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An analytical study is conducted to determine the stability and free
vibration characteristics of laminated anisctropic plates using the Levy
approach. Included in the plate model are the effects of shear deformation
and rotary inertia. Six different boundary conditions in the y direction are
analyzed in corjunction with simply-supported boundaries in the x direction.
The y directed boundaries considered are simple-simple, clamped-clamped,

simple-clamped, simple-free, clamped-free and, free-free.

Solutions are presented for the buckling loads and natural freguencies
of rectangular, graphite-epoxy symmetric plates. The results indicate the
importance of including shear effects and rotary inertia in a plate's
mathematical model. The overall importance of these equation parameters is
definitely a function of the boundary condition and a general statement cannot
be made. In addition, the effectiveness of the Levy technique, in studying
laminated problems, becomes apparent in handling the more complicated

boundaries as campared to the Galerkin or Rayleigh-Ritz techniques.
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‘.:;'\ I. Introduction
e L]
g
.-. Background
>
::. The use of camposite material in many varied industries has increased
[‘;."v tremendously in the past several years. This is largely due to the high
¥
: ﬂ’ strength to weight ratios of camposites as well as their ability to be
Y
_',‘.'g:' tailored to meet design requirements of strength and stiffness. A special
P interest is the use of camposite materials in aircraft structures.
e}
2
e
f:::‘. Coinciding with these new applications is the need to better understand
the physical and dynamic responses of the composites to camplex in-plane
:\" stress systems [7]. Past research has clearly indicated the need for a
")
)
:( . refinement of the classical plate theory (CPT) in order to better predict
'.‘.'., (; camposite plate behaviour. The assumption that plane sections remain plane
\ e
;3 after deformation (Kirchhoff hypothesis) results in a mathematical model of
[
3. plate behaviour which is overstiff [7]. The need to include through-the-
*dal
;) thickness shear effects was first recognized by Reissner [14]. Mindlin,
[}
;::' shortly thereafter, added the thickness-dependent effects of rotary inertia,
[
PO
f:::} for the vibration problem, in his mathematical model for the flexual motion of
T isotropic plates [10]. Mindlin's two dimensional theory is based on the
~.4
j' premise that plate displacement is a result of two rotations due to bending
A
1?|' and two rotations due to shear deformation. Furthermore, no warping of the
)
e plane sections is assumed. This inconsistency is somewhat corrected by the
")
};j introduction of a correction factor [2].
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Yang, Norris, and Stavsky [1] used Mindlin's model to develcp the
frequency equations for the propagation of harmonic waves in an infinite, two-
layer isotropic plate. Their theory (referred to as YNS theory) was applied
by whitney and Pagano [12] to laminated plates consisting of an arbitrary
number of banded anisotropic layers, each having one plane of material
symmetry parallel to the central plane of the plate. Their study [12]
centered on solving for the vibrations of antisymmetric angle-ply plate
strips. Work by Brunelle [1] on transversely isotropic Mindlin plates
considered the stability of rectangular plates simply-supported on a pair of
opposite edges and carrying uniaxial membrane campression [24]). This work is
one of the earliest to consider the feasibility of applying Levy's technique
[13] to camposite plates and thereby adbtain a solution for displacement that
is not modelled as a double series expansion. The accuracy of the expression
for displacement is not dependent on the mmber of terms retained fram the
expansion in this case. This type of solution is cammonly referred to as a
closed-form solution.

Refinement of finite element analysis with the inclusion of transverse
shear effects began with the work of Pryor and Barker [25]. They studied the
cylindrical bending of symmetric cross-ply laminates using a model based on
Reissner plate theory. Y¥YNS theory was modelled by Reddy [18] in his study of
the free vibrations of antisymmetric angle-ply plates. His later work [18)]
considered orthotropic laminates of bimodulus materials. A different approach
was used by Sathyamoorthy and Chia [20] in their study of anisotropic skew
plates. They applied Von Karman's non-linear plate equations to calculate the
large amplitude vibrations of the skew plates.
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More recent work by Dawe and Craig (6,7,16]) has investigated the effects
of shear deformation in a number of plate vibration and stability problems.
In each case, the Rayleigh-Ritz or finite-strip methods were used to generate
numerical results. Bowlus [2] analyzed the vibration characteristics of
anisotropic laminated plates, with shear deformation and rotary inertia, using
the Galerkin method. Reddy's latest work [26] applies the levy technique to
the bending problem of symmetrically laminated rectangular plates. His model
includes shear deformation and considers two different plates, a single
layered orthotropic plate, and a three layered cross ply camposite plate. His
numerical results are generated by a solution based on the state-space concept
developed by Franklin in 1968.

Thus, the literature does not indicate any closed form solutions for the
m-layered symmetric laminates where both shear deformation and rotary inertia
effects have been considered with application to plate buckling and plate

vibration respectively.

Objectives

There are three main abjectives to this thesis. First, the
effectiveness of the levy technique in calculating natural frequencies and
buckling load for anisotropic laminated plates is determined. The plate's
mathematical model includes shear deformation through the thickness and rotary
inertia. Secord, the technique is used to evaluate "baseline" solutions for
same of the boundary conditions which are extremely difficult to analyze using
the approximate methods based on energy principles. Finally, camparison with
classical solutions, when available, are used to determine the importance of

shear effects and rotary inertia in the plate model.
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‘,..‘ Lo Approach

B “&‘y

I:&:: A direct approach is followed to successfully realize the stated

.,:E: cbjectives. The motion of the laminated plate is modelled using YNS theory
.EE!' [11]. Solution of the derived coupled partial differential equations of

f:;.} motion is obtained by application of the levy technique. The plate studied in
EE: ) this thesis, a specially - orthotropic laminate, does not contain bending-

‘:3'5 extensional or bending-twisting coupling terms. From the equations of motion,
W displacement functions are evaluated and used to solve the boundary value

:::':: problem (BVP) defined by the application of specific boundary conditions.

:‘i:,; Simplification of the BVP leads to a transcendental equation for either the
“ natural frequency or the buckling load, depending on the problem under

:;"' consideration. A camputer program is written, in Fortran 77, to solve the

:.:? {1‘-.& transcendental equation using the incremental search method [5]. Limits to
. L the effectiveness of the Levy technique are then evaluated in terms of

’5.:; allowable laminates and plate geametries/size.

:

.'% The boundary conditions always have a set of simple supports in one

’:::E ) direction with the other direction consisting of either simple-simple,

":;:': clamped-clamped, simple-clamped, simple-free, clamped-free, or free-free.

P Camparisons of results to classical solutions and solutions abtained using the
;’{E various energy techniques are presented whenever available. The importance of
;-‘.. shear deformation and rotary inertia is determined by calculating the natural
'. frequencies and buckling loads over a range of length to width and length to
! thickness ratios. Initially, rotary inertia is neglected in order to better
e understand the relative significance of considering shear deformation effects.
o ~. Rotary inertia is then re-introduced into the vibration plate model and
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" calculations are repeated, thereby providing an indication of its importance
Wt Y
:.:E: % in the accurate modelling of thick plates.
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K2 . II. Theory and Modelling

Wy Anisotropic Thick Plate Theory

i Classical Laminated Plate Theory (CLPT) incorporates constitutive

o relationships for an orthotropic lamina through the plate thickness resulting

N in expressions which approximate force resultants in terms of displacement

o functions. This theory provides cancepts which are required in the subsequent
R development of the equations of motion. As a starting point, the basic

i constitutive relationships for an individual lamina are developed [2]. One

'.,. should refer to reference [17] for a more camplete and detailed derivation of

,’ these relations.

o The basic constitutive relationships for a single orthotropic layer in
i sh:. the fiber oriented reference system, as described by figure 2.1, are

N Figure 2.1. Definition of Coordinate System

e
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WleIEGl, ez,arde3ax'et11emxmalstrains, €4 es,andesaretheshearing
strains, Oy az,arxia:;arethemxmlstxssesarﬂay as,andosarethe
shearing stresses. 'Ihesijtemsarecarpliametemsarﬂmaybewrittenin

terms of the lamina engineering contants as:

S1 = VE
$12 = a/E,
S13 = V3/Es
S32 = VE
S3 = a/Ep ()
S33 = VE
S44 = VG
S5 = 16y
Se6 = VG

ard E; is the Young's modulus in the ith direction, vi3 is Poisson's ratio for
transverse strain in the jth direction when loaded in the ith direction, and
Gj.j is the shear modulus in the i-j plane.

Equation (1) may be inverted to give the relationship of stresses in

terms of strain in the form

;:: %Q {0} = [Q'](¢) (3)




[Q'] is referred to as the reduced stiffness matrix and has the following

G S -

Q" ¢y @3 0 0 0

] ]

Q5 Q5 Q'3 0 0 0
o o0 o

Q' Q' Q'
Q'] = 13 %23 %33 @)

©o o o o, 0 o0
o o o 0 Q' 0
o o o 0 0 Qg
vhere
Q') = (5,,85575,5°)/8
Q15 = (%]55737515533)/8
Q'y3 = (515523751355,)/8
Q'5y = (5338);75,5°)/8 -
% Q23 = (513513753514)/8
Q55 = (5)45,,5;,°)/5
Qg4 = /Sy,
Qg5 = 1/Sg5
Q'es = 1/S¢6

2 2 2
S 5$115225337511523 525513 7533512 125,5,5,35)5

If the lamina is not oriented with the principal x-y axis but rather is
at an angle 6 (see figure 2.1), the reduced stiffness matrix must be

transformed. The matrix applied to the stiffness terms to reflect the shift
N in the laminae axes is defined as:




ol
Al

12 p2 0o 0o o 1p
p2 l2 0O 0 o0 -lp
[T] = o 0 1 0 0 0 (6)
0o 0 0 1 -p o0
0 o] o p 1
2lp 21p 0 0 o0 1%42
| d

where 1 = cos 8 and p = sin 6. The transformed stiffness matrix for the

lamina is represented as

@1 = (myem* (7)
and (o) = [Q'){e) (8)
where
FE ''Q.,' Q,,' © 0 Q /|
11 12 13 16
0" Q' 9y 0 0 oy
Q7= 1Q3" 3 ' 0 0 o (%)

0 0 0 0

Qa' Us'
0 0 0 Q' Q' ©

Q6' ' Ue' O 0 Q'

hon -

In order to simplify the stress-strain relationships given by Eq(8), a state
of plane stress is assumed for the laminae. That is, the individual laminae
areconsideredtobethinernx;htlnttheaveragevalueofaz across the
thickness is negligible [21]. Thus, from Eg. (8)

= =0 o ¢ o o
0z = 0= Q3" Q' ey Q3" €, Q" 7 S

or e, = (Q3'/Qy3" ey + Q' /R55" eyt Q' /Qy3" )y, (20)




.
&
.l
X
;sv If this expression for ¢, is substituted back into Eq (8),
Y '.‘fs
% '5'&» the resulting transformed stiffness matrix is defined as [Q] and
.; has the form
X ™ -
f 2 — —_— -—
:: Q9 9, 0 0 9
) —_ —_ —_
" Q2 &, ©0 0 0o
N _ o o Q, Q 0 (11)
P @) = s Sas
" 0 0 Q5 Q5 O
li: — — _
! f’ls Qe 0 0 Qg
U‘ -
_:- where
K — 4 .2 2 . 4
s Qll = Qll oS 642 (le+2Q66)sm e8cos e+0225m e
t
F 612 = (Qn+022—4Q66)sinzeoos26+Q12 (sin4e+cos4e)
’ 0,, = Q;, sin‘e+2 (Q,+20) sinzecos28+022<:os4e
i
u Qe = (@)170),~204¢)sinbcos 0+(Q, 0, ,+2Q, ) sin8c0se
‘ Vol —
; Qe Q6 = (@)170,-20¢()Sin’0c080+(Q,,~Q,+2Q, ) simbcos’e  (12)
Q44 = Q008’040 sin
Q45 = (Qqq~Q55) cososine
)
' = _ 2 . 2
' st = stcos 6+Q44sm (2]
A 666 = (Q11+022-2012-2Q66) sinzecos26+066 (sin‘e*oos%)
)
. and
q Q1 = Ey/(QAvypvy)
. Q)2 = voEy/ (1w 5v5)
]
i) =E, /(1= . v..)
: Q2 = B/ (v pva 13) |
Q4 = Ca3 |
¥ Q55 = G3y
. Q3 =6y,
' t@".':"
10
[
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With the removal of L the stiffness matris becames a 5x5 matrix. The
stress-strain relationships defined in Eq. 8 may be re-written in terms of
normal and shear values as:

-_ _ =

%% Q1 o Qp x
v 1= | %2 2 % ¢y (14)
Xy LQIS 26 %6 | |

and
T Q,, Q ¥
yz| _| %a %s| 'y 5)
"xz Qs s | |z

These relationships are for a single lamina and may be used as a
starting point in the derivation of expressions for the forces and maoments
existing in a laminate of N perfectly bonded lamina. Before doing so, a
further simplification, dealing with €y is discussed as well as the cornwvention
followed in defining the rotations vﬁx amd ¢y.

The strain in the z-direction is assumed to be small enough as to be
negligible. This inconsistency, widely accepted in plate theory, implies that
no stretching occurs in the direction perpendicular to the plate midplane.

For a laminate, thisassmptimleadstoadisomtinuityincz at the lamina
upper and lower boundaries, but it is very small. This assumption allows the
modelling of the displacement field for the laminate with ¥YNS theory. Thus,
the plate displacements can be assumed to have the forms

u = w(x,y,t)+z¢, (Y, t)

v= v°(x,y,t)+z¢y(x,y,t) (16)

w = w(x,y,t)

11




- where u,v,w are the x,y, and z coordinate displacements respectively, u°
v' '@8 and v° are the pre-stressed displacements of the laminate midplane, and v, and
" ¢Y are rotations of lines perpendicular to the midplane due to bending [2].

It should be noted that the inconsistency mentioned earlier could be removed
i by including terms, which are linear and quadratic in z, to the expression for
) w. Reference [9]) makes it clear however, that for most plates, the

) inconsistency is negligible.

_‘.s' Theexpmssims¢xand¢yaredeﬁnedasmtatiorsabarttheyanix

" axes respectively due to bending moments. With the axis system defined in

R figure 2.1, the rotations indicated are produced by positive bending moments.

