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A one-dimensional, dynamic, thermomechanical model, which includes
ronlinear inelastic deformation, internal heat generation (strain-heating),
temperature dependent material properties, thermal expansion and thermocelastic
coupling, is considered for a uniform thin bar subjected to mechanical or
thermal disturbance. A nonlinear Maxwell material is examined in this model
and special attention is focused on the temperature change, By solving a
ronl inear problem, it is found that a thermal instability, called thermal
runaway, may result due to the mutual feedback between strain~heating and the
temperature dependent inelastic material properties. Neglecting this important
phenomenon may lead to umexpected material failure.pNA linearizing pertu.rbatiqn
study then shows that the occurence of this instability depends on the choice
of the material, the steady state values of stress gnd temperature and on the
characteristic length of the bar, rather than on thel magnitude or the form of
tye disturbance. It is also found that thermal| expansion, inertia and
thermoelastic coupling have relatively minor effect this instability for the
problem under consideration. Aluminum is taken as ;n example for numerical

4

demonstration. \
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;EE: 1. Intgoduetio

" v It is well-known from thermodynamics that inelastic deformations may
;:i: result in energy dissipation (Boley and Weiner 1960, Malvern 1969). The
Z;ési conversion of dissipative mechanical energy into heat is known as strain~
':j!' heating, and this phenomenon has been studied theoretically by Allen (1985) for
Ziz‘é viscoplastic materials and by Tauchert (1967a) for viscoelastic materials., It
::E:: has also been studied experimentally for various materials (Tauchert 19670,

Dillon 1962a,b5,1966) and significant temperature incresses have been observed,

:E:E‘ e.g. & 500°K temperature rise was neasnr‘;d (Dillon 1962a). However, few
t:z; comprehensive studies have been carried out to explore the condi tions under
:';. which a significant temperature rise may resqlt. It is therefore our objective
'3223 here to include a wide spectrum of thermal effects, such as thermal expansion,
:?i‘i% thermoelastic coupling, temperature dependence of (inelastic) material
o

B properties and strain-hesting, in a one-dimemsionsl, dymamic, thermomechamical
Eé:: model. Then based op this rather general model, a mathematical study of the
EEEE effect of mechanical or thermal disturbance is given for 2 nonlinear Haxwell
:.)“ material with temperature dependent viscosity. This type of material is chosen
.E::: because of the simple form of the constitutive law and because of its
:‘f‘,:g widespread use in the literature to approximate the behavior of some polymers
M

f:- and metallic materials at elevated temperatures.

EE: An important phenomenon known as thermal runaway, which is an unstable
’;::, feedback process, is observed. This thermal instability has been stndi-ed
' analytically by Schapery (1964, 1965), Hunang and Lee (1967) and experimentally
:E:EE by Schapery and Cantey (1966) for linear viscoelastic rods subjected to cyclic
P .

EEEE loading. It may occur as the temperature rise due to strainheating results in
;',‘ 8 reduction of the inelastic material properties (e.g., the viscosity
E:.: coefficient in the case of Maxwell material), i.e. the material softeas, which
R
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in turn generates greater inelastic strain and strain-heating. It is also
found that thermal expansion, thermoelastic coupling and inertia have a
relatively minor effect on the occurence of this instability. The thermal
runaway phenomenon has been discussed in the geophysics literature (e.g. Brun
and Cobbold 1980, Cary et al. 1979 and Wan et al. 1986), but has not received
much attention in the engineering communmity. This is probably dme to the fact
that thermal dissipative mechanisms, such as convection, are often present in
conventional engineering applications such that thermal runaway is'not a
serious problem. However, in the absence of such th&rmal dissipative
mechanisms (e.g., in space) thermal runaway could lead to unexpected failure.

