
ESD-TR-88-102 ^i-/,-mn/9

United States Air Force Program Office

Guide to Ada, Edition 3

CHRISTINE AUSNIT
ERNESTO GUERRIERI
NANCY INGWERSEN
SUZANNE RUEGSEGGER

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254

31 December 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared For

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR ADVANCED DECISION SYSTEMS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

AW^K

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for an/
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

MARK V. ZIEMBA, lLt, USAF
Project Manager, Project 2526
Computer Resource Management

Technology Program (PE 64740F)

(. I
CHARLES J. RYAN, Maj, USAF
Program Manager, Computer Resource Management
Technology Program (PE 64740F)

Deputy Commander for Advanced Decision System

FOR THE COMMANDER

iL^g-
JACKSON R. FERGUSON, Col, USAF
Director, C Technology
Deputy Commander for Advanced

Decision Systems

Unclassified

URITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

REPORT SECURITY CLASSIFICATION

Unclassified
1b. RESTRICTIVE MARKINGS

SEC RITY CLASSIFICATION AUTHORITY

DEC ASSIFICATION/ DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release; Distribution
Unlimited

>ERFORMING ORGANIZATION REPORT NUMBER(S)

3451-4-010/2

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88-102

NAIVE OF PERFORMING ORGANIZATION

SofTech, Inc.

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

HQ Electronic Systems Division (AVSE)

ADDRESS (City, State, and ZIP Code)
460 Totten Pond Road
Waltham MA 02254

7b ADDRESS (City, State, and ZIP Code)

Hanscom AFB
Massachusetts, 01731-5000

NAME OF FUNDING/SPONSORING
ORGANIZATION Deputy for

Advanced Decision Systems

8b. OFFICE SYMBOL
(If applicable)

ESD/AVSE

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F33600-87-D-0337

ADDRESS (City, State, and ZIP Code)
Hanscom AFB
Massachusetts, 01731-5000

10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (Include Security Classification)

United States Air Force Program Office Guide to Ada, Edition 3

PERSONAL AUTHOR(S)
Christine Ausnit, Ernesto Guerrieri, Nancy Ingwersen, Suzanne Ruegsegger

TYPE OF REPORT

Technical
13b. TIME COVERED

FROM TO
14. DATE OF REPORT (Year, Month, Day)

1987 December 31
15. PAGE COUNT

82
SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Ada, interfaces, tools, verification, Computer
Aided Software Engineering (CASE), ADETS

ABSTRACT (Continue on reverse if necessary and identify by block number)
The purpose of the Program Office Guide to Ada is to discuss issues affecting the sel-
ection development and maintenance of systems whose software is written in the Ada
language. Each edition focuses on a different set of topics and their implications

for managers.
This edition concentrates on: Maintenance and revision of the Ada standard, Ada
Education and Training Study (ADETS), program proving and verification, environments,
tools, interfaces and Computer Aided Software Engineering.

HSTRIBUTION /AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED & SAME AS RPT. 0 DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified
NAME CF RESPONSIBLE INDIVIDUAL

M.V. Ziemba, lLt, USAF
22b TELEPHONE (Include Area Code)

(617) 377-2656
22c. OFFICE SYMBOL
ESD/AVSE

orm1473, JUN 86 Previous editions are obsolete.
i

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

EXECUTIVE SUMMARY

This report is the third of four editions for the Program Office Guide to Ada. It
corrplements the Program Manager's Guide to Ada, ESD-TR-85-159, dated May 1985.
Thi? effort was sponsored by the Air Force Computer Resource Management Technol-
ogy Program, Program Element 64740F, Project 2526, Software Engineering Tools and

Mel hods.

The first edition addressed the following topics: policy, run-time efficiency, run-

time support environment customization, training, Ada program design languages, and

conversion of non-Ada code.

The second edition addressed the following topics: DoD Standards 2167 and 2168,
guidelines for proposal evaluation, reusability and portability considerations, software
cosiing models, benchmarking efforts, and Ada software libraries.

The third edition focuses on:

• Maintenance and revision of the Ada Standard,

• Ada Education and Training Study,

• Program Proving and Verification,

• Environments, Tools, Interfaces, and

• Computer-Aided Software Engineering.

The Ada Standard will soon have existed for five years. According to typical stan-
dardization procedures, it is expected that the Ada Standard will be reviewed in the
near future. This review could recommend a revision to the language sometime in the
1990s. In the meantime, procedures are in place to maintain the Ada Standard.

It was noted in Edition 1 that the Armed Forces Communications and Electronics
Association had undertaken a study of Ada education and training. After extensive data
collection and analysis, this report has been published and its findings are discussed.

Formal methods, program verification in particular, are an expensive and intellec-
tually demanding field. Much work has been done in terms of developing proof rules for
Ada language constructs. Even when verification of a full program is impractical, it is
feasible to verify a limited set of properties implemented in a "verifiable" subset of Ada

constructs.

Numerous software development aids exist and are being developed for Ada. These
include programming environments, tools (either as part of an environment or stand-
alone), and interfaces to other programming devices, such as databases. Tool focus is

in

increasingly on software engineering and programming support tools, as opposed to the
earlier emphasis on program development tools.

iv

FOREWORD

This report is the third in a series of four editions that supplement the Program
Manager's Guide to Ada, ESD-TR-85-159, published by The Computer Resource Man-

agement Technology Program in May, 1985. The introduction of Ada as the mandated
high order language for Mission Critical Computer Programming in the Department of
Defense has generated a need for clear, concise information for Program Managers and
others concerned with cost, schedule, and performance in the application of this new
language.

The intent of this series is to bring Program Office personnel up to date on facts
presented in the original Program Manager's Guide, as well as to provide a more rounded
discussion on certain subjects presented in the original guide. This series of four reports
is designed for the Program Manager and his technical staff. It is recommended that
this report be kept with the original Program Manager's Guide to Ada, forming a ready
reference to Ada and Ada-related topics.

ACKNOWLEDGEMENTS

This report is sponsored by the Air Force Computer Resource Management Tech-
nology Program, PE 64740F, Project 2526 (Software Engineering Tools and Methods),
ESD/XRSE, Hanscom Air Force Base, Massachusetts.

The Computer Resource Management Technology Program is the Air Force engi-
neering development program to develop and transfer into active use the technology,
tools, and techniques needed to cope with the explosive growth in Air Force systems
that use computer resources. The goals of the program are to: (a) provide for the tran-
sition of computer system developments in laboratories, industry, and academia to Air
Force systems; (b) develop and apply software acquisition management techniques to re-
duce life-cycle costs; (c) provide improved software design tools; (d) address the various
problems associated with computer security; (e) develop advanced software engineering
tools, techniques, and systems; (f) support the implementation of high order languages,
e.g., Ada; (g) address human engineering for computer systems; and (h) develop and
apply computer simulation techniques for the acquisition process.

VI

Contents

Executive Summary ^

Foreword v

Acknowledgements

15 Impact of Revisions to the Ada Standard 15-1

15.1 The Various Ada Standards 15-1

15.2 The Standardization Process for the Ada Language 15-1

15.3 The Maintenance of the Ada Standard 15-2

15.3.1 The Maintenance Process 15-2

15.3.2 Impact of Maintenance 15-3

15.4 The Revision of the Ada Standard 15-4

16 AFCEA Ada Education Training Study (ADETS) 16-1

16.1 Purpose of Study 16-1

16.1.1 Study Team Composition: Industry 16-1

16.1.2 Definition of Effort 16-1

16.2 Sources of Data 16-2

16.3 Principal Findings 16-2

16.3.1 Management Commitment 16-3

16.3.2 Training Shortfalls 16-3

16.3.3 Number of Trained Personnel 16-3

16.4 Study Recommendations 16-4

17 Program Proving and Verification 17-1

17.1 Overview 17-1

17.1.1 Program Language Semantics 17-2

17.1.2 Verification Process 17-3

17.2 Program Testing and Verification 17-4

17.3 Practicality of verification 17-5

vii

17.3.1 Benefits 17-5

17.3.2 Difficulties and costs 17-6

17.4 Cost reduction approaches 17-8

17.4.1 IBM Cleanroom Technique 17-9

17.4.2 Selective Use of Verification 17-10

17.4.3 Verifiable Ada Subset 17-10

17.5 Summary of current research 17-11

17.5.1 Full Semantic Specification of Ada 17-11

17.5.2 PolyAnna 17-12

17.5.3 Verifiable Subset Definition 17-12

17.5.4 Security Analysis of Ada Programs 17-12

17.5.5 Organizations on Formal Methods 17-13

18 Environments 18-1

18.1 Stoneman 18-1

18.1.1 Definition and Purpose 18-1

18.1.2 Structure 18-2

18.1.3 Current Use of Stoneman 18-5

18.2 CAIS 18-5

18.2.1 Progress on CAIS 18-6

18.2.2 Comparison to Stoneman 18-7

18.2.3 CAIS Implementation Validation 18-7

18.3 SDME 18-7

18.3.1 Structure 18-8

18.4 STARS - Environment Products 18-9

18.5 Software Life Cycle Support Environment 18-10

18.5.1 SLCSE Tools 18-11

19 Tools 19-1

19.1 Interactive Ada Workstation 19-1

19.1.1 Description and Purpose 19-1

vm

19.1.2 Structure 19-2

19.1.3 Current Status 19-3

19.1.4 Comparison to Stoneman 19-4

19.2 STARS - Technology Development 19-4

19.3 Requirements to PDL Tool 19-5

20 Interfaces 20-1

20.1 Ada Approach to Interfaces 20-1

20.1.1 History and Rationale 20-1

20.1.2 Proliferation vs. Standardization 20-2

20.2 DBMSs and Ada 20-3

20.2.1 Description and Purpose 20-3

20.2.2 Ada/SQL Proposed Binding 20-4

20.2.3 Current Ada/DBMS Efforts 20-4

20.3 4GLs and Ada 20-5

20.3.1 Program Generators 20-5

20.3.2 Artificial Intelligence and Ada 20-6

20.4 Graphics and Ada 20-8

20.5 Other efforts 20-8

21 CASE (Computer-Aided Software Engineering) 21-1

21.1 Description and Purpose 21-1

21.2 Impact on Ada 21-3

21.3 Environment Standards and CASE 21-5

21.4 CASE Activities 21-6

A Appendix: References A-l

B Appendix: Bibliography B-l

C Appendix: Points of Contact for Ada Information C-l

IX

Section 15
Impact of Revisions to the Ada Standard

The importance of coordinating standards in programming languages arises from
the need to transfer programs from one computer installation to another in a different
domain. Currently there are three standards for the Ada Language. There is interaction

between the standards organizations to aid in keeping the Ada Standard consistent and
usable.

When a standard is created or revised, the transition from one version of the stan-
dard to another occurs instantaneously as far as the standardization body is concerned.
However, manufacturers cannot be expected to provide a new compiler overnight or
discard a compiler that is based on the superseded standard. Consequently, there is a
protracted transition from one standard to the next. This section will cover the current
standardization process for the Ada language and its impact on programs utilizing the
Ada language.

15.1 The Various Ada Standards

In 1983, Ada was adopted as both an American National Standard and a Military
Standard (ANSI/MIL-STD-1815A). The Ada Standard was also adopted as an Inter-
national Standard by the International Standards Organization (ISO) in 19871. This
reflects the adoption of the Ada programming language in different domains (i.e., Na-
tional, Military, and International, respectively). For Department of Defense (DoD)
programs, the relevant Ada Standard is MIL-STD-1815A.

15.2 The Standardization Process for the Ada Language

After the initial development of a standard for the Ada language, the standardiza-
tion process consists of two principal activities:

• the maintenance of the Ada Standard, and

• the revision of the Ada Standard.

The maintenance of the Ada Standard consists of interpreting the standard when the
standard is unclear or ambiguous. Maintenance is an ongoing process, whereas revision

takes place at clearly defined time intervals and could involve more major changes to
the language. Sections 15.3 and 15.4 discuss both processes in depth.

'ISO sandards invariably, and probably inevitably, take longer to be produced than national
standards.

15-1

15.3 The Maintenance of the Ada Standard

The maintenance of the Ada Standard consists of responding to issues about the

language. The issues consist of comments about unclear or ambiguous parts of the

standard (as well as misunderstandings about the standard). These issues are known as

commentaries.

15.3.1 The Maintenance Process

The Ada Rapporteur Group (ARG), a committee established by the ISO/TC 97/SC

22/WG 9, prepares the commentaries. The Working Group 9 (WG 9) reviews them
and may approve them. The WG9 has been authorized to produce a technical report
addressing all the issues and questions on the Ada language and the corresponding
commentaries issued by the ARG. This report, however, will have no official standing

as a maintenance document.

In discussing the maintenance process, it is important to distinguish the role of

commentaries in the three bodies concerned with the Ada Standard, namely the ISO,
the AJPO, and ANSI. Neither ISO nor ANSI recognize the commentaries as official
Ada interpretations, even though they are prepared by WG 9. The commentaries may,
however, have an effect on the MIL-STD in so far as they have an official standing
with respect to the validation tests (Ada Compiler Validation Capability or ACVC).
The organizations concerned with the standardization of the Ada language are currently
discussing the maintenance process and should come to some agreement soon.

The AJPO requires that compilers pass the ACVC suite in order to conform to the
MIL-STD. The effect of the commentaries is visible in the process discussed below.

The AJPO presents the WG 9 approved commentaries to the Ada Board for con-
sideration. Should the Ada Board recommend their approval, then the Director of the
AJPO may also approve them. It is this last approval which gives the commentaries
their standing as official interpretations of the Ada Language with respect to the vali-
dation tests. The immediate impact of an "official" commentary is to resolve disputes
about tests which address the same issue(s) as the commentary. The long term effect of
official commentaries is discussed in Section 15.3.2.

To address a problem with the Ada Standard, a user can submit a comment on
the Ada Standard. These comments will then be incorporated into the set of known

issues about the Ada Standard, commentaries, and interpretations of these issues will
be made by the appropriate standardization bodies. The comments can be submitted
in writing to either the AJPO, the Ada Validation Office (AVO), or, via MILNET, to
ada-comm<aAJPO.SEI.CMU.EDU. The AVO may be contacted at:

15-2

Audrey Hook

Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
(703) 824-5501

There also exist forums in which users can raise and discuss issues concerning the
Ada Standard. One of these is the Ada Language Issues Working Group (ALIWG),
a working group under the Users Committee of ACM SIGAda. The ALIWG charter
is to "provide a forum for discussion and review of the Ada language definition. Any
recommendation supported by the group will be submitted to the AJPO."

15.3.2 Impact of Maintenance

Recent interpretations of the standard have included a wide variety of areas. These
include:

• numeric issues,

• string and aggregate issues,

• parameter passing issues,

• I/O issues,

• compilation unit issues.

• issues on static expressions and subtypes,

• overloading resolution issues,

• visibility rules,

• conformance rules,

• pragmas and names,

• the SYSTEM library unit,

• representation clauses, and

• forcing occurrences.

15-3

The maintenance process also includes impact analysis to the Ada Compiler Valida-
tion Capability (ACVC) test suite and to the users. Once the interpretation is approved
by the AJPO, the ACVC test suite and the ACVC Implementers' Guide are checked
to ensure that they conform to the approved interpretation, otherwise, the test suite
and/or implementers' guide, need to be revised accordingly. The AJPO's ruling on a

commentary does not guarantee immediate updating of the ACVC suite.

Existing Ada software may be affected by language maintenance as new compilers

are released and validated to conform to the Ada Standard. The AJPO has issued
guidelines defining classes of validated compilers and their use in different phases of a
project. Edition 1, Section 3.1, discusses validation policy in depth.

15.4 The Revision of the Ada Standard

The procedures of most standardization bodies include rules governing the revision
of a standard. A typical rule requires that the standard be set for at least five years.
After that time, the standard may be reviewed. The purpose of this review is to evaluate
the standard and to recommend action. Possible recommendations are that the standard
be:

• Renewed without change,

• Revised, or

• Withdrawn.

The procedures for a revision follow similar lines as for a new standard. The re-
sponsible body announces its intention of revising the standard for the language but,
thereafter, the same procedures as for a new standard are followed, involving a public
review and discussion period leading to a vote by the appropriate body.

In 1988 the Ada Standard will have existed as a Military Standard and an American
National Standard for five years. Currently, there is no official activity underway that
would lead to a revised Ada Standard being issued in 1988. It is expected that ANSI will
approach the organization that is responsible for the standard, which is the AJPO, and
request the status of the standard. The AJPO will probably request that the standard
be revised.

Experiences with the revision of other languages have shown that the revision pro-
cess can last several years, so the revision process will probably be completed in the
early 1990's. The goal of the revision process is to make the language more effective.
The likelihood of major changes seems small at this point.

The Institute for Defense Analyses (IDA) has been requested to investigate and
produce recommendations on how the language should be revised. The person in charge

15-4

of this investigation is Dr. John Kramer, who may be reached at:

Dr. John Kramer
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria, VA 22311

(703) 845-2263
AUTOVON 289-1948 ext 2263

15-5

Section 16
AFCEA Ada Education Training Study (ADETS)

This section describes the framework and findings of the Armed Forces Commu-
nications and Electronics Association (AFCEA) Ada Education and Training Study
(ADETS). The report was published in July 1987.

16.1 Purpose of Study

In conjunction with the AJPO, AFCEA organized an Ada education and training
study (ADETS) in the fall of 1985. The purpose of the study "was to provide infor-
mation and recommendations to Department of Defense (DoD), North Atlantic Treaty
Organization (NATO), and industry on the education and training required to introduce
and support the Ada programming language successfully."2

16.1.1 Study Team Composition: Industry

The ADETS team was composed primarily of members from industry, both software
companies and major defense contractors. There were also liaison members with govern-

ment organizations, specifically the Ada Software Engineering Education and Training
(ASEET) team. Members were chosen for their experience in the Ada community, in
software development and in education. Progress on the study was briefed to senior
officials in the services, the Pentagon, and the AJPO. The report was reviewed by both
industry and government executives before its release.

The ADETS team was divided into four subteams: a NATO team plus three U.S.
teams of seven members each. These U.S. groups are the Integration Team, the Re-
quirements Team, and the Education and Training Methods Team.

16.1.2 Definition of Effort

The ADETS team was chartered to look at existing training: methods, usage, avail-
ability, requirements, and shortfalls. Data were collected and analyzed during a year and
a half period. Surveys, case studies, interviews and literature searches were conducted;
thus providing a balanced viewpoint of the state of Ada education and training.

The original idea was to develop a model of Ada education and training require-
ments. By then matching the real world with this model, shortfalls would be identified.
In the course of the study, it became apparent that such a model could not be con-

2[ADETS87; Page 1.

16-1

structed. There was a lack of firm data on training plans, especially on the numbers of
people needing what level of formal exposure to Ada.

16.2 Sources of Data

The data collected during the ADETS came from multiple sources. The report
describes both the methods of collecting data and the actual data collected. (See Sections
4.8, 5.1, and Appendices A through E, and H of the ADETS Report for summaries and
analyses of this data.)

Data on the status and level of Ada training came from interviews and discussions,
questionnaires, and literature. The ADETS team selected four Ada projects as case

studies:

• Worldwide Military Command and Control System (VVWMCCS) Information Sys-
tem (WIS),

• Maneuver Control System (MCS),

• MILSTAR Communication System, and

• Combat Data Systems (CDS-5).

Both the government program office and the contractor were interviewed concerning the
impact of Ada on their project and their approach to Ada training.

The questionnaire, sent to AFCEA member companies and selected program offices,
requested organizational data, information on formal training plans, and projections on
Ada training needs.

16.3 Principal Findings

The principal findings of the ADETS relate to management commitment and avail-
ability of training. The ADETS team formulated four personnel categories from their
data analysis and characterized the training requirements for each category. Widely

available training in the Ada language was distinguished from training shortfalls in
management awareness, software engineering, and support activities. Sections 5 and 6
of the ADETS Report present the data analysis, while Section 7 discusses education and
training shortfalls.

16-2

16.3.1 Management Commitment

The ADETS Report notes that a much stronger commitment to Ada is needed both
from the DoD and from upper management. At the time of researching and writing the

ADETS report, the DoD Ada mandate, Directives 3405.1 and 3405.2, had not been
issued3. Fear of a new language, lack of available production quality tools, misinforma-
tion, mixed signals, and lack of specific plans have all contributed to the perception that
top management, both in the government and in industry, had not yet wholeheartedly
endorsed Ada software engineering.

16.3.2 Training Shortfalls

The ADETS team found that while language training was more than adequate to
meet current demand, there was a lack of demand and supply for non-language, Ada-
related courses. Specifically, the team found that training is needed both in management
and support personnel awareness and in software engineering. "Awareness" courses too
often present an overview of the language instead of a discussion of the relationship
between Ada and productivity, reliability, life cycle issues, standardization, and DoD
policy [ADETS87].

Software engineering is a vaguely defined term which does not "denote a univer-
sally accepted body of principles or procedures."4 Various interpretations range from
non-programming activities (i.e., design, documentation, etc.) to specific programming
practices. The ADETS Report points out not only the need for formalized training in
software engineering, including software development practices but also the insufficient
priority placed on this kind of training.

16.3.3 Number of Trained Personnel

In regard to the number of personnel who had received some form of Ada training,
the ADETS team reports two interesting findings. More people in industry have received
Ada training than available positions on Ada projects. Consequently, the skills acquired
in Ada courses are lost over time with the insufficient project workload. With respect to
this observation, the ADETS team noted the following caveat: being "trained in Ada'1

did not reflect the degree of training (superficial exposure through in-depth, hands-
on training) received by the data sources. The team felt that familiarization did not
constitute adequate training.

3Thesc directives and their implications will be discussed in Edition 4 of the
Program Office Guide to Ada.

4;ADETS87] Page 7-5.

16-3

Secondly, data analysis revealed a perception, on the part of industry, that govern-
ment personnel lacked Ada language training. Some technical personnel in the program
offices were unable to read or understand the Ada designs and software written by con-

tractors.

16.4 Study Recommendations

The ADETS Report outlines recommendations that address not only the issue of
Ada training and education but also the broader context in which this issue occurs.
The recommendations address DoD policy and planning, management and acquisi-
tion/support personnel awareness, and technical issues.

The report stresses the need for a unified policy under active DoD leadership. Such

a policy should not only address the use of Ada for software development but should
also be reviewed from the perspective of Ada MIL-STDs and hardware development
programs. Moreover, the services need to establish training plans for their personnel.

The ADETS Report recommends that DoD develop and offer a top-level Ada aware-
ness course. Program Offices involved in Ada software development, as well as high level
officials from the services and DoD, should attend. Furthermore, awareness courses
need to be developed for acquisition and support personnel. The team suggested greater
participation on the part of universities and the Software Engineering Institute in Ada
education and training.

Recommendations on technical issues address the need for mature, production qual-
ity tools as well as the need for greater numbers of Ada projects. The report urges that
greater emphasis be given to training in software engineering.

Copies of the ADETS Report may be obtained by contacting:

Brig. General, Kirby Lamar, (Ret.)
Director, Corporate Affairs
AFCEA
4400 Fair Lakes Court
Fairfax, VA 22033-3899
(703) 631-6235

16-4

Section 17
Program Proving and Verification

Program verification is one of several formal and informal techniques which are
meant to increase the user's confidence in the reliability of a program. Program veri-
fication specifically refers to formal mathematical proofs of program text. It is a time
consuming, intellectually demanding method, for which only limited automation exists.
This section explores some of the terminology and issues surrounding program verifica-
tion. Verification is distinguished from other confidence building techniques, testing in
particular. The advantages and disadvantages of program verification are considered.

17.1 Overview

The goal of program verification is to construct a formal proof of one or more
properties of a program or program fragment. The objective of verification is to show

correctness, in other words, to prove true the assertion that the program behaves in a
certain fashion under certain operating conditions. This assertion may range from a
complete specification to a limited set of behavior characteristics.

In order to assure the quality of a program, both static and dynamic analyses of
the code should be undertaken. Before generating object code, a compiler performs
a detailed static analysis of the program, making sure that what is written conforms
to the language (MIL-STD-1815A in the case of Ada). A verifier performs a detailed
(static) analysis of the dynamic behavior of the program. In order to meet this goal, a
verifier requires that the meaning of the program be completely elucidated. Essentially,
this means that all assumptions about the values of variables and their relationships
be stated. Thus the original Ada program text must be annotated with information
for the verifier. Using program proving jargon, the semantics of the program must be
completely specified. Program verification involves:

t assertions about the behavior of the program, for example, values of variables;

• proof rules or axioms that allow the verifier to progress through the assertions.

Assertions are stated using an assertion language such as Anna. Axioms are expressed

in a metalanguage that the user of a verifier will not see.

There are several ways of specifying semantics. The following section provides an
overview of the terminology used in discussing semantics and constructing proofs.

17-1

17.1.1 Program Language Semantics

In order to prove a program, one must first know the semantics of the language in
which the program is written. Semantics refers to the meaning of each construct in the

programming language, i.e. its behavior. Formal semantics allows the programmer to
assign a unique meaning to a program or program fragment. A formal mathematical
notation is used to express the semantics. An alternative method treats each computa-

tion like a function; verification is then a proof that each function computes its intended
result. The notation for the functional model is treated in more depth in [B&N78].

There are three principal methods for formally specifying programming language

semantics: denotational, operational, and axiomatic. Different kinds of formal semantics
have different purposes. Denotational semantics is useful for unambiguously telling
compiler writers how their compilers should work, or for proving that two programs

have the same meaning, for example. Operational semantics is useful for unambiguously
telling programmers how their programs can be expected to behave-but not very useful
for languages like Ada that allow variations among implementations or for any language
(including Ada) allowing nondeterminism. Axiomatic semantics is useful for proofs

about programs. That is its intended purpose, but it is not the intended purpose of
other kinds of semantic definitions.

Axiomatic semantics specifies programming language semantics through a set of

proof rules about the behavior of the language's constructs. It is based on reasoning
about the relationships between variables and their values at different points in the
program text. Using axioms and symbolic logic, it is then possible to prove properties
about a program. R. W. Floyd proposed the basic idea, in reasoning about flowcharts.
C. A. R. Hoare expanded on this method, reasoning about statements written in a given
programming language. Hoare asserted that the ability to reason about statements effec-
tively gave computer scientists a mechanism to specify the semantics of a programming
language.

An axiomatic semantics description need not be complete. The proof rules for the
language depend on what properties one is trying to prove. The proof rules are based
on what subset of the language is being used. For example, if the program contains no
tasking constructs, axioms about tasks need not be included. If one is not interested

in all the properties of a program, the engineer may be able to use a simpler set of
proof rules. To date, axiomatic semantics has shown the greatest promise in the area of
program verification and automated verification tools.

The Hoare method develops proof rules or axioms for every statement in a language.
The literature discusses the derivation of these rules by class of statement (assignment,
conditional, loop, etc.) as well as their combination into proofs about the correctness of
a program or program fragment.

17-2

17.1.2 Verification Process

The properties of a program, such as the relationship between variables, are for-
mulated as assertions. These assertions, or predicates, are known as preconditions or

postconditions, depending on their context in the program text. For any proof rule,
the assertions directly preceding it are known as its preconditions, and the assertions
immediately following it are called the postconditions. A loop invariant is a property

about the loop which is true for each iteration of the loop.

Proofs about programs are generally composed in reverse gear, deriving precondi-

tions from postconditions by applying a set of axioms and the rules of inference. One
starts out by assuming that the postconditions are true, and the verifier then tries to
show that the preconditions are true at the point of call.

As with the design of a program, a proof is constructed hierarchically. One first
verifies a subprogram, then proves a call on that subprogram. Sequential composition
may also be used to show that a program fragment is correct. If for some precondition
A, statement Si is executed and postcondition B is true, and if B is true, statement S2
is executed and postcondition C is true, then it has been proven that if precondition
A is true, postcondition C is true following execution of the sequence Si, S2. This
precondition-statement-postcondition can be written as a correctness formula, namely
A{Sl}B. Verification can then be described as the process of deriving valid formulae.

Formally, one starts a proof by giving a precondition for the entire program. Using
proof rules, creativity, and mathematical insight, one then derives a postcondition for
the entire program. Hopefully, the postcondition reflects what the program should be

computing.

The original Floyd/Hoare approach stated that program verification consists of
two proofs: partial correctness and termination. A partial correctness proof consists of
showing that if a program or program fragment terminates normally, then the assertions
made at different points in this fragment hold true. More modern approaches advocate
proving termination as an integral part of the proof.

Full program verification requires proof of termination. In other words, a proof must
show that a sequence of statements executes to completion. In proving termination, one
tries to show that a sequence of statements either terminates normally or terminates
with some expected error condition.

The choice of pre- and post-conditions is extremely important. The generality of
the pre- and postconditions asserted affects the strength of the reasoning that can be

applied. The more general the precondition, the more rigorous is the proof of correctness.
The less general the postcondition, the more rigorous the proof is as well. There is no
limit to the number of pre- and postconditions that can be asserted.

The formal notation of program verification may at first seem unwieldy; however,

17-3

its formalism and lack of ambiguity are necessary to permit a rigorous mathematical
proof. Furthermore, the emphasis on precision facilitates the process of automation.
Given that all necessary assertions and invariants are stated, the program prover can

achieve a high degree of automation.

17.2 Program Testing and Verification

Verification and testing are both means of validating compliance of a computer pro-
gram. Testing is used to show compliance with requirements; verification shows compli-

ance with formal specifications. There is the danger that the formal specifications may
misstate the true requirements. This error will be obvious in a test, but a proof would
succeed anyway. Verification involves reasoning about program texts; testing is always
based upon observing computations [L&G86]. Verification makes inferences about a set
of computations in a program. Some software cannot be easily verified, such as that
containing complex tasking features, representation specifications or poor programming
practices (such as aliasing-multiple names for the same object). Acceptable operation
of such software may be better demonstrated by stress testing.

Tests are written to detect errors as well as to show correct program execution.
Myers in [Mye79] defines testing in terms of trying to find fault in a program, not trying
to show that the software does not fail. Verification is distinct from testing for several
reasons: 1) verification involves a mathematical proof; 2) it proves properties about the
program rather than that the program performs as expected; and 3) it is designed to
provide a definitive answer, typically a "yes."

The most common forms of testing are known as white box and black box testing.
White box testing tests the logic of the code; it seeks to exercise the different parts
of the software. Black box testing, on the other hand, does not take advantage of
the information inside the module in the test itself. Black box testing typically tests
assumptions about inputs and outputs; for example, can the software handle inputs
outside the expected range.

Because verification seeks to prove assertions about statements in a program, it is
closer to white box testing than to black box testing. Both white box tests and assertions
need the program text in order to be developed.

The software life cycle uses several kinds of testing: unit testing, integration testing,
and acceptance testing. These tests focus on the underlying algorithm (unit-level), mod-
ule interfaces (integration-level) and customer requirements (acceptance-level). Testing
is intended to provide traceability to both software design and requirements.

Verification can also be applied at several points in the software life cycle. Individual
modules can be verified, similar to unit-testing modules. As the modules are integrated,
the verifier can be used to show additional properties of the software. As the size of the

17-4

program increases, it becomes harder to verify because of the increasing number and
complexity of the assertions.

The use of Ada facilitates unit testing and software integration testing; however, it
does not eliminate the need for such tests. An Ada compiler's required interface checking
capability automates certain kinds of testing, such as ensuring that different parts of the
program communicate through a well-defined "type" interface. In other words, the data
types and the direction of data flow are checked for compatibility. Compilers do not test

whether or not the data is reasonable, only that it is correctly specified. Ada compilers do
insert run-time checks in the executable code. These checks do not substitute for testing.

While they do notify the programmer what class of error has occurred (for example, a
range constraint violation), it is the programmer's responsibility to determine the cause
of the error and to take corrective action.

17.3 Practicality of verification

Program verification is often not undertaken because of its perception as difficult,
obscure and academic. However, it should not be dismissed lightly because of the advan-
tages it provides. This section discusses both these benefits and their associated costs.
Section 17.4.1 discusses the IBM Cleanroom method which uses verification as part of

its methodology. The remainder of Section 17.4 addresses ways of reducing these costs
in order to profit from verification techniques.

17.3.1 Benefits

The greatest benefits of program verification are in the areas of program reliability
and maintainability. Verification can show that the software will behave in a predictable
manner, given a set of input conditions. The ability to prove the correctness of a program
or program fragment increases user confidence in that section of program text.

Reliability is a critical property of any software. Reliability serves as an indicator of
how well a given program produces usable and predictable results. It may be measured
in terms of errors per module, errors per "n" lines of code (e.g., 10 thousand lines),
or using more traditional hardware measures such as mean time between failure and

average down time. Reliability can also be measured in the context of a system, such as
average number of successful hits for some number of launches.

Verification, being a formal proof, attempts to present a "True" or "False" answer.
Either the verifier manages to construct the proof or it does not. If it does not, either the
assertion one is attempting to prove is false, or it is true but unprovable (a possibility
unlikely to arise in practical verification), or it is provable but not by the verifier's

theorem prover except perhaps with more advice. If the assertion is false, the program

17-5

does not meet its specifications. There are many assertions, or verification conditions,
that must be proven true or false. Failure to prove some may (as described above)
indicate a program or specification error. Others may be false because loop invariants
are too strong or indeterminate (true for some input values, false for others) because
loop invariants are too weak.

A proof can enhance the reliability of a program because it guarantees one or more
aspects of a program's run-time behavior. For example, if critical algorithms in an

embedded application are proven correct, the user or customer has greater confidence in
the overall reliability of the system.

Practically speaking, not every aspect of every software module can be verified. Ap-

plying verification where possible, however, allows the developer to concentrate testing
efforts on those system features which do not lend themselves to verification. According
to [Coh86], formal verification should not be confused with validation; formal proofs are
one of many methods for validating software, which include also informal proofs, code
reviews, and testing.

Verification supports the software quality goal of maintainability in a more indirect
manner. An annotated program in and of itself is more complex to read; however, it does
force the programmer to state underlying assumptions about the data objects and their
values. Thus more information is available to the maintainer regarding the intended

behavior of the program text. In the long run, however, an annotated program only
serves the interests of maintainability if the proof is maintained as well as the code.

A more subtle benefit of verification is that the exercise of proving a program
segment may bring valuable insights to the programmer. The discipline involved in
asserting properties about the program's behavior may uncover some subtle errors in
the logic of the software. Work done at IBM using the Cleanroom technique [Dye83],
discussed in Section 17.4.1, applies this idea.

17.3.2 Difficulties and costs

The Ada language is complex, providing many more constructs than the simple
structured programming constructs whose verification is well-documented in the litera-
ture. For example, Ada provides arrays, recursion, packages, generics, tasks, overload-
ing, renaming, exceptions, and representation specifications, all powerful features which
if judiciously used, permit the creation of reusable, efficient software for an embedded
target.

The Ada Language Reference Manual specifies the syntax and semantics of the Ada
language. There are parts of the language, however, which are not completely specified:
implementation of certain features is allowed to vary. For example, Ada does not require
that all uses of uninitialized variables raise the exception Program-Error. Compilers

17-6

implement pragmas differently: they do not need to support all of the language-defined

pragmas, and they may introduce new pragmas as well. Ada allows a nondeterministic
order of execution for program unit elaboration, select alternatives within tasks, and
conditions connected with the logical operators (and, or, xor).

Program verification is made more difficult because of these variations. A verifier
which only handles a specific implementation is by its very nature limited. One which
is completely implementation independent, however, cannot prove anything about that

part of a program which relies on a specific implementation.

Ideally, verification should be independent of the implementation of the language

in which the program is written. In other words, the verifier should not make any
assumptions about the code generated by the compiler and other language processing
tools. For instance, the verifier should not depend on whether parameters are passed by
value or by reference. As another example, the verifier should not depend on whether
or not numeric overflow raises the Ada exception Numeric-Error. Similarly, the verifier
should not assume that the tasking implementation accepts entry calls in the order in
which the select alternatives are written, should several entry calls arrive simultaneously.

Implementation independent proof rules are much more difficult to write. At one
extreme, such proof rules must account for possibly perverse implementations which
raise the exception Storage_Error upon startup [CohN86]. In the general case, it becomes
extremely expensive, if not impossible, to write a set of proof rules that reflect all possible
implementation variations.

The program termination part of verification poses two obstacles: termination is not
always a desired property; and termination can be extremely difficult to prove. Certain
programs such as operating systems are intended to run forever. Applications such as

weather radar and air traffic control systems are designed to scan the skies continuously.
Nontermination is a requirement of such software, and termination is effectively an error
condition. (Replacing an existing system with a new one requires that at some point
the operator terminate the old one; this termination is usually not considered a normal
termination.) Even if termination in the traditional sense does not apply (for example a
sensor control function), there are still many properties of these programs that can and
should be verified.

Modern programming languages, including Ada, often provide programming fea-
tures which complicate termination proof. Parallelism, loops, and recursion, all sup-
ported by Ada, are difficult to verify. In verifying parallelism, one must be able to prove

assertions about synchronization and about the lack of deadlock. Ada tasks, moreover,
often implement their algorithms with infinite loops. Other loops may execute indefi-
nitely, until some condition is met. (The corresponding Ada constructs are the infinite
loop [loop ... end loop;] and the while loop [while condition ... end loop;].) It is

extremely difficult to prove that either the condition or an error condition occur, re-

17-7

suiting in loop termination. Similarly for recursion, it may not be easy to show that a

subprogram will call itself only a finite number of times.

Some of the technical obstacles to developing axiomatic proof rules for each kind

of Ada statement are being overcome, but more work needs to be done. There are
other technical obstacles which are not Ada specific but true of software in general. It
is extremely difficult to prove that an entire program is correct. The sheer size of a
program accounts for part of this difficulty: because of the many execution paths, their

interrelationships, and the large number of interfaces, a large number of assertions must
be made.

There is no guarantee that the proof rules themselves or their application are correct.
The verifier, if an automated verifier is used, could itself contain bugs. This problem
is endemic to using any kind of tool, including such basic ones as editors, compilers,
linkers, etc. It should not be construed as a disincentive to use program verification,

but it should temper one's confidence that a verified program is guaranteed to be 100%
correct.

There are more fundamental problems with regarding a verified program as fail-
proof: The compiler or target operating system or even the hardware could contain
design errors; the hardware could suffer a transient error; the specification could in-
correctly convey the informal requirements; the informal requirements themselves could
omit some conditions necessary for what we would intuitively call "correct" processing.
Errors in the target operating system are a special case of a more general problem:
invoked software that is assumed to be correct actually is not. Formal verification,
like testing, should be regarded as no more than a confidence-building measure, though
verification should build a much greater degree of confidence than testing.

Program verification is an expensive technique, in terms of labor, machine resources,
and time. Verification requires a knowledge of complex logic and mathematics. The no-
tation used in proofs is difficult to read. Therefore, more highly trained individuals
are needed to develop assertions and proofs about software. As noted above, there
are numerous Ada features which do not lend themselves easily to the commonly used
axiomatic verification techniques. Developing predicates that reflect the program's be-
havior in a meaningful way requires creativity as well as mathematical insight.

In spite of the technical obstacles and expense, verification is a useful technique.
The next section addresses ways of making verification less of an academic exercise and
more of a practical method in a software project.

17.4 Cost reduction approaches

The high costs and disadvantages of formal methods can be mitigated to achieve
some of the benefits of program verification. These approaches involve both genera] and

17-8

Ada-specific software engineering practices. The introduction of formal methods into

a software project will reallocate the amount of time spent in different phases of the
software life cycle, concentrating greater effort in the early phases, where errors are the
least expensive to detect and correct. Integration, acceptance testing, and maintenance
will reap the benefits of working with a higher quality, more reliable product.

17.4.1 IBM Cleanroom Technique

The Federal Systems Division of IBM has pioneered a mathematically-based soft-

ware engineering approach known as the Cleanroom method. The goal of Cleanroom
developed software is to create computer programs with a high degree of reliability and
a low probability of errors. Formal, structured methods are used for both requirements
and design specification. The implementation phase is supported by code inspections,
walkthroughs, and formal verification.

Cleanroom development differentiates the test group from the development group.
The developers are not allowed to test or debug their own software; they must use the
techniques discussed above to ensure that their code is correct before it is released to the
test team. The test team is independent and develops tests that reflect the operational
environment of the software. Mathematics is also applied to the testing process: the
distribution frequency of input data is determined and the test cases executed at any
given time are selected randomly.

The University of Maryland has performed an empirical study to assess the Clean-
room technique. The framework of the study is described in [SBB85L Ten three-person
project teams implemented an electronic message system using the Cleanroom method,
while five three-person teams did the same project using conventional methods. The
data analysis showed that the Cleanroom technique both results in higher quality soft-
ware and introduces discipline in software development. Key study findings show that
Cleanroom software is more correct, meets system requirements, and is less complex
than code developed through other means. The separation of development and test
teams was found to be very effective in enforcing the use of good software engineering
practices and methods. The code produced was more readable and better designed.

Although the Cleanroom case study was applied to a small project in an academic
setting, its results show that formal methods can be applied successfully. The com-

bination of formal and informal methods (i.e., verification with code inspections and
walkthroughs) preserves the discipline of mathematical proof while allowing the use of
alternate, less rigorous methods. Application of a Cleanroom-like technique to a large
project in its successive stages of design and development could also help build quality

into the software from the beginning. Although it may be unrealistic to deny the use of
a compiler to a programming team, incentives should be provided to encourage the pro-

17-9

grammers to apply more formal methods in engineering their code. For Ada, compilers

ought to be provided with code generation suppressed so that reviewers can exploit the
compiler's strong static checks but not use the compiler to conduct unit testing.

17.4.2 Selective Use of Verification

Some of the problems noted in Section 17.3.2 addressed size complexity and difficult
features. In [CohN86], several recommendations are discussed which offer a compromise
solution to these problems. The fundamental idea is to apply formal methods to software

at the component level.

By verifying software at the module level, proofs can be accomplished in a more

reasonable amount of time. A library of validated modules (i.e., whose implementation
is validated) can be built so that verification of software using these modules is based
on their specification, not their implementation.

Instead of trying to prove properties about the entire program, one can apply ver-
ification techniques only to the most critical parts of the program. Other less math-

ematically rigorous validation methods can be applied to other parts of the software.
These alternative validation methods include hand proofs, design walkthroughs, code
inspections, unit testing, and trustworthy component reuse.

A similar cost reduction approach, frequently used today, is to apply formal verifi-
cation methods only to the most critical properties of the program, rather than to its
most critical algorithms. One such critical property is security.

17.4.3 Verifiable Ada Subset

Implementation variations make it difficult to write proof rules for some of Ada's
features. In order to facilitate verification, one can restrict the use of Ada features to
the verifiable constructs for certain components. In [Coh86], several such restrictions
are suggested. The verifiable subset would not allow the programmer to use aliasing,
shared variables or address clauses. The purpose of the verifiable subset is to exclude
features which could make proof rules invalid. To use aliasing as an example, if A is
used as an alias for B and B is assigned the value 4, one cannot verify that A does not
have the value 4.

The restrictions that would be imposed to create a verifiable Ada subset also support

good programming practice [Coh86]. In building a large software project, it will be
necessary to violate some of these restrictions. The components which must use features
outside the subset would then be isolated in a few special-purpose components with well-
defined interfaces, consistent with the intent of the Ada language. These modules can
be validated through less formal means than mathematical proof. The point is not to

17-10

deny the use of unverifiable constructs, but to ensure that they are used in a controlled
and meaningful fashion.

Another approach to verification proposed in [CohN86] is the use of "natural se-
mantics." Natural semantics represents a category of assumptions about an implemen-
tation's behavior in order to write simpler proof rules. The verifier could only be applied
to those programs which obeyed these assumptions. The assumptions are principally in
the area of optimization, for example, order of evaluation, code motion optimizations,

and code generation strategies. Although the verifier would no longer be implementation
independent, it would be justifiable if the assumptions were obeyed by a large number
of implementations. Recognizing the need for efficiency, Cohen also proposes a spe-
cial "optimization pragma," distinct from the predefined Optimize pragma. This new,
implementation-defined pragma would allow the compiler to take "unnatural" steps for
the sake of efficiency. Modules containing such a pragma would not be verifiable except
through other means.

17.5 Summary of current research

Verification assistants are needed to automate the process of finding invariants,
stating pre- and postconditions, and deriving the correctness formulae. There are several

efforts being funded in this area, described below. Much of this work is still at the
research stage and has not resulted in robust products.

17.5.1 Full Semantic Specification of Ada

The Anna language, an acronym for Annotated Ada, is an effort to incorporate as-
sertions about Ada programs into a preprocessable form. Anna, described in [L&H84],
introduces two kinds of formal comments to capture the underlying meaning of a pro-
gram. Virtual Ada text is legally correct Ada used to state explicitly underlying assump-
tions, for example, a Length function in a stack package. Annotations are used to make
true/false assertions and to state axioms about the computations, based on the different
language constructs.

Under contract with the European Economic Community, Dansk Datamatik Center
has developed a full semantic specification of Ada. An application of this work in building
a software development environment is discussed in Section 21. Further information may
be obtained from:

Kurt W. Hansen
Dansk Datamatik Center
Lundtoftevej 1C

17-11

DK-2800 Lyngby
Denmark
+45 2 87 26 22
khansen@ADA20.ISI.EDU

17.5.2 PolyAnna

Rome Air Development Center is sponsoring ari effort to build a prototype verifier
based on Anna. (PolyAnna stands for Polymorph c Anna.) The prototype is being
built on a Sun workstation, and a version should b<; available in the fall of 1989. The
contractor is Odyssey Research. The point of contac t is:

Don Elefante
RADC/COTC

Griffiss Air Force Base, NY 13441
(315) 330-3241

AUTOVON 587-3241
elefante@RADC-MULTICS.ARPA

17.5.3 Verifiable Subset Definition

Computational Logic is designing operational semantics for an Ada subset using the
Boyer-Moore logic. Their objective is to define a verifiable subset of Ada which lends
itself to rigorous proofs. This effort is part of a larger government contract; no point of
contact was available at the time of writing. The industry point of contact is:

Michael Smith
Computational Logic
1717 West 6th, Suite 290
Austin, TX 78703
(512) 322-9951

17.5.4 Security Analysis of Ada Programs

Electronic Systems Division (ESD) is sponsoring a two-phase effort. The first phase

is studying the security analysis of Ada programs. The second phase, anticipated to
begin in early 1988, will develop an automated proof of correctness for Ada programs,
using an annotated form of Ada as input to the verifier. The annotation language has

not yet been selected. The contractor is CompuSec. The government point of contact
is:

17-12

Lt John N. Molloy

ESD/SYC-2
14 Oak Heart
MITRE Building L
Bedford, MA 01730
(617) 271-5053

17.5.5 Organizations on Formal Methods

The Special Interest Group on Ada, SIGAda, has a Committee on Formal Methods
whose charter is to stimulate the use of formal methods. They are investigating formal
verification, formal semantics, and formal specification languages. The chairperson of
the Committee is:

Richard A. Platek
Odyssey Research Associates, Incorporated
1283 Trumansburg Road
Ithaca, NY 14850-1313
(607) 277-2020
rplatek@Ada20.ISI.EDU

Both the Naval Research Lab and the Institute for Defense Analyses (IDA) sponsors
workshops on Ada Verification. Further information on IDA may be obtained through

Terry Mayfield
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311

(703) 824-5524

17-13

Section 18
Environments

This section discusses the evolution of Ada programming environments. The Stone-
man definition of an Ada environment, the baseline to which most environments are
compared, is reviewed. Several current projects are discussed:

• the Common Ada Programming Support Environment (APSE) Interface Set (CAIS),

• the Software Development and Maintenance Environment (SDME),

• the Software Technology for Adaptable, Reliable Systems (STARS) effort, and

• the Software Life Cycle Support Environment (SLCSE).

Although not all these enviroaments are Stoneman compliant in the strictest sense, they
are all characterized by interesting approaches and tools to support program develop-
ment.

18.1 Stoneman

18.1.1 Definition and Purpose

The Stoneman Document is a recommended standard developed by the Department

of Defense. It was written in 1980 for the purpose of defining the requirements of an Ada
Programming Support Environment (APSE). It was designed to aid the Ada effort by
defining a standard set of development support tools for Ada programmers to use during
the life cycle of Ada programs. The Stoneman definition aids portability in two ways.
First, it provides guidelines and consistency to the development of Ada environments, so
that a development tool meeting Stoneman specifications should be usable in any APSE
that also conforms to Stoneman. Second, the document defines a standard set of tools
and user interfaces so that programs developed in one Stoneman environment can be
transferred (or ported) to another Stoneman environment. Stoneman was intentionally
designed to be very general. It was designed to integrate the software tools existing at
the time as well as to be flexible enough to incorporate tools that would be developed in
the future. The requirements were designed to support Ada applications throughout the

software development life cycle, from requirements definition through installation and

maintenance.

18-1

18.1.2 Structure

Stoneman defines the APSE as being comprised of three major components:

• the database,

• the toolset, and

• the interface.

The information about the Ada development project is stored in the database. It is
the central storage area for the entire life cycle of the project. It must be dynamic enough
to offer sufficient storage area for all of the tools used during a project's life cycle. It

must store objects5 and provide facilities to access and modify the objects. These include
versions, configurations, history preservation, partitions and access controls. Stoneman
requires that the database be as reliable as required for any given project, and that
management reports be produced upon request.

The toolset consists of a series of tools that will be used to develop the Ada ap-
plications, as well as to perform program management and maintenance. The tools are
required to be written in Ada to provide portability. The APSE should always be able
to have more tools added to it.

The Stoneman interface requirements include the interface to the user as well as
the interface between the operating system, the database, and the toolset. The user
interface will permit the user to invoke an individual tool in the toolset.

The Stoneman Document defines an APSE as having two levels, the Minimal Ada
Program Support Environment (MAPSE) and the Kernel Ada Program Support En-
vironment (KAPSE). The APSE was defined this way to provide the most portability

possible.

The K \PSE provides the interface to the host operating system. It contains the
database and provides the communication and run-time support functions. The interface
between the KAPSE and both the MAPSE and the APSE is machine independent to
promote tool portability. Through this architecture, the tools from the APSE and
MAPSE may be ported to another host operating system with only the KAPSE needing
to be modified. The KAPSE does not have to be implemented in Ada. It can take
advantage of the host machines operating system, filing system, etc.

In the "onion" diagram in Figure 1, the MAPSE sits on top of the KAPSE. The
MAPSE is comprised of the minimum set of tools that are necessary and sufficient to
develop and maintain Ada programs [Sto80]. In essence the MAPSE is an APSE, and

5In the Stoneman Document an object has a name by which it may be uniquely identified in the
database. The object has attributes and contains information.

18-2

Figure 1: Stoneman APSE Diagram
18-3

it must meet all of the requirements defined for an APSE. Stoneman requires a MAPSE

to have the following:

• Text Editor,

• Pretty-printer,

• Translator,

• Linker,

• Loader,

• Set-use Static Analyzer,

• Control Flow Static Analyzer.

• Dynamic Analysis Tool,

• Terminal Interface Routines,

• File Administrator,

• Command Interpreter, and

• Configuration Manager.

A MAPSE just supports basic text manipulation functions, where a more developed
APSE might offer a much wider range of facilities. The Stoneman Document suggests
that an APSE might support:

• Requirements Specification,

• Overall System Design,

• Program Design,

• Program Verification, and

• Project Management.

18-4

18.1.3 Current Use of Stoneman

Originally the DoD funded two development efforts, the Ada Language System
(ALS) and the Ada Integrated Environment (AIE), (see Edition 1, Section 6.2). Only
the ALS was completed to become a full Stoneman APSE, and it is viewed as an ex-
perimental prototype rather than a production environment. The AIE, was redirected
to concentrate on the compiler. Many Stoneman requisites require tools to update or
check the database, causing the support tools to be slow. For this reason and because

of the government's recent push towards non-developmental items (NDI)6, Stoneman is
viewed more as a guideline than a standard.

In general, the MAPSE is not discussed as being a required part of an environment,
since it is actually an APSE. When the minimal requirements for an APSE are discussed,
often only a subset of the tools required for the MAPSE in Stoneman are named. The list
usually only contains the tools necessary to write, compile and execute an Ada program,
such as in the following list:

• Text Editor,

• Translator,

• Linker/Loader,

• Debugger, and

• Compiler.

18.2 CAIS

As described in Edition 1, Section 3.4, of the Program Office Guide to Ada, the
Common APSE Interface Set (CAIS) is being designed to permit consistency between
the interfaces of the various tools that are to be used within an Ada environment. The
CAIS defines the interface between the virtual operating system and the software tools.

The CAIS will be particularly useful for large Ada applications. The set will provide
a standard interface for all of the tools in the development environment. Tools developed
to conform to CAIS will be able to be ported to any CAIS APSE and still work without
code modification. The standard interface will also help with the project database. It
will permit movement of components of project databases between APSEs. The interface
will provide developers with more choices and more flexibility in selecting the tools for

'The NDI push results from the DoD's belief that they are not in the business of developing their
own support tools. The belief is that the DoD should make its requirements known and that industry
will then meet those requirements through their products.

18-5

their project development environment. If changes need to be made in the toolset for a
project, there should be fewer restrictions in doing so.

The interface will not encompass all of the possible interfaces to all operating system

facilities. It is intended to supply common interfaces to the frequently used system
facilities in the widely used operating systems for the purpose of porting tools and
project databases to the various environments. CAIS relies on existing standards for
interfaces. In some areas, interface standards have not yet been defined or are not yet
in a sufficient stage of maturity to be currently included in the CAIS.

18.2.1 Progress on CAIS

The CAIS is being defined in two parts. The first part, known as CAIS DOD-STD-
1838, recently became a standard. There are several efforts developing prototypes of
the interface. The second phase of the CAIS definition is identified as CAIS Revision
A, which upon completion of the standardization process will be identified as DOD-
STD-1838A. At this point, there are no known production programs requiring the use
of CAIS.

The topics that will be covered in CAIS Revision A include:

• Typing of database objects,

• Distributed environments,

• Standard data interchange format,

• Interprocess synchronization and communication, and

• A improved input, output model.

A functionally complete, operational prototype of CAIS Revision A is also being
developed. The prototype delivery date will follow the delivery of the proposed standard
CAIS Revision A, in the second half of 1988. CAIS Revision A will probably complete
the standardization process in 1989. The government point of contact is:

Patricia Oberndorf
Code 423
Naval Ocean Systems Center
421 Catalina Boulevard
San Diego, CA 92152-5000

(619) 225-6682/7401
AUTOVON 933-6682/7401
oberndor@AJPO.SEl.CMU.EDU

18-6

18.2.2 Comparison to Stoneman

The CAIS assumes the general Stoneman definition of the structure of an environ-
ment, namely the existence of the KAPSE between the APSE and the operating system.
CAIS defines the necessary interfaces for this structure. Stoneman was intentionally de-
signed to be general, to permit flexibility. Now that environments have been created
and their interfaces between the various parts differ, it has been determined that an
interface standard is necessary to promote portability and consistency. The number and
types of tools have increased since Stoneman was written, making it is easier to define

the necessary interfaces.

18.2.3 CAIS Implementation Validation

To ensure that CAIS is taken full advantage of, a suite of validation tests is being

developed to test Ada environments to measure how well they conform to the stan-
dard. The tests will be identified as the CAIS Implementation Validation Capability
(CIVC). The philosophy of the CIVC is similar to the ACVC (Ada Compiler Validation
Capability), (see Edition 1, Section 2.2.2).

The CIVC will measure the conformance of CAIS implementations to the require-
ments as defined in the CAIS standards. The CIVC results will aid DoD organizations
in choosing a CAIS implementation that is appropriate for their projects.

The first set of CIVC tests will be based on CAIS DOD-STD-1838. They are

scheduled to be released in December 1988. More tests will be added to incorporate
the interface requirements defined in CAIS Revision A. For more information on CAIS
Implementation Validation Capabilities contact:

Ray Szymanski
Air Force Wright Aeronautical Laboratories
AFWAL/AAAF-2

Dayton, OH 45433
(513) 255-2446
AUTOVON 785-2446
rszymanski@ADA20.ISI.EDU

18.3 SDME

The Software Development and Maintenance Environment (SDME) System is be-
ing developed for the Worldwide Military Command and Control System (WWMCCS)
Information System (WIS). It will support the development and management of WIS

18-7

projects. This will include joint mission as well as service and site-unique software.

[SDME86]

The SDME is being developed on a VAX/VMS system. It is designed so that

porting to standard WIS equipment, which has not yet been identified, will be possible.
The SDME will first be ported to a Honeywell DPS8, the hardware currently in use
at VVWMCCS sites. There is also a possibility of a future effort to port it to either a
IBM/MVS system or a DEC-20 system. On all systems it will operate in one of two

modes: a Local Area Network (LAN)-integrated mode, or stand-alone mode.

18.3.1 Structure

The SDME is designed to be portable. It interfaces with a host machine's operating
system, compiler and linker. It is a collection of user tools to aid programmers in

producing reliable, quality software. There are also tools to aid administrative and
managerial personnel in the directing and tracking of WIS projects. The SDME has an
on-line help facility to assist users in using the system.

The capabilities of the SDME include program management, configuration manage-
ment, a Constructive COst MOdel (COCOMO) tool7, and a time line management tool.
The SDME will provide users with the general tools such as an editor, a debugger, and
a pretty printer. Other features of the SDME will include a tool to perform standards
checking on Ada source code and design language files, and a tool to generate quality
metrics about either Ada source code or design language units.

Some of the tools are adapted from the set of Naval Ocean Systems Center (NOSC)
tools (see Edition 2, Section 14.2). The first phase of the project reviewed the tools in
the Ada Repository and determined which would be applicable for the SDME. Then the
tools were selected, modified as necessary, integrated, and hosted on the VAX.

At this time the SDME has not been ported to another system, but is scheduled to
be rehosted on the Honeywell DPS8 in February 1989. The point of contact for further
information is:

Capt James B. Hogan
Headquarters
Electronic Systems Division

ESD/SYW-2P1
Hanscom AFB, MA 01731-5000
(617) 377-4754
AUTOVON 478-4754

hogan@MITRE.ARPA

7From the Ada Repository.

18-8

18.4 STARS - Environment Products

In order to fulfill the goals of promoting the development of quality, reliable, reusable
software, STARS is sponsoring different classes of software projects: applications, en-

vironments, and new technology. The STARS Program Management Plan [PMP86]
outlines the capabilities it seeks for each of these areas. Sections 19.2 and 21.2 of this
edition discuss tools-related efforts. This section focuses on the environment component

of the STARS plan.

STARS will sponsor several software engineering environments, both prototype and
fully operational versions. These environments will address different problem domains.
The fundamental principle driving the environments is a "software-first" approach to
system development. Consistent with the trend towards non-developmental items, these
environments will be characterized by the use of standard interfaces, the integration of
commercial software packages, and the adaptation of reusable components. The software
development language will be Ada.

The STARS environment effort embodies some of the Stoneman ideas in the range of
functionality required. It differs significantly from Stoneman, however, in the underlying
structure of the system. Stoneman describes a layered architecture, whereas the STARS
Software Engineering Environment (STARS-SEE), like the SDME, takes advantage of
the host operating system and its resident tools (e.g., compilers, file system manager,
editors, etc.). The STARS-SEE description in [TPP86] lists "invariant principles" with
which the environment must comply. These principles create a framework in which:

• Ada plays a key role, both as implementation language and basis for command
language,

• commercial software must be ustd wherever possible,

• support for reusability, configuration management, and program management must
be provided,

• communications with geographically distributed systems must be supported,

• standard interfaces must be used for graphics, databases, networks, etc., and

• system overhead and response time must be reasonable.

The STARS environment procurement is underway. Current plans call for fielding
three prototype environments by the end of government fiscal year 1988 and three pro-
duction quality environments by the end of fiscal 1991. The prototypes will be subject
to peer review and evaluation [TPP86]. Further information on STARS is available

through:

18-9

Col Joseph S. Greene, Jr.

Director, STARS
STARS JPO
Office of Secretary of Defense
OUSDRE (R&AT/CET), The Pentagon, Rm. 3E114
Washington, DC 20301
(202) 694-0210

18.5 Software Life Cycle Support Environment

The Software Life Cycle Support Environment (SLCSE) is designed to support Mis-
sion Critical Computer System (MCCS) software. The SLCSE provides a user interface
and project database which act as the framework for the system, with which an almost
unlimited number of software tools may be integrated. It is designed to be methodology
independent so that tools that support different software engineering methods may be
used with the system. This would give a user greater flexibility in choosing software,
such as off-the-shelf tools or those tools designed for the SLCSE.

Besides supporting software development in Ada, it also supports FORTRAN,
JOVIAL J73, COBOL, and PROLOG. The host configuration for the SLCSE consists

of several DEC VAX/VMS8 computer systems, DEC VAXStation II9 workstations, and
a Britton-Lee Intelligent Database Machine. A delivery of an advanced development
prototype is due in August 1988.

The user interface is a menu-driven, multi-windowed interface which must be used
to interface with the various tools. There will also be several on-line facilities to assist
users. These on-line facilities include a help facility, an advice facility, and a training
facility. The database is the central repository for the data collected from the use of the
various tools. The collection and management of the data will be performed automati-
cally. The system will be able to generate automatically DoD standard documentation
and specifications. The system will be able to estimate the effect of a change to the
requirements, design, or code of the developed software.

The point of contact for further information pertaining to the Software Life Cycle
Support Environment is:

Frank S. LaMonica
RADC/COEE
Griffiss Air Force Base, N.Y. 13441

(315) 330-2054

8 VAX/VMS is a trademark of the Digital Equipment Corporation.
'VAXStation is a trademark of the Digital Equipment Corporation.

18-10

AUTOVON 587-2054

lamonica@RADC-SOFTVAX.ARPA

18.5.1 SLCSE Tools

Two of the tools under development for the Software Life Cycle Support Environ-
ment are the Automated Measurement System (AMS) and the Ada Test and Verification
System (ATVS).

The Automated Measurement System (AMS) provides tracking capabilities of re-

sources used and the quality of the software being developed. Development estimates
are entered into the system and then updated through the life cycle of the project. The
AMS provides reports on how the project is progressing in respect to the goals input in
the system by the manager.

The AMS collects data manually and automatically. A forms manager provides a
format for manual data collection. Currently automatic data collection for the require-
ments and design phases is limited to two off-the-shelf tools, the Requirements Speci-
fication Language/Requirements Engineering Validation System (RSL/REVS) and the
Software Design and Documentation Language (SDDL). For both the Ada and FOR-
TRAN development cycles, there is automatic data collection.

The AMS analyzes the collected data, and through the AMS Report Generator,
shares the information with the user. The project goals that are not being met are
identified on bar graphs, permitting possible quality problems to be identified.

The AMS was delivered in February 1987 on a DEC VAX/VMS system. It is written
in FORTRAN-77. The point of contact for further information is:

Roger J. Dziegiel, Jr.
RADC/COEE
Griffiss Air Force Base, NY 13441
(315) 330-2054
AUTOVON 587-2054
dziegiel@RADC-SOFTVAX.ARPA

The second tool that will be part of the SLCSE is the Ada Test and Verification
System (ATVS). It can be used during coding, testing and maintenance. The ATVS
checks the source code to make sure it is in accordance with the MIL-STD-1815A.
When this is verified it can perform static and dynamic analyses on the code. Static
analysis can be performed on the program without executing it, unlike dynamic analysis
which requires the program to be executed. Besides the error checking provided by a
compiler, the ATVS can also perform:

18-11

• Program standards checking,

• Software quality measurement data collection, and

• the Generation of reports.

In addition to being a component of the SLCSE, the Ada Test and Verification
System will also have a stand-alone version. It is scheduled to be delivered in August
1988. For further information contact:

Deborah A. Cerino

RADC/COEE
Griffiss Air Force Base, NY 13441
(315) 330-2054
AUTOVON 587-2054
cerino@RADC-SOFTVAX.ARPA

18-12

Section 19
Tools

Many tools have been discussed in the previous two editions of the Program Office
Guide to Ada.

More tools are being developed all the time, some as parts of other tools or envi-
ronments and others as stand-alone tools. When the language effort was just beginning,
major tool development emphasis was on compilers, linkers, debuggers, etc. Now as Ada

is becoming established and the use of Ada is increasing, more diverse tools are being
developed. At the moment, many of the more sophisticated tools are in prototype form.

Research is ongoing in tools to aid in the development of affordable and reliable soft-
ware. Tools that verify software against project coding standards are being investigated.
Tools that generate code from various design methodologies are becoming available (see
Edition 2, Section 8.4). Since Ada was designed to be portable and, hence, reusable
on various systems, it is no surprise that there are several ongoing projects to develop
reusable software component libraries [Tra87]. Two existing commercial libraries and
a public-domain library were discussed in Edition 2, Section 14. Recently, interest has
developed in targeting many existing computer-aided software engineering tools to Ada,
as will be discussed in Section 21.

The following sections describe two prototypes. The first is the Interactive Ada
Workstation which is designed to improve programmer productivity in the development
of Ada code. The second section addresses the scope of the STARS effort. The third
was an effort to automate the process of developing software, from high level design to

a template for Ada code.

19.1 Interactive Ada Workstation

19.1.1 Description and Purpose

The Interactive Ada Workstation (IAW) is a prototype of a software engineering
workstation. The system is designed to improve programmer productivity to help meet
the DoD's need for less expensive mission critical software. The system supplies tools
that permit the programmer to spend more energy on correct design development and
less on worrying about syntactic errors. This is accomplished by providing the user
with editors that can be used to represent the design in graphical or tabular form. The
designs are verified, and then Ada code is automatically generated.

The IAW is being developed in a series of seven prototypes. Different parts of ihe
IAW are developed with each prototype. The prototypes are then tested and suggestions

19-1

for improvement are made.

The IAW encourages the use of rapid prototyping as a software development tech-
nique [Mar87]. The programmer can create working prototypes of sections of the software

throughout the development effort but, in particular, early in the project. This permits
testing and interaction with the users. Prototypes of user interfaces which a user can
test and evaluate are important because it is often difficult for a user to visualize and
describe his needs. Moreover, a user will recognize what he does not like or need. User

requirements often change, and a development system which supports rapid prototyping
allows both user and implementer to assess the success and impact of such changes.

19.1.2 Structure

The IAW can be broken down into three main groups:

• Host environment support,

• Program development tools, and

• Program support tools.

The host environment for the prototypes is a Symbolics 3600 LISP machine. This
system was chosen to take advantage of the LISP tools in providing the Ada Program-
ming Support Environment (APSE).

The tools for program development will include several editors that support various
design methods: graphical, spread-sheet, and syntax directed. These editors will gener-
ate Ada code. The generated code can be tested and presented to the user to determine
if the design is meeting the project requirements. Tiis method will allow the program-
mer to test the design early in the project and to go through numerous iterations of the
design process.

Program development tools that will be included in the IAW are listed below.

• BRAT Diagram Editor:

The BRAT Diagram Editor is based on the design methodology developed by Dr.
R.J.A. Buhr. This editor is used for doing hig 1 level system design.

• State Diagram Editor:

With the State Diagram Editor the user can graphically represent states of the

program software and transitions between the states. The diagram can be tested
by defining the conditions which cause transitions between states, input values for
the conditions, and expected output values.

19-2

• Decision Table Editor:

The Decision Table Editor allows the user to represent each state in a table, with a
set of conditions, rules and actions. As with the State Diagram Editor, the design
can then be tested.

• I Ada Editor:

The IAda Editor is a syntax-directed editor which will allow the user to write a
program without using one of th«; other editors. It can also be used to modify the
output of the other editors.

• IAda Interpreter/Debugger:

The IAda Interpreter/Debugger provides the user with a way to execute and debug
the IAda code generated by the various editors. The program can be stepped
through, and the program variables can be examined.

The Program Support tools planned for the IAW are listed below.

• Entity Manager:

The Entity Manager is responsible for the organization and maintenance of the
project database. The user will be able to retrieve information from the database
from any point in an IAW session [Mar87].

• Smart Librarian:

The Smart Librarian task is solely a research effort, whose goal is to use expert
system technology to identify reusable software components based on requirements
provided by the user. There will be several versions of limited scope of the proto-

type Smart Librarian developed.

• Smart Help System:

The Smart Help System will be an on-line help facility, with the goal of eliminating
the need for users to search through manuals. Using expert system technology,
the system will help the user choose the appropriate command or sequence of
commands.

19.1.3 Current Status

At the time of writing, the third of seven prototypes of the IAW was completed

in May 1987. Delivered with the third prototype were the BRAT Diagram Editor, the
State Diagram Editor, the Decision Table Editor and the IAda Editor. The IAda Editor

is working for a 40% subset of Ada.

19-3

The IAda Interpreter/Debugger is planned to be delivered for the fourth prototype,
for the current 40% subset of Ada. The first version of the Smart Librarian is also

scheduled for the fourth prototype.

19.1.4 Comparison to Stoneman

The I AW contains the three major parts of an APSE: a database, a toolset and an

interface, as defined in the Stoneman document. However, it does not conform to all of
the other requirements. There is a strong reliance on the LISP-oriented environment on
the Symbolics 3600, primarily because the tools are written in LISP. For this reason the
IAW is not readily portable. However, future plans include converting the IAW code to

the "C" programming language and re-hosting the system to more widely used systems,
such as the VAX, Sun, Apollo, etc.

The IAW, also, does not provide a compiler. It is meant to aid programmers in
developing Ada code which then would be compiled elsewhere. In lieu of the compiler,
the IAW provides an interpreter which performs syntactic and semantic checks on the
IAda code. The IAda code is executed by the interpreter, allowing the user to see the
effects of changes dynamically. In a compiler based system, the user would have to
recompile, relink, and re-execute the source program.

The IAW provides powerful design tools to facilitate and automate the development
of Ada software. Some applications may ultimately need to be run on a machine other
than the IAW host. The user can port the IAda source code to another host which
would provide tools for compilation and execution. (This step could be done through
communications software or magnetic tape transfer.)

The point of contact for further information is:

Lt Robert Marmelstein
AFWAL/AAAF
Air Force Wright Aeronautical Labs
Wright-Patterson Air Force Base, OH 45433-6543
(513) 255-6548/3947
AUTOVON 785-6548/3947

rmarmelstein@ADA20.ISI.EDU

19.2 STARS - Technology Development

Technology development is part of the STARS research and development activities.
The STARS plan calls for developing reusable Ada components to support a software-
first approach [PMP86]. These components will be designed with the objectives of

19-4

Computer-Aided Software Engineering systems in mind (see Section 21.2). The tools

will be made widely available in a software repository. Initially the tools will be in the
Ada repository on the Simtel-20. (See Edition 2, Section 14.2.) Software capabilities
are described in terms of a common software base or foundation. The foundation areas
identified in which to develop Ada building-block components include:

• Ada as a common command language,

• Software Design, description and analysis tools,

• Text processing,

• Database management systems,

• Operating systems,

• Planning and optimization algorithms,

• Graphics support,

• Telecommunication and network protocols, and

• Other components that comply with STARS program objectives for virtual inter-
face support and machine independent applications.

STARS and the Naval Research Laboratory have awarded 32 contracts to develop
Ada programs in these "foundation" areas [FCW87]. See Sections 18.4 and 20.2.3 for
further information on the STARS program.

19.3 Requirements to PDL Tool

This project investigated a reliable technique for performing the transition from high
level design activities to detailed design and coding activities. The effort focused on cre-

ating a prototype to generate automatically Ada Program Design Language (PDL) from
a high level design expressed in IDEF0, the Air Force's Integrated Computer-Aided Man-
ufacturing (ICAM) Definition Language. IDEF0 is a subset of SADT10 (Structured Anal-

ysis and Design Technique), is a graphical engineering methodology developed specifi-
cally for defining requirements and design. The transformation implemented a method
for mapping an IDEFo description into Ada PDL, developed during a Reusability Study
for the Army Information Systems Engineering Command (ISEC).

The IDEFo design method provides a highly modular system decomposition. An
IDEFo model contains two kinds of information; activities, and the data relationships

10SADT is a registered trademark of SofTech, Inc.

19-5

between the activities. The transformation method uses explicit information in the

syntax of the IDEF0 diagrams to create the initial Ada PDL package specifications.
The more implicit information in the semantics of the IDEFo diagrams is used to refine
these specifications and to produce the Ada package bodies. Figure 2 shows an IDEF0

diagram and the corresponding PDL generated by the prototype.

A prototype tool was developed by MITRE [MlrC??], during the SAda project, that
supports user creation of SADT diagrams on an IBM PC. This tool prototype was used

as the front end for the automation process of generating PDL from an IDEFo diagram.
Enhancements were made to generate Ada PDL from the diagram drawn on the MITRE
prototype [HVR??]. This new prototype system produces generic templates of Ada code

based on the syntactic content of the source diagrams. Refining these templates, based
upon the relationships implicit in the diagram, has been left for future efforts.

19-6

a §
• a

I •

1.
S ii

c*
<•)

a 3,
• . 8
• r

i . A
!

j !
«v

4 *
S
i 1
s !

• M

u <
K

1
•

\ E

1
(
2

C
O

O
R

D
IN

A
TE

A

C
TI

O
N

S
 1

4*

1}
It A

,

n
i

a:

i

Ul

U
U
a
•
u

•
(X

a
u
a
<

<

o
<
(•>

<
I—

5

Figure 2: Top Level IDEFO Design Model
19-7

WITH tbd;
WITH C0ORDINATE_ACTI0NS;
WITH TRACK;
WITH REPORT;
PACKAGE TRACK_AND_CONTROL_RESOURCE IS

PROCEDURE Set_information_requests(information_requests:
information_requestsJType);

PROCEDURE Get_resource_facts(resource_facts: resource_facts_Type);
TYPE database_Com is private;
PROCEDURE Set_action_requests(action_requests:

action_requests_Type);
PRIVATE

TYPE database_Com is
record

database: database_Type;
database: databaseJType;

end record;
END TRACK_AND_CONTROL_RESOURCE;

generic
type action_requests_Type is private;
type automatic_action_requests_Type is private;

package COORDINATE_ACTIONS_Template is
PROCEDURE Get_database(database: databaseJType);
PROCEDURE Set_action_requests(actions_requests:

action_requests_Type);
PROCEDURE Set_automatic_action_requests

(automat ic_act ion_requests:
automat ic_act ion_requests_Type);

end COORDINATE_ACTIONS_Template;

generic
type Unknovn_type is private;

package TRACK JTemplate is
PROCEDURE Get_resource_facts(resourse_facts: resource_facts_Type);
PROCEDURE S!et_Unknown(Unknown: UnknownJType);

end TRACK_Template;

generic
type information_requests_Type is private;
type exceptions_Type is private;

package REPORTJTemplate is
PROCEDURE Set_information_requests(information_requests:

information_requests_Type);
PROCEDURE Get_Unknown(Unknown: UnknownJType);
PROCEDURE Set_exceptions(except ions: exceptionsJType);

end REPORTJTemplate;

Figure 3: Prototype Translation of AO into Package Specification
19-8

Section 20
Interfaces

This section describes some of the issues and efforts involved in interfacing Ada
with non-Ada software. Ada's overall philosophy and approach to interfaces are dis-
cussed. Specific examples are given for commercially available software packages such as

Database Management Systems (DBMSs) and Fourth Generation Languages (4GLs).

20.1 Ada Approach to Interfaces

This section discusses Ada's philosophy towards interfacing Ada software with non-
Ada software. Section 20.1.1 describes the history and rationale for Ada's philosophy
and 20.1.2 describes current interface approaches being taken.

20.1.1 History and Rationale

Historically, Ada was intended to be used in real-time embedded military applica-
tions. The intent was for the entire software system to be written in Ada with some
minimal interfacing between the application software and the hardware or some small,
special-purpose, non-Ada software.

For the purpose of interfacing Ada applications to non-Ada software, the language
provides distinct features such as pragma Interface and code procedures. Pragma Inter-
face allows an Ada programmer to call non-Ada program modules as if they were Ada
subprograms. Code procedures are Ada procedures which contain actual machine code.
Along with these features, Ada specifies semantic rules governing their use. These rules
are intended to preserve the spirit of the Ada language by supporting encapsulation,
modularity, information hiding, and portability.

In theory, using these language features, Ada can interface with any non-Ada soft-
ware. The difficulties arise in two areas:

• these language features are compiler dependent; the compiler may choose the lan-
guages it supports for interfacing, and

• Ada does not address interfacing with entire subsystems directly; using pragma In-
terface for each subsystem provided operation will prove unwieldy and disorganized
for the programmer.

Recently Ada is being used in non-embedded military applications such as informa-
tion systems. Through use in these applications, we are recognizing a need to interface

20-1

with Commercial Off-The-Shelf (COTS) software such as graphic packages, database
management systems, and knowledge-based expert systems. This is a major area of
research for the DoD. The Ada Board has created a new panel which will study Ada

Technology and Standards. The chairperson is:

Bill Carlson
Intermetrics, Inc.

4733 Bethesda Ave.

Suite 415
Bethesda, MD 20814

Part of this panel's efforts will be directed at studying Ada bindings to other languages.

20.1.2 Proliferation vs. Standardization

A major theme that has applied throughout the Ada effort is the emphasis of defin-
ing and adhering to standards. This theme applies as well to the area of interfacing Ada
to non-Ada software. The goal is to avoid the development of several different inter-
face approaches, all of which work and have merit. Having several different approaches
severely limits the portability and independence of the software that is developed using
a non-standard interface approach. The Ada software will only work with non-Ada soft-
ware that interfaces using the same approach. Therefore, in order to change, upgrade
or replace the non-Ada software, the Ada software must be modified as well. Using a
standard interface avoids this problem.

Current research in the area of interfacing Ada with non-Ada software systems
stresses the use of existing standards upon which Ada language interfaces, or bindings,
are developed. The emphasis here is in adopting an existing industry standard, if one
exists, for the standard Ada interface rather than developing a new interface standard
just for the Ada language. The advantages of this approach are:

• Programmers who have written non-Ada software which interfaces to software

packages using the standard interface will not have to learn a new interface.

• The Ada application software will be independent of the non-Ada software package
so long as it adheres to the standard interface. The non-Ada software package can
be replaced with another software package that performs the same operations and
supports the standard interface without modification of the Ada software.

• Vendors who already support the industry standard for other languages will expend
less effort to support the interface standard for Ada.

20-2

20.2 DBMSs and Ada

This section describes some of the issues involved in interfacing Ada with COTS
DBMSs. Subsection 20.2.1 describes the interface approaches and issues involved. Sub-

section 20.2.2 contains specifics on the Ada/SQL (Structured Query Language) Proposed
Binding. Section 20.2.3 lists some ongoing efforts in defining an Ada/DBMS interface.

20.2.1 Description and Purpose

The goals of interfacing Ada with a DBMS are similar to the goals of the Ada effort
itself— to reduce implementation and maintenance costs through the use of standards,
and to encourage maintainability, portability, and reusability. By interfacing through
a standard interface, the Ada programs will be independent of the underlying DBMS
which actually provides database support.

The issues of interfacing Ada to DBMSs are currently receiving attention. There
are several approaches that are being considered. In the three approaches mentioned
here, SQL is the basis for the interface. SQL is well known, well supported by DBMS
vendors, well documented, and is also an ANSI standard.

The first approach is the preprocessor approach. This approach is currently in use in
industry. In this approach, the programmer embeds SQL statements in the application
program code. Prior to compiling the application, it is submitted to a preprocessor
which translates the SQL statements into source code which will interface directly with
the DBMS.

Although this approach does not meet with favor within the Ada community because
the source code is no longer pure Ada, it is the approach that is currently supported
by at least three DBMS vendors. These are Oracle Corporation's Oracle11 DBMS,
Relational Technologies' Ingres12 DBMS, and Software AG's ADABAS DBMS. Each of
these DBMSs supports an SQL or SQL-like interface to Ada.

In the second approach, which finds more favor in the Ada community, the SQL
statements are Ada procedure calls. They follow the SQL syntax as closely as the Ada
syntax will allow. The Ada/SQL procedures are contained in an Ada package, and
the actual interface to the DBMS is contained in the package body, thus supporting
encapsulation and information hiding. This is the approach taken by the Ada/SQL
Proposed Binding.

A third approach is referred to as the module approach. This approach would keep
the SQL and Ada code fairly separate. All of the SQL calls would be in SQL modules,
and compiled separately. The Ada programs would use the pragma interface to call the

11 Oracle is a registered trademark of the Oracle Corporation.
12Ingres is a trademark of Relational Technology, Inc.

20-3

SQL routines. If there were changes made to the database, it is possible that the Ada
application would not have to be recompiled.

20.2.2 Ada/SQL Proposed Binding

The proposed binding has two parts: the Data Definition Language (DDL) and the
Data Manipulation Language (DML). The DDL describes the data in a form that both
the application program and the DBMS can accept. The DDL:

• is standard Ada,

• may be translated into the DDL used by any underlying DBMS, and

• contains augmented information that can be used to generate test data automati-
cally.

The DML are commands such as select, fetch, open, etc. Although standard
Ada, the DML is also similar to SQL syntax. This provides all the power and flexibility
of both the Ada language and SQL. Major portions of the system described in the paper
ADA/SQL: A Standard, Portable Ada DBMS Interface, [F&B86] have been implemented
on a prototype basis to prove the feasibility of the approach. An Ada/SQL Working
Group was formed in early 1987 to participate in reviewing the proposed binding and
in discussing technical issues. The chairperson of this group is:

Bill Brykczynski
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
brykczyn@AJPO.SEI.CMU.EDU

20.2.3 Current Ada/DBMS Efforts

The following companies were listed in Federal Computer Week [FCW87] as those
companies the DoD has chosen to do DBMS work for Ada. The funding source for
these efforts is the DoD's Software Technology for Adaptable Reliable Systems (STARS)
program and the Naval Research Lab.

• Stanford Research Institute, Menlo Park, Ