
AD-A189 788 ADA (TRADE NAME) COMPILER VALIDATION SUMMARY REPORT i/
HARRIS CORP HARRIS A (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER W-P AFB ON ADA YALI 89i JUN 87

UNCLASSIFIED F/G 12/5 NL

JQ

3Ms Igo2.

"LU3

1111.25 1.4 1.6

iI'll'-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

oi@ 0 0 0 0 0 o- 0 0 0 0 .

* SECO' wEed; F1
PAGE'

1. RE9 h4 89 7 0 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 3 June 1981 to 3 June 1988
Harris Corp., Harris Ada Compiler, Version 1.0 Harris

HCX-7 Host. Tektronix 8540A-1750A Target 6. PI*RFORMING ORG. PEPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUJMBER(s)
Wright-Patterson AFB

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/S IOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 3 June 1987
United States Department of Defense 13 NUMBER Uf FAMk
Washington, DC 2O301-3081 34

14. MONITORING AGENCY NAME & ADD RES S(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

I5a. RE~A8EFICATION/OWNGRAOING

_________ ____________________________N/A
i1 :Yuro. STA7"'.ENT (of 'his PtDort)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

UNCLASSIFIED D I
ELECTE~tb

18. SUPPLEMENTARY NOTESJANQ a

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

[D0 'UKM 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wh~en Data ente~ed)

r7 .~

EXECUTIVE SUMMARY

;4.This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Harris Ada Compiler, Version 1.0,
using Version 1.8 of the Adae Compiler Validation Capability (ACVC). The
Harris Ada Compiler is hosted on a Harris HCX-7 operating under HCX/UX,
Version 2.2. Programs processed by this compiler may be executed on a
Tektronix 8540A-1750A, having no operating system. Let.&yr1v& G4 & P

On-site testing was performed 30 Hay 1987 through 3 June 1987 at Fort f u
Lauderdale, FL, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.
The AVF identified 1974 of the 2399 tests in ACVC Version 1.8 to be
processed during on-site testing of the compiler. The 19 tests withdrawn
at the time of validation testing were not processed; the 242 executable
tests that make use of floating-point precision exceeding that supported by
the implementation were not processed; and the 164 executable tests that
require creation of external files were not processed. After the 1974
tests were processed, results for Class A, C, D, and E tests were examined
for correct execution. Compilation listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors. Compilation
and link results of Class L tests were analyzed for correct detection of
errors. There were 15 of the processed tests determined to be
inapplicable. The remaining 1959 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2o 3 4 2.6-------- .L1 11 12 14

Passed 96 221 298 241 161 97 135 261 130 32 218 69 1959

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 104 122 6 0 0 4 1 0 0 0 164 421

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The OF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

'*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

-E.

AVF Control Number: AVF-VSR-87.0787
87-01-07-HAR

Ada ® COMPILER
VALIDATION SUMMARY REPORT:

Harris Corporation
Harris Ada Compiler, Version 1.0

Harris HCX-7 Host
Tektronix 8540A-1750A Target Accesion For

tTIS CRA&I

D7if TAB

Completion of On-Site Testing: U;;a=-oL'ted C
3 June 1987 K -:f'-,:

Prepared By: P<.W. (,Ldes
Ada Validation Facility H

ASD/SCOL "
Wright-Patterson AFB OH 45433-6503

Il-

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. I

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+e Place NTIS form here +

......

t S

Ada® Compiler Validation Summary Report:

Compiler Name: Harris Ada Compiler, Version 1.0

Host: Target:
Harris HCX-7 under Tektronix 8540A-1750A
HCX/UX, Version 2.2 (bare machine)

Testing Completed 3 June 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

A da Validationrganiation
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada Jont Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Harris Ada Compiler, Version 1.0,
using Version 1.8 of the Adas Compiler Validation Capability (ACVC). The
Harris Ada Compiler is hosted on a Harris HCX-7 operating under HCX/UX,
Version 2.2. Programs processed by this compiler may be executed on a
Tektronix 8540A-1750A, having no operating system.

On-site testing was performed 30 May 1987 through 3 June 1987 at Fort
Lauderdale, FL, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.
The AVF identified 1974 of the 2399 tests in ACVC Version 1.8 to be
processed during on-site testing of the compiler. The 19 tests withdrawn
at the time of validation testing were not processed; the 242 executable
tests that make use of floating-point precision exceeding that supported by
the implementation were not processed; and the 164 executable tests that
require creation of external files were not processed. After the 1974
tests were processed, results for Class A, C, D, and E tests were examined
for correct execution. Compilation listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors. Compilation
and link results of Class L tests were analyzed for correct detection of
errors. There were 15 of the processed tests determined to be
inapplicable. The remaining 1959 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 10 11 12 14

Passed 96 221 298 241 161 97 135 261 130 32 218 69 1959

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 101 122 6 0 0 4 1 0 0 0 164 421

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES *.................... 1- 3
1.14 DEFINITIONO;FTERMS, 1-3
1.5 ACVC TEST CLASSES i-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATITETET2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3.-2
3.5 INAPPAL TETS .. T.E.T. 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION ; 3-4
3.7.1 Prevalidation 3-14
3.7.2 Test Method 3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by

the Ada Validation Organization (AVO). On-site testing was conducted from

30 May 1987 through 3 June 1987 at Fort Lauderdale, FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

19cdevum

INTRODUCTION

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard AYSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test cbjective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Harris Ada Compiler, Version 1.0

ACVC Version: 1.8

Certificate Number: 870601W1.08068

Host Computer:

Machine: Harris HCX-7

Operating System: HCX/UX, Version 2.2

Memory Size: 32 megabytes

Target Computer:

Machine: Tektronix 8540A-1750A

Operating System: No operating system

Memory Size: 64K words

Communications Network: RS232

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

. Universal integer calculations.

An implementation is allcwed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AO02A, D4A0O2B, D4AO04A, and
D4AOO4B.)

. Predefined types.

This implementation supports the additional predefined type
LONG FLOAT in the package STANDARD. (See tests B86001C and
B86001D.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAXINT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises CONSTRAINTERROR -during execution. (See
test E24101A.)

• Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEX.MAXINT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test

C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array subtype is
declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test

E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'STORAGE SIZE for tasks, and
'STORAGESIZE for collections; it rejects 'SIZE and 'SMALL
clauses. Enumeration representation clauses, including those that
specify noncontiguous values, appear to be supported. (See tests
C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

• Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests CA3004E and CA3004F.)

i Input/output.

This implementation supports only the packages TEXT IO for file
operations on STANDARDINPUT and STANDARDOUTPUT.

The package SEQUENTIAL_.10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record- types with discriminants without defaults. (See tests
AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-4

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
the Harris Ada Compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 421 tests were inapplicable to this implementation, and
that the 1959 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 862 954 17 12 46 1959

Failed 0 0 0 0 0 0 0

Inapplicable 1 5 414 0 1 0 421

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 14

Passed 96 221 298 241 161 97 135 261 130 32 218 69 1959

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 104 122 6 0 0 4 1 0 0 0 164 421

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 421 tests were inapplicable for
the reasons indicated:

• C34001D, B52004E, B55B09D, and C55B07B use SHORTINTEGER which is
not supported by this compiler.

* C34001E, B52004D, B55B09C, and C55BO7A use LONG INTEGER which is
not supported by this compiler.

" C34001F and C35702A use SHORT-FLOAT which is not supported by this
compiler.

3-2

@.m

TEST INFORMATION

" B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT -10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT 10.

" C87B62A and C87B62C use length clauses which are not supported by
th!s compiler. The length clauses are rejected during

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

"The following 164 tests require the use of external files.* This
implementation supports only the files STANDARDINPUT and
STANDARDOUTPUT:

CE2102C CE31O4A CE3411A
CE2102G CE3107A CE3412A
CE21O04A..D (4 tests) CE3l08A..B (2 tests) CE3413A
CE2105A CE3109A CE3413C
CE2106A CE3110A CE3602A..D (4 tests)
CE21O7A..F (6 tests) CE3111A..E (5 tests) CE3603A
CE21O8A..D (4 tests) CE3112k..B (2 tests) CE3604A
CE2109A CE3114A..B (2 tests) CE3605A..E (5 tests)
CE211OA..C (3 tests) CE3115A CE3606A..B (2 tests)
CE2111A..E (5 tests) CE3203A CE3704A..B (2 tests)
CE2111G..H (2 tests) CE3208A CE3704D..F (3 tests)
CE2201A.-F (6 tests) CE33O1A..C (3 tests) CE3704M..O (3 tests)
CE2204A..B (2 tests) CE3302A CE3706D
CE2210A CE3305A CE37o6F
CE24O1A.-F (6 tests) CE3402A..D (4 tests) CE3804A..E (5 tests)
CE2404A CE3403A..C (3 tests) CE3804G
CE2405B CE3403E..F (2 tests) CE3804I
CE2406A CE3404A..C (3 tests) CE3804K
CE2407A CE3405A..D (4 tests) CE3804m
CE2408A CE3406A..D (4 tests) CE3805A..B (2 tests)
CE2409A CE3407A..C (3 tests) CE3806A
CE2410A CE3408A..C (3 tests) CE3806D..E (2 tests)
AE3101A CE3409A CE3905A..C (3 tests)
CE3102B CE3409C..F (4 tests) CE3905L

*EE3102C CE3410A CE3906A..C (3 tests)
CE3103A CE341OC..F (4 tests) CE3906E..F (2 tests)

*The following 242 tests require a floating-point accuracy that
exceeds the maximum of nine supported by the implementation:

3-3

TEST INFORMATION

C24113F..Y (20 tests) C35705F..Y (20 tests)

C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Y (20 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45424F..Y (20 tests)
C45521F..Z (21 tests) C45621F..Z (21 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 18 Class B tests:

B24204A B33301A B67001A
B24204B B37201A B67001B
B24204C B38008A B67001C
B2AO03A B41202A B67001D
B2AOO3B B44001A B91003B
B2AO03C B64001A B95001A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Harris Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exhibited
the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Harris Ada Compiler using ACVC Version 1.8 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Harris HCX-7 host operating under HCX/UX, Version 2.2 and Tektronix
8540A-1750A target having no operating system. The host and target were
linked via RS232.

3-4

TEST INFORMATION

A magnetic tape containing all tests except for 19 withdrawn tests, 242
tests requiring unsupported floating-point precision, and 164 tests
requiring the creation or opening of external files was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The ontents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Harris HCX-7, and all executable tests were
run on Tektronix 8540A-1750A. Results were printed from the host computer.

The 1750A target is connected to the host machine via 2 RS232 cables to
9600 baud ports; one port is used for communication between the host and
the 1750A emulator for downloading and execute commands, the other is used
for character I/O.

Each Ada program is compiled and linked on the host by a single or multiple
invocation of the Ada tool. The executable image produced is then loaded
and executed on the 1750A emulator invocation of a communications program.
The program sends commands across the communications port which accomplish
the following:

. Inform the emulator of upcoming requests.

• Transfer the executable image into 1750A program memory.

• Begin execution.

• Wait for notification from the emulator of program completion.

The communication program then exits.

The results of the executable tests are captured by an I/O daemon program
that runs on the host. This program captures the I/O that is generated
from the REPORT packages and all other I/O calls from the executing test.
The daemon appends all such I/O to a file that resides on the host system.

The compiler was tested using command scripts provided by Harris
Corporation and reviewed by the validation team. The following options
were in effect for testing:

Option Effect

-w warnings suppressed (all but b tests)
-el long error listing (for compile-error tests)
-Bf front-end specify fe
-Bc code-generator specify cg

-Bl linker specify a.ld
-o executable name specify executable

3-5

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output and compilation listings were
captured on magnetic tape and archived at the AVF. The listing and job
logs examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at Fort Lauderdale, FL on 30 May 1987, and
departed after testing was completed on 3 June 1987.

3-6

0aNCNA~

APPENDIX A

DECLARATION OF CONFORMANCE

Harris Corporation has submitted the following
declaration of conformance concerning the Harris Ada
Compiler.

A-1

DECLARATION OF CONFOM4ANCE

Compiler Implementor: Harris Corporation
AdaPValidation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: Harris Ada Compiler Version: 1.0
Host Architecture ISA: Harris HCX-T OS&VER #: HCX/UX, Version 2.2
Target Architecture ISA: Tektronix 8540A-1750A OS&VER #: (bare machine)

Implementor 's Declaration

I, the undersigned, representing Harris Corporation, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the ccmpiler listed in this declaration. I declare that Harris Corporation
is the owner of record of the Ada language compiler listed above and, as
such, is responsible for maintaining said compiler in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for the Ada
language compiler listed in this declaration shall be made only in the
owner's corporate name.

'Ji/~~-~/i1/ 2LrJ1r~-Date:
Harris Corporation
Wendell E. Norton, Director of Contracts

Ower's Declaration

I, the undersigned, representing Harris Corporation, take full
responsibility for implementation and maintenance of the Ada compiler
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that the Ada language compiler listed, and its host/target performance are
in compliance with the Ada Language Standard ANSI/MIL-STD-1815A. I have
reviewed the Validation Summary Report for the compiler and concur with the
contents.

___________ Date: z -9 7
Harris Corporation
Wendell E. Norton, Director of Contracts

®Ada is a registered trademprk of the United States Government
(Ada Joint Program Office)'.

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Harris Ada Compiler, Version 1.0, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range
-2#0.1111111111 1111111111 111#E1272#0.11111111111111111111 111#E127;

type LONG FLOAT is digits 9 range

-2#0.1111111111 1111111111 1111111111 1#E127 .
2#0.1111111111 1111111111_1111111111_1#E127;

type DURATION is delta 2.00(-8) range
-2#100000000000000000000000.0#
2#11111111111111111111111.11111111#;

-- DURATION DELTA is constant 2#1.0#E-8;

000

end STANDARD;

B-I

Appendix F of the Reference Manual for the Ada ® Programming
Language

Software Development

Harris Corporation Computer Systems Division

This document serves as appendix F of the Reference Manual for the Ada Programming
Language. It describes the implementation-dependencies for HAPSE HCX/1750A.

1. Program Structure and Compilation

A 'main' program must be a parameterless non-generic library level procedure. It may not be an
instantiation of a generic procedure.

2. Data Types

2.1 Character Types

HAPSE HCX/1750A provides one CHARACTER type which occupies one STORAGEUNIT,
which is 18 bits. Additionally, the predefined type STRING is a packed array of
CHARACTERS. Packing has no effect and each element of the string consists of one
STORAGE-UNIT.

2.2 Integer Types

HAPSE HCX/1750A provides one integer type in addition to univeroaLinteger.

INTEGER ::- 16 bits, range -32-768 .. 32-767

2.3 Floating Point Types

HAPSE HCX/1750A provides two floating types in addition to universaLreal.

FLOAT ::- 32 bits, 8 bit signed exponent, 24 bit signed mantissa

LONG-FLOAT ::- 48 bits, 8 bit signed exponent, 40 bit signed mantissa

* Ada is a registered trademark of the U.S. Government (Ads Joint Program Office (AJPO))

B-2

attribute FLOAT Value LONG-FLOAT Value
size 32 48
first -1.70141E+38 -1.70141163E+38
last 1.70141E 4-38 1.70141163E+38
digits 6 9
mantissa 21 31
epsilon 9.53674E-7 9.31322575E-10
emax 84 124
small 2.58494E-26 2.35098870E-38
large 1.93428E+25 2.12676454E+37
safe-emax 127 127
safe-small 2.93874E-39 2.93873587E-39
safejarge 1.70141E+38 1.70141163E+38
machine-radix 2 2
machine-mantissa 24 40
machine.emax 127 127
machine-emin -127 -127
machine-rounds TRUE TRUE
machine-overflows FALSE FALSE

2.4 Fixed Point Types

HAPSE HCX/1750A provides for four anonymous fixed point types. The type chosen as a base
type for a specified fixed point declaration is determined by the following sequence: The default
is tried, then if the range or delta is insufficient, the remaining three types are tried in order of
decreasing precision. In the following table, default, high , middle, and low refer to the relative
precisions of the four anonymous fixed point types.

Fixed Type Size Mantissa Integer Size Fraction Size
default 32 32 14 17
high 32 32 8 23
middle 32 32 9 22

_ low 32 32 23 8

3. Implementation-Dependent Pragmas

pragma controlled is recognized by the implementation but has no effect in this release.

pragma inline is implementation as described by the RM.

pragma interface is recognized by the implementation but has no effect.

pragma memory-size is recognized by the implementation, but has no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

pragma optimist is recognized by the implementation but has no effect in this release.

pragma pack is recognized by the implementation but has no effect in this release.

pragma shared is recognized by the implementation but has no effect in this release.

pragma storage-unit is recognized by the implementation but has no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

pragma suppress is recognized by the implementation and applies from the point of
occurrence to the end of the innermost enclosing block. The double parameter form of the

B-3

pragma, with a name of an object, type, or subtype is recognized, but has no effect.

pragma system-name is recognized by the implementation but has no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

4. Implementation-Defined Pragmas

pragma share-body is used to indicate a desire to share or not share an instantiation. The
pragma may reference the generic unit or the instantiated unit. When it references a generic
unit, it sets sharing on/off for all instantiations of that generic, unless overridden by specific
SHARE..BODY pragmas for individual instantiations. When it references an instantiated unit,
sharing is on/off only for that unit. The default is to share all generics that can be shared,
unless the unit uses PRAGMA IN-LINE.

pragma share-body is only allowed in the following places: immediately within a declarative
part, immediately within a package specification, or after a library unit in a compilation, but
before any subsequent compilation unit. The form of this pragma is:

pragma SHARE-BODY (generic-name, booleanJiteral)

Note that a parent instantiation is independent of any individual instantiation, therefore
recompilation of a generic with different parameters has no effect on other compilations that
reference it. The unit that caused compilation of a parent instantiation need not be referenced
in any way by subsequent units that share the parent instantiation.

Sharing generics causes a slight execution time penalty because all type attributes must be
indirectly referenced (as if an extra calling argument were added). However, it substantially
reduces compilation time in most circumstances and reduces program size.

5. Implementation-Dependent Attributes

There are no implementation-dependent attributes in HAPSE HCX/1750A.

6. Implementation-Defined Attributes

The 'ref attribute is used to obtain the address of an Ada program variable, label or
subprogram. This attribute is only valid in the context of machine code insertion as defined in
section 13.8 of the RM.

B-4

L16 11

7. Package SYSTEM

Specification of the package SYSTEM

package SYSTEM is
type ADDRESS is private

type NAME is (HarrisHCXto_1750A)

SYSTEMNAME : constant NAME := HarrisHCXto1750A;

- System-Dependent Constraints

STORAGE-UNIT constant := 16;
MEMORY-SIZE constant := 1048-576 ; - Non-extended; 64K words

- System-Dependent Named Numbers

MINJNT constant :- - 32-768;
MAXINT constant :- 32-767
MAX-DIGITS constant :- 9 ;
MAX-MANTISSA : constant :- 31;
FINE.DELTA constant := 2.0"*(-23);
TICK : constant := 0.01 ; - Unknown

- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0.. 15;

MAXREC..SIZE : integer :- 32-767;;

private

type ADDRESS is new INTEGER;

end SYSTEM;

8. Restrictions on Representation Clauses

8.1 Length Clauses

e The specification T'SIZE is not supported.

* The specification T'SMALL is not supported.

8.2 Record Representation Clauses

Component clauses must specify alignment on multiples of STORAGE-UNIT boundaries.

8.3 Address Clauses

Address clauses are supported as described in RM section 13.5. Variables which are not renames
of other objects may be assigned a physical address with an address clause.

8.4 Interrupt Clauses

Interrupt clauses are supported as described in RM section 13.5.1.

8.5 Interpretation of Expressions in Address Clauses

The expression given in an address clause for an object denotes the actual physical memory
address assigned to that object. Since SYSTEMADDRESS is an integer type the expression

B-5

must be of type UNIVERSALJNTEGER.

8.6 Interpretation of Expressions in Interrupt Clauses

The expresion given in an interrupt clause for an object denotes the bit position in the 1750A
Pending Interrupt Register of the actual interrupt. The UNIVERSALILNTEGER expression
given must be in the range 0 .. 15. Only the values in the set (2, 8, 10, 11, 13, 15) are valid. The
rest of the interrupts are reserved for use by the RTS.

8.7 Other Representation Implementation-Dependencies

" Change of representation is not supported for record types.

" The ADDRESS attribute is not supported for the following entities: static constants;
packages; tasks; and entries.

* There are no implementation generated names.

8.8 Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED-CONVERSION cannot be instantiated with a
target type that is an unconstrained array type or an unconstrained record type with
discriminants.

9. Implementation Characteristics of I/O Packages

9.1 Interpretation of Strings as Applied to External Files

The present implementation does not support any external files.

9.2 Interpretation of Strings as Applied to Form Parameters

The present implementation does not support any external files. Form parameters are ignored
since all opens of external files result in the exception USE-ERROR being raised.

9.3 Implementation-Dependent Chacteristics of DIRECT-O

The present implementation does not support any external files. DIRECTJO can be
instantiated but all opens of external files raise the exception USE-ERROR.

9.4 Implementation-Dependent Characteristics of SEQUENTIAL.JO

The present implementation does not support any external files. SEQUENTIAL-1O can be
instantiated but all opens of external files raise the exception USE-ERROR.

B-6

a -

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDl (l..498 =>'A', 499 :>'1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (l..498 >'A', 499 >'2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (l..249 I 251..499 >'A', 250 >'3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..249 I 251..499 >'A', 250 >,4')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (..496 ff>0', 497..499 =>"298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..493 =>'0', 494..499 =>"69.0E1"
A r-eal literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..479 =>' ')
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 32767
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDEDASCII CHARS "abcdefghijklmnopqrstuVwxyzI$%?@[\J]' "
A string literal containing all
the ASCII characters with

printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 32767
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILENAME WITH BAD CHARS . / *BAD-CHARACTER
An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITHWILDCARD CHAR ./CE2102{254 C's)
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 100_000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION-BASE LAST 10000000000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

TEST PARAMETERS

Name and Meaning Value

$ILLEGAL EXTERNAL FILE NAME1 /no/such/directory/ILLEGALEXTFILENAMEI
An illegal external file name.

$ILLEGALEXTERNAL FILE NAME2 /no/such/directory/ILLEGALEXTFILENAME2
An illegal external file name
that is different from
$ILLEGALEXTERNAL_FILE_NAME1.

$INTEGERFIRST -32768
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGERLAST 32767
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -100_000.0
A-universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THANDURATION BASE FIRST -10_000_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAXDIGITS 9
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX IN LEN 499
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 32767
The universal integer literal
whose value is SYSTEM.MAXINT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME LONGLONGINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEGBASEDINT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NONASCII_CHAR TYPE (NONNULL)
An enumerated type definition
for a character type whose
literals are the identifier
NONNULL and all non-ASCII
characters with printable
graphics.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the

Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test.

• B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

• C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

• B45116A: ARRPRIBLi and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line
41.

• C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

• B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

• B4AO1OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

WITHDRAWN TESTS

" B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

* C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

" C92005A: The "/=" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

" C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" BC3204C: The body of BC3204CO is missing.

D-2

... S 5 5 5 0 *5 S 0