4 YA
; ‘f.‘ b s

%

0" Figure 2.2. Coordinate System of Plate

- For small strains, the first order engineering definitions are:

N 12
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::.;‘ Substituting the displacement field given by Eqg. (16) gives
WAy %

(ot

" @“& ‘x = uc"x t 2y x

O
RGA € =V
) Y ’Y
O (o]
A v, =U, Vo, +
e xy T Wy TV T By,

Wy y (18)
y ¥ Py,2

L or

o €. ¥Y= e +2/« (19)

(20)

(o]
+
Xy 'y T Vorx

o and the midplane curvatures due to bending are
R "x ¥x,x

[, 4 =

S Y *y'y (21)
lﬁx'

. +
0 " y T Py.x

ey Egs. (20) and (21) give expressions for the strains in terms of
displacements and these may now be substituted into Eq. (14) to
give the stress - displacement relationships for the kth layer of
the laminate:

T T
're X Q; %2 Y Yoy V’x,x

! yi T %2 %2 %] ({Viy 20 %y (22)

k Q16 026 ‘266d k u 'yw ! ‘bx,yﬂ’y,x

.:'. 13 ‘
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Following Jones [17], the resultant forces and maments acting on the
laminate are cbtained by integrating the stresses in each layer through the
laminate thickness. Thus, for a laminate described in figure 2.3, with N ‘
lamina, the forces and maments are: }

- \

zn-c Z,

Figure 2.3. Geametry of laminate consisting of N lamina

h/2 N z,
(Nx,Ny,ny) = f (ax,ay,rxy)dz =3 f (ax,ay,fxy)dz
-h/2 k=1 2,
and (23)
h/2 N Zy
(MX’MY’MXY) = f (axlayrfxy)Zdz = Z f (axlayrfxy)Zdz
-h/2 k=1l oz,

These integrations may be simplified samewhat as the stiffnesses are

constant within the laminae and the stresses are not functions of z. Thus,

Eq. (23) may be rewritten as




WS WU T EE YWY WEN W BN WY EA I ST Wy s O - e e e e s e e e —
T — T T W ST W W W W

2 - -
o [
Nel P 22 M6 € x By Bio Big| |*x
— (o]
No 2= (P2 222 Poef ¢y ¥ |Bi2 Baz Bag| "%y (24)
[o}
N Ae e Bge ] Y Bie Bis Bes| |*xy
and
B.. B.. B ° D.. D.. D..]
M 11 B2 Bie € x 11 D12 DPig| [*x
_ [o]
Moo= B2 Bax Byg| ( ¢yt P2 Doz Do (*y (23)
(o]
Bie B Bes| |7 Di6 D26 Dgs| | *xy
where
N
Aij = kil (Qij)k (zk_zk-l) (26)
N 2 2
N 3 3
Dy =13 I Qg (B e (28)

Required now are the expressions for the shear forces on the plate in
terms of displacements. In classical plate theory, shear deformation through
the thickness is neglected according to Kirchhoff hypothesis. In this thesis
however, Mindlin plate theory is used which allows rotations of lines
originaly perpendicular to the midplane but having no warping. The exclusion
of warping is incorrect as shear varies parabolically through the thickness of
the plate. The error induced by this inconsistency is reduced to an
acceptable level by the introduction of a shear correction factor k. The
magnitude of k was calculated by Whitney [15] and the resulting value of 5/6

is used in the constitutive relations for transverse shear.

15
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K Fram the definition of engineering strain, the relationships for the
V¥
‘ v
W, '3&7«' interlaminar shear strains are

J‘ v =a!+a!=¢

+w (29)
Y2 32 &y ’

Y Y

e dz ax

. (30)

o Substituting Egs. (29) and (30) into Eq.(15), and introducing the shear
‘,..',, correction factor k, the shear stress can be expressed as

‘..!. Tyz _ k Q44 Q4s WIY + !"y

_ - (31)
"%z Qs Qs | [Yrx * ¥y

6 . ﬂwmﬂtarrtstwarforcsthmxghthethidams,oxandoy,am

L i Ul

. (.— evaluated by integrating the shear stresses in each layer through the laminate
thickness. Thus,

Q, = J Ty 2= Z J (T3 lx 92 (32)

> J

- = dz = = dz 33
a9 Q=17 1y, (S (33)
4 -h/2 =1 oz

2% As was done for in-plane forces and maments, the integrations

2.

may be simplified by noting that the stiffnesses, Qij’
v S

K 16
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'i‘;'
e
My

;:E::: ‘ constant within the laminae and the shear forves are independent
3y
i of z. Ths

[ |'b
o Y_, Mats Yyt

g
Ll % Pis Bgs Wiy t ¥y

Tl where A.. is defined by Eq. (26)
St H

(34)

The equations of motion for the laminated plate may now be devrived as
l‘:::: all terms appearing in those equations are now defined in terms of the three
“':.'v. unknoun displacements, w(x,y,t), ¥, (x,y,t), and $ (x,y,t). A Newtonian
approach is used to derive the three governing equations of motion. Figure
iﬁ' 3.4 presents the namenclature for the moment and transverse shear resultants.

"
1.‘ ' " !’ ‘s!’..‘jgr!’C‘ts
sl ox Pay+ 8244y Mo Zo3d
J'..A z “l"

'
) fixg e ® ‘%’Q;Jx.

A " Qy DN Ne

]::'0 ’ wt My &Mx ds.
::: Mss M + 322.'4‘5 dx

) Yy

T

A Figure 2.4. Moment and Shear Resultants on Plate

j': ) Considering the forces in the z-direction,

EF, =sh W, =QHQ QI dy-Qtq (35)
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L) >
e % where g = N W, + N W,

p = plate mass density (36)
B h = plate thickness

B Taking maments about the x-axis

v = = - - 2

.;‘\!; ZMx I'py'tt W%'Y dy W-QY dy QYIY (dy)

e My My x T My (37)
Taking moments about the y-axis

o %=I¢x,tt=y5¢+bg:,xdx°nx-wx+}§x+}&x,ydy
R - - g, (@0 (38)

3‘: b2 3
y where I = p2° dz = ph”/12 (39)
N =h/2

i These equations may be simplified if higher order terms are neglected
X! and dx=dy=1 is assumed. Substituting in for q, Egs. (35), (37), and (38) are
) rewritten in the form

" ,x * Yyt Mg ¥ Ny Wiy = ol (40)
et - -—
b x P Myy T % T Pyt 4D

3 My My T G = e “)

+
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:'.:: . These three equations can now be expressed in terms of the displacements
:,2' @ by substituting Eqs. (25) and (34) into the equations of motion. However,

KX before doing so, two restrictions must be applied in order for this problem to
" be solved using the Levy technique. This thesis considers only symmetric

" laminates and further, only those which are specially-orthotropic. These

. restrictions remove all coupling stiffnesses (Bij) and berding-twisting

coupling stiffness, 016 and 026’ reducing Egs. (25) and (34) to

bl M, )= D, D, © ¥ (43)

»f a Qy - x A44 0 w’y+¢y
< % O Agg| Wik * ¥

(44)

o Assuming the time dependence of the displacements to be harmonic then
o ei“’t allows the separation of the time variable out of the equations of

! motion. Thus, the equations of motion can be written in a form containing
- only displacements:

ay
é kA55 (w'xx + "’x,x) + k.l\44 (w'yy + wy,y) + wa’xx + Nyw,W

2, _
° + phww = 0 (45)
4

f
e
v
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o D

R o 11 ¥x,xx * D
g

12 Yy, xy * Dee ‘bx,yy * Dee ¥,y KAgs (Wry + ¥y) "*
+ WoTyp =
w’mp, = 0 (46)
R 1o ¥x,xy * D22 Yy,yy * D6 Px,xy * De6 Py,ix ~ WPag (Wry + ¥y
Ty + 02Ty =0 (47)
Y

A where v is the plate natural freguency

XS p is the plate mass density 11:/j.n3

0:1. These are the three coupled partial differential equations of motion
N which are solved for the plate displacements with the use of the Levy
v technique.
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N
"
"
)
B LEVY TECHNIQUE
&
B, The partial differential equations describing the plate displacement
".'\
E::: have been formulated and must now be solved. The technique employed in this
' ’
e thesis to solve Egs (45), (46) and (47) is the Levy technique. This technique
)
;n:“u is unlike same of the approximate energy techniques (Galerkin, Rayleigh-Ritz,
ool
‘: Navier) used previously to study the problem of camposite plate stability and
¢ u’i
f:’v. vibration. The lLevy technique leads to a more exact solution as it removes
N the errors associated with series representations of the variable. Each
N
:: displacement term in the equations of motion becomes a single unknown value,
¥ -.
'E:.,: as opposed to a series of unknown variables. The mechanics of the Levy
Nt technique are presented in the next section, as applied to the specially
0
‘*jr\ orthotropic plate, in order to clarify same of the general characteristics of
25
"\'; o~ the method presented here.
v CQ,
1 :'_:
,;:: One of the major restrictions of this method is the requirement that
)
i boundaries on two opposite sides of the plate be maintained as simple
) — throughout the analysis so that the description of the plate displacements may
L} f
E‘.:E have the forms
'\vﬁ'
4
®
g iwt _ o . iwt
gy w(x,y,t) = [w(x,y)]e = Z W(y) sinmXx e (48)
e =1 a
0‘. :
R
0. iwt _ o iwt
. ¥, (X,Y,8) = [, (x,y))e" = T v (y) cos mx " (49)
o X X =1 X a
-
S
V)
R iwt _ , iwt
\6y(an't) = [V’Y(X'Y) le = Z WY(Y) Sln X e (50)
Ko @‘ =1 a
. >

U} WA U\ : SO OO G0 ! L O 0)
'-'u‘;'~;’;.'J.'\_.'V'Q‘t‘, RO RN TOCP SUABK e Yoh Kb NN !'A‘JA ) :"' !0. ¥ !!. ,h'?h !O. LN



where v = natural frequency

”
,.\‘ c\
Rird

A
b

] These forms for the displacement satisfy the mathematical requirements
oy for edges which are simply-supported at x=0 and x=a given by Eq. (51) and are
used to simplify the equations of motian. Note that the time variable may be
K7, factored out of the expressions for displacement. This leaves functions in

o only x and y to be substituted into the equations of motion.
)
Y Simply supported edge at x=x W(X,¥)= ¥,(X,¥)= ¥,' (X,y)=0 (51)

o where the prime denotes differentiation w.r.t.y.
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Application of lLevy Technique to Anisotropic laminated Plate

Much has been said on the benefits of using the levy technique to solve
the stability and vibration problems for a camposite plate. At this point,
the actual simplifications of the equations of motion are presented. The
resulting equations are then re—written in a form that is useful in solving
either the stability or the vibration problem.

In order to use the displacements, as described in Egs. (48), (49), and
(50) in the equations of motion (45-47), the following derivatives are
required (note: all T are over n=1 to «, no time dependence shown).

W, = I Mr Wcos mmx
a a

w,y =3 W' sin mx

a
_ 2 :
w,xx—z-nn sin mrx
—2 a
a
w,yy=£W"sinn;x
¥ =Z nm ¥_ COS X
yyx “37 Y S5
=T ¥ ' sin mx
¢Y,Y T
=%f-n ¥ sin nrx
¥y, xx —_— 'y >
a2
¥ =Zm ¥ ' cos X
Y, xy a Y r
¥ =T ¥ " sin mx

23




(52)

R " = £f-n’x*\¥x cos mrx

. =3 - ¥_' 8in mmx
R Moy TF Tk SRR

' =2 ¥_ " cos nax
':: ¢x,yy X T

vy where all primed terms denote differentiation w.r.t.y.

it Thus, from Eq. (45),

zl{-r_vr Khgg ¥, (y) -Dn° KASH(Y) + KAy ¥, '(Y) + KA., W ()
e o a

2
a

-~
. a
4 2

6— 2n? N, W(y) + N, W(y) + phozw(y)} sinmx =0  (53)
ol a

N from Eq. (46)

o
y 2 2
% ;l{m 7% Djy ¥, (¥) + 1 Dy ¥ '(Y) + Dgg ¥,"(y) + I Dgo ¥ ' (Y)
2 a a
a

o - e e .
@ TN

a

K Bgg¥, (¥) -r k Agg W(y) wznx(y)} 08 prx = 0 (54)

fram Eq. (47)

-~ - .

s 2.2
. Z - D, ¥ '(y) +D,¥ "(y) =nw D¥_ '(y) = n'x" D_¥_(y)
‘ l{a 12 'x 22’y a 66 x __2 66y
,‘. a

)
A/ . 2 . _
¥ - kA“wy(y) - KA, W'(Y) +w Iivy(y)] sin _rl:_x_ =0 (55)

9
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._: Thus, for the equality to hold, the following equations must be satisfied for |
K s
b S
A From Eq. (53)
L)
: o KAy ¥, (y) - DR’ KA W(Y) + Ay, ¥ ' (Y) + KW (Y)
a 2

. a
L)
]
nx® N W) + N W) o Wy) = 0 (56)
] az
:

Fram Eq. (54)
1 2.2
r ~n%x” D)y ¥ (¥) + Br D, ¥ '(y) + Dgg¥ M(Y) + - Deg ¥y' (¥)
; a®
: _ .
t “kAge ¥ (Y) - _;_H KA W(y) + oIV (y) =0 (57)

&
g ~ From Eq. (55)
A _ _ _ 2.2
. f;br D, ¥, '(¥) + Dzz*y" (Y) _;3' Dge¥y' (Y) = n'x DSG*Y(Y)
. a’
2

: 'RAM*Y(Y) = kA W' (Y) +w I'FY(Y) =0 (58)
'
: Thus, the application of the Levy technique reduces partial differential

equations (in x and y) to ordinary differential equations in y. Egs. (S6),
. (57), and (58) may now be used to solve the stability or vibration problem for
“ the specially-orthotropic laminate.
:
: |
' :
) H
‘1
«
& ’
g X :
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B
e Stability Problem
S e
N
& In the solution of the stability problem, basically a static problem,
s
Y
o inertia terms will not be retained in the equations of motion. In addition,
':‘," this thesis will only consider the case of a unaxial compression force. Thus,
\ N = 0.
. Y
.\':?'.
Yy
R To solve the equations of motion, the classical approach of assuming a
o very general form for the displacements is followed. Hence, the displacements
\, are taken to be
>
:.Q * ey
4 W(y) =Ae
N * g
W V) =BeY (59)
X * 0
o v (y) =ce¥
B "
' C‘j * % *
o where A , B, and C are constants to be evaluated.
o
I. » 3 » ]
":;: Further, a notation is adopted which allows the equations to
100
) be written in a more campact and manageable form. Using
B
) '. =
; D, + Dgg =
?“ Deg =f
> D, =9
. A ]
e D) =h (60)
",l
L2
‘ Khga =2
» _
"3 kASS =2z
t‘ ) =t
< ™. nr/a =N
'.','\-
-
.
;' J
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oy e Substituting the assumed forms for the displacements and appropriate
o G
. ! * derivatives and using the given notation, the equations of motion may be

simplified and re-written in matrix form as
) i
X Nr+tlz-Nz -Nz tz

‘,.'::’ {5}- Nz 2 gn°-z ent B* (61)

AL _ 2- -
g | -t -t ht sz:'z-

) or [A;4] {g* = {'0'}

"y Note: t contains the function e
oS r is the buckling force quantity
- and n contains the number of modes
The nontrival solution to this set of coupled ordinary differential
equations is found by considering

det [A;4] =0 (62)
R At this point, MACSYMA [3] is used to calculate the factored expression

® for the determinant. The Macsyma package is available on the AFTINET ard a

o description of the cammands used to abtain the final form of the expression

Vool described by Eq. (62) is presented in Appendix A.

€

:) The resulting equation for the determinant of [Aij] is a sixth order
WY
o equation in the unknown 8. It can be written as

X Q‘:fﬁ, A366+A294+A192+A0=0 (63)
‘e 27
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where the coefficients A, are given in Appendix A.
This can be reduced to a cubic with the substitution of

ol =¢ (64)

A+ P A c A =0 (65)

Eq. (65) can be solved directly for three roots following the
trigonametric technique presented by Dickson [4]. The roots may be all real
numbers or a single real mumber and two camplex conjugates. A development of
the problem involving three real roots is presented first, followed by a

discussion of the case of two camplex conjigate and one real root.

