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CHAPTER 1

INTRODUCTION

1.1 Background

Recently much work has been directed towards developing
constitutive models to represent the complex load-deformation behavior
of soils. The models developed to date have primarily been for the
special cases of dry and completely saturated soils. The use of these
constitutive models in representing the behavior of partly saturated

soils has resulted in inaccurate predictions of scil response. It is

N2 27 R T P R 5 e

the intent of this research to formulate a constitutive model

describing the behavior of partly saturated soils.

T 1‘

There are essentially two approaches which have been used by those
attempting to develop constitutive laws for soils. The first approach
is termed pnenomenological modeling. Phenomenological models may be
defined as those concerned with describing material behavior on the
size scale of the experiment. For soils, thousands to millions of
soil grains and pores would be included in a model representation of
this type. Phenomenological methods or tneories include emprical
curve fitting, elastic theories, elastic-plastic theories, and visco-
elastic theories. These methods and continuum theories are concerned
with describing the overall observable behavior of the soil mass.

They are not concerned with describing the actual mechanisms causing

deformation, which act on the level of tne grains and pores which
comprise tne soil mass. The second type of approach is termed
micromechanical modeling. This approach attempts to derive

constitutive laws by considering the deformation mechanisms acting on

Jor X PRS
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2 T

¢ a very small but representative sample of the material. For soils, a

' E micromechanical model description might include one to hundreds of
P,
! grains and pores in the model description.
(tl
b 5?
) The primary problem with constitutive models representing soils,

is a failure to describe all aspects of their load-deformation

- -
. dn W
-

% behavior. While a model may give reasonable predictions under one set

of input, it may fail to predict the soil resporse under another set

S -~
NI

-
%

of input. With the present knowledge it appears that a constitutive

P ]
27

* model representing all aspects of soil behavior may not be obtainable.
:':E & This is due partly to a lack of understanding of the mechanisms

S causing soil deformation and partly due to the mathematical

ﬁal §§ complexities one may encounter when modeling soils. A micromechanical
X >

Zé approacn to the constitutive modeling of soils may provide a better

y ‘ means to understand the soil load-deformation mechanisms.

1.2 Scope of Work

The purpose of the research studies contained in this report is to

develop a constitutive model representing the load-deformation

M ek

W behavior of soils. The following types of investigations are

.
o
XA

contained in this report:
a) Review of the available literature on previously developed
constitutive models describing the load-deformation behavior

of soils.

& =2

I b) Development of a constitutive model to represent the response

=
'<\" ~ 4

of partly saturated soils using micromechanics, under

idealized conditions.

Yool
s

o 1.3 Method of Approach and Organization

‘N The studies undertaken to achieve this objective are deszribed in
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the subsequent chapters.

Chapter 2 contains a brief description of experimentally observed
load~response behavior of soils and review of previously developed
constitutive models describing this behavior.

Chapter 3 contains the solution to the problem of an elastic
sphere in contact with a number of neighboring elastic spheres.

Chapter 4 contains the development of the effective moduli to
describe the elastic behavior of a number of spheres in contact while
surrounded by a liquid matrix phase.

Chapter 5 contains the extension of the work described in the
previous chapter to three-phase systems.

Chapter 6 presents conclusions and recommendations.

.
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: , ' CHAPTER 2

TR

PREVIOUS WORK

§ ks 2.1 Load-Deformation Benavior of Solls

R

f Wnen a soil mass is subjected Lo any arbitrary set of surface tractions,
E; {‘! the result 1s a volume and shear deformation of the soil mass. The resulting
? Eg displacement 4and stress fleids within the soil mass depend on a number of

'y

: variebles., Tnese variables include the type of loads applied to the soil

5‘ EE mass, tne stress history of tne soll mass and the chemical, and the physical
L ‘ properties of the soil mass.

N

~; ' Experimental observations of the response of a soil mass to various

s" g appliied ioads nave provided a great deal of information concerning the load—
AL

? ‘ deformation behavior of soils. Tnis information provided by experimental work
X ii wlll be briefly discussed in the next four subsections.

a 2.1.1 Soil Behavior During Initial or First Loading

\ o

"""

The term 1nitial or first loading will be understooda to refer to a state

of stress, occurring within the soil mass, which the soil is experiencing for

-

» the first time., In Fig. 2.1, the initial loading curves correspond to those
U . .
K
h :x lying beteeen points 1 and 2, and points 3 and 4. The arrows shown in Fig.
o . . .
)
> 2.1 indicate the load path taken.
S |
3? . The amount of volume deformation resulting from an increase in stress will
4
L)
z qb depend on the relative density of the soil mass. The relative density relates
2 [}
AN
q tne actual void ratio of tne soil to the maximum and minimum void ratios
n .,
k b possible within the soil mass.
WA A .l
.§ 2.1.2 3Soil Benavior During Unloading and Reioading
5 r 4 .
¢
by’
L, Wwhen an applied load is removed from a soil mass, rebound will normally
p |
B
i
Al &
e

WO () ] (LI 0
Yty ’,a;‘. ’s‘w‘n’.‘c“’ atbathye? e l"’i’ ‘@"«":'«‘.'n' e '\'.'4', 's‘ ‘A'. '4'&,.‘.}0!.30 ‘.' ‘l'"‘" .
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occur resulting in an increase 1n soil volume. The stress path taken by the
3011 ©mass during unloading will typically be different from that taken during
initial loading. A typlcal unloading curve is shown in Fig. 2.1 as that
portion of the curve lying between points 2 and 5. An important fact in Fig.
2.1 is that tne stress occurring within the soil mass is not a single—=valued
function of strain. Instead, the stress at a particular value of strain may
be multi-valued.

The term relcoading refers to the addition of a load to the soil mass wnich
results in a stress state previously experienced by the soil. A typical
reload curve 1s shown in Fig. 2.1 as that portion of tne curve connecting
points 5 ana 3. When a soll experiences an unload-reload cycle, there will,
in general, be a volume change assoclated with this cycle. As shown in Fig.
2.1, the unload-reload cycle begins at point 2 and ends at point 3. The
volume change which occurs during this cycle is proportional to the difference
in the velumetric strains corresponding to points 5 and 3 When the reload
path reaches point 3 of Fig. 2.1, continued loading will follow a path similar
to that for initial loaaing.

There will be an energy loss associated with tne unload-reload cycle as
apparent from the hystersis loop shown in Fig. 2.1. This demonstrates the
effect of damping present within a soil mass.

