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A1..AC,

An analytical study is conducted to determine the stability and free

vibration characteristics of laminated anisotrcpic plates using the Levy

approach. Included in the plate model are the effects of shear deformation

and rotary inertia. Six different boundary conditions in the y direction are

analyzed in corjunction with simply-supported boundaries in the x direction.

The y directed boundaries considered are simple-simple, clamped-clamped,

simple-clamped, simple-free, clamped-free and, free-free.

Solutions are presented for the buckling loads and natural frequencies

of rectangular, graphite-epoxy symmetric plates. The results indicate the

importance of including shear effects and rotary inertia in a plate's

mathematical model. The overall importance of these equation parameters is

definitely a function of the boundary condition and a general statement cannot

be made. In addition, the effectiveness of the Levy technique, in studying

laminated problem, becomes apparent in handling the more complicated

boundaries as ccmpared to the Galerkin or Rayleigh-Ritz techniques.

viii



I. Introduction

The use of coposite material in many varied industries has increased

tremendously in the past several years. This is largely due to the high

strength to weight ratios of ccmposites as well as their ability to be

tailored to meet design requirements of strength and stiffness. A special

interest is the use of couposite materials in aircraft structures.

Coinciding with these new applications is the need to better understand

0 the physical and dynamic responses of the omposites to ccmiplex in-plane

P~ stress systems [7]. Past research has clearly indicated the need for a

refinement of the classical plate theory (CPr) in order to better predict

ccmposite plate behavicur. The assumption that plane sections remain plane

after deformation (Kirchhoff hypothesis) results in a mathematical model of

plate behaviour which is overstiff [7]. The reed to include through-the-

thickness shear effects was first recognized by Reissner [14]. Mindlin,

shortly thereafter, added the thickness-dependent effects of rotary inertia,

for the vibration problem, in his mathematical model for the flexual motion of

isotropic plates [10]. Mindlin's two dimensional theory is based on the

premise that plate displacement is a result of two rotations due to bending

and two rotations due to shear deformation. Furthermore, no warping of the

plane sections is assumed. This inconsistency is somewhat corrected by the

introduction of a correction factor [2].

.Ir1
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Yang, Norris, and Stavsky [1] used Hindlin's model to develop the

frequency equations for the propagation of harmonic waves in an infinite, two-

layer isotropic plate. Their theory (referred to as YNS theory) was applied

by itney and Pagano [12] to laminated plates consisting of an arbitrary

number of bonded anisotropic layers, each having one plane of material

symmetry parallel to the central plane of the plate. Their study [12]

centered on solving for the vibrations of antisymmetric angle-ply plate

strips. Work by Brunelle [1] on transversely isotropic Mindlin plates

considered the stability of rectangular plates sinply-supported on a pair of

opposite edges and carrying uniaxial membrane compression [24]. This work is

one of the earliest to consider the feasibility of applying Levy's technique

[13] to cmpcosite plates and thereby cbtain a solution for displacement that

is not modelled as a double series expansion. The accuracy of the expression

. for displacement is not dependent on the number of terms retained from the

expansion in this case. This type of solution is commonly referred to as a

closed-form solution.

Refinement of finite element analysis with the inclusion of transverse

shear effects began with the work of Pryor and Barker [25]. They studied the

cylindrical bending of symmetric cross-ply laminates using a model based on

Reissner plate theory. YNS theory was modelled by Reddy [18] in his study of

the free vibrations of antisymmetric angle-ply plates. His later work [18]

considered orthotropic laminates of bimodulus materials. A different approach

was used by Sathyam orthy and Chia [20] in their study of anisotropic skew

plates. They applied Von Karman's non-linear plate equations to calculate the

large amplitude vibrations of the skew plates.

2
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More recent work by Dawe and Craig [6,7,16) has investigated the effects
of shear deformation in a number of plate vibration and stability problems.

In each case, the Rayleigh-Ritz or finite-strip methods were used to generate

numerical results. Bwlus [2] analyzed the vibration characteristics of

* anisotropic laminated plates, with shear deformation and rotary inertia, using

the Galerkin method. Reddy's latest work [26] applies the Levy technique to

the bending problem of symmetrically laminated rectangular plates. His model

includes shear deformation and considers two different plates, a single

layered orthotropic plate, and a three layered cross ply composite plate. His

numerical results are generated by a solution based on the state-space concept

developed by Franklin in 1968.

Thus, the literature does not indicate any closed form solutions for the

m-layered symmetric laminates where both shear deformation and rotary inertia

effects have been considered with application to plate buckling and plate

vibration respectively.

Objectives

There are three main objectives to this thesis. First, the

effectiveness of the Levy technique in calculating natural frequencies and

buckling load for anisotropic laminated plates is determined. The plate's

mathematical model includes shear deformation through the thickness and rotary

inertia. Second, the technique is used to evaluate "baseline" solutions for

same of the boundary conditions which are extremely difficult to analyze using

the approxmate methods based on energy principles. Finally, comparison with

classical solutions, when available, are used to determine the importance of

shear effects and rotary inertia in the plate model.

3



A direct approach is followed to successfully realize the stated

objectives. The moticn of the laminated plate is modelled using YNS theory

[11). Solution of the derived cupled partial differential equations of

motion is obtained by application of the Ievy technique. The plate studied in

this thesis, a specially - orthotrcpic laminate, does not contain bending-

extensional or bending-twisting coupling terms. From the equations of motion,

displacement functions are evaluated and used to solve the boundary value

problem (BVP) defined by the application of specific boundary conditions.

Simplification of the BVP leads to a transcendental equation for either the

natural frequency or the buckling load, depending on the problem under

consideration. A omputer program is written, in Fortran 77, to solve the

transcendental equation using the inremental search method [5]. Limits to

the effectiveness of the Levy techique are then evaluated in terms of

allowable laminates and plate gemetries/size.

The boundary crditions always have a set of simple supports in one

direction with the other direction consisting of either simple-simple,

clamped-clamped, simple-clanped, sinple-free, clamped-free, or free-free.

COuparisons of results to classical solutions and solutions obtained using the
N

various energy techniques are presented whenever available. The inportance of

shear deformation and rotary inertia is determined by calculating the natural

frequencies and buckling loads over a rane of length to width and length to

thickness ratios. Initially, rotary inertia is neglected in order to better

urderstand the relative significance of considering shear deformation effects.

Rotary inertia is then re-introduced into the vibration plate model aid

4
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calculaticri are repeated, thereby Providing an indicatims of its Inportanoe

in the accuate uxodelling of thick plates.

5



II. 7hor and N~eln

Anstti Thick Plate ~

Classical Imminated Plate Theory (CIPT) incorporates constitutive

relatinhips for an orthotrcpic lamina through the plate thickness resulting

in expressin whichi apruximate force resultants in terms of displacement

funictions. This theory provides concepts which are required in the subsequent

develcptent of the equatin of motion. As a starting point, the basic

constitutive relationships for an individual lamina are developed [2]. one

should refer to reference [17] for a more cMlete and detailed derivation of

these relatin.

'lbs basic constitutive relationiships for a single orthotrcpic layer in

the fiber oriented reference system, as described by figure 2.1, are

Figure 2.*1.. Definition of Ooordinate System

6



1 S~ 11S 2 S 13 00 0

E2 S12  S22 S23 0 0 0 0r2

3 S 13 S2 3 S3 3  0 0 0 a03()

40 0 0)544 0 0 0 4

5 0 0 0 O S5 0 a5

e 6 L0 0 0 00 S 6 6  a6j

wh&ere cl' £2, an e3 ar th noma stais 41 e~I an E6 are the shearing

strains, a l' 02, and 03 are the nrm~21al stresses and 041 051 and a6 are the

shearing stresses. The S..i terms are ccmpiai term and may be written in

term of the lamina engineering cxontants as:

S 2= -V2/E2

S 3 = - 1E

S 22 = l/E 2

S 23 = -V 2 3 /E2  (2)

S 33 l/E 3

S 4 4 = hG2

S = /55 3

S66 IG1

and E.i is the Youngx's modulus in the ith direction~, v.. is Poisson's ratio for

transverse strain in the jth direction when loaded in the ith directioni, and

G is the shear mo~dulus in the i-j plane.

Fqiation (1) way be inverted to give the relationship of stresses in

terms~ of strain in the form

(a) ('](£)(3)

7



(Q'] is referred to as the redue stiffness matrix and has the fonowing

form:

S'I1 Q'I2 Q '13 0 0 0

Q'112 Q'22 Q'23  0 0 0

Q1 ' 13 Q 123 33 0 0 0

0 0 0 Q144 0 0

0 0 0 0 Q'55 0

0 0 0 0 0 Q'66

where

ii (S22 S3 3 -S 2 3 2)/S

Q1 12= (K13S23-$12S33)/S

Q 13= (S12S 2 3-S13 S2 2 )/S

Q'22 = (S33 Sl-S 13 2)/S (5)

2 (S12S13-S 2 3 SII)/S

33= (Sl 1S 2 2 -S1 2 )/S

44= I/S44

Q 55= '/S 5 5

Q1 66= /$66

s =Sis 2 2S 3 3-s 1 1 s 2 3 
2 s 2 2 S13 

2 -S3 3 S 12 +S12 2 3 S 1 3

If the lamina is not oriented with the principal x-y axis but rather is

at an angle e (see figure 2.1), the reduced stiffness matrix mist be

4transformed. 7he matrix applied to the stiffness terrs to reflect the shift

in the laminae axes is defined as:

8



r 2 2 0 0 0 1p

41 ~ P?1 2 0 00 _ip

[T]= 0 0 1 0 0 0 (6)

0 0 0 1 -p 0

0 0 op 1 0

-21p 21p 0 0 0 12P?

%-1-p

where 1 = cos e and p = sin e. The transformed stiffness matrix for the

lamina is represented as

[Q'] = [T][Q'][T~t (7)

and (o) = [Q'](e) (8)

where

'Lu 11 Q12 Q13' 0 0 Q16'

OF Q12  013' 0 0 Q26'

Q 13 Q23 ' Q33 ' 0 0 36' (9)
0 0 0 Q44 ' Q45 ' o

0 0 0 &45  Q 55 ' 0

L16 Q2 6' Q3 6 ' 0 0 Q66'

In order to simplify the stress-strain relationships given by Eq(8), a state

of plane stress is assumned for the laminae. That is, the individual laminae

are considered to be thin enough that the average value of az across the

thickness is negligible [21]. Thus, fru Eq. (8)

% = o M Q13 x + 23' y + Q 3 ' "z + 736' ,5

or l= 0 + ( ( (10)

9



If this expression for c is sbtttiback into Eq (8),

teresultirq transformend stif fnes matrix is def ined as Q)and

has the form

QllQ12 0 0 Q1

=0 0 &44 i545  0 (11)

0 0 Q545 Q55  0

Q16 Q2 0 Q6

whiere

Q = Qlcse+2 (Q 1 2 +2Q 6 6 ) sin2eS e-+Q2 2 sin4e
QQ1 (si 4Q 4QBQ)sn~~4+cos 4e)

s1n2+ (Q1Q2-Q12+2Q66 sin eco -Q 2 c4

Q1 (Ql 1-'Q12 -2Q6 6 ) sir"Cos e+ (Q1 -Q22 +2Q6 ,) sin ecose

Q2 (Q,,-Q2-2Q6 6 ) sin '9 e+ (Q12 -%Q2 2Q 6 6 ) sir'cose (12

Q4 Q44cx0S 2e+Q5 5 sin2e

=4 (Q4 4 -Q5 5 )co'ssr9
2 . 2

=5 Q5 5 co e4Q4 4 sin '9
2 2 4 4

=6 (Qll4Q2 2-2 Q12 -2Q6 6 ) sin ecos 84Q 66 (sin e-+cos e)

22 Y l-"'1"21)(13)

10



With the removal of a , the stiffness matris becames a 5x5 matrix. The

stress-strain relaticriships defined in Eq. 8 may be re-written in terms of

normal and shear values as:

a 11 Q 2 Q 61 ( x 1
a y 2 2 2 ey(14)

and } }
(yz 1 Q44 45 1 yz (15)

x= 545 55- 1 7=

These relationships are for a single lamina and may be used as a

starting point in the derivation of expressions for the forces and mments

existing in a laminate of N perfectly bcnded lamina. Before doing so, a

further simplification, dealing with e is discassed as well as the onvention

followed in defining the rotations x and 0y.

ky

The strain in the z-direction is assumed to be small enough as to be

negligible. This incusistency, widely accepted in plate theory, inplies that

no stretching occurs in the direction perpendicular to the plate midplane.

For a laminate, this assumption leads to a disctinuity in ez at the lamina

uper and lower boundaries, but it is very small. This assumption allows the

modelling of the displacment field for the laminate with YNS theory. Thus,

the plate displacements can be assumed to have the forms

u = u (x,y,t)+z#X (x,y,t)

v - v (x,y,t)+z y(x,y,t) (16)
W - W(X,y,t)

11
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where uvw are the xy, and z coordinate displacements respectively, u

and v0 are the pre-stressed displants of the laminate midplane, and 0x and

_ y are rotations of lines perperdicular to the midplane due to bending [2].

It should be noted that the inconsistency mentioned earlier could be removed

by including terms, which are linear and quadratic in z, to the expression for

w. Reference [9) makes it clear hadever, that for most plates, the

icsistency is negligible.

The expressions 0x and 0y are defined as rotations about the y and x

axes respectively due to berding moments. With the axis system defined in

figure 2.1, the rotatins indicated are produced by positive bending moments.

