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Ab s

A one-dimensional, dynamic, thermomechanical model, which includes

nonlinear inelastic deformation, internal heat generation (strain-heating).

temperature dependent material properties, thermal expansion and thermoelastic

coupling, is considered for a uniform thin bar subjected to mechanical or

thermal disturbance. A nonlinear Maxwell material is examined in this model

and special attention is focused on the temperature change. By solving a

nonlinear problem, it is found that a thermal instability, called thermal

runaway, may result due to the mutual feedback between strain-heating and the

temperature dependent inelastic material properties. Neglecting this important

phenomenon may lead to unexpected material failure. A linearizing perturbation

study then shows that the occurence of this instab lity depends on the choice

of the material, the steady state values of stress nd temperature and on the

characteristic length of the bar, rather than on th magnitude or the form of

the disturbance. It is also found that thermal expansion, inertia and

thermoolastic coupling have relatively minor effect this instability for the

problem under consideration. Aluminum is taken as n example for numerical

demonstration.
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1. Introduction

It is well-known from thermodynamics that inelastic deformations may

result in energy dissipation (Boley and Weiner 1960, Malvern 1969). The

conversion of dissipative mechanical energy into heat is known as strain-

heating, and this phenomenon has been studied theoretically by Allen (1985) for

viscoplastic materials and by Tauchert (1967a) for viscoelastic materials. It

has also been studied experimentally for various materials (Tauchert 1967b,

Dillon 962a,b,1966) and significant temperature increases have been observed,

e.g. a 5000K temperature rise was measured (Dillon 1962a). However, few

comprehensive studies have been carried out to explore the conditions under

which a significant temperature rise may result. It is therefore our objective

here to include a wide spectrum of thermal effects, such as thermal expansion.

thermoelastic coupling, temperature dependence of (inelastic) material

properties and strain-heating, in a one-dimensional, dynamic, thermoaechaulcal

model. Then based on this rather general model, a mathematical study of the

effect of mechanical or thermal disturbance is given for a nonlinear Maxwell

material with temperature dependent viscosity. This type of material is chosen

because of the simple form of the constitutive law and because of its

widespread use in the literature to approximate the behavior of some polymers

and metallic materials at elevated temperatures.

An important phenomenon known as thermal runaway, which is an unstable

feedback process, is observed. This thermal instability has been studied

analytically by Schapery (1964, 1965), Huang and Lee (1967) and experimentally

by Schapery and Cantey (1966) for linear viscoelastic rods subjected to cyclic

loading. It may occur as the temperature rise due to strain-heating results in

a reduction of the inelastic material properties (e.g., the viscosity

coefficient in the case of Maxwell material), Le. the material softens, which

2
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in turn generates greater inelastic strain and strain-heating. It is also

found that thermal expansion, thermoelastic coupling and inertia have a

relatively minor effect on the occurence of this instability. The thermal

runaway phenomenon has been discussed in the geophysics literature (e.g. Brun

and Cobbold 1980, Cary et al. 1979 and Wan et al. 1986), but has not received

much attention in the engineering community. This is probably due to the fact

that thermal dissipative mechanisms, such as convection, are often present in

conventional engineering applications such that thermal runaway is not a

serious problem. However, in the absence of such thermal dissipative

mechanisms (e.g., in space) thermal runaway could lead to unexpected failure.

In this paper, we will study a thermo-mechanical system of governing

equations for a uniform thin bar with one end fixed and insulated, and with the

other end subject to a mechanical or thermal disturbance. Thermal expansion

and thermoelastic coupling, which are well-known effects in coupled

thermoelasticity (Boley and Weiner 1960) will be included in the material

constitutive law and in the energy equation, respectively. Furthermore, the

energy equation will contain the strain-heating term. These two equations,

together with the conservation of momentum and strain-displacement relation,

form a set of coupled nonlinear partial differential equations which govern the

response of the system. Particular emphasis will be placed on the evaluation

of the temperature changes.

This nonlinear problem is first solved in Section 2 with the assumption

0 that the load is applied so slowly that the inertial effect can be ignored.