2.1.3 Behavior of Soils in Simple Shear

The term simple shear means that the soil is loaded in pure shear. The
behavior of soils when loaded in simplie shear wlill depend on the initial
relatlve adensity of the soil. When a soil of an initially low relative
density 1S Loaded in simple snear, a densification of the soil will result.
This decrease in volume is due to particle rearrangement, ylelding and

fracture. Densification continues with increased loading until a minimum void

‘*

"' ,-— - AP o A "‘_ SR A T '..4- . .{- 0 o ',"\7 - . Y b '}l' '.‘
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ratio 1s reached. Continued loading will cause the soili to fail. A dilation
of the soil mass 1s usually associated with this failure. The dilation of tne
3011 mass occurs because, in order for the so0il to fall, grains must ride over
one another. Soils which exhibit such behavior are loose granular materlals
and normaily consclidated clays. For soils of initially high relative
density, little densification occurs from the application of a simple snear
loading. Rather, a dilation of the soil mass will occur since tne vold ratio
of the so1l mass is already near its minimum value. SoOl11ls which Snow~ tnis
type of behavior are dense sands and overconsolidatea clays. Typlca. 3tress-
strain curves for different soils loaded in pure shear are shown 1n Fig. <.:z.

2.1.4 Soil Deformation in Time

For some soils, the total deformation resulting from the application of a
load will not occur instantaneously, but over a period of time. This type of
deformation is referred Lo as consolidation and occurs in silts and clays.
Theories which predict the amount and rate of consolidation usually consider
tne soll to be saturated. The load is initiaily transferred to the liquid
phase present in the pores of the soil mass. This results In an increase in
the pore pressure so that steady=state conditions 1in the pores no longer
ex1ist. Over a period of time, liquid will flow from the pores, thus causing a
dissipation of the pore pressures. This continues until hydrostatic pressure
is achieved. As the pressure is dissipated from the pores, the load will be
transferred to the soii grains resulting in consolidation.of the soll mass.
The permeability of the soil controls the rate at which consolidation takes
place. This behavior is termed primary consolidation and 1s shown 1in Fig.
2.3.

Secondary consolidation or creep 1s also shown in Fig. 2.3. Secondary

consolidation i3 defined as tne deformation which takes place after the pore

- 1.’1"".;~' “:; \llqlf LY. O
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?: Y pressures have reacned steady state conditions. Although tneories exist for

3 - ‘ ,

h the preaiction of secondary consolidation, none have yet found general

.

’ ! acceptance.

« T

% 2.2 Constitutive Models Representing Soil Behavior

"

,z L Ovei the last two decades much work nas been done to develop constitutlve

A

v (] models to represent the load—deformation behavior of soils. Thus far, most of
&,

b 'l.. N .

4 these models have been used to represent the behavior of dry or completely

saturated soils. When these models have been used to predict the behavior of

. part.y saturdled solis, they have ylelded poor results for the soil response.

2

However, tnese models are worthy of some attention, since they provide insight

LO the approaches whicn nave been taken to develop constitutive laws

e
=

q describing soll benavior,

j S

The procedure of gevelioplng a constitutive model for soils has followed

Paaks

two approaches. These two approaches are termed phenomenological and

L

micromechanical modeling. The following sections of this report will discuss

the soil models obtained from these two approaches.

2.2.1 Phenomenological Models

I X
v
’
Jalas

Phenomenological models are those concerned with describing behavior on

L
.
*®

of the scale of tne experiment. These models treat soil as a continuum including

R <
2%

thousands to millions of soil grains and pores in the model representation.

,’ Phenomenological methods or theories include mathematical curve fitting,

( .

4, G

0 v .
z‘ elasticity theory, plasticity theory and viscow=elasticity theory. The soil
i

.“ 7" . N

ﬁ' ; constitutive models developed from these methods or theories are discussed
LA

: below in aetail.

SR

S )( - ]

2 2.2.1.1 Empirical Models

# o

:ﬂ E? A number of models representing soll benavior have been developed using
n empirical curve fitting methods. This approach entails making a mathematical
) .

S

IR

D)

y
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11

fit to experimental data. In this manner, the response of the soll due to
some specific input may be predicted. Herein, the 1input and the response are
tnose measured experimentaily.

Many researchers have taken the empirical approach to modeling the
pressure=volume behavior of soils. Herrmann (1971) took such an approach in
introducing the "P-a" description. In his model, the pressure was assumed to
be a function of the specific volume, internal energy and the porosity of the

$01l. The relationship Herrmann proposed is

s .
P=7F (0.—’ us) (2.]3)
Vs
a = = (2.1b)
m
Wwhere vy T specific volume

u_ = specific internal energy

v_ = specific volume of the matrix material
In Egs. (2.1), the function f was assumed to be 1dentical to that which
relates pressure and volume for a mass composed entirely of matrix material.

Carrol and Hoitv (1972) proposed that 1t was more reasonable to represent the

pressure-=volume relationship for soils by

v

1 3
P = a f ((—1—-’ us) (2.2)

If tne pressure volume relationship for the matrix material is known, the

problem reduces to determining the function

a=q (P) (2.3)

The determination of the porosity provides the pressure=volume relationsnip
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12
for the compiete material, This modei used the Mie~Gruneisen equation of

state (see Carrol and Holt, 1972) to describe tne function f. This equation

13
P=P.+ (4 -u )~;& (2.4)

where P = pressure

0
u

a reference pressure

j -
]

specific internal energy

[
]

a reference specific energy

<
[}

specif:ic volume
T = Gruneisen ratio

The Gruneisen ratio is given by

Tg = Vs (aT)Cv (2.5)

where T = temperature

Cv = gpecific heat at constant volume
A polynominal fit was then used to describe the function g. For situations
Wwhere the variation in internal energy is less important, Butkovien (1973)
developed a model relating the porosity to the applied pressure. The

expression ne obtained 1s

1
PO Inl

1 0 C -
& = Pe (2.0)
L)
o]
where ao = 1nitial value of

Pe = the pressure required for the onset of pore closure

IOUOROUGUOUOA I RIEA AU OUNAM O q ANERITWARING MW DA O DS N OSDDRNNY
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PC = the pressure requlred for pressures within the range
The Eq. (2.4) 1s applicable for pressures witnin the range between Pe and PC.

For pressures less than Pe’ the pressure-=volume relationship for the matrix

1y &5 P

material 1s used. In Butkovien's work, the pressure-=volume relationship for

the matrix materiai was assumed to be given by soil unloading data. A

. . e~ e

polynomial fit to initial loading data was used to determine the pressure

S8 I

volume relationshlp for pressures lying between Pe and Pc. Otner empirical

models describing the pressure-volume relationship of soils have been

2o 4

N o - s A e

deveiroped, butl tnhe models cited above are representative of this work.