Under the premise of having three real roots to Eq. (65), the assumption
is made that two of the real roots are positive and the third, a negative real
number. Any changes to this assumption are discussed in the section
formulating transcendental equations for the boundary conditions.

With these assumptions, the following namenclature is utilized

B 2 2
€1 58,2 =

N 2 _ 02 2

_ 2 2
€3=85 ¢ =7

The positive roots for 6 are thus assumed to be a and y. The
displacements described in Eg. (59) may now be expressed in an expanded form

as

28




‘ {1

b

'I

“
y
" =AY -y isy -igy vy -vy
" "':‘-\. W(y) Ale + A2e + A3e + A4e + Ase + A6e

s _ o .ay -ay igy -igy vy -y

L \le(y) = Ble + Bze + BBe + B4e + Bse + BGe (67)
& =c Y oy iy -igy Y -1y
3 qu(y) = Cle + C2e + C3e + C4e + Cse + C6e
o As presented, Eq. (67) requires the evaluation of 18 separate constants
\

- for each set of boundaries in y. Unfortunately, the bc's define only six

- relationships thereby making it impossible to evaluate any problem using

! displacements represented in the form of Eq. (67). However, if relationships
' between A*/B* and A*/C* are established, the mumber of constants to be
: evaluated drops to six and the problem becomes well-posed. Eq. (61) is used,
! for this problem as it presents the relationships between A*, B*, and C* in
(

. the three differential equations of motion. Since these three equations are

coupled, the simultanecus solution of any two for B* and ¢ in terms of A"

" . will automatically satisfy the third.

{ U

Solving the second equation from Eq. (61) for C* in terms of A*, B*:

¥,

by Naa" - (g2 - z-N’g)B*

i Substituting this value for C* into the third Eq. from (61) and

,, simplifying for B

r. [(he2 - z-sz)Nz - Nezez] * *

( A =B (69a)

[ (h82-2-N°f) (fo°-z-N°g) + N2e%6?]
o] %* *
or A(B)A =B {69b)
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and thus Nz—(fez-z-Nzg)A(G) * %

Ve A =¢C (70a)
2 Nes
-~ * *
or A(®)A =C (70b)

It must be realized immediately that A(8) and A(8) are row
vectors as the value used for 8 can have one of three values a,
B or y. The choice of which 6 to use in Eq. (69b) and (70b)
depends on the argument of the term multiplied by A(8) or A(8) in
the expressions for displacements. Thus, A(8) is equal to (A(a),
a(8), A(v))Y. The discussion is not yet complete as a potential
problem exists when calculating A(8).

Since

. ig =8
evaluation of A(8) using Eq. (70a) gives an expression containing
an imaginary number in the denaminator. An alternate approach

may be used to solve for the expressions of A(8) and K(ﬁ) that do

not contain the imaginary number. For this case
* . * *
W(y)=A sinfy ¥, (y)=B sinfy and ¥, (y)=C cospy (71)

and substitute these values into the equations of motion. Any
two of the coupled equations may be solved for the relationships
between A*, B"r and C* as was done earlier. The calculations lead

to the simplified expressions for A(8) and A(8):
(h24+N°£+z) Nz—Nezg?

48 (Ne?42- (ng® P £42) (£57 10 g+2) )

= A(B) (72)
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R @ Nz+ (£8%400°%g+z) A(8)
Nep

= A(B) (73)

B The displacements in terms of only six unknown constants,

' are respectively

o W(y) =A1e°y+A2e'°Y+A3ejﬂy+A4e'jﬂY+A5e7y+A6e'7Y

V. (¥)=A () (A1e°y+A2e'°y)+A (8) (Aaeiﬂy+A4e'i’ey)+A (v) (A5e7y+A6e-7y)
(74)

I ¥ (y) =A (a) (A1e°y+A2e'°y) +A (B) (A3ew Y+A4e’1’ey) +A (7) (A5e7Y+A6e°7Y)

K5 With the trigonametric and hyperbolic identities of Egq. (75),

K sinhx = 1/2 (eX - e ¥ 1/2i (e™* - &™)

) sinx

-ix) (75)

=X

‘,;q coshx = 1/2 (e* + e %) cosx = 1/2 (e¥ + e

N} the displacement equations may be written in a more recognizable
) form. For example, the displacement in the z direction, W(y) is

o W(y) = l_s.leay + Aleay + l_sze-“y + éze”y + ézej’ey + éaeiﬂy
- 2 2 2 2 2 2

L -igy -igy vy vy -y -1y
e +I_\4e +§4e +%5e +%5e +15\6e +é6e

N
[\¥]
(V]

o , or altermately

W(y) = (A+A,) %_(e°'y+e"’y)+(A1-A2) %(e°Y-e'°Y)+(A3+A4) 1 (eBY =18y,

+Aya)L @) A 1T (g L)

o ‘ N . v & L4,

=
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applying the identities of Bg. (75), W(y) beccmes

W(y) = Asinhay+Bocoshay+Csingy+Dcosgy+Esinhyy+Fcoshyy (76)
where A= Al-A2, B=A,+A,, o=(A3-A4)i
D= A3+A ’ HS-AS’ F=5A5+A6

Similarly, ¥x(y) and v¥y(y) became

¥, (¥)=h (o) (Asinhay+Booshay) +A (8) (Csingy+Doosgy)

(77)
+A (v) (Esinhyy+Fcoshyy)
) =A (a) (Acoshxy+Bsinhay)+A (8) (~Coosgy+Dsingy)
+A () (Ecoshyy+Fsinhyy) (78)

It is important to note that W(y) and wx(y) are even functions and wy(y)
odd. This is dictated by the number of derivatives of each expression defined
in the equations of motion. Egs. (76), (77), and (78) represent forms for the
displacements which may \be evaluated for specific boundary conditions in y.
Egs. (76), (77), and (78). thus represent forms for the displacements which may
be evaluated for specific boundary conditions in y. These forms have been

derived under the premise that all three roots of Eq. (65) are real numbers.

For the case where the roots of Eq. (65) are camplex conjugatés and a
single real mmber, the development of corresponding expressions for the
displacements is not straight forward. The problem lies in deriving the

proportionality functions relating A*/B* and A*/C*. Without these functions,

32
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R
X pe, the mumber of unknown constants which must be evaluated at each boundary
' e
g condition is eighteen and the problem is not solvable. Thus, the author has
p recognized the possibility that specific roots may be missed under the
,,: assumption that all roots to Eq. (65) are real numbers. The overall results
: when plotted however, will indicate trends for a number of different values
i' for a parametric function. The potential of answers not conforming to the
: associated technique is present but the values will be smeared out in the
! extrapolation of the function. Thus, the overall trend is extended to any
area of difficulty and yields results which are within tolerance of any
j: obtained by trying to reformilate the problem and then solving for the
y appropriate functional forms of the displacements when only one real root
{
P exists. The physical nature of the buckling or vibration phenaomena studied in
E this thesis imdicates a lack of irregularities in the solution and thus
L)
ﬁ; substantiates this approach to dealing with camplex conjugate roots to Eq.
U
(65). The transcendental equations for each of the boundary conditions
: studied are presented following the development of corresponding forms of the
. displacements for the vibration problem.
|}
{
{
:
)
¥
[)
: 5':3
, v
k)
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s VR Vibration Problem
. \

b For the solution of the vibration problem, the procedures followed will
iy parallel exactly that presented earlier in the stability analysis. Inertia

; terms, translational amnxd rotary, will be retained in the equations of motion.
The in-plane load Nx will of course be excluded fram the derivation since the
lowest natural frequency will be affected by its presence in the equations of

motion.

”:" > The forms chosen for the displacements, given by Eq. (59) are used to
solve the equations of motion. Additional notation is introduced, to

:'\';.. supplement that presented in Eq. (60), representing the inertia terms

A C‘M . sz =X

(79)

1N Using previously defined notation and Eq. (79), the equations of motion
\
::' in matrix form for the vibration problem are
’»'( ~
— -
- > y+t22-N22 =Nz tz A*
.'.-J':' _
e | o]= Nz x+£t2 -z eNt B* (80)
gl v
b ~tz —eNt x+ht2-en2-z| [c*
.. = Z
_ :::
& Y
o or [A;4) 2* = {0}

3
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I " . Considering the nontrivial solution to this set of equations, the

::;:: % expression for det[Aij] is presented in Appendix B. The resulting sixth order
e equation in 6 may be reduced to a third order equation by the substitution

‘ defined in Eq. (64)

R The cubic in ¢ is

3 2
) =
Y B3§ + Bzg‘ + 31§ + BO 4] (81)

. where the coefficients Bi are given in Appendix B.

Wkt The roots of Eq. (81) can be expressed in terms of a, 8, and
N v and the expanded expressions for the displacements are

?{f identical to those described in Eq. (67). Once again, a
relationship is sought between the constants A*, B and ¢* and

o (‘;}‘ the expressions corresponding to A(8) and A(8) for the vibration
;.:.: problem are given by

j [he2-z-N2£+x)Nz ~ Nezo?]
e A* =8 (82a)

?;:: ¢ [ (hez--z-N2 £f+x) ( fez-z—Nz g+X) +N2e292]

o or Q(8)A*=B* (82b)

:: \: ard Nz- (fez-z—Nz g+x)a(e) * *
[l

o A =C (83a)

Lo or Ge)A =c (83b)

Wt -t‘t 4
:‘:.:: '.?u d

4
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,{,. 3 As before, the alternate forms required for the case of 6=ij
;ﬁ N .‘iﬁ\

R are given by

1 ft (hﬂ2+N2f+z-x) Nz-Nez,e2
a'é':: = 0(8) (84)

D) [(N°e252- (hg2 N2 £+2-x) (£5%4N°g+zX) ]

o Nz+ (N29+fﬁ2+z-x) a(p) -
e = Q(p) (85)
.0'0. " Nep

@ The final forms for the displacement, shown in Egs. (76), (77), and
uhy (78) , remain basically the same the only difference being the multiplication

) factors. Thus,

N W(y) = Asinhay+Bcoshay+Csingy+Dcosgy+Esinhyy+Fcoshyy (86)

) ¥, (y) = fi(a) (Asinhay+Booshay) +a () (Csingy+Doosgy)

+

0 (v) (Esinhyy+Fooshyy) (87)

-
ol

v, (Y) = (1 (a) (Acoshay+Bsinhay) +i (8) (—-Ccosgy+Dsingy)

.‘-%’."-
P
+

Qi (v) (Ecoshyy+Fsinhyy) (88)

-,

.::: These equations are used in establishing the transcendental equations

DALy for the natural frequencies.
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3: o Formulation of Transcendental Equations

s o As the equations for the displacements are similar for the
KRN stability and vibration problems, transcendental equations for

;: each boundary condition in y are developed only for the stability
Q:, case. Correspording equations for the vibration analysis follow
,,:;? directly by substituting a(8) for A(6) and Q(8) for A(6). Each
EE.:EE boundary condition in y is considered independently and the

:E:;: simplified equations for the displacements, in terms of only

':;1 three constants, are presented in matrix form. The

-" transcendental equation for each case is dbtained by taking the
oy determinant of the three by three matrix.

o

\ Simple~Simple Boundaries

e

50

«W Gt‘ For the case of simple-simple boundary conditions in y, the following
§§ physical and reesulting mathematical conditions are used to define the
?‘:: constants in the displacement expressions.

5.4

.;, Physically at y=§  w(x, ) = $,(%,9) =M (x,§) =0

B S

‘5:’3! Mathematically W(y) = v (y) =v¥y(y) =0 (89)

: Note: y represents a general y position of the boundary

' ».»E;: If Eq. (89) is used to solve for the constants in the displacement
“ equations, the following results are abtained:

2"' A=B=D=E=F=0

i: and for a non-trivial solution

v. singb=0

ey or b = mm

;.D
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e Thus, for the simple-simple boundaries in y there two positive, one
Py, Al

- i negative real roots to Eq. (65), the relationship that is programmed and
. solved for Nx is straight forward:

'.. !
> det = 8- »/b (90)
o
1' and n =1

'

, If three positive real roots exist, the expression that must
‘.: be solved at y=b becames

)
. W(b) = 0 = Asinhob+Csinhgb+Esinhyb

'

~ Wx(b) =0-= Avlsinmmzsirﬂlﬂmm3sirﬁ1—yb (91)
i o

w
% ¥/ (b) = 0 = Aav,Sinhab+C8v_sinhgb+Eyv_sinhyb
a:! Y 4 5 6
. Thus, the singy/cosgy terms in the displacements are replaced by
.
;' sinhgy/coshgy if the third root is positive real.
N

", r“'
‘< 6’ The matrix expression for Eq. (91) is

) } 1

X a 2 0 92

) . =
K [ 13] c (0} (92)
. L]

L]
' where
1 a,., = sinhab a,, = sinhgb a,. = sinmb

b 11 12 = S 13 © S

, a,, = vlsmhab a,, = vzsumﬂb a,, = v3smhyb
)‘l _ . - . _ .
:: Ay, = v4asmhab ay, = vspsmhﬂb a3, = vsysmhyb
? where

§

V1=A(a) vz = A(B) V3 = A(y)
43
‘2 - - - (93)
§ v, = A) vg = A(B) Ve = A7)
o
W -

B4

SO
<
%
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K oy Clamped-Clamped Boundaries

o The following physical and mathematical conditions define a
::: ‘ clamped boundary at y=y

. Physically W(X,Y) = ¥ (x,Y) =¥, (x,¥) =0
o Mathematically W(y) = ¥(¥) = V() =0 (94)

Thus, at y=0, the displacements became

e W(0) = O = B+D+F

X ¥, (0)

® Wy(O)

0 = Bv,+Dv+Fv, (95)

0= AV4-CV5+EV6

e Solving Eq. (95) in terms of the three constants yields

250 A V.=V
a \e p=B ! 3 -pv (96)

ENCVIME SEREM -

F=B = Bv (97)

REZ
<
&

E=C -A (98)

- s
. ;5‘4
(S
[

50 3
o)
NI

o

Using the relationships described by Eq. (96), (97), and (98) the BC's

ool
‘'l a

equations can be determined as a function of A, B, and C at y=b. This yields

19 5%

the following matrix equation:

Tre
-

)

A
e [a5] { gx - (o} (99)

24
e
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"

" where
S
o \'g.j a, = sinhab - A sinmb

!" v_6 |
0
b a,, = coshab + v7cosﬁb + vscosh—yb ‘
\ \
A, = : : !
g a5 singb + Vg sinlyb |
L, —_—
Sy v6
L

oy

N a,, = vlsmhab -V, Va sinhyb

Q. —
o
* a,, =V, cosab + v, v, cosgb + V,Vg coshyb

ayy = v2 singb + v3 v5 sinhyb

i Ve
4§ O _

P ay, = Vv, coshab - v,coshnb

l'
*. - . . .