The resulting problem is decoupled mathematically, and thus the temperature

field can be determined by an iterative procedure with the use of a Green's

function. The solution to this nonlinear problem clearly demonstrates the

thermal runaway phenomenon. Next, employing the standard perturbation

3
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technique, linearized equations, which are amenable to a stability analysis,

are obtained and studied in Section 3. Solutions are obtained by the method of

separation of variables, and then the stability analysis is performed.

Analytical solutions under quasi-static conditions are obtained both for the

case of a mechanical disturbance and for a thermal disturbance. Numerical

results are presented for an aluminum bar, and some concluding remarks are

given in Section 4.

4



2. The Nonliear Problem

Consider a thin bar length L with one end (x = 0) fixed, and with the

other end (x = L) subject to an axial stress load p(t)h the bar is initially at

a uniform temperature To. The constitutive law for a very wide class of

inelastic materials may be expressed as

Q() = P(a) + R(T) + S(o,a; T) (1)

where a(x,t), o(x.t) and T(xt) are respectively the normal strain, normal

stress and temperature. These terms in general vary with the axial coordinate x

and the time t. In equation (1), P, Q. and R are linear differential operators

in time and S is a general nonlinear fucution. which are chosen to characterize

the viscoelastic or viscoplastic behavior of the material. For a fairly large

cldss of such materials, equation (1) can be simplified to

+ aT f(saT) (2)
at E at at

The first term and the second term on the right hand side of equation (2)

represent, respectively, the instantaneous linear elastic response and the

thermal expansion, which are characterized by Young's modulus. E, and by the

linear thermal expansion coefficient, a. he last term in equation (2) is the

inelastic strain rate which depends directly on a and a with the dependence on

T occurring indirectly through the temperature dependence of the material

properties. Various forms for f have been postulated for different materials

and for different loading situations (e.g. see Cristescu 1967, Cernocky and

Krempl 1980).

The conservation of energy equation consistent with equation (2) (e.g. see

Chang and Cozzarelli 1977 for nonlinear thermoviscoelastic materials) is given

5



k 2T+ of(o,esT) - aT aT (3)ot aTax 2  0 t --, PC (

where k. p and c are the thermal conductivity, density and heat capacity of the

material, respectively. The second term in equation (3) is known as the

strain-heating term, whereas the third term represents the thermoelastic

coupling effect. Note that heat flux through the lateral surface has been

neglected, i.e., the lateral surface of the bar is assumed to be insulated.

Also, it is assumed that all of the mechanical energy during the. deformation

process is transformed into heat. Equations (2) and (3), together with the

conservation of momentum

0a a2u (4)
ax at2

and the strain-displacement relation

au (5)
ax

* where u(x,t) is the axial displacement, form a set of equations which

completely describe the response of the system.

*In particular, a nonlinear Mxwell model with temperature dependent

viscosity will be considered here. For this type of material, equations (2-4)

can be rewritten with the use of equation (5) as

= + A(T) o n+ a IT (6)ax Eat a

where

A(T) = A oe -BIT

* 6



is the reciprocal viscosity,

k L- + A(T) on +' -aT 8a 8T (7)
ax2  o F= PC

and

04 8 v (8)
ax a

The variable v(x.t) is the axial velocity, and Ac, B and n are respectively the

pre-exponential constant in the reciprocal viscosity, the creep activation

constant and the stress power. Equations (6-8) represent a system of coupled,

nonlinear partial differential equations for a nonlinear Maxwell material in

terms of the dependent variables v, a, and T. In general, it is difficult to

solve these equations because of the presence of strong nonlinearities and

coupI ing.

Now, let us consider a special case in which the characteristic time, to,

of the applied stress is large enough so that inertia effects can be neglected.