I hqo

Figure 2.2. Coordinate System of Plate

For small strains, the first order engineering definitions are:

ex Ux£X =VUe

ey 
y

'Yxy U, y + VIIx

'II

12
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Subutituting the, displacement f ield. given by Eq. (16) gives

x = UOx + Zaxx

0

--- y=VO1  + Z~y (18)

xy y x x,y y,z

or I}{}I 0 z1 (19)
where the strains at the plate middle surface are

y j{ , (20)
Y I xyJ + P x

and the midplan curvatures due to bending are

y 'ypy (21)

Eqs. (20) and (21) give expressicr for the strains in terms of

displacements and these may now substituted into Eq. (14) to

give the stress - displacement relatiaships for the kth layer of

the laminate:

a xQn Q1 2 Q1 6 J[ I O'

a yv +z (22)

Tjk [16 26 66 k U0 t I

13



Following Jcuis [17], the resultant forcs and mments acting on the

laminate are obtained by integrating the stresses in each layer through the

laminate thickness. Thus, for a laminate described in figure 2.3, with N

lamina, the forces and mlments are:

Figure 2.3. Gecmetry of laminate conisting of N lamina

h/2 Nzk

N.(",NYNxy) = f (ax,ay,,xy)dz = Z f (oxtoy, XY)dz

-h/2 k--1 zkl

and (23)

h/2 N zk

(MxiyMxy) f (a7,ey,ry)z = Z f (ax O yXy)=d

/2 k-1 Zk l

7hese integrations may be sinplified saiewhat as the stiffnesses are

constant within the laminae and the stresses are not functions of z. Thus,

Eq. (23) may be rewritten as

14



I-°

A ll A12 A16 x ll B12 B16 X,
A1 A22 6 o + F B22 B2, , (2)

LA16 A26 A66J 1B6  B 26 B 66

B 1 0

y B2 22 B26 {ey +D12 D22 D26 4(-yJ (25)
B 6B26  B6 L :4 D16 D26 D66 xy

where

N
A.. = Z (Q.) (Zk-Zk-l) (26)

* B ij =12 ijk k-kl ) (7

N
B..=I/2 Z: (Q) X(k2 -k12 (27)

Dj=/3 Z (Qij)C 3- 3  (28)

Required now are the expressions for the shear forces on the plate in

terms of displacements. In classical plate theory, shear deformation through

the thickness is neglected according to Kirchhoff hypothesis. In this thesis

hwver, Mindlin plate theory is used which allows rotations of lines

originaly perpendicular to the midplane but having no warping. The exclusion

of warping is incorrect as shear varies parabolically tbrough the thickness of

the plate. The error induced by this inconsistency is reduced to an

acceptable level by the introduction of a shear correction factor k. The

magnitude of k was calculated by Witney (15) and the resulting value of 5/6

is used in the constitutive relations for transverse shear.

15
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Frum the definition of engineering strain, the relationships for the

interlaminar shear strains are

7y z = av + 8w = 0y + W,y (29)
8z 8y

XaZ = au + aW = X + W' (30)

Substituting Eqs. (29) and (30) into Eq. (15), and introducing the shear

orrection factor k, the shear stress can be expressed as

fYZ}=k 4 Q45 +Ily (31)

The resultant shear forces through the thickness, Qx and QY, are

evaluated by integrating the shear stresses in each layer through the laminate

thickness. Thus,
4,.

h/2 N

( f rxzdz= E f ('rxz k dz (32)

k1 Zkl

h/2 N Zk

"% f yz =dz E f " (33)
(Tyz)kdz(3-4V2 )C-1 Zk_ 1

As was dane for in-plane forces and mients, the integrations

may be sinplified by noting that the stiffnesses, Qij are

16



coinstant within the laminae and the shear fore are Jrdeperdnt

of Z. Thus

Q kA4 4 A 4 5 wy'O (4

Q A4 5 A5 5  W~ O

where A.. is defined by Eq. (26)

The equations of moction for the laminated plate may now be devrived as

all terms appearing in those equations are now defined in terms of the three

uhnmawn displacmnts, w(x,y,t), 0 x(x,y,t), and 0 (x,y,t). A Newtonian

approach is used to derive the three governing equations of motion. Figure

3.4 presents the nomenclature for the momient ard transverse shear resultants.

1i~

At5b

L- AQ.

Figue 24. ?kmiNt I ha eutnso lt

* cosidrix~thefores i th z-drecion

E F~ ph = ~ c~Y y ~Y~G(3s

+ t\ 17



where q -NX w~x +NY W,y

p = plate mas density (36)
h - plate thic)IIness

Taking mments about the x-axis

mix = I0 ='t ?YM' dy - dy- Qy(dy) 2

+KY + NYx Mx, (37)

Taking moments about the y-axis

12= IOX'Xtt = Mx+ Mx' dx - Mx- H + 1'x+ Mx dy

-x dx - Qx (dx) 2  (38)

w erIf h2pz 2 d=ph31 (39)
-h/2

These equationis may be simplified if higher order terms are neglected

and dx=dy=1l is assumed. Substituting in for q, Egs. (35), (37), and (38) are

rewritten in the form

Q,+ QY~+ Nw1 , +NY w,,Y = phw,tt (40)

Mxx+ My - = Iyt (41)

MXx+ my, y- 0- '1x'tt (42)

18



These three equations can now be expressed in terms of the displacements

lby substituting Eqs. (25) and (34) into the equations of motion. However,

before doiu so, two restrictions must be applied in order for this problem to

be solved using the Levy technique. 7his thesis considers only synmtric

laminates and further, only those which are specially-orthotropic. These

restrictions remove all coupling stiffnesses (Bij) and bending-twisting

coupling stiffness, D1 6 and D2 6 , reducing Eqs. (25) and (34) to

0 0 D62 { y + 0y,x

= k A44 0 Wy+0
{Q }k 0 A55]w~ x+Ox (44)

Assuming the time dependence of the displacements to be harmonic then

e allows the separation of the time variable out of the equations of

motion. Thus, the equations of motion can be written in a form containing

only displacements:

kA5 (W+xx + ,X ) + kA44 (wyy, + Nxw, xx +NyW,yy

+ ph)2W =0 (45)

19



-- L, W

DII x,xx + D12 y,xy + D6 6 Ox,yy + D6 6 Oy,xy - kA5 5 (wx + x )

+ W =0 (46)

D12 x, + D22 Oy,y + D66 x,xy + D66 Oy, - k44 (w,y + ,y)

+ W2I~y = 0 (47)

where w is the plate natural frequency

p is the plate mass density lb/in3

These are the three coupled partial differential equations of motion

which are solved for the plate displacments with the use of the Ievy

technique.

0 ,.
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IEVY TEI QE

The partial differential equations describing the plate displacement

have been formulated and must now be solved. The technique employed in this

thesis to solve Egs (45), (46) arxi (47) is the levy technique. This technique

is unlike some of the approximate energy techniques (Galerkin, Rayleigh-Ritz,

Navier) used previously to study the problem of composite plate stability and

vibration. The Levy technique leads to a more exact solution as it removes

the errors associated with series representations of the variable. Each

displacement term in the equations of motion beoames a single unknown value,

as pposed to a series of unknown variables. The mechanics of the Levy

technique are presented in the next section, as applied to the specially

orthotropic plate, in order to clarify some of the general characteristics of

the method presented here.

." One of the major restrictions of this method is the requirement that

boundaries on two opposite sides of the plate be maintained as simple

throcughot the analysis so that the description of the plate displacements may

have the forms

L't L~tw(x,y,t) = [w(x,y)]e t = Z W(y) sin rnx e (48)
nr-l a

iLt CI Lt-(x,y,t) = [x (x,y)]e = x (y) cos rnx e (49)nlX a

iLt COLty (X,y,t) = [y (xy)]e = Z 4 (y) sin rx e (50)~a

21
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where = natural frequency

niese forms for the displacement satisfy the mathematical requirements

for edges which are simply-suported at x=O and x--a given by Eq. (51) and are

used to simplify the equations of motion. Note that the time variable may be

factored cut of the expressics for displacement. This leaves functions in

only x and y to be substituted into the equations of motion.

Simply supported edge at x=x w(xy)= 0x (X,y)= 0 y' (x,y)=O (51)

where the prime denotes differentiation w.r.t.y.

:,r 22
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Application of I Tchnim to Anis ic Laminated Plate

LXMh has been said on the benefits of using the Levy technique to solve

the stability and vibration problems for a composite plate. At this point,

the actual simplifications of the equations of motion are presented. The

resulting equations are then re-written in a form that is useful in solving

either the stability or the vibration problem.

In order to use the displaceients, as described in Eqs. (48), (49), and

(50) in the equations of motion (45-47), the following derivatives are

required (note: all Z are over n=l to =, no tine dependence shown).

~~W,x =z Y _ Wocos n_xx

a a

w = Z WI sin rbrx
ya

t-]W, yy = E 2 ' sin x
yx= (a2 y c

#yy = Z W' sin mrx
a

"y'xy = E r y Cosrx
ya a

" y'yy = E y"I sin vr
~a

= =E 2 sin x x
y'x y I y a

y y a

23
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x'x = - x -sin rx
a a

xfy = #x1 cos x
X1 ~ X a (52)

E~x= -nl 2 #x csrrx

D a2 a

OVIx = Z -fl # 'Isin flvrx

a a

x~yy a

where all primed terms denote differentiation w.r.t.y.

Thus, from Eq. (45),

E nrkA55 
1 'X~y) -n kA5 5W(y) +kA 4 4  'Y +k4W(Y

y- 442

JCW _ 2,, N W~ + N Y W "(y ) + ph w ~ y s i r wrx = 0 (5 3 )

a2 a

from Eq. (46)

E rD 1, * Tr Ii'y)+% + +-f D~ D6  (Y)

-k A55sx(y) -pr k A5 5 W(y)+j2itx(y) os nxx = 0 (54)
a a

from Eq. (47)

cccy
E rrD # II(Y) + D22 *y" (Y) _ r*r D~x -Y Ww D6ey Y

a

.- kA4 4 *y(y) - kA4 4W'(y) + 2I(y)snra=0 (55)

b- 4..
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Thus, for the equality to hold, the follading equations nist be satisfied for

each n

Frm Eq. (53)

-r kA5 )c 2* A5. W(y) + kA4 4 *y I(Y) + kA44 W" CY)
a a2

71!lr )%NW(Y) +NY W(y) + ph" W(y)=_0 (56)

a 2

Fromn Eq. (54)

4 -_nnw D # (y) + 6 6ny)mr D '(y)11 x - 12 #' (Y) +D*" ()+nD66 *y

a2 a a

-JA5 X(y) - !mrkA5 5 W(y) +w2itx()-057

aro Eq. (y)50557

-nrrD I (y) + De"()- nrDe'()-n2x2 ey)
a 12 x D2 ~ 1y) aD 6 XY) i

a2

-kA4*y (y) - kA4 4 W' (Y) + w ty(Y) - 0 (58)

Thus, the application of the Levy tetnique reduces partial differential

equations (in x and y) to ordinary differential equations in y. Eqs. (56),

(57), and (58) may rxw be used to solve the stability or vibration prolem for

the specially-orthotroic laminate.

25
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'p. Stability Problem

In the solution of the stability problem, basically a static problem,
inertia terms will not be retained in the equations of motion. In addition,

this thesis will only onsider the case of a unaxial cmpression force. Thus,

N = 0.
y

'To solve the equations of motion, the classical approach of assuming a

very general form for the displacements is followed. Hence, the displacements

are taken to be

*W(y) = A e y

! (y) = B*e~y  (59)

v ( y)= C*ey

where A , B, and C are constants to be evaluated.

Further, a notaticn is adopted which allows the equations to

be written in a more compact and manageable form. Using

D12 + D66 e

D6 -

DI1  = g

D22 = h (60)

=N r

kA4 4  Z
kA5 5  =z

e t

n/a =N

26



. Substituting the assumed forms for the displacements and appropriate

derivatives and using the given notation, the equations of motion nay be

sinplified and re-written in matrix form as

N2r+t 2 z z -Nz tz

(A*j

{o= -Nz ft 2 -gN 2 -z eNt jB*j (61)

L-tz --eNt ht -fN 2 -z

"A*

....

I'or [Ai~j, IB = 6

Note: t contains the function e
r is the buckling force quantity

and n contains the number of modes

The nontrival solution to this set of coupled ordinary differential

equations is found by considering

det [Aij] = 0 (62)

At this point, MACSYMA [3] is used to calculate the factored expression

* for the determinant. The Macsyma package is available on the AFITNET and a

description of the commands used to obtain the final form of the expression

4described by Eq. (62) is presented in Appendix A.

Te resulting equation for the determinant of [Ai j ] is a sixth order

euation in the unknown e. It can be written as

A 6 + A 4 + A 02 + A =0 (63)

27
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where the coefficients Ai are given in Appendix A.

This can be redue to a cubic with the substitution of

e2  ~ (64)

Thus,

A3  + A2  + A 3 + AO = (65)

Eq. (65) can be solved directly for three roots following the

trigonometric technique presented by Dickson [4). The roots may be all real

numbers or a single real number arnd two complex conjugates. A development of

the problem involving three real roots is presented first, followed by a

discussion of the case of two complex ooni igate and one real root.

Under the premise of having~ three real roots to Eq. (65), the assumption

is made that two of the real roots are positive and the third, a negative real

number. Any changes to this assump~tion are discussed in the section

formulating transcendental equations for the boundary conditions.