> a32 = v4 sinhab + v5 \} singb + v6 v8 sinhyb

»
:: ay, = -v5 cossb + Vg coshyb
:‘ wherEa,ﬂaxﬂyarevariabl&sandviaref\mticnsofﬂme
W .

e variables
K
Y,

: Simple-Clamped Boundaries

L)
. The mathematical conditions describing the simple and clamped boundaries

l
" are given by Egs. (89) and (94). Oonsidering a simple boundary at y=0 leads
D
:.O
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»’ = =
¥, (0) = 0 = BV +DV +FV, ' (100)
wy' (0) = Bav, +DBV+Fyv,
or B=D=F=0 (101)
A clamped bourdary at y=b gives
W(b) = 0 = Asinhab+Csingb+Esinhyb
Wx(b) =0 = Avlsimnb+Cvzsinﬂb+Ev3sirhyb (102)
Wy(b) =0= Av4cos}'nb-CV5c:osﬂb+Ev6coshyb
Eq. (102) in matrix form becames
A
[a5] {g] = {3} (103)
where
"o a,, = sinhab a, = singb a4 = sinhwyb
DL
ay, = vlsmhab a,, = vzsmb a, = v3smh1b
a3, = v4coshab a32 = -vscosﬂb a33 = vsooshyb
Simple-Free Boundaries
A simple boundary at y = 0 leads to the relationships between constants
given by Eq. (101). A free boundary, at y = b, has the following physical and
mathematical conditions
Physically r& = l&y = Qy =0
i = ' =
Mathematically l& -NDlzwx(b)+D22W y (b) 0 (104)
= ' =
._13_7:: ny v, (b)+NWy(b) 0
Q, = W' (b)+ (b) =0
43
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W(0) = 0 = B+D+F




— VT v T Y S T T VPP VI N VST Y VT T ST Y AR TR L VPR T PR TR P Y R S P TN TTW L IW IR TR AP AR e

Expanding Eq. (104) and placing in matrix form gives

A
’ [a..]{c = (0) (105)
E

v :
’::g‘, a (Dyyav, 4 ND,,V,)sinhab
W a;, = (D, BV~ND,,v,)singb
':‘;:’ a3 = (D227v6-ND12v3)51n!nb

(av, W, ) coshab

[+
n

X a,, (ﬁvz-st)cosﬁb
NS, ay, = (7v3+Nv6)cosh~,b
b

o a,, = (a+V4)GDShzb

A a32 = (8- S)COSﬂb

a,, = (—,+v6)'cosmb

A c ot
’
o

Yo Clamped-Free Boundaries

N A clamped boundary at y=0 gives the relationships described
Z)" by Egs. (96), (97), and (98)

. D
.0 g

Substituting these relationships into the expanded form of Eq.

Bv., (96)
Bvg (97)
Q’s/"s - AV, /v (98)

(104) and rewriting in matrix form gives

&, pp} A

[aij] {B}= ({(0) (106)
® c

e where

o' ' a,, = (-NDlzv1+Dzzav4)smhab + (v3 V4ND12 - 0227v4)smhyb

"y C:\‘B:\\{ V6
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R a,, = (-ND, v, +D,_av,) coshabr (-ND, V., +D, AV, ) V. cospb

[X]
f 0 + ( -ND12V3+D227VG) vaoosh-yb

a;5 = (-ND,,V,+D, pV,)singb+(-ND, ,V,v +D, v ) sinmb

Ve

(P PL g

a5 = (av1+Nv4)cosInb—(7v v +v4)coshyb

K P N ¥ RS

Ve

-
2 a 3IA

s

s

v

v ."t“l' Al
o}
il

52 (av1+Nv 4) sinhob—- (ﬁv2+Nv5)v7slneb+ ( 7v3+Nv 6) vgsmhqb

A,y = (3v2—Nv5)cosﬁb+(7v \Y +Nv5)ooshyb

e V6

il

——
@

>

ay; = (a+v )lehb-('y v4)coshyb

Pl N s

Ve

% S

a,, = (atv,)sinhabt(-B+v,) v, singbt(v+v ) v sinmb

g a4 = (,s-vs)cosﬁb+ (7v5+v5)oosh7b

-2 v
6

v Free-Free Boundaries

o A free bourdary, as defined mathematically by Eq. (104),

. T gives for y=0

‘ 45
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My --ND12 v B+v2D+v F)+D 5 [v aB-i-vspDi-veyF] =0
Mxy = le+v2C+v3E+N[v 4A-VSC+V6E] =0
% =v 4A-vsc+v6E+Aa+Cﬁ+E7 =0

fram Eq. (107), E can be written in terms of A and C as

=(Nv, + Vv.) (Nv. = v,)
4 VY as 5 2T c-g

(v3 + NVG) (V3 + NV6)

or
v7A + v8C =E

(107)
(108)

(109)

(110)

(111)

With this relationship and Eq. (109), a relationship between

A and C is developed

(V) = (Vgh) (Wghv)) A+ (B=vg)+(vgh) (N -v,)

(Nv +v3) (Nv +v3)
or v9A+vloC =0
thus C=-v,A= vnA
V1o

and it follows from Eq. (111) that
(v.7 + vavn) A=E

or v12A=E

from Eq. (107)

(D,,av,~ND, V) (D...8v_~ND
P P U beF
(ND, ,v3=D;57Ve) (ND, ,v3=D,,7Ve)
or vnB + vMD =F

46

cC=0

(112)

(113)

(114)

(115)

(116)

(117)
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Introducing the relationships between the constants to the relationships

n' for a free boundary at y=b and expressing in matrix form leads to
A -—
[alj] By = ({0} (118)
D
where
a,; = ( _ND12V1+DZ oYy )sinhabt (-NDlzvzvll+D2 2vsvll;s) singb

+ (-N012v3v12+02 2v 6v12~, )sinhwb

313 = (WD v +Dy5V @) Coshab (<D, V3V, 54D, VeV, 57) Cosyb

313 = (D), #D,5Vef) COSHbH (ND) ,v,3V, 4 +D, VeV, 4v) COSIb

ay1 = (Vatv,)coshabt (v, v, ) f-NV v, 1) COSBbH (Vv oy +iV v, ) costyb
7 a,, = (vla+Nv4)51rﬁnb+(v3vl37+Nv6v13)smh7b

@:

a, = (-v2,5+Nv5)sm,9b+(v3v1 4~,+Nv6v14)smt~nb

a;, = (v e ycoshab+( -v5v11+ﬁv11) coshgb+ (v6v12+—yv12) coshyb

a3 5 = (v 4+u ) sinhab+ (v6vl3+-yv13) sinhvyb

Ay, = (vs-,s) singb+ (v6v1 il 4)sinh—yb

Sl
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(5 B III. Discussion and Results

NN This chapter presents a brief introduction of the two camputer programs
- written to solve the transcendental equations, generated earlier, for either
hy the stability or vibration problem of a laminated plate. Discussions follow
it on the physical properties of the plate as well as the analysis performed

(]
,‘;‘." using the plate.

'.o::, Computer Programs

ROV One existing camputer program is modified and one program is written to
’33 solve the respective stability/vibration problem of a rectangular plate with
G the six different boundary conditions already discussed. The first program is
Xy (-ﬂ‘ a modification of a program written by Bowlus [2] which calculates the

® nondimensional bending and extensional stiffnesses for a symmetric laminate.
- The second program formulates the boundary value problem for a particular

&y boundary condition in y in the form [aij](c}={0} where [aij] is the 3x3 matrix
vy containing the eigenvalue and ¢ is a colum vector of displacement constants.

: " The program solves the transcendental equation given by det [aij] for the

- 1 value of Nx or w. Appendix D gives a more detailed description of the second

) program.

N a8
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Analysis Performed

Two main areas are analyzed in this thesis, using the data generated by
the second program. First, the ability of the Levy technique to effectively
solve the various vibration and stability problems formulated earlier.
Second, the importance of shear deformation (and for the vibration problem

rotary inertia) in a mathematical model of a laminated plate.

The application of the Levy method is validated for the vibration
problem by camparing results to those calculated by Bowlus [2]. The boundary
conditions used in this camparison will be simple-simple in the y-direction.
Due to the similarities in the formulation of the vibration and stability
problems, such a camparison will also validate the stability portion of the
program. The author could not find other published works for plates with
similar geametries/material properties and/or ply lay-ups and different
boundary conditions with which to further evaluate the second program.

General trends and expectations for specific boundary conditions are available

however, and are used in the later discussions of the results.

The impact or importance of shear deformation is evaluated by altering
the length to thickness ratio of the plate. For the vibration problem, rotary
inertia is introduced into the model and a second set of calculations
performed. For three of the boundaries, notably simple-simple, simple-clamped
and simple-free, a square plate is used in the calculations. For the other
three boundary conditions in y, the formulation of the transcendental
equations forces the use of rectangular plates with aspect ratios of two or

greater due to computational limitations. The analysis follows a presentation
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of the material properties of the laminated plates used in this analytical
study.

b Sty
7
ES

.'!: N lLaminated Camposite Plate Properties

N The plate studied in this thesis is constructed of a graphite-epoxy

e (AS/3501) material and has the following material properties

5]
]

21.0E+06 psi

3"-
o

“'&m-
> A
m
Il

1.40E+06 psi

N

y (119)
i G,., = 0.6E+06 psi

= 0.3

Kk B

0.055 1b/in’

ﬂ The plate has a ply-layup of [0,90] .. For the camparison with Bowlus,
v m equals 100 indicating a total laminate thickness of one inch if each lamina
9! is assumed to be 0.005 inch thick. A plate with m equal to 200 is used for
"y all other calaulations. Tables 3.1 and 3.2 contain the stiffness values

A obtained fram the first program for the two plates.
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Graphite-Epoxy [0/90], 0,

One Inch Thick

Parameter Value
A44 540,000.3125
ASS 540,000.3125
D11 1555164.375
Dlz 35211.2656
D22 322769.875
D66 50000.0

Units for Ai' : 1lb/in

Table 3.1 Stiffness Parameters for a One Inch

Thick Plate
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;.:: Graphite-Epoxy [0/90]2005
e Two Inches Thick

RN Parameter Value

o A44 1,080,000.625

- A, 1,080, 000. 625

—_i-..
o

'.,.. 11 12,441,315.0

)

281,690.125

@
o

L $ - 2,582,159.0

&
o

% 66 400,000.0

Ky ﬁ Units for Aij : lb/in

o Units for Dij : 1lb-in

W Table 3.2 Stiffness Parameters for a Two Inch
My Thick Plate
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Characteristics of Levy Technique

In most of the previous studies of laminated plate behavior, proof of
convergence of the solutions must be presented. With the Levy technique, the
values of Nx or » are calculated using a closed form algorithm. The only
factor that must be ensured is that the value computed is indeed the lowest
value for N orw. This is done by repeating the camputations for increasing
values of n, the bending mode mumber, until the user is satisfied that the
results are contimuously increasing. The lowest eigenvalue, regardless of n,
is the sought after solution. In most cases, n need not be increased past

three to determine the trend of the output.

In order for the program, which is used to evaluate the transcendental
equation, to have same credibility, results must be compared with previously
published work. As was stated earlier, apart from work by Bowlus, published
work on the buckling or vibration of [0/90]ms camposite materials was not
abundant. ILeissa [27,28] ard Brunelle [1] have results which can be used to
validate trends, but only Bowlus has rnumerical values which can be used in a
direct camparison. Thus, from reference [2] for a plate simply supported on
all sides, the following camparison can be made for the first nmatural

frequency.
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ot

R

"

‘0

e

> - s Galerkin Method Levy Method %

o YA (a/h) with SD amd RI with SD and RI Difference

s ~

. 17.5 3754.98 3762.44 0.20

b

B 20.0 2899.69 2913.32 0.47

W

::::: 22.5 2310.70 2320.17 0.41

W,

" 27.5 1559.94 1568.82 0.57

o>

:i' X 30.0 1321.80 1322.56 0.06

'

" 35.0 975.16 976.10 0.10

¥t

. 40.0 752.80 749.47 0.44

2

L)

o

e

)

2 Table 3.3 Camparison of Galerkin and Levy Techniques

o for a Plate Simply-Supported On All Four

. Edges. Plate Thickness is One Inch.

8§

:.I 1
7 (!

,1.‘ The values in Table 3.3 show good agreement between the closed form
o
:f_ solution and one abtained using the Galerkin technique with the double series
e

e containing six terms each.

")

N

n\"

:’ To further validate the second program, a camparison is presented of the
) & results computed for the simple-clamped bourdary in y and the classical
®

o solution abtained for the specially orthotropic plate using an equation from
St

R

$j Whitney [8). For a plate with no shear deformation or rotary inertia, the
‘_ﬁ {
2!’ natural frequency can be camputed from

.

3" -

in

w50 - 4 2 4 4.1/2
: ¥ w 1 [Dllal + 2(Dlz+2066)R a, + 022R aq ] 12
e 2 (120)
B a‘Je

‘;"‘,

W 2y

3
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) where R = a/b
Y

Q
I

(m+.25)x
2 2 ‘
: by a, =n'x al(al-l) (121) ‘

;?. -
.": 03 =I

80 in

>
]
I

NS p = 0.055 1b/in°

ek for all m and n. (for fundamental frequency, m=n=1)

N
;""' Using the properties for the two inch thick plate given in Table 3.2 and
i.._'i camputing the natural frequency for a plate where R=1.0, the following is
obtained

e w = 769.574 Hz (122)
This value represents the classical plate solution and can be compared

...? to the value obtained for the natural frequency, using the ILevy technique,

i given in Table 3.4
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I.‘ b

)
M)

4]

v

R

.‘l

:: s s Levy Method Levy Method
“ M. (a/h) SD and RI SD no RI

' 10.0 4891.466 4917.118
b 12.5 3282.50 3294.

15.0 2344.26 2350.771

. 17.5 1753.1 1756.

[)

b 20.0 1358.306 1360.588
R\

I 22.5 1082. 1083.

i 25.0 881.889 882.872
& 27.5 732. 732.