It follows immediately from equation (8) that the stress field is uniformly

distributed and simply equal to the applied stress at the free end. As a

result, the problem is uncoupled and thus the temperature and velocity fields

can be obtained successively. As an example, it is assumed that the bar is

insulated at the fixed end and maintained at a constant temperature, To, at the

free end. 7he Green's function associated with the auxiliary problem, in which

the known heat source term in equation (7), (i.e., the second and the third

terms) are suppressed; is simply

Sexp (t--c)] cosom x cospmx' (9)

2 1

(2m-l)ffwhere Am 2L If an initial guess for the solution is available, say

7



T(0)(xt)o then the following integrals (e.g. see Ozisik 1980)

T ( i + l ) (x, t) L ~ x=G(x~t.v)[( z,"))p(0u

= -tp'() [(~ i (  ' , )) ( )~

_a ( ] dx'd i = 01,2. (10)-a o ar.. ..

can be carried out successively by numerical methods and will converge to the

desired solution. The rate of convergence of this iterative process depends

greatly on the initial guess. Usually, the solution for the completely

insulated case (which can be easily calculated) will be a reasonable choice for

the initial guess.

The solution for an aluminum bar subj ected to an applied stress of the

form

p(t) = Cro (1-e- t/to) (11)

at the free end is shown in Figs. 1 and 2. The material properties and other

necessary parameters are given in Table 1* the creep data were taken from

Garafalo (1967), Walter and Pouter (1976). Fig. 1 shows the temperature

increase with time at z = 0. L/2 and 3L/4, while Fig. 2 shows the temperature

distribution over x at t = 250, 500, 750 and 1000 seconds. These two figures

clearly indicate that without appropriate heat dissipating mechanisms, the

temperature can increase without bound leading eventually to failure.

It is important to note that although the above problem has been decoupled

mathematically by considering the quasi-static case, it is still coupled

physically because the strain-heating feedback into the temperature dependent

viscosity has already been imbedded in the energy equation and the material

constitutive law. Also, it is found in this example that thermal expansion and

theznoelastic coupling have a relatively minor effect on the temperature rise.

8



3. The Linearized Proble - Stability Analysis

It has been demonstrated in the previous section that the temperature can

increase significantly due to strain-heating and may lead to eventual failure.

To prevent this from occurring, a cooling process can be designed to extract

the heat generated internally and thus control the temperature.

Mathematically, this can be accomplished by introducing a heat sink term

S0 = -A(To)P(t) n , into the energy equation. As a result, the system will

reach a steady state in which T = To, a = 4o and v = vox/L where v ° 
=

A(To)COnL. In this section we assume that the system is initially in this

steady state condition.

If the system is then subjected to a small additional external disturbance

in stress or temperature at x = L. this disturbance will result in additional

increments of stress, a, temperature T, and velocity. ;. It is assumed that

the magnitudes in the steady state are much larger than the aagnitudes of the

increments in the perturbed state. and we may then write

ST= To + T, To >>4r = 4r + a >>

v= 0 + V, V0 >> V (12)

Substituting equation (12) into equations (5-8), subtracting the relation for

the steady state (with sink S added to equation (7)). retaining the linear

terms in the increments (as in Cozzarelli et al. 1970), and then introducing

the nondimensional quantities

=Ia -= , _ = t E =

0 0 L/v0  0 0/vO2

- a k C B - 01 T1,o c = - ' =1 -- =o

l/T 0  Lv 0 C0 /T 0  V2'/T°  T 1 o. O

l9



we obtain the following linearized equations:

=L no + +l 8T (13)
ax E at a

a v (14)

k a2 + (n+l) ca + i1T - a aa pc aT(15)

Note that the overbars C) have been deleted in equations (13-15) for the sake

of convenience of notation. The associated boundary and initial conditions are

as follows:

V O, - =O0 at x=O0
ax

0 01, T =Tl at x=l1 (16)

T = v=O0 at tO

where a 1 = 0 for a thermal disturbance and Ti 0 for a mechanical disturbance.

It can be seen that the method of separation of variables may be employed

if we separate equations (13-16) into two problems (see Street 1973), i.e. a

steady-state problem with inhomogeneous boundary conditions and a transient

problem with homogeneous boundary conditions. Solving these two problems and

superposing solutions, we obtain

T =Ti + LPM(t) Copm (17)

10



a= Cy+ 2 qm(t) cospmx (18)
M= 1

v = v 1 + r.m(t) siZ1AMx (19)
- 1

where

Am 2

The temporal functions, p m(t), qm(t) and r (t) are to be determined. In

equations (17-19), Ti, (Y and viare the following solutions for the steady

state problem:

T 11+1 (9OSU - 1)

Vi Cr 1 -X+(U41)

f or a mechanical disturbance, and

i ,co S

=F 0

Vi T T11 cs

for a thezmal disturbance, where

=k



Substituting equations (17-19) into equations (13-13). multiplying by cospx.

sin zx and cosp L ( 1,2 .... ), respectively, integrating the resulting

equations over the space domain (x = 0 to x = 1) and invoking the orthogonality

properties, the quantities pm(t), qm(t), and rm(t) in equations (17-19) can be

solved approximately for m = 1.2..,M. Accordingly, we obtain the formulation

Z=A Z (20)

where

Z= [plP2 .... pMlqlq2 . q~Irlr 2 ... .rM] T  (3Mxl)

and

-1

FC LI 0. (n+l)I
A 1k /EI lI KI D OWN3)0 0 ,P° 0_-D

where I is the identity matrix, and C and D are the diagonal matrices

C = diag(Ii-kPm 2 ) m = 1,2,..,)M

D = diag(Am) m = 1,2,..,M

As initial conditions, we have

, Pm(O ) = (_l)M+l (U+l1) (1m +

it 2 2_2 Pm 2

qm(O) = (-l)m 2.__

P 1

(0) (1)m+1 2 (_ + n+l

SPm2 42-0m 2

12



for the mechanical disturbance, and

P(O) = (_) m l 2 2m2 1- Li

qm(O) = 0

rm(O ) = (D 2m+ 2 2n

for the thermal disturbance. To obtain accurate results, a reasonable number

of terms in equations (17-19) (e.g. MN6) should be considered. However, this

will introduce difficulties in the numerical integrations, because matrix A is

of relative large order. Also, because of the inertia effect the matrix A is

stiff, and thus a very small time step has to be taken for each integration.

These two facts make it very difficult to obtain long time solutions by direct

integration. Alternatively, transform methods (e.g., see Neirovitch 1980, Chen

1984) may be employed to solve equation (20).

If as in the nonlinear problem, we again neglect the inertia effect, the

solution of equations (13-15) may be found with the use of variable

transformations (Ozisik 1980, Carslaw and Iaegger 1959) as

T(xt) . 2(n+l) a (-l)m (l-e)vt) *oSlmX (21)PC .1 AM)LU "

for the mechanical disturbance and

T(xt) = cos4x T + I (-l)m+12,T 1 et cOSpmX (22)

COSC T1  0= ) 1  4 2_AM2 CS

for themal disturbance. In equations (21) and (22),

2m-1

2.-Pm M - 2

13



m 2

It is interesting to note that the same X. appears in equations (21) and (22).

This indicates that the perturbations in temperature will follow the same

general pattern, regardless of the forms and the magnitudes of the

disturbances. Furthermore, for this quasi-static solution to be stable, it is

required that

2= A 2 (23)k Pl2

or in dimensional form

BL2 A oe-B/To0 n+l n20 0 (24)

To2k4

0

Using the values of the parameters listed in Table 1, it is found that

conditions (23) or (24) are violated. Mhus, the quasi-static system with these

values for the parameters is vnstable.

Let us now return to a consideration of stability for the dynamic problem.

Substituting equations (17-19) into equations (13-15). and combining the

resulting equations into one equation in terms of pm gives

al*m + a2 Pm + a3Pm + a4Pm = 0 (25)

where

a = I (pc-u 2 E)I E

a2 W X 2 _ 1 + pcn + a(n+l) - (26)
2 2

a3 k m 2l + +

a4 - - (kp.2 - q) p

14



The overdots, (N, represent derivatives with respect to the time. By applyins

the Routh-Hurwitz criterion (e.g., see Kuo 1982), one root (i.e. m = 1) with a

positive real part is found for aluminum using the parameters listed in Table

1. This observation indicates that inertia, thermal expansion and

thermoelastic coupling, which were not considered in obtaining equations (21)

and (22), do not contribute to the instability found earlier. 7hus, it may be

concluded that the mechanisms which may cause thermal instability (runaway) are

the temperature dependence of inelastic material properties and the strain-

heating. This conclusion can also be obtained by letting B = 0 (or i 0 in

nondimensional form) in equation (26). The resulting coefficients in equation

(25) are then all positive (see Chang and Cozzarelli 1977 for a1 > 0) and

2

a2 a3 - a+a 4  !( -) ko 4 + [pcn 2 k + pc2 + G(n+l) kn

+ (n+l)c]pm2  0

Using the Routh-Hurwitz criterion again, the system is seen to be stable in

this case. Thus, if the temperature dependence of the material properties is

not considered, the thermal runaway phenomenon will not be observed.

