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ZHAPTER 1

3 INTRODUCTION

1 .1 Background

Recently much work has been directed towards developing

constitutive models to represent the complex load-deformation behavior

of soils. The models developed to date have primarily been for tne

special cases of dry and completely saturated soils. The use of these

constitutive models in representing the behavior of partly saturated

soils has resulted in inaccurate predictions of soil response. It is

the intent of this research to formulate a constitutive model

describing the behavior of partly saturated soils.

There are essentially two approaches which nave been used by those

I attempting to develop constitutive laws for soils. The first approach

is termed pnenomenological modeling. Phenomenological models may be

defined as those concerned with describing material behavior on the

size scale of the experiment. F'or soils, thousands to millions of

soil grains and pores would be included in a model representation of

this type. Phenomenological metnoas or tneories include emprical

curve fitting, elastic theories, elastic-plastic theories, and visco-

elastic theories. These methods and continuum theories are concerned

with describing the overall observable behavior of the soil mass.

They are not concerned with describing the actual mechanisms causing

deformation, which act on the level of tne grains and pores which

comprise tne soil mass. The second type of approach is termed

micromechanical modeling. This approach attempts to derive

constitutive laws by considering the deformation mechanisms acting on
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a very small but representative sample of the material. For soils, a

micromechanical model description might include one to hundreds of

grains and pores in the model description.

The primary problem with constitutive models representing soils,

is a failure to describe all aspects of their load-deformation

behavior. While a model may give reasonable predictions under one set

of input, it may fail to predict the soil respor3e under another set

of input. With the present knowledge it appears that a constitutive

model representing all aspects of soil behavior may not be obtainable.

This is due partly to a lack of understanding of the mechanisms

causing soil deformation and partly due to the mathematical

complexities one may encounter when modeling soils. A micromechanical

approach to the constitutive modeling of soils may provide a better

means to understand the soil load-deformation mechanisms.

1.2 Scope of Work

The purpose of the research studies contained in this report is to

develop a constitutive model representing the load-deformation

behavior of soils. The following types of investigations are

contained in this report:

0 a) Review of the available literature on previously developed

constitutive models describing the load-deformation behavior

of soils.

b) Development of a constitutive model to represent the response

A of partly saturated soils using micromechanics, under

idealized conditions.

1.3 Method of Approach and Organization

The studies undertaken to achieve this objective are desaribed in

fW.
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the subsequent chapters.

Chapter 2 contains a brief description of experimentally observed

load-response behavior of soils and review of previously developed

constitutive models describing this behavior.

Chapter 3 contains the solution to the problem of an elastic

sphere in contact with a number of neighboring elastic spheres.

Chapter 4 contains the development of the effective moduli to

describe the elastic behavior of a number of spheres in contact while

surrounded by a liquid matrix phase.

Chapter 5 contains the extension of the work described in the

previous chapter to three-phase systems.

Chapter 6 presents conclusions and recommendations.

N



CHAPTER 2

PREVIOUS WORK

I i ! 2.1 Load-Deformation Benavior of Soils

Wnen a soil mass is subjected to any arbitrary set of surface tractions,

the result is a volume and shear deformation of the soil mass. The resulting

displacement dna stress fieids within the soil mass depend on a number of

variables. Tnese variables include the type of loads applied to the soil

mass, tne stress nistory of tne soil mass and the chemical, and the physical

properties of the soil mass.

4Experimental observations of the response of a soil mass to various

appiied iodas nave provided a great deal of information concerning the load-

deformation behavior of soils. Tnis information provided by experimental work

will be briefly discussed in the next four subsections.

2.1.1 Soil Behavior During Initial or First Loading

The term initial or first loading will be understooa to refer to a state

of stress, occurring within the soil mass, which the soil is experiencing for

the first time. In Fig. 2.1, the initial load.ng curves correspond to those

lying beteeen points 1 and 2, and points 3 and 4. The arrows shown in Fig.

2.1 indicate the load path taken.

The amount of volume deformation resulting from an increase in stress will

depend on the relative density of the soil mass. The relative density relates

E tne actual void ratio of tne soil to the maximum and minimum void ratios

possible within the soil mass.

2.1.2 Soil Benavior During Unloading and Reioading

When an applied load is removed from a soil mass, rebound will normally

4f;
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occur resulting in an increase in soil volume. The stress path taken by the

O soil Mass auring unloading will typically be different from that taken during

initiai loading. A typical unloading curve is shown in Fig. 2.1 as that

portion of the curve lying between points 2 and 5. An important fact in Fig.

2.1 is tnat tne stress occurring within the soil mass is not a single-valued

function of strain. Instead, the stress at a particular value of strain may

be multi-valued.

The term reloading refers to the addition of a load to the soil mass which

results in a stress state previously experienced by the soil. A typical

reload curve is shown in Fig. 2.1 as that portion of the curve connecting

points 5 ano 3. When a soil experiences an unioad-ireload cycle, there will,

in general, be a volume change associated with this cycle. As shown in Fig.

V? 2.1, tne unloadcreload cycle begins at point 2 and ends at point 3. The

volume change which occurs during this cycle is proportional to the difference

in the volumetric strains corresponding to points 5 and 3 When the reload

path reaches point 3 of Fig. 2.1, continued loading will follow a path similar

to that for initial loading.

There will be an energy loss associated with tne unload-reload cycle as

apparent from the hystersis loop shown in Fig. 2.1. This demonstrates the

effect of damping present within a soil mass.

2.1.3 Behavior of Soils in Simple Shear

kThe term simple shear means that the soil is loaded in pure shear. The

behavior of soils wnen loaded in simpie shear will depend on the initial

relative censity of the soii. When a soil of an initially low relative

p. density is ioaded in simple snear, a densification of the soil will result.

This decrease in volume is due to particle rearrangement, yielding and

fracture. Densification continues with increased loading ntril a minimum voiG

L-
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ratio is reached. Continued loading will cause the soii to fail. A dilation

of the soil mass is usually associated with this failure. The dilation of the

soni mass occurs because, in order for the soil to fail, grains must ride over

one another. Soils which exhibit such behavior are loose granular materials

and normaiiy consolidated clays. For soils of initially high relative

density, little densification occurs from the application of a simple snear

loading. Rather, a dilation of the soil mass will occur since tne void ratio

of the soil mass is already near its minimum value. Solis whicn sno4 tnis

type of behavior are dense sands and overconsolidatea clays. ypi-,a stress-

strain curves for different soils loaded in pure shear are shown in Fig.

2.1.4 Soil Deformation in Time

For some soils, the total deformation resulting from the application of a

load will not occur instantaneously, but over a period of time. This type of

deformation is referred to as consolidation and occurs in silts and clays.

Theories which predict the amount and rate of consolidation usually consider

the soil to be saturated. The load is initially transferred to the liquid

phase present in the pores of the soil mass. This results in an increase in

the pore pressure so that steady-state conditions in the pores no longer

exist. Over a period of time, liquid will flow from the pores, thus causing a

dissipation of the pore pressures. This continues until hydrostatic pressure

is achieved. As the pressure is dissipated from the pores, the load will be

transferred to the soil grains resulting in consolidation of the soil mass.

The permeability of the soil controls the rate at which consolidation takes

place. This behavior is termed primary consolidation and is shown in Fig.

I., 2.3.

Secondary consolidation or creep is also shown in Fig. 2.3. Secondary

consolidation is defined as tne deformation which takes place after the pore
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v. pressures have reacned steady state conditions. Although tneories exist for

the preoictLion of secondary consolidation, none have yet found general

3acceptance.
2.2 Constitutive Models Representing Soil Behavior

Ovti he last two decades much work nas been done to develop constitutive

I models to represent the load -deformation behavior of soils. Thus far, most of

these models have been used to represent the behavior of dry or completely

saturated soils. When these models have been used to predict the behavior of

partLy saturateG solis, they have yielded poor results for the soil response.

However, tnese models are worthy of some attention, since they provide insight

to the approaches wnicn nave been taken to develop constitutive laws

*describing soil benavior.

The procedure of aeveioping a constitutive model for soils has followed

two approacnes. These two approaches are termed phenomenological and

micromechanicai modeling. The following sections of this report will discuss

the soil models obtained from these two approaches.

2.2.1 Pnenomenologicai Models

Phenomenological models are those concerned with describing behavior on

the scale of tne experiment. These models treat soil as a continuum including

thousands to millions of soil grains and pores in the model representation.

Phenomenological methods or theories include mathematical curve fitting,

elasticity theory, plasticity theory and visco'elasticity theory. The soil

constitutive models deveiopea from these methods or theories are discussed

6below in aetail.

2.2.1.1 Empiricai Models

A number of models representing soil behavior have been developed using

empirical curve fitting methods. This approach entails making a mathematical



fit to experimental data. In this manner, tne response of the soil due to

some specific input may be predicted. Herein, the input and the response are

those measured experimenLally.

Many researchers have taken Lhe empirical approach to modeling the

pressure-volume behavior of soils. Herrmann (1971) took such an approach in

introaucing the "P-a" description. In his model, the pressure was assumea to

be a function of the specific volume, internal energy and the porosity of the

soli. The relationship Herrmann proposed is

v
P = a 'I US) (2.1a)

v
or 

(2.1b)= m

where v = specific volume
5

u = specific internal energy

v - specific volume of the matrix materialm

In Eqs. (2.1), the function f was assumed to be identical to that which

relates pressure ana volume for a mass composed entirely of matrix material.

Carroi and HoLt (1972) proposed that it was more reasonable to represent the

pressure-'voiume relationship for soils by

P = f (-, u (2.2)

If tne pressure volume relationship for the matrix material is known, the

problem reduces to determining the function

a L (P) (2.3)

The determination of the porosity provides the pressure-volume relationsnip
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for the complete materiai. This model used the Mie-Gruneisen equation of

state (see Carrol and Holt, 1972) to describe tne function f. This equation

T
= Pr + (Us - Ur) - (2.4). V

8

where P pressure

P = a reference pressureri

u = specific internal energy
5

a= a reference specific energy

v = specific volume5

T Gruneisen ratio~g

The Gruneisen ratio is given by

aV C
Tg = VS (tii (2.5)

where T = temperature

C v specific heat at constant volumev

A polynominal fit was then used to describe the function g. For situations

where the variation in internal energy is less important, Butkovicn (1973)

developed a model relating the porosity to the applied pressure. The

expression ne obtained is

1 P
S(i -) n(- )

= o c (2.6)

where a - initial value of°0

eP - the pressure required for the onset of pore closure

L 

e

Jil
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P c the pressure required for pressures within the range

The Eq. (2.4) is applicable for pressures witnin the range between Pe and Pc

For pressures less than P e' the pressure-volume relationship for the matrix

material is used. In Butkovicn's work, the pressure-volume relationship for

the matrix materiai was assumed to be given by soil unloading data. A

polynomial fit to initial loading data was used to determine the pressure

volume relationship for pressures lying between Pe and P C. Other empirical

models describing the pressure-volume relationship of soils have been

deveiopea, but tne models cited above are representative of this work.

Other models have been developed wnich made mathematical fits to deviator

C stress-strain data. The simplest model of tnis type is obtained by

approximating deviator stress versus strain data by a series of piecewise

linear curves. This type of approximation is shown in Fig. 2.4. More

sophisticated mathematical fits such as hyperbolas and cubic splices have been

used to relate tne deviator stress to the strain data. The most popular of

these methods is the hyperbolic stress-strain model developed by Duncan and

Chang (1970). This model is based on the finding that the deviator stress

versus strain curves for a number of soils can be approximated by hyperbolas

like the one shown in Fig. 2.5. This hyperbola may be represented by

03) = (2.7)

Ei(o 1  3 ULT

wnere a .a 3 aeviator stress

1 3

E - strain

E - initial tangent modulus
1i

The Eq. (2.7) may be transformed so that it will plot as a straight line.

This transformed equation is

.t.
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. = ((2.b)
1 3 E1 )ULT

A plot of Eq. (2.8) is shown in Fig. 2.6. Other empirical relations are used

to account for the variation in soil strength with confining pressure and

modulus N\,lues for loading and unloading. Because of these relationships, the

hyperbolic model requires a number of parameters for its use. The hypobolic

model also fails to realistically model actual soil behavior at or near

failure.

In general, there are some basic problems associated with soil models

developed from empirical models. First, an empirical model cannot be expected

to provide reasonable predictions of soil behavior when the soil and site

conditions being modeled deviate greatly from those used to calibrate the

model. Second, this type of model cannot oe expected to provide any insight

to the actual physical deformation mechanisms acting within the soil mass.

Despite these shortcomings empirical models are frequently used due to their

simpiicity.

2.2.1.2 Nonlinear Elastic Moodels

Some mocels representing soil behavior have been developed using nonlinear

elasticity theories. However, these theories have not found widespread use

since tneir predictions of unload behavior do not represent actual soil

behavior. For cases wnere initial loading is of interest, nonlinear

elasticity theories may provide redsonable predictions of soil response.

Hyperelastic constitutive laws have been used to represent soil behavior.

These models use constitutive laws obtained by the 0ifferentiation of a strain

energy function. Different orders of hyperelastic modeis are obtainied by

retaining tne nigher order derivatives obtained from tne strain energy

function. Hyperelastic soil models may be used to represent i lta loading.
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Truesdale nas proposed a rate theory which states that the rate of change

of stress is a function of the rate of change of strain. This Is known as the

hypoelastic formulation. At present, this formulation has not been used in

representing the load-deformation behavior of soils.

2.2.1.3 Elastic-Plastic Models

Elastic-plastic theory had been widely used in soil modeling. Recently,

many constitutive models for soils have been presented which use this theory.

In general, this type of model assumed a yield criterion of the form

P

where Tij - stress tensor

e - plastic strain tensor

ij

X - work hardening parameter

When the above equation is not satisfied (F (Tjeij , X) < 0) the material

is said to behave elastically. When Eq. (2.9) is satisfied, the behavior is

said to be eiastic-plastic. Further deformation beyond the point where Eq.

(2.9) is satisfied occurs at a combination of elastic and plastic strains,

prescribea by an assumed flow rule. The yield surface is typically aescribea

in stress space as shown in Fig. 2.7. For a known stress point inside this

region, the strains are found using elastic constitutive laws. When the

stress point lies on the yield surface, the total strain is a combination of

eiastic and plastic strains. For a stress point lying on the yield surface,

further loading may cause the surface to expand, translate or both, according

to thne work-nardening rule assumed. Unloading may be elastic or elastic-

plastic. An example of the movement of the yield surface in the principai

stress space is shown in Fig. 2.8. The material is initially unstressec at
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point 0 and is then loaded to point 1. The benavior of the material when

* folowing this load path is elastic, since it lies within tne initial yieidmsurface. At point 1, the stress point lies on the yield surface such that
further ioading will result in behavior that may be elastic-piastic or

elastic, depending on the stress path taken. As the material is loaded along

the stress path connecting points 1 and 2 in Fig. 2.8, the material will

exhibit elasticrplastic behavior. The stress point along this path remains on

the yield surface, with the yield surface expanding, translating or botn. In

Fig. 2.8, the tensor a j would be non-zero and no expansion of the yield
surface wouid occur. Combined hardening, in which the yield surface may

translate as well as expand, is shown in Fig. 2.8. Further loading of the

material from point 2 to point 3 of Fig. 2.8 will result in elastic behavior

because the loau path taken lies within the new yield surface. Continued

ioading from point 3 will result in elastic or elastic-plastic behavior,

depending on the loaa path taken.

Scnofielo and Wroth (1968) developed an elastic-plastic soil model, known

as the "camnclay" model which accounts for the volume deformation and strain'

p iharoening of soils. Tne basis of their model is an incremental flow rule

wnicn balances the irreversible work occurring during deformation against a

mecnanism for the frictional loss. Their flow rule is given by

P aV P P
Q (At) - P ( ) -P (Ats ) (2.10)

wnere V - volume

P - pressure

Q - measure of shear st'ess

ts - measure of shear strain

- friction parameter

. . . . . . .. .€ .. . .. , . ...... ., . - .. . .- , , , . .. , , " ,
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Here thne superscript denotes plastic or elastic portions of tLe quantities

indicated. The elastic volume deformation during hydrostatic deformation is

V AP V e Lp

given by

A A (-) = A - (2.11)
. m m

wnere Vm = volume of matrix material

A - a constant

As yielding is occurring, the total volume change is given by

V AP V AP
7 (- A(7) B - (2.12)
m m

where B = a constant

- Tne assumption of an associated flow rule gives the following equation for the

yield surface:

I n 
(2.13)

In Eq. (2.13) P* is the intercept of the yield surface with the P axis as

shown in Fig. 2.9. An important assumption of the "camrciay" model is that

tne plastic volume deformation for non.hydrostatic stress states is the same

as for hydrostatic states but with the P replaced by P*. Thus, the plastic

6 volume deformation is given by

~P
P AP*

V (B - A) Ip- (2.14)
N m

The Eqs. (2.10), (2.11), and (2.12) form a system of equations from which

strain increments may be determined from stress increments, or vice-versa.

The constants B and A are determined experimentally. Hydrostatic loading

6/
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L.

corresponds to a movement along the P axis shown in Fig. 2.9. 4hen yielding

occurs, a non-nyaroelastic loading will cause the yieio surface to change in

accordance with Eq. (2.10). Movement of the yield surface is shown in Fig.

2.9. The criticai state iine is snown in Fig. 2.9 as the line connecting

J points of zero slope for all possible yield surfaces. This separates yielding

into censification and dilation. Densification with strain-nardening occurs

to the rignt of the critical state line, while dilation witn strain softening

occurs to the left.

Tne "cam-ciay" model nas proved useful in representing soil behavior. In

tnis model, however, elastic shear stresses and soil cohesion are completely

neglectea. The assumption of an associated flow rule is also made. This

assumption gives a plastic strain vector normal to the yield surface.

Contrioutions sucn as those by Mandl and Luque (1970) and Frydman et al.

(1973) nave shown that normality of plastic flow is neither a mathematical

necessity nor supported by experimental evidence. The "cam-clay" model

predicts no non-recoverable deformations under hydrostatic loadings. This is

not representative of soils. Unloading is elastic, wnicn is not descriptive

of actual soil benavior.

Sandier and Baron have introduced the "cap" model to describe the benavior

of soiis. This model is based on the classical plasticity model, defined by a

yield surface and a strain rate vector. Inspection of this yield surface shows

that tnree modes of soil behavior are possible. These being elastic, failure,

and cap behavior. Elastic behavior occurs when tne stress point lies in tne

* region contained by tne stress coordinate axes, the failure envelope, and the

cap surface. The benavior in this region is considered to be linearly

elastic. The failure model of behavior occurs when tne stress point lies on

L the failure envelope. This failure envelope is assumed to be fixed and is

r%

J.

I
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given by

J; A -Ce-3BP (2,14)

where J = second invariant of the devitoric stress tensor
2

A,B,C = material constants

The moael assumes an associated flow rule, thus, the piastic strain during the

falure mode of behavior is composed of a shear component and a dilatant

component. The cap mode of behavior occurs when tne stress point iies on the

.1 cap surface and continued ioading results in an outward movement of the cap.

The motion of tne cap is related to the plastic strain by a hardening rule.

The equation for the cap surface is

(P - ea ) + 2J = (Pb Pa )  (2.15)

where Pa' Pb - pressures corresponding to points a and b as

on the Yieid surface

P = mean hydrostatic stress

S1 = trace of the stress tensor

2 = second invarient of the aeviatoric stress tensor

D = a constant

E Tne position of tne cap is defined by specifying one of the quantities, P a or

P" The cap is related to the strain history of the materi througn a strain

naroening rule given by

-p -3NPB
-e N (I - e ) (

e
Y

I- where M,N = material constants
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,inen tne stress pc-.it lies on eitner tne failure envelope or tne cap surface,

-P
tne value of e cnanges exacLiy as tne plastic volumetric strain for a

stress point on the cap surface, the plastic strain rate vector wili oe

airected as snown in Fig. (2.6). The position of the plastic strain rate

vector implies tnat it consists of an irreversible decrease in volume in

conjuncLion witn an irreversioie snear strain. This decrease in volume

represents voiimetric hysteresis observea in soil during compaction, As the
cap moves forward, tne compaction resizng from Lne

-P
associated flow will lead to an increase in the cap parameter e By

V

Eq. (2.1o) tnis eads to an increase in P resulting in a movement of the cap

to thne rignt. nhen the stress point iies on the failure surface, the plastic

strain rate vector will be directea upwards and to the left as shown in Fig.

2.6. The plastic strain rate vector indicates an increase in volume

associa=eo witn the movement along the failure surface. The dilatancy wil

leaG to a decrease in tne cap

parameter, resuiting in a leftwaro movement of tne cap by Eq.
.eY

(2.10). The bacKward movement of the cap is limited by thne point where it

intersects the stress point lying on the failure surface.

The basic cap model aescribed has been modified to include viscous dampir,

una strain ndraening. The viscous cap model is usea to represent materials

.nich exnibit nysteresis auring cylic loading. This model was formulated by

introo.cing iinear viscous damping into tne elastic portion of tne cap model.

Tne Parameters wnicn define the non-plastic portion of tne model are an

instantaneo-s modulus6 G long term modulus G , and d relaxation rate T. The
p
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tnree parameters are related tnrougn the equation

GFGG = FV (2.17)

a F S (2.18)
F V

G S . iong term modulus

G - damping constant

a F S

Gv

wnere~~~ G.~ d7 spigmd3

24 G 5 ion ter (odul9s

dt = F  at ' T ( .9wnere S daeviatorc stress tensor

v

ij

[ dV -~~~~ reixatonatc vao~ tanteno

To determine the parameters Glp, (;S, and T,clc1c triaxiai data are used. A

~Kinematicaiiy hardening failure envelope has been added to the general cap

, model by replacing the stress tensor Tl by (Ti - OL ). Here is a tensor

WhOoe eviat sr memory parameters defining he translation of the failure

!P.- surface in stress space. In the model, it is assumed that kinematic hardening

occurs only in shear, y2elding the relation

GK - 0 (2.20)

The Knematic naraening rule weic governs tne memory parameters G i o

form
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Ij f CL~ e ) CC~ 2.1

I ~~ fi" (ij' ±jX ij

II
; 0!T.. stress tensor

iJ

-a work naroening parameter

e..= strain tensor
1j
Pd k iviatoric plastic strain tensor

in order to represent tne noniinear benavior of soiis at or near faihiure, it

is necessary to assume a nonlinear nardening rule. A simple rule of this type

wnicn gives reasonable behavior at all stress levels is given as

P
a -j C aF ae.i (2.22)

wnere C a a constant

l- T. Ci )a1
F =maximum [0, 2N iJj -N

V'J2F~~ 2A:~ IIIF -N

N -a cnstnt efiingtne size of tne yi.a surface

* ~here F-. is related to tne proximity of tne yield surface to tne failure
U

surface, and tne iocation of tne 5tress point on the yield surface. For a,

2F wijl be equal to 1.0. Therefore, from Eq. (2.22), it is found tnat Ca is

tne inelastic slope for the initial yielding of tne material in shear. Fa

L ili. dlecredse for continued yield, and is equal to zero when the stress point

V reacfles the failure surface. Upon unloading from tne failure surface, tne
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va.e of F wiii increase, reacning a value of 2 upon reyieling. Finally, Lne

cap mocei nas been modified to represent tne behavior of saturaea soils using

tne effective stress approach. This modification is straigntforward dna is

acnieved by replacing the stress tensor by

T -T -Lu6 (2.23)

where - effective stress tensor

- total stress tensor
ij

u - pore pressure

6 .j Kronecker - 1,

The cap model has been used successfully to model several soils. However,

there are some difficulties associated with it. A major problem is that a

large number of parameters must be determined from experimental data and their

ON determination may require special tests. Another problem is the assumption of

an associated flow rule. This assumption is not necessarily correct for

soils.

Other elastic-plastic constitutive models for soils have been developed.

These models use different yield surfaces as a nonnassociated flow rule.

However, the methodology used to formulate these models is the same as for

those already described. The problem with classical plasticity theory is that

•- the predicted response of a system is rate independent. It has been

established that the response of a soil is rate dependent.

0
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2.2.1.4 Vcoelastic Modes

VIscoe.asti- mooe.s aescrioing soi. oenavior nave not appeareo in tne

I terature as mucn as Lnose formulatec using elastLicplastic thneory. However,

Seiastic-piastic tneory is, in fact, a special case of viscoeiastic tneory.

Using tne more generai material mocel provided from viscoelastic theory, soil

damping ana rate depencence may be accounted for. As seen for the "cap

moce ", results improved 4nen viscous damping was introduced into the model.