With these assumptions, the following rnenclature is utilized

l =e 1 ,2  ak

2 E)3,4 2 41)2 2 (66)

(3 E)5,6

Ih positive roots for e are thus assumed to be a and -y. The

displacmnts described in Eq. (59) may now be expressed in an expanded form

as

28
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W(y) = Aleay + A2e - y + A3ei y + A4 e-iSY + A5el y + Ae-TY

* x (y) = Be Y + Be-aY + B3ei8Y + B4 e - i 8y + B + B6e- Y (67)

fy (y) = CleaY + C2e - 2y + C3 + C4 e-iY + C5 + C6e-7Y

As presented, Eq. (67) requires the evaluation of 18 separate constants

for each set of boundaries in y. Unfortunately, the bc's define only six

relationships thereby making it impossible to evaluate any problem using

displacements represented in the form of Eq. (67). However, if relationships

between A /B and A /C are established, the number of constants to be

evaluated drops to six and the problem becomes well-posed. Eq. (61) is used,

for this problem as it presents the relationships between A , B , and C in
I

the three differential equations of motion. Since these three equations are

coupled, the simultaneous solution of any two for B* and C* in terms of A*

will automatically satisfy the third.

Olt

Solving the second equation from Eq. (61) for C in terms of A , B*:

NzA - (f@2 - z-N 2 g)B*
__ __ __ __ __ C (68)

,%,, Nee

Substituting this value for C into the third Eq. from (61) and

sinplifying for B*

2 2 -(h82 z-N f)Nz - Nez
A =B (69a)

(8 2 -z-N 2 f) (f8 2 -z-N 2 g) + N2e282]

or A(e)A = B (69b)

* 29
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and thus Nz- (fe 2-Z-N~g)A (8) A* =* 7a' i < _ _ _ _ _ _ _ _ _ _ _ A = C ( 7 0 a )

N* *

or A(9)A = C (70b)

It must be realized immediately that A(@) and A(e) are rW

vectors as the value used for 8 can have one of three values a,

f6 or y. The choice of which 0 to use in Eq. (69b) and (70b)

depends on the argument of the term multiplied by A (e) or X (8) in

the expressions for displacements. Thus, A(8) is equal to (A(a),

* tA (P), A (7)) . The discussion is not yet cumplete as a potential

problem exists when calculating X ().

Since

evaluation of A(P) using Eq. (70a) gives an expression containing

ran imaginary number in the denominator. An alternate approach

may be used to solve for the expressions of A (#) and A(,) that do

not contain the imaginary number. For this case

W(y)=A sinoy * x (Y)=B*sinay and * y (y)=C*CoSy (71)

and substitute these values into the equations of mation. Any

two of the coupled equations may be solved for the relationships

between A, B and C as was done earlier. The calculations lead

to the simplified expressions for A(#) and A(fi):

(1P2+N2 f+z) Nz-N W 2

= A(P) (72)

[N 2e 2 2 -(h8 2+N2 f+z) (ff 2+N2g+z)]
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and Nz+(f 2+N2 g+z) A( )
___________= A( ) (73)

Ne

Te displacements in terms of only six unknown constants,

are respectively

W (y) =e A  e - YA  ei8 e-i e7  e-TY

T- x(Y)=A (a) (AlecY+A 2e-*Y) +A (#) (AejY+A4e-i Y) + A (-V) (AeTY+A6e-TY)

(74)

Ty(y)=A (a) (Ale'Y+A2e- Y) +A (0) (AeiSY+A4 e-iY) +X (y) (A 5e'Y+A6e-lY)

With the trigonrmetric and hyperbolic identities of Eq. (75),

sinhx = 1/2 (ex - e') sinx = 1/2i (e i x - e - i x

~ i~(75)
coshx = 1/2 (ex + e - x) cosx = 1/2 (e i x + e - i x )

the displacement equations may be written in a more recognizable

form. For example, the displacement in the z direction, W(y) is

W(y) = A ekY + AleaY + A e-Y + A2e- + A eY+ Ae i  y

2 2 2 2 2 2
I - i ,6y + - i y + e y + efy + - Yy + A e- 7y

+ Ae~ +e + A, e + A
222 2 2 2

or alternately

W(y) = (A,+A2 )l1(eY+e-*Y)+(A 1-A2 ) 1(eaY-e-Y) +(A3 +A4 )I (eSY+e- ' Sy )

2 2 2

+(A3A4) (e"Y-e"'Y+(A +A6) (e"fy+e'-y)+ (A,5-A, d 2(elyY-e - 'y )

2 2 2
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applying the identities of Eq. (75), W(y) becoes

W(y) = AsriyBobk+sry+mp+sn-yFohy (76)

where A--A-A 2 , B=--A 1+A2 , (''-(A 3 -A4 )i

D-- A 3+A 4 1 !2=A-A 6 1 F A+A 6

Similarly, 4rx(y) and 4,y(y) bcm

4'D x Y) -A (a) (Asinlby+Bcoshmy) +A (P) (Ci~y+Dc~fy)

(77)
+A (-y) (Esinh-yy+Fcosh-yy)

* 4 (y)A(a) (Acxohxy+sinhmy) +X(P) (-Uo 8y+DsinBy)

+(-y) (Ecosh-yy+Fsinh-yy) (78)

It is important to note that W(y) and * x (y) are even functions and 4, (y)

odd. This is dictated by the nmtber of derivatives of each expression defined

in the equations of motion. Eqs. (76), (77), and (78) represent forms for the

displacmnents which may be evaluated for specific boundary conditions in y.

Eqs. (76), (77), and (78) thus represent forms for the displacements which may

be evaluated for specific boundary conrditions in y. These forms have been

derived urier the premise that all three roots of Eq. (65) are real numbers.

For the case where the roots of Eq. (65) are cuplex cnjugates and a

single real numrber, the develcouIent of corresponing expressions for the

displacemerts is riot straight forward. The problemi lies in deriving the

proportionality functions relating~ A */B * and A*/IC* Withouzt these functions,

32
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the number of unknown constants which must be evaluated at each boundary

condition is eighteen and the problem is not solvable. Thus, the author has

recognized the possibility that specific roots may be missed under the

assumpticn that all roots to Eq. (65) are real numters. The overall results

when plotted however, will indicate trends for a number of different values

for a parametric function. The potential of answers not conforming to the

associated technique is present but the values will be smeared out in the

extrapolation of the function. Thus, the overall trend is extended to any

area of difficulty and yields results which are within tolerance of any

obtained by trying to reformulate the problem and then solving for the

appropriate functional forms of the displacements when only one real root

exists. The ptysical nature of the buckling or vibration phenomena studied in

this thesis indicates a lack of irregularities in the solution and thus

substantiates this approach to dealing with cxmplex conjugate roots to Eq.
(65). The transcendental equations for each of the boundary conditions

studied are presented following the development of corresponding forms of the

displacements for the vibration problem.
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" "-.Vibration Problem

For the solution of the vibration problem, the procedures followed will

parallel exactly that presented earlier in the stability analysis. Inertia

terms, translational aTY1 rotary, will be retained in the equations of motion.

The in-plane load Nx will of ourse be excluded from the derivation since the

lowest natural frequency will be affected by its presence in the equations of

motion.

The forms chosen for the displacements, given by Eq. (59) are used to

solve the equations of motion. Additional notation is introduced, to

supplement that presented in Eq. (60), representing the inertia terms

i2 2 = x

(79)
2

p, =y

Using previously defined notation and Eq. (79), the equations of motion

in matrix form for the vibration problem are

y+t 2z-N z -Nz tz A *

fij [-Nz X+ft 2 _-N2 _z eNt]I iBI (80)

-tz -en x+ht 2 z C*

L (

or A BC JC
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Conisidering~ the nontrivial solution to this set of equations, the

expression for det £Aij ] is presented in Appendix B. The resulting sixth order

euationi in e may be redce to a third order equation by the substitution

defined in Eq. (64)

The cubic in is

B 3 + B 2  + B +B 0 O (81)

where the coefficients Bi are given in Appendix B.

The roots of Eq. (81) can be expressed in terms of a nd9 ax

-y andi the expanded expressions for the displaoenenits are

identical to those described in Eq. (67). Onoe again, a

relationship is sought between the onstants A, B* and C* and

- the expressions rresponding to A (8) and A (8) for the vibration

prolem~ are given by

rhe2-zW f+x)Nz - Nez2]

___________ A =B (82a)

[(hE)2-z-Nf+x) (ft 2-zNg+x) +N2 e 2e2 ]

or (9) A*--B* (82b)

Nand Nz-(fe 2-z-N 2g4-x)0(8) * *
_________ A =C (83a)

or f(8)A* =C (83b)
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* As before, the alternate forms required for the case of 9=a

are given by

(h.02 +N2f+z-x) Nz-Nezfi2

___ ___ ___ ___ ___ ___ =DO() (84)

[N~e2 p62 -(hp 2+N2 f+z-x) (fp62 4ig+z-x)]

and3

Nz+(N 2 g+ffi2 +z-x)(fi()
_____________= 00f) (85)

No~

* The final forms for the displacement, shwn in Eqs. (76), (77), and~

(78), remain basically the samre the only difference being the multiplication

factors. Thus,

W (y) = Asinby+Boy+siy+ospy+Esinhyy+Fcoshyy (86)

T x (y) = 0 (a) (A5]fllby+BcXoshay)+0 (p) (Csin6y+Dcosfiy)

+ fl (-y) (Esinhyy+Fcosh-yy) (87)

iy(y) = r) (ax) (Acoshay+Bsinrjy) -+Z(p) (-Cospy+Dinfly)

* + l(-y) (Ecxoshyy+Fsinh-yy) (88)

7fhese equations are used in establishing the transcendental equations

f or the natural frequencies.
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Formulatic of Transcerdental Equations
'As the equations for the displacements are similar for the

stability and vibration problems, transcerdental equations for

each boundary condition in y are developed only for the stability

case. Corresponding equations for the vibration analysis follow

directly by substituting O(8) for A (8) and 5(8) for K(e). Each

boundary condition in y is considered independently and the

simplified equations for the displacements, in terms of only

three constants, are presented in matrix form. The

transcendental equation for each case is cbtained by taking the

determinant of the three by three matrix.

Sirple-Simple Boundaries

For the case of sinple-sinple boundary conditions in y, the folloing

physical and reesulting mathematical corditions are used to define the

constants in the displacement expressions.

Tysically at y=y w(xy) x (Xy) = M(X,)= 0

Mathematically W(y) =* x(y) = ry(y) = 0 (89)

Note: y represents a general y position of the boundary

If Eq. (89) is used to solve for the constants in the displacement

equations, the following results are obtained:

A=B=D=DF=0

and for a nn-trivial solution

sin fb = 0

or fib = r
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Thus, for the simple-simple boudaries in y there two positive, one
4 - negative real roots to Eq. (65), the relationship that is programed and

solved for Nx is straight forward:
det = 6- r/b 

(90)

and n =1

If three positive real roots exist, the expression that irust

be solved at y=b bemes

W(b) = 0 = As b+Csinhb+Esinh-yb

x t(b) = 0 = AvsinIab+Cv2sinhb+Ev3sinh-yb (91)

* r'(b) = 0 = Mv4siytiab+Cgv5sinhb+Eyv6sinhyb

Thus, the sinpy/osy terms in the displacements are replaced by
.4 siry/ccsb,6y if the third root is positive real.

The matrix expression for Eq. (91) is

[aij] = (0) (92)

where

Sa11 = sinhub a12 = sinhb a13 = sinh-yb

a21 = vsinhab a22 = v2sinhb a23 = v 3sinh-yb

a31 = v 4asirrbb a3 2 = vpsinhb a 33 = v6ysib hb

where

v 1  =A(a) v2  A) v 3 =A(y)

(93)

V4  A(a) V5 =A(O) v6 =A (y)
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.... Claiped-Clazigd Bot.1aries

The following ptysical and mathematical corxitions define a

clamped bouxdary at y=y

Physically w(x,y) = Ox(x,'y) = (xY) = 0

Mathematically W(yy)(y) = y(y) = 0 (94)

Thus, at y=0, the displacements become

W(0) = 0 = B+D4-F

_ X(0) = 0 = BvI+Dv2 +Fv 3  (95)

9 * (0) = 0= Av C +Ev
y 4 5 6

Solving Eq. (95) in terms of the three ontstants yields

V5' 1l-V 3
D = B ____= Bv 7  (96)~v 3 -v 2

F = B 21= BY8  (97)

v 3 -v 2

v 5  v 4

E = C - A (98)
v 6  V6

Us5ng the relationships described by Eq. (96), (97), and (98) the BC's

equations can be determined as a function of A, B, and C at y=b. This yields

the folwing matrix equation:

(a~~ f3 B (99)
1' .O,
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where

a 1 1 =sinhemb - v 4 siiyb

V 6

a, coshb + v7 cosob + v 8 cxsh-yb

a 3 sin,6b + v 5 sinh-yb

V
6

a 2 =v siztibb-v, v4 sinh-yb

V 6

a 22 =v . coshb + v2 v7 cosb +v v 8cosh-yb

a2 3 = v2 sir~b + v3 v5 sinh-yb

V
6

a31 = v 4 coshab - v4 coskyb

a32 =V 4 sinhb + v5 V7 sirb + v 6v8 sinh-yb

a 33  -v 5 cxosob + V5 cosh-yb

where cr, f and -Y are variables and v i are functions of these

variables

SiT!,le-Clanred Bounrdaries

The mathematical conditions describingj the simple and clamped bounrdaries

are given by Eqs. (89) and (94). Cnidering a simple bounrdary at y-O leads

to
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W(0) = 0 = B+D+F

Sx(0) = 0 = BV1+JV 2 +(100)

* (0) = BV 4 +PV 5 +Fyv 6

or B = D =F = 0 (101)

A clamped boundary at y=b gives

W(b) = 0 = Asnlb+Csin6b+Esinh-yb

i x(b) = 0 = Av sinlb+Cv 2siSb+Ev3 sinhyb (102)

* y(b) = 0 = Av4coshbb-Cv 5 cosfSb+Ev 6 coshyb

Eq. (102) in matrix form beccmes

(aij ]  =0 (103)

where

a1 1 = sinbab a12 = sirnb a1 3 = sinh-yb

a21 = vlsirtb a = v2sirSb a23 = v3sinhyb

a31 = v4ooshb a32 = -v5cosob a33 = v6coshyb

Simple-Free Boundaries

A simple boundary at y = 0 leads to the relationships between constants

given by Eq. (101). A free boundary, at y = b, has the following pysical and

mathematical onditicns
I

Ph~ysically MY= NY = I = 0

Mathemtically My = -ND1,u*x(b)+D 2 2*y' (b) =0 (104)

Mxy = *x' (b)+NMy (b) = 0

0Y=W b (b)-+* y(b=0
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Expanding Eq. (104) and placing in matrix form gives

[aij] = (O) (105)

a11~ ~ (A = (Djv-D 2 v)-lwhere

a1 = (D224-ND12 vl)sirib

a = (D2 2s Iv 2)sib

a1 3 = (D2 2-yv6 -ND12V 3 )sinhyb

a 2 1 = (a V+NV4 ) cosbb

a 2 2 = (flv2 -Nv 5 )oosfib

N a2 3 = (-yv 3+Nv 6 ) cosh-yb

a 3 1 = (ct+v 4 )cosbab

a32 = (0-v 5 )co Sb

a 3 3 = (y+v6 )coshyb

A clanped boundary at y=0 gives the relationships described

by Eqs. (96), (97), and (98)

D = Bv7  (96)
F = Bv 8  (97)
E = CvV6 - Av4 /v 6  (98)

Substituting these relationships into the expanded form of Eq.