1,

L)

'y All frequencies are in Hz

"

¥

9 Table 3.4 Natural Frequency of Two Inch Thick Plate
k With and Without RI. Simple-Clamped

) Boundaries in Y.

j &

X Thus, as the plate thickness ratio increases amd the effects of shear
1Y

N deformation and rotary inertia became negligible, the results approach the
L

classical solution of 769.574Hz. Classical solutions for other boundary

{0

o corditions or for the stability problem could not be fourd in the literature.
.
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;:1 N Analysis of Shear Deformation and Rotary Inertia
N a)
o \$\"
Ty N
'l .
_\_,. The second main area of investigation in the thesis is the importance of
‘N
~
o including shear deformation in the plate model for the six different boundary
W,
™ .
e corditions proposed for the plate study. In the case of the vibration
:;l analysis, the benefits of futher model refinement, due to the addition of
’ N
:*; rotary inertia, is also investigated. The analysis is accamplished by
e
.32!. performing calculation for various plate length to thickness ratios and
r
N camparing any trends to behavior predicted using classical plate theory.
s 204
=
H J:"
ﬂ‘: The following discussion is separated into two sections; the first
‘ considers the buckling problem, the second, the free vibration prablen.
;;Z
g
'
*f. - Buckling Problem
L o
o e
?:g.: For each boundary condition, increasing length to thickness ratios anmd
0
§
W length to width ratios are programmed and solved. Computational limitations
play a limiting role as far as how many different length to thickness and a/b
o
:Ef: ratios may be investigated for the various y directed boundaries. In the
:; subsequent presentation of results for each B.C., the range of S and plate
")
‘_‘ aspect ratio for which useful data is obtained is given. (This gives a good
5
:::; indication of the limitations of the program written for this thesis). For
7
?.: all boundaries however, an increase in the length to thickness ratios
a4 indicates a decrease in the effect of shear force variations through the
O
-~ thickness. That is, the approximation that shear reformation effects are
Lo,
) negligible is increasingly valid as the plate becames thinner and physical
ol differences in the z direction became very small. The thinner plates quickly
.’:_- “5
I~
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tend to the classical plate behaviour as S is increased past 40. This trend
e is apparent on all of the subsequent figures depicting non-dimensionalized

buckling load N, (-Nxaz/vrz,/D ) vs length to thickness ratio.

llDZ2
The non-dimensionalizing parameter is chosen as it clearly illustrates

the effects of two important variables on the buckling load. The first is the
length to width ratio (S) of the plate, the second, the aspect ratio of the
plate. The curves assymptotically approach limiting value as S increases and
this value can be seen to represent the classical laminated solution. No
results are presented for length to thickness ratios under 10 for any of the
boundary conditions. It is important to realize that the assumptions of plane
stress and no strain in the z direction are less and less valid as S
decreases. The errors resulting fram the assumptions are no longer negligible
at length to thickness ratio less than 10 and any results obtained are
invalid. By choosing this non-dimensionalizing parameter, the reader also

@ gains a better appreciation of the dependence of the buckling load on the

aspect ratio as the latter is varied from two to four.

For the plate simply-supported on all sides, a square configuration is
used in calculating the buckling load. length to thickness is varied from 10
to 30 and the results are presented in Figure 3.1 for the first bending mode.
The curve for the non-dimensionalized buckling load is seen to flatten out for
S approaching 32.5. The difference at this point between CPT and shear
deformation theory (SDT) is negligible. For a thicker plate however, the

difference increases to a maximum of 26.8% for an S of 10.

For the plate which is clamped at y=0 and y=b, a rectangular plate with
aspect ratios (a/b) of two, three and four is used in the analysis. Length to
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thickness is varied from 10 to 37.5 for the first plate. The curve of the
non-dimensionalized buckling locad once again behaves asymptotically as the
value of S becames greater than 30 (See Figure 3.2). For an aspect ratio of
two, a maximum difference of 37.14% exists between the SDT value and CPT
extrapolated value at S equal to 10. As the aspect ratio increases, the non-
dimensionlized buckling load increases. This is misleading as the
dimensionalized buckling load, Nx’ does in fact decrease, as a/b increases,
indicating a decrease in the plates' ability to withstand the uniaxial
campressive force. The maximum difference between CPT and SDT, for a/b equal
to three, is approximately 36.65%. For a/b of four, S is varied from 20 to 40
with a maximum difference, between the theories, of 36.28% occuring at S equal
to 10. CPT solutions for orthotropic plate, presented in reference [28],
indicate that a cammon solution exists for all aspect ratios greater than two.
Results shown in Figure 3.2 indicate that plates of different aspect ratios do
not have common asymptotic values for S equal to 40. It is apparent that as
a/b is increased the difference between asymptotic values does not vanish due

to the interaction between boundary and buckling load.

A square plate is used to analyze the simple-clamped boundary conditions
in y. The curve in Figure 3.3 is plotted for length to thickness ratios of 10
to 25. Camputer limitations prevent larger S values from being used to
calculate the buckling load. The maximm difference between SDT and CPT
occurs at a length to thickness ratio of 10 and has a magnitude of 29.03%.
The extrapolated value for the classically derived buckling load is reached

fairly quickly at S equal to 32.5.
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b .':; _;".\:.; For the simple-free boundaries in y, the behaviour of the square plate
.'5’-’ Ay is depicted in Figure 3.4. S is varied fram 10 to 22.5, the upper limit a

;::‘ function of camputer limitations. The results allow the characteristics of
‘%E: this boundary to be studied and a difference, between the two theories, of

:"' 23.01% exists at S equal to 10 and decreases as S increases.

:

E: The clamped-free y directed boundaries are studied using a rectangular
f.. plate with aspect ratios varying fram two to four. For a/b of two and three,
:::3: S is increased from 10 to 30. For a/b of four, S is increased to 40. The
::3:: three curves are plotted in Figure 3.5. Once again, though the curves show

‘- asymptotic behaviour as S is increased, the values at a length to thickness
:'_-.'_' ratio of 40 are different for each plate aspect ratio. This demonstrates the
p J_ significance of the shear deformation in an accurate model of plate behaviour.
"- ‘ﬁ“ Maximum differences between classical theory and shear deformation theory

" varies from 26.86% to 27.84% as the aspect ratio increases from two to four.
3

;, The final results abtained for a buckling problem are presented in

, Figure 3.6. The free-free boundaries considered are analyzed using a

5_; rectangular plate with three different aspect ratios. For a plate aspect

R ratio of two, the length to thickness ratio is varied from 10 to 40. A

:_: difference of 26.92% exists between SDT and CPT at S equal to 10 for this

,'E first rectangular plate. For a/b of three, S is also varied from 10 to 40 and
\;} the disparity between theories peaks at 23.4% for S equal to 10. The final
;;"0 plate studied, with an aspect ratio of four, has a range for S of 10 to 40.
'ESE: The max divergence between theories, at S equal to 10, is 23.81%.
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L {\.;;—_.ﬁ It is interesting, at this point, to campare same of the results
! e
K obtained in order to better understand the interaction, if any, between the
3’ boundaries in the y direction and shear deformation effects. To do so, plates
4
:‘_ with similar geametries and different boundary conditions are campared in
- Table 3.5.
)
t
'0
® Boundaries Aspect Ratio Max Difference
N iny of Plate between SDT/CPT
. (%)
.
; Ss 1 26.80
("
| sc 1 29.03
W
SF 1 23.01
p cc 2 37.14
; . cC 3 36.65
‘ L}
R g cc 4 28.00
f [
- CF 2 26.86
14
& CF 3 24.31
K
b
P CF 4 27.84
o FF 2 26.92
. t
B FF 3 23.40
pc FF 4 23.81
b
e Table 3.5  Coamparison of Discrepancies Between Shear
5 Deformation Theory and Classical Plate
\ Theory for Stability Problems.
q
o
b
¢ General behaviour characteristics became more apparent fram this table.
W
¥ First, the effects of shear deformation are very important regardless of the
M Q‘ﬁ; type of boundaries for the plate. An average difference of 28.50% exists,
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nes

N
s;q
¥
:" regardless of the B.C.'s in y, between the models of plate behaviour for the
[}
R\ -ﬁ:. orientation studied. The effects of shear deformation are somewhat lower for
M \
]

- the free-free boundaries than those which have any form of restraint. The

Ll

_J; free~-free boundaries have an average difference of 24.71% campared to 33.18%
.‘..'
i for the other boundaries in y. This is most likely due to a greater reaction
:j between buckling load and boundaries if the boundaries are prevented from free
:.:' movement .
‘,..

"

:‘.
’ Secondly, as the plates get thinner, the shear deformation effects
X
i, remain important. For the rectangular CF or FF plates under study, the plate
N
\,‘ behaviour becomes less influenced by the shear deformation as the aspect ratio
(o
- @ is increased. In addition, the asymptotic value reached by the plate as it
:t'-'. becomes thinner remains different for the range of aspect ratios investigated.
r:
:"_:. Unlike classical theory which predicts a cammon asymptotic value for all a/b
(e ratios over two (refence [28]), SDT indicates that shear effects, though
. A Ed

:;__ small, still linger even as S increases to 40. Differences in the asymptotic
N

{_{ value do decrease however, as a/b increases for the free boundaries.

e
®)
::: Thirdly, the results validate the approach presented in the theory

-”

,"r- section for dealing with camplex conjugate roots to Eq. (65). These roots

s

: occuratvalu&ofowhicharelwerthanforthecaseofthreenealroots.

~
,,-: Hence, an erronecus root would appear higher than the general trend

-

Py established with the best-fit curve. For the stability problem, only two such
h)

® possible cases did occur for all the computations and they are indicated on

L)
& the respective figures.
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Fourthy, the plate aspect ratio is an important parameter to consider in
K Q:E: a stability problem if the plate boundaries normal to the applied force
provide same restraint. Figure 3.6 clearly shows that free boundaries lead to
similar values for critical load regardless of a/b.
Finally, stiffer plate supports result in higher buckling loads. This

canbesee.nbyomparirgvaluesofocalculatedfortheCCandCFboundaries.
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%
) }‘ o, Vibration Problem

o N
A

R In a procedure similar to the one followed for the buckling problem,
: o each different boundary condition is studied by altering the length to
: thickness ratio and when necessary, the length to width ratio. Initial tests
oy are done with rotary inertia effects removed fram the model. The second runs,
‘ S with RI re-introduced gives a relative perspective of the importance of shear
Eﬂ and inertia in an accurate representation of plate action. Generally
“! speaking, Table 3.4 provides a good idea of the trend cbserved for all of the
:": vibration problems studied. Rotary inertia is found to decrease the overall
‘:. stiffness of the plate by an average value of less than one percent. Relative
,':. to shear deformation, rotary inertia camplicates a plate mathematical model

’:; with no important increase in accuracy.
)1 ° As was the case for the buckling problem, a trend that is observed,
E regardless of boundary conditions, is the diminished impact of shear
>

.. " deformation as plate length to thickness increases. All curves of w

- (wa’ (p/E,n%)/?) vs s show a decrease of the discrepency between SDT and CPT
: as S increases. Transverse shear variations are inverse functions of plate
: - thickness and became negligible for high enough values of S.

x
_':: For the plate simply-supported on all sides, a square geametry is used
,: in calculating the natural frequency. lLength to thickness is varied fram 15.0
_ to 30.0 and the results are recorded in Figure 3.7. The curve is for the
model that included rotary inertia effects. The average difference

..3; with/without RI for this problem is 0.19%. A difference of 29.14% exists

__::' _':f_':‘.:’, between SDT and the extrapolated CPT when the length to thickness is 10. This
?._E h difference drops very quickly as the curves flattens out around S of 32.5.
;;'. 70
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A rectangular plate with aspect ratios of two, three, and four is used
in the analysis of the clamped-clamped y boundary conditions. As seen in
Figure 3.8, S is varied fram 15 to 35 for the aspect ratio of two. Maximm
deviation between theories is 38.64% for this geametry. Variations of S fram
20 to 35 are used in calculations for a/b equal to three. It becomes clear
from Figure 3.8 that a narrower plate is stiffer as the natural frequency
increases. The plate behaves more and more like a reinforced beam as a/b
increases past a ratio of two. Maximum theoretical difference for this
configuration is 33.4% for a/b of four, this maximm reaches 34.43% as

frequency is plotted for S of 20 to 32.5.

The scquare plate is once again used to analyze the simple-clamped
boundary in y. The curve in Figure 3.9 is valid for S ranging from 15 to 25.
Computer limitations prevent the use of larger S values in the computation of
the natural frequency. A maximum divergence of 36.4% is recorded for this
plate between theory considering shear through the thickness and classical

analysis.

For the simple-free y directed boundaries, plate behaviour is depicted
in Figure 3.10. A square ard a rectangular plate are used to show frequency
variations as functions of plate length to thickness ratios. For the square
plate, with a variation in S of 17.5 to 22.5, the maximum difference between
theories is 16.1%. For the plate with aspect ratio of two and variance of S
of 15 to 35, this difference pe»ks at 20.2%. For this problem, it is
interesting to note that an increase of a/b fram one to two represents a

decrease in plate stiffness.
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K . The clamped-free plate, whose behaviour is illustrated in Figure 3.11,
[} ‘. 'l':
;"‘3 R" is studied for three different aspect ratios. Once again, the influence of
-:, shear deformation is very noticeable as is the fact that this influence became
o .
: neglibible quickly as S approaches 40. Maximum differences between classical
! theory and shear deformation theory vary from 19.44% to 22.16% for aspect
\
j ratios of two to four repectively.
&3
o
;‘!' Important trends are seen to be slightly different for the vibration
1Y
':" problem than those recorded for the buckling proablem. First, the overall
P
: > impact of shear deformation seems to be equivalent for the vibration problem,
)Q &I
Wi as illustrated by the values in Table 3.6. Regardless of y boundary
o corditions, average, difference between SDT and CPT is 27.02% for the
:'_ vibration problem, very close to the 28.82% obtained for the buckling problem.
¥
{. v 6;-:,;; (In this camparison, RI effects have been excluded for the vibration problem.)
[ ]
'}.'. ) The values cbtained in Table 3.6 compare normalized frequency at S equal to 10
__Q and 30. For values of S less than 10, the discrepancy between SDT and CPT
W,
;f quickly increases.
D
Ao
gl
":-; Secondly, shear is more important to consider when studying the boundary
P

conditions which are stiffer. The clamped-clamped, simple-clamped arnd simple-

ey

simple have an average difference between the two theories of 34.4%.

o

;:,:; The boundaries containing a free edge, on the other hand, have an average
.

i\ discrepancy of 19.64%. Thus, the shear force effects are higher when the
0.

e influence due to rigid plate boundaries is more pronounced.
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X
1
" Boundaries Aspect Ratio Max Difference
h Q‘&Q’ iny of Plate between SDT/CPT
; (*)
y SS 1l 29.14
¢
' sC 1 36.40
[ SF 1 16.10
!
3 SF 2 20.20
‘
N oC 2 38.64
. cc 3 33.40
4 cc 4 34.43
. CF 2 19.44
L}
' CF 3 20.32
v cF 4 22.16
> F'e
! 6( Table 3.6 Camparison of Discrepancies Between Shear
“ Deformation Theory and Classical Plate
N Theory for Vibration Problems
2
)
»
" Thirdly, a quick comparison shows that the stiffness of the boundaries
D
3 does affect the magnitude of the natural frequency of the plate. The stiffer
b the supports, the higher the natural frequency of the plate. This can be
clearly seen by camparing values of w for the CC vs the CF plate or the SS vs
'
¥ the SF plate.
&
‘ Finally, camparison of the two inch plate used in this thesis to the one
o inch thick plate used by Bowlus (2] imdicates a small difference in the
maximm discrepancy recorded between SDT and CPT. This is expected as the
[
thicker heavier plate is more affected by force variations through the
&Cj‘ thickness as they tend to be more pronounced than for a thinner plate.
4
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IV Conclusions

The results obtained from the camputations performed in this thesis
allow the following conclusions to be presented. They include caments on the
Levy technique and on both the stability and vibration problems. It should be
noted that all conclusions made are based on the specific laminate used in
this thesis. The author does not attempt to generalize the results for

laminates of arbitrary campositions nor should the reader.

Levy Technique

1. The Levy technique is a viable means of obtaining base-line solutions for
a specific class of laminated camposite plates.