2.2.2 Micromecnanicai Models

MecnansLic mooeiing of soils nas been approacned from two different

viewpoints. One approacn nas been to treat tne soil as an assemobage of

particles in contact. The particles within a soil mass may be random in shape

and size; tnerefore, to use this approacn some assumptions as to size and

snape must usual.Ly be made. Once a model representing the soil mass has been

cnosen, the solution consists of representing tne deformed geometry of the

particles in contact. The other approach to mechanistic modeling has been to

consider the soil as composed of a matrix material containing voids. A

solution to this problem consists of modeling the deformation of tne voids

contained in the matrix material.

V" Mecnanistic models have been formulatea on two scales. One scale has been

intermediate to that of the experiment and the grains and the pores within the

soil mass. while this scale may be very small compared to the scale of tne

experiment, it may be quite large in comparison to the size scale of the

grains ana pores. On tnis scale, the behavior observed may be that of many

grains and pores and may best be described by the use of a phenomonologicai

tneory. The other scaie wnich is used in mechanistic moceling is termed tne

micro-scaie. On ttis ievel, models are formulated at the scale of -he grains

and pores and are concerned witn describing the actual deformation mecnanisms
%0

'4
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present on tnis scaie.

Tne voia aeformation moceis nave oeen formiatea on botn tne intermediate

scale ana micronscaie. Modeling of objects in contact nas isually been done

on tne micro-scai.e.

2.2.2.1 Contact Moaeis

4hen a mass composed of a number of particles in contact is subject to an

externaliy applied load, tne deformation resulting from tne load is due to

grain movement and grain aeformation. The movement of tne grains will be

controlled by interparticle friction, cohesion between adjacent particles, and

Lne initial porosity of the mass. The grain deformation will be greatest at

Vareas of contact between adjacent grains, and may be elastic or elastic-

plastic, Cepenaing on tne stress level present in thne grains. In addition,

tne grains may fracture, tnus changing tne number and tne snape of the grains

k and increasing the number of contacts.

Moaeis usec to describe tnis behavior asually consider the soil grains tob

spnerical in snape. The load-deformation behavior of the spheres themselves

is considered to be tnat of an elastic material. Further simplifications are

obtained by neglecting friction, cohesion, and tangential forces acting on tne

contacts between grains. mith these simplifications, a logical step is to use

Hertzian contact theory, by which the movement of adjacent spheres relative to

one anotner may be determined. Two spheres in contact are shown in Fig. 2.10.

The z axis is positioned at the centerline of the contact. The solid lines

represent Lne aeformea configuration of tne spneres, wnile tne Cashec ines

represent tne .nceformea spneres. From Hertzian contact theory, tne

ceformation aong tne centerline of contact for each sphere is given by

1 31r v i2) F
jU a -- I) F (2.24a)

C--
x 1

r= 1111klj.'J'11
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2 37r1 2 )

U2 (1 v 2  F (2.24b)

wnere

1 2
uzUz . aeformation along the contact centeriine for

spneres I and 2 respectively

V1 ,V2 - Poisson's ratio for spheres I an 2 respective±y

- ri,2 - e.iastic maodulus for spneres I ana 2 respectively

a - raai-us of the contact surface

F - force transmitted across the contact

The aeformations uI and u2 are shown in Fig. 2.10. The racius of tne contact

area between the spheres is given by

(4 RV 1 +/R (2.25)

E 1 E22)

where RI,R 2 - the radii of spneres I and 2 respectively.

Using Eqs. (2.24) and (2.25), the aeformation of an assemblage of spheres may

be determinea when the force transmitted across each contact is known. Ko and

S" Scott (1967) have solved this problem for the case of an assmebly of spheres

in ideal packing configurations, under conaitions of hydrostatic loading. Ai

tne spneres were considered to be of equal radii and of the same materiai

properties. The solution is given by

F3C (1 v P]) /v. "  _~AV 3 [¢G-2

' LAE ]/3(2.26)

w'nere V - volume of soil mass

C - 1, for sc (simple cubic) packing

i-I . . ,. € ,€ €.,
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V 2/4, for fcc (face centered cubic)

P - nycrostaic pressure

E - elastic moculus

- Poisson's ratio

As seen from Eq. (2.26), the term C accounts for the initial density of tne

mass, giving smaller volumetric strains for the denser packing configurations.

However, this model predicts larger tnan actual deformations for tne simple
r.

cuoic (sc) configuration, while prealcting smaller than actual deformations

for thne face centereo cubic (fcc) packing configuration. To correct this, Ko

ana Scott used a combination of sc and fcc blocks to represent the initial

porosity of tne soil. By assuming a distribution of grain contact pressures

and an effective contact radius, pressure!volume relationships for sands of

three initial porosities were generated. The results obtained are shown in

Figs. 2.11 and 2.12 along with the limiting cases of sc and fcc packing

configurations. A major shortcoming of Ko and Scott's model is that the path

the soil takes during un±oading is the same as that for loading, which is not

representative of actual soil behavior. Warren and Anderson (1973) have

formuiatec a contact model in which initially some of the spheres are not in

contact. The pressure-volume relationship obtained is given by

V 3 (N ]2/3 (2.27)
V [(h

wnere N - number of grains in a typical cross-section
g

N= The number of contacts transmitting force across thevc
typical crossnsection

As loading progresses, more grains come into contact, until at some critical

pressure, all grains make contact. it is apparent from Eq. (2.27) that as the

S.'4
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nuroer of contacts s increased, the amount of volume aeformation resulting

from an increase in pressure will aecrease. The mael wil precict unloacing

a-ong a patn aifferent from tnat of ioacing, as long as the grains were not

all initially in contact. Tne difficulty witn this mocel is the ceterminatlon

of tne vaiue of Nc . The variation in the value of N. wnicn occurs during

loading corresponds to the rigid body motion of tne particles within the soil

mass. This macei does not attempt to describe the actual grain motion within

the soil mass, but ratner tne parameter N is cnosen to fit experimental data.

Some models of granular mecia include friction of the contact between

grains.. Rowe (1962) nas considerec tne shearing of various assemblages of

spneres. Using a minimum energy criterion, he arrived at the stress.-dailatancy

equation

AV
_I 2 u __ __-

tan (45 T - ) (2.28)

'fwnere a1 . maximum principal stress

= least principal stress

)a . undrained angle of shearing resistance

AEI - the axial strain increment

This equation holds only for the case wnen the intermediate principal stress

is equal to tne least principa stress. Rowe states tnat tne angle , must

be replaced by an effective angle of snearing resistance i in order to matcn

experimental data. Test conditions may be createc so tnat many vaies of tne

jnarinea angle of shearing resistance, p ' may be obtained for tne same soil

sample. However, with pure pressure measurements Curing tne test, tne value

of thne effective angle of snearing resistance may be determiped and tnis value

nas been founa not to vary witn test conditi-ns. The Eq. ( .28) does not
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account for compaction aAring non-nyarostatic ioacing. Baraen et. ai. (1969)

.isea Eq. (2.28) to formulate a plastic flow rule and a set of yield surfaces.

Tney testec tne benavwior of sand in plane strain ana founa tnat tne yield

criterion and plastic potential did not coincide. This implies nonenormality

of f.Low. However, it was found that tne volametric strain was suitably

I, precicted by tnis model. Nemat-Naser formulated a model to represent the

benavior of granular materiai undergoing shear loacing. This model represents

dIiiation and densification which occurs curing shear. This is cone by

aefining the dilatancy angle v, whicn defines tne position of a microscopic

shear plane with respect to the observable macroscopic snear plane. In this

model, it is assumed that the actual shearing takes place on many microscopic

shear planes rather than on one macroscopic shear plane. To formulate the

moCei, Nemat-Naser considered a sample of soil for whicn failure takes place

along one microscopic shear plane S'-S'. Summing forces on tne plane S'-S'

gives tne following equations

T tan (p cos (P - v)

sin (2.29)

tan = -

where T - total snear force on macroscopic sample

- ailatancy angle

F* - frictional force along microscopic shear plane

The angles p ano p are aefinea by tne equations

T = t tan (2.30a)

T* a* tan (2.30b)

where T = snear stress acting on nacroscopic snear plane

" " , . ."-" . . ' """ """" " " "' ' "" " ' '" - -"Y";" "
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%I i - normal stress acting on macroscopic snear plane

= snedr stress acting on microscopic snear plane

a* = normal stress acting on microscopic anear plane

The Eq. (2.29) was derivea by considering all stresses in Eqs. (2.30) to be

acting on Lne same element of area along tne microscopic shear plane. By

jconsidering tne rate of energy aissipation whicn occurs as the block slides

along tne plane S'-S', Nemat-Naser obtained tne equations

Ttan Cos )
zn (2.31)

w= rate of energy aissipaLion

wnere V tne volume of tne macroscopic sample.

The dot denotes tne time derivatives. The following approximations are made

concerning w:

W - W' W, w"(2.32a)

(2.32b)

: - F(2.32c)
sin cos (

wnere 4 = the rate of snear aeformaticn on the macroscopic sample.

Use of these approximations in Eq. (3.31) gives the equation

v Cos + " sin V." ~i i cs(u )

Vi - cos (2.33)

-e Eq. (2.33) appiles to one microscopic failu.re plane. if one microscopic
p.

snear plane is denoted by i, Eq. (2.33) Ls written as

V. cos ( + +0 i) sin v. (2.3)

V y cos
U

M, . %
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Lne voi-..me fraction, V, of tne family of particles naving a ailatancy angle,

is defined by,

i ViV, 0I (  )  - -V (2.35)

wnere P - volume fraction of family of particles having ailatancyI

angle V

The restriction if P is the following

V

f p (3 a (3.36)

0

Eq. (3.36) ; 0 + .and form the range of variation of the dilatancy angle,

V. Using Eqs. (2.35) and 2.36) in Eq. (2.34), Nemat-Naser arrives at the

final result given by

0
1 oV = Cos 0u Uf P(;) cOs (Ou + V) sin d . (3.37)

0

The Eq. 3.37 contains all experimentaily observea behavior of granular
,.

material in simple shear. Howe er, the accuracy of the predictions made by

Eq. (3.37) will depend on the chosen form of the distribution function P(V).

This aistribution function may be very difficult to aetermine for an actual

soil sample. Anotner shortcoming c' tnhis model is tnat the individual

particles witnin the sample mass are considerec to be rigio. Wilkins (1970)

LOOK a different approach to develop a theory for the snear strength of a

granular media. He *.sea an empirical curve fitting method and Rowe's Eq.

-L - -
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i1. to precict tne n,mber of .nstabie contacts in a gran.±ar assemblage as

d finction of tne 5tress ratio. Accoraing to tnis approacn, wnen ai tne

contacts on a grain become unstaole, tne grain is no jonger consiaered to

contribute to the system and it effectively becomes a void. 4hen tne number

of voias not supporting any stresses is equal to the number of particles which

continue to carry loads, the medium is assumed to fail. Altnougn this attempt

is interesting, it becomes unattractive due to its empirical nature. Volume

cnanges and stress-strain relations are neglected in Wilkins' formulation.

Jthter contact models have been developed for which the plastic flow of the

bodies in contact are considered to be important. KaKar and Chaklader (1967)

nave solved this problem for spheres in a variety of packing configurations.

in tnis moaei, it is assumed tnat the particle surfaces wlicn are not in

contact remain spherical. They solved this for a simple cubic packing.

Assunptions were tnat the volume of the spheres remain constant, that the

contacts transmit the load applied to the assembly, and that the material near

the contact is in a state of uniaxial stress. The material of the contacts

was allowed to yield until the stress developed at the contacts was balanced

by the applied pressure. The relationship that Kakar anG Chaklaaer obtained

is given by

3/26 V 6P 4P 32
) -1 - 2 (2.38)

wnere P = applied pressure

Y - yiela strengtn
.4

V = voume of tne assembly

Tne Eq. (3.36) is valid until tne contact areas touch, tnus forming a new

geometry. The results snown are for a simple cubic packing configuration ana

t ese show tnac tne yielding model predicts larger strains for a given boaa
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tnan tnose contained from the elastic Hertzian contact model. The actual

stress-strain curve 4ilI likely fail in between tnose by the Hertzian and

KaKar and Chaklader theories. Not all points within a sphere will yield at

once; tnus, the actual behavior is stiffer than that predicted by the complete

yielding model as formulated by Kakar and Chaklader.

2.2.2.2 Void Deformation Models

One approacn to modeling soils has been to consider the soil as a mass

composed of a matrix material and voids. The deformation resulting from the

app.ication of loaas to a materiai. of this type will Gepend on the materials

making up the matrix and voids, the size and the shape of the voids, and the

column fraction of the voids. A common assumption in using this approach to

aodei soils is that the voids are either spherical or flat in shape.

O'Connell and Budiansky (1974) have considered the effect tnat flat cracks

would have on the moduli of a material containing such voids. The equation

thney obtained for the bulk modulus of such a material is

K 16 1 _-

K = - 9 LI 2- - d (2.39a)
m

16
V V V - , dj (2.39b)

1 3
L£ a c 3(2 39c)

wnere K = bulk modulus of material

Km bu. modulus of matrix material

= Poisson's ratio of material

V. - Poisson's ratio of matrix material

d crack density

Lac crack length

cFt V - volume of materiai
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The Eqs. (2.39) were aeveiopec oy consiaeriong tne cracks to contain only air.

The Eqs. (2.39) inoicate tnat a sufficiently iarge crack censity would have a

zonsiaeraoie effect on the material properties, wnle the cracks themselves

may be of negligible volume. As the pressure is increased on such a material,

tne cracks wouia close and their effect woula disappear.

Other researchers have considered the effects of spherical voids on

material behavior. MacKenzie (1950) determined the effective bulk modulus for

a material represented by a matrix containing spherical voids. The term

effective refers to material properties which are descriptive of the entire

mass oeing considered. The porous material is modeled as a collection of

spheres of matrix material, each containing a spnericai void. Under this

assumption, the problem reduces to that of determining the solution for one of

tnese composite spheres with a uniform radial pressure acting on its boundary.

The term composite refers to the material composed of both matrix and voids.

The expression MacKenzie obtained for the effective bulk moduius of such a

material is

1 V 3
- 3 (2.40)VKm 4G ( V )

where K - effective bulk modulus

K - bulK modulus of matrix material

G = shear modulus of matrix material

V = voiume of matrix material
m

V = volume of composite material

The Eq. (2 4.) was developea unaer the assumption that air is contained in the

voias. Hasnin(1970) nas determined upper ana lower bounds for .ne effective

bu4Lk and shea" moaii of an eiastic matrix materlai wnicn contains spnerical

14

= !- ., , ~ ,. * * * - * * * ~ ~
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inclusions of anotner elastic material. The ipper and lower bounds were

aetermined from the thneorems of potential energy and complementary energy.

The bounds determined for the effective bulk moCulus coincided and tnhis result

is given by

K = m + (K P- K M)(4G M+ A3K )c (.1
4G + 3K + 3 (K - K )c

m pAm p

wnere K - effective bulk modulus

Km bulk moduius of tne matrix materialm

K - ouIK modulus of the inclusionsp

GM- shear modulus of tne matrix material

c - the column fraction of the inclusions

The bounds Hashin obtained for the effective shear modulus did not coincide.

These bounds are given by

G -
G, . (2.42a)

1 + (1 -()Yp ~m-
G

G u m G - I)Yi c] (2.42b)
m

I

wnere G, . lower bound on effective shear modulus

G - upper bound on effective shear mobulus

G - shear modulus of the inclusion
p

7ne coefficients y1
(a) and y1

(
E
) are determined from tne equations

2G 21 S (a)
1 (a~ m (a)3(23)

= "-- B + 5(7 - 4v) (2. 3a)
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p 7 5
20- )(o -p 0 )
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" 5 (1 - v M )

() 1[7-1Ov ) (7 -0vm) (7+7vv pI - 0 (2.43c)
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Yl G p + 5 (1 ) 9 m)  +21Y2 (a) -' "-2 . (2.43cl)
m m (

") 2 - 21 B

Y 7 LBy 1  3(7-4v ) (2.44a)
p

2 B3

Y2 5 Y (2.44b)

p 7 5

2(l - P)(d 7 5

11~ ~~~ +________ (e)50 Yl 0 v p." 5(1 ]~ + Y2  Z(7-10vp) -

(7 -10 v) IM 
4p O . 4(7-10vm)1 0 (2.44c)

G G o3
(7-5v )(1 - 2) 2(4-5v )XI - -)~

. ) [ - . m + C
G m 15(1-v ) 15(1-vm

(21 ) (2. 44d)
+ 0o

G
4(7-10v) + -2- (7+5v)

p G m p(2.45a)

35 (1-v )

3 (2.45b)

0 S
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Sn-re- Poisson's ratio of :ne matrix material

=Pois5son's ratio of' tne inclu.sions

7 , snear stress )n macroscopic s mpie

'Y = snear strain on macroscopic sample

C - volume concentration of spneres

p..,The terms T ana Y appearing in Eqs. (2.43) anc (2.44) are Known from the

boundary conditions used to aetermine the limits on the effective shear

imoaul.s. These bounaary conditions correspond to the cases wnen tne surface

tractions ana surface aisplacements are known on a sample of the composite

materiai. The boundary conditions for tne case wnen surface tractions are

known are given by

I r (x =+ a, y - b)
XY - - (2.4o)

The bounaary conditions for the case wnen the surface aisplacement's are Known

are given by

S(x, y 2 y (2.47a)

y

7he Dounds determined by Hasnin nave been successfully used to approximate

tne effective eiastic moduii of composite materiais.

Some spnerica. voia moceis nave been deveiopea wnicn account for tne

p.-Ldasti, yiei.oing of tne matrix materiai. Torre (1946) aeveiopea sucn a moaei

ana tne resuil ne octained is given by

" I a C :) 2.46a)
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V
(2.48b)

i

where P - pressure

Y - yieic stress of matrix material

V - voiume of matrix maLeriaim

V - volume of composite material

A problem wit Eq. (2.48a) is tna thne matrix material is considered to be

fuily piasLic. A model snouic oe ao.e to aescribe elastic as well as plastic

phases, wnicn occur for botn loaacing and unloading. A step towara including

.otn e±astic ana piastic phases is to prescrioe a work-hardening rule for tne

matrix material. ChaawicK (1963) developed sucn a model. Aitnough this mocel

is rigorousiy aerived, certain essential parts remain in integral form making

it aifficuit to use. Carroi ano Holt (1972) as well as Chu and Hashin (1971)

took an approacn wnicn simplified the results. Considering the same spherical

pore geometry, tney derived the pressure-volume relationship for tne composite

materiai by temporarily assuming tnat tne matrix material is incompressible.

Carro ana Hoit then ised an empirical reiationsnip to describe Lne pressure-

voi-me re.aLionsnip for the matrix material. The empirical reLationsnip jsed

is given by

vf
I.-,

VS
vs

.nere v -specific voime of composite ma"eria.

v - specific voiume of matrix materia.

h - specific internai energy

'Jsing tne metnoa ouLiinea above, 2arroi ana Ho4 r. obLainea thne pressure-voiume

.°. 'U d. . '
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re.Ldtionsnip of a mas composec of an iaeaiiy e.Lastic~piastic matrix material

containing voias. This is given by

3a (a ) L - 0 (2.50a)

P2G 142G a 02G M(at0-a)(25)
3 Om 2 mnI

2Y

2 (a a a Y 1

1 2G~Y(2.50d)
m

2 2G (2.50e)

rrn

ow- V(2.50f)
m

0
V (2.50g)

wnere P=pressure

G m shear modulus of matrix material

V -initial volume of composite material
0

V - volume of composite materli

Y yieid stress of matrix material

nrere are two probiems associatec witn using Eqs. (2.50) to represent soii~

Dtvnav~or. First, the parameters otained by using Eqs. (2.49) to cescribe tne

pressure-~voilu=e relationsnip of tne matrix material are not fundamentaly

r'e.,atec Lo tne actuai behavior of tne soii grains. Secona, soils exnibit a

L pronouncea reverse yieiaing curing .unioaaing wnicn is not precicted by Eqs.

* - ~Bnitt et ai.. (1975) attempteO to remove tnese difficuiles by Making
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tne matrix a Monr7Couiomb materiai. The yiela criterion for tne matrix

materia. is given DF

(1 + D) 01 - 03 Y - 0 (2.51)

where C = greatest principal stress

G3 = least principal stress

D = a constant

Y = yield stress for Lne matrix material

The resuils obtained by Bhatt et ai, using tne yiela criterion given by Eq.

(2.51), are given by

4 G (a - )

m 0 < i (2.52a)
3a (a - 1) LO a a L(25 )

3
2D 3

4 G m 0 )  2 G (o ( )

.,3a (a I) lu L ym ( O I

%m

2D

Ym 2Gm (a0 a) 2D+3

S L Y a2)2.52)

2D

-.2 7 - j -11 (2.52c)
D

2Gc +y~L1 M 0 m( 2 5 a2 G + Y (2.52)

in Eqs. (2.52) ai. terms nave tne same meaning as Lnose appearing in

Eqs.(2.50). The parameter 2 is determined from tne equation given oy

+2D2 GM (% - -2)  a 3-2

Y ( - 1) - .(2.53)
M 2 2

~,.** ~~%.***'
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winen tne soil is un±oaaed in tne fuily p.astic state, Lne following

reiationsnips noid

y"2D 2D~Y -- Y (2+)- p = [ )3 _ ] M A
D C-I D a

+2 G M(a-a*) 332G (m *) 3+D (A) + (2.54a)

3 D(ca-I C

2 G a* Y'
a 2 m (2.54b)

2D+3 3+D

a (1+D) a (2.54c)

wnere a* = thne value of a when unloading is initiated.

The Eqs. (2.54) must be solved numerically to obt.ain the pressurezvolume

reiaLionsnip curing unioaacing. This is done by cnoosing values of c/a > 1,

anc caicuiating a from Eq. (2.54b) and P from Eq. (2.54a). Some problems with

the mocei just describec have been recognized. First, the predicted highr

pressure compressibility is often too low. Second, low pressure behavior is

not aaequately represented. Schatz et al. (1974), moaifiea Bhatt's model to

allow for the curvature of tne Moftr-Coloumb failure surface. The failure

t" criterion whicn Scnatz, et ai. incorporated into Bnatt's model is given by

1l/0

, 03 Y + ( 1 O) e = 0 (2.55)

wnere YO = yieia stress for max - 0 condition

Y, . uLiLmate strength

L Tne term a1/ 0 wnich appears in Eqs. (2.55) is descriptive of tne rate of.

transition from low to high yielo strengtns. Another mocification wnicn

V-*.



Scnatz et al. incorporated into Bhatt's moaei inciuced the effects of flat

cracKs on Lne bui< moCuius of the matrix material. 7nis modification of tne

uoiK moauius is given by

K P
1- Y -I - P-1 ' P < P ( 2.56a)

IM ci

K = K , , " P cl (2.56b)

wnere Y = a constant

P = pressure required for compiete crack closurePcorcosr

K - effective bulk moaul,-s of matrix material

K m -buik modulus of composite material

P = Pressure

The mocification given in Eqs. (2.56) nas tne effect of divioing thne voids

into two populations, spnerica. voids whicn aeform according to Eq. (2.55) ana

flat cracks which deform according to Eqs. (2.56). These modifications

improve the precictins made by BnaLt's model. One problem witn Bhatt's ano

Scnatz's moaels is that neither allows for a distribution of pore sizes. An

approach to account for the pore size variation in actual maeriai is to start

with the ideally plastic spherical pore model and then allow for each sphere

to nave a different porosity witn the requirement that tne total porosity is

equal to that of tne material being modeled. Krener dnG Scnopt (I73) nave

aevelopea such a mocei which considers an ideally plastic matrix material.

Tneir resu.L for tne pressure-voliume relationsnip of one pore is given by

4 G V
P - - f3(1 - 2_) - 3 (1 - P

u P P

2Y V0
SY an [I + ()1-2 -

3VP (2. 5 7a)
P

s .
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SV (2 57b)% -......................... (.5b
V
m

where P = pressure

Ym - yield stress of matrix material

V - total volume

Vm = volume of matrix maerial

r Vp = current volume of pores

Vp = initial volume of pores.

., The overbars in Eqns. (2.57).denote averages taken over the entire-

volume of material being considered. The pressure-volume relationship

for the entire material is determined by evaluating Eqns (2.27) for all

pores oresent in the material under consideration. An apparent problem

for this model is the determination of the pore size distribution.

*Other spherical void deformation models have been developed, but

the models described in this section are representative of work which

has been done to date in this area.