%

Qther models have been developed which made mathematical fits to deviator

-
3

Stress—=strain data. The simplest model of this type is obtained by

2N

o approximating deviator stress versus strain data by a series of piecewise

\l

(R linear curves. This type of approximation is shown in Fig. 2.4. More

.

sophisticated mathematical fits such as hyperbolas and cubic splices have been

A

used to relate tne deviator stress to the strain data. The most popular of

these methods is the hyperbolic stress-~strain model developed by Duncan and

~
¢
[ AF 9

P 4

K Chang (1970). This model is based on the finding that the deviator stress

versus strain curves for a number of soils can be approximated by hyperbolas

Qe

§ like the one shown in Fig. 2.5. This hyperbola may be represented by

N

N 2

N

\ €

L (o, = 03) 3 < (2.7)

' : E. ' (o a,)

- i 17 930t

) }: where g, 7 g, = deviator stress

13 h‘ ] 3

! ' € = strain

R &

o .

- E.l = lnitlial tangent modulus

. ET The Eq. (2.7) may be transformed so that it will plot as a straight line.
L)

' This transformed equation is

.

» \'

‘A

L)

b
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2
-
!
1
’ £ € ;.
- (o) = 03) - E: * (o = 03)yL7 (2.6) ;
A plot of Eq. (2.8) is shown in Fig. 2.6. Other empirical relations are used E
‘é tc account for the variation 1n soil strength with confining pressure and ;
modulus vzlues for loading and unloading. Because of these relationships, the T
S_ hyperbolic model requires a number of parameters for 1ts use. The hypobolic f
. model also fails to realistically model actual soil behavior at or near :
A failure,. ;
¥y In general, there are some basic problems associated with soil models '}
[}
) developed from empirical models. First, an empirical model cannot be expected ;
3 to provide reasonable predictions of soil behavior when the soil and site !
.. conditions being modeled deviate greatly from those used to calibrate the 2
¢ model. Secona, this type of model cannot pe expected to provide any insight :
b to the actual pnysical deformation mechanisms acting within the soil mass. '
Despite these sncrtcomings empilrical models are frequently used due to their ;
r ,
) simplicity. i
. "
2.2.1.2 Nonlinear Elastic Models :
Some models representing soll behavior have been developed using nonlinear :
L]
" elasticity theories. However, these theories have not found widespread use :
since tneir predictions of unload behavior dc¢ not represent actual soil t
3 4 behavior., For cases wnere initial loading 1s of 1interest, nonlinear S
: elasticity theories may provide reasonable predictions of soil response. E
i Hyperelastic constitutlve laws have been used Lo represent soil behavior. .
These models use constltutive laws obtained by the differentiation of a strain :
energy function. Different orders of nyperelastic models are ohrtas.aed by ?
]
- retaining tne higher order derivatives obtained from the straln energy '
» function. Hyperelastic soll models may be used L0 represent initi:a' loading. 3
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Truesdale nas proposea a rate theory which states that the rate of change

<

.
-

of stress is a function of the rate of change of strain. Tnhis 1S known as tne

- - v,
- ot

<

hypoelastic formulation. At present, this formulation has not been used in

representing the load~deformation behavior of soils.

=

2.2.1.3 Elastic-Plastic Models

Elastic-plastic theory had been widely used in so1l modeling. Recently,

55

many constitutive models for soils have been presented which use this theory.

=5

In general, this type of model assumed a yleld criterion of the form

TN, e e w e e T e R A e e

~
o3 (T e P
P 3 F 1 %1y X) =0 (2.9)
R)
l. v
SN
g
L where T = stress tensor
’ ij
’_\
A - '
R eij plastic strain tensor
X , X = Work hardening parameter
’ , . . P )
" ii When the above equation is not satisfied (F (Tij'eij , X) < 0) the material
§
K ~ 1s said to behave elastically. When Eq. (2.9) is satisfied, the behavior is
§ b said to be elastic-plastic. Furtner deformation beyond the point where Eq.

(2.9) is satisfled occurs at a combination of elastlic and plastic strains,

prescribed by an assumed flow rule. The yleld surface 1s typically descrilbead

T v =

j in stress space as shown in Fig. 2.7. For a known stress polnt inside this
: Ey region, tne strains are found using elastic conatitutive laws. When the

»
: ) stress point lies on the yield surface, the total strain 1s a combination of
I
o+ sg eiastic and plastic strailns. For a stress point lying on the yield surface,
; X further loading may cause the surface to expand, translate or both, according
E bﬁ to the work-nardening rule assumed. Unloading may be elastlc or elastic~
; E§ plastic. An example of the movement of the yleld surface in the principai
: .stress space is shown in Fig. 2.3. The material is initially unstressea at
b

[y
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b S
e

4 . pornt O and is then loaded to point 1., The benavior of the material when

-
rl

/]

S
J—

(')
3

. following this load path is elastie, since it lles withln tne initial yield

surface, At point 1, the stress point lies on the yield surface such that

-

f further loading will result in behavior that may be elastic-plastic or
R, ;ﬁ elastic, depending on the stress path taken. As the material is loaded along
:. N -

the stress path connecting points 1 and 2 in Fig. 2.8, the material will

_‘_
i

exhlblit elasticmplastic behavior. The stress point along this path remains on

the yield surface, with the yield surface expanding, translating or both. In

e m
’E.;“-

; Fig. 2.8, the tensor alj would be non-~zero and no expansion of the yield

g %E surface would occur. Combined hardening, in which the yield surface may

¥ .

3 . translate as well as expand, is shown in Fig. 2.8. Further loading of the

. Bg material from point 2 to point 3 of Fig. 2.8 will result 1n elastic behavior

because the loau path taken lies within the new yield surface. Continued

w
-Jd
loading from point 3 will result in elastic or elastic—plastic behavior,

g a depending on the loaa path taken.
+9 .
18 . Schofield ana Wroth (1968) developed an elastic-plastic soil model, known
» ,. .
I
:e P as the "cam=clay" model which accounts for the volume deformation and strain=
i
e
- l! hardening of soils. Tne basis of their model is an incremental flow rule
ol
) which balances the irreversible work occurring during deformation against a
" -
'
:: g mecnanism for the frictional loss. Their flow rule is given by
P g} P
& o2 Q= (Ats) =P ( ) = uP (Ats) (2.10)
a _
b Y
a %g wnere V = volume
\ P = pressure

.3

v Q = measure of shear stress
A ?? ty = measure of shear strain
» u = friction parameter
-". .
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Here the superscript denotes plastic or elastic portions of the quantltles

indicated., The elastic volume deformation during hydrostatic deformation is

™, L B

"|:
;L glven by
W
o v ap ¢ uP
O\ . A(V— ==AP A(v)=.—AP— (2.11)
‘e m .
;. &z wnere V., = volume of matrix material
N
(:’
0 A = a constant

-
T
E‘ Si

a4

AS yielding 1s occurring, the total volume change 1s given by

g

N " APV AP : )

SR 8y ==BF A (P =B85 (2.12)

i m m .