(104) and rewriting in matrix form gives

(A
[aij ] B= 0) (106)

w~here

all = (-ND2 v I+D 22v 4)sinhbb + (v 3 v4ND2 - D22yv 4 ) sinhyb

r 11M.-IV6
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a (-ND v +~l

1 -~ 2 3 D2 2-yv6) v~cosh-yb

a 1 3 = (-ND 12v +D2 2 '6v5 )sir~b+(-ND vv+D22 -yv5 ) sinh-yb

V 
6

a 2 1 - (Ckv1+Nv4 ) coshnb-(-fv 3v4+v4 )xmsh-yb

V 
6

*22 = (civ +Nv4 )sinb- (6v+Nv5)v7 sin,8b+ (-yv3+Nv6 )v sinh-yb

a 2 3 = (6v 2 -N 5 )csb+(-yv 3v5 +Nv5 )cw~yb

a 31 = (a+v4)cxoshab-(-yv 4+v4)cosh-yb

v 6

a 32 = (cf+v 4) siril-nb+ (-'6+v 5 ) v7sinBb+ (-Y+V 6) v~silh-yb

* a3 3 = 66-V 5 )coseb+(-yv 5 +V5 )cxosh-yb

V6

6 Free-Free Bounaries

A free boundary, as defined nathematica11y by Eq. (104),

gives for y-0
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"y lv\ = -N 12 [v1jv 2IDv 3F]+D 2 2 [v4 B+v5D4-v67 F] = 0 (107)

1MXy = VAV2C+v3E+[v4A-v5C+v6E] = 0 (108)

• o= v4A-V5 +v6E+"+CO+E" = 0 (109)

* fra, Eq. (107), E can be written in ters of A and C as

-(gv4 + V1 ) A + (Nv
5 - v2) C E (110)

(V3 
+ N 6 ) (V + NV6 )

or
vA + v8C = E (111)

With this relationship and Eq. (109), a relationship between

A and C is developed

(v4-+4t) - (v6 +-y) (Nv 4 +vl) A + (-v 5 )+(v 6 +-Y) (Nv 5-v 2 ) C = 0

(Nv6+v3) (Nv6+v3) (112)

or v9A+v 0C = 0 (113)

thus C = -v9A = VllA
(114)

V1 0

and it follows fram Eq. (111) that

I (v7 + v8vll) A =E (115)

or v 1 2 A= E

0fra Eq. (107)
p. 2 2 v 4-N 1 1  (D22v 5 -NDU2 v 2)

_ _B + D =F (116)
(NDuv 3-D2 27v6) (NDv3-D2 2 v6 )

or VlB+ V D= F (117)
1413 

14

46

-'S,



Introduwing the relationships between the constants to the relationships

for a free bounrdary at y=b and expressiv in matrix form leads to

(a..] B (0)(18
SDJ

where

a 1 1 = (-ND 12 v1+D22 v4 a) sifllb+ (-ND1 2v2 v1 +D2 2Vvv:1~P) sinfib

+ (-ND1 2v3 1, 2 +D2 v 26  y sixflhyb

a1 2  (-ND1 2v1+D2 2v 4a)(Xoshrb+(-ND1 v Vl+D2 vlV

*a1 3 =( ND1 2v2+D2 2v5 5) cxs~b4(-ND1 2v 3 14 +D22 v v1 4 -y )cosh.~b

a 21 =(v~of-NV4) cos"'ab+ (v2v, 1fiNv 11 ) xos~b+ (v3v 12-y +Nv v12 ) csh-yb

a 22 =(va+Nv 4 ) sinbab+ (v3v 13 '7 +Nve 13 ) sinhyb

a 2 3 =(-vA,+Nv 5 ) sirb-(v3 v 4 'Y+Nvev1 4 ) silhyb

a 3 1 =(v 4+") cashmb+ (-v 5 V11+Ov. 1 ) coe6b (v 6 v 1 2 +yv 1 2 ) cxoeh-yb

a 3 2 =(v 4 4n) sinhctb+ (vv 3 +-Yv 1 3) sinh-yb

a 3 3 =(v 5-i) sirab- (vA 4 '- 7V1 ) sinh-yb
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III. Discussion and Results

This chapter presents a brief introduction of the two ccupiter programs

written to solve the transcendental equations, generated earlier, for either

the stability or vibration problem of a laminated plate. Discussions follow

on the tUysical properties of the plate as well as the analysis performed

using the plate.

One existing ccmputer program is modified and one program is written to

solve the respective stability/vibration problem of a rectangular plate with

the six different boundary conditions already discussed. The first program is

a modification of a program written by Bowlus [2) which calculates the

- nondimensional bending and extensional stiffnesses for a symmetric laminate.

The second program formulates the boundary value problem for a particular

boundary condition in y in the form [aij](c)=(O) where [aij] is the 3x3 matrix

containing the eigenvalue and c is a column vector of displacement constants.

The program solves the transcendental equation given by det [aij ] for the

value of Nx or W. Appendix D gives a more detailed description of the second

program-

0 4.
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. .Analysis Performed

TW main areas are analyzed in this thesis, using the data generated by

the second program. First, the ability of the Levy technique to effectively

solve the various vibration and stability problems formulated earlier.

Second, the importance of shear deformation (and for the vibration problem

rotary inertia) in a mathematical model of a laminated plate.

The application of the Levy method is validated for the vibration

problem by omparing results to those calculated by Bowlus [2]. The boundary

conditions used in this comparison will be simple-sinple in the y-direction.

*. . Due to the similarities in the formulation of the vibration and stability

problems, such a comparison will also validate the stability portion of the

*program. The author could not find other published works for plates with

similar gecmetries/material properties aid/or ply lay-ups and different

boundary conditions with which to further evaluate the second program.

General trends and expectations for specific boundary conditions are available

however, and are used in the later discussions of the results.

The impact or importance of shear deformatIon is evaluated by altering

the length to thickness ratio of the plate. For the vibration problem, rotary

inertia is introduced into the model and a second set of calculations

performed. For three of the boundaries, notably sinple-sinple, simple-clamped

and simple-free, a square plate is used in the calculations. For the other

three boundary oorditions in y, the formulation of the transcendental

! "  ~ equaticn forces the use of rectangular plates with aspect ratios of two or

'_ p greater due to computational limitations. The analysis follows a presentation
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of the material properties of the laminated plates used in this analytical

Laminated Conposite Plate Prp2Lies

The plate stud~ied in this thesis is constructed of a graphiite-epoxy

(AS/3 501) material aixi has the following material properties

E1= 2l.OE+06 psi

E2=1.40E+06 psi

G 12= 0.6E+06 psi

~12 = 0.3

p = 0.055 lb/ in
3

The plate has a ply-layup of [0,90] ms. For the cxmarison with Bawlus,

m equals 100 indiicatingq a total laminate thickness of one inch if each lamina

is assumed to be 0.005 inch thick. A plate with m equal to 200 is used for

all other calculations. Tables 3.1 and 3.2 cotain the stiffness values

obtane from the first proram for the two plates.
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Grap±iite-Epmny [0/90] lo

Ork Inchi Thick

Parameter value

A4 540,000.3125

A55  540,000.3125

D1 1555164.375

D 1235211.2656

D2 322769.875

D6 50000.0

JSA&Units for A1 j lb/in

Units for D.. : lb-in

Table 3.1 Stiffness Parameters for a One Inch1
Thick Plate
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Graphiite-Epoixy [0/90] 200s~

~T Inches Thick

Parameter Value

A4 1,080,000.625

A5 5  1,080,000.625

D1 12,441,315.0

D 12 281,690.125

D2 2,582,159.0

D6 400,000.0

Units for A,, lb/in

Units for D..j lb-in

Table 3.2 Stiffness Parameters for a Two Inch
Thick Plate

52



Characteristics of Technique

In most of the previous studies of laminated plate behavior, proof of

convergence of the solutions must be presented. With the Levy technique, the

* values of Nx or w are calculated using a closed form algorithm. The only

p. factor that must be ensured is that the value computed is indeed the lowest

value for N or w. This is done by repeating the computations for increasing

values of n, the bending mode number, until the user is satisfied that the

results are continuously increasing. The lowest eigenvalue, regardless of n,

-.4. is the sought after solution. In most cases, n need not be increased past

three to determine the trend of the output.

In order for the program, which is used to evaluate the transcendental

equation, to have some credibility, results must be compared with previously

- - published work. As was stated earlier, apart from work by Bowlus, published

work on the buckling or vibration of (0/90]m couposite materials was not

abundant. leissa [27,28] and Brunelle [1] have results which can be used to

validate trends, but only Bowlus has numerical values which can be used in a

direct comparison. Thus, fra reference [2] for a plate simply supported on

all sides, the following comparison can be made for the first natural

frequency.

O.

,.

"I,.
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S Galerkin Method levy Method

(a/h) with SD and RI with SD and RI Differenc~e

17.5 3754.98 3762.44 0.20

20.0 2899.69 2913.32 0.47

22.5 2310.70 2320.17 0.41

27.5 1559.94 1568.82 0.57

30.0 1321.80 1322.56 0.06

35.0 975.16 976.10 0.10

40.0 752.80 749.47 0.44

Table 3.3 Cmuiarison of Galerldn and Levy Tech~niques
for a Plate Simply-Suported On All Fouar
Edges. Plate Thickness is One mIc.

The values in Table 3.3 show good agreement between the closed form

solution and one obtained using the Galerkin technique with the douible series

containingq six terms each.

To further validate the secod program, a comiparison is presented of the

results cxxrputed for the simple-clanped boundary in y and the classical

solution obtained for the specially orthotropic plate using an equation frari

Whitney [ 8]. For a plate with no shear deformation or rotary inertia, the

natural frequency can be computed fran

21 D J1 4 ,~ 2(D 12+2D..)R 2 a 2 + D12R4a3 41/'2(10
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where R a/b

a 1 2 n(m4a-1(a 121

a 3-rbr

a So8 in

P= 0.055 lb/in 3

for all m and n. (for fundiamental freuency, min1

Using the prcperties for the two inch thick plate given -in Table 3.2 and

cmiTtirg the natural frequency for a plate where R~l. 0, the following is

obtained

=769.574 Hz (122)

This value represents the classical plate solution and can be campared

to the value obtained for the natural frequency, using the ievy techniique,

given in Table 3.4
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S Levy Method Levy Method

(a/h) SD andl RI SD no RI

10.0 4891.466 4917.118

12.5 3282.50 3294.

15.0 2344.26 2350.771

17.5 1753.1 1756.

20.0 1358.306 1360.588

22.5 1082. 1083.

25.0 881.889 882.872

27.5 732. 732.

All freuencies are in Hz

Table 3.4 Natural Frequency of Two Inch Thick Plate
9 With azn1 Withouit RI. Sinple-Claxqped

Boundaries in Y.

Thus, as the plate thickness ratio increases and! the effects of shear

deformation and rotary inertia becoe negligible, the results approach the

classical solution of 769.574Hz. Classical solutions for other boundary

conditions or for the stability problem could not be foundi in the literature.
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Analysis of Shear Deformation and tary Inertia

The secor main area of investigation in the thesis is the importance of

including shear deformation in the plate model for the six different boundary

conditions proposed for the plate study. In the case of the vibration

analysis, the benefits of futher model refineent, due to the addition of

rotary inertia, is also investigated. The analysis is accorplished by

performing calculation for various plate length to thickness ratios and

comparing any trends to behavior predicted using classical plate theory.

The following discussion is separated into two sections; the first

considers the buckling problem, the second, the free vibration problen.
SI'.