2.3 Conclusions

The soil models reviewed in the previous sections, with few excep-

tions, have only considered the pores within the soil mass to contain

air. The modification of many of these models to represent saturated

soil conditions is straightforward through the effective stress prin-

ciple. However, many situations exist when the soil is partly saturat-

ed. The degree of saturation is a soil parameter usec to describe the

amount of liquid present within the pores of the soil mass. By defini-

tion the degree of saturation is given by
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< ( < I ....... ................. .(2.58)

P

where S d degree of saturation

77 = volume of fluid contained in the soil mass

Vp vo ..me of the pores contained in the soil mass.

sing the definition given by Eqn. (2.58), the three conditions which a

constitutive model should be able to represent are

L. S - 0 (voids completely filled with air),

2. 0 < S < 1.0 (voids filled with an air-fluid mixture), and

3. S = 1.0 (voids completely filled with fluid).

The second condition presents problems, due to the complexity of having

an air-water mixture present in the pores. One problem is that, as the

pressure is increased some of the air will be driven into solution.

Because of this and the compressibility of the air phase, it is diffi-

cult to predict the pore pressure resulting from the application of a

load. If the pore pressures could be predicted, the principle of

effective stress could be used to model the partly saturated system.

Phenomenological models have been used a great deal to model soil

behavior. It would seem that empirical models obtained from curve-fit-

ting methods are undesirable for use as a constitutive model represent-

ing soil behavior; These models should not be expected to yield rea-

sonable results when used to represent conditions which deviate greatly

from those by which the model was calibrated. They also provide no

understanding as to the actual deformation mechanisms acting within the

soil mass. Elastic models are poor representations of soil behavior

primarily due to their inability to predict unloading behavior.

Elastic-plastic models have been used a great deal and provide reason-
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able results for many situations. While these models may work well,

they often require a great many parameters and may be difficult to use

in practice. Little work has been done using viscoelastic models for

soils.

Micromechanical models attempt to derive constitutive laws from

observing the actual mechanisms causing deformation of the microstruc-

ture. Thus, as these deformation mechanisms are more fully understood,

a better understand of the complex behavior of soils can be achieved.

.

4 ,

9 "

? '
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:HAPTER 3

ASSEMBLAGE OF SPHERES iN CONTACT

1.1 Contact Forces

In an assemblage of spheres whicn are in contact, tnere are tnree types of

forces whicn may act on the area of contact. Two of these are forces which

act in airections normal and tangentiai to the contact area. The third force

is a torsional couple acting on the contact area. The forces are shown acting

on an area of contact in Fig. 3.1. The area of contact results from the

compression of one sphere upon another. The remainder of this chapter will be

concerned witn the normal forces whicn act on the area of contact.

1.2 Hertz Solution for the Pressure Between Two Sphericai Bodies in Contact

The soluLtion for the pressure between two spherical bodies in contact was

first determined by Hertz. Discussion of this solution is given by Timoshenko

and Goodier (1951). The Hertz Oolution will be reviewed in the remainder of

this section.

Two spnerical bodies in contact are shown in Fig. 3.2. Here R, and R2 are

Lne radii of spheres 1 and 2, respectiveiy. Sphere I has material constants

E and V while sphere 2 has material constants E and V The x, y plane is1 2

tangent to the point of contact. The zI and z2 coordinate airections are

considered positive when directed from the origin of the x, y plane to the

centers of spheres 1 and 2, respectively. When there is no pressure between

!tne bocies the coordinate directions e, am1 C2 are given by

SR[R 2 2_ 2 1

z2 R2-a 2
2  r (3.1)

"-- 2 -2-R2
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wnere r 2 . X2 . y2

Approximations of z, and z2 may be obtainea by performing Taylor series

expansions of Eqs. (3.1) about r - 0. These approximations are given by

r
z1 2 R (3.2a)

2%

z 2  2R- (3.2b)

The u-se of Eqs. (3.2) is limited to cases in which tne distance r is small in

comparison to R and R Addition of Eqs. (3.2) yieids tne following equation

'. r (R1  R2 )
z 1" Zl 2 . 2 R 1R 2 . (3 .3 )

As shown in Fig. 3.1, Eqs. (3.3) represents the distance between points on the

surface of spheres 1 and 2 for a particular value of r.

If tne two spherical bodies shown in Fig. 3.2 are subjected to a

compressive force F directed along the zI and z2 axes such that tnere is force

equilibrium, the bodies will make contact over a small circular surface. The

projection of this surface on the x, y plane is termed the region of contact.

pThe displacements in a direction normal to the x, y plane, of points lying

on the surfaces of spheres 1 and 2 will be denoted by w1 and w2, respectively.

As tne spneres are pressec together, the distance between two such points on

tne region of contact will diminish by

4.

a w w (3.4)
1 2

I.." where LwI + w2 ]1r -0

4 '" €" " "" €' ' " '% ' " '; ' ''' " """" ' "w . . '%. ' ' "
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I.

From Eqs. o. ) zni 3.4) ;ne oiiowi.ng reiationnizp is ootainea for ai

points iying on the region of contact.

C - (w1 + w2 ) z1Z z r2  R1 R 2 .

I it is assumed tnat the radius of the region of contact is very small in
comparison to thne raoii R ano R Then wnen considering the local

aeformation wit nin tne region of contact, the spnere may be considered to be

reprerted by a naif~space. This enables one to see the solution for a point

load acting on an elastic nalf-space to determine the displacements, wI and

Sw 2, within the region of contact. The geometry for the problem of a point

load acting on an elastic half-space is shown in Fig. 3.3. The solution for

the displace Aat z - 0, in the z-coordinaLe direction, is given by

w (3.a)
z-0 i Er

where F = the magnitude of the point load

E - modulus of elasticity

v- Poisson's ratio

The Eq. (3.6) may be used to determine tne displacement, w, on the plane z -

0, when a pressure P(r) is applied over a circular area on this plane. For a

point A lying within a circular area, as shown in Fig. 3.4, the deflection, w,

at point A may be determined from Eqs. (3.6) by making the following

substitution

F - fT P(s) s d3ds (3.7)
B

'n Eq. (3.7), the integration is taken over tne load area, B. The

6
: .displacement of po~nt A, snown in Fig. 3.4, is given by
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l - 2)

1) 1TE JP (5,) asa;

in Eq. (3.8), the angle ( ranges from -- T

L? By substituting Eq. (3.8)

i into Eq. (3.5), tne foilowiong equation is obtainea.

K, + K2 (RI + R2 2

- /- 2 R R r (3.9)

-' (l 122

(1v2
wnere K-

RO - the area containea witnin tne region of contact

The pressure distribution, P(s), is chosen suCh tnat Eq. (3.9) is satisfieo.

The pressure distribution which satisfies Eq. (3.9) is an eil..ptcal cap over

tne region of contact. A cross-section of Lnis pressure IstriuLion along

the chord BC shown in Fig. 3.4 is shown in Fig. 3.5. The maximum pressure,

(Po;), a~.ong the cnord BC is given by

a 2  2  2 1 1 2
P0

( ,P - a - r sin 1 , ,3.1o)

wnere Po . tne pressure acting on tne center of tne contact region

-a - the radis of cne region of contact

The aistribution of tne pressure aiong tne cnora BC in Fig. 3.5 is given by
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( ) 2 2 2 1/2

acs,)= os e la cos e- (s- r cos ) I ,
L- < 6 - 1/2) (3.11)

Lne reiationsnip between tne angles 6 aba p is given by

a sin a = r sin (p (3.12)

,i is sefwL to express tne variable s in terms of an angle 3. This

relationship is given by

S = r cos , + a cos a cos a, (0 -< a - 1) (3.13)

SubstiLion of Eqs. (3.10), (3.11), (3,12), and (3.13) into Eq. (9) results in

the following equation.

J 2) (a -r2 Sin2  D sin2 3 d do -

2 (R R2  (3.14)

The expression obtained by performing the integration indicated in Eq. (3.14)

is given by

(K I + K) 2 2 (RI 2
-. 1" ar - rn 1

9 2 o I 27 - r 4 T C' 2 R R r (3.15)

The Eq. (3.15) snows that Eq. (3.9) is satisfied by an ellipticai pressure

-istribution acting on the region of contact, provided that the racius of the
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contact region, a, ano tne dispiacemenL, a, are given by

w p1 R (K1 + KI) a

a =O (3 16a)

2 (R1 + R2)

-- T a (K+ K)P
1 2 0 (3m1bb)
2

The constant, Po is determined from the static equijibriim of one spnere.

For equilibrim of one sphere, the integral of the pressure, P(s), over the

region of contact must equal tne force, P, pressing tne spneres together. The

pressure distribution, P(s), symmetric with respect to the center of the

contact region and is given by

P }1/2

P(r) --- a2 - r2  (r < a)

The condition for the equilibrium of one of tne spheres snown in Fig. 3.2 is

given Oy

a P1/2

P(r) dA - 27T -- (a 2 
- r2 ]  rdr - F

integration of Eq. (3.19) yields the following value for P

I'.

3F 2 (3.20)

2Tra 2

The aispiacements, w I ana w2 , normal to tne region of contact and lying within

tne region of contact are aeterminea from Eqs. (3.8). These ai.placements are

given by

"I " K,. P  [ 2 2w 4a (2a r2], (r < a) (3.21a)

.,-, - , - , ,.--- -.-,-. -'---.' . , ..- -.-.-. .-.. .- ,-.. ..- -,,- '.,-. -. '.-* -,. ,.-, . , ",, ," ., .
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K2 Po

w 2  4a (2a2 - r2  (r < a)

(3.210)

The solution obtained for the two spheres in contact provides information

aoout the aispiacements ana stresses occurring on the surface of the sphere,

witnin tne region of contact. It does not provide a solution describing the

stress ana displacement fielos in the interior of the sphere.

3.3 General Soiution to tne AxisymmeLric Field Problem of Eiasticity for a

Region Bounaed by a Sphere
S.

in tnis section tne solution of tne elastic field equations for a sphere

subject to eitner axisymmetric surface aispiacements or surface tractions is

obtained. A spnere is snown in Fig. 3.6 reiative to both the rectangular

coordinates, (x,y,z) and tne spherical coordinates (p,9,6).

i he following restrictions are imposed on the spnere

1. Surface displacements or tractions are axisymmetric with respect to

tne z-axis.

2. The spnere is in static equiliri um.

3. Body forces are negilgibie.

:he approacn taken to obtain a soiution to this problem is to use Boussinesq's

solution in the harmonic function.

.1The general soiution for a region 4itn torsionnfree rotationai symmetry,

in tne absence of body forces, may be obtained as the sum of tne two

,asp.01actments f elas given oy

2G uI  -7 L (r,z) (3.22)

2G u2 - 7 z Y (r,z)] - 4 (-v) ) (r,z)e (3.23)

wnere ul, L, aispiacement vectors in rectangular coordinates

.o,

J.



1

y,

pd.:

U

,0

-w---



68

7gracient operator

e x e~ =e unit vector in tne x,y, ano z 200orainates airections

respecti vely

2 2 2 2
r x + y +z

G -snear moauius

v=Poisson's ratio

inl Eqs. (3.22) ana (3.23) ;(r,z) and y.(r,z) are arbitrary narmonic functions.

Henceforth, the solutions given by Eqs. (3.22) and (3.23) will be referred to

as tne first and second Boussinesq solutions, respectively.

Thie region of interest is bounded by a sphere; therefore, it will be

I;Y 5ef'ui to empioy spherical coordinates. Spherical coordinates are related to

rectang-ular coordinates through the mapping

x - p~ sino Cosa (3.24a)

y - p~ sin~p sine (3.24b)

z - P cosp (3.24c)

Tne relationship between tne displacement components in spherical coordinates

ana ;n rectangular coordinates is given by

u=sin~p cos u -i sinQ sine uy +05 C uSP (3.25a)

U 003sp Cosa u x cos5Q sine jY 1-iri) u z(3.25b)

-sine u +0S zs 3.25c)
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nere , , a omponents of the aispacement vector in tne p, , and

a coordinate irections respectiveiy.

x' , , = components of the displacement vector in the x, y, and

z coorinate directions respectively.

From Eqs. (3.22) ana (3.25), tne displacement components in sphericai

coorinates for the first Boussinesq solution are given by

2G u sine cos Tx- + sinp sine i + COs t
(3.26a)

2G u Cos, Cae - + cosO sine r - sine o-- (3.26b)

(3.26c)
2G u 9 0

Tne combination of Eqs. (3.23) and (3.25) gives the following displacement

components for the second Boussinesq solution.

2G u, si( Cosa -a* sino sine3D

.(3.27a)

+ Co s (P T - (3-4 J) 'y

2G u coso Cosa3 L- + --Oin

• .. " (327. b)

- sine (3-')

2G 0(3.27c)

1.*11*( (3.28a)

#
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From Eq. (3.2ba) the partiai aerivatives of tne narmonic function , appearing

in Eqs. (3.26) are given by

3 3x 9 3x (3.29a)

3(P 303o 30

" z +  "5 "z (3.29c)

From Eqs. (3.28b) tne partai Jerivatives of tne narmonic function appearing

in Eqs. (3.27) are given by

ax "P x + 50 ax (3.30a)

*W 3Y__6W

=-- - y 3y (3.30b)

7 " + __ _z (3.30c)

dZ ap &Z d9 a

Tne graaienrs of p and g are obtainable from Eqs. (3.24). These gradients are

7Pe + ey +
x x dy z dz

sing cos6 e• + sing sine e + cosQ az  (3.31a)

s9 6g aC05 Cosa cos sind x ex d y ey x ' z  e y

2(3.31b)

Combining Eqs. (3.26). (3.29), ana (3.31) gives tne following aisplacement

components for the first Boussinesq solution

2G u - (3.32a)

2 G s i ng -3.32b)
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Comoining Eqs. ,3.27), (3.30) and (3.31) gives tne following aispiacement

components for tne secona Boussinesq soitacion

2C u. - FO P L ( 3-4,))Y3o DQ- ( (3.33a)

2G uU--Sino Cos* ( (3-41) (3.33b)

In Eqs. (3.32) and (3.33), cosy nas been chosen as an independent variable.

The harmonic functions, and y, will be represented, in part, by spnerical

narmonics wnicn are functions of cosy.

The strainraispiacement reiationsnips referred to the spnericai coordinate

system, for the case of rotational symmetry about the z-axis are given by

C 30- (3.34a)

E - + (3.34b)

0_ + CO UO (3.34c)

E I c up au( u.P
PP-2L - J (3.34d)

E - 0 (3.34e)

E 0 (3.3 4f)

From tnese strain-aisplacement relations and the displacement components given

Dy Eqs. (3.32) ano the strain fieid for the first Boussinesq solution is

2GE 2 (3.35a)
302

sin2 32 cosc 3$ 13$
2G sin0 2 a 2 2O( +-

2 3(CosP) 2 2 a(cosO) 3 0 (3.35b)
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2G 2 (csc) ( (csO) (3.35c)

:22

-o (3.35e)

E 0 (3-35f)

Suoszitung tne cisplacemenL components given by Eqs. (3.33) into the strain-,

displacement relations given by Eqs. (3.34) yields the following strain field

for the second Boussinesq solution

2G E - 005 p L p T~ r 2 (1 '2 v) 6Y(3.36a)

(Pj (P 2 3(cosq) 2pos 2(oQ
cospa-- + 2

-2(1.-2v) sin py 3-6b
p a(cos~p)(33b

20 E O p CO 3Ys~ (3.36c)
66 G 2(1) p a(cos~p)

2G E -c2o1-v) (1-12v) sinqp

2

- si0 coaOSO) (3-36C)

Ep 0 (3.36e)

Eap -0 (3.3of)

Testress filscorresponaing tothe two solutions are aeterminea from the
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constitutive equations for an isotropic, linearly elastic materiai. Tnese

constLILLive equations areE
a - 2GE + e (3.37a)
pp pp

a = 2G E + Xe (3.37b)

e = 2G E +Ae (3.37c)

0P P2 ) (3.37d)

a. = 2G E: (3.37e)
* ep

a = 2G E (3.37f)

mAnere e = voiumetric strain = + + E

2 vGn =(1I-2v)

14% SuOstitution of Lne strain fieid given by Eqs. (3.35) into tne constitutive

4
* reiations given oy Eqs. (3.37) gives tne foilowing stress fieid for tie first

Boussinesq soiution

4

p p 2

2
* *_sin os c0sq j

2 2 2 (Cos) p p(.3.3p (cos~p) 0

;p 2 3 (cos0P)(.3)
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p..2

p L J 3(o~ 3(Os)k.3dc)

a -o 0(3.38e)

Sa -0 (3.38f)

Siiostiution of tne aispiacemenL components given Dy Eqs. (3.36) into tne

const .ti ve reiations given by Eqs. (3.37) yie.as tne foliowing stress fiela

for .ne seconc Boussinesq so±utlon.

a - 32_ 2us. (1v)co.2

p 3(cost) (3.39a)

2 2
sin a s(coY + (1-2\) 0o9 y( 3.39b)

p 3(cos9) 2

a =1-v)coq ~co2  2 0Y1 -2\)) cosp - cos 2Vsin2 3(cosp) (3.39c)

P9 , snO L (-2v) "* 2(1-v,)
6p p ( cos)

,2
-cooa 1p(-3c3p- 3s-(cos ).39

(3.39e)

-- 0 (3.39f)
-p

The term of tne narmonic fanctions, p ana v, wiil De DeLermineO. These

f-mnccions satisfy Laplace's equation. when written in spherical coorainates,

4N N
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, :his ecaation z.s

12 2

+ + -I- + + -41
2 22 0 2 2 2 sin2 30

A particuiar so!ition to Eq. (3.40) is of the form

n a

S-iher'e (Cosp)

,ubsitutLing the solution given by Eq. (3.41) into Eq. (3.40) yields the

foiiowing

Si2 3 24 a *" n
S3in 2  (co P-2 cos 3(Posp) + n(ant) * n 0 (3.42)

The Eq. (3.42) is Legenore's equation, for wnich there are two solutions.

These soi.tLions are given by

SP (cos) (- < a < ) (3.42a)

-a Qn (CO - < n < ) (3.12b)

The solution P is caileo the Legendre polynominal of degree n. The soition

is liea tne Legendre function of rne second kind of degree n. The

.o..Ation n contains a logaritnmic singularity cosp to tne proo!.-m .nder

consiceration. The soiution to be empioyea is P An equation aefining P is

n n

a.
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n
P os.~ d (cos 2 p - n

Pc~ ~~ 2n. dcoY Lij

-iencefortn, ;-ne argu ment of P is C054). Recurrence re.ations 'or tne Legenaren

poi.ynomiais, appihicadie for aii va.'.e5 of' n are.

P (? 3.44a)
n n-. I

2nlCs fl- ~ ntl+ n n-1 ~3. 44b)

Sin~~P n Pn- n cos(P Pn 34C

(IP

wnere P'=d(0Q

The narmonic fu.nctions, ; and W, wii. be of tne form given by Eq. (3.41),

wnere V n s given by Eqs. (3.42a). By virt,;e of tne first recurrence relation

given by E-qs. (3.44), tne fu.nctions, *p and ~'are given by

-n-I

P-i P < ( KnC~ <3.45a)

n n

30.Luton o apatic. ir poblm haracterized by specific boundary

conaitions, wiii oe aeterminea oy superposition of zne c2omponent sciitions D

ana 7 the component sol~tions to tne first ard second BoLu sinesq solutions

wi. nencefortn be czenotec as A n j no - -, respective4.y. Using Eq. (3-45a),

;ne c-ispiacement strain, and stress fie.Las for solu-tion ~A nare given by
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2G u 2-(n+i) p3*n+2 a.
2G u s inO

n+2 n 3 .-40o)

- C ~.46c)

;p (n~1 )(n+2) p 3.4a

2 2G [ a'-1 (n~4.(n+2P]

2G E (3.46f)n+~3

n+n

0 E 3. 46 r)

,i Ir~- ) n+3) n(.4)
"+3n

-+ LP'~l- (n~l)(n+3)Pn j (3 .14'K

n~'I

S ril- 3

-o (3.46n)

16
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(3.46o)

Using Lne expression for yshown in Eq. (3.45b), tlhe aispiacement strain, and

stress fieics for soiution [Cnj are given by

2GU nj~ L (n+l ) Pn+ + n P (3.47a)p ~~ ~ Pn-,

(2n~1)p nln

0 (3.47c)

2G E (n~ 1)
2G P + L (n~l)(+..,vPn 1n4.vPn. J (3.47d)

2G E n2L (2n~l) PA (n~l)(n 2 .n+1+4nv) Pn+
S (2n+1)

-n(n+l)(n+4,4v) P ~ ~ (3.47e)

2G~ (n-'1) P +~ Pt j(3.47ft)

2G (P (2n+l Pn+2 I~

0 (3.4~7h)

(n+1 2 341

___ ___ _ (n)2 -5n+ -2v) + n4-v ?(3 7j

2 (n3.( 2_ 12v P *l n(n~I)(n+4-4v) P

-(2n.I) (34k

n 3.7k
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L (n+ 1(1-2v) Pn+1 + Pn 3"47±)

,i 1 (3n2 1
p

TV -  sin p n+2 L (n 1)(n+4-,4\) P.., (n +2n-. +2%0 Pn* (3.47,n)

(2n 7)p

a = 0 (3.47n)

Ga . 0 (3.47o)

The bouncary conditions to be consiaerea correspond to the two cases when

either the surface displacements or surface tractions are specified on the

sphere. For the case when axisymmetric surface displacements are specified,

tne known displacements components will be u and u_. These quantities may be
p

represented by

u - 'u (R, cos,) on S (3,48a)

a u (R, cosq) on S (3.48b)

wnere S - tne surface of the sphere

R - the raaius of the sphere

i'V

,I
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"or tne case wnen axisatr'ic surface tractions are specified, Lne Known stress

components wil oe app ana o . These quantities may be representea by

a = a (R, cosg) on S (3.49a)
pp PP

G a (R, cosg) on S (3.49b)

To app~.y the boundary conditions given by Eqns. (3.48) or Eqns. (3.49), these

,oundary conditions must be represented as series expansions. For the

asplacement boundary conditions given by Eqns. (3.48), these series have the

form

u (R, cos,) - P u P (3.50a)
P= u n

(R, cosq) -singo l P (3.50b)

n-1

The Eqn. (3.50a) is a series expansion for a Legendre polynominal. Eqn.

(3.50b) is the series equation for an associated Legendre function of the

first knd, of degree n. The significance of Eqn. (3.50b) is that the coso -

± 1, the series expansion is equal to zero, which is required by the condition

of symmetry. The coefficients in the series are given by

-u (3n*1)

n 2 -up(R, cosy) P" (cosg) d (cosg)

(n - 0, 1, 2, 3,...) (3.51a)

I,.n (2n+1)(n-1) ( ,
= *21+) j * (R, oOSp) sin, Pn, (COS9)

n c2 (1 +n)!1-b

cl(cosg), (n - 1, 2, 3,.... (3.51b)
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rin Eqns. (3.51), tne superscript .u is asea to aenote tnat surface

aisp~acements are Lne specifies bounaary conaitions. Expansion of tne surface

. tractions given by Eqns. (3.49) is done in tne same way as tne surface

aispiacements, except that the coefficients appearing in Eqns. (3.50) and

(3.51) are aenotea by n ana R. The superscript a is used to aenote that the
n n

surface tractions are the specified boundary conaitions.

The Eqns. (3.50) show that the expansions of the boundary conditions are

in terms of Legenare polynominals, or their derivatives, of one aegree n. In

'-'. orcer to meet tnese boundary conditions, the quantities being specified for

soiutLions .A ] ano [C j snould also be in terms of Legenare polynominais, or
n n

their derivatives, of one degree n. Solution [A j satisfies this requirement,
n

but so1i.tion -C ] does not. Therefore, the solution "B n is formed from aL° n L

iinear combination of solutions [A n  and [C n]. The component solution [Bn]

('. is given by

[B] - (2n+1)[C; j (n+4-4v) An] (3.52)
n nn.1

From Eqn. (3.52), the displacement, strain, and stress fields for solution

L3 j are
. - n

2G up n+1 Pn+1 (3.53a)

4 4 2G nSi (n:-3+4v) P, (3.53b)n+1 Pn+1 35b

U 0  (3.53c)

i L:

S..

N4I
Of '-P.,
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2n1+ 1 n 4-.,4 v)
- 2G z P (3.53a)P P n+l n+l

2G E n2 L (n-3 44 P (n+l
99 -2n*" p

(n 2-n1+3nv) P (3.53e)n~1

2G n (2n+1 (n1 P+ I + (n-3+4v) j P (3.53f)
p

-- 2 (353g)(n 2n-1l+2v) Pn+l

-- 0 (3.53n)

Ea -0 (3.53i)
orp,.