WY

‘ £ where B = a constant

A"

K- Ny Tne assumption of an associated flow rule gives the following equation for the
L

>

yield surface:

-
e
. -
=

‘ Q px
tg¥ = . —_—
..:l uP in P (2',13)
’.7 Yy
)
.:. b
W In Eq. (2.13) P* is the intercept of the yield surface with the P axis as

-

shown 1n Fig. 2.9. An important assumption of the "cammclay" model is that

-
»

:{ the plastic volume deformation for non=hydrostatic stress states is the same
; o
' ™ .
'50 ﬁ& as for hydrostatic states but with the P replaced by P*¥, Thus, the plastic
3 .
;! v volume deformation 1s given by
1
p
7 v v P AP#*
R % My = - (B - A) SR (2.14)
o’ !
." t’l.
o ¢§ The Egs. (2.10), (2.11), and (2.12) form a system of equations from which
(% .

strain increments may be determined from stress increments, or vice-versa.

~
res

4 The constants B and A are determined experimentally. Hydrostatic loadlng
)
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corresponds to a movement along the P axis shown in Fig. 2.9. when yielding
occurs, a non-nydroelastic loading will cause tne yleld surface to change 1n
accordance wlth Eq. (2.10). Movement of tne yield surface is shown in Fig.
2.9. The criticas state line 1s snown Ln Fi1g. 2.9 as the line connecting
polnts of zero slope for all possible yield surfaces. This separates yielding
1nto densification and dilation. Densification with strain-=hardening occurs
to the right of the critical state line, whille dilation with strain softening
occurs to the left,

Tne "cam—ciay" model nas proved useful 1n representing soil behavior. In
tnis model, however, elastic¢ shear stresses and soll cohesion are completely
neglected. " The assumption of an associated flow rule is also made. This
assumptlon gilves a plastic strain vector normal to the yield surface.
contriputions sucn as those by Mandl and Luque (1970) and Frydman et al.
(1973) nave shown that normality of plastic flow is neither a mathematicai
necessity nor supported by experimental evidence. The "cam—-clay" model
predicts no non-recoverable deformations under hydrostatic loadings. This 1is
not representative of scils. Unloading 1s elastic, wnicn 1S not descriptive
of actual soil benavior.

Sand.er and Baron have 1ntroduced the "cap" model to describe the benavior
of soiis. Thils moael 1s based on the classical plasticity model, deflined by a
vield surface and a strain rate vector. Inspection of this yield surface shows
that tnree modes of soll behavior are possible., These being elastic, fallure,
and cap behavior. Elastic behavior occurs when the stress polnt lies 1n the
region contalned by tne stress coordinate axes, the failure envelope, and the
cap surface. The benavior in this region 1s considered to be linearly
elastic. The failure model of behavior occurs when tne stress point lies on

the failure envelope. This failure envelope 1s assumed to be filxed and 1is

. Pl a0 A a7 o et N N e W AN v AR
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l. b
N glven by
IRy
b
R ' -
; ' R (2,14)
l‘ ’
R .

~ ' ) |
ﬁ ;% where J2 = second invariant of the deviatoric stress tensor \
i -
? A,B,C = material constants
R !! |

N N N |
. v The moael assumes an assoclated flow rule, thus, the plastic straln during the ,
K |
!
: ;: fairlure mode of behavior is composed of a shear component and a dilatant

-

P
‘ ) compenent. The cap mode of behavior occurs when tne stress point lies on the

Vx5l

cap surface and continued lLoading results in an outward movement of the cap.

The motion of the cap 1s related to the plastic strain by a hardening rule.

RX
‘IS
> ?5
q The equation for the cap surface 1s
A
-
i '::
"‘ s P ~P + 1— 2 ! = - 2
( a) g DIy = (P, =P,) (2.?5)

f where Pa’Pb = pressures corresponding to points a and b as
D u.“ .
Y on the Yieid surface

A
a P = mean hyarostatic stress
" ! 11 = trace of the stress tensor
«.'

L

{ & J2 = second 1nvarient of the aeviatoric stress tensor
? N
Dy
?, D = a constant
‘ 1
% ?8 Tne position of tne cap i1s defined by specifylng one of the quantitles, Pa or
LY
) :
g ) Pb. Tne cdap is related to the strain history of the material through a strailn

"
l. L] 1
! 5§ hardening rule given by
(
T -p -3NP
- e *N(l-e B (2.16)

y

W
1 - where M,N = material constants
¢
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Fe

-
v

Aflen tne stress pciul lles on eltner the fallure envelope or tne cap surface,

» " o
R

e cnanges exacily as the plastic volumetric straln for 4
v

tne value of

Stress point on tie cap surface, the plastic straln rdate vector will be

..
'l v,
Tyt

airected as snown in Fig. (2.6). The position of the plastic strain rate

vecrtor implles tnat 1t conslsts of an lrreversible decrease 1n volume 1n

CONnJunetion «1ith an irreversibie shear strain. This decredase in volume

represents volumelrlc nysteresls observead Ln sOll during compactlon, AsS the

Cap moves {orward, tne compactlon resuillng from tne

o
R ‘ -P
o assoclaeted flow will lead to an 1lncrease 1n tne cap parameter e * By
v

“x
" . ,

Eq. (2.10) tnis ieads to an increase in Pb' resulting 1ln a movement of tne cap
DN N
o Lo Tne rignt. when the stress point l1les on the fallure surface, the plastic

Straln rate vector will Dbe directed upwaras and to the left as shown in Fig.

2.8. The plastic strain rate vector 1ndicates an increase 1n volume

a580Claled wWiln tne movement along tne fallure surface. The dilatancy wiil

S
L

lead to 4 decrease 1n tne cap

*JW

parameter, o resuitlng 1in a leftward movement of tne cap by Eq.

~ J
n\"
(2.19). Tne backward movement of the cap 1s limited by tne point where 1t

2 |

iﬁ intersects the stress point lying on tne failure surface.

. Tne baslc cap model descridbed nas been modifled to include viscous dampuirn_

e

s

> and straln narcening. 7Tne viscous cap model 1S used LO represent materials

. Anlch exnidblt hysteresis during cyalic loading. Tnis model was formulated by

v

introdgucing llnear V1sScous damping into tne elastic portion of the cap model.

