘
* l‘ n'

}
sendif
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ring_time = O;

< '

for(i=1;i<=ring_count;i++) -

~ { ;'_

x #if (ROUTE_TEST) -

z {

5 for(j=0; msg_buff(j] >= 0; j++) D
- msg_buff[j] = my_node + 100; o
: } e
. #endif 3
J start_time = clock{); i:
. 't\

/0 e o s o o o oo o oo o oo R ok R o o o ‘_\
* Use routing interface calls asendw() * -

3 * and arecvw() instead of sendw() and =* e

) * recvw() as defined in iPSC manual. * -
35 oo o o o oK R R oo o ok Rk K kK kK f :,
asendw(node_chan, NODE_TYPE, msg_buff, "

iir- msg_len, next_node, next_pid); Eat
. -

. arecvw(node_chan, NODE_TYPE, msg_buff, Ei
: MAX_MSG_SIZE, &rcnt, &rnode, &rpid); .
.; .': d

ring_time += (clock() - start_time); Y
count = i; 9

- sendw(host_chan, COUNT_TYPE, &count, "y

< COUNT_SIZE, HOST_NID, HOST_PID); o

N } 1
’ sendw(host_chan, TIME_TYPE, &ring_time,

_j TIME_SIZE, HOST_NID, HOST_PID);

#if (ROUTE_TEST)
sendw(host_chan, NODE_TYPE, msg_buff,
. msg_len, HOST_NID, HOST_PID);
#endif
}
}

: Cj;’
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Do : )
Qi\J else -
{ o
/2 o o o o o ok o o ok ok K oK K ok R K :
* BEGIN OTFER NODES’ MAIN LOOP: = }
LA 22 EEE S 23] “““*‘******‘***‘***/ -
rl
for (;;) -
{ N
arecvw(node_chan, NODE_TYPE, msg_buff, N
MAX_MSG_SIZE, &rcnt, &rnode, &rpid); -
#if (ROUTE_TEST) N
{ 4
for(j=0; msg_buff[j] >= 0; j++) -
msg_buff[j] = my_node + 100; X
} “w
#endif N
~
asendw(node_chan, NODE_TYPE, msg_buff, ::
rcnt, next_node, next_pid); ;
} N
(o }
} /* End of Sequential Node Ring Process */ -
3
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Appendix E. Network Loading Process for Adaptive Routing Testiny b
.
/0 o o o ook oK R K R R R R K KK R K K OK KR OK OK K R KK R K RO K Rk K 3:
* * -
* DATE: 09/20/87 * N
« VERSION: 2.2 * 3
* * ’\_i
* TITLE: Load Process for Adaptive Routing Process * ':f
* FILENAME: myload.c * e
» PROJECT: Thesis * o
« OPERATING SYSTEM: XENIX * >
* LANGUAGE: C * P
* FILE PROCESSING: compiled with options -ALfu * RN
* FUNCTION: This process provides a communications load  * E:
* to compare current iPSC routing and the distributed * N
* routing process. This loading process is loaded on all * LR
* nodes of the iPSC. It causes congestion by forcing * R
* additional messages to be passed between neighboring * 5
* nodes on the cube. * S
* *
* The number of links and the message s8ize to use 1s sent * L
* from the "host" process. This process determines * -
* which nodes form the communication’s bound links, based * -
* on the value of the number of links parameter. The * ::7
* number of linnks must be an even number between * 2
* 2 and 16, inclusive. * b
. . 2
o o oK ok ko R ok o ok o o ok ok o ok o ok ok R o o ok o K K OK K oKk ok ok o kK ok ko ok Rk tﬂ:i
o
S
#include "/usr/ipsc/lib/cnode.def" I
» .
#define INIT_TYPE 10 ]
#define NODE_TYPE 30 7
#define MAX_SIZE 16384 -.;Zu:i"
»
[0 o o o o ok R K R
* Program variables: = ::;:
KKK KRR KK KKK KKK [ )
int 1, temp; ::&;
int node_chan, host_chan; L'i
-
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int
int

msg_buff [MAX_SIZE/2];
num_links, msg_load;

~
af
Y

)

o

PR

int my_node, my_pid; “
. Y
int next_node; o
. S
int send_node 0; N
int recv_node = 0; ':A
‘ . ~d