Buckling Problmn

For each boundary condition, increasing length to thickness ratios and

length to width ratios are programme and solved. Computational limitations

play a limiting role as far as how many different length to thickness and a/b

ratios may be investigated for the various y directed boundaries. In the

subsequent presentation of results for each B.C., the range of S and plate

0 aspect ratio for which useful data is obtained is given. (This gives a good

indication of the limitations of the program written for this thesis). For

all boundaries however, an increase in the length to thickness ratios

indicates a decrease in the effect of shear force variations through the

.5. thickness. That is, the approximation that shear reformation effects are

negligible is increasingly valid as the plate becomes thinner and physical

7differences in the z direction beumne very small. The thinner plates quickly

,.557
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tend to the classical plate behaviour as S is increased past 40. This trend

., . is apparent on all of the subsequent figures depicting non-dimensionalized

buckling load Nx (-Nxa 2/7 2 D1 1 D2 2 ) vs length to thickness ratio.

'V The non-dimensionalizing parameter is chosen as it clearly illustrates

* the effects of two important variables on the bucklingj load. The first is the

length to width ratio (S) of the plate, the second, the aspect ratio of the

plate. The curves assyriptotically approach limiting value as S increases and

this value can be seen to represent the classical laminated solution. No

results are presented for length to thickness ratios under 10 for any of the

boundary conditions. It is important to realize that the assumptions of plane

stress and no strain in the z direction are less and less valid as S

*decreases. The errors resulting fron the assumptions are no longer negligible

at length to thickness ratio less than 10 and any results obtained are

invalid. By choosing this non-dimensionalizing parameter, the reader also

gains a better appreciation of the dependence of the buckling load on the

aspect ratio as the latter is varied from two to four.
*1

For the plate simply-supported on all sides, a square configuration is

used in calculating the buckling load. Iongth to thickness is varied from 10

-. *to 30 and the results are presented in Figure 3.1 for the first bending mode.

* The curve for the non-dimensionalized buckling load is seen to flatten out for

S approaching 32.5. The difference at this point between CPr and shear

deformation theory (Sr) is negligible. For a thicker plate however, the

difference increases to a maximum of 26.8% for an S of 10.

For the plate which is clamped at y=O and y=b, a rectangular plate with

aspect ratios (a/b) of two, three and four is used in the analysis. Length to
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thickness is varied fran 10 to 37.5 for the first plate. The curve of the

- -non-dimensionalized buckling load once again behaves asymptotically as the

value of S becanes greater than 30 (See Figure 3.2). For an aspect ratio of

two, a maximum difference of 37.14% exists between the SDT value and CPr

extrapolated value at S equal to 10. As the aspect ratio increases, the non-

dimensionlized buckling load increases. This is misleading as the

dimensionalized buckling load, N , does in fact decrease, as a/b increases,

indicating a decrease in the plates' ability to withstand the uniaxial

ccmpressive force. The maximum difference between CPi and SDT, for a/b equal

to three, is approximately 36.65%. For a/b of four, S is varied fran 20 to 40

with a maximum difference, between the theories, of 36.28% occuring at S equal

O to 10. C~r solutions for orthotropic plate, presented in reference [28],

indicate that a cxminxn solution exists for all aspect ratios greater than two.

Results shcn in Figure 3.2 indicate that plates of different aspect ratios do

not have coumon asymptotic values for S equal to 40. It is apparent that as

a/b is increased the difference between asymptotic values does not vanish due

to the interaction between boundary and buckling load.

A square plate is used to analyze the simple-clamped boundary conditions

in y. The curve in Figure 3.3 is plotted for length to thickness ratios of 10

to 25. Cauputer limitations prevent larger S values from being used to

-b calculate the buckling load. The maximum difference between SUP and CPT

occurs at a length to thickness ratio of 10 and has a magnitude of 29.03%.

The extrapolated value for the classically derived buckling load is reached

fairly quickly at S equal to 32.5.
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For the simple-free boundaries in y, the behaviour of the square plate

is depicted in Figure 3.4. S is varied frz 10 to 22.5, the upper limit a

function of ozmputer limitations. The results allow the characteristics of

this boundary to be studied and a difference, between the two theories, of

23.01% exists at S equal to 10 and decreases as S increases.

The clanped-free y directed boundaries are studied using a rectangular

plate with aspect ratios varying from two to four. For a/b of two and three,

S is increased frcm 10 to 30. For a/b of four, S is increased to 40. The

three curves are plotted in Figure 3.5. Once again, thugh the curves show

asymptotic behaviour as S is increased, the values at a length to thickness

ratio of 40 are different for each plate aspect ratio. This demonstrates the

significance of the shear deformation in an accurate model of plate behaviour.

Maximum differences between classical theory and shear deformation theory

varies from 26.86% to 27.84% as the aspect ratio increases from two to four.

The final results obtained for a buckling problem are presented in

Figure 3.6. The free-free boundaries considered are analyzed using a

rectangular plate with three different aspect ratios. For a plate aspect

ratio of two, the length to thickness ratio is varied frum 10 to 40. A

difference of 26.92% exists between SDr and CPT at S equal to 10 for this

V'. first rectangular plate. For a/b of three, S is also varied from 10 to 40 and

the disparity between theories peaks at 23.4% for S equal to 10. The final

plate studied, with an aspect ratio of four, has a range for S of 10 to 40.

The max divergence between theories, at S equal to 10, is 23.81%.
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It is interesting, at this point, to cupare some of the results

cbtained in order to better understand the interaction, if any, between the

boundaries in the y direction and shear deformation effects. To do so, plates

with similar geomtries and different boundary conditions are ccpared in

Table 3.5.

Boundaries Aspect Ratio Max Difference
in y of Plate between SDr/CPr

(%)

SS 1 26.80

SC 1 29.03

SF 1 23.01

cc 2 37.14

cc 3 36.65

OC 4 28.00

CF 2 26.86

CF 3 24.31

CF 4 27.84

FF 2 26.92

FF 3 23.40

FF 4 23.81

Table 3.5 Ccmparison of Discrepancies Between Shear
Deformation Theory and Classical Plate
Theory for Stability Probles.

General behaviour daracteristics become more apparent from this table.

First, the effects of shear deformation are very important regardless of the

type of boundaries for the plate. An average difference of 28.50% exists,
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regardless of the B.C. 's in y, between the models of plate behaviour for the

orientation studied. The effects of shear deformation are somewhat lower for

the free-free boundaries than those which have any form of restraint. The

free-free boundaries have an average difference of 24.71% canpared to 33.18%

for the other boundaries in y. This is most likely due to a greater reaction

between buckling load and boundaries if the boundaries are prevented fron free

movement.

Secondly, as the plates get thinner, the shear deformation effects

remain important. For the rectangular CF or FF plates under study, the plate

behaviour becomtes less influenced by the shear deformation as the aspect ratio

O is increased. In addition, the asymptotic value reached by the plate as it

becomes thinner remains different for the range of aspect ratios investigated.

Unlike classical theory which predicts a cumn asymptotic value for all a/b

Oratios over two (refence [28]), SDT indicates that shear effects, though

small, still linger even as S increases to 40. Differences in the asynptotic

value do decrease however, as a/b increases for the free boundaries.

Thirdly, the results validate the approach presented in the theory

section for dealing with ccmplex conjugate roots to Eq. (65). These roots

* occur at values of Nx which are lower than for the case of three real roots.

Hence, an erroneous root would appear higher than the general trend

established with the best-fit curve. For the stability problem, only two such

* possible cases did occur for all the rxinputations and they are indicated on

the respective figures.
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Fourthy, the plate aspect ratio is an important parameter to consider in

a stability problem if the plate boundaries normal to the applied force

provide some restraint. Figure 3.6 clearly shows that free boundaries lead to

similar values for critical load regardless of a/b.

Finally, stiffer plate supports result in higher buckling loads. This

can be seen by comparing values of N calculated for the CC and CF boundaries.J.. x

N.

0
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Vibration Problem

In a procedure similar to the one followed for the buckling problem,

each different boundary condition is studied by altering the length to

thickness ratio and when necessary, the length to width ratio. Initial tests

are done with rotary inertia effects remved from the model. The second runs,

with RI re-introduced gives a relative perspective of the importance of shear

and inertia in an accurate representation of plate action. Generally

speaking, Table 3.4 provides a good idea of the trend observed for all of the

vibration problems studied. Rotary inertia is found to decrease the overall

stiffness of the plate by an average value of less than one percent. Relative

to shear deformation, rotary inertia complicates a plate mathematical model

". with no important increase in acuracy.

As was the case for the buckling problem, a trend that is observed,

regardless of boundary conditions, is the diminished impact of shear

* deformation as plate length to thickness increases. All curves of w

(wa 2(p/E 2h2) 1/2) vs S show a decrease of the discrepenry between Sir and CPT

as S increases. Transverse shear variations are inverse functions of plate

thickness and become negligible for high enough values of S.

For the plate simply-supported on all sides, a square geometry is used

in calculating the natural frequency. length to thickness is varied from 15.0
0

to 30.0 and the results are recorded in Figure 3.7. The curve is for the

model that included rotary inertia effects. The average difference

with/without RI for this problem is 0.19%. A difference of 29.14% exists

. :.-_ between SDr and the extrapolated CPT when the lerth to thickness is 10. This

difference drops very quickly as the curves flattens out around S of 32.5.

70

0



15

V.

/0

C\1uLJ

3 5

' 20 30 4

S
Figure 3.7 Plot of Frequency vs Thickness Ratio

For Simple-Simple Boundaries.

71



0 2

Figure 3.8 Plot Of Frequen y v T i k es a i
F'or Clamped-cl

IlpdBoundaries.

72
- ~ V 

* 

AF



*A rectangular plate with aspect ratios of two, three, and four is used

"* " in the analysis of the clamped-clamped y boundary conditions. As seen in

Figure 3.8, S is varied fram 15 to 35 for the aspect ratio of two. Maxinum

deviation between theories is 38.64% for this geometry. Variations of S frum

20 to 35 are used in calculations for a/b equal to three. It becuies clear

frcmi Figure 3.8 that a narrower plate is stiffer as the natural frequency

increases. The plate behaves more and more like a reinforced beam as a/b

increases past a ratio of two. Maximum theoretical difference for this

configuration is 33.4% for a/b of four, this maximum reaches 34.43% as

frequency is plotted for S of 20 to 32.5.

- The square plate is once again used to analyze the siniple-clarped

bourdary in y. The curve in Figure 3.9 is valid for S ranging from 15 to 25.

Ccrputer limitations prevent the use of larger S values in the canputation of

the natural frequency. A maximum divergence of 36.4% is recorded for this

* plate between theory considering shear through the thickness and classical

analysis.

For the sinple-free y directed boundaries, plate behaviour is depicted

in Figure 3.10. A square and a rectangular plate are used to show frequency

variations as functions of plate length to thickness ratios. For the square

plate, with a variation in S of 17.5 to 22.5, the maximum difference between

theories is 16.1%. For the plate with aspect ratio of two and variance of S

of 15 to 35, this difference pepks at 20.2%. For this problem, it is

interesting to note that an increase of a/b fron one to two represents a

decrease in plate stiffness.
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The clamped-free plate, whose behaviour is illustrated in Figure 3.11,

is studied for three different aspect ratios. once again, the influence of

shear deformation is very noticeable as is the fact that this influence become

neglibible quickly as S approaches 40. Maximum differences between classical

theory and shear deformation theory vary from 19.44% to 22.16% for aspect

ratios of two to four repectively.

Important trends are seen to be slightly different for the vibration

problem than those recorded for the buckling problem. First, the overall

impact of shear deformation seems to be equivalent for the vibration problem,

as illustrated by the values in Table 3.6. Regardless of y boundary

conditions, average, difference between SDT and CPT is 27.02% for the

vibration problem, very close to the 28.82% obtained for the buckling problem.

(In this ccxparison, RI effects have been excluded for the vibration problem.)

The values cbtained in Table 3.6 ccpare normalized frequency at S equal to 10

and 30. For values of S less than 10, the discrepancy between SDTr and CFr

quickly increases.

Secondly, shear is more inportant to consider when studying the boundary

conditions which are stiffer. The clamped-clamped, simple-clamped and sinple-

simple have an average difference between the two theories of 34.4%.

The boundaries containing a free edge, on the other hand, have an average

discrepancy of 19.64%. Thus, the shear force effects are higher when the

influence due to rigid plate boundaries is more pronounced.
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Boundaries Aspect Ratio Max Difference
in y of Plate between SDT/CPT• (%)

SS 1 29.14

SC 1 36.40

SF 1 16.10

SF 2 20.20

c 2 38.64

c 3 33.40

cc 4 34.43

CF 2 19.44

CF 3 20.32

CF 4 22.16

Table 3.6 QMnparison of Discrepancies Between Shear
Deformation Theory and Classical Plate
Theory for Vibration Probles

Thirdly, a quick comparison shows that the stiffness of the boundaries

does affect the magnitude of the natural frequency of the plate. The stiffer

the supports, the higher the natural frequency of the plate. This can be

clearly seen by comparinq values of w for the CC vs the CF plate or the SS vs

the SF plate.

Finally, comparison of the two inch plate used in this thesis to the one

inch thick plate used by Bowlus [2] indicates a small difference in the

maxi discrepancy record between SDr and CPT. This is expected as the

thicker heavier plate is more affected by force variations through the

thickness as they tend to be more pronounced than for a thinner plate.
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IV Conclusions

Ihe results obtained from the cxunptations performed in this thesis

allow the following conclusions to be presented. They include cmmants on the

Levy technique and on both the stability and vibration problems. It should be

noted that all onclusions made are based on the specific laminate used in

this thesis. The author does not attenpt to generalize the results for

laminates of arbitrary compositions nor should the reader.

1. The Levy technique is a viable means of obtaining base-line solutions for

a specific class of laminated ccposite plates.

2. The mathematics of the solution, especially for free boundaries, is a

great deal less algabraically cmplex than what is generated using a Rayleigh-

Ritz or Galerkin approach.