-,

: The parameters wnichn define the non-plastic portion of tne model are an

- lnstantanecus modulus Gp, a4 long term modulus Gs’ and « relaxation rate 1. The

.h'-

ha
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(Q three parameters are related through the equation
o
! s Gp Gy -
"'
*
-~
e G (G. = G.)
a F S
T = 5 (2.18)
G .
& v
EQ wnere Gy, Gp= spring modull
"y
w Gy = ilong term modulus
it G
i = damping constant
0 a
T = reiaxation rate
ke
r Tne deviatoric stress-strain relation for the viscous cap model 1S glven by
b v
< as. aa. ') 26 d'. =S, .
N 1Jj 5 1] . S 1] 1] 5 )
v = 26CF Tq T (2.19
ﬁ Wwhnere SlJ. = deviatoric stress tensor

v . )
dlj = vyiscoelastlc devliatoric strain tensor

A

To determine the parameters Gp, Gg, and t,cyclic triaxial data are used. A

O

Klnematically haraening faliiure envelope has been added to the general cap

~
!
s

model by repiacing the stress tensor le by (riJ = QH ). Here is a tensor

whose components are memory parameters defining the translation of the failure

k
LR 8

?: surface in stress space. Ln the model, it 1s assumed that kinematic hardening
occurs only 1n shear, ylelding the relation

Y

g.f

o

) G =0 2.20

;\: <K ( )

2

.

{E The «lnematlic naraening rule which governs tne memory parameters G . 1s of the

i)
form

v
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o
= Y15 " figg gy agy0 X egy) d({,’ (2.21)
wnere ulj = tensor aefining tne translation of tne failure surface
[AN
W d
QA 1., = Stress tensor
[\§ ij
8 = a work nardening parameter
o eij = strain tensor
. P
gg dkl = @Qiviatoric plastic strain tensor
in order 10 represent the nonilnear benavior of sclls at or near faiiure, 1t
Eg 1S necessary ULO assume a nonlinear nardening rule. A simple rule of this type
E wnich glves reasonablie behavior at all stress levels 1ls given as
=
I\.
M P
a . =C F e, . (2.22)
ii iJ a a 1j
. wnere C_ = a constant
I «
I
1= (1t . =a, )a, .
. 1 1 1
u Fa = maximum [O, J, J ‘L]
; J - N
2Ny / 5F )
‘i
d =3BP
4 vJ! = A - C 3
2F °
L4
:3 NY = a constant defining tne size of tne yieid surface
oY Here FG 15 related to the proximity of tne yleld surface to the failure
) .
) surface, and the Location of tne stress point on the ylield surface. For alj -
Z{: J, F wiil ve equal to 1.0, Therefore, from £q. (2.22), it 1s founa that C  is
1 the 1nelastic slope for the 1nitial yieiding of tne material 1n shear. Fa
'_
L Wili decrease for continued yleld, and 1s equal to zero when the stress point
W reacnes the failure surface. Upon unloading from thne failure surface, tne
-
»
X
Cs
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vaiue Oof F wWiii lncrease, reacning a value of 2 upon reylelding. Finally, tne

§hE

cap modei nas been modified to represent tne behavior of saturateaq 80118 uslng

tne effective stress approacn. Thils modification is strailgntforward &4nd 13

acnieved Dy replacing the stress tensor by

L - Jdo
rlJ TlJ uolj (2.23)

where Tij = effecrive stress tensor

rlj = Lotal stress tensor

C= < T<-C = - R

4 = pore pressure

=

8,5 Kronecker = 1;: i : j}
K |
tﬁ The cap model has been used successfully to moael several soils. However,
ii there are some difficultles associated with it. A major problem 1s that a
large number of parameters must be determined from experimental data and their
EE determination may require special tests. Another problem is the assumption of
an assoclated flow rule. This assumption 18 not necessarily correct for
!" solls.
EE Other elastic~plastic constitutive models for soils have been developed.
~ These models use different yield surfaces as a nonmassoclated flow rule.
?; However, ihe methodology used to formulate these models is the same as for
- those already described. The problem with classical plasticity theory is that

tne predicted response of a system 1s rate independent. It has been

.

X

established that the response of a soll 1s rate depengent,
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:, 2.2.1.4 Viscoelastic Mogeis
!i V1S5C0e.3stls modesS desSCriding 30l. Denavior aave not appeared in tne
sllerature as mucn as those formulatea using elastic-plastic tneory. However,
W elastic-piastic tneory is, ln fact, a special case of viscoeliastlc tneory.
\t'_ +
ry 3
Using tne more genera. material mogel provided from viscoelastic theory, soil
!! damping ana rate dependgence may be accounted for. As seen for the "cap
;‘ modei", resulls improved W<nen viscous damping was introduced lnto tne model.
o
A 2.2.2 Micromecnanical Modeis
2> i
N Mecnanistic moderlnyg of s011S nas been approacned from two different
I‘J
viewpoints. One approach nas been Lo treal tne soil as an assembiage of
iﬁ particies 1n contact. The particles withln a soll mass may be random 1n shape

and size; tnerefore, LO use this approacn some .assumptions as to size and

.
y 4

L
e

snape must usual.y be made. Once a model representing the soll mass has been

chosen, the solution consists of representing the deformed geometry of the

particies in contact. The other approach to mechanistic modeling has bdeen to

o

E: consider the soll as composed of a matrix material containing voids. A
!! SCidtlon to this problem consists of modeling the deformation of tne voids

) contained in the matrix material.
Eé Mecnanistic models have been formulated on two scales. One scale has been
- intermediate to that of the experiment and the grains and the pores within the
13 5011 mass. While this scale may be very small compared to the scale of tne

éj experiment, 1t may be qulte large in comparison to the size scale of the

'- grains and peores. 0On tnls scale, the benhavior observed may be thaﬁ of many

Ei grains and pores and may best be described by the use of a phencmonological

fﬂ tneory. The other scaie wnich 1s used 1n mechanistic modeling 1S termed tne
L micro-scale. 0On thLis level, models are formulated at the scale of the grains
i: and pores and are concerned with describing the actual deformation mechanisms
S

“
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present on tnls scaie.
Tne vola geformation modelis nave peen formuiated on DOLn tne intermedlate

3caie and microsmscase. Modeling of objects in contact nas Jsually been done

on thne micro—-scaie.

|
2.2.2.1 <Contact Moaels
\
shen a mass composed of a number of particles 1n contact 1s subject to an
externaliy applled load, tne deformation resuiting from tnhe load 1s due to
drain movement and grailn dgeformation. The movement of tne grains will be
controliled by 1nterparticle friction, cohesion between adjacent particles, and
tne 1nitial porosity of the mass. The grain deformation will be greatest at
areas of contact between adjacent grains, and may be elastic or elastic-
plastic, depending on the stress level present 1in the grains. In addition,
tne grains may fracture, thus changing the number and tne snape of the gralns
and increasing the number of contacts.
Models used to describe this behavior usually‘conSLder the 801l grains to~be'
spnerical in snape. The load-deformation benavior of tnhe spneres themselves
13 considered to De that of an elastic material. Further simplifications are

obtained by neglecting friction, cohesion, and tangential forces acting on the

contacts between grailns. wWlth these simplifications, a logical step 1S LO use
Hertzian contact theory, by which the movement of adjacent spheres relative to
one anotner may be determined. Two spheres 1n contact are shown in Fig. 2.10.
The z axis 1s positioned 4t the centerline of the contact. The soild lines
represent tne qeformed configuration of tne spneres, wniie tne dashea ilnes
represent tne unageformec spneres, From Hertzian contact theory, tine

deformation aiong tne centeriine of contact for each sphere 1S given by

1 3 - vlz) F

4z * BaE, (2.24a)
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8a E (2.24D)

wnere

1

dz,

2 .
u, = deformation along the contact centerline for
spneres 1 and 2 respectively