In this paper, we will study a thermo-mechanical system of governing
eguations for a uniform thin ?ar with orne end fized and insulated, and with the
other emnd subject to a mechanical or thermal disturbance. Thermal expansion
and thermoelastic coupling, which are well—-known effects in coupled
thermoelasticity (Boley and Weiner 1960) will be included in the material
constitutive law and in the energy equation, respectively. Furthemmore, the
energy equation will contain the strain—-heating term. These two equations,
together with the conservation of momentum and strain-displacement relation,
form a set of coupled nonlinear partial differential equations which govern the
response of the system. Particular eﬁphasis will be placed on the evaluation
of the temperature changes.

This nonlinear problem is first solved in Section 2 with the assumption
that the l1ocad is applied so slowly that the inertial effect can be ignored.
The resulting problem is decoupled mathematically, and thus the temperature
field can be determined by an iterative procedure with the use of a Green's
function. The solution to this nonlinear problem clearly demonstrates the

thermal runaway phenomenon. Next, employing the standard perturbatiorn

N
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technique, 1linearized equations, which are amemable to a stability amalysis,
are obtained and studied in Section 3. Solutions are obtained by the method of
separation of variables, and then the stability analysis is performed.

Analytical solutions under quasi-static conditions are obtained both for the

" case of a mechanical disturbance and for a thermal disturbance. Numerical

results are presented for an aluminum bar, and some concluding remarks are

given in Section 4.
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2. The Noplipgar Problem

Consider 2 thin bar length L with one end (x = 0) fixed, and with the
other end (x = L) subject to an axial stress load p(t), the bar is initially at

8 uniform temperature T . The constitutive law for a very wide class of

irelastic materials may be expressed as
Q(e) = P(o) + R(T) + g(o,25 T) (1)

where e(x,t), o(x,t) and T(x,t) are respectively the normal strain, normal
stress and temperature. These terms in genseral vary with the axial coordinate x
and the time t. In equation (1), P, Q and R are linear differential operators
ir time and g is s general nonlinsar fucntion, which are chosen to characterize
the viscoelastic or viscoplastic behavior of the material. For a fairly large

class of such materials, equation (1) can be simplified to

-a-£=.l_a_‘., .a—'r- L4
at -~ E 3t tae o+ f(o,e:T) (2)

The first term and the second term on the right hand side of equation (2)
represent, respectively, the instantaneous linear elastic response and the
thermal expansion, which are characterized by Young’s modulus, E, and by the
linear thermal expansion coefficient, a. The last term in equation (2) is the
inelastic strain rate whick depends directly on o and ¢ with the dependence on
T occurring indirectly through the temperature dependence of the material
properties. Various forms for f have been postulated for different materials
and for different 1oading situations (e.g. see Cristescu 1967, Cernmocky and
Krempl 1980).

The conservation of energy equation consistent with equation (2) (e.g. see

Chang and Cozzarelli 1977 for nmonlinear thermoviscoelastic materials) is given
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:'f where k, p and ¢ are the thermal conductivity, density and heat capacity of the

material, respectively. The second term in equation (3) is known as the

v'.* strain—heating term, whereas the third term represents the thermoelastic
$
e
o) coupling effect. Note that heat flux through the lateral surface has been

neglected, i.e., the lateral surface of the bar is assumed to be insnlated.

;o:. Also, it is assumed that all of the mechamical energy during the deformation
l:;

::;f process is transformed into heat. Equations (2) and (3), together with the
0.'

i conservation of momentum

s"; 2 .

AR d 4"un

a3 L =P 5 (4)
o) = e

A"'

:E’ and the strain-displacement relatiom

e
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Ky & = ox (s)
)

2

:'.' where u(x,t) is the axial displacement, form a set of equations which
. *

‘Y completely describe the response of the system.

AN

. In particular, 2 nonlinear Mgxwell model with temperature dependent
M} 1

M

::: viscosity will be considered here. For this type of material, equations (2-4)
)

l“.