3. The levy technique cannot be extended to a general class of cmposite

A plates. The presence of bending-extensional, bending-twisting coupling terms

or D16/D26 terms would not allow the reduction of partial differential

,,A equations to simple differential equations. Thus, though the Levy method has

been around for many years, it has never been fully taken advantage of due to

this drawback.

4. The transcendental equations, which are solved for the different

boundaries in y, are very sensitive to plate geometry. In many cases, certain

length to thickness or length to width prblems could not be resolved due to

the accuracy limitations of the crmputer used.
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5. Convergence is rot a parameter of concern with the Levy procedure. It is

not a term dependent approach and consequently, the accuracy of the solution

is not dependent an the accuracy of the displacemnt models.

Bu inl Problem

1. As the length to thickness ratio is increased past 40 for the plate, the

effects of shear deformation become negligible. Classical plate theory can be

used effectively to predict plate behavicur for the thinner plates.

2. Curves of the nondimensionalized buckling load vs thickness ratio are all

monomotonically increasing as S increases. The rate of increase does vary

significantly when different ranges of S are considered. Increase averages

37.6% for S from 10 to 20 and 28.7% for S from 20 to 30 for the boundary

conditions.

3. Shear deformation effects account for an average difference of 29.93%

between extrapolated classical theory and shear theory. The effect is less

pronounced for boundaries conditions which are not very stiff, such as FF.

Vibration Problem

1. Curves for non-dimensionalized natural frequency vs thickness ratio are

all monotonically increasing as S increases. Rate of increase does vary along

the curve, being the largest for S frun 10 to 20 with an average value of

38.8%.

2. Shear deformation effects acount for an average difference of 27.02%

betwen extrapolated classical theory and shear theory. The effect is more
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pronounced for the boundaries which are stiffer, such as clanId-clated or

sinple-clanped.

43. Rotary inertia has very little effect on the overall plate stiffness and

can be neglected in the mathematical model of plate behaviour when calculating

the first natural frequency. For higher natural frequencies, RI may have

significance and should be retained, but this has not been evaluated within

this thesis.
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BUCKLING ANALYSIS

Matrix [Aij]

E n r 2 2 ]
[ + t - n - n t 3
[ z I

[ ]2

[2
Sf t g n e n t I
[ - n-- - - ---- -----

z z z I
[ ]2

[ 2 1

Sen t h t f n I
[ t 1)
[ z z z I

Commands used to obtain simplified expression for det[Aij]

1) determinant(%.);

2) ratexpand(%);

3) xthru(%);

4) factor (%);

5) * by z**3/fhz;

Expression for the determinant of [Aij].

2 2 2 2 2 2 2 2
n r 2 2 f t g n h t f n e n t

( -- + t - n --- -(--( 1) ( ---...- - 1) - -- -- -

* z z zz 2

2 2 2 2 2 2
e n t h t f n f t g n e n t

+ n (--------n ---------- 1) + t (t ( C----------i -)--------

Z 2 2 2 Z 
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Simplified expression for the determinant of [Aij].

4 2 2 ' 2 2 2 2 2 4 2
- h t z + 2 f n t z + 2 e n t z + n r z -g n z

2 4 2 4 2 2 4 2 2 4 2 2
-gh n t z - f h n t z - f n t z + e n t z- h n r t z

2 2 4 2 4 2 242 2 4 2
- f n r t z + g h n t z + f g n t z + f n t z -- e n t z

4 6 2 4 4 2 2 4 2
+ f n r z - f g n z + f h n r t -g h n r t -f n r t

6 6 4 2 4 2
+ f g n r + f h t z + g n r z + e n r t )/(f h z)

Expressions for Aj in Equation(63).

0 A3=fhz/f1z=1.()

2 2 2 2 22 2
A2=(-hz -ghn z-fhn z-f n z+e n z+fhn r)/fhz

22 22 2 2 4 4 2 4 2 4
Al=(2fn z +2en z -hn rz-fn rz+ghzn +fgzn +f zn -e zn

4 2 2 2 4

-ghrn -f n r+e rn )/fhz

22 4 4 6 24 6
AO=(n z r+gzrn +fzrn +fgrn -gz n -fgrn )/fhz
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'.~ ~.*. VIBRATION ANALYSIS

Matrix [Aij]

C y 2 3
[ - + t -n -n t I
I z I
I I
1 2

[ f t q n e n t I
nr + --- n -- - I -- -- ]

[z z z z I
- 3

[ 2 1 ]
Sen t x h t f n I
I - t ---- ----- + 1 ]

I z z z

*Commands used to obtain simplified expression for det[Aij]:

1) determinant(%);

2) ratexpand(%);

3) xthru(%);

4) facztor(%);

5) * by z**3/fhz;

.4

Expression for the determinant of [AijiJ.

2 2 2 2

y 2 2 x f t g n x h t f n
" (-+ t -n + (+ (- 1

2" Z Z Z

4£.'

2 2 2
e n t x h t f n

--+ n ------ - n (- + ---- 1)) +t it

e n t
-------- )

2
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Simplified expression for the determinant of (AijJ.

2 2 2 2 2 4 2 2 22 22 2
(y z -t x z + n x z -h t z + 2 f n t z + 2 e n t z

4 2 2 2 2 2
-gn z -2 xy z-h t y z-ft y z+ gn y z+ fn y z

2 2 4 4 2 2 2 2
-n x z + ht x z +ft x z-hn t xz - gn t x z

4 4 6 2 4 2 4
+ gn x z +fn x z+ f ht z g hn t z -f hn t z

2 24 4 2 4 2 2 42 2 42
+ e n t z + gh n t z + fg9n t z + f n t z - e n t z

2 2 2 2 2 4
+ x y + ht x y + f t x y- gn x y- f n x y+ f h t y

2 2 2. 2 2 2 4 2 2 2 2
-f n t y +e n t y + f gn y +t x z - 2 fn t xz,

22 4 6 2 2C -f n t z - f g n z - g h m t y)/(f h z)

Expressions for B~j in Equation(81).

B3=fhz/ f hz=1 0

2 2 2 2 2 2 2

B2=(-hz +hxz+fxz-ghn z-fhn z-f n z+e n z+fhy)/fhz

2 2 2 2 2 2 2 2 2 4

B1=(-xz +2fn z +2en z -hyz-fyz+x z-hn xz-gn xz-2fn xz+ghzn +

4 2 4 2 4 2 2 2 2 2

fgzn +f zn -e zn +hxy+fxy-ghn y-f n y+e n y)/fhz

2 22 2 4 2 2 2 2 4 4 6

B0=(yz +n xz -gz n -2xyz+gyzn +fn yz-n x z+gxzn +fxzn -fgzn +

2 2 2 4
x y-gn xy-fn xy+fgyn )/fhz
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Aii

e first program is a fortran rewrite of a basic program used by Bowlus

[2] to determine the nandimersional stiffnmases of a laminated plate. In

particular, the program is rewritten to specifically handle [0/90] ms ply

layups and no other as this is the only type of plate studied in this thesis.

The program has four main sections; the input, the ccmputation of lamina

stiffnesses, the computation of the laminate stiffnesses and the output. The

input obtains, the following

a) plate top and bottom dimensions

b) El , E2 , GI2, Y12 and mass density for laminate material

c) rumber of plies in laminate

W-9 Based on this information and the fact that only [0,90] laminates are

considered, a do-loop is employed to calculate the non-dimensicnal lamina

stiffnesses [Qij]k" An "us" laminate means the first q/4 lamina are oriented

at 0° , the next q/2 at 900 and the last q/4 at 00. This allows the use of a
simplifying do-loop. Once a lamina [Qij k is calculated, it is added to the

sum of the other k-l lamina stiffnesses and the k+l stiffnesses are

calculated. Doing this m times gives the non-dimensional laminate stiffnesses

[Qij ] " The second and third sections of the program completes these steps.

The output is presented to the user in the form of a table which gives the

1 ~type of laminate studied and a listing of the n- ioinal stiffnosses

calculated.
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m:*** Program to: compute the extensional and bending
c***** stiffness elements for a symmetric laminate
c*****build-up, given lamina properties.

write(6,10)
10 format('enter plate top & bot dimensions,use 2f10.5',/)

read(5,15) ztop,zbot
15 f or mat .f 10. 5)
c
c section to' obtain lamina data
C~

17 write(6,20)
20 format''enter E1,E2,G12,v12 and mass density',!)

wr ite(6, 30)
30 format('use 3e10.2 and 2f7.3, DV*"?',/)

read(5,40) EI,E2,31,V,rho
40 format(3e10.2,2f7.3)
45 write(6,50)
50 format('how many plies in this plate,use I3',/)

read(5,60) n
60 fcrmat(I3)

V2=V1*(E,../EI)
!33=G1
32-0. 8*6
a 1=0.0
a2=0. 0
d1I 0. 0
d2=0. 0
d3=0. 0
d4=0. 0
ps0. 0

c
c section to compute A and D elements for this ply
c

Q1=E1/( 1.0-(V1*Y2))
Q2=(VI*E2) / (1 .- (YI*V2)*,
03=E2/(1-(V1*V2))

05=G3

tkin(ztop-zbot ) /n
k-n/4

DO 100 1=1,n
if(l.gt.k) go to 80

70 thO0.0
go to -34)

8o if(I.9t.3*k) go to 70
thn3. 1415'927/2.0

9.
c section to compute OBARS
C
90 B1=Q1*(COS(TH) )**4+2.0*(02+2.0*06*(SIN('TH) )**2'*

*nm (COS(TH))**2+Q3*(SIN(TH))**4
B2=(01+3-4.0*6,*(SIN(TH) )**2-a*(COS(TH)3 )**2+
0 2*(SINTH)**4+(COS(TH))**4'
83=Q1*(SINTH))**4+2.0*(Qd +2.0*Q*6)*:SIN(TH))**2*
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* ICOS(.TH' )**2+03*(.COS(TH) )**4
B4= (01+93-2. 0*02-.Z.0*06)* (SIN (TH)) **2* (COS (TH)) **2

*+06*((SIN(TH))**4+u'OS(TH)')**4)

E45=04*(C:OSi'TH))**.+05*(SINITH))**2

c section to coumpute lamina A elements

ZKIo -(-)t

A3=B5*(ZK-ZI)
A4=16*(CZK:-Z 1)
F=RHO*(ZfI-Z 1)

c section to compute lamina D elements

DZ=(zI(**3-z1**3)/3.0
FI=B1*DZ
F2=E42*DZ
F3=B3*DZ
F4=B4*DZ

c section to find laminate A and D elements

AI=A1+A3
A2=A2+A4
D1=DI+F1
D2=D2+F2

quo D3-D3+F3
D4-D44F4
PS=PS+P

100 continue
c
c section to pri-nt out A and D elements of laminate
c

wr it e(6, 200)
200 format(26x,'graphite-epoxy E0,90J',/,46x,'2s',//,

*32x,'one inc~h tlhi.:k-' ,///,21x,'element',4x,
*'dimensional value',///)
write(6,300) AI,A2,D1,D2,D3,D4

300 format(23x, 'A44' ,10x,F13.4,///,23x,'A55',10x,

*10x,F13.4,///,'Units for Ai~j terms are lb/in',
*///,'Units for Dij terms are in-lbs',//)

wr ite(6, 350)
350 format.'another problem maybe? yesl,no=2',/)

read(5,360) j
360 format(I1)

if . eq. 2) go to 400
wr it e(6, 370)

370 format('same physical pro. but diff. # plies7, yesl',/)
__ read(5,380) m

380 format(I1)
i f(m. eq.1I go to- 45
go to 17

400 stop
end
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This seod program, also written in Fortran, has four main sect ins

The deruntal equaticris in the fourth section of this program are solved

using the irn~mntal search tecnique. A flowduart decibivg the mchanics

of this technique is inc1lded in Appendix E. The four section of the program

are; the input, the calculation of the coiefficients of the sixth order

equation in 0, Eq. (63), the evaluation of a, p3, -y, and related values such as

A (a), and the solution of the tr-- ndna equation for a particular set of

bounrdaries in y.

7he input section obitains the follcowm data:

a) numb~er of ud, n, calculations are to be repeated for

b) a/b ratio of the plate

C) dosuser want to include effects of shear deformation

and/ or rotary inertia in calculations?

d) the bou~ndary ccnditicns in y

e) buckling or vibration problem ?

The folloinig are an intrinsic part of the program but can of course be

altered by editiM the sourcae:

a) the material properties of the plate under investigation,

b) a/h ratio used in calculation (automatically varied from

10 to 50 for each a/b ratio iputed)

c) initial and! final values of eigenvalue, initial incremient

for eigenvalue and answer tolerance (all paramieters

reqired whAen using incremental search)
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Depending on the type of problem being solved, the secord section of the

program calculates the coefficients of Eq. (63). Subroutines are used for

this purpose and appropriate terms are cmitted if, in the vibration analysis,

rotary inertia is reKmved. Values returned are used in the third section to

caloulate a, P, ard y, and all other terms required to define the

displaceemnts. hese ters are defined by Eqs. (69), (70), (72), (73), (82),

(83), (84), and (85).

The expressions for the t- equations, compxted in the

previous section of the thesis and subseqently encoded, are evaluated in the

final section of the program. An eigenvalue, for the particular problem under

consideration, is obtained when the transcendental expression is identically

zero. In using this program, one should realize that certain limitations to

the plate geometries, which may be studied, do exist. These limitations are

S either computational or theoretical in origin. For each boundary condition in

y studied in the thesis, the range of S used in the calculations and the

aspect ratio of the plate are specified. These provide the user with a very

good approximation of the useful computational limits of this program.