V1,V2 = Polsson's ratio for spheres 1 ana 2 respectively

)

1.22 = eiastlc modulus for spneres ' and 2 respective.y
4 = radlus of the contact surface
F = force transmitted across the contact

The geformations dy and u, are shown in Fig. 2.10. The raaius of tne contact

area petween the spheres 1s given by

) 2 1/3
. am P Rle (1 - vl ) + Q- v, )
- 2.2
4 R1 + Rz El EZ ‘ (2.25)

where R1,R2 = the radii of spneres 1 and 2 respectively.

Using Eqs. (2.24) and (2.25), the geformation of an assemblage of spheres may
be determinea when the force transmitted across each contact 1s known. Ko and
Scott (1967) have solved this problem for the case of an assmebly of spheres
in ideal packing configurations, under conditions of hyarostatic loading. Alil
tne spneres were considered to be of equal radii and of the same materiax

properties. The solution is given by

2 2/3
A_Av. = 3 3C (l - V') P
E (2.26)
Wnere Vv = volume of soi1l mass
C =1, for sc (simple cublc) packing

vr——
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Y 2/4, for fee (face centered cubic)

P = nycréscatlc pressure

E = elastic mogulus

v = Poisson's ratio
As seen from Eq. (2.26), the term C accounts for the initial deansity of tne
mass, giving smaller volumetric strains for the denser packing configurationsf
However, this model predicts larger than actual deformations for the simple
cubic (sc) configuration, while predilcting smaller than actual deformations
for tne face centerea cubic (fce) packing configuration. To correct this, Ko
and Scott used a combination of sc and fcc blocks to represent the initial
porosity of tne soil. By assuming a distribution of grain contact pressures
and an effective contact radlus, pressure-volume relationships for sands of
three initial porosities were generated. The results obtained are shown in
F1gs. 2.11 and 2.12 along with tne limiting cases of sc¢ and fcc packing
coafigurations. A major shortcoming of Ko and Scott's model is that the path
the soll takes during uniocading is the same as that for loading, which 1is not
representative of actual soi1l behavior. Warren and Anderson (1973) have
formulatea a contact model in which initially some of the spheres are not 1n

contact. The pressure-volume relationship obtained 1s given by

. ) 2/3

A! = 3 (..8.) .gl‘._\)_)._ P

v N, 3 E (2.27)
where Ng = number of gralns 1n a typlcal cross-section

Nc = The number of contacts transmitting force across the

typical cross=section

AS loading progresses, more gralns come 1nto contact, until at some critlcal

pressure, all grains make contact. It 1s apparent from Eq. (2.27) that as the
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LS numoer 2 CcOontacts i3 increased, the amount of volume aeformation resulting
from an 1lncrease in pressure wiil cecrease, Tne moael will predict unloaaing
i! 4.0ng a patn aifferent from tnat of loaaing, as long as the grains were not

§ ali 1nitially in contact. Tne difficulty witn this mogel is the determination

v v

~¥
s

of tne value of Nc' The variation in the value of NC which occurs during
!{ loading corresponds to the rigid boay motion of tne particles within the soil

mass. This mogel does not attempt to describe the actual grain motion within

&g the so1l mass, bul ratner the parameter Nc 13 c¢cnosen to fit experimental data.
N Some models of granular medla include friction of the contact between

N

e

grains.. Rowe (1962) nas considered tne shearing of various assemblages of

;b spneres., Using a minimum energy crlterion, he arrived at the stressaqilatancy
equation

‘- 3 P 1+ av

- 1 2 u - vV

i g, - (5¢ + 77 ITFe (2.28)

f s

RS

“nere g

maximum principal stress

o

{3 = least principai stress

A~

L undrained angie of shearing resistance

B ue1 = the axial strain Lncrement
N

This equation holds only for the case wnen the intermediate principal stress
S : 4
! 1S equai tO the ieast prilnclpal Stress. Rowe states tnatl tnhe angle ? nust
Yy ;
.. Oe replaced by an effective angle of snearing resistance p . ln order to match
[ %
L;

2xperimentas data. Test condltlons may be created 30 that many vaiues of tne

L; undrained angle of shearing resistance, ¢ , may be obtained for the same soil

u

Sampie. However, wWwllh pure pressure measurements during the test, tne value

‘i of the

19

ffzctive angle of snearing resistance may be determined and thils value

nas been found not TO vary with test conditi~ns. The £q. (<.28) does not
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T -5

account for compactlon aurling non-nydrostatle loaaing. Barden et. alb. (1963)

.

4sea Eq. (2.28) to formulate a plastic flow rule and a set of yleld surfaces.

3

Tney testeq tne benavior of sand in plane straln ana found tnat tne yield
" criterion and plastic potential did not coincide. This 1mplles nonmnormasity

of fiow. However, 1t was found that tne volumetric straln was sultably

.
> 1B

prealcted by tnis model. Nemat—-Naser formulated a model to represent the

Denavior of granular material undergoing snear loading. This model represents

—r
XAtk

diiation and densification which occurs auring shear., This 1s done by

-
4

. gefining the dilatancy_angle 3, whlicn defines tne position of a microscopic
s

N shear plane with respect to the observable macroscoplc shear plane. In Lhls
eﬂ model, it 1s assumed that the actual shearing takes place on many microscopic
i~ shear planes rather than on one macroscopic shear plane. To formulate the

w model, Nemat-Naser considered a sampie of soil for whicn failure takes place
ﬁ along one microscopic shear plane 3'=S'. Summing forces on the plane 3'-=S'

glves tne following equations

~

T tan ¢ cos (¢ = v)

| T
v sin ¢

(2.29)

P tan Ou = (¢ — v)
¢l
A

where T = total snear force on macroscopic sample
pi¢ .
. v = dilatancy angle
Qﬁ F* = frictional force along microscopic shear plane
YN -

Tne angies 2, and ¢ are aefined by the equations
- T =0 tan g (2.30a)
; T™* = g* tan .
~ g¥ ¢ %, (2.30b)
L
25 where T = sShear stiress acting on nacroscopilc snear plane