(n+1)(n 25n*4,-,2v)
PP . n+2 Pn 1 (3.53j)

0 +2-2 L (n+1)(n-n+1-2v P n*1- (n-3+4v) PIn J  (353k)

I P

0 e"= -- L (n+l)(2n+1)(1-2v) Pn+ (ns3+4v) Pn j  (3.531)
P

sinp 2

O (n +2n1+2v) P (3.53m)
P

-0 (3.53n)

0 . 0 (3.53o)

The solution to the problem under consideration will be determined as a

suiLdble combination of tne component solutions A n ] and [B n. The form of

the solution is taken to be

UIN
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[S] =  a a n  [A ne ]  + b n [BU ]  3 . 4nSi ( strain (3a54)

In Eqn. (3.54), [S] represents the solution to the aisplacement, strain and

stress fieias. The coefficients a and b are constants of superpositionn n

wnicn are chosen such that the specified boundary conaitions are satisfied.

Some values of the constants an and bn may be determined by evaluating the

component solutions [A n] ano [Bn] at p = 0. These solutions become singular

at the origin (p = 0) for n Z 0. The solution should not contain these

singuiarities, as the condition that [S] be finite at the origin is imposed.

K This condition requires that

a - b - 0, (n 0) (3.55)
n n

Therefore, the solution [S] is given by

[ L] = L Lan [A] b [B ] (3.56)
n-1

3.3.1 Solution when the Displacements are Specified on the Surface of the

Spnere

• - The boundary conditions which will be considereo are the displacement

components, u and u , specified on the surface at the spnere. Due to the

restriction of axisymmetry, these boundary concitions can be represented as

u =Q u ( , cOsO) on S (3.57a)

u uoas) on S (3.57b)
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wnere S - tne surface of the spnere

R - tne radius of Lae sphere

Proviaeo tne functions u(4, cosQ) and u(Ii, cosy~) are sufficiently smooth,

they mnay be represented by

u (R, cosq) 2. P (3.58a)
P n-0

U(R) C080) -in E (3.58b)

i n Pa

U u
The coefficients amd fI are given by

)J!.n n

14 (2n~l) up (R, cosy) P~ (cos() d (cosy) (3.59a)
n 2 7 n

in 2(n+l)! u u0 (R, cosy) sin~p

P' (cos9) d (cosy) (3-59b)
n

G. The solution to the interior displacement, strain and stress fields is assumed

e'A to be given by Eqn. (3.56). Using the displacement components u Pand u 0of

CS], in conjunction with Eqns. (3.58) yields the following set of equations

from which to evaluate a. and b n.

uu
(1-2-v) R b2u a G (3.60a)

n anl (n+1 )(n-,2+4v) R 2b u 2G u R.I
n n-.2 n

(n 1, 2, 3...) (3.60b)

L

IC11
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(n±574v) R2 ubn-2 2G n R1n

.n - I, 2, 3 ....) (3.0Oc)

Solution of Eqns. (3.60) gives tne following constants of superposition.

U (2
G L(n+5-4v) Zn3n24nv) nan1

an 1  [3n 1.-2V(2n+1)] Rn

(n - 1, 2, 3,...) (3.61a)

Gb [ +nN]

a- [3n+n-2(2n+)] R 1 - 0, 1, 2,...) (3.61b)

The displacement fields for the component solution [An] and [Bn ] vanish for nu nbn

1. Therefore, the values of au and bu remain undetermined. The solution

to tne problem characterized by the boundary conditions in Eqns. (3.57) is

given by

[s] a u a [A_ + b [B n (3.62)

n-1 n0 =nn2 n72

u bu

In Eqn. (3.62), the constants of superposition a n1 and bn 2 are given by
u u

Eqns. (3.61). The coefficients n and nu appearing in Eqns. (3.61) are

evaluated by Eqns. (3.59) for arbitrary surface displacements of the form

given by Eqns. (3.57). The component solutions [A ] and [B I may be

.determined from Eqns. (3.46) and Eqns. (3.53), respectively.

3.3.2 Solution when the Tractions are Specified on the Surface of the

Spnere

The boundary conditions to be considered are the stresses, app and a

specified on the surface of the sphere. Because of the restriction that the

surface tractions be axisymmetrlc, these stresses may be represented by
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- g = J j<, cos9) on S~ (3.63a)
S PP P '

S= a (R, cosq) on i (3.63b)Pq ( P P

Provilea that the functions a (R, coso) and a (R, cosq) are sufficentlypp p

smootn, they may be representea by

a (R, cos¢p) y p (3.64a)

a-O

a (a, a ' (3.64b)

cos ~ E TIo n1 Pa
fl-

The coefficients n and pa are given by

a (2n+1) 1
n ~ 2 2 ap (R' cosq) P n (costa) 0(costa) 36a

n 2(n+1)L f a (R, coso) sing

P' (costa) d (cost) (3.65b)

The solution to the interior displacement, strain, and stress fields are

- assumed to be given by [S] in Eqn. (3.56). Using the stresses a and a of

CS] in conjunction witn Eqns. (3.64) yields the following set of equationsoa a
from wnicn to evaluate the constants an and b

2 (1+v) b (3.66a)
2 R

n(n.-l) a-n l1 (n+l) [(n+l)(n,2)-2vj R2  b_ 2  R

(n - 1, 2, 3 ....) (3.66b)
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-(n-I) a_n 1  ( 2 +2n-I+2v) R2 b-n 2  R 2 kn

(n - 1, 2, 3 ... ) (3.66c)

The Eqns. (3.66) are not compatible for n - 1, this value of n results in two

equations with one unKnown. By tne consideration of static equilibrium,

another condition may be obtained which will render Eqns. (3.66) compatible.

A sphere with symmetric surface tractions about the zaxis is shown in Fig.

3.6. Under symmetric loading, equilibrium is automatically satisfied in the z

ana y coordinate directions. Equilibrium of the sphere will require the

following

T •e ds - 0 (3.67)z
0

unere T - stress vector

e - the unit vector in the z coordinate direction

in Eqn. (3.67), the integral is taken over tne surface of the sphere S. The

stresses wnich wi'li be known on the surface of the sphere are c and a
pp pC

Therefore, the stress vector T is given by

.- a e + a e (3.68)

wnere e, e - the unit vectors in the p and p coordinate directions

respectively.

Tne unit vectors o and a are given by

e - sing cose a sing sine e + cosq e (3.69a)
p x y z

L
e g cosp coso e + cos sine e y si n e (3.69b)

Substitution of Eqns. (3.68) and (3.69) into Eqns. (3.67) gives tne following

r.,
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.onai,.lon for eqLiiibrim.

C s- np j as = (3.70)

Tne stresses o and a may be expressed in tne form given by Eqns. (3.64).pp P

EThe surface element d5 is given by

I,. R2
as - R dea(cosl) (3.71)

Using Eqns. (3.64) and (3.71) in Eqn. (3.70) yielas tfe following condition of

equilibrium.

.-. 27 I2r 2
R2 *L sM P' (cos9) 2

0 - n-O n

ni rn P' (cosq)j ded(cosO) (3.72)
n,1-1

Using the recurrence relation given by Eqns. (3.44C) in Eqn. (3.70) gives

2 1 1
R2  J L C09 . Ph (cosQ) - L In n ( c os )/ L cn P (con P

0 =1 n-0 n n-1

+ coso L n n (cosO) j ded(cosq) - 0 (3.73)
n-i

The ortnogonality relationship applicable to Legendre's polynominals is.:1

f"Pn(coSO) Pm(COSO) d(coso) 0 m M (3.74)

2. m n-1 2n+E'

Noting that P (cosq) - I and P (cosq) - coso, and evaluating Eqn. (3.73) in

o i

accordance with Eqn. (3.73) gives Lne following equilibrium conoition.
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- (3.75

Ine Eqn . 3.o) are compatibie aue to Eqn. (3.74). Soi-.ton of Eqns. (3.66)

I}yieias Lhe following constants of superposition.

( n 2+2n-1+2v) n + (n+l)(n 2n-2-2,) Cn

a -n- 2 nn
-n-1 2(n-l)tn 2+n+l+(2n+l)v] R - 2

in = 2,3,4,...) (3.76a)

+ a
b: -n-2 a2+n__ +(2ni __ (n = 0, 1, 2,...) (3.76o)
-n- 2 [n 2++l+(2n+l)v R

* The coefficients of superposition a1 , a 2, and b remain undetermined

because Lne stress fields vanisn for the component solutions [Ai], [A_72 ],ana

g[B The solution to the problem characterized by the boundary concitions

given in Eqns. (3.63) is

IS] 2, o.(3.77)
IS] a-n-i [A-n-11 + Z b n2 [B 2

in Eqn. (3.77) the constants of superpositions are given by Eqn. (3.76). The
a a

* coefficients n and nn appearing in Eqns. (3.76) are determined from Eqns.
n n1

(5.65). The component solutions [A 1 ] and [B n. I] may be determin d from

Eqns. (3.46) ana Eqs. (3.53). The solution given by Eqns. (3.77) is t-ie same

as thnat determined by Sternberg, Eubank, and Bacowski).

3.4 Solution to Specific Elasticity Problems for a Spnere Subject to

Axisymmetric Surface Displacements or Surface Tensions

The results of Sections 3.2 and 3.3 will be used to determine elastic

soiutions for a sphere, subjected to a number of particiLar boundary
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." conlitions. The oouncary oonaciions dnicn w"- . De consizerea for ntz sphere

are as follows:

1. The surface aisplacements resuLi.ng from tne contacts with two

aajacent spneres along an axis of symmetry.

2. The surface tractions resulting from tne contacts witn two adjacent

.-. ".spheres along an axis of symmetry.

3. A uniform raaiai pressure appliec over the entire surface of tne

spnere.

-. . The bounaary conditions listed above satisfy the restrictions imposec on the

-) general solution given in Section 3.3. Therefore, the results of Section 3.3

Smay be used to aetermine solutions to the problems characterized by the

-" boundary conaitions listea above.

3.4.1 Solution when tne Surface Displacements, Resulting from Three Sphere in

Contact Along an Axis of Symmetry, are Known

The surface displacements on the region of contact resulting from pressing

two spheres together are provided by Hertz contact theory. It is assumed that

tne surface displacements on tne region of contact, parallel to the region of

contact, are negligible. The surface displacements perpendicular to the

region of contact, for the case of two spheres in contact, are given by Eqns.

-(3.21).

-l Tnree spheres in contact along the axis of symmetry are shown in Fig. 3.7.

The displacement, u , for the region of contact is assumed to be given by

O. Hertz contact theory. Therefore, Eqns. (3.21) are usec to obtain tne

following displacement boundary conditions for the center sphere shown in Fig.

3.7.

u (R,~ 2 (v)F
S ,osE) (1-2 [2a2-R sin2+]4' '-8 a 3 E'

(0 < . . . . . . (3.77 )
O .-.- _ _. -
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uz (R, cosO) 3(1-2)F [2a 2 - R2 Sin 2 ol,8a3E

0( - *' < 0 < ) . ......... (3.77b)

where F - total force transmitted through the contact

a - radius of the region of contact

(PI= angle defining the region of contact

R - radius of sphere

E - elastic modulus

Using Eqns. (3.25), the spherical displacement components, u and u are

u - u coso (3.78a)
p z

u9 - u z sino (3.78b)

The boundary conditions given by Eqns. (3.77) and the development

components in Eqns.(3.78) can be combined to yield the following boundary

conditions in terms of the spherical displacement components, u and u

P

P-3 (1-v 2 ) F
3 [2a2 - R2sin2 O] cos,,(O < € <P8 a3E

u P(RcosO)- (3.79a)

3(1-v2)F [2a2 - R2sin2 1 coso,(Tr- ' < * IT)

8 3 E -- --18 ~sn]sn,( 0

u3 (1- 2SO IS F37b

3 ) [2& 2 - R2 sin¢o] sine,(0r - <' ) T

8 a E

u (R, cos€) (3.79b)I
3-) [2a2_R 2 ,in2€ ] $inO,(ir _ p, < * iT)

Ia
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To determine the displacement, strain and stress fields for a sphere whose

displacement boundary conditions are given by Eqns. (3.79), it is necessary to

evaluate the constants and n given by Eqns. (3.61). In this case, these

constants are given by

,., 3(Zn) (1-v2)Cos r-'

3 2a2 _ R2sin$] coss P (cosO) d(cos$)
16 a 3E f[ Ja

-r 2a 2- R 2sin 2 0 coso P a(cosO) d(cosO)

oso ] . . . . . . . . . . . . . (3.80a)

os('-*')

1 u 36n(n+l)a 3 E _F [2a2-R2sin 0] sin 2  P (cos$)d(cosO)

a+ a 2  R2 sin2 ] sin2 P (cosd(cos)

+ foso' .. (3.80b)

The expressions for the constants given in Eqns. (3.80) may be simplified

since the functions contained in the integrals are odd or even functions,

depending on the value of n. These functions are odd for an odd value of n,u u

and even for an even value of n. Therefore, the constants &u and n , will be
n n

zero for odd values of n. In view of this the constants are given by

.u -3(4n+l) (I-v 2)F f [2a2_2in2-] o

i 2n 3 O8Pn(COSO)
8 a E 2a

d(cosO), (a - 0,1,2. ) • . . (3.81a)

u 3(4n+l)(1-v 2)F [2a 2 _R2gin2OI sin2O Pn(cO)r 2n =16n(2n+l)a jE

dCOS2l

ft" dl(cowP), (n =1,2,3, .... ) . . . (3.81b)
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Evaluation of the integrals contained in-Eqns. (3.81) yields the

following expressions for uand nu

Y2 F)a 222
u = -3(1-v )F -(a- + R-I1LCos .. (3.82a)

8ao3 E L 2 4 J

u 3%(1-v 2R2F (nlP2n+2 (OV
2n - 3 E (2sini -]1-%'n3

(4n+l)P 2n(cos ) 2nP 2n- (C0s4)1
+(4nl3) (4n-1) (4n-1)

6P 2n 4 (cosV) 6 coso' P 2n 3 (COS')

(4n+7) (4n+5) (4n+3) + (4n+5) (4n+3)

+38 -Cos 2J P 2no+2 '

(4n+7) (4n-1) 2n 3)

+ Cos 318 cosO' P 2n+l(coso')

CO1 (4z+5) (4E--1)J

+6 Cos2 0' -6 1(4+) P 2n(cosO')

I(4n+5) (4n-3) J (4n+3) (4n-1)

+ 8COSO' 3 P (CO)
(4n+3) (4u-3> co I 2J-P

+ 3 2Vi p2n-2 (cos0')

(4n+3)(4n-5) - Cos" (41-)

6 cosO' P 2 3 (COSV') 6 P2n4 (coso')

(n -1.2,3..) . . . . (3.82b)
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k T1~~2n 8a3E 2l)4- n2

P (OSO')1-2 P 2+ (coso~') I+-2 cosco' P 2nl(coscp')

2a(4n+3)(4n+l) (4n+1

+[(4n+3) 1(4n-3) - COS 20,] P2.(Coso')

4 (4n-l)cosp' P 2 - coso) +r o 2 6 1-
(4n+l)(4n-3) CS -(4n+l)(4n-5)J

P 2 (Cos~' + 2 cosO' P2n3 (cosO') +2 P 2n- (coso')

(42 n3) + (4n-3)(4n-5)

+ (2n+1)'. (n .1,, . .. .. .. . . ... (3.82c)

The general solution (S]I given in Section 3.3 may be modified so that

it does not include the zero terms which occur for odd values of n.

Then, the solution to the problem characterized by the boundary condi-

tions given in Eqns. (3.79) is

Z5 a U (A Z b -2n-2 (3.83)I]-2n-1 bn1 [B]- _n-
awl nuo

The constants of superposition, a_2nU and b-nZU are given by

SGK(2n+5-4v) +2(2n 2+3,-1+4,,),u ... (38a

u ~2n 2

b u - 2n_ 2n(38b-2n-2 (6n+1-2(4ri+l)v........ ... .. .. .. ... .(38b
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The component solutions, tA-2,-1  and fB_2n-2 , may be determined from

VEqas. (3.46) and (3.53), respectively. The component solution (A 2 -1 1

is given by

2G p - up2n-1l n(38&

2G u M Sinp 2-P, ........ . . . (3.85b)

2n-

2GUE p --sn-P ~2n2 .................. (3.85d)

2G e -P2- i- -0................... .......... (3.85e)

2G Co Zn(2n-2l)Q - .. .. .. .. .......... (3.85f)

22n-2
2G C p p1  -2(2n-1) Sio i . .. .. .. . .(3.

85g)

CoG = 0 (.-l . .... . . . .. .. .. .. (3.85i)

U - 2n(2n-1) P 2n-2...................(3.85j)

aT 0 2n-2 (pL1 - 2n(2n-1) P 2n .. ........ (3.85k)
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Q2n-2.. ..................... (3.851)

(2n-) pn-2sin . ............... (3.85m)

- 0 . . . . . . . . . . . . . . . . . . . ... . (3.85n)

CYa 0 . . . . . . . . . . . . . . . . . . . . . . . . (3.85o)

The component soltion (B2- is given by

2G up= - (2n+l)(2n-2.4v) p 21p 2a. . . . . . . . . .  (3 .86 a)

2G u- (2n+5-4'v) P 2n+1 sio in............(38b

u e 0 0. ......................... (3.86c)

2G E p - (2u+l) 2(2n-2+4v) P 2a 2n *. . . . . .(3.86d)

2G E - p 2n 54v PI'~ - C2n+l)f(2n*1)2

+ 2(n.1)(3-4V))] p2n] . . . (3.86e)

2G p 2n[4n3(l) ?2n - (2n,5-4v) P 2n+ 1] I* . . (3.86f)

r 1 2n2G E: 4n(n~l) -1+2V P sin$ P~n.. .........(3.86g)



1, 0-o ......... (3.86h1)

E9 0 . (3.86i)

a PP- - (2n.1)[(2n+l)(2n-2) - 2V] 2nP2(38 )

C00=P 2n (2n+l)(4n 2+l0n.7-2'v) P 2n.(2n.5-4'v) Pin+ll * (3.86k)

aee - P 2n t(2n.5-4v) Pj. (4n.3)(2n~l)(l-2v) P2~ I . (3.861)

2n~ 2n

CTQPM(4a 2 4n-1+2 ) P Znsino Pin. .. ........... (3.86m)

C - 0. .. .................. ...... (3.86n)

PM 0 .............................. (3.86o)

1 3.4.2 Solution when the Surface Tractions Resulting from Three

Spheres in Contact Along an Axis of Symmetry are Known

The surface tractions resulting from the contact of two spheres

are known from Hertz contact theory. On the contact surface, the

normal stress is known from Eqn. (3.18). For the problem of three

spheres in contact, as shown in Fig. 3.7, it is assumed that the normal

stress on the contact surfaces are given by Eqn. (318). Therefore,

the stress boundary condition is given by

V.- V-W
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kR, CosO) _ 3RF (Cos- - Cos2 ',]

( ( _ < < '; 3r- O _ < r IT) . . (3 .8 7)

where F - force transmitted through the contact

a - radius of contact region

I M angle defining the region of contact

R - radius of the sphere

In order to use the solution developed in Section 3.3, the stress

components on the surface of the sphere, a and must be

determined. These stress components are given by

a P . azz cos 2................ (3.88a)

ap a sino coso . ... ............. (3.88b)
p. zz

From Eqns. (3.87) and (3.88), the desired boundary conditions are given

by

(R,cosO) -3RF 2 2 1/2 2

cos ) 2 a3 [cos - cos 2  ]  cos q$,

PP ~ 2iTa3

(0 < 0 < 0'; -¢' < <)...... . (3.89a)

a (R,cosO) 23RF (cos 2 cos2, ] sine coso

0 < 0 _ '; i-1< .<. ...... (3.89b)
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To determine the displacement, strain and stress fields for the inter-

ior of a sphere whose surface tractions are given 
by Eqns. (3.89), it

a aT
is necessary to determine the constants, n and rn, given by Eqns.

(3.65). For the boundary conditions in Eqns. (3.89), the constants are

given by

a FIF C2 Cos 2,1/2 2 .(coso) d(cosp)

n 47t a 3 1~ C -o C5

+ 1 2(cos2  - Cos 1/2 cos 2  P (cos ) d(cos )1
co * cs']

(n - 0,,2 ). ... .. .. (3.90a)

[ _[)cos( -')

n (2n+l) r2 2Cos - cos sin Ocos¢ Ph(cosO) d(cosO)
n 4n (n+1) Wajj

1 1/

+ [fcos2o- cos2 'J1/ sin2 cosOPn (cosO)

d(cosO)] (n 1,2,3,...) .. ..... (3.90b)

The above integrals for and n may be simplified since the functions

contained within the integrals are odd or even functions, depending on the

value of n. These functions are odd for odd values of n and otherwise even.

0 0
Therefore, the constants a ana qn may be determined as follows
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CT.-3(2n+l)RF 2 - 01 os'11/2 co2 ~csodcs)
Zn 27r a 3 (o o^ Cs P~opdcs)

cosq: I

(n -123)...(3.91a)

9 3(2n+1)RF 2 2V 1./2 2
2n [Cos - Cos '~1 sin 0 coso P ncos(Pd(cO~),

2n2n (n+)rr a cosp

(n - 1,2,3,..) . . . (3.91b)

Evaluation of the integrals in Equs. (3.91) yields the following

eqations fr2 nd n2n.

-3FR sinl 3 0 Cos7 t cs inO Cos 4 (P(.9a

021ra 3 4 .+ 8 8 n(39a

cr(4n+1)3FR z (-I) (4n-2m)!

2n 2'r a 3 m-a 2 2n ! (2za-r) !(2n-2m)!

sio+ (2n-2m+2)!cosO' ( 1+sin4'\n

I i ~ ' (2r-2m42)!( !) 2cos~b ,2(n-rn-k+1) 1
+(2n-2+4)' 2 2(m-m-+l) ((-~)]2 J

(n1 .,,. .. ....... .(3.92b

a (2n-2)'3FR 2nZZ(-I)m 4n-2r)! [sin&b
.n 2Tr (2n-1) !a 3 mo 2. (2n-m)!(2n-2n)! (2n-2m+I).
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(2n-2m+2)! coso' (la-sintI:P'~

22 (-' )[(n-n+l)!] 2(2n-2m+l) COSO

________ - (2n-2m+2)! (k!) 2 Cos u m-

(2n-2m+l) 2 (n-rn-k+l) [21'1k

+ (n-) 2 1 m (n-4 ) J sin'

(2 n-1) [~(n2-) (2no-1

rn-a 2 2(-)m!(2n-rn-2) !(2n-2m-2)!I 2-m1

+ 2, - (2n-2m+2)(2n-2m+2)!CosO'

lIn n' (2n-2m+2)sinO& n-1f~ CoO40 (2n-2m+1) (2n-2m-1) k-o

2 2(n-rn-k+l)
[(n-rn2)!( ) ] (2k+1) +2(2n-l)! an

2 2(n-m-k+l) ((-~)2 + 2n)(2n-1)! 2

(n .1,,. . . (3.92c)

The general solution (S) given in Section 3.3 may be modified so that

it does not include the zero terms which occur for odd values of n.

Then the solution to the problem characterized by the boundary condi-

tions in Eqns. (3.89) is given by

a (A+ba B 39a
IS] Z _n -1 _2n -1+ 2 n-2  2n-293a

n 2 Yn- 2 _ a

a_ - (4n +4n-1+2v) 2 + 2(2n-I)(2n -n-1-V) n2 39b
2n-2 2(2n-1) [4n 2+2n-I-+(4n+1)v] R 2-
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if ,.a a
Cn+ 2n TI~

b ' 2  2  (3.93c)
2n-2 2(4n 2+2n+l+(4n+l)V]R 2 n

The component solutions [A-2, ] and [B_2n 2  are given by Equs. (3.85)

and Equs. (3.86), respectively.

3.4.3 Solution for a Sphere Under the Action of a Uniform

Radial Pressure

A sphere subjected to a uniform radial pressure is shown in Fig.

3.8 The boundary conditions for this sphere are

a (R,cos) - N ,( < <Tr) ..... .............. . (3.94a)

U 0 (R,cosp) - 0 ,(0 < 0 < TO .. ........... .... (3.94b)

where a = the magnitude of the uniform radial pressure

Iu

To determine the displacement, strain and stress fields for the problemEcharacterized by the boundary conditions given in Eqns. (3.94), the

constants and ri must be determined from Eqns. (3.66). For these

- boundary conditions, the constants n and Tn are determined as follows.

-(2_ ) Cu  n(cosO) d(cosp)

(n 0,1,2 .... ........ (3.95a)

L 
r
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'1 0, ( -1,2,3,.. .. . ................. . (3.95b)I
Evaluating the integral in Eqns. (3.95) yields the following for the

constants n and a.