2. The mathematics of the solution, especially for free boundaries, is a
great deal less algabraically camplex than what is generated using a Rayleigh-
Ritz or Galerkin approach.

3. The lLevy technique cannct be exterded to a general class of composite
plates. The presence of bending-extensional, bending-twisting coupling terms
or 016/02
equations to simple differential equations. Thus, though the Levy method has

6 terms would not allow the reduction of partial differential

been around for many years, it has never been fully taken advantage of due to
this drawback.

4. The transcendental equations, which are solved for the different
boundaries in y, are very sensitive to plate geametry. In many cases, certain

length to thickness or length to width problems could not be resolved due to

the accuracy limitations of the camputer used.




.::; o ______v.__mvm:mmmm-’
v
i
=
¢
:‘ *‘:3\ 5. Convergence is not a parameter of concern with the Levy procedure. It is
:"" i not a term dependent approach and consequently, the accuracy of the solution
:.: is not dependent on the accuracy of the displacement models.
0
o
:‘-' Buckling Problem
©d
il
5 1. As the length to thickness ratio is increased past 40 for the plate, the
;:'“' effects of shear deformation became negligible. Classical plate theory can be
." used effectively to predict plate behaviour for the thinner plates.

N\

S_ 2. CQurves of the nondimensionalized buckling load vs thickness ratio are all
'9 mamotonically increasing as S increases. The rate of increase does vary
‘. significantly when different ranges of S are considered. Increase averages
L

Yo 37.6% for S fram 10 to 20 and 28.7% for S from 20 to 30 for the boundary
-
s . conditions.
3 o

2 3. Shear deformation effects account for an average difference of 29.93%
b
/ ::, between extrapolated classical theory and shear theory. The effect is less
h
5. pronounced for boundaries conditions which are not very stiff, such as FF.
S
&N
") Vibration Problem

‘
L/ 'r*
" :

L
; 7 1. Curves for non-dimensionalized natural frequency vs thickness ratio are
")
_5' all monotonically increasing as S increases. Rate of increase does vary along
D)

the curve, being the largest for S fram 10 to 20 with an average value of

0.
i:?i 38.8%.

()
::.:: 2. Shear deformation effects account for an average difference of 27.02%
b...Q
:::!' between extrapolated classical theory and shear theory. The effect is more
l.’.l
e &
l'.. -
:",
o::.
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pronounced for the bourdaries which are stiffer, such as clamped—clamped or

y : simple-clamped.

Ko, 3. Rotary inertia has very little effect on the overall plate stiffness and
can be neglected in the mathematical model of plate behaviour when calculating
the first natural frequency. For higher natural frequencies, RI may have
significance and should be retained, but this has not been evaluated within

, - this thesis.

77

55 ¢
A

R 81

ALKy VL

) ,- - \ -"1" B T T R AT L) 5\\.‘ 5‘“ y o o "". o . ”N-‘ —-.“.na.‘~.\‘:-.-\’-_‘~\.>.ﬂ-_‘ﬁ
LRl nl"'lyl > A% lllp Pt Ry, » Q‘l. Al .. .!‘lg 'n. -'I.. o & .:f..l» o ..'4 .!"'q ..!._4|,r..q~..A.ll P mu‘r Q\ﬁ



Appendix A _

\m
B WS

BOOGDGAC JA0 RSO
) ‘l:, KB ,v'i.-*‘-fz “r"ﬁ,-,“‘,c‘ . 2,8 ;,0 b ‘ﬁg‘ vll r“ l!g“ o‘l 00 b ‘y N q,\ % t q.l\ 0 Q. '.

LA \
DR L IR E A m'lf» W, i“u'ht"‘ncb‘\'i AR




e

-

XX
atatalny

C A X

-

.
) A5 3

. np e
TNCA M A IS

;_.__-,--
o =
- ¥

PRI <,
- - - -
' - -¥

N BUCKLING ANALYSIS
Matrix (Al ]
t =z ]
Cn r 2 z ]
L ~———= + ¢t -n - n t ]
£ =z ]
L ]
C 2 2 ]
C f t an ent ]
C -n ———— - === -1 ==——- ]
L z 2 2 ]
C ]
L 2 z ]
£ e n t h ¢t fn ]
L - ¢t - em——— mmme - - -1
C z z z ]
Commands used to obtain simplified expression for det(Ai))
1) determinant (%4);
if; 2) ratexpand(%);
3) xthru(#);
4) factor (%);
S5) # by z##3/fhz;
Expression for the determinant of [Ai jl.
2 2 2 2 2 2 2 2
n r 2 2 f t gn h t fn e n ¢t
(==== 4+ &t - n ) ((-=== = ——=== = 1) (==== = === = ]) + ~—————t )
2 b4 z F4 z z
2 P 2 2 2 2
. ent h t fn f t an en ¢t
- % -
ﬁxp +n (—————- - N (m=== = ==—= = 1)) + ¢t (t (=== = =——== = 1) 4 ——we—a
z z z 2 2 2
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Simpli1fied expression for

4 =z < 2 2 2 2 2 2 2
(-ht 2z +2fn t 2z + 2en ¢t z +n r 2z -
z 4 2 4 2 2 4 2 2 4
- ghn t z-fhn t z-f n t z+e n t =z
2 2 4 2 4 2 2 4 Z2
- fn rt z+ghn t 2+ fagn t 2z + f n t
4 € 2 4 4 2
+fn rz-fgn z+ fhn rt -ghn rt - f
€ € 4 2 4 2
+ fgn r + fht z+agn rz+e n rtH)/(fh
Expressions for Aj) in Equation(&3).
3=fhz/fhz=1.0
2 2 2 2z 2 2 2
AzZ=(-hz —-ghn z-fhn z-f n 2+e n z+fhn r)/fhz
22 22 2 2 4 4 2 4 2 4

Al=(2fn z +2en 2z

4 22 2 4
-ghrn ~f n r+e rn J)/fhz

2 2 4 4 € 2 4 6
AO=(n z r+gzrn +fzrn +fgrn -gz n —fgrn J)/fhz
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Commands used to obtain simplified expression for det(Ai jl:

I

1) determinant(%);

2) ratexpand(%);

Bl

o
RO [ 1. % T

1

H’
[y
i.:-

3) xthru(id;
4) factor (X);

S) # by z*x3Z/fhz;

Expression for the determinant of [Ail j).
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Simpli fied expression for the determinant of [Aijl.

ty
i
4

W -g@n 2z -2xyz-ht yz-ft yz+an yz+fn yz

2 2 4 4 2 2 2 2
W “-n x z+ht xz+ft xz-hn t xz-gn t xz

i 4 4 € 2 4 2 4
Ay +an xz+fn xz+fht 2-ghn ¢t z-fhn t =2

2 2 4 4 2 4 2 2 4 2 2 4 2
deh + e n t z2z+ghn t z+fgn t z+f n ¢t z2z-e n t =z

nett 2 2 2 2 2 4
4 + x y+ht xy+ft xy-agn xy-fn xy+ fht y

o 2 2 z. 2 2 2 4 2 2 2 2
it -f n t y+e n t y+fgn y+t x z-2fn t xz

2 2 2 4 6 2 2
,f -f n t z2z-fagn z-ghn t y)f h 2)

oy Expressions for EJ in Equation(81).
o) B3=fhz/fhz=1.0

e 2 z 2 22 z2
ol B2=(~hz +hxz+fxz—ghn z-fhn z—-f n z+e n z+fhy)/fhz

¢ 2 22 22 2 2 2 2 4
y Bl=(-xz +2fn z +2en z -hyz-fyz+x z-hn xz—gn xz-2fn xz+ghzn +

NS 4 2 4 2 4 2 22 22
fgzn +f zn -e zn +hxy+fxy-ghn y-f n y+e n y)/fhz

A 2 2 2 2 4 2 < 22 4 4 &
N BO=(yz +n xz2 -gz n -2xyz+gyzn +fn yz-n x z+gxzn +fxzn -fgzn +
e 2 2 2 4

O, X y=gn xy-fn xy+fgyn )/ fhz
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Apperdix C

The first program is a fortran rewrite of a basic program used by Bowlus
[2] to determine the nondimensional stiffnesses of a laminated plate. In
particular, the program is rewritten to specifically hardle [0/90]lls ply
layups and no other as this is the only type of plate studied in this thesis.
The program has four main sections; the input, the camputation of lamina
stiffnesses, the camputation of the laminate stiffnesses and the output. The

input abtains the following

a) plate top and bottam dimensions

b) El, E,, G 12 and mass density for laminate material

12 Y
c) mmber of plies in laminate

Based on this information and the fact that only [0,90]lls laminates are
considered, a do~-loop is employed to calculate the non-dimensional lamina
stiffnesses [Qij]k'
at 0°, the next m/2 at90°andthe1astm/4 at 0°. This allows the use of a

An "ms" laminate means the first m/4 lamina are oriented

simplifying do-loop. Once a lamina [Qij]k is calculated, it is added to the
sum of the other k-1 lamina stiffnesses and the k+1 stiffnesses are

calculated. Doing this m times gives the non—dimensional laminate stiffnesses

[Qij]. The second and third sections of the program campletes these steps. |

The output is presented to the user in the form of a table which gives the ‘

4

' q type of laminate studied and a listing of the non-dimensional stiffnesses |

N calculated. ‘
o
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c##% Frogram to compute the extensional and bending
ceunud gtiffness elements for a symmetric laminate
c#neu® build-up, given lamina properties.
4 EXITZITTITIEISESSEE SR RIS 22222222 2R 2222222222222 22222 Y
write(6&,10)
10 format (’enter plate top & bot dimensions,use Z2f10.5%,/)
read(S5,19) ztop,zbot
1S format (2f10.5)
c
c section to obtain lamina data
17 write(g, 20)
20 format ('enter E1,EZ,G12,v1Z and mass density’,/)
write(g,30)
30 format ('use 3el10.2 and 2f7.3, OK??,/)
read(5,40) El,EZ,51,V1,rha
40 format(3el0.2,217.2)
45 write(g, S0
S0 format ("how many plies in this plate,use 13’,/)
read(5,60) n
€0 format (I3)
VZ2=V1*(EZ/E1)
53=G1
532=0,8#51
a1=0.0
az=0.0
d1=0.0
d2=0.0
d3=0.0
d4=0.0
ps=0.0
c
c section to compute A and D elements for this ply
c
R1=E1/(1.0=-(V1#V2))
Q2= (VI#E2)/(1.0-(V1#V2Z))
Q3=E2/(1-(V1#V2))
Q4=i52
@S5=G3
QRE=G1
tk=(ztop—-zbot)/n
k=n/4
DO 100 I=1,n
ifcl.gt.k) go to B8O
70 th=0.0
4 ao to 30
o 80 if(I.qt.3#k) go to 70
R th=3.1415327/2.0
N -
" c section to compute BGBARS 3
' < |
7t 90 Bi=Q1#(COS(TH) ) ##4+2, 08 (Q2+2,. O#QEI# (SIN(TH) ) #uln
; % » (COS(TH) ) #22+Q3%# (SIN(TH) ) #»4

BZ2(Q1+03-4.0%#Q€6 )% (SINC(TH) Y #2228 (COS(TH) ) ##Z+
» Q2R C(SINC(TH) ) # 24+ (COSC(TH) Y #xq4)
ot B2=Q1# (SIN(TH) ) ##442, 0% (Q2+2. O#0E) # (SIN(TH) ) ##2a

s ; g
AN MO A0 IREELE
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N
(1
o » CCOSCTHY ) #%2+Q3% CCOSCTH) ) ##4
e B4=(Q1+0Q3-2, O%Q2-Z. O#QEI # (SINCTH) ) ## 2% (COS(TH) ) %42
B * +QE# ((SINCTH) ) ##4+ (COSCTH) ) ##4)
w ng ES=04# (C0S(TH) ) #%#2+Q5# (SINCTH) ) ##2
S BE=QS# (COSC(TH)I ) ##2+Q4# (SINCTH) s #xZ
e < section to compute lamina A elements
o -
?ﬁ Zi=ztop-I#tk
Tq IK=ztop-(I-1)#tk
vt AS=B5%* (ZK~Z1)
o Ad4=BE*(ZK~-Z1)
§f F=RHO%* (ZK-21)
Y D
ik < section to compute lamina D elements
N Lo
8 DZ=(ZK##3-Z1%#%3)/3.0
. Fil=B1%*DZ
Gk F2=R2#D2
o 3=B3#DZ
0 F4=B44DZ
) c
é' C section to find laminate A and D elements
0 Al1=A1+A3
o A2=AZ+A4
R D1=D1+F1
i Dz=D2+F2
' ﬁ‘ D3=D3+F3
a4 . D4=D4+F 4
i PS=FS+F
o 100 continue
o C
j: < section to print out A and D elements of laminate
) [
“ write(&, 200)
{§ 200 format (2€x%,'graphite-epoxy [(0,901',/,4€6x%x,'28',//,
B #32x,'one inch thick’,///,21%x,’element’ ,4x,
iq #'dimensional value’,///)
' write(6,300) A1,A2,D1,D2,D3,D4
200 format (23x,"A44' ,10x,F13.4,///,23%, 'AS55’,10x,
ol #F13.4,7///,23x,'D11?,10x,F13.4,///,23x,'D12", 10x,
;ﬂ #F13.4,/7//,23%,"'D22'",10x,F13.4,///,23x,"'DEE’,
e #10%x,F12.4,///,’Units for Aij terms are 1b/in’,
ot *#///,'Units for Dij terms are in-1lbs’,//)
O write(€,350)
9. 350 format (' another problem maybe? yes=1,no=X',/)
.::; read(5,360)
hi 360 format(I1)
:ﬁ 1ffJ.eq.2) go to 400
e write(g,370)
" 370 format (*'same physical pro. but diff. # plies™ yes=1’,/)
L4
. read(35,380) m
'j;.: @‘ 280 format (I1)
e ' if(m.eq.1) go to 45
Qx Qo to 17
:f 400 stop
Y end
't:" 88
)
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Appendix D

This second program, also written in Fortran, has four main sections.
The transcendental equations in the fourth section of this program are solved
using the incremental search technique. A flowchart describing the mechanics
of this technique is included in Apperdix E. The four sections of the program
are; the input, the calculation of the coefficients of the sixth order
equation in 6, Eq. (63), the evaluation of a, 5, vy, and related values such as
A(a), and the solution of the transcerdental equation for a particular set of
boaundaries in y.

The input section abtains the following data:

a) mumber of modes, n, calculations are to be repeated for

b) a/b ratio of the plate

c) does user want to include effects of shear deformation

and/or rotary inertia in calculations?
d) the boundary conditions in y
e) buckling or vibration problem ?

The following are an intrinsic part of the program but can of course be
altered by editing the source code:
a) the material properties of the plate under investigation
b) a/h ratio used in calculation (autaomatically varied fram
10 to 50 for each a/b ratio inputed)
c) initial and final values of eigervalue, initial increment
for eigenvalue and answer tolerance (all parameters
required when using incremental search)

89
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Depending on the type of problem being solved, the second section of the
program calculates the coefficients of Eq. (63). Subroutines are used for
this purpose and appropriate terms are omitted if, in the vibration analysis,
rotary inertia is removed. Values returned are used in the third section to
calculate a, 8, and v, and all other terms required to define the
displacements. These terms are defined by Egs. (69), (70), (72), (73), (82),
(83), (84), and (85).