TP T A B T R T T O T T T T O A R O O PO YO T W T T T T oy Y
%g 39

s J = normal stress actlng oOn MaCroscoplc snedar pliane

™ = spnear stress acting on microscopic snear plane

|
|

g a* normal stress acting on mlcroscopic snear plane
Tne Eq. (2.29) was derivea by considering all stresses 1n Egs. (2.30) to be

acting on ine same element of area along tne microscoplc shear piane. By

l] considering the rate of energy aisslpatlion whicn occurs as the block slides
W
along the plane S'-3', Nemat-Naser obtalned tne equatlilons
-
W
i . T tan p  cos (p = v) ¢
x v = = I (2.31)
-~ Sin 9 sin v
. W = rate of energy dlssipatlion
}g wnere V = the voiume of the mMacroscoplc sample.
Tne dot denotes tae time derivatives. The following approximatlons are made

v concerning w:
i Wos oW e owm (2.32a)
EF 3= 1Y (2.32b)
_"\ -

'. T V

W= - il (2.32¢)
" sin ¢ cos ¢
&)
" wnere ¥ = the rate of snear ceformaticn on the macroscoplc sample.
&
~ Use of these approximations in Eq. (3.31) gives the equation
- : |
- 0 +V in v,
= L Vg _cos (0, *Vy) sin v, o35 |

el 2.33
co

-, vi \ s ¢u

e 2q. (2.33) appliies o one microscopic failure piane. If one mlcroscoplc

Snear plane 13 denoted by 1, EQ. (2.33) LS written as

' + 9 in v
1Y . cos (¢u Ji) sin Vi (2.34)
E: Vi Y cos @u
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tne volume fracticn, Vl, of tne famiiy of particlies naving a ailatancy angle,

15 defined by,

Vi
Pi(v) - (2.35)
wnere Pl = volume fraction of family of particles having ailatancy

angi V..
angle i

Tne restriction if Pl 15 the following

-+
AV
o]
f p; (V) dV = 1 (3.36)
4
[o]

In Eq. (3.36) 3°+ and Gi- form the range of varilation of the dilatancy angle,

3. Using Egs. (2.35) and 2.36) in Eq. (2.34), Nemat-Naser arrivea at the

final result given by

-
\Y)
. o
.i !.- l (‘) ( - -
: e A p(v) cos + i 9
Vy cos ¢u ‘/ﬂ ¢u V) sia v dv. (3.37)
G -
Q

The £q. 3.37 contalns all experimentaiiy observed tehavior of granular
matérlai in élmple shear. However, the accuracy of the predictions made by
Eq. (3.37) will depend on the chosen form of the distribution function P(V).
This distribution function may be very difficult to determine for an actual
3011 sampie, Anotner snortcoming ¢ tnis model 15 that the individual
particles witnin the samplie mass are considerea to be rigid. Wilkins (1970)
took a different approach to develop a theory for tne shear strength of a

granular media. He usea an empirical curve fitting method and Rowe's Eq.

* »” N
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ég (2.283) to predict tne number of unstable contacts 1n a grandidr assemblage as

| a functlon of tne stress ratlo. Accoraing to tnls approacn, wWnen al. tne
Jontacts on a graln become unstable, tne graln 13 no iLonger considered O

F{ contribute to tne system and 1t effectively becomes a vold. when the number 4
of volds not supportling any stresses 1s equal to the number of particles which
continue to carry loads, the medium 1S assumed to fail., Altnough this attempt

) 1s 1nteresting, 1t becomes unattractive due to 1Us emplrical nature. Volume

IO S R S -

cnanges and stress-strain relations are neglected in Wilkins' formulation.

Jtner contact models have been deveioped for whicn the plastic flow of the

adCon oS

bodies in contact are considered to be important. Kakar and Chaklader (1967)
p nave solved this problem for spheres in a variely of packing configurationsf

. In tnls model, 1t 1S assumed tnat the particle surfaces which are not 1in
contact remaln spherical. They solved this for a simple cubic packingf
Assuulptions were that tne volume of the spheres remain constant, that the

contacts transmit the load applied to the assembly, and that the material near

3

ela

tne contact 1s 1n a state of wuniaxlial stress. The material of the contacts

W s m )

was allowed to yield until the stress developed at the contacts was balanced

Sy the applied pressure. The relatlonship that Kakar ana Chaklager obtained

1s given by

| 2 av 6P : 4p
- 7 o= 33y TV e 2y v (2.38)

TR W Ta

: where P = applied pressure

Y = yield strengtn
. V = vorume of tne assembly
ﬁv Tne Zq. (3.38) 1s valid until the contact areas toucn, tnus forming a new :

geometry. The results snown are for a simple cublic packing configuration and !

S

N tnese show tnat tnhe ylelaing model predicts larger strains for a given loaad
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tnan tnose contained from the elastic Hertzian contact model. The actual
stress-straln curve will likely fall in between those by the Hertzlan and
Kakar and Chaklader theories. Not all points within a sphere will yield at

once; tnus, the actual behavior is stiffer than that predicted by the complete
ylelding model as formulated by Kakar and Chaklader.

2.2.2.2 Void Deformation Models

One approach to modeling soils has been to conslder the soll as a mass
composed of a matrix material and voids. The deformation resulting from the
appilcation of loads to a material of this type will agepend on the materials
making up the matrix and voids, the size and the shape of the voids, and the
column fraction of the voids. A common assumption 1ln using this approach to
model soils 18 that the voids are either spherical or flat in shape.
O'Connell and Budliansky (1974) have considered the effect tnat flat cracks
would have on the moduli of a material containing such voids. The equation

they obtained for the bulk modulus of such a material is

K 1 1 - v )
m : .
= v (1 -E
v o L_ ) d) (2f39b)
d=tra
7 L ag (2 39¢)
wnere K = bulk modulus of material

K = buixk moaulus of matrix materiali
v = Polsson's ratlio of materiai

v_ = Poi3son's ratic of matrix materilail
d = crack density

ac = crack iength

V = voiume of materia.

' sty 0 gty el
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Tne Zgs. (£.39) were Qeveloped Dy consigeriong Lne cracks Lo contaln only air,

e

Tre £2gs. (2.39) 1nalcate tnat a sufficlentliy large crdack aenslty would have a

sonsiderable effect on the material propertles, while the Cracks themselves

"

may be of negligible volume. AS the pressure 1s increased on sucn a material,

L

e

tne cracks wouid close and tneir effect would disappear.