It is important to note that in accordance with condition (23) the

occurrence of thermal instability depends on one nondimensional parameter, ,

whose value is determined by the material properties A0. B, a, k. the steady

state values Too 0o0 and the length of the bar L. Thus, in the linearized

problem the occurrence of runaway is not affected by the magnitude or form of

the disturbance. The stability relationship between T and a(iMe. condition

(24)) for an aluminum bar of length 1 meter is shown in Fig. 3. Also shown in

Figs. 4 and 5 are the temperature increments due to mechanical and thermal

disturbances, respectively, where al,/o and T1 /T o are given at the end of Table

1.

15



4. Concludin a

A one-dimensional, dynamic, thermomechanical model, which includes

nonlinear inelastic deformation, internal heat generation (strain-heating),

thermal expansion. thermoelastic coupling and temperature dependent material

property, is considered. A detailed study is given for a special material

model (nonlinear Maxwell), which approximately characterizes some polymers and

metallic materials at elevated temperatures. For a quasi-static nonlinear

problem, significant temperature increases are found for aluminum by ieans of

an iterative numerical solution. Further investigations by a linearized

perturbation technique shows that a thermal instability (runaway) may occur,

depending on the choice of material, steady state values of stress and

temperature and the length of the bar, but not on the magnitude or the form of

the disturbance. The phenomenon of thermal runaway is the result of mutual

feedback between strain-heating and the temperature dependent (inelastic)

material properties. If either effect is not included in an analysis, the

possibility of thermal rynaway will not be explored and an u=expected failure

may occur. Te effect on the thermal runaway due to inertia, thermal expansion

and thermoelastic coupling has been shown to be relatively minor for the

considered one-dimensional problem. However, these effects could be important

for more complicated loading, geometric situations and flexible structures

(e.g. trusses, be-s, plates). Such cases require further study.
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Table 1 Material Properties for Aluminum and Other Parameters

3
density P (Kg/m) 2707 creep activation constant B (OK) 13603

heat capacity c (J/KgOK) 896 length L (m) 1

thermal conductivity k (W/m°K) 222 steady state stress a (Pa) 3.5xi07
0

Youngs' Modulus E (Pa) 5.52xi1 0  reference temperature T (0 K) 533
0

stress power parameter n 4.55 characteristic time t (second) 10

pre-exponential constant A 7.836x0 -  mechanical disturbance a 1 /a 1  .05

thermal expan. coeff. a (1/*K) 2.3xi0 -5  thermal disturbance T1 /T 0  .01
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Fi-gure Captions

Fig. 1 Nonl insear probl em - tempera ture incr ea so w Ith t a t x 0 , LI12. 3L/ 4

f or alum inum

Fig. 2 Nonlinear problem - temperature variation with x for t = 250, 500,

750, 1000 sec. f or aluminum

Fig. 3 Linearized problem - stability diagram of steady state stress vs.

steady state temperature for an aluninum bar 1 meter long

Fig. 4 Linearized problem - temperature increment due to mechanical

* disturbance

Fig. 5 Linearized problem - temperature increment due to thermal disturbance

02



Fi~re Captious

Fig. 1 Nonlinear problem - temperature increase with t at x 0, L/2, 3L/4

f or aluminum

Fig. 2 Nonlinear problem - temperature variation with x for t = 250, 500,

750, 1000 sec. for aluminum

Fig. 3 Linearized problem - stability diagram of steady state stress vs.

steady state temperature for an aluminum bar 1 meter long

Fig. 4 Linearized problem - temperature increment due to mechanical

di sturbance

Fig. 5 Linearized problem - temperature increment due to thermal disturbance
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