The expressions for the transcendental equations, camputed in the
previous section of the thesis and subsequently encoded, are evaluated in the
final section of the program. An eigenvalue, for the particular problem under
consideration, is dbtained when the transcendental expression is identically
zero. In using this program, one should realize that certain limitations to
the plate geametries, which may be studied, do exist. These limitations are
either camputational or theoretical in origin. For each boundary condition in
y studied in the thesis, the range of S used in the calculations and the
aspect ratio of the plate are specified. These provide the user with a very
good approximation of the useful camputational limits of this program.

Inconsistancies present in the theory can best be identified by
examining the graphical results and observing deviations fram the general
trend. As was discussed earlier, same deviations may result from the
assumption that all roots to Eq. (65) are real. Neglecting the camplex
conjugae roots is a good simplification as only two instances occur, in all
camputation, where the roots appear to be camplex. A second source of
deviation oocurs when a very thick plate, S around ten, is studied. In this

case, the assumptions of plane stress and no strain in the z direction may

lead to errors which are no longer negligible, depending on the boundary




::( - conditions. Such deviations, did occur twice, both times for S less than 15
g @
S and are identified on the appropriate figures. Thus, the theory is inexact

N hut more than adequate for the problems studied in this thesis.
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@ﬁ c Program to obtain uniaxial buckling load for a square ‘
ﬁm fﬁ# ¢ composite plate given boundary conditions. Program can
", 3&» ¢ also calculate the natural frequencies of such a plate.
. R LI SIS Y YRS YR NSRRI SR T TT R YT TR EFT LR TH T T T LI F Ry
KX DIMENSION deter (2),A(3),KAPA(3),KAPA1(3),0MEGA(3),0MEGAL (3) |
o REAL NU,n
& INTEGER type,bc,pp,sd {
L DOUBLE PRECISION aa,thick,r,w,coeft4,coeft2,coeftO,e,f,qg,
ﬁ #h,z,x,b,c,d,p,q, ALPHA, BETA, GAMMA, A, KAPA,bb,Vv1,v2,v3,v4, :
N *vS, v6,v7,vB, pi,BIGB, U, VE, ALPHAZ, BETA2, GAMMA2, KAPAL, |
. #det,DIS,rho,al1,a12,a13, a21,a22,a23,a31,a32, a33,0MEGA, l
?ﬁ #0MEGA1, eigen, xmax,dxi,epsi,deltx,v9,viO,vil,vi2,vi3,vid4,0
K #E2, answer
}Xﬂ COMMON /A/A44,D12,D66,D11,D22,m, aa |
\ ¢ Material properties for a composite plate 2" thick.
+ 4 A44=1080000. 625
, D11=12441315.0
ah D12=281690.125
e D22=2582159.0
ﬁq D66=400000.0
i) rho=0,05S
¢ E2=1.40d06
> rwrite(6,6)
. 6 format (’remember,this plate is 2" thick!’,/)
Wl 10 write(6,40)
T 40 format ('how many modes problem to be solved for?,use [1?)
0o read(5,50) mm
cji ¢ The user must choose for how many modes he wants to solve
i ¢ a particular a/h & a’b geometry for. ‘
o 50 format (I1)
5 write(6,60)
kﬁ 60 format (*problem to be solved?buckling=1,vibs=2’) :
K\ read(5,70) type |
h) 70 format (11)
N write(6,80)
9] 80 format ('what is a/b & thickness of the plate?’)
W write(6,90)
?. 90 format ('use 2f8.3 to input values,okay?’)
P read(S,100) ab,thick
® 100 format (218.3)
it write(6,103)
ﬁd, 103 format(’do you want to include SD? yes=1,no=2')
s read(S,106) sd
o 106 format (I1)
" write(6,110)
X 110 format ('do you want to include RI? yes=1, no=2’)
I read(5,120) L
K 120 format(I1)
oy write(6,12%5)
7 125 format ('what BC's do you want for y=0,b ?',/)
Y write(6,130)
. 130 format (*SS=1,CC=2,SC=3,SF=4,CF=5,FF=6',/)
o gg; read(S,13%) bc
m; - 135 format (I1)
o aaa=10.0
JS 140 m=1
l..
Y
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¢ Program loops through m from 1 to mm, the number specified
C earlier by the user.

aa=aaa#thick

bb=aa/ab

c program varies a/’h from 10 to 55 for every value of a/b
c¢ specified by the user.
145 k=1
eigen=200.0
xmax=2000000.0
dxi=100.0
epsi=0.00001
del t x=dxi
146 if(type.eq.1) go to 150
w=eigen
go to 160
150 r=eigen
R 222 2 TSI SIS ISSTT R SRS E TR T I AT T LRR AR L LT L LTI

c Start of gecond section of program.
c Calculation of coefficients of angle theta used to
C define displacement and rotations.

R I I TSI TSI SR ISR IR IES IR SRS XA LSS FIEL LI SR X
call buckle(:zoeftd,coeft2,coefto,r,n,e,f,g,h,z,sd)
if(ad.eq.2) go to 899
9o to 170

160 call vibs(coeft4,coeft2,coeftO,w,rho,thick,n,e,f,g,

#h,L,x,z,sd)
if(sd.eq.2) go to B99

€ AN I IE T 000 03930 236363000 36 3 3636 3 230 363 3 3 3 38 36 3 36 36 436 9 3 34 36 96 ¢
[ Start of third section of program.
c Evaluation of alpha, beta, gamma and related terms.
R Iy T Ty I R YN Y YT R I SRYIE NI YA STT I I X E X
170 b=coeftd

c=coeft2

d=coeftO

p=c-b#*b/3.0
qQ=d-b#c/3.0+(b##3%2,0/27.0)
DIS=-27.0#q#q—4.0%p*»3

i f(DIS)300,400,400

¢ if the discriminant is < 0, we have only one real root

¢ to the cubic. Physically, this does not make sense. The

C program will not use the eigenvalue in any further calculations
¢ but will go to line 755, Here, the eigenvalue will be increased
c by an amount of deltx and b,c,and,d will be recalculated.

300 go to 735
400 pi=3.1415927
do 500 I=1,3
BIGB=dsqrt (-4.#p/3.)

U=3.#sqrt (3.)#q/ (2. #p#dsqrt (-p)) EvALUATION OF

VE=(dacos(U)/3.)+(I-1)#pin2./3. 3REAL RooTS
NU=dcos (VE)
AC1)=NU*BIGB-b/3. OF £an (65) OR
%500 continue Ean( 8\)
ALPHA2=A(1) &%
BETA2=A(2) st
GAMMA2=A(3) rt

i f(ALPHA2.1t.0.) ALPHA2=-1.#ALPHA2
i f(BETA2.1t.0.) BETA2=-1.#BETA2
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if(GAMMA2.1t.0.) GAMMA2=-1.%GAMMA2
.g . ALPHA=dsqr t (ALPHA2)
AU BETA=dsqrt (BETA2)
R GAMMA=dsqr t (GAMMA2)
’ if(type.eq.2) go to 650
¥ do 550 J=1,3
c Buckling Problem
(-, c if one of the roots of the cubic is negative, then eqs(12)
R c and (13) must be used instead of eqs(69) and (10).
o\ if(A(J).1t.0.) go to 530
\ < eq(éd) and eq(10) follow:
K KAPA(I)=((h*A(J)—z—n#n*f)En*z—n¥*e*z#A(J))

S‘ » /CCh AT —z-nen#f) # (fRA(J)—z—-neneg)+ Ear-(69)
b * n¥nxexexA(J))

o if(J.eq.1) angle=ALPHA

B if(J.eq.2) angle=BETA

r if(J.eq.3) angle=5AMMA

e KAPAL1 (J)=(n*z-(f#A(J)-z-n#n*g) *KAPA(J)) / (n*e+angle) Eaw.{10)
' - go to S50

o c eq(72. and eq(713) follow:

:t 330 KAPA(J)=((h#A(J)+n¥nxf+z) ¥n*z—nrexz*A(JT)) Ean-(12)
0 * /(n#nkexerA(I)-(h#A(J)+n*n*f+Z2)# (fXA(T)+n*¥n*g+2))

if(J.eq.1) angle=ALPHA

N i f(J.eq.2) angle=BETA

+ if(J.eq.3) angle=3AMMA

< KAPAL (J)=(n*z+ (f*A(J)+n#n#*g+2) #*KAPA(J) ) / (n*e*angle) EQ9113)

550 continue

' e go to 700

! ") 650 do 685 JJ=1,3

o Vibration Problem

- c if one of the roots of the cubic is negative, then eqs(&4)

A8 c and (65) must be used instead of eqs(82) and (83).

g if(A(JI)>.1t.0.) go to 6EO

K c eq(tdi) and eq(?3) follow:

) OMEGA (JI)=( (h#A(JI)-z-n¥n*f+x) #nkz-neekz#A(JI)) Ean. (22)

KX * /C(h#A(TT)=z-nan#f+x) # (fRA(TI)—z-nenkg+x)+

Iy * n¥neexerA(II))

\ if(JJ.eq.1) angle=ALPHA

if(JJ.eq.2) angle=BETA

o if(JJ.eq.3) angle=GAMMA
OMEGAL1 (JI)=(n#*z—-(f*A(JJI)~z—n#n#g+x) #*OMEGA(JJ))/ Eons(83)

“ * (n*exangle)

_ go to 685
< eq( ) and eq(ss) follow:
€60 OMEGA(JJ)=((h#A(JJ)+nen*f+z—-x) #n*z—n*e*z*+A(JT))
* /(adnereRA(II)~-(h*A(JI)+nn*f+Z2-x) # (fRA(JI) +n¥n¥g+z—x) )

] if(JJ.eq.1) angle=ALPHA ERX8Y)
if(JJ.eq.2) angle=BETA

N if(JJ.eq.3) angle=GAMMA

[
n

\

" OMEGAL (JJ)=(n#z+ (f*A(JI)+n*nkg+2-x) #*OMEGA(JJ)) / EQwn. (85)
; * (n#erangle)

¢ 685 contxnue

_ AR IZTZXIIZYYZERSZ YL SIS IR LRSS LSS IS LIRSS ST AL FR LR L
. N c Start of fourth section of program.

o A C solution to transcendental equation of boundary-value problem.
Ry C O RRARII NI T I IO R
:. 700 go to (960,1000,1100, 1200, 1300, 1400) bc

¥

e
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750 deter (k)=det
if(k.eq.2) go to 790

k=i+1
@ 755 eigen=eigen+del tx

go to 146

790 if(deter (1)+*deter (2)) 800,820,795
! 795 if(eigen.gt.xmax) go to 850
y deter (1)=deter (2)
E, go to 755
W0 800 if(deltx-epsi) 820,820,810
810 eigen=eigen-deltx
o deltx=deltx/10.
W go to 735
i 820 if(type.eq.2) go to 825
0 answer =eigen#bb#*bb/ (pi#piraa¥sqrt (g#h))
i\
e go to 827
825 answer =eigen

2 B27 write(6,830) aa,bb,m,answer

" 830 format(’aa=’, 8.3,x,’bb=’,f8.3,x,’n=?,11,x, 'root=’,d20.10,/)
i go to 890
KR 850 write(6,860)

i’ 860 format ("max value reached and no root found’,/)

- 890 if(m.ge.mm) go to 835

< ‘m=m+1

N go to 145

5 895 if(aaa.ge.45.0) go to 899

W aaazaaa+2.5

el . go to 140

63; 899 write(6,900)

. 900 format ("do you want to try another problem?yes=1')
o read(S,910)J

f 910 format(11)

X if(j.ne.1) go to 950
B write(6,920)

) 920 format ('any change in mat‘'l properties? y=1',/)
vy read(5,930) pp

\! véd=omegal (1)
vo=omegal (2)

o, 930 format(Il)

ﬂ, if(pp.eq.1) go to 4

P go to 10

o+, 950 stop

] 960 ifa(2).gt.0.0) go to 970

Do ¢ Routine to calculate detlaijl for "simple-simple" bc in y.

: det=beta-pi/bb

12 go to 750

™ 970 if(type.eq.2) go to 980

Jh vi=kapa(l)

® v2=kapa(2)

o v3=kapa(3d)

, v4=kapal (1) |
e vSskapal (2) }
) vE=kapal(3) |
! go to 990 {
’ 980 vi=omega(l) |
. A@ v2=omega(2) ‘
" < v3=omega(3)

95
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vé=omegal (3)
990 ali=(dsinh(alpha#bb))/1.d10

al2=(dsinh(beta#bb))>/1.d10

@ﬁ? al3=(dsinh(gamma*bb))/1.d10
az2i=(vi*dsinh(alpha#*bb’>/1.d10
az22=(v2#dsinh(beta%bb))/1.d10
a23=(v3#dsinh (gamma*bb))>/1.d10
a3l=(vd4*alpha*dsinh(alpha*bb))/1.d10
a32=(vS*betaxdsinh(beta*bb))>/1.d10

Iy a33=(vé*gamma*dsinh (gamma#bb))/1.d10

det=ali#(a22#a33-a32%a23)-al2#(a21#a33-a31#a23)+

1 #al3#(a21%a32-a31+#a22)
“ go to 750
\ stop

N 1000 if(type.eq.2) go to 1010
-t ¢ Routine to calculate detlAij]l for "clamped-clamped" bc in y.
vi=KAPA(1)
v v2=KAPA(2)
q v3=KAPA(3)
v4=KAPA1 (1)
vS=KAPAL1 (2)
" vE=KAPA1 (3)
v7=(v1-v3)/ (v3-v2)
v vB8=(v2-v1)/(v3-v2)
s go to 1020
'y 1010 v1=0MEGAC1)
. v2=0MEGA(2)
4 . v3=0MEGA(3)
' @Y% v4=0MEGA1 (1)
" - v3=0MEGA1 (2)
& ve=0MEGA1 (3)
b v7=(v1-v3)/ (v3-v2)
v8=(v2-v1)/(v3-v2)
1020 all=(dsinh(ALPHA#bb)-v4/vE*dsinh(GAMMA*bb)>)>/1.d10
al2=(dcosh (ALPHA#bb)+v7%#dcos (BETA#*bb)
#+v8adcosh (GAMMA#bb) ) /1.d10