U..... ..... ." . ............... . (3.96a)

uU
Un 0 (n - 1,2,3,.....) ................. .(3.96b)

%~ - 0 , (n f 1,2,3,..........................(. 96c)

t In Eqns.(3.96),the superscript au has been used to denote that the

constants were determined for the case of a uniformly applied pressure.
ar a

The Eqns. (3.96) show that and nuare equal to zero for n > 1.

Due to this, the solution (S] reduces to

[S] - b_2 [3-2 ....... ....................... (3.97)

where b - u-2 2(-)

The component solution [B_ 2] is determined from Eqns. (3.54). Substi-

Stuin g solution [B into Eqn. (3.97) yields the following displace-
[2]

ment, strain and stress fields corresponding to the solution [S].

(1-2v) a P
U2 G (1+) . .• (3.98a)

P................
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U Q (3. 98d)

U *u (3. 98e)

-(1v)a

*u GO).....................(3.98f)

Be 3(1V)a

2G(0.).. .. .. .. .......... ....... (3. 98.)

a 0 2G1.. .. .. .. ........... ...... (3.98i)

app=- 0u.. .......... ........ .. .. .... (3 .9 8 j)

~pe ........ .... ................ (3.98k)

ae 0-u. ........................ (3.981)

-Yp . .. .. .. .. .. .. .. .. .. .. ... . (3.98m)

a . ... ...... ...... ...... ... (3.98n.)

ae -o0.. .. .. .. ... ... .. .... .. .... (3.98o)

LEl
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The solution given in Eqns. (3.98) may be verified by an approach other

than Boussinesq's solution in two harmonic functions. For a sphere

a' subjected to the boundary conditions given by Eqns. (3.94) there will

be an infinite number of possible axes of symmetry passing through the

origin. Due to this symmetry the displacement strain and stress fields

will be independent of the spherical coordinate directions 0 and e. In

view of this symmetry the displacement components are given by

U = u (P) ..... ......................... .. (3.99a)

= 0 .... .............. ... ............ (3.99b)

_= 0 ............. . . ..................... (3.99c)

From the strain-displacement relationships given by Eqns. (3.34), the

strain components are given by

duCP . .. .. .. .. .. .. . . .................. (3.100a)

C . . . . .(3.lOOb)

S ....................... (3.lOOc)

0 . ........ ..................... .. (3.100d)

0 ......... .............. (3. 100e)

.,it0 • • • • a •
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ec (3loof)
F. 0 ... . . .. . . . . . . . . . . . . . . . . (3. 1 0
6

From the constitutive relationships given by Eqns. (3.37), the stress

components are given by

a - (X+2G) Xe PP + + ) ............. (3.lO1a)

a 0 (X42G) e 0 + X(ee6+ E)..) .............. .. (3.101b)

0ee - (X+2G) cee + X(e LP + ....) ............... .. (3.101c)

a 09 0 0 ......... ....................... ... (3.101d)

n= 0 ....................... (3.101e)

a 0 W 0 ......... ....................... ... (3.101f)

For the case when the stress components are functions of the spherical

coordinate p only, the differential equations of equilibrium, in the

absence of inertia and body forces, reduce to the following

Jh

-pp p -Pa 0 . ..... ........ (3.102a)

a -Coe " 0 ....... .................... ... (3.102b)

Combining Eqns. (3.99), (3.100), (3.101) and (3.102) yields the follow-

ing.

- .|' .
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d2 2 du
• - p 2 0 ..... ............... .(3.103)

dg 0 P P

The Eqn. (3.103) is a linear, second order, homogeneous differential

equation which is solved for the displacement component, u . Solution

of Eqn. (3.103) given the following for

u a AI P 2 .... ............... (3.104)

where A1,A2 - constants to be determined from the boundary conditions.

Combining Eons. (3.100), (3.101a) and (3.104), the stress component,

id given by

Mpp (3X 2 ) A, + --LG A 2 . . . . .  . . . . . . . .. . . . . . . (3.105)

The Eqn. (3.105) shows that in order for the stress, CTpo , to remain

finite at the origin of.the sphere, the constant, A2 , must equal

zero. Applying the boundary condition given by Eqn. (3.93a) to Eqn.

(3.105), the constant A1 is given by

1 ( 2 .......................... . (3.106)A1 (3),+2G). . . ..

where X 2vG"" (1-2v)

Substitution of Eqns. (3.104) and (3.105) into Eqns. (3.100) and

(3.101) yields the following displacement, strain and stress fields.

I.,



u 0 0 . . . . . . . . . . . . . . . . . . . . . . . . (3. 107c)

-(1-2v) a

~pp 2G (1-1v).......................(3. 107d)

E:0 2G (1+vj ..................... (3. 107e)

-e 2 (1-v) . . . . . . . . . . . . . 3 0 f

0ee 2(.. .. .. .............. .. .. ... (3.107f)

E - 0 .. ....... .. ... .. .o.. .. ... (3. 1070)

..................................... (3. 107ki)

-. ... .. .. .. .. ... .. .. .... (3. 1071)

a o ...... .. ... ... .. ... ... ... .. .... (3. 107m)
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S= 0

.. . . . . . . . . . . . . . . . . . . . . (3.107n)

;CeP 0 . . . . . . . . . . . . . . . . . . . . . . . . (3. 107o)

The solution given by Eqns. (3.107) is the sm as that obtained from

the Boussinesq solution in two harmonic functions. The Boussinesq

solution is given by Eqns. (3.98).

3.5 The Elastic Sphere in Contact with an Arbitrary

Number of Adjacent Spheres

In this section, superposition will be used to obtain the dis-

placement, strain and stress fields for a sphere in contact with an

arbitrary number of adjacent spheres.

In the remainder of this Section, tensor notation will be employed

4*

since it provides a convenient way to express tensor transformations.

The following rules regarding tensor notation will be followed.

i. A superscript denotes a contravariant tensor

2. A subscript denotes a covariant tensor

3. A repeated index implies s smation from 1 to 3.

Superposition of an arbitrary number of contacts on a sphere will

require the use of local and global coordinates systems. Local coor-

dinate systems will be required for each contact pair, while a global

coordinate system will be used to reference the total solution. Local

coordinate systems set up for contact pair m are shown in Fig. 3.9. A

subscript m will be used to denote the local coordinate systems for

contact pair m. The global coordinate system is shown in Fig. 3.10.

- ~~~ 0011r *~*
LF
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Also shown in Fig. 3.10 are the angles ',m and 3. which establish

the position of the local coordinate system, (xm, YM, zm), relative

to the global coordinate system (x, y, z). The tensor notation which

will be used in defining the local and global coordinate systems is

listed in Table 3.1. Hats (-) and overbars M will be used to denote

quantities referenced to local spherical coordinate systems and local

rectangular coordinate systems, respectively. The absence of these

symbols indicate quantities referenced to the global coordinate system.

The tensor components of the displacement, strain and stress fields

will be denoted by vi , eij and Tij, respectively. The physical

components of these fields will be denoted by ui , eij and Tij.

3.5.1 Tr4gformation of Displacement Fields

The solution obtained for the displacement field resulting from a

pair of contacts is referenced to the local coordinate system, (il' 2,

x3 ). To determine the displacements relative to the global coordinate

system, (xI, x2 , x3), it is helpful to first determine the displace-

.4, ments relative to the coordinate system (Xl,x2 ,x 3). The two local

coordinate systems are related through the mapping.

", x 1 sinx2 cosx 3  . . . . . . . .  . . . . . . . . .  (3.108a)

x2 - x sinx2 sinx3 ...... ................. (3.108b)

3 1 cosx2 .................. .(3.108c)
3 1 2..
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Tensor
Coordinates Notation Description

' ( i ' ) L o c a l s p h e r i c a l2 ) 1' 3 coordinate system

(x , z) (i 1 , 12 13) Local rectangular
coordinate system

(x, y, z) (x l , x2 , x3 ) Global coordinate
- 3/ system

Table 3.1

1 
.

W ,
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The Jacobian matrix of the set of functions in Eqns. (3.108) is given

by

ax 1  ax ax__

3x 32 x3 sinx2csx3 X cosX2 cosx3 -x sin 2siAx3

ax 3i 3
i j] 2 2 2

aXl 3 x2 33 sinx2 sinx3 X cosx 2sn3 :lsin2cosx3

ax Ox ax3 3 3
32 3, cos -x sini 0
a2 x~ L CS2 1 20

(3.109)

The base vectors of the coordinate system (x, x2 , £3) with respect to

the coordinate system (x1 , x2 %) are given by

OX.

1

where bi - base vector in coordinate direction X

ro ej unit vector in coordinate direction x,.

From Eqns. (3.108) and (3.109), the base vectors bi are given by

b. - sinx cosx e + sinx sinx + cosx e (3.111a)

b2 a xI cosx2 cosx3 eI + xI cosx2 sinx3 e2 -x 1 sinx2 e3

L.(3. l11b)

b _xl sinix sinx3 e + xlsinx cosx . . • . . (3.11103 1 2 3 1 1 2 3.......3.l)
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The metric tensor is determined from the dot products of the base

vector as follows

ij i. . . . . . . . . . . . (3.112)

where gij = component of the metric tensor

From Eqn. (3.112), the metric tensor is given by

1 0 0

= 0 (x1) 2  ( (3.113)

(^1)2 sin 2 
2

The tensorial components of the displacement field in the coordinate

system (x, , x3 are given by

v(x 2,) no sum on i ....... (3.114)

where v i . components of the displacement tensor

S-u i  physical components of the displacement

btensor

To determine the displacement components vK(xl,x2 ,x3 ), the

transformation law for a contravariant tensor of order i is used. This

transformation law is

, 

I |



v (XlX 2,x3) = v (,X 2 ,x 3 ) ..... (3.115)

From Eqns. (3.109), (3.113) and (3.115), the displacement components

,(x1 x 2 ,x 3 ) are given by

{u } .. .. .................. ... (3.116){v} TL]

177 The vectors and matrix appearing in Eqn. (3.116) are given by

v v u2 } ........... (3.117a)

.u. .. .......... (3.117b)
U'

u 3

s -snx cosx s-n x sin x3  cIsx. ~~~ 3
L os csx ox 2 sn 3  -sn 2 .[a2 32 . . . (3.117c)

-sinx cosx 0
L3 Co^3

In Eqns. (3.117) the physical components u i are used in place of the

tensor components v • In a rectangular coordinate system, no distiaction

is made between the contravariant, covariant and physical components of

a tensor.
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Li

The global coordinates, (x, x2 , x3) are related to the local coor-

dinates, (, x2  x3), by the mapping

X O Cos$ COs m X +  -sin, W - sin= cos, 3 . (3.118a)

X2 - COS$m sin m + cOS* m 2 + sin6 sinP m x3 . (3.118b)

- 3 = -sina= I  cosa m .x3 .... .............. .. (3.118c)

The Jacobian matrix [J] of the functions in Eqns. (3.118) is given by

cosa cosO m  -sinip sin6 cos,m m m m

[J] - COI Msinoi cosIP sin$ sin*m . . . . (3.119)

-sin8m  0 Cosa

L _j

The displacement field in the global coordinate system may be determined

from the transformation law applicable to a contravariant tensor of order

one. This transformation is given by

ax.
v~~~ &(t P x 29i ) ax ........ 310

From Eqns. (3.119), the displacement components v (xl,x2,x 3) are given

by

ILk

I.. {v} - [(T] T . ................... (3.121)
p , g



The vectors and matrix appearing in Eqn. (3.121) are given below

U
vl u 1

Iv v2  u2  .. (3. 122a)

" v3 u 3

u2.............................(3. 1. 2b)

CosB amCos -sin'P sinB M cosq'm
mo m m

T Cos 5msi COSIP sinam M SiO m .... (3.122c)

L -sin m  0 Cosa

In Eqns. (3.122), the physical components of displacement are used

since no distinction is made between the tensor and physical components

in a rectangular coordinate system. When the displacement components

ui(il x 2 ,x 3 ) are known, the global displacements ui(xl,x2,x2) may

be determined from Eqns. (3.116) and 3.121). The displacement compo-

nents ui(x1 ,x 2 ,X 3 ) are given by

[Tg]T [TLT . .. .............. (3.123)

u1
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3.5.2 Transformation of Strain Fields

The solution to the strain field resulting from three spheres in

contact along an axis of symmetry is referenced to the coordinate

system (x1 ,x2,X3). To determine the strain field in the global coor-

dinate system, (x,X 2,X13), it is helpful to first determine the strain

field in the local coordinate system, (x x X3) The relation between
1' 23 3

the coordinate systems (£ £2, £3) and (xi,X 2x3) is given by Eqns.

(3.108). The Jacobian matrix [JI of the functions defined in Eqns.

(3.108) is given by Eqns. (3.109). The metric tensor of the coordinate

system ( i2' £3) with respect to the coordinate system (xlx 2 ,x3)

is given by Eqn. (3.113). The tensorial components of the strain field

in the coordinate system (£ i ) are given by
1' 2' 3

e J ,1 3 2 , no som on i or j ..... (3.124)

where e = components of the strain tensor

Sij "physical components of the strain tensor.

.i,. To determine the strain field e i(xlx 2,x3), the transformation law for

a contravariant tensor of order two is used. This transformation law

x is

2 3x, e Ix1,z 2,x 3) -.. .......... (3.125)

L_.

From Eqns. (3.109), (3.124) and (3.125), the components of the strain

tensor, ;J(, x2'3), are given by

,9 2. 3
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Ti

[e"] - [TLIT [CJ] [TL] ..... ................. .... (3.126)S
The transformation matrix [TL] is given by Eqn. (3.117c). The

matrices [e i j  and [Eij] are given by

[; e2 ;2 32e l 21 2w. E 3 . . . . . ( .2 a

331 32 33

' [ij ]  E 21 C22 e 23 . . . . . . . . . . . . . . . (3. 127b)

i 3

*' In Eqn. (3.127a) the physical components may be used in place of the

tensor components, since the strain tensor, [e1J, is referenced to the

rectangular coordinate system, (XlX2,X3).

The relationships between the global coordinates, (xlx 2,X2) and

the local coordinates, (xl,x 2 ,X3 ), are given by Eqns. (3.118). The

Jacobian matrix (J] of the function, given by Eqns. (3.118) is given by

.Eqn. (3.119). To determine the strain field in the global coordinate

system, the following transformation law for a second order tensor will

be used.

20 i 3 ' V .... (3.128)ei (xlx 2 ,x 3 ) = ik£Cx 1 'x2 ,x] ) --A- -i.................(328

ax. axe

From Equs. (3.119) and (3.128), the strain field eij(x!,x2 ,x3 ) is given

by
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ii]T [-ij

le j] [ TG Ce [TG] . . . . . . . . . . . . . . . . . (3.129)

-ij
The matrices [TG] and [ei are given by Eqn. (3.122c) and Eqn.

(3.127a), respectively. The strain field [eij] is given by

(el] e 2 e [3e £22 £23] . . . (3.130)

e• e 3 e 3 3L - E 3 1 E 3 2 E 3 3

In Eqn. (3.130), the physical components of the strain tensor may be

used as the tensor components since the strain field is referenced to

the rectangular coordinate system (xlx 2 ,X3 ). Combining Equs. (3.126)

and (3.129), the strain field [eij ] is given by

ij  T T[e I - [TG1 T  [TII [Eijl I [TLI [TG1 . . . . . . . . . . . . (3.131)

The matrices [TLI, [TGI and [ ij are given by Eqns. (3.117c),

(3.122c) and 3.127b), respectively.

3.5.3 Transformation of Stress Fields

The stress fields in the rectangular coordinate systems (xlX 2 ,z3)

and (xl,x2 ,x 3 ) are determined in the same manner as the strain fields.

Both the stress and strain tensors are second order and will transform

in the same manner. Therefore, the results determined for the strain

fields in section 3.5.2 may be used to determine the stress fields in

the rectangular coordinate systems (112, 3) and(xl,X2 ,x3). From1he 2oordi2ae
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Xthese results, the stress fields are given by

[:-j [ IT, [3'a [TLI .... ..... ...... .. (3.132)

.d..

ITi] - [TT TijI] [I] .. ............... .... (3.133)

The matrices (TLI and [TGJ are given by Eqn. (3.ll7c) and Eqn.

(3.122c), respectively. The matrices [7ij] and [:'j ] are given by

-r T T all a12  oyl 3
• "T_2 _a2 _2 1 F2 a . .... (3.134)

....32 a:: a3 0 3 3 j

-3 1 2 1[T T T i a ....... (31)

3 1 32 33

In Eqns. (3.134) and (3.135), the physical components of the stress

tensor may be used for the tensor components, since the stress fields

are referenced to rectangular coordinate systems. Combining Eqn.

(3.132) and Eqn. (3.133), the stress field in the global coordinates

* (xl,x 2 ,x 3 ) is given by

T T
ITij] - [TGI TLI [ I [TLI ITG] ... ... ....... .. (3.136)

The matrices [TL] and [T ] are given by Eqn. (3.117c) and Eqn. (3.122c),

respectively.

6 1
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3.5.4 Solution for a Sphere with an Arbitrary Number of Contacts

The results of Sections 3.5.1, 3.5.2 and 3.5.3 will be used to

obtain the displacement, strain and stress fields for a sphere subject

to an arbitrary number of contacts with adjoining spheres. Restric-

9tions which are imposed on these solutions are listed below.

I. The contacts on the sphere appear in pairs along an axis of

symmetry as shown in Fig. 3.9

2. The forces transmitted through the contacts are such that the

sphere is in static equilibrium.

Subsections 3.51, 3.52 and 3.53 provide the displacement, strain and

stress fields referenced to a global coordinate system. These fields
.J.

were developed for the case of one pair of contacts along an axis of

symmetry as appearing in Fig. 3.9 If a sphere has a number of these

contact pairs, the displacement, strain and stress fields resulting

,4 from these contacts may all be referenced to the global coordinate

system. The displacement, strain and stress fields resulting from all

contacts are then found by adding the individual fields. Superposition

of these individual fields yields the following total displacement,

total strain and total stress fields.

n
c

(u 2 (T T(u}T  (T [T ] [TLI {u}...... .. ... .... ... (3.137a)

h
C

.. = 2 T ]T
[eLJIT z G (T [TLI : fijIm (TLIM [TGI. ... ...... (3.137b)

rn-i
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n
C

[T[T] I [TL] [Ts  ..... (3.137c)
M-1 m m M m M

where nc 
M total number of contacts on the sphere.

In Eqns. (3.137), the subscript T is used to denote the total displace-

ment, strain and stress fields. The subscript m denotes quantities

resulting from the pair of contacts, m.

The quantities appearing in Eqns. (3.137) may be put in terms of

th- local coordinate system and global coordinate system shown in Fig.

3.9 and Fig. 3.10 respectively. The total displacement, strain and

*? stress fields may be written as follows

..I *u t. . . . . . . . .

{... Uy .. .. .. .. .. ... ... ....... (3.138a)

i E
x Xy xz

* [e ] E C e . (3.138b)

L zx zy zz
'"

G.. xx C xy xz

[T -IT.a. .C ............... (3.138c)

L-zx zy zz

In Eqns. (3.138), the global coordinate system (x, y, z) is referenced.

-.•A - ' i V~*
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the displacement, strain and stress fields resulting from contact m are

given by

{u}m u ..................... (3. 139a)

; OP PO¢ "ce

[ Jm E O¢P EPo E ............. (3. 139b)

7 pp 0ae..

1E_±J Im " P aoo ce .. .. .. .. .. . .. (3. 139c)

The fields u }m, [Eijm and [t ij]m are determined from the

results given in Section 3.4. These fields are referenced to the

spherical coordinate system (Pm, Om em) shown in Fig. 3.9 • The

transformation matrix, [TG], is given by

Cos 8M Cos-m -siny M sina cosT 1
in m m

S[TG] Cos Sm c084. Cos m  sin8m sin* j . . . . . (3.140)

L ms -n . 0 cos 8

The angles m and 4' define the position of the local rectangular coor-

,. dinate system, (xmYm,zm) relative to the global coordinate system,

o gel'
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(x, y, z). These angles are shown in Fig. 3.10. The transformation

matrix, [TL], is given by

Sno cosem sino sinem csP

T I coso cOse cos cosem -sin. .. ...... .(3.141)

L -sine m  cose 0

The angles Om and em are shown in Fig. 3. 9 . These angles are part

of the spherical coordinate system, (Pm, 8 em). They define a

point in the sphere relative to the local coordiante system, (Xm, Ym, zm)

for contact m.

In order to evaluate the total displacement, strain and stress

fields at any point (x, y, z), the local coordinates must be determined

from the global coordinates. This is necessary since the solutions

provided in Section 3.4 are in terms of the local coordinates (PZ, 6-,' )-M m

The following equations are used to determine the local coordinates

(zm, Ym, zm) and (in' Om, em) when the global coordinates (x, y, z) are

known.

Xm "Cos 6 m c°S m cosB sin~m -sinsm x

= M -ii oi 0 y (3.142)

z .sinS cosip sinS sinip cosS

m M m m

OM y .. + z. .................. (3.143a)

d 12 -2

.. sing - m  ._ . .. . . . . ......... ..... (3.143b)
I ,



129

c S m " M ... .. . . . ..' ... . . . .. . (3.143c)

sinem=
siem - Y . .. .. .............. . .... (3. 14 3d)

x
cose m

xM2 YmI

From Eqns. (3.142) and (3.143) the total displacement, strain and stress

fields may be evaluated for any point (x, y, z).

".P

I.
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i' .CHAPTER 4

pEFFECTIVE MODULI OF AN IDEALIZED SOLID - FLUID SYSTEM

4.1 Effective Moauli

The effective moduli of heterogeneous materials are those moduli

refiecting the average stressnstrain properties of the materials. These

moCUl taKe into account the properties ana the geometry of all the phases and

tneir interaction. The effective moduli are determined by considering a small

'1' but representative sample of the heterogeneous materials. The size of the

representative sample is chosen so that the behavior of this sample does not

cnange when the sample size is increased. Therefore, the effective moduli

aetermined for the sample may be used to represent the entire heterogeneous

material. The two approaches that are used to determine the effective moduli

are volumetric averaging and energy methods.

r. 4.1.1 Volumetric Averaging Approach

The volumetric averaging approach derives effective material properties

by considering a representative volume element of the material. The stress or

displacement fields in this representative volume element are macroscopically

homogeneous. The volume averaged stress is defined as

-"< ij> " f dV (4.1)
V

wnere (aj > = volume averaged stress field

a - stress field occurring in the different phases of the material

V - total volume of representative sample

in Eqn. (4.1), Cartesian tensor notation has been used. This notation will be

-used feriodically, and the rule that a repeated tensor iirplies summation is

applicable. The volume averaged strain is defined as

?W
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I 1 ja (4.2)

wnere <E-.> - volumne averagea strain field
13

E - strain field occurring in the different phases of the

materials

Both of the integrals appearing in Eqns. (4.1) and (4.2) are taken over tne

representative volume of the material. The effective moduli are defined

througn the following equation.

<aEj> - C jki <EkY> (4.3)

where ijk) - effective moduli tensor

The Eqn. (4.3) is the general anisotropic form of the linear, volume averaged,

stress-strain relations. In order to use Eqn. (4.3) to determine the

effective moduli of a heterogeneous material, the stress and strain fields

occurring in all phases must be known and the integrals in Eqns. (4.1) and

(4.2) performed.

4.1.2. Energy Methods

When using an energy approach, the effective moduli are determined

througn energy equivalence. A representative sample of the heterogeneous

material is consiaered to be subjected to a macroscopicaiiy homogeneous stress

or deformation field. The sum of the strain energies for ail the phases of

p." the neterogeneous materia. is tnen made equivalent to tnat occurring in a

nomogeneous material with moduli, Cijki. This relationship is given by

- aiJqj dV C <ij > <aij > V (4.4)

V

It%

........................................................
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where = stress f'eia

Sj = strain fie±a

V = total volume of representative sample.
p.

The volume averaged stress, < >, and the averaged volume strain, <E j>, are

Sdeterminea from Eqns. (4.1) ano (4.2), respectively. Substituting Eqn. (4.3)

into Eqn. (4.4) yields tne following

j 1 4 E dIj ijki <Eij > <zk > V (4.5)
.1V

Tne integrai appearing in Eqn. (4.5) is taken over the entire representative

tvolume. As in the volumetric averaging approach, tne stress fields, a , and

the strain fields, e must be known for the different phases of the' ij'

neterogeneous material before Eqn. (4.5) may be evaluated.

4.2 Volumetric Averaging Approach to Determining the Effective Bulk Modulus

of an idealized Solid-Fluid System

The solia-fluid system to be considered is a heterogeneous material

consisting of a number of solid spheres in contact, surrounded by a fluid

pnase. Sucn a system is snown in Fig. 4.1. The following assumptions are

Ased in the determination of the effective bulk modulus.

1. The spheres contained in the system consist of isotropic, linearly

elastic materials.

2. The spheres contained in tne system are in static equilibrium.

3. The contacts on a particular sphere occur in pairs, directed along an

axis passing tnrougn the spnere.

4. The surface displacements or surface tractions resulting from a pair

Iof contacts are axisymmetric witn respect to an axis passing tnrougn

tne center of tne contact region.
5. The solic-fluid system benaves as an isotropic, linearly elastic

J, V1
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materiai macroscopicaiy.

o. 7he voia space between spneres in the system is completely filled

Switn only one type of f-iid.

For an isotropic, lineariy elastic material, only two material constants are

neecec to relate the force field to the displacement field. For this case,

Eqn. (4.3) reduces to

(a Ij > 2G <e i > + < K > 6 j('4.6)i J ,< i

wnere <a .> = volune averagea stress tensor

<E <c > - volume averaged strain tensoriJ

-, - effective Lame constants

6 j - Kronecker delta j i J

Anotner relationship may be obtainea by contracting the i and j indices in

Eqn. (4.6). This contracted form is given by

<(kk> - 3 K <ekk> (4.7)

2.
where K - G + A

tne term K, appearing in Eqn. (4.7), is the effective bulk modulus. The

quantities <a > and <E >, appearing in Eqn. (4.7), are determined from Eqn.kck kk

N (4.1) and (4.2), respectively. These quantities are given by

<kk> . akkdV (4.8a)
V

<E > cv (4.8b)

SK
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where o = trace of tne stress tensor

= trace of the strain tensorKk

V - representative volume

The integrals appearing in Eqns. (4.8) are taKen over tne voiumes of ooth the

solid and the fluid pnases of the heterogeneous material. Due to this, the

integrals appearing in Eqns. (4.8) may be rewritten as follows.

•1 s f
Skkd L kk dV + f kK aV ] (4.9a)

-. V Vf

> 1 s f

<E > f Ck dV - f dV ] (4.9b)

V Vf

wnere V . volume of tne solid pnase of tne neterogeneous material
5

Vf = volume of the liquid phase of the heterogeneous material

The superscripts s and f appearing in Eqns. (4.9) are used to denote the solio

and fluid phases, respectively. Combining Eqns. (4.7) and (4.9), the

following expressions for the effective bulk modulus, K, is obtained

I s f1 L akk dV + Okk

V V

13K- f (4.10)
L V Ekk dv + f V dV j.V Vf

To evaluate Eqn. (4.10) a representative volume of tne soiadfluid system is

consiaerea. This representative volAme is taken as the smallest possible

sample w icn still exnibits the same benavior as the entire system. Due to

tnis, the effective bulK moduius, , found by performing the integrals in E~n.

($.20) over tnis representative volume, will be applicable to the entire

system. -n determining tne effective bulk modulus, K, the stress and the

" isplacement Cieias occurring in the representative volume will be considered

-P
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o be macroscopically nomogeneous.

The representdLive volume wiii contain N soiia spheres. The spneres are

pconsiaered to be isotropic, iinearly elastic miteria.Ls. They may nave

aifferent raaii and material constants. These spheres constitute tne solid

phase of the heterogeneous material shown in Fig. 4.1. In Eqn. (4.10). the

integrals taken over the solid phase of the representative volume are-written

as follows.

s a
j  Gkk V N f I (Okk)I aV (4.11a)

V 1~ V5 5

N1 s 1 s

V J F£kk dV i - f (Ekk)i dV (4.11b)
V 'iMi V kk

where Cy )* trace of the stress tensor for sphere i.

kk)i a trace of the strain tensor for sphere i.

:n Eqns. (4.11) the integrals appearing in the summations are taken over the

voiume of spnere i, V . Due to the first four of tne assumptions made

concerning the solidfluid system, the results in Section 3.3 may be used to

ietermine (a ) and (es) . From Section 3.3, the solution. [S], to thekk kk

displacement, strain or stress fields for a sphere undergoing axisymmetric

surface tractions or axisymmetric surface displacements are given by

' -[S] a7 L n iA_n ] +  b_ _ [B-n 2 (4.12)
| n-1 n-o

wnere [Sj - solution to the displacement, strain, or stress fiela

[AnI] - component solution to the aisplacement, strain or stress

JL, field

r% [a -2 3 component zoiution to tne aisplacement, strain or stress

f iela

"% %



137

a = constant of superposition-n-1

b - constant of superposition,:i_ -n-2

Tne component solutions, LAnl ana [B- n.2, can be determined from Eqns.

(3.46) ana (3.53), respectively. The constants of superpositions, a-n1 and

b 2-n.2, are aetermined from tne specifiec boundary conaitions on the sphere.
s

Evaluating (o ) and (e ) corresponding to the component solution [An I]
kki kk I

gives t.ne following

-'n-is

: (K )i =0 (4.13a)

A

E ( k )1 0 (4.13b)

In Eqns. (4.13), the superscript A n-1 is used to denote quantities which are

determinea from tne component solution [A_ Evaluating (a 3) and (E )
n..1kk i kk i

corresponding to tne component solution [B_n2] yields the following

5B Bn-2 n

(a ) - 2(n+l)(2n 3)(l+v PnP (4.14a)

n-2 (1-2v)

"" ) - (n+1)(2n*3) G P Pn (4.14b)

wnere v - Poisson's ratio for sphere i.

S-€ G - shear modulus of sphere i.

P distance from tne origin to a point in sphere i.

in Eqns. (4.14), tne superscript B_n 2 is used t,) denote quantities determined

from thne component solution B n ]  Combining Eqns. (4.12) through (4.14)

yields the following for (a ) and (E 3 when there is one pair of contacts
kk i kk

on sphere i.
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(Sh. - 2 Z (b 2 ) (n+l)(2n+3)(1-v.)cn P ....... (4.15a)
kI n=1 _n- n

,E"-'S ) (b (n+l)(2n+3)(l-2v.) p n P ........ ... (4.15b)
kk G. -n-2 i I n~~i n-1 -- n

The subscript i is used on the constant of superposition, b_ 2 , since

its value will depend on sphere i and the spheres making contact with

sphere i. This dependence is shown in Section 3.1 where the Hertz

contact problem is discussed. The quantities (c; k) and (Ekk are
kki

invariant with respect to coordinate directions. Therefore, for a
0 0

sphere with M contacts, (CT and (Es are given by

M.

N 2.

T ( ) 2 Z. (; )n2i+  2 (b_ 2)k (nl)(2n+3)(l+'Vi ) P pn
n1 n k-i

(4.16a)

M
i

.. M i1k 2 k;n- )i+Z(~-) nl(n3(-'i nn

/, ,(4.16b)

where Mi  number of contacts on sphere i.

-A

In Eqns. (4.16), the superscript k has been used on the constant of

superposition, b_n_ 2, since this quantity will change for the different

contacts, occurring on a single sphere. The constant of superposition,

b-n-2' results from the application of a radial pressure to the surface

.K of sphere i. Substituting Eqns. (4.16) into Eqns. (4.11) and perform-

ing the indicated integration yields the following

It,
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C kk dV iZ 8= Tri +k E+[ (n) k=1 ( 2 ~ 1: s

(4. 17a)

M.

1 1 N 41 2 k 3
dV [ (b -2) + Z (b2 i R

V = k=1i
VS

v. (4. 17b)

where Ri  the radius of sphere i.

f f

To determine the integrals involving kk and ,kk which appear in Eqn.

(4.10), the fluid pressure in the representative volume is denoted asTh qanitesc f  f
k The quantities k and kk are related to Ou by

fCkk- 3 . . . ......... .... (4.18a)

p- U = ef. . . . ............ . (4.18b)
Kf (PT) f

where P - fluid pressure
4V

Kf - bulk modulus of the flued

T - temperature

L
In Eqns. (4.18) the fluid pressure, ul, is interpreted to be a

compressive stress and therefore its magnitude is negative. This

%Sk'

.4
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pressure is also a gauge pressure meaning that if the fluid pressure is

atmospheric, u is equal to zero. The Eqn. (4.18) states that in

general, the bulk modulus of a fluid, Kf, is not constant. It may

vary with the pressure and temperature. The lower limit of the

integral appearing in Eqn. (4.18b) indicates that the fluid will be

considered to be unstrained at zero gauge pressure. Henceforth, the
f

volumetric strain of the fluid, Ekk, will be denoted by e. Substi-

tution of Eqns. (4.18) into the integrals given in Eqn. (4.10) yields

the following.

1 fof
V " dV - 3 Cf u......... ........ (4.19a)

Vf

I E f  dV- Cf ef (4.19b)" k k f. . . . . . .

V Vf
where Cf -M

V - representative volume

Vf - volume of fluid present in the representative volume

au - fluid pressure in representative volume

ef - volumetric strain of the fluid in the representative

'volume

The term, Cf, appearing in Eqns. (4.19) is the volume fraction of the

"V.. voids containing fluid, in the solid-fluid system. Combining Eqns.

St gsa ^A ~ y<d....
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,, (4. 10) (4.17) and (4. 18) given the following expression for the effec-

rive builk modulus of the solid-fluid system under consideration.

1M.
N 7

k 3
N (_ - + Z (b_2 (1+v) R + 3 Cf C

3 : 87,l kR ] (4.20)

, M,
N 4 2 ki 3

- Gi  (; 2 )i + Z (b_ 2 )i (1-2v i ) R + Cf efJ.i-l k-I.

The Eqn. (4.20) gives the effective bulk modulus, K, of a solid-fluid

system composed of a number of isotropic, linearly elastic spheres in

contact and surrounded by a fluid phase. The assumptions made in

arriving at Eqn. (4.20) are listed at the beginning of this section.

Most of these assumptions were made so that the results from Section

3.2 could be used. To evaluate Eqn. (4.20), a knowledge of the sizes,

material properties, number of contacts, location of contacts, forces

U on contacts and the materials in contact have to be known. It is

unlikely that these variables would be known in a deterministic form.

Therefore, the evaluation of Eqn. (3.20) would require statistical

data. In the next subsection some simplications will be made

concerning the solid-fluid system, which will allow an evaluation of
j."

Eqn. (4.20).

From Eqn. (4.20) some observations can be made concerning the

effective bulk modulus, K. For the case when the value of u is zero

gauge pressure, Eqn. (4.20) shows that the effective bulk modulus

depends only on the material properties and geometries of the spheres

I%
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included in the solid-fluid system. The same results is obtained by

having the volume fraction of the voids in the system, Of, equal to

zero. Although the two cases listed above give the same result, the

manner in which these results were obtained are different. For the

case of zero gauge pressure the solution for a sphere in contact with

two adjacent spheres must be considered. This solution allows the

sphere in contact to deform freely into the surrounding void space for

conditions of zero gauge pressure. The affect of this is to consider

that the air in the voids does not contribute to the stiffness of the

solution. The Eqn. (4.20) would yield a different result if Cu was

an absolute pressure. Under these conditions the term ef would still

be zero and the contribution of uu in the numerator of Eqn. (4.20)

would be negligible. For this case when the volume of voids is equal

to zero, the system would only contain the solid phase so that the

effective bulk modulus, K, would depend only on the material properties

and geometries of spheres in the system. In this case the system would

consist of only spheres such that all the void space being occupied by

a sphere of proper size. Another case to consider is when lau 1 > 0,

and the fluid phase is incompressible. For this case the volumetric

strain of the fluid phase, ef, is zero. To study the effect of the

incompressible fluid phase, it is recognized that the terms appearing

in the numerator and the denominator of Eqn. (4.20), will have negative

values when the solid-fluid system is in compression. Due to this,

Eqn. (4.20) shown that t,.! effective bulk modulus, 'K, increases as17

increases, for a constant volume of solids and voids. This shows that
i4

a non-zero pressure in an incompressible fluid phase serves as a
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restraint against volume deformation. This is reasonable since an

incompressible fluid phase should increase the stiffness of the system

and the fluid pressure, u, should exist for such a fluid. For the

limiting case when the solid phase is absent in the system, Eqn. (4.20)

shows that the effective bulk modulus, K, becomes infinite. This is

reasonable since the system contains only an incompressible fluid

phase. For a compressible fluid phase in the solid-fluid system, the

volumetric strain of the fluid phase, ef, will be non-zero. In the

limiting case when the system contains only a compressible fluid, the

12 effective bulk modulus, K, in Eqn. (4.20) is a function of the bulk

modulus of the fluid. This dependence is apparent from Eqn. (4.18b).

For the case of a fluid with a constant bulk modulus, Eqns. (4.18b) and

(4.20) show that the effective bulk modulus, K, is equal to the bulk

modulus of the fluid.

The effective bulk modulus given by Eqn. (4.20) was determined by

considering a small representative sample of the solid-fluid system.

The macroscopic system will be made up of a number of these small

representative samples. If the displacement or the stress fields vary

with the position in the macroscopic sample, the effective bulk modulus

will vary with position. This occurs due to the fact that the constant

of superposition, b-2 , is dependent on the boundary conditions

present on the contacts between spheres. These boundary conditions

change with the force or displacement, on the contact.

4.2.1 Effective Bulk Modulus of a Solid-Fluid System Consisting

of E.ual Spheres Arranged in Ideal Packing Configurations,

and Surrounded by a Fluid.

Restrictionr concerning the geometry and material properties of
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6a.

the solid phase present in the solid-fluid system will be made. These

restrictions will allow Eqn. (4.20) to be evaluated in the absence of

statistical data. The restrictions on the solid phase of the system

are as follows.

i. The spheres in the solid phase of the system are of equal

radii.

2. The material properties of the solid phase are constant.

3. The spheres in the solid phase are arranged in ideal packing

configurations.

With these restrictions Eqn. (4.20) is rewritten as follows.

2 k]' " 2

6 (1+ ) 2C _2 (b - )  + 3 Cf j

3 K =  (4.21)

(1-2\, ) C +  z (b_ + Cfef
S k=1

where K effective bulk modulus

Cs = volume fraction of the solid phase

Cf = volume fraction of the fluid phase

7 = fluid pressure

ef - volumetric strain of fluid

Gs = shear modulus of solid phase

's = Poisson's ratio for the solid phase

M = the number of contacts on one sphere

u-2 - the constant of superposition resulting from a

uniform radial pressure on the surface of the sphere

(b_2 )k the constant of superposition for contact k.
.k.

,I
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The restrictions on the solid-fluid system requires that all spheres

are in static equilibrium, and that the contacts on a particular sphere

occur in pairs along an axis passing through the origin of the sphere.

Furthermore, all spheres contained in the system are of equal radii and

have the same material properties. These restrictions allow the use of

the results given in Section 3.4, to determine the constant of super-

position, b.2 . The results contained in this section contain values

of b_2 for the boundary conditions on a single sphere resulting from

Hertzian contact with surrounding spheres and an uniform radial pres-

sure applied on the surface of the sphere. The effective bulk modulus,

K, given by Eqn. (4.21) will be determined.for the cases when the

displacements or stresses are specified on the boundary of the

representative sample.

4.2.1.1 Displacements Specified on the Boundary of a Represenca-

tive Sample of a Granular System

5 The effective bulk modulus, , will be determined for the case when Lne

aispiacements are specified on the boundary of a representative voiime
I.

*%, eiement. The rectangular coordinate system, (x, y, z) is uses to aefine a

point in the representative voiume. The representative volwme wili be

suojectea to a macroscopically homogeneous displacement field. The

aisp..acement fied to be imposed is given below

U x  (X) - x Ex (4.2 2 a)

. (z) - z ( 4.22c)

11% Z0 r
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wi

Swhere = the displacement in the x coordinate direction

U = the displacement in the y coordinate direction
u= the displacement in the z coordinate direction

oz i

,-1 Yy = strain in the x coordinate direction

- strain in the y coordinate direction

iv £ =strain in the z coordinate direction

The strain field appearing in Eqns. (4.22) is assumed to be constant

with respect to the location within the representative volume. The

displacement vector at any point, (x, y, z), within the representative

volume is given by

U = ux (K) 4x + Uy iy + uz ez ...... ............ (4.23)

where u = the displacement vector

ex = the unit vector in the x coordinate direction

ey = the unit vector in the y coordinate direction

e z  the unit vector in the z coordinate direction

Substitution of Eqns. (4.22) into Eqn. (4.23) gives the following

displacement vector in terms of the strain field

= X xx e + Y yyy ey + z Ezz 4z ........... . (4.24)

°% -N ,.
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-To ietermine tne aispiacement vector at a point of contact between two

spneres, it wii oe assmea tnat tnis vector is determined by evalating Eqn.

S4.24' at tne coordinates of tne contact. A typical sphere contained in tne

*. representative volume eiement, witn tne origin at point (xy.  z ) is snown
0 "0

in Fig. 4.2. in Fig. 4.2, the sphere is snown in contact witn two adjacent

I ikspneres. The local coordinate directions, x, y, z, shown in Fig. 4.2 are

parallel to the x, y and z coordinate directions, respectively. The local

coordinate system (xim Ym' z m), is positioned so tnat tne zrm axis is directed

-T4' tnrougn the origin of the spnere and contact pair m. The angles a amd y
m

define the position of the local coordinate system (x", YM, zM), relative to

tne coorainate system (x, y , z). The contacts occurring along the zm axis are

labeled as contact 1 and contact 2, as shown in Fig. 4.2. The coordinates of

tne center of contact 1 in reference to the coordinate system, (x, y, z) are

given by

=" -x + R sinem cosym (4.25a)

, Yl YO + R sins m sinym (4.25b)

zI - z + R cosy m  (4.25c)

iwnere x, . x coordinate of tne center of contact 1

I
Y, . y coorainate of tne center of contact 1

z- z coorainate cf .ne center of contact 1

- raci..s of :ne sphere

% %
!.1
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: i'" In a similar manner, the coordinates of the center of contact 2, in

reference to the coordinate system, (x,y,z), are given by

2 - x.- sin6m cos'm .... .............. ... (4.26a)

Y2 = yo - R sinBm sin , ...... .............. (4.26b)

z 2 =z o - R cos mi m

Using Eqn. (4.24), the displacement vector may be evaluated for the

points (xl,yl,zl) and (x2 ,y2 ,z2). The displacement vector at point (xl,

Yl,Zl) is given by

ul (x0 + R 81fl~m cos%') ix ;

+ (yo + a sin~m sin0m) yy ey

+ (zO + R costm) .zz 6z ....... ...... ... (4.27)

S The displacement vector evaluated at point (x2 ,y2 ,z,) is given by

.

*8~~ ~ u 2 x sinS COSP)

+ (yo - R sin 6m sinipm) E yy ey

0 (z 0 - R cosIM) Ezz ez .... ............. ... (4.28)p.4"

0-,,
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In Eqns. (4.27) and (4.28), the subscripts I and 2 denote the displace-

ment vectors at contacts 1 and 2, respectively. The magnitudes of the

displacements in the positive zm coordinate direction may be deter-

mined for contact, I and 2 by taking the dot product of the displace-

ment vectors at these contacts, with a unit vector in the positive zm

coordiante direction. The unit vector in the positive zm coordinate

direction, ezi, s given by

e = sinSm cospm ex + sinm sin.m e + CoSm ez .(4.29)

The displacement at contact 1 in the positive zm coordinate direction

is given by

Uzm u •zm = .xx(Xo + R sin8m cospm)sinBm cos m

+ yy(Yo + R sin~m simo) sin~m sionm

+ zz(Zo + R cosBm) cose m .... ........ .... (4.30)

* where ul the displacement at contact I in the

positive zm coordinate direction.

The displacement at contact 2 in the positive zm coordinate direction

*is given by
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2 -Uzm=U2 ezm=

CXX (x' - R sinm coSIm) sin 3m cOs~pm

+ Eyy (yo - R sing m sin4m) sinm sinm

+ Ezz (zo - R cosB M ) cos M . (4.31)

where Uzm = the displacement at contact 2 in the positive

zm coordinate direction.

Having determined the displacements in the positive zm coordinate

directions for contacts I and 2, the change in the diameter of the

sphere along the zm coordinates axis is given by

6-Ulm - U 2m M 2R Exx sin 2 Bm cos2m + 2R C sin 23 sin 2Szm Uz yy m m

2R zz cos2 .B .m . . . . . .. . . . . . . . . . . . .  (4.32)

where AU the change in the dimension of the sphere along

the axis zm .

The Eqn. (4.32) gives the change in the diameter of a sphere resulting

, from contact pair m, directed along an axis passing through the oLigin

of the sphere, as shown in Fig. 4.2. The position of this axis with

, respect to a global coordinate system, (x,yz), is defined by the

t

-u~
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• angles a. and Pm" If the spheres shown in Fig. 4.2 are all of the

same radii and material properties, then the deformation occurring at

the center of each contact would be equal. The magnitude of this

displacement would be half of that given by Eqn. (4.32). This magni-

tude is given by

am R [Exx sin2Bm cos 2  m +

. sin2 sin2,m + Ez cos2B ] . . . . . .. . (4.33)

where um the displacement at the center of either

contact for contact pai,: m.

The direction of the displacement given in Eqn. (4.33) is toward the

origin of the sphere if um is negative, and away from the origin of

the sphere if dm is positive. The result given by Eqn. (4.33) will

be used to determine the effective bulk modulus, k, for the case when

the displacements are known on the boundaries of the representative

volume element.

For the case when the displacements are known on the boundaries of

the representative volume element, Eqn. (4.21) is written as

M

6 (1+ s)Cs b2 + (b) + 3 Cf U

3 k= M (4.34)

3 1
G _ (1-2vs)C s  bU2 + E bU2)m + Cfef ,. 

s Mal



All the terms appearing in Eqn. (4.34) have the same definitions as in

Eqn. (4.21), except that the superscript, u, has been used on the

ccnstants, b_2 and (b-2)m, to indicate that these constants are

determined for the case when surface displacements on a sphere are

specified. From Section 3.2, the constant of superposition, bu2 , is

given by

"U 0
b 2 (1-2v)R . .................... (4.35)

where R - radius of sphere

G - shear modulus of sphere

v = Poisson's ratio for sphere.

I'"

The constant u, appearing in Eqn. (4.35) is determined from the

displacement boundary conditions on a sphere. Two ease af b.....r

- a-rh:-. Two cases of boundary conditions exist on the

sphere. The first is the displacements resulting from contacts with

adjacent spheres and the second due to the displacements from a uniform

- radial fluid pressure acting on the sphere.

U.
The constant o has been determined for the displacement boun-

dary conditions resulting from the contact of a sphere with two adja-
Z.1

cent spheres, along an axis passing through the origin of the sphere.

For this case the constant o is

~ U u u-u
&0 0 . ........ ..................... (4.36)
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the terms K and Zo are given by

2 24u 3(I-v~)R2Fif K...................................... (4.37)

'u -(2sin 2_'-1)sin + (l-cs4')(

'o - 2 4. ........ (4.38)

where F = the force transmitted through the contact

R - radius of sphere

a = radius of the contact area

. = sin-' (a)
"CR

The Eqns. (3.16a) and (3.20) may be combined to determine the radius of

contact, a. For spheres of equal radii and material properties, the

radius of contact, a, is given by

a 3 3(1-v 2)RF (4.39)
a -2 4E...(

Substitution of Eqn. (4.39) into Eqn. (4.37) yields the following value
,.

for ku

q. R
ku =" . . ........................ (4.40)

Combining Eqns. (4.35), (4.36) and (4.40), the constant of superposi-

tion, b~U2 , can be determined for one pair uf contacts on a sphere.

This result is given by

G -u

b-u2 2(i-2v) ........ ................... (4.41)
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uThe term ,'o appearing in Eqn. (4.41) is given by Eqn. (4.38). This

term is a function of the angle defining the contact area, D' The

angle, P ', may be related to the displacement at the center of the

contact. This relationship is determined from Eqns. (3. 16) and is

given by

'-sin- R = sin - l (;-17/), (0 < ' < /2) .(4.42)

where dispacement at the center of the contact area

R the radius of the sphere.

*£ The absolute value of u is used in Eqn (4.42) since ,' > 0. The value of u for

a pair of contacts on a sphere is determined from Eqn. (4.33). This value of u

is an approximation but should be sufficient for the determination of

the effective bulk modulus, k.

The value of for the surface displacements resulting from a

uniformly applied radial pressure on a sphere may be determined from

Section 3.4.3. This value is given by

(l-2v)R. os2G (l+v).............................. (4.43)

where Cu fluid pressure on sphere

Subit;tution of Eqn. (4.43) into Eqn. (4.35), gives the constant of

usuperposition, b_ 2, for a sphere subjected to a uniformly applied

radial pressure. This constant is given by

I?



-
,b u = u

2(1+.) . .................... (4.44)

Substitution of Eqns. (4.41) and (4.44) into Eqn. (4.34) yields the

"ollowing for the effective bulk modulus.

: M

-3 (1+v ) G sC F T2
(1-2 z ( ) + 3a

S S S 1 MI~U-"(I-2v ) um..

3 k= . (4.45)

2 3(1-2v )G a
3 , 3 s U
7 2-- s o 2G(1+v C f ef

where k = effective bulk modulus

a volume fraction of solids in the solid-fluid system

Cf = volume fraction of fluid in the solid-fluid system

Gs = shear modulus of the solid phase

's = Poisson's ratio of the solid phase

au = fluid pressure

ef volumetric strain of the fluid phase.

U= constant determined from displacement boundary

conditions on sphere

M = number of contacts on a single sphere.

The effective bulk modulus, k, given in Eqn. (4.45) is for use when the

displacements are specified on the boundaries of the solid-fluid
V.

system. The simpliciations used to arrive at Eqn. (4.45) from Eqn.

(4.20) were that the spheres in the system are of equal radii and have

q .V *
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the same material properties. These spheres are situated in ideal

packing configurations.
6

To evaluate Eqn. (4.45), the volume fractions and material proper-

U

N ties of the solid and fluid phases must be known. The term, 'o, must

be known for each contact pair occurring on a sphere in the solid-fluid

system. This constant may be obtained when the

displacement, u, of the center of the contact region is known. To

determine the displacement, u, Eqn. (4.33) is used. The displacement,

u, is the displacement normal to the region of contact. This displace-

ment was determined by treating the solid-fluid system as a continuum

undergoing macroscopically homogeneous displacements of the form given

in Eqn. (4.42). The displacement vector at a point in this continu'nm

was taken to be that occurring on a contact at this point. The magni-

tude of the displacement vector normal to the region of contact was

taken as u. This value of u is an approximation. Any displacements on

* the region of contact which are tangential to this region have been

neglected.

The angles, M and M, defining the location of pairs of

contacts with respect to a global coordinate system, must be known to

evaluate the sum involving the term 0.

4.2.1.2 Surface Tractions Specified on the Boundary of the

"-4 Representative Sample.

Ti.e effective bulk modulus, k, will be determined for the case

when the surface tractions are specified on the boundary of a repre-

.entative volume element. The representative volume element will be

subjected to a macroscopically homogeneous stress field. The stress

~.i. field to be applied to the representative volume is given by

.'j

0.% %~f/ % N *4444
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(X) .. . . (4. 46a)

yy(Y) = y (4.46b)

.zz(Z) .zz ......... . . . . ................. ( .46c)

where ×= the stress normal to the xz-plane

yy = the stress normal to the xz-plane

z= the stress normal to the yz-plane

The stress field given by Eqns. (4.46) is constant with respect to

position within the representative volume element.

An arbibitrary plane cut through the representative volume is

shown in Fig. 4.3. The unit normal vector to this plane is designated

as n. The angles cIx,Ly and c define the position of the unit normal

vector, n, to the x, y and z axes, respectively. The stress vector, T,

on this plane is given by

-xx C°SCx ex + Cyy cosay ey + Czz coscaz ez . . (4.47)

where ex = the unit vector in the x coordinate direction

ey = the unit vector in the y coordinate direction

"z the unit normal vector in the z coordinate direction.

The unit normal vector, n, to the plane shown in Fig. 4.3 is given by

= cos% t × e cosUy y + cos'a ez ......... (4.48)
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The normal stress on the plane is determined by the dot product Jt tne

Ltress vector, T, with the unit normal vector, n. Performing :h1s

operation, the normal stress is given by

Z os2a x  Cos + 2 z  . . . . . . ( . Q

n= xx cS - :yy co2y zz cos .. .

The normal stress given by Eqn. (4.49) was determined by treating the

representative volume element as a continuum subjected to the stress

field given by Eqn. (4.46). The plane intersecting the representative

volume, shown in Fig. 4.3, will contain a number of contact regions

present in the solid-fluid system. These contact regions are formed as

S'-the spheres in this system are compressed together under the action of

the stress field given by Eqns. (4.46). Such a contact region is shown

in Fig. 4.4. The normal force transmitted through this contact region

will be determined as the product of the normal stress acting on the

plane containing the contact region and an area contained in- the plane.

3. In Fig. 4.4, the rectangular coordinate system, (xm,Ym,zm), is positioned

such thar .ie z'm axis is directed through the centers of the contact

regions for contact pair m and the origin of the sphere. The coordi-

nate system (xm,y.,,zm) is defined relative to the coordinate system

(x,y,z) by the angles 3 m and yim. The coordinates, x,y and z are

parallel to the global coordinates x, y and z, respectively. In Fig.

4.4, the plane containing one of the contact regions for contact pair rm

is shown. The unit normal vector to this plane is given by

IS 

+

n pi~ o m e i~ i~m@ °~ 7" (.0

2. .. .. . . . . . . . . . . . . . . . . . . . .
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p',. ,%

where e, uiuit vector in the K coordinate direction

a u ey unit vector in the y coordinate direction

ez unit vector in the z coordinate direction.

The stress vector occurring on the plane shown in Fig. 4.4 is given by

T = sini cos ,i + : sin Sin, & + cos- e ..(451)
xx m m x yy n m v zz m z

The stress components,o '0 and o , appearing in Eqn. (4.51) are
xx yy zz

those applied to the boundaries of the representative volume element.

The normal stress on the plane defined by the unit normal vector

appearing in qn. 4.50) is determined as the doc product of the

vectors given in Eqns. (4.50) and (4.51). This normal stress is given

6o
2 +2 si 23 .2

p.'i sin cos' + pi sin2

+ 0 zz cos ' . . . . (4.52)

where the normal stress on the plane containing the

contact regions for contact pair M.

The force transmitted through a contact region contained in the plane

subjected to the normal stress, n s given by

FM ,. M2 , m n - m n . . . . .ni r' n ° nl,% , m)  A,.............................. ..

where Am= area of the plane containing the contact region

which transmits normal stress (n through the
,c.

- contact region.



in Eqn. (4.53) F. is the force transmitted through a contact contained

in the plane defined by the unit normal vector given in Eqn. (4.50).

The normal stress, n appearing in Eqn. (4.53) is given by Eqn.

(4.52). To determine the force, Fm, transmitted through a pair of

contacts m, it wili be assumed that the spheres which are intersected

PR by a particular plane carry the same loads as the contact regions

contained in the place. Therefore, the normal stress occurring on a

plane will be transmitted evenly through the spheres and contact

regions intersected by the plane. The area A. appearing in Eqn. (4.53)

is given by

[2(1+ - )R][2V'R] 4 17' ( 7+3-T)R
-- A 4 _ .54 )

3 3 3V3

From Eqn. (4.53), the force transmitted chrough contact A is given by

2"Ti+ V'3)R

3V3

The normal stress, 7, is given by Eqn. (4.52). This normal stress

depends on the angles, 3m and -.' defining the contact orientation

with respect to the global coordinate system, (x,y,z). A particular

sphere in the system under consideration will normally be subjected to

many contacts. The force, Fm, transmitted through a contact will

depend on the contact orientation and the area, A..

I'.

p

p... ,rO,, .J ''',"L , % , ,, .,,/ / ." .. , ' ,"' ' " .% '": -" '" ' " " \
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The value of Fm is an approximation to the actual force trans-
'%m

mitted through a contact. The contact forces occurring in many systems

of spheres situated in ideal packing configurations, may not be deter-

mined from the equations of static equilibrium. Due to this the

approximation of the contact force, Fm, given by Eqn. (4.53) will be

used. This approximation will be used to determine the effective bulk

modulus, R, for the case when surfae tractions are known on the repre-
A

sentative volume element.

For the case when surface tractions are specified on the boundar-

ies of a 44e representative volume element, Eqn. (4.21) is written as

follows.

lw

M" ' .. I 2 (bu 2 )k]-

6(l+, )C + z ) + 3 C uSs s - 2 k1 -2 k] u

3 N ML k (4.56)

3 2
- (1-2v )C + [ ( b.. Gs -2 -2"k rG -b + E (b + Cf eG J 2,'-s k=l

All the terms appearing in Eqn. (4.56) have the same meaning as those

appearing in Eqn. (4.21). The superscript, ', has been used on the

constants, b 2 and (b_ 2)k, to indicate that these constants are deter-

imined for the case when the surface tractions have been specified on

the boundaries of the representative volume element. In Section 3.2,

the constant of superposition, b was determined. This constant is

S.-given by

-2, 2*1%). . .

W4

k'-J

l-2 = 2(1+v.................................... (4.57)

,,. where ' = poison's ratio for the spheres.
.'

6.; -. .- , , .,-,--".-., , . . . . ... -. ","."...-.-."."." -. . .. . .: .' ."-"- -" -'- - .' : - . -
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The constant, , appearing in Eqn. (4.57) is determined from the

surface tractions present on a particular sphere. Two types of boun-

dary conditions will exist on the spheres in the solid-fluid system

under consideration. The first of these boundary conditions are the

surface tractions resulting from contacts with adjacent spheres. The

second boundary condition is due to a uniform fluid pressure acting on

the surface of the sphere.

The constant, o, has been determined for the surface tractions

which result when a sphere is in contact with two adjacent spheres.

The contacts made with the two adjacent spheres are along an axis which

passes through the center of the sphere. For this case the constant

.. k ;o ......................................... (4.58)

.--

The terms k and 'o) appearing in Eqn. (4.45) are given as follows.

k = 3FR (4.59)
• "" 3 2.......................(.)
.¢- 2-ra

[sinK? cos~ : sint cos1 (+sin'l
4 8 Cos:

(4.60)

where F = the force transmitted through the contact

R - radius of the sphere

a = radius of the contact area

,;. - sin-i (a
L R
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The Eqn. (4.39) gives the relationship between the radius of the

contact region, a, and the force transmitted through the contact, F.

Using this relationship the constant, k', given by Eqn. (4.59) may be

N

rewritten as

• 2E
. . . .A 6. .)

where E = modulus of elasticity for the sphere

p.,

Combining Eqns. (4.57), "(4.58), and (4.61), the constant of super-

position, b.2 , is given by
4 "-

b = 2G . . . . . . . . . . (4.62)
-2 2' ... )

where G = the shear modulus of the sphere

The quantity, 0 appearing in Eqn. (4.62) is given by Eqn. (4.60).

From Eqn. (4.60) it is seen that io is a function of the angle, s',

. defining the contact region. This angle may be related to the force,

t~r F, transmitted through the contact through Eqn. (4.39). This relation-

ship is given by

I3
p.., 3(1-v) F

'GRsin-. 3 .... ............. ... (4.63)~8 G R-

Lg
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The approximation given by Eqn. (4.53) will be used to

determine F, which is required in order to evaluate the effective bulk

0modulus, K.

The value of 'o, determined for the case when a uniform rdial

pressure is acting on the surface of a sphere was determined in Section

3.4.3. This value is given by

.u............. . . . . .. (4.64)

where u = fluid pressure on the sphere

. Substitut.on of Eqn. (4.64) into Eqn. (4.57) gives the constant of

superposition, b-2 , appearing in Eqn. (4.56). This constant is given

by

b 2 = - 2(1+v) .................... ............ (4.65)

Substitution of Eqns. (4.62) and (4.64) into Eqn. (4.56) yields the

following expression for the effective bulk modulus.

I

"2,12 G G f

(1 ,() . k=)0 k + 3 ,u

-3 K . . (4.66)

~M

-6(1-2, s )C s  2 3(1-2v )C S

,. . ______"_____

L (1-\2) k= 3 G (1+ )

•S 5 S

, .,' .. o *
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Wh e reK effective bulk modulus

C =volume fraction of the solids in the solid-fluid system

C= volume fraction of the fluid in the solid-fluid systemt

G = shear modulus of the solid phase
-b 5

=Poisson's ratio or the solid phase
5

z u= fluid pressure

e- volumetric strain of the fluid phase
r

.e- =o constant determined from the stress boundary conditions

-. on a single sphere

M number of contacts on a single sphere.

The Eqn. (4.65) gives the effective bulk- modulus, Kof a system

.~ : ~ comocised of a number of equal spheres, in ideal packing configurations,

with the surrounding void space being filled with a fluid phase. The

effective bulk modulus, Z, given by Eqn. (4.65) is used when the normal

stresses are known on the boundaries of a representative volume element.

* To use Eqn. (4.65), the volume fractions of the solid and liquid phases

present in the system must be known. The constants, ; 0, must be deter-

mined for every contact pair occurring on a single sphere in the system.

To determine these constants the force, F m, occurring on a contact pair

m is approximated by Eqn. (4.53) The approximation to the force, FM, was

arrived at by consic~ering the solid-fluid system to be a continuum. The normal

stress acting on a plane containing a particular contact region was

determined and then the contact was said to carry a portion of this

' ~' normal stress. Any tangential shear stresses acting on the plane

containing the contact region were neglected so that the solutions

given in Chapter 3 ,could be u~ed in determining the effective bulk

* modulus.
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1  
1S4. .2 Discussion of the Effective Bulk Moduli-s Determined

from the Volume Averaged Approach

In the orevious two subsections of this chapter, the effective

bulk modulus, K, for an idealized solid-fluid system was determined

using a volume averaged approach. The idealized solid-liquid system

under consideration consists of a number of spheres in contact sur-

rounded by a fluid phase. In order to obtain a simple expression for

-. " the effective bulk modulus, K, of such a system some restrictions on

the geometry and material properties of the spheres in the system had

to be imposed. These restrictions are as follows:

1. All the spheres in the system have the same material proper-

ties.

2. The spheres in the system are of equal radii.

3. The spheres in the system exist in ideal packing configura-

tions.

The first of these restrictions is the most reasonable with

respect to modeling actual systems. The second and third restrictions

are less realistic with respect to modeling actual systems. In some

cases all the spheres in a solid-fluid system may be of equal radii

thus making the second restriction valid. The third restriction which

requires the spheres in the solid-fluid system to exist in ideal pack-

ing configurations is the most unreasonable. In actual systems compos-

ed of spheres in contact, the spheres will be arranged in a random

order. In such a system it would be impossible to identify the loca-

tions of the contacts present on a single sphere so that statistical

data of some form would be required to evaluate the effective bulk

* .modulus. By restricting the spheres in the solid-fluid system to be of

-. , .. " "
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equal radii and arranged in ideal packing configurations, the location

of the contacts on a single sphere within the vstem may be identified.

Sthis allows for the determination of the effective bulk modulus without

*the use of statistical data. In fact, the three restrictions thus far

mentioned allows the determination of the effective bulk modulus by

+. considering only one sphere and its interactions with adjacent spheres

and the fluid phase present in the solid-fluid system.

,Other restrictions were imposed on the stresses and displacements

occurring on the regions of contact between adjacent spheres. These

restrictions are as follows.

i. The contacts on a particular sphere appear in pairs with each
4

pair occurring along an axis passing through the origin of the

sphere.

2. The stresses and displacements occurring on a particular

region of contact are axisymmetric with respect to an axis

passing through the center and perpendicular to the region of

qcontact.
3. The displacements and stresses normal to the region of contact

may be determined from Hertz contact theory.

The purpose of these restrictions was to allow the use of the solutions

given in Chapter 3 , in determining the effective bulk modulus. Any

non-symmetric displacements or stresses, tangential to the region of

contact have been neglected in the determination of the effective bulk

modulus Df the idealized solid-fluid system.

Using the restrictions thus far mentioned, the effective bulk

modulus, K, -f the idealized solid-fluid system was determined or two

types or boundary conditions present on a representative volume ele-

vOr n % A
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ment. The first of the boundary conditions to be considered, corre-
',.

sponded to the case when the displacements are specified on the surface

of the representative volume element. The displacement occurring an a

particular contact was approximated by treating tIe solid-liquid system

as a continuum. The displacem-nt Dn a particu!ar contact das then

determined as the displacement occurring in a continuum at the location

of the contact. This type of approximation is ised because the actual

value of the displacement on a particular contact is indeterminate tor

many ideal packing configurations. For the case of a simple cubic

packing configuration, the actual displacements occurring on the

contacts may be determined. The approximation used to determine the

displacement on a contact, yields the actual displacement for this

case. The second type of boundary conditions which were considered,

*corresponded to the case when the surface tractions are specified on

the surface of the representative volume element. For this case the

" -force transmitted through a particular contact was again approximated

p by considering the solid-fluid system to be a continuum. The normal

stress acting over a portion of the place containing a particular

contact region is taken to be the force transmitted through the

4contact. This approach to determine the contact forces yields the

" - actual value of this force for the case of a simple cubic packing

configuration.

4i The expressions for the effective moduli obtained in the previous

two subsections represent very idealized conditions as apparent from

the restrictions and approximations used in the Jerivati,)n. In Is ing

J L these expressions to determine the effective moduLi ,or an actual

solid-fluid system, the accuracy of the value obtained for the effec-

SA
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tive bulk modulus should improve as this system becomes better repre-

sented bv the idealized solid-liquid system. Predictions of the effec-

S:ive bulk modulus should improve for hydrostatic stress states. This

Ais because there would be no shear stresses developed in the idealized

solid-liquid system. Any shear stresses which develop due to non-hy-

drostatic stress states have been neglected in the determination of the

-effective moduli. By the same reasoning, the predictions of the effec-

tive bulk modulus should improve when the displacement components are

al' of equal magnitude.

4.3 Energy Approach for Determining Bounds on

the Effective Bulk Modulus

The theorems of minimum potential energy and minimum complementary

energy will be used to determine upper and lower bounds on the effective

bulk modulus of an idealized solid-fluid system. These theorems and

their use in determining upper and lower bounds for the effective bulk

modulus will be discussed below.

To discuss the theorems of minimum potential energy and minimum

complementary potential energy, an elastic body in static equilibrium

I is considered. The boundary conditions prescribed on such a body are

given by

a.

I 7. =
.- n ~ on S.........................(<4.66a)

ono.........................4.6b

'.where 2. = stress tensor

U.,
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u = components of displacement vector

n. = components of the unit outward normal vector

on the surface

T = components of the stress vector on the surface
I

u. components of the displacement vector

on the surface

S surface over which T i is prescribed

S surface over which ui is prescribed
u

Cartesian tensor notation is used in Eqns. (4.66) and will continue to

be used in this section. The potential energy functional is defined as

4 follows:

- ( = f W (e .j) dV - f Fi ui dV - f Ti uji dS . . . . (4.67)

V V S

where F i = components of the body force vector.

In Eqn. (4.67) the term W (E. j) is called the strain energy function.

This function is given by

i W( j) = I~/2 CijZ=k~j( 8

where C = elastic stiffness tensor

ij k Z

= strain tensork,

Admissible displacement fields, u i , are defined as any continuous

displacement fields satistying the boundary condition given Dv Eqn.

(4.66b), but otherwise arbitrary. Under these restrictions the theorem

..

,-,-,El.-.',,.. ... ,:, .. ... . : . .- .,,.:°-,,-v : ,. ,.2 v . , ~ ., ,,. , .-,, , . .. .'.'. '". ..,-,;-,','? .'
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of minimum potential energy says that of all the admissible displace-

ment fields, u', the one that satisfies the equations of equilibrium

L4 is that whizh results in a stationary value of the potential oner ,y

functional. This nay be written as

U_= E > 0 ......... ..................... (.69)

where U_ = the potential energy functional evaluated for

.J, any admissible displacement field

JU- the potential energy functional evaluated for the

displacement field which satisfies the equations

In using Eqn. (4.69) to determine bounds of the effective bulk modulus

of a composite a.terial, the body force components, F., will be

considered to be zero and the boundary conditions will be such that

displacements are prescribed over the entire surface of the body under

consideration. For this special case the potential energy functional

given by Eqn. (4.67) reduces to

U fW ( ) dV ......... .................. (4.70)

fV

The Eqn. (4.70) gives the strain energy of the body under considera-

tion. Therefore, for this special case the theorem of minimum poten-

* tial reduces to a minimization of the strain energy stored in the

body.

h"

K'

. . . .. . . .
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In discussing the theorem of minimum complementary energy, an

elastic body in static equilibrium is considered. The boundary condi-

tions on this body are those given by Eqns. (4.66). The complementary

energy functional is defined as

U W(o ) dV - Ti ui dS. .. ........... (4.71)
aY fw 1 j

V fS
U

The term W (..) appearing in Eqn. (4.71) is the strain energy function

expressed in terms of stresses. This function is given by

W"a 1

ij 2 SijkZ JkZ ij . .............. (4 72)

where S ijkz Lnsor of elastic compliances

The stress field, ij, appearing in Eqn. (4.71) and Eqn. (4.72) is

.I admissible when the boundary conditions given by Eqn. (4.66a) and the

equations of equilibrium, are satisfied. Under these restrictions the

. theorem of minimum complementary energy says that of all the admissible

stress fields, the one which satisfies the compatibility equations is

*! that which results in a stationary value of the complementary energy

functional. This statement may be written mathematically as

0 a- U .> 0 ........ ..................... ... (4.73)

where U = the complementary energy functional evaluated

for any admissible stress field

-.
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UO the complementary energy functional evaluated

for the stress field which satisfies the

compatibility equations.

In using Eqn. (4.73) to determine bounds on the effective bulk modulus

of a composite material, the surface tractions will be prescribed over

the entire surface of the body under consideration. For this special

case the complementary energy functional is given by

I 7 U =f W (oij) dV ...... ................. .(4.74)

V

*, The Eqn. (4.74) is an expression for the strain energy of the body

under consideration. Thus, when surface tractions are prescribed over

the entire surface of the body, the theorem of minimum complementary

energy reduces to a minimum principle for the strain energy.

4.3.1 Upper and Lower Bounds of the'. ,.-

Effective Bulk Modulus

The theorems of minimum potential energy and minimum complementary

energy will be used to determine upper and lower bounds on the effec-

tive bulk modulus for a composite system. The Eqn. (4.5) may be

rewritten as

:-. -. dv = V> . .. . . . . . .. . . .. . (4.75)| i_ ij ij2 ij " ij

V

-.
v.
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where <j> volume averaged stress tensor
1]

. = volume averaged strain tensor

. .= infinitesimal stress tensor

E .i = infinitesimal strain tensor

V = total volume

The Eqn. (4.75) is a statement that the strain energy stored in the

different phases of a is equal to the strain energy expressed in terms

of volume averaged stress and strain. The integral appearing in Eqn.

(4.75) is taken over all the phases contained in the composite mater-

%: ial. If the volume averaged stress tensor, <cj >, or the volume aver-

aged strain tensor, <..>, are known from the macroscopic stress or

strain states occurring in the composite material, then it follows from

the minimum theorems of potential and complementary energy that

-2 ij ij - i ............. (4.76)

p V

The Eqn. (4.76) is applicable when either the surface displacements or

the surface tractions have been specified over the entire boundary of

the composite material. When the displacement field is specified on

the boundaries of the composite material, then an admissible strain

field, 5ij, must be such that it satisfies the displacement boun-

dary conditions. Then the stress field, ij is related to the

strain field, -ij, by

-ij =  Cijk iJ . . . . . . . . . . . . . . . . . . . (4.77)

where C = tensor of elastic moduli.
.-. ij k9.,

'.7



When the surface tractions are specified on the boundaries of the

composite material, then an admissible stress field, j, must

satisfv these stress boundary conditions. Then the strain field,

is related to the infinitesimal stress field, :j, by

ij Sijk Ik ......... . . ................. .. (4.78)

ijk

'where S ijk = tensor of elastic compliances.

An upper bound on the effective bulk modulus, K, may be determined

by considering the composite material to be subjected to displacement

boundary conditions which result in a uniform volume averaged strain

tensor, <E. >. The displacement boundary conditions of this type are

given by

< E:kk >

u = 3 xi ....... .................... ... (4.79)

where: ui = surface displacement components

<Ekk> = the trace of the volume averaged strain tensorkk

x i = rectangular Cartesian coordinates with

respect to a system of axes, evaluated on the

boundaries of the composite material

The volume averaged strain field, <cj- , resulting from the boun-

darv conditions given by Eqn. (4.79) are given by

" *. 'kk
-j 3 'j ........ .................... .. 4.80)

,J

.
1Jr ~
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dwhere 6 j=Kronecker delta _ 1 i~

If the composite material is an isotropic, linearly elastic material,

k then the volume averaged stress field, <J:ij?,, occurring in the

composite material is given by

\0 > K <E > . (4 ........ .81

where K the effective bulk modulus

Using Eqns. (4.76), (4.80), and (4.81), the upper bound on the effec-

r tive bulk modulus is given by

K KuK............. ............. (4.82)

-K 1

To evaluate Eqn. (4.83) an admissible form of the infinitesimal strain

tansor, Ec,*, is required for all phases of the composite material.

v. The infinitesimal stress tensor, oij, for phase k is given by

k~ k k
~ij ~ i +(lvk(l

2v) KK ij ......... (4.84)

where Ek the elastic modulus of phase k

' = Poisson's ratio for phase k.

% ~ A lower bound on the effective builk modulus, K, may be found by
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considering the case when the composite material is subiected to a

hydrostatic stress state. The surface tractions for such a case are

given by

3Ti  ni.. .................... (4.85)

where Ti = the components of the surface stress vector

7i = outward normal to the surface

,KK > = trace of the volume averaged stress tensor.
KK

The surface tractions given by Eqn. (4.85) result in a constant stress

field throughout the composite material. The volume averaged stress

tensor is given by

< KK >

ij 3 ij .......... ................... (4.86)

•F-, Considering the composite to be an isotropic, linearly elastic mater-

ial, then the volume averaged strain tensor is given by

• - <OKK >

<Eij> R . (4.87)

where K the effective bulk modulus

Using Eqns. (4.76, (4.86), and (4.87), the lower bound on the effective

bulk modulus is given by

K KL

2
S<KK >  V

Swhere KL 9 " E.. dV. .... . ( . 8whr L= f .. dV........................ (4.88)

~ ~ .j~.a * ~~ I
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In order to evaluate Eqn. (4.88) an admissible form of the infinites-

imal stress tensor must be known for each phase contained in the com-

posite material. The infinitesimal strain tensor, ij for phase k

is then given by

k) k- j E iJ - --k K ij . . . . . . . . . . . . . . (4.89)

where Ek = the elastic modulus of phase k

Poisson's ratio for phase k.

To summarize, bounds on the effective bulk modulus, K, are given by

<K' R u. ...................... (4.90)

In Eqn. (4.90), RL is given by Eqn.(4.88) and Ku is given by Eqn.
(4. 83).

4.3.2 Upper and Lower Bounds on the Effective Bulk

Modulus of an Idealized Solid-Fluid System

The general form of the upper and lower bounds on the effective

A bulk modulus have been determined in Section 4.3.1. In order to evalu-

ate the expressions for the upper and lower bounds the phase geometry

and phase material properties must be specified. The remainder of this

section will be concerned with evaluating the expressions for the upper

and lower bounds for an idealized solid-fluid system.

V.



181

The idealized solid-fluid system to be considered is composed of

spheres arranged in ideal packing configurations and surrounded by a

fluid phase. The spheres in this assemble will all have the same'

material properties and will be of equal radii. The results for a

sphere subjected to axisymatric surface displacements or surface trac-

tions, determined in Chapter 3will be employed to determine the

bounds on the effective bulk modulus. Use of these solutions requires

the tollowing assumptions concerning the contacts between adjacent

spheres.

1. The contacts on a particular sphere occur in pairs with each

contact directed along an axis which passes through the origin

of the sphere.

2. The sphere is in static equilibrium with negligible body

forces.

3. No non-axisymetric surface tractions or displacements, occur

on the region of contact between two adjacent Spheres.

The first of these assumptions is satisfied automatically by consider-

ing only spheres in ideal packing configurations. The geometry for a

pair of contacts is shown in Fig. 4.4. The third assumption is reason-

able since the bounds on the effective bulk modulus are determined for

the cases of the representative volume element undergoing either a uni-

I.- form strain state or a hydrostatic stress state. For the case of the

representative volume element subjected to a state of uniform strain,

Eqn. (4.33) gives the following approximation for the displacement, u,

occurring at the center of a contact between adjacent spheres contained

in the iystem.
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>.il - kk ('.91)

3

where R the radius the spheres in the solid-fluid system

< kk> the trace of the volume averaged strain tensor.

For the case of the representative volume element subjected to a state

of hydrostatic stress, Eqns. (4.52 and (4.53) give the following

approximation for the force transmitted through a contact between adja-

cent spheres contained in the system.

kk
F =  -T Am . . . . . . . . . . . . . . . . . . . . (4.92)

where Am = the area which transmits the stress normal to the

contact region through the contact.

kk > = the trace of the volume averaged stress tensor.

The area, Am, appearing in Eqn. (4.92) will depend on the packing

configuration and the orientation of the particular contact with

respect to the global coordinate system for the representative volume

element. To simplify the determination of the bounds on the effective

4" bulk modulus it will be assumed that the force acting on all contacts

in the system will be of one magnitude. The magnitude of this force is

given by

.~3 >
kk -

F - Am ...... .............. (4.93)
r-

pp I
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where Am =an average area which transmits the stress normal

to the contact region through the contact.

.P The approximations to the displacement at the center of a contact

and the force transmitted through a contact, given by Eqn. (4.91) and

Eqn. (4.93), respectively, will be used to determine the bounds on the

effective bulk modulus.

To determine the bounds on the effective bulk modulus the integral

appearing in Eqn. (4.83) and Eqn. (4.88) must be determined. The

integral appearing in Eqn. (4.83) is used to determine the upper bound,

on the effective bulk modulus. This integral must be determined for

ti the case when the displacements are specifipd on the surface of the

*. representative volume elements. The displacements being specified on

the surface of the representative volume element are given by Eqn.

(4.79). The integral appearing in Eqn. (4.88) is used to determine the

lower bound on the effective bulk modulus. This integral must be

determined for the case when the stresses are specified on the surface

of the representative volume element. The surface tractions to be

- specified are given by Eqn. (4.86). The integral to be determined can

be written as

s s f f
" . .. dV ii dV + dV . . . (4.94)

,V VV-
.j 5s

'.9

II-#,
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where V = total volume of the representative sample

Vs = volume of the solid phase

Vf = volume of the liquid phase

i"" = infinitesimal stress tensor

Zij = intinitesimal strain tensor

The superscripts, s and f, appearing in Eqn. (4.94) are used to denote

quantities for the solid and fluid phases, respectively. From the

results of Section 4.3.1, the integral taken over the fluid phase is

given by

ij • ij dV = E f V f............... (4.95)
f 

j ff

._, Vf

where e4 the volumetric strain of the fluid phase

u= the fluid pressure

When the fluid pressure, :u, is known, the volumetric strain of the

fluid phase, ef, is determined by

. .f = .d .. . . . . . . . . . . . (4.96)
Kffu

where P = pressure

Kf = the bulk modulus of the fluid phase

L

F e, e
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- The fluid pressure, cU, appearing in Eqn. (4.95) and Eqn. (4.96) is

taken to be negative for gauge pressures, P, greater than zero.

The solid phase of the representative volume element will be

comprised of a number of spheres in contact. The spheres in the system

bill be subjected to loads resulting from contacts with adjacent

spheres as well as from the fluid pressure. Using the principle of

- superposition, the integral taken over the solid phase which appears in

Eqn. (4.97) is written as

s s c% dV [G.. +,,] [ . + dV ........ ... (4.97)
'zj zj i '2 '2 '2

V V
,.1 s s

In Eqn. (4.97), the superscripts c and p are used to denote the stress

and strain fields occurring withia a sphere, which result from contacts

C with adjacent spheres and the fluid pressure, respectively. The

results for a sphere subjected to a uniform radial pressure are given

in Section 3.4.3. Using this solution, i P and 9?. are given

as

ij u ;j . . . ........... ........... .. (4.98)

p..p

-i" 3 K u " i . . .. . . ..... . . . . . . 9

bS

where 7u = the fluid pressure

K5 the bulk modulus of the solid phase

= Kronecker delta

I

'" . --'.-- pu
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Substitution of Eqns. (4.98) and (4.99) into Eqn. (4.94) yields

i ES] dV fc dV + c dV
I j ' i- I J ' 2IJ 3 K kk

I I S

V V V
S S S

"i /V ( 2

+ 7 r c dV + s u )2 (4.100)

u kk K

J s

V
S

The terms k and are invariant with respect to coordinate svstems.

kk ,kk

Because of this the integrals containing these terms may be performed

without transforming the solutions for the stress and strain fields due

to a particulat contact into one global coordinate svstem. The inte-

gral containing these terms were determined in Section 4.2.1. The

values of these integrals are given by

C
f c dV =3 (1+v) C M b_9 V . . . . .......... (4.101)J kk s 5 . . . . . .

c d = s SM

-" (k 2G4.102)
S VS

S

[ ;where M = the number of contacts between a particular

" •" sphere and adjacent spheres

,- Cs  the volume fraction of the solids cont Lrei

.in the system

wh e s  = the sher od o f the solid thas. l

sphee ad adacet spere
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Following the above approach would yield for energy functionals

U = Uu (M, a, 4, 1' oi ) (4.103)
c c m s .

where M - the number of contacts on a particular sphere

Om,4m = the angles defining the position of contact m with respect

to a global coordinate system

-' = the angle defining the region of contact on a sphere

v = Poisson's ratio for the sphere

For spheres arranged in a particular ideal packing configuration, the number

of contacts on a particular sphere, N, and the angles 8m and ymp are known.

Therefore for a particular ideal packing configuration, the quantities, U and

U, may be presented as a family of curves for different values of p' and v 5 .C' S

The expressions for the upper and lower bounds on the effective bulk

modulus, K, may now be determined. The upper bound on the effective bulk

modulus, Ru' is determined for the case when the displacements are specified

on the representative volume element. Combining Eqns. (4.41), (4.83), 4.94),

4.95), (4.100), (4.101), and (4.102)

gives the

u KU (4.104)

The values of K and K2 are given by

1 2
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K1 U 4(1vs)CS au 3 KS M ru

2 2Ksef + 8(1+v s) KS a,, ef

3-v) C3 K~ U (4.105)

R2  8(1k+v) CS<ekk> 2(416

The lower bound on the effective bulk modulus, KbLO is determined from the case

when the surface tractions are specified on the representative volume.

Combining Eqs. (4.62), (4.88), (4.94), (4.95), (4.100), (4.101), and (4.102)

gives the following for K LI

Kb1

K (4.107)

2

The values of KL and RLare given by

KL=7 2 (- 2 ) 2 S<>k 2 (4.108)

K2  = 9 r(1v2 ) s au [6 (L-2V 8 ) C

+ Tr(j-V5 ) au - (]J-~vs ) ef] (4.109)

+24 (i-2vs) (1+vs) Cs K2 U
K8 U

I0 1
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I
In summary, the upper and lower bounds of the effective bulk modulus, <,

of the idealized solidnfluid system under consideration are given by

kL - i R ; RU (4.110)

The quantities, k L and ku, are determined from Eqns. (4.101 to 4.106). The

expressions for the upper and lower bounds show that the voids in the system

have an effect on the effective bulk modulus when the fluid pressure is

atmospheric. This was not the case for the effective bulk modulus determined

from the volumetric averaging approach.

4.4 Effective Poisson's Ratio

In this section an effective Poisson's ratio, V, will be determined for

Pthe idealized solidnfluid system. This effective Poisson's ratio will be

determined through the definition of this quantity. Poisson's ratio is

defined as the negative of the ratio of lateral strain to longitudinal strain

for a sample loaded along the longitudinal axis. Fig. 4.5 shows a sample
0

undergoing uniaxial loading along the z axis. The dotted line shows the

deformed shape of the sample due to the applied load. For the sample shown in

Fig. 4.5, Poisson's ratio is determined as

6 A IL
u (4.111)~A /Lx
x x

where v = Poisson's ratio

L

The effective Poisson's ratio for the solid-'fluid system can be determined in
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the same manner as that given by Eqn. (4.111). The idealized solid-fluid

system consists of a number of equal spheres arranged in ideal packing

configurations. These spheres are surrounded by a fluid phase. The following

assumptions are required in order to allow the determination of the effective

Poisson's ratio,

1. The spheres in the system do not experience any rigid body motion.

2. Only normal forces are transmitted through contacts between adjacent

spheres.

3. The fluid pressure in the system is at steady state conditions.

The first assumption is necessary so that the geometry of the spheres in the

system remains known. The second assumption allows the use of the results

given in Chapter 3 in determining the effective Poisson's ratio. The reason

for the last assumption will be explafned presently.

To determine the effective Poisson's ratio, the idealized solid-,fluid

system will be loaded in one direction only as shown in Fig. 4.6. The system

may initially be stressed due to body forces. The effective Poisson's ratio

will be determined from the displacements occurring in the system when the

system is disturbed from its initial state. The addition of the stress, Az

as shown in Fig. 4.6 may cause an increase in the fluid pressure as well as

N the stresses present in the spheres making up the solid phase. The effective

Poisson's ratio of the system may be determined for the case when the fluid

F Ipressure has dissipated to its initial value (steady state condition). For

this condition the additional stress, Az will be transferred to the solid

phase and the effective Poisson's ratio may be determined by only considering

this phase. If non-,steady state conditions were considered, a sample of the

material from within the system would be subjected to multimaxial stresses in

reference to its initial state. Thus, the definition of Poisson's ratio could

I-

%
,....
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not be used to determine the effective Poisson's ratio. For steady state

5conditions, the change in stress on the system will be one directional and the
definition of Poisson's ratio may be used to determine the effective Poisson's

ratio. Under the loading shown in Fig. 4.6, the two planes, AnA and A'lA',

will approach each other by some amount, while the two planes, Br7B and B'-B',

will move away from each other by some amount. These displacements may be

determined from the results given in Chapter 3. From these displacements the

effective Poisson's ratio may be determined. The change in the displacement

vector at any point, (x, y, z), in the sphere, due to the addition load is

given by

Z [TG]m (TLIm=l ( y z (4.112)

where M = the number of contacts transmitting force

m - the contact of interest

In Eqn. (4.112), the superscripts F and I denote final and initial values of

the displacement vector, in reference to a local spherical coordinate system,

respectively. The symbol, A, appearing in this equation is used to denote the

change in the displacement vector. The trans~rrmation matrices, [TG] and

[TL], are given by Eqns. (3.140) and (3.141), respectively. The displ acement

vector, (Aul, in reference to the global coordinate system is given by

LU
AU zY (4.113)

1 '' , . • ' ! ! ! z
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The Eqn. (4.112) may be evaluated at contacts contained on the planes, AnA and

A'-A', to determine the strain occurring between these planes. This strain

is given by

e Au zlc 4.14

Ezz R cosa c  (4.114)

where C0 - a contact which transmits force.

Bc . an angle defining the position of a contact transmitting

force to the

I'
I

Ic,
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CHAPTER 5

5EFFECTIVE MODULI OF AN IDEALIZED 3-PHASE SYSTEM

5.1 Introduction

In the previous chapter effective moduli for an idealized soil-nwater

system was derived. This model may be applicable for a fully saturated

system. In a partially saturated system where soil, water and air are in

contact, previozsly derived moduli cannot be used. The compressible nature of

the gaseous phase plays an important role. In this chapter an attempt is made

to arrive at an effective moduli for the soil-water~air 37phase system under

idealized conditions. The approach used by Chang & Duncan (1974) is used in

arriving at a compressibility parameter for this airwater system.

In this chapter, in the development of the effective moduli for a 3.phase

system it is also assumed that the effective stress variation in a partially

saturated granular void, changes with the degree of saturation.

5.2 The compressibility of the homogenized pore fluid of partially saturated

* soil

The compressibility of the homogenzied pore fluid I/K is defined as the
p

volumetric strain induced by a unit change in pore fluid pressure. It can be

defined by the following equation

dE

K da 5.1
p p

where e - volumetric strain of pore fluid
7.P

1 1
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a - pore fluid pressure
P

The homogenized pore fluid pressure can be expressed as a function of air

pressure, water pressure and surface tension. It may be expressed

a = f(a , a w  T ) 5.2p a ,

where a = air pressure in the pore
a

a- water pressure

T = surface tension

4c

The compressibility of tne homogenized pore fluid, therefore, can be evaluated

using the following eq.

Kf a f aw f TcK aE ( - • - +T" -- -- -) 5.3
P a p w p c p

If the form of Equation 5.3 is known, the compressibility of the

homogenized pore fluid can be evaluated by knowing the changes in air

pressure, water pressure, and tension due to unit change in volumetric strain.

For the case in which the air bubbles are occluded, Eq. 5.3 reduced to:

K 3C 5.4

p

For this important practical case, the compressibility of the homogenized pore

fluid can be evaluated using Boyle's law and Henry's law. This d3rivation is

given in the following section.

Note that for clays with low degrees of saturation, open channels are likely
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to be present. The behavior in such a case is extremely complicated. The

approach here considers only granular soils.

5.3 Derivation of compressibility expression:

This derivation is based on Boyle's law and Henry's law.

Boyle's Law

Boyle's Law states that the product of pressure and volume of a gas is

constant under constant temperature conditions:

Henry's Law

Henry's Law states that at a constant temperature, the weight of gas

which can be dissolved in a given volume of liquid is directly

i proportional to the gas pressure.

Let V d be the volume that would be occupied by the dissolved gas if

*it was extracted from the liquid and compressed to the pressure acting on the

fluid. According to Boyle's and Henry's Laws this volume will be constant and

tnus independent of the pressure. V d is only dependent on the volume of water

4 and can be calculated as follows:

VC M HV 5.5
d w

where V is the volume of water, H is the coefficient of solubility. At 200C,
w

H - 0.02.

According to Dalton's division law, the saturated water vapor pressure in
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the free air does not obey Boyle's Law. However, the saturated water vapor

pressure is usually very small (Schuurman, 1966) and the influence can be

disregarded.

According to Henry's Law, the volume of air dissolved in the water is

proportional to the volume of water. The rate at which the air dissolves in

the water depends on the air pressure. The time t necessary to dissolve the

air for a unit change in pressure was shown by Beek (1963) to be

2
rt= Df 5.6

4 where Df is the diffusion coefficient and r is the radius of the bubble. At

200 C, Df is equal to 10 5 cm 2/sec. For small air bubbles, the time necessary

to dissolve the air is very small. Therefore, it can be assumed that the air

dissolves in the water instantaneously and that the water is always saturated

1'"
- with dissolved air.

As a result of the surface tension, Tc, the air pressure and the water

pressure of an airnwater mixture are not the same. The value of a and a are
w a

related by

a - a ' 5.7w a c

where a is the capillary pressure due to surface tension, a is usually

expressed in terms of the meniscus radii, r1 , r2, ,j shown in Fig. 5.1.

La
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_ c+ c 5.8

In a mixture of air and water, the bubbles do not necessarily all have the

same shape and size. Therefore, it is assumed that:

T
ac  2 5.9

R c

where R is the average capillary radius for the mixture of air and water.

Generally, for soils with high degrees of saturation, the effect of a is

small.

If e is the volume of free air and e is the volume of dissolved air in
a s

the air-:water mixture, then it follows from Boyle's and Henry's Law that

(e + e ) ( a - (e e ) (p + a 5.10
a s a ao s a ao

where pa is atmospheric pressure, eao is the initial air volume and aao is the

initial air gauge pressure. Equation 5.10 can also be expressed as:

~(eo e e)P a + (ea + ea)ao

a o a a ao a ao
e+ e 5.11
a I

Using expressions 5.7 and 5.11, the pore water pressure may be expressed as:

(eao n ea a (eao - es)aao 2Tc
a" + e R- 5.12wea s o

The compressibility of the airwater mixture is,

6.'
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e 1 d ea

aa -T -e( ) a 5.13
p w 0 w

Swhere e is the initial voids ratio.0

do w  (eao + e5 )P a + (e 0 + e )o 2T de
de (e e 2 + R 2 de5aaea Rea

In terms of degree of saturation S and void ratio e

do (e ",*s e +HS e ) (Uao+ P )

de a (e 7 Se + HSe)2

5.15
2T tr SdR

2 dS e
R

C

Substituting Eq. 5.13 into Eq. 5.15, the compressibility of the homogenized

pore flitid can be expressed as:

1

1 (1+e0 ) 5.16
Kp (eo-*s e +HS e (a ao+Pa) 2tc dRc S

(e7Se+HSe)
2  R 2 dS e

~C

where K - Bulk modulus of the airnwater moisture

e - initial voids ratio

S - initial degree of saturation

e - voids ratio

S - degree of saturation

H - Coeff. of solubility

cT . Surface tension

"-OW Re - Average capillary radius

ao - initial gage air pressure

ao F

MOM
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If the surface tension term in Eq. 16 is neglected, the equation reduces

to a form similar to that suggested by Hilf (1948) and Skempton and Bishop

(1954). The comparison between test data obtained by Mitchell et al., (1965)

and the results predicted by Hilf's and Skempton and Bishop's equation is

shown in Fig. 5.2.

Schuurman (1966) took surface tension into account by assuming that the

air bubbles were all of equal size and spherical in shape. By this

assumption, the value of R in Eq. 5.9 would be equal to the radius of the air

bubbles. Taking the initial radius of air bubbles as Ro, the radius after a

cnange in void ratio can be expressed as

e a1/3

R .R o aao

By substituting this expression into Eq. 5.15, the compressibility of this

air-water mixture can be calculated. A comparison between test data obtained

by Mitchell et al. (1965) and the results predicted by Schuurman's equation is

shown in Fig. 5.2.

It seems likely that the discrepancies between experimental data and the

results predicted by Hilf's and Skempton and Bishop's equation are mainly due

to the negligenece of the effect of surface tension. The discrepancies

between the experimental data and the results predicted by Schuurman's

equation are probably due to the assumption that all the bubbles are spherical

and uniform, and that the total number of bubbles does not change during the

compression of the soil.

wS
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A further consideration relative to surface tension effects is that the

capillary pressure does not necessarily arise only from the bubbles. It can

also arise from the other water surfaces exposed to air at the specimen

boundaries. Therefore, it seems more reasonable to use an empirically

determined average capillary radius R c to simulate capillary effects.

it has been found that the calculated results agree quite well with the

test by Mitohell et al. (1965) if it is assumed that the average capillary

radius Rc and the degree of saturation are related as follows:

R C= R CSi S) 5.19

wnere R is the capillary radius at saturation. The comparison is shown in
cs

Fig. 5.3. Sf is the lowest degree of saturation at which the water begins to

flow freely. Sf may be found from permeability tests for samples with

different degrees of saturation. For the clay tested by Mitchell, et al., Sf

was found to be zero. It was also found that the relation between the water

pressure and the degree of saturation was approximated best by adopting a

value of 2T /R - 5 psi. At 200C, the value of T is 74 x 10 kg/cm. The
c cs

value of 2T '/ cs ' 5 psi corresponds to an effective value of R cs equal to

4.23 x 10. 4 cm.

5.4 Effective Bulk modulus of a 3-phase system.

Previously an expression was derived for the effective bulk modulus of a

saturateo 2-phase soil-water system. The bulk modulus expression in Eqn. 4.66

is further modified here for a 3-phase soilnwater-air system in light of the
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0000 Schuurman's Eq.
(1966) A A

C,, A

a AHilt's Eq (948)
;95-

90 A Test data from
Samples with:
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80 2 4 6 8 10 12 14 16
Back Pressure, 62,,(kg/cm2)
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DEGREE OF SATURATION WITH BACK PRESSURE

6 (Data from Mitchell, et al., 1965)
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I

1001 Calculated using:

Ole 2T/Rc5 : Spsi

j U,
95-

C,

90
* A Test data

~~~854 I

0 2 4 6 8 10 12 14 16
Back Pressure, c (kg/cmz)

COMPARISON BETWEEN MEASURED VARIATION
OF DEGREE OF SATURATION AND THAT
CALCULATED ASSUMING

R R - S f
c Cs S

(Data from Mitchell, et al., 1965)
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compressibility expression for a waternair mixture derived before.

In Eq. 4.66 the parameters affected by the degree of saturation are Cf,

SO, ef and o

Assuming that the pore pressure in partially saturated systems is directly

related to the degree of saturation via X ,where X is an empirical parameter

given in Fig. 5.4 in the relation

C' = a- C + X (a - ti 5.18
a a wI

I
The volumetric strain for a partially saturated system, ef, can be determined"A

from the following expression

-p *e - 5 .19
ef

where K = sulk modulus of the air'water mixture.
L p
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i

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

From this investigation, the following conclusions can be drawn:

1. The modelling of even saturated systems using the micromechanics approaches

is quite complicated, and the degree of complexity is far greater with such

approaches for partly saturated systems.

2. Numerous assumptions need to be made in order to arrive at the stressm

strain response of partly saturated systems using the micromechanicsnbased

models. However, one could obtain some insight into the fundamental behavior

of partly saturated systems in this methodology.

1 3. The expressions developed for effective moduli, and the procedure outlined

for poisson's ratio should be valuable in modelling behavior of partly

saturated systems.

4. Although the immediate usefulness of this type of modelling approach may

not be that evident, the long term potential for improving the understanding

V of the behavior of partly saturated soils is great.

The recommendations for futher research include the possible elimination of

\ ~some of the assumptions based on experimental data, and validation of

F- , predictions by the newly developed models on various partly saturated systems

using results from controlled experiments. Another useful further research

effort would be to extend this work for timemdependent behavior and strain-

rate dependent behavior.

1V
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