int rcnt, rnode, rpid; '
*
/***************************#*******#******##**************i* S
. - . . . 4
* Beginning of main routing, that waits for a message from * .1
* the host specifing the number of links to be congested  * QE
* and the message length to be used. This alsoc allows the * h
* host program to determine when the loading should begin. * -
o ok o ko o o o o o ko ok ok ook o o o ok o ok ko o KK ok ko kK Rk Rk ok Rk kR ko [ '.:J
f}
. .'4
main() "
{ h
/0 o o o e o ok o o o ok ok oK R K e
* Each process identifies its node * e
* & its pid: * o
****i******#***********#*****##**##*#/ st
my_node = mynode(); R
my_pid = mypid(); -
o
- ."‘
host_chan = copen(my_pid); wi
recvw(host_chan, INIT_TYPE, msg_buff, A
. o,
MAX_SIZE, &rcnt, &rnode, &rpid); N,
num_links = msg_buff[0]; ,:i
msg_lcad = msg_buff[i]; ~
e
[ oK o ook K oK o oK o R o R K oo o o e
* Determine sending nodes and receiving * ?5
* nodes for the loading process. * -
H o A K KKK K K R A KK K oo K Kk ok T
for (i=0; 1 < num_links/2; i++) T
{ )
temp = i * 4; N
if (my_node == temp || my_node == temp + 1) o
{ N
send_node = 1; Rl
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< next_node = my_node + 2;
break;
}
else if (my_node == temp + 2 || my_node == temp + 3)
{
recv_node = 1;
break;
}
else

/**********t*********************************

* Open channel for communicating with the *
* next node in the RING. *
***#***I****#******#*******t***#*#***********/

node_chan = copen(my_pid);

/] 5k s ok o sk ok i ook ko ok sk ok ok o R ok ok ook ik o ok o ok otk ok o ok oK o ok ok K
* Each node determines to send, receive, *
* or allow other processes to continue. *

. *******************************************/
® for (;3)

{
if (send_node)
{
sendw(node_chan, NODE_TYPE, msg_buff,
MAX_SIZE, next_node, my_pid);
recvw(node_chan, NODE_TYPE, msg_buff,
MAX_SIZE, &rcnt, &rnode, &rpid);
}
else if (recv_node)
{
recvw(node_chan, NODE_TYPE, msg_buff,
MAX_SIZE, &rcnt, &rnode, &rp:<
gendw(node_chan, NODE_TYPE, msg_t.*:
rcnt, rnode, my_pid);
}
else
flick();
} /* End of myload fur:t, : =

N
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Appendix F. Makefile for Adaptive Routing Processcs

CFLAGS = -Alfu -K

NOTE: This makefile uses the default rule for the C
compiler for node.c

®* 8 BN 8

all: host node route myload
rtest: host node route

help:
Qecho '"make all makes all processes'
Qecho "make host - makes the host process"
Qecho '"make node - makes the node process"
Qecho '"make clean - cleans up"

host: host.c
cc -Alfu -o host host.c /usr/ipsc/lib/chost.a

node: node.o
1d -Ml -o node /lib/Lseg.o /usr/ipsc/lib/Lcrtn0.o
node.o \
/usr/eng/tfarinel/lib/obj/asendw.o
/usr/eng/tfarinel/lib/obj/arecvv.o
/usr/ipsc/lib/Llibcnode.a
/usr/ipsc/lib/Llibcel.a
/usr/intel/lib/cel287.a

-~

~ o~

route: route.o
1d -Ml -o route /lib/Lseg.o /usr/ipsc/lib/Lertn0.o \
route.o \
/usr/ipsc/lib/Llibcnode.a \
/usr/ipsc/lib/Llibcel.a \
/usr/intel/1ib/cel287.a
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myload: myload.o
1d -Ml -o myload /lib/Lseg.o /usr/ipsc/lib/Lcrtn0.o \
myload.o \
/usr/ipsc/lib/Llibcnode.a \
/usr/ipsc/lib/Llibcel.a \
/usr/intel/lib/cel287.a

clean:
“Irm *.0 *log

et "ﬁ'.\'v -?,-z‘-z. I} -'l -...-.‘nv ".f “l

)
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19. Abstract Y
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" The purpose of this study was to examine the use of distributed
adaptive routing algorithms on concurrent class computers. . The Intel
Personal SuperComputer (iPSC) was used as the test computé} system.

- The implemented routing algorithm allcwed each node to select the

next node based on two criteria!l!, Phe—first criteria was, the fewest
number of hopséthe second wag, the smallest delay time.

This stud§ was limited to the comparison of a distributed adap-
tive routing algorithm, implemented at the applications layer, with
the current static routing and with a simulation of the current rout-
ing implemented at the applicaticns layer. The comparsion with the
current routing algorithm provides a measure of the penalty for the
implementation at the applications layer. The comparsion with the
simulated current static rocuting provides a measure of the possible
perfcrmance gain had the adaptive routing algorithm been implemented
at the network layer.) Y A

In all three configurations were tested to formulate the com-
parisons.J\Each/configuration was comprised cf four processes: a
Host Process, a Routing Process, a Ring Control Process, and a
Network Loading Process. The Host Process controlled the loading of
the processes onto the iPSC, the Routing Process contrclled the mes-
sage routing, the Ring Control Process provided the baseline message
passing, while the Network Loading Process prcvided communications
congestion on selected links. The metric used to compare the Routing
Process performance was the average delay time for passing a messaqge
around the ring.
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