Inconsistancies present in the theory can best be identified by

ex. in the graphical results and absezving deviations from the general

trend. As was disacssed earlier, some deviations may result from the

assumption that all roots to Eq. (65) are real. Neglecting the cxmplex

conjugae roots is a good sinplification as only two instances occur, in all

c.putation, where the roots appear to be omplex. A seonxd source of

deviation oocrs when a very thick plate, S around ten, is studied. n this

case, the assumptions of plane stress and no strain in the z direction may

S lead to errors which are no longer negligible, deperding on the boundary
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miitimu. Mich deviaticro, did ocor twice, both tine for S less than 15

* arxd are identified cn the appropr-I~te figures. Thus, the theory is inexact

but more than adequate for the problems studied in this thesis.
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C ******************'***************
c Program to obtain uniaxial buckling load for a square
c composite plate given boundary condition%. Program can
c also calculate the natural frequencies of such a plate.
c **********************************

DIMENSION deter(2),A(3),KAPA(3),KAPA1(3),OMEGA(3),OMEGAl(3)
REAL NU,n
INTEGER type,bc,pp,sd
DOUBLE PRECISION aa,thick,r,w,coeft4,coeft2,coeft0,e,f,g,
*h,z,x,b,c,dpp,q,ALPHA,BETA,GAMMA,AKAPA,bb,vllv2,v3,v4,
*v5, v6, v7, vO,pi , 9GB, U,YE, ALPHA2, BETA2, GAMMA2, KAPAI,
*det, DIS, rho, all, a12, a13,a21,a22, a23, a3 , a32, a33,OMEGA,
*OMEGAl,eigentxmax,dxivepsi,deltx,v9,vlO,vll,v12,vl3,v14,o
*E2, answer
COMMON /A/A44,D129D66,Dll,D22,m,aa

c Material properties for a composite plate 2" thick.
4 A44=1080000. 625

Dl 1=12441315.0
D12=281690. 125
D22=2582 159. 0
D66=400000. 0
rho=0. 055
E2=1 .40d06

6 format('remember,this plate is 2" thick!',/)
10 write(6,40)
40 format('how many modes problem to be solved for?,use 11')

read(5,50) mm
c The user must choose for how many modes he wants to solve
c a particular a/h & a/b geometry for.
50 format(I1)

write(6,60)
60 format('problem to be solved?bucklingml,vibs=2')

read(5,70)*type
70 format(I1)

write(6,e0)
s0 format('what is a/b & thickness of the plate?')

wr ite(6, 90)
90 format('use 2f8.3 to input valuespokay?')

read(5,100) ab,thick
*100 format(2fB.3)

write(6, 103)
103 format('do you want to include SD? yesl,non2')

read(5,106) sd
106 format(I1)

write(6, 110)
110 format('do you want to include RI? yes=1, no-2')

read(5, 120) L
120 format(I1)

writeCS, 125)
125 format('what BC's do you want for y0O,b ?',/)

write(6, 130)
130 format(ISSi1,CC2,SCm3,SF=4,CF5,FFn6',/)

read(5,135) bc
135 format(I1)

a&&-10. 0
140 m-1
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c Program loops through m from 1 to mm, the number specified
" earlier by the user.

aiaaa*thick
bbaa/ab

c program varies a/h from 10 to 55 for every value of a/b
c specified by the user.
145 k-i

eigen-200. 0
xmax-2000000. 0
dxi-=100.*0
epsi -0.00001
deltx-dxi

146 if(type.eq.1) go to 150
wei gen
go to 160

150 reigen
c
c Start of second section of program.
c Calculation of coefficients of angle theta used to
c define displacement and rotations.
C ***************************

call buckle(coeft4ocoeft2,coeft0,r,n,e, f,g,h,z,sd)
if(sd.eq.2) go to 899
-go to 170

160 call vibs(coeft4,coeft2,coeft0,w,rho,thick,n,e, ffg,
*h,L, x,z,sd)
if(sd.eq.2) go to 899

c Start of third section of program.
c Evaluation of alpha, beta, gamma and related terms.

170 b=coaft4
c-coeft2
d-coeft0
p-c -b*b/3. 0
q-d-b*c /3.0+ (b**3*2. 0/27.0)
DIS=-27. 0*q*q-4. 0*p**3
i f(DIS)300, 400,400

c if the discriminant is < 0, we have only one real root
c to the cubic. Physically, this does not make sense. The
c program will not use the eigenvalue in any further calculations
c but will go to line 755. Here, the eigenvalue will be increased
c by an amount of deltx and b,c,and,d will be recalculated.
300 go to 755
400 pi=3. 1415927

do 500 11,p3
*BIGD=dsqrt (-4. *p/3.) 1 VLU @WO

U-3.*sqrt(3.)*q/(2.*p*dsqrt(-p)) £AUT@~O

NUdcos (YE) i* oto
A( I)=NU4'BIGB-b/3. J

500 continue B)
ALPHA2=A(1)
BETA2-A(2) A

" "' GAMMA2=A(3) '
i f(ALPHA2.1t.0.) ALPHA2=-1.*ALPHA2

- ' i 1(BETA2. lt.0.) BETA2-1I.*BETA2
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if(6AMMA2.lt.0.) GAMMA2=-1.*GAMMA2
ALPHA-dsqr t(ALPHA2)
BETAdsqrt (BETA2)
GAMMAdsqrt(GAMMA2)
if(type.eq.2) go to 650

do 550 J-1l,3
" Buckling Problem
c if one of the roots of the cubic is negative, then eqs(1Z.J
" and (11) must be used instead of eqs(69) and (70).

if(A(J).lt..0.) go to 530
" eq( 16) and eq(1O) follow:

KAPA(J)=( (h*A(J)-z-n*n*f)*n*z-n*e*z*A(J))
* /((hi*A(J)-z-n*n*f)*(f*A(J)-z-n*n*g)+ fGth)(69)
*n*n*e*e*A(J))

i f(J.eq. 1) angle=ALPHA
if(J.eq.2) angle=BETA
if(J.eq.3) angle=E3AMMA
KAPA1(J)=(n*z-(f*A(J)-z-n*n*g)*KAPA(J))/(n*e*angle) E&&J. (10)
go to 550

c eq(71. and eq(73) follow:
530 KAPA(J)=((h*A(J)+n*n*f+z)*n*z-n*e*z*A(J))

* /(n*n*e*e*A(J)-(h*A(J)+n*n*f+z)*(f*A(J)+n*n*g+z)) ~ A.1L
i f(J.eq. 1) angle=ALPHA
-if(J.eq.2) angle=BETA
if(J.eq.3) angle=GAMMA
KAPA1(J)=(n*z+(f*A(J)+n~n*g+z)*KAPA(J))/(n*e*angle) ,L )

550 continue
go to 700

9e 650 do 685 JJIp3
c Vibration Problem
c if one of the roots of the cubic is negative, then eqs(S1)
c and (K) must be used instead of eqs(62) and (93).

if(A(JJ).lt.0.) go to 660
c eq(11) and eq(t3) follow:

/MGJ)((h*A(JJ)-z-n*n*f+x)*-ne~*A(JJ)-znn)~)
OMGJ((h*A(JJ)-z--n*n*f+x)*n-ne*A(JJ))znn~~)
n*n*e*e*A(JJ))
if(JJ.eq.1) angle=ALPHA
i f(JJ.eq.2) angle=BETA
if(JJ..eq.3) angle=GAMMA
OMEGAl (JJ)=(n*z-(f*A(JJ)-z-n*n*g+x)*OMEGA(JJ) )/

*(n*e*angle)

go to 685
" eq( M) and eq(i6) follow:
660 OMEGA(JJ)=((h*A(JJ)+n*n*f+z-x)*n*z-n*e*z*A(JJ))

*/(n~n*e*e*A(JJ)-(hi*A(JJ)+n*n*f+z-x)*(f*A(JJ)+n*n*g+z-x))

if (JJ. eq. 2) angle=BETA
if(JJ.eq.3) angle=GAMMA
OMEGAI(JJ)=(n*z+(f*A(JJ)+n*n*g+z-x)*ME3A(JJ))/ 4.(S

* (n*e~angle)
685 continue
c ***~*****************************

c Start of fourth section of program.
c solution to transcendental equation of boundary-value problem.
c *********************************

700 go to (960,1000,1100,1200,1300,1400) bc

94



750 deter (k)-det
i f(k. eq. 2) go to 790
k-k+1

755 eigen-eigen+deltx
go to 146

790 if(deter(1)*deter(2)) 800,920,795
795 if(eigen.gt.xmax) go to 850

deter (1)deter (2)
go to 755

800 if(deltx-epsi) 620,820,810
810 eigeneigen-deltx

deltx=deltx/10.
go to 755

8320 if(type.eq.2) go to 825
answer-eigen*bb*bb/(pi*pi*aa*sqrt (g*h))
go to 827

825 answer=eigen
827 write(6,830) aa,bb,m,answer
830 format('aa=',t8.3,x,'bb=',f8.3,x,'n=',11,x,'root=',d20.lO,/)

* go to 890
*850 write(6,860)

860 format('max value reached and no root found',/)
890 if(m.ge.mm) go to 895

-m=m+1
go to 145

895 if(aaa.ge.45.0) go to 899
aaa-aaa+2.5
go to 140

899 write(&,900)
900 format('do you want to try another problem?yes=1')

read (5, 910)3
910 format(Il)

i f(J. ne. 1) go to 950

920 format('any change in mat'l properties? y1'l,/)
read(5,930) pp

930 format(I1)
if(pp.eq.1) go to 4
go to 10

950 stop
*960 lf(a(2).gt.0.0) go to 970

c Routine to calculate det~aijJ for "simple-simple" bc in y.
det=beta-pi /bb
go to 750

970 i f(type. eq. 2) go to 980
vlkapa( 1)

* v2=kapa(2)
v3inkapa(3)
v4-kapal (1)
v5-kapal (2)
vS-kapal (3)
go to 990

980 vizomegaci)
v2-omega (2)
v3-omega (3)
Y4-omnegal (1)
v5inomegal (2)
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v6-omegal (3)
990 a11=(dsinh(alpha*bb))/1.dlO

a12=(dsinh(beta*bb) )/1.dlO
a13=(dsinh(gamma*bb) )/1.dlO
a21=(vl*dsinh(alpha*bb) )/1.d10
a22=(v2*dsinh(beta*bb) )/1.dlO
a23=(v3*dsi nh (gamma*bb) )/ 1*d 10
a31=(v4*alpha*dsinh(alpha*bb) )/1.dlO
a32=(v5*beta*dsinh(beta*bb) )/1.dlO
a33=(va*gamma*dsinh(gamma*bb) )/1.dlO
detal 1*(a22*a33-a32*a23)-a12*(a21*a33-a31*a23) +

*al3*(a2l*a32-a31*a22)
go to 750
st op

1000 if(type.eq.2) go to 1010
c Routine to calculate detEAij3 for "clamped-clamped" bc in y.

v1=KAPA( 1)
v2=KAPA(2)
v3=KAPA(3)
v4=KAPA1 (1)
v5=KAPAI (2)
v6=KAPA1 (3)
v7=(vl-v3) /(v3-v2)

- vB(v2-vl)/(v3-v2)
go to 1020

1010 v1ODMEGA(1)
v2ODMEGA(2)

Al v3=OMEGA (3)
v4=OMEGA1 (1)
v5SOMEGA1 (2)
v6=OMEGAI (3)
v7u(vl-v3) /(v3-v2)
vBin(v2-vl )/ (v3-v2)

1020 all=(dsinl'(ALPHA*bb)-v4/v6*dsinh(GAMMA*bb))/1.dlO
a12=(dcosh (ALPHA*bb).v7*dcos(BETA*bb)

*+v8*dcosh (GAMMA*bb) )/ . dlO
a13=(dsin(BETA*bb)+v5/v6*dsinh(GAMMA*bb))/1.dlO
a21=(vl*dsinh(ALPHA*bb)-v3*v4/v6*dsinh(GAMIA*bb) )/1.dlO
a22=(vl*dcosh (ALPHA*bb)+v2*v7*dcos(BETA*bb)

*+v3*vB*dcosh (GAMMA*bb) )/ 1.d 10
a23=(v2*dsin(BETA*bb)4-v3*v5/v6*dsinh(GAMMA*bb) )/1.dlO
a31=(v4*(dcoshi(ALPHA*bb)-dcosh(GAMMA*bb) ))/1.dlO
a32=(v4*dsinh(ALPHA*bb)+v5*v7*dsin(BETA*bb)

*+v6*vB*dsinh(GAMMA*bb) )/1.dlO
a33=(v5*(-dcos(BETA*bb)+dcosh(GAMMA*bb)) )/1.dlO
det-al 1*(a22*a33-a32*a23)-a12*(a21*a33-a31*a23)+
*a13*(a21*a32-a31*a22)
go to 750
Ut op

1100 if(type.eq.2) go to 1110
c Routine to calculate detEAij3 for "simple-clamped' bc's in y.

vI=KAPA( 1)
v2-kapa (2)
v3=kapa (3)
v4=kapal (1)
v5=kapal (2)
v6-kapal (3)
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go to 1120
1110 vl-omega(1)

v2-omega(2)
v3=omega (3)
v4=omegal1 (1)
v5-omeg at (2)
v6=omegal1 (3)

1120 if(a(2).lt.0.0) go to 1130
v20=dsi nh (bet a*bb)
v30=dcosh (beta*bb)
go to 1140

1130 v20=dsin(beta*bb)
v30=-dcos (bet a*bb)