A}

-

.
{ a13=(dsin(BETA*bb) +v5/vE#dsinh (GAMMA%bb))/1.d10
3 az2i=(vixdsinh (ALPHA®bD ) -v3%v4/vErdsinh (GAMMA®bbL))>/1.d10
% az22=(vi*dcosh (ALPHA*bb) +v2#v7%dcos (BETA#bb)
o #+v3#vBadcosh (GAMMA#bb))>/1.d10
) az23=(v2#dsin (BETA*bb) +v3#v5/vE#dsi nh (GAMMA*bb))>/1.d10
A a31=(v4#(dcosh (ALPHA#bb)-dzosh (GAMMA%*bb)))/1.d10
‘; a32=(v4rdsinh (ALPHA*bb) +v3#v7%#dsin (BETA#bb)
r- #+ve#vBadsinh (GAMMA*bb))/1.d10
3 a33=(v5#%#(-dcos(BETA#*bb)+dcosh (GAMMA#bb)))/1.d10
A det=ali®x(a22#a33-a32#a23)-al2#(a21#a33-a31#a22)>+
¢ *#al13#(a21#a32-a31#a22)
P go to 730
. stop
‘ 1100 if(type.eq.2) go to 1110 ‘
" [ Routine to calculate detlAi j) for "simple-clamped’ bc'’s in y.
- vi=KAPA(1)
- v2=kapa(2)
) v3=kapa(3)
Q Q&p vd=kapal (1) ‘
L vS=kapail (2)
o v6=kapal (3)
*
q
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o, go to 1120
o 1110 vi=omega(})
" v2=omega(2)
o @ v3=omega(3)
. vé4=omegal (1)
vS=omegal (2)

o vé=omegal (3)

g 1120 if(a(2).1t.0.0) go to 1130
.? v20=dsinh(beta*bb)

W v30=dcosh (beta#bb)

: go to 1140

" 1130 v20=dsin(beta#bb)

:b v30=-dcos(beta*bb)

.ﬁ 1140 all=(dsinh(alpha#bb))>/1.d10
e al2=(v20)/1.d10

! al13=(dsinh(gamma*bb))>/1.d10
a2i=(vixdsinh(alpha#bb)>/1t.d10
az22=(v2#v20)/1.d10

o az3=(v3xdsinh(gamma*bb))/1.d10
!ﬁ a31=(v4sdcosh(alpha#bbl)/1.d10
q a32=(v3%#v30)/1.d10
e a33=(v6xdcosh (gammaxbb))/1.d10
{ det=all#(a22#a33-a32#a232)-al12%#(a21+#a33-a31#a23)+
X% #al3#(a2i*a32-a31#a22)
o go to 750
"y stop
’ 1200 if(type.eq.2) go to 1210
D ; c Routine to calculate detlAi jl for "simple-free"” bc’s in y.
@ vi=kapa(l)
3 vZ=kapa(2)
5 v3=kapa(3)
W vd4=kapal(l)
h vS=kapal(2)
K vé=kapal (3)
go to 1220
KX 121¢C vi=omega(l)
ﬁ v2=omega(2)
¢ v3=omega(3)
X vé=omegal (1)
N vS=omegal (2)
vb=omegal (3)
N 1220 aii=((hxalphas#v4-navis(e-f))xdsinh(alpha%bb))/1.d10
M ail2=((h»xbeta*vS-n#v2e(e-fl))sdsin(betasbb)’/1.d10
’K a13=((h#gammas#vEe—n#v3#(e-f))#dsinh(gamma*bb))/1.d10

B a2i=(Calphas#vi+n#v4) sdcosh(alpha#bb))/1.d10
a22=((beta#v2-n#v3)#dcos(betaxbb))/1.d10

9 a23=((gamma®*v3+n#ve) #dcosh (gamma*bb))/1.d10

fg a3i=((alpha+vd)edcosh(alpha*bb))/1.d10

;¢ a32=((beta-v3)sdcos(beta*bb))/1.d10

o a33=( (gamma+v6E) #dcosh (gamma#bb))/1.d10

‘e det=all*(a22#a33-a32#a23)-al12#(a21#a33-a31+a23)+
b #a13#(a21#a32-a31%a22)

7 . go to 750

- @ stop

oy 1300 if(type.eq.2) go to 1310

N ¢ Routine to calculate detCAi jl for "clamped-free" bc'’s in y.
‘ viskapa(l)




) v2=kapa(2)
v3=kapa(3)
" C@} vd4=kapal (1)
¢ vi=kapal (2)
) vEb=kapal (3)
4 v7=(v1-v3)/(v3-v2)
vB=(v2-v1)/(v3-v2)
go to 1320
1310 vi=omega(l)
vZ=omega(2)
v3=omega(3)
o vd4=omegal (1)
vS=omegat (2)
’ vb=omegal(3)
: v7=(v1-v3)/(v3-v2)
o vB=(v2-v1)/(v3-v2)
1320 ali=((-n*(e-fl)rvi+hralpha*v4)adsinh(alpha*bb)+
" #(v3#v4/vein% (e—f)—h#tvdxgamma) #dsinh(gamma#*bb))/1.d10
al12=((-n*(e-fl)xvit+hralpha*v4) #dcosh (alpha*bb)+
#(-ne(e-f)nv2+hebetawvd)#v7#dcos (beta*bb)+
: #(-n*(e-f)av3+hrgamma*veE) #vB8ardcosh (gammasbb))/1.d10
' al3=((-n*x(e-f)*v2+h#betaxv3d)#dsin(betasbb)+
4 #(-nt(e-f)Hv3xv5/vE+thitgamma*vS) #dsinh (gamma*bb))/1.d10
K » a2i=((alpha#*vi+n#*v4)s#dcosh(alpha#*#bb)-
*(gamma»v3#v4/vE+v4) #dcosh (gamma*bb))/1.d10
; a22=((alpha#vi+n#v4)#dsinh(alpha#bb)-(betasv2+navS)sv7#
¢ #dsin(beta*bb)+(gamma#v3+n#ve) #vB8idsinh(gamma*bb))/1.d10
! a23=((beta#v2-n#v3)#dcos(betasbb)+
‘8: *(gammarv3#v3/ve+n#v3) #dcosh (gamma*bb))>/1.d10
. a3l=((alpha+v4)#dcosh (alpha#bb)—-(gamma*#v4/vE+v4)+
) #dcosh(gamma#bb))/1.d10
. a32=((alpha+v4) #dsinh (alpha#bb)+(-beta+v3)#v7+
! #dsin(beta%bb)+(gamma+ve) *v8adsinh(gamma*bb))>/1.d10
a33=((beta-vS)#dcos(beta#bb)+(gamma*v3/vE+vS)#
#dcosh (gamma»bb))/1.d10
det=all#(a22#a33-a32#a23)-al2*(a2i#a33-a31%a23)+
#al3#(a21%a32-a31%#a22)
go to 750
N stop
: 1400 if(type.eq.2) go to 1410
{ ¢ Routine to calculate detlaij)l for "free-free" bc’s in y.
vi=kapa(l)
v2=kapa(2)
p v3=kapa(3)
f vé4=kapal (1)
! vi=kapal(2)
L v6=kapal(3)
. go to 1420
{ 1410 vi=omega(l)
v2=omega(2)
v3=omega(3)
vd=omegal (1)
vi3=omegal (2)

4> o - -

@, vb=omegal (3)
1420 v7=-(n#v4+v1)/(v3+n#ve)

if Ca(2).9t.0.) go to 1430
vBa(n#vS~-v2)/ (n¥vEe+v3)

]
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;5 v9=(v4+alpha)+(vE+gamma) #v7

WY viO=(beta-v3)+(vE+gamma)#v8
hg - go to 1440
R 1430  vB=(n#vS+v2) / (nevEev3)

vI=(v4ralpha)+(vE+gamma) #v7
Cew viOo=(beta+v3)+(vE+gamma) #vB
it 1440 vi1=-v9/vi0O

‘M vi2=v7+v8avl|]

o vi3=(h#alpha#vd-n#(e-fI)#v1)/(n#(e-f)#v3-hegamma*ve)
! vid=(hsbetasrvS-n#(e-f)#v2)/(n*(e~f)rv3-hrgamma*ve)
| o=e-f

if(a(2).1t.0.0) go to 1450

Y all=((-neowvi+hevdsalpha)sdsinh(alpha#bb)+(~axo#v2evil
oy #+h#vSebetasvil) sdsinh(beta#bb)+(—n#o*v3#vi2+h#vEsv]2H
o #gamma)#dsinh (gamma#bbl)/1.d10

A a12=((-nso#vi+havdralpha)#dcosh(alpha#bb)+

' #(-n#oRv3IeviI+havervi3ngamma)l *dcosh(gamma*bb))/1.d10
b0 al13=((-naoev2+hevSebeta)#dcosh(beta+bb)+

$? #(—n#o%Vv3I¥vid+hvEsvidrgamma) #dcosh (gamma#bb))/1.d10
s a21=((vis*alpha+n#vd)#dcosh(alphasbb)+

1l #(v2xbetasvlii+n#vSavil) sdcosh(betas#bb)+

heD #(v3#viZagamma+n#vérvl2) #dcosh (gamma*bb))/1.d10

{ az2=((vixalpha+n#v4)#dsinh(alpha#bb)+

. #(v3#vi3esgamma+n#vervi3) #dsinh(gamma*bb))/1.d10

3 a23=((v2ebeta+n#v5) #dsinh(betarbb)+

m' #(v3evidrgammat+n#vEsevid4) dsinh(gammasbb))/1.d10

W a3il=((vd+alpha)srdcosh(alpha#bb)+(vS#vil+betasvilids
ﬁé -\ #dcosh (beta*bb)+(vé#viZ2+gammarvi2)sdcosh(gamma*bb)>/1.d10
' (;? a32=((v4+alpha)#dsinh(alpha®bb)+(v6#vi3+gammasvi3)»
3§ #dsinh(gamma#bb))/1.d10

K a33=((vS+beta)sdsinh(betasbb)+(vesvidegammaskvig)d»

% #dsinh(gamma#bb))/1.d10

::* go to 1460

1450 ali=((-ne*o*vi+h#vdasalpha)sdsinh(alpha#bb)+(-n#o%v2avili
) #+hevSsbetasrvil)edsin(betasbb) +(-n*okv3svi2+havbrvi2s
o *#gamma)#dsinh(gamma+bb))/1.d10
. al2=((-novit+hev4nalpha)sdcosh(alphasbb)+
3 #(—neonv3IRvi3+hevervi3tgamma) #dcosh (gammas*bb))/1.d10
4' al13=((—-n#onv2+hevSsbeta) #dcos(betasbb) +
ot #(-n*ov3vid+havEsvidngamma) #dcosh (gamma#bb))/1.d10

azi=((visalpha+n#v4)sdcosh (alpha*bb)+

B0 #(v2abeta*vil-n#vSevil)#dcos(betasbb)+
ﬂ; #(v3evi2egamma+nivesv]2) #dcosh(gammarbb))/1.d10
oy a22=((visalpha+n#vd)sdsinh(alphasbb)+
ﬁo #(v3rvi3ngamma+nevérvi3) #dsinh (gammaxbb))/1.d10
MY az23=((-v2#beta+n#v3)sadsin(betasrbb)+
9. #(v3nvidegamma+navbsrvid) #dsinh(gammanbb))/1.d10
W a31=((v4+alpha)#dcosh(alpha#bb)+(-vSavil+betarviids
ﬁﬁ #dcos(beta#bb) +(vé#vi2+gammarvl12) #dcosh(gamma®*#bbl)/1.d10
oy a32=((v4+alpha)xdsinh(alpha*bb)+(vE#vi3+gammanrvi3)»
o #dsinh (gamma#*bb))>/1.d10
e a33=((vS-beta)#dsin(betasbb)+(vEevid+gammasvid)s
3 #dsinh(gamma#*bb))>/1.d10
ﬁ- g@a 1460 det=ali#(a22#a33-a23#a32)-al2#(a21#a33-a31%#a23)+
iy #a13#(a21#a32-a31%a22)
o go to 750

. stop
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end
SUBROUTINE buckle(coeftd,coeft2,coeftO,r,n,
e, f,g,h,z,s8d)

c
c Subroutine to calculate coefficients of angle
< theta , for the buckling case
c
COMMON /A/A44,D12,D6E,D11,D22,m, aa
REAL n
INTEGER sd

DOUBLE PRECISION coeftd4,coeft2,coeftO,r,e,
*#f,g,h,2,pi,aa
pi=3.1415927
if(sd.eq.1) go to 1910
write(6, 1900)
1900 format(’'you have removed shear deformation effects’)
write(6,1901)
1901 format(’'from the problem. You no longer have a cubic')
write(6,1902)
1902 format('equation to solve so that the rest of this?’)
write(6,1903)
1903 format(’program is useless. An altogether different’)
write(6, 1904)
1904 - format ("program would have to be used. Sorry!!’,/)
return
1910 z=5./6.%A44
e=D12+D66
f=D66
g=D11
h=D22
n=FLOAT(m) *#pi /aa
coeftd=—1. % Chezaz+grhitntnez+frhansnsz+fefanenesz -
#erewntnwz—-frhenentr)/ (fahez)
coeft2=—1.#(-2, #fHnAnNZRZ-2, #@ANINRZAZ+hEntntrez+
#fananstyr #z-grhazanssd-—faghzentsd-—ferfrzansnd+
sereizantidigihir#nssdefrfansnstr-etesrineed) /(faxhez)
CoeftOo=—1, 8 (—NANNZAZHr —QRZEr *NERG-fRZAr ANARQ-fRGRYr RN XE
#+QRZUZENREGHTRGRY #N226) / (fRh%2Z)
return
end
SUBROUTINE vibs(coeft4,coeft2,coeftO,w,rho,thick,n,
e, f,9,h,L,x,2,8d)

Subroutine to calculate coefficients of angle
theta, for the vibration case.

AN A NN

COMMON /A/A44,D12,D€6,D11,D22,m, aa
REAL n
INTEGER sd
DOUBLE PRECISION coeft4,coeft2,coeftld,w,rho,thick,
e, f,9,h,2,x,pi,aa
if(sd.eq.1) go to 1960
write(6,1950)
1950 format(’'you have just decided to remove all shear thru’)
write(6,1951)
1951 format('the thickneass effects from this problem. The')
write(6,1952)
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1952
1933
1954
1955

1960

2000
2010

format ('program you are using is no longer valid as it is’)
write(6,1953)

format ("set up to solve a cubic. A totally different’)
write(6,1934) .
format ("program would have to be used for this simpler’)
write(6, 1955)

format ("case. So sorry old chap.’,/)

return

z2=5. /6. %A44

pi=3.1415927

e=D12+DEE

f=D66

g=D11

h=D22

if(L.eq.1) go to 2000

x=0,0

go to 2010

x=wiwitrho#thick##3/(144.#32.174)
y=rho#thick#wiw/(12,.#32.174)

n=FLOAT (m)#pi/aa
coeftd=(—h#zaz+haxuz+faxez—gtheninkz—ferhensnez
s—fafrnantz+etesntntz+fthety) /(fahaez)
Coeft2=(—xNzuZ+2,. #fHNANRZRZ 42, R@¥nANAZRZ—hityRz-fRys2
HExAXRZ—NANANAXRZ—GHNRNEXRZ =2, HfRARNAXHZ+GENRZ HNRRY
*+flgiz§n*§4+fif*z*n*l4—e§e§z§n§§4+h§xiy+fixiy
#-grh¥nensty—fafinensty+eterninty)/ (frhez)
CORTtO=(yHZAZ4NMNRXHZAZ-QRZAZANFRG—2, RxHyRHZ+gRyRZENEN
#+fRARARYRZ-—ARNEXEXRZFQEXZENRR4+ fRXAZENRRG-TRGRZANENE
HeXAXMy—gRAFARX Y- fROKNEXRYy+fRQRYyENEEL) / (fRh#Z)

return

end
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