2:; can be rewritten with the use of equatiom (5) as

~ :

e dy _ 3o D, 9T

:’:: 9x - Eot A(T) o e 3% (6)
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‘.: is the reciprocal viscosity,
),

0 2.
Tyt o n+l _ 8o _ T

. x 5+ A(T) o aTo 7t - P° 3¢ (7

. ox

"

,.:;5-' and

o

FER 1

. ax - P ot (8)

"

';::‘ The variable v(x,t) is the axial velocity, and Ao‘ B and n are respectively the
™

“'; pre—exponential constant in the reciprocal viscosity, the creep activation

constant and the stress power. Equations (6-8) represent a system of coupled,

e ronlinear partial differential equations for a nonlinear Maxwell material in
o :

;:'* terms of the dependent variables v, ¢, and T. In general, it is difficult to
L &

4

i solve these equations because of the presence of strong nonlinearities and
a8

'::§ coupl ing.

W

e Now, let us consider a speciel case in which the characteristic time, t,
e of the applied stress is large enough so that inertia effects can be neglected.

It follows immediately from equation (8) that the stress field is wniforaly

distributed and simply equal to the applied stress at the free end. As a

.:.;; result, the problem is uncoupled and thus the temperature and velocity fields
Bon
)
::: can be obtained successively. As an example, it is assumed that the bar is
s
K% insulated at the fixed end and maintained at a constant temperature, To' at the
E: free end. The Green's function associated with the auxiliiary problem, in which
%
1
f.:: the known heat source term in equation (7), (i.e., the second and the third
B
' terms) are suppressed; is simply
a§: 2 < k 2
[} = & - —
:‘:; G(x, tlx’,7) LE expl po Bn(t—t)] cosf_ x cosP,x’ (9)
$ =1
Y
S
M (2m1)7
- where 5-: =37 - If an initial guess for the solution is available, say
,;;::
R
"l‘
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3

':S:‘ T(O) (x,t), then the following integrals (e.g. see Ozisik 1980)

0w

el . T=t x'=L .
¥ (D (,4) = L [ [sttlxro) M@ e, ep*?

PC ¢=0 x*=0 :

'fr.

¥y

Ny

Lo

! —ar_ 22(8)y 4;04c i=0,1,2,..... (10)
KA o at

o

.;;:: can be carried out successively by numerical methods and will converge to the
;':'a

::ﬁ: desired solution. The rate of convergence of this iterative process depends
"v. o

!':

. greatly on the initial guness. Usually, the solution for the completely
R | B

.::;: insulated case (which can be easily calculatsd) will be a reasonable choice for
E'.'l

TN

:::}: the initial guess.

"y

i.f

- The solution for an aluminom bar subjected to an applied stress of the
Y] 7 A

‘:::" fom

4""(

. -—

o p(t) = o, (1-¢"t/to) (11)
e

;;.;; at the free end is shown in Figs. 1 and 2. The material properties and other
‘ol

l",.‘

::,;; necessary parameters are given in Table 1 the creep data were taken from
f¢

t'g\

R Garafalo (1967), Walter and Ponter (1976). Fig. 1 shows the temperature
)

b increase with time at x =0, L/2 and 3L/4, while Fig. 2 shows the temperature
%

oL .

:::,: distribution over xat t = 250, 500, 750 and 1000 seconds. These two figures
l',:‘

o clearly indicate that without appropriate heat dissipating mechanisms, the
{::3 temperature can increase without bound leading eventually to failure.

¥,

:fg It is important to note that although the above problem has been decoupled
l‘g . .

ated .
mathematically by considering the quasi—static case, it is still coupled
:E::: physically because the straimheating feedback into the temperature dependent
by

O .

.::": viscosity has already been imbedded in the energy equation and the material
L)

tyY .

! constitotive law. Also, it is found in this example that thermal expansion and
:;;o themoelastic coupling have a relatively minor effect on the temperature rise.
e
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3. The Linearized Problem - Stability Analysis

It has been demonstrated in the previous section that the temperature can
increase significantly due to strain—heating and may lead to eventunal failure.
To prevent this from occurring, a2 cooling process can be designed to extract
the heat generated intermally and thus control the temperature.
Mathematically, this can be accomplished by introducing & heat sink term
§ = —A(To)p(t)n+1. into the energy equation. As a result, the system will

o
reach a steady state in which T = To. g =0, and v = vox/L where Vo T
A(To)ﬁonL. In this section we assume that the system is initially in this
steady state condition.