1140 all=(dsinh(alpha*bb) )/1.dlO
a12-(v20)/1.d10
a13=(dsinh(gamma*bb) )/1 .dlO
a21=(vl*dsinh(alpha*bb) )/1.dlO
a22=(v2*v20)/1. dlO
a23=(v3*dsinh(gamma*bb) )/1.dlO
a31=(v4*dcosh(alpha*bb) )/1.dlO
a32-(v5*v30)/1 .dlO
a33 ( v6*dcosh (gamma*bb) )/ 1*d 10
det=al 1*(a22*a33-a32*a23)-a12*(a21*a33-a31*a23)+

*a13*(&21*a32-&31*&22)
go to 750
stop

1200 if(type.eq.2) go to 1210
c Routine to calculate det[AijJ for "simple-free' bc's in y.

vl-kapa( 1)
v2-kapa(2)
v3=kapa (3)
v4-kapal (1)
v5=kapal (2)
v6=kapal (3)
go to 1220

121C vlinomega(1)
v2=omega (2)
v3inomega (3)
v4-omogal (1)
v5=omogal (2)
v6=omegal (3)

1220 allm((healphaev4-navl*(e-f))*dsinh(alpha*bb))/1.dlO
a12=((h*beta*v5-n*v2*(e-f))*dsin(beta*bb))/1.dlO
a13=((h*gamma*vE.-n*v3*(e-f))*dsinh(gamma*bb))/1.dlO
a21m((alphaavlen*v4)*dcosh(alpha*bb))/1.dlO
a22-((beta*v2-n*v5)*dcos(beta*bb) )/1 .dlO

6 a23=( (gamma*v3+n*vS)*dcosh(gamma*bb) )/1.dlO
a31-((alpha+v4)*dcosh(alpha*bb))/1.dlO
a32n( (beta-v5)*dcos(beta*bb) )/1 .dlO
*33-((gamma+vS)*dcosh(gamma*bb))/1.dlO
det-al 1*(a22*a33-a32*a23)-a12*(a21*a33-a31*a23)4
*a13* (a21*a32-a31*a22)
go to 750
stop

1300 if(type.eq.2) go to 1310
c Routine to calculate detCAij3 for "clamped-free' bc's in y.

vlinlapa(1)
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v2-kapa(2)
v3inkapa (3)
v4-kapal (1)
v5-kapal (2)
v6-klapal (3)
v7in(vl-v3) /(v3-v2)
ve9(v2-vl )/ (v3-v2)
go to 1320

1310 vlomega(1)
v2=omega (2)
v3=omega (3)
v4-omegal (1)
v5=omegal (2)
v6=omegal (3)
v7-(vl-v3) /(v3-v2)
vB=(v2-vl) /(v3-v2)

1320 al 1( (-n*(e-f)*v1+h*alpha*v4)*dsinh(alpha*bb)+
*(v3*v4/vS*n*(e-f)-h*v4*gamma)*dsinh(gamma*bb) )/1.dlO
a12=((-n*(e-f)*vl+hi*alpha*v4)*dcosh(alpha*bb)+

*(-n*(e-f)*v2+h*beta*v5)41v7*dcos(beta*bb)+
*(-n*(e-f)*v3+h*gamma*vE.)*vS*dcosh(gamma*bb) )/1.d10
a13=((-n*(e-f)*v2+h*beta*v5)*dsin(beta*bb).

4 *(-n*(e-f)*v3*vS/v6+h*gamma*v5)*dsinh(gamma*bb) )/1.dIO
- a21=( (alpha*vl+n*v4)*dcosh(alpha*bb)-
* (gamma*v3*v4/v6+v4) *dcosh (gamma*bb) )/ 1*d 10
a22=( (alpha*vl+n*v4)*dsinh(alpha*bb)-(beta*v2+nav5)*v7*
*dsin(beta*bb)+(gamma*v3+n*v&)*vG*dsinh(gamma*bb) )/1.dlO

ANa23= ((bet a*v2-n*v5) *dcos (bet a*bb)+
wo*(gamma*v3*v5/v6+n*v5)*dcosh(gamma*bb) )/1 .dlO

a31=((alpha~v4)*dcosh(alpha*bb)-(gamma*v4/vS+v4)*
*dcosh(gamma*bb) )/1.dlO
a32-((alpha+v4)*dsinh(alpha*bb)+(-beta+v5)*v7*

*dsin(beta*bb)+(gamma+v6)*v9*dsinh(gamma*bb))/1.dlO
a33-((beta-v5)*dcos(beta*bb)+(gamma*v5/vS+v5)*

*dcosh(gamma*bb))/1.dlO
detmal1* (a22*a33-a32*a23) -*12* (a21*a33-a31*a23) +

*a13* (a21*a32-a31*a22)
go to 750
stop

1400 if(type.eq.2) go to 1410
c Routine to calculate det~aij3 for "free-free" bc's in y.

vlkapa( 1)
v2=kapa(2)
v3=kapa(3)
v4-kapal (1)
v5=kapal (2)
v6=kapal(3)
go to 1420

1410 vi-mogaci)
v2-omega(2)
v3nomega (3)
v4-omegal (1)
v5inomegal (2)
vSmomegal (3)

1420 v7in-(n*v4+vl )/ (v3+n*v6)
if (a(2).gt.0.) go to 1430
v8-(n*v5-v2) /(n*v6+v3)
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v9-(v4*al pha) +(vSegamma) *v7
vlOin(beta-v5) *(v6.gamma)*v8

140go to 1440
140vgi(n*v5+v2)/(n*v6+v3)

v9in(v4*alpha)4 (vS+gamma)*v7
vlOin(beta+v5) .(v6egamma)*ve

1440 vlln-v9/vlO
vl2inv7+v8*vl 1
vl3-(h*alpha*v4-n*(e-f)*vl)/(n*(u-f)*v3-h*gamma*v6)
vl4-(h*beta*v5-n*(e-f)*v2)/(n*(e-f)*v3-h*gamma*v6)
0=e- f
if(a(2).lt.0.0) go to 1450
a11-((-n*o*vl+h*v4*alpha)*dsinh(alpha*bb)+(-n*o*v2*vlI

*+hi*v5*beta*vll1)*dsinh(beta*bb)+(-n*o*v3*v124.h*v6*v12*
*gamma)*dsinh(gamma*bb) )/1.dIO
a12-((-n*o*vl+h*v4*alpha)*dcosh(alpha*bb)+

*(-n*o*v3*v13e+h*v6*v13*gamma)*dcosh(gamma*bb) )/1.d10
a13=((-n*o*v2+h*v5*beta)*dcosh(beta*bb)+

*(-n*o*v3*v14+h*v6*v14*gamma)*dcosh(gamma*bb) )/1.dlO
a21=( (vl*alphaen*v4)*dcosh(alpha*bb)+

*(v2*beta*vlI+n*v5*vll)*dcosh(beta*bb)+
*(v3*v12*gamma+n*v64iv12)*dcosh(gamma*bb) )/1.d10
a22=((vl*alphia+n*v4)*dsinh(alpha*bb)+

*(v3*v13*gammae-n*vS*v13)*dsinh(gamma*bb) )/1.dlO
a23=((v2*beta~n*v5)*dsinh(buta*bb)+

*(v3*v14*gamma+n*v6*v14)*dsinh(gamma*bb) )/1.dlO
a31-( (v4.alpha)*dcosh(alpha*bb).(v5*v114beta*vll)*

*dcosh(beta*bb)+(v6*v12+gamma*v12)*dcosh(gamma*bb) )/1.dlO
a32-( (v4+alpha)*dsinh(alpha*bb)+(vE*v13+gamma*v13)*
*dsinh(gamma*bb) )/1.dlO
a33-((v5+beta)*dsinh(beta*bb)+(vS*v144gamma*v14)*
*dsinh(gamma*bb) )/1.dlO
go to 1460

1450 allum((-nso~vl~h*v4*alpha)*dsinh(alpha*bb)+(-n*o*v2*vll
*+hi*v5*beta*vll)*dsin(beta*bb)+(-n*o*v3*v2-h*v6*v12*
*gamma)*dsinh(gamma~bb))/1.dlO
*12m((-nsosvleh*v4*alpha)*dcosh(alpha*bb)+

*(-n*o*v3*v13o-h*vS*v13*gamma)*dcosh (gamma*bb) )/1 *dlO
a13=( (-n*o~v24h*v5*beta)*dcos(bwta*bb)+

*(-n*o*v3*v14e+h*v6*v14*gamma)*dcosh(gamma*bb) )/1.dlO
a21=( (vl*alpha+n*v4)*dcosh (alpha*bb)+

*(v2*beta*vl 1-n*v5*vll1)*dcos(beta*bb)+
*(v3*v12*gamma+n*vG*v12)*dcosh(gamma*bb) )/1.dlO
a22-((vl*alpha+n*v4)*dsinh(alpha*bb)4

*(v3*v13*gammae~n*vS*v13)*dsinh(gamma*bb) )/1.dlO
a23=((-v2*beta~n*v5)*dsin(beta*bb)4

0. *(v3*v14*gamma+n*vS*v14)*dsinh(gamma*bb))/1.dlO
a31-((v4+alpha)*dcosh(alpha*bb)+(-v5*vll+beta*vll)*

*dcos(beta*bb).(v6*v12+gamma*v12)*dcosh(gamma*bb))/l.dlO
a32n( (v4+alpha)*dsinh(alpha*bb)+(v6*v13+gamma*v13)*

*dsinh(gamma*bb) )/1.dlO
a33-((v5-beta)*dsin(beta*bb)+(v6*v14+gamma~v14)*

*dsinh(gamma*bb) )/1.dlO
1460 detinal 1.(a22*a33-a23*a32)-a12*(a21*a33-a31*a23)+

*a13* (a21*&32-a31*&22)
go to 750
stop
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and
SUBROUTINE buckle(coeft4,coeft2,coeft0,rvn,

*e,f,g,h,z,od)
C

c Subroutine to calculate coefficients of angle
c theta , for the buckling case
c

COMMON /A/A44,D12,D6fi,D1ID22,m,aa
REAL n
INTEGER sd
DOUBLE PRECISION coeft4,coeft2pcoeft0,r~e,

*f,g,h,z,pi ,aa
pi=3. 1415927
if(sd.eq.1) go to 1910
write(6, 1900)

1900 format('you have removed shear deformation effects')
write(6, 1901)

1901 format('from the problem. You no longer have a cubic')
wr ite (6, 1902)

1902 format('equation to 4solve so that the rest of this')
writeCS, 1903)

1903 format('program is useless. An altogether different')
write(6, 1904)

1904 -format('program would have to be used. Sorry!!',/)
return

1910 z=5./6.*A44
e-D1 2+D66
f-D66

109 h-D22
n-FLOAT(m)*pl /aa
coeft4=-1.*(h*z*z+g*h*n*n*z+f*h*n*n*z+f*f*n*naz-

*e*e*nan*z-f*h*n*n*r ) /(f*h*z)
coeft2=-1.**(-2.*f*n*n*z*z-2.*e*n*n*z*z+h*n*n*r*z+

*f1*n*n*r *z -g*hi*z *n**4-fI*g*z *n**4- f* f*z *n**4+
*e*e*z*n**4+g*h*r*n**4f*f*n*n*r-e*e*r*n**4) /(Cf*h*z)
coeftOm-1 * *(-n*nezez*r-g*z*r*n**4-f*z*r*n**4-f*g*r*n**6

*+g*z*z*n**4+f*g*r*n**6) / f *h*z)
return
end
SUBROUTINE vibs(coeft4,coeft2, coeftO, w, rho, thickn,

*epfpg,h,L,x,z,sd)
c
c Subroutine to calculate coefficients of angle
c theta, for the vibration~ case.
c

* ~COMMON /A/A44, D12, DSSDl1, D22, m, aa
REAL n
INTEGER sd
DOUBLE PRECISION coeft4,coeft2,coeft0,w,rho,thick,
*&, f,g,h,z,x,pi,aa
if~sd.oq.1) go to 1960
writeCE, 1950)

1950 formatC'you have just decided to remove all shear thru')
writeCS, 1951)

1951 format('the thickness effects from this problem. The')
writeC6, 1952)
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1952 format('program you are using is no longer valid as it is')
wr it a(6, 1953)

1953 format('set up to solve a cubic. A totally different')
wr itoe(Sp 195A)

1954 format('program would have to be used for this simpler')
writoCSp 1955)

1955 format('case. So sorry old chap.',/)
return

1960 z-5./6.*A44
pin3. 1415927
e=D12.D66
f-D66

h=D22
i f(L. eq.1I) go to 2000
X=0.0
go to 2010

2000 x=w*w*rho*thick**3/(144.*32. 174)
2010 y=rho*thick*w*w/(12.*32.174)

nrFLOAT (in)*pi/aa
coeft4-(-h*z*z+h*x*z+f*x*z-g*h*n*n*z-f*h*n*n*z

*-f*f*n*n*z+e*e*n*n*z+f*h*y)/( f*h*z)
coeft2=(-x*z*z+2.*f*n*n*z*z+2.*e*n*n*z*Z-h*Y*Z-f*Y*Z

*+x*x*z-h*n*n*x*z-g*n*n*x*z-2. *f*n*n*x~z+g*h*z*n**4
*+ f*g*z*n**4+ f* f*z*n**4-e*e*z *n**4+h*x*y+ f*x*y
*-g*h*n*n*y-f*f*n*n*y+e*e*n*n*y) /( t*h*z)
coeftO=(y*z*z+n*n*x*z*z-g*z*z*n**4-2.*x*y*z~g*y*z*n*n

** f*n*n*y*z-n*n~x*x*z+g*x*z*n**4+f*x*z*n**4-f*g*z*n**6
*+x*x*y-g*n*n*x*y-f*n*n*K*y+f*g*yan**4) /(f*h*z)
return
end
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