Other researchers have considered the effects of spherical voids on

=

material benavior. MacKenzie (1950) determined the effective bulk modulus for

x

0,

a materlial represented by a matrix containing spherical voids. The term

effective refers to material properties which are descriptive of the entire

ﬁﬁ
e mass being consldered. The porous materlal is modeled as a collection of
E; Spheres of matrix material, each containing a sphericai void. Under this
assumption, tne problem reduces to that of determining the solution for one of
,
. 5} Lhese composite spheres wlith a uniform radial pressure acting on its boundary.
i The term composite refers to the material composed of both matrix and voids.
; ! Tne expression MacKenzie obtained for the effective bulk moduirus of such a
. }; material 1s
= ’ 3 (2.40)
X KTVK = y
a'm 4G (V% = 1)
N
: o where K = effective bulk modulus
2? Km = Dulk modulus of matrix material

-
3

G_ = snear modulus of matrix materlal

P -]

- ¥ o~
L]
«'n

5
8

V = voiume of matrix materlital

- V = volume of composite material

g I

Vo ol )
fogt

Tne £q. (2 40) was developed under the assumption that ailr 1s contalned 1in the
- ' .
' voids. Hasnin(1¥70) nas determined upper and .Lower bounds for tne effective

Dulk and sheaer moqQuil of an eiastic matrix materlal whicn contailns spnericad

re.
L
%
v}
Py AT Y 0 G ) ™ ) ™30 . W% W . .\'"'J'.".)' '."FJ;\ S P SR L T Y ‘\-l"'. - ‘»}-_ Sy
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lnciuslions of anotner elastic material. Tne J4pper and lower pounds were
determined from the theorems of potential energy and complementary energy.
The bounas determined for the effective bulk moaulus colncided and this result

1s glven by

R =k, + (R = R (46, + K )c s
4G, + 3K, +3 (K - Re .

wnere K = effective bulk modulus

e
[}

bulk moduius of the matrix materlai

K = bulk modulus of the inclusions

G = shear modulus of tne matrix materiai
C = the column fraction of the inclusions

The bounds Hashin obtained for the effective shear modulus dld not coincide.

These bounds are given by

Gm

G, = (2.42a)

! G (g)
P gy e

m .
Gp (e)

Gu = Gm [1 + T - ])y1 c] (2.42b)
m : .

Wnere G1 = lower bound on effective shear modulus

GJ = uJpper bound on effective shear mobulus

G_ = shear modulus of tne inclusion

P
Tae coefficlents y1(°) ang y1(€) are determined from tnhe equations
26 21 3. (%)
L o) _mo_ (o) . 3 2.43a)
74 T LB 57 = av) (2.43a




(o)
) 26, 8y
/2 = 51
5 -
_ el = =) (p, - bo
(J3) -
y - = o +
1 5 (1 vm)
7,07 1107-10v ) = (1m10w) VI el = (TeTuag =
G
o TV = Ry e )
g (o) 2, ' m |2ty (0)2|—L' ; :
~ — + 3 . = =
1 N AT 2 2Tt
Q
{e)
_o(e) .2 (€) 2? 3
Y y L34 EISEN
_ A p
(€)
) %34
¥2 5Y
G
p 7 5
(e) U TG Poag
LA 2 vy mov) -
50 - v T N A U
(T=10v_)8| 4o = 8(7=10v_ )| = 0
G G
(15w - 5B 205 ) (L - ) o 3
m 1} G o
Yl(e) [ER’ Z 2 ]
o lS(l-vm) 15(l-vm)
el g, v A -1 =1
QO

G
4(7-10V ) + == (7+5v
(7-10) + g2 (745 )

2 = =

35(l-vm)

45
(2.430)

(2.43¢)

(2.430Q)

(2.44a)

(2.44D)

(2.44¢)

(2.44d)

(2.45a)

{2.45b)
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‘ 1

g Wnere v_ = P01350n'3 ratio o tne matrix materiald

vp = Pol3son's ratl1o of tne i1nciusions
li T = 3Near siress on macroscoplc sampile
- Y = snear strain on macroscopic sample
Cs = vyolume concentration of spneres
’, The terms t and Y appearing 1in Eqs. (2.43) anc (2.44) are known from the
A

boungary conditlions used Lo determine the limits on the effective shear

e

'u

& moauias. These bounaary conaluions correspond to the cases wnen the surface
Ry tractions and surfdce displacements are known on a sample of the composite

‘ material. The boundary conaitions for the case wnen surface tractions are

g

?é known are given by

&

N

L Yy T (x=+a, y=2bd) (2.40)

The bounaary conditions for the case wnen tne surface alsplacements are kKnewn

are ziven by

F Y
4 X = = L47a
> < (x, ¥) >y (2.47a)
.
- Y
A uy (x, y) = 5 % (2.47b)
Q? Tne oounds dgetermined by Hasnin nave been successfully used Lo approximate
lq . .
wne effective eiastic modulil of composlte materiais.
"“'
he! Some spnerlical vold MmoderS nave been developed wnhicn account for tne
A Siddtle yierding of tne matrix material. Torre (1948) geveloped such a meoadel

e
(%

4ng tne result ne obtained 1S given by

2.48a)

- <Y o a A - -.‘ l\ - ™
[CO B e e
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Ni» » & & -

o v
o 4= 7 (2.438b)
: e :n
v ﬁ Wnere P = pressure
¥
: Yﬂ = yleld stress of matrix material
N Vrn = voiume Of matrix material
.' ¥ = volume of composite material
) ¥
' }\ - . i
¢ A problem with Eq. (2.48a) 1s that tne matrix material 1s considered to be
¢ .--‘ X . .
; Q. furly piastic. A model snouild De abie TO describe elastic as well as plastic
Y
. pnases, wnlen occur ror botn loaaing and unloading. A step toward including
‘.
- D0ln eiastlic and plastic pnases 1S Lo prescrioe a work—hardening rule for the
»
i matrix material. Chaawlck (1963) developed sucn a model. Aitnough thls model
N

18 rlgorousiy derived, certaln essentlal parts remain in integral form making
b 1t aifficuit to use. Carrol ang Holt (1972) as well as Chu and Hashin (1971)

. TOOK an approacn wnlcn simpllified the results. Considering the same spherlcal

=

pore geometry, they derived the pressure—volume relationship for the composite

o material by temporariiy assuming that tne matrix materlal 1S Lncompressibie.
R <
! Carroi and Hoit then used an emplrical relationsnip to describe tne pressure-=

!! voiume resationship for the matrix material. The empirical reiationsnip used
S i3 given by
t ::"

1 vs

L}

<5 P a = —_ 4

o 3 f o JS) {2.49a)

| ’s

+ IR 3= {2.49b)
QAR Va

*

o Anere vy speciilc volume Of composite material

.

Vn = 3pecific volume of matrix material
b ..
. 4 = 3pecific internal energy
2

e Js1ng tne metnod outlilned above, carroi and Holt oObtalned the pressure-volume

1

|.'.
K W
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