If the sys_ten is then subjected to a small additional external disturbance
in stress or temperature at x = L, this disturbance will result in additional
increments of stress, o, temperature T, and velocity, ¥. It is assomed that

the magnitudes in the steady state are much larger than the wagnitudes of the

iccrements in the perturbed state, and we may then write

T=T°+T. T, > T

al

=06+ g, ©

o o ”?

VEY O+ YNy (12)

Substituting equation (12) into equations (5-8), subtracting the relation for
the steady state (with sink S_ added to equation (7)), retaining the linear
terms in the increments (as in Cozzarelli et al. 1970), and then introducing

the nondimensional quantities

Fo_ 5 - % - 2 - 4 B
T"'i\'-no'_o_'nv v'xgiot— uE_;—Ap-




we obtain the following linearized equations:

v _ 1 3¢ o1
ax'sat*“"”"r*“at (13)
8¢ _ 3v
ax p ot (14)
a2t dg aT
E— + (optl) o + qT —a — = pc — . (15)
3 2 ot ot
x -
o <

Note that the overbars ( ) have been deleted in equatioms (13-15) for the sake
of convenience of notation. The associated boundary and initial conditions are

as follows:

=0, % . at x = 0

ax
O’=61, T=T1 at x =1 (16)
T=ac=v=20 at t =20

where 6y = 0 for a thermal disturbance and Tl = 0 for a mechanical disturbance.

It can be seen that the method of separation of variables may be employed
if we separate equations (13-16) into two problems (see Street 1973), i.e. a
steady-state problem with inhomogeneous boundary conditions and a transient
problem with homogeneous boundary conditions. Solving these two problems and

superposing solutions, we obtain

T=T, + } py(t) cosp x : (17)
=

10
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§l¢ \ (-]

X o, + 2 qp(t) cosf x (18)
-'ﬁ"'} =1

Q
L]

4
"

v+ Elxm(t) sinfx (19)
=

W where

"'. = (2!?'1 T
ff.'t ' Bm 2

b The temporal functionms, Pp(t), qp(t) and r_(t) are to be determined. In

Wt “_-'
"ﬂ: egquations (17-19), Ti’ o5 and v; are the following solutions for the steady

2
e state problem:

n+1l (cosgx

RO i n cost

-1)01

-~

==
Q
]

91

e = [~x+(n+1) coséx ]

i~ %1 Ecost

' for a mechanical disturbance, and

ot "
) T; = Tl :ost

_ sinlx
4 vi = T ecost

.o":o' for a themal disturbance, where

%) s 1/2
" ] (k)

A 11
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Substituting equations (17-19) into equations (13-15), multiplying by cosle.
sinﬁzx and cosﬂlx ( =1,2,....), respectively, integrating the resulting
equations over the space domain (x = 0 to x = 1) and invoking the orthogonality

properties, the quantities p (t), qu(t), and r (t) in equations (17-19) can be

solved approximately for m = 1,2,..,M. Accordingly, we obtain the formulation

_Z: =AZ (20)

where
= T

Z=Ipjpy....oxla105....qylryry.. .2yl (3Mx1)

and
-1
pcl al ] c (n+1)1 1]
A= al 1/E1 1] I nl D (3Mx3N)

Y TS J Lq 2 ;_l

where I is the identity matrix, and C and D are the diagonsl matrices

I
"

diag(n-kﬂmz) mn=1,2,..,M

D = diag(By) mn=1,2,..,M

As initial conditions, we have

1 (o+1) 1 1
P (0) = (_l)m"' o ( + ) o
m n n gz_ﬂmz an 1

q (0 = (1= 2 o

(-pm1 g L, ol

gn(O)

(LY wht
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¢
00
;v'f:: for the mechanical disturbance, and

g"’t
.' _ (_qymtl 2 1 .

T:!;' pm(O) (-1) 28, gz-ﬁ 5 T,
W m
s
oy

:‘1! qm(O) =0

:‘o:.'

) ol _ 2

:’:: rp(0) = (-1) —2—“—

he $°-B,

.;.:: for the thermal disturbance. To obtain accurate results, a reasonable number
¥y R -

Fat N

t':::: of terms in equations (17-19) (e.g. M) 6) sheuld be considered. However, this
o;,‘";

" will introduce difficulties in the numerical integrations, because matrix A is
',,f;" of relative large order. Also, because of the imertia effect the matrix A is
5, :
:‘:‘ stiff, and thus a very small time step has to be taken for each integration.
L

0
_"*‘ These two facts make it very difficult to obtainm long time solutions by direct
::: integration. Alternatively, transform methods (e.g., see Meirovitch 1980, Chen
..::‘5
,:E:: 1984) may be employed to solve equation (20).
)...!
f"; If as in the nonlinear problem, we again neglect the inertia effect, the
:'.:‘ solution of equations (13-15) may be found with the use of variable
0\.‘1

$

3_4‘::' transformations (0Ozisik 1980, Carslaw and Jaegger 1959) as

20

8 )

o

e T(x, t) = 2(n+1) o 2 (-1) (l-e"nt) eosﬁnx (21)
:::‘:E =1 ann
[} .
s

¥,
wi for the mechanical disturbance and

®.

" T(xt) = 2885 p o 5 (pm eMnt cosp x (22)
oy .t cos§ T 28571 73 2 cospy

:‘: =1 d -Bn

e .

l". ;

for themmal disturbasce. In equations (21) and (22),

4"“ N
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O 1 2
‘o _ !

. Ay = oo (B,
"

N

b

It is interesting to note that the same A, appears in equations (21) and (22).
This indicates that the perturbations in temperature will follow the same

general pattern, regardless of the forms and the magnitudes of the

't

:: disturbances. Furthermore, for this quasi-static solution to be stable, it is
4

:3 required that

“ 2_1 2

R § =1 ¢B (23)

0

t

" or in dimensional fom

o [¢] (] n

g T 2k |
‘:l o |
b ‘
n

' Using the values of the parameters listed in Table 1, it is found that
:' conditions (23) or (24) are violated. Thus, the quasi-static system with these
it

:’ velues for the parameters is unstable.

Sat

i Let us now return to a consideration of stability for the dymamic problem.
L)

L/

.:A Substituting equations (17-19) into equations (13-15), and combining the
%,

~:. resul ting equations into one equation in temms of Py gives

Y,

W, L ) L) L 4

" 81Pp * 8Py * 230, + 340y = O (25)

)

o where

N ] 5

‘o8

e ll = (pc—a E)

8

b k 2 n

" a2, =3 -2+ + a(n+l) - (26)
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The overdots, (°), represent derivatives with respect to the time. By applying
the Ronth-Hurwitz criterion (e.g., see Kuo 1982), one root (i.e. m = 1) with a
rositive real part is found for aluminum using the parameters listed in Table
1. This observation indicates that inertia, thermal expansiomn amnd
thermoelastic coupling, which were not considered in obtaining equations (21)
and (22), do not contribute to the instability found earlier. Thus, it may be
concluded that the mechanisms vhicl} may cause thermal instability (runaway) are
the temperature dependence of inelastic mate_rial properties and the strain-
heating. This conclusion can also be obtg:{ned by letting B =0 (og n =0 in
nondimensional form) in equatiom (26). The resulting coefficients in equtiog

(25) are then all positive (see Chang and Cozzarelli 1977 for 8 > 0) and

2 .
8 = ('ké n + ‘E—) kBm4 + [pénzk + pc2 + a(n+l) kn

283 ~ 824

+ a(n-'-l)clﬂnz >0
Using the Routh—-Hurwitz criterion again, the system is seen to be stable in
this case. Thus, if the temperature dependence of the material properties is
not considered, the thermal runaway phenomenon will not be observed.
It is important to note that in accordance with conditionm (23) the

occurrence of thermal instability depends on one nondimemsiomal parameter, 3§,

whose value is determined by the material properties A, B, n, k, the steady

state values T, g _, and the length of the bar L. Thus, in the linearized

ol
problem the occurrence of runaway is mot affected by the magnitude or form of
the disturbance. The stability relationship between To and o, (i.e. condition

(24)) for an sluminum bar of length 1 meter is shown in Fig. 3. Also shown in

Figs. 4 and 5 are the tempetatnre".inc:enents due to mechanical and thermal

disturbances, respectively, where a;/c, and T;/T, sre given at the end of Table

1.




«‘::: 4. Conclrding Remarks

e A one-dimensional, dynamic, thermomechanical model, which includes

2: ponlinear inelastic deformation, internal heat generation (strain-heating), ‘(
{E' thermal expansion, thermoelastic coupling and temperattre dependent material 1‘
l:“:;l property, is considered. A detailed study is g.iven for a special material |
i:ﬁ, model (nonlinear Maxwell), which approximately characterizes some polymers and ‘
"::(:.: metallic materials at elevated temperatures. For a gquasi-static nonlineaxr ‘
;i:;." problem, significant temperature increases are fonnd for sluminum by geans of

;.:'. an iterative numerical solution. Further investigations by s linearized

NN perturbation technique shows that a thermal instability (runaway) may occur,

depending on the choice of material, steady state values of stress and

1
% temperature and the length of the bar, but not on the magnitude aor the form of
5
‘*" the disturbance. The phenomenon of thermal runaway is the result of mutual

feedback between strair—heating and the temperature dependent (inelastic)

X
.‘, material properties., If either effect is not included in an analysis, the
o
"';‘ possibility of thermal runaway will not be explored and an umezpected failure
::'.'::: mey occur. The effect on the thermal runaway due to inertia, thermal expansion
n’.’.
::..:: and thermoelastic coupling has been shown to be relatively minor for the
i
l.,.
considered one-dimensional problem. However, these effects could be important
) for more complicated loading, geometric situations and flexible structures
7N
: }_ (e.g. trusses, beams, plates). Such cases require further study.
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Table 1 Material Properties for Aluminum and Other Parameters

f: density o (Kg/m3) 2707 creep activation constant B (°K) 13603 !

i heat capacity ¢ (J/Kg°K) 896 length L (m) 1

" thermal conductivity k (W/m°K) 222 steady state stress % (rPa) 3.5x107
Youngs' Modulus E (Pa) 5.52xlolo reference temperature T, (°K) 533

X )

L)

K

ﬁ stress power parameter n 4.55 characteristic time t° (second) 10

y

, pre-exponential constant Ao 7.836.::1.0-27 mechanical disturbance ol/cl .05

'

; thermal expan. coeff. & (1/°K) 2.3x10—5 thermal disturbance Tl/To .01
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Figure Captions

:'l". Fig. 1 Nonlinear problem - temperature increase with tat x =0, L/2, 3L/4

Tt for alumipum

;'c,l‘ Fig. 2 Nonl inear problem - temperature variation with x for t = 250, 500,

o 750, 1000 sec. for a2luminum

et Fig. 3 Linearized problem - stability diagram of steady state stress vs.

ity steady state temperature for an aluminum bar 1 meter long

51 Fig. 4 Linearized problem -~ temperature increment due to mechanical
X

di sturbance

Fig. § Linearized problem — temperature increment due to thermal disturbance
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’ Ficure Captions

i Fig. 1 Nonl irear problem - temperature increase with tat x =0, L/2, 3L/4

"tfo for aluminum

A Fig. 2 Nonl inear problem - temperature variation with x for t = 250, 500,

", 750, 1000 sec. for aluminum

] Fig. 3 Linearized problem — stability diagram of steady state stress vs,

{
':s‘ steady state temperature for an aluminum bar 1 meter long

Fig. 4 Linearized problem ~ temperature increment dune to mechamnical

t di sturbance

Fig. § Linearized problem — temperature increment dne to thermal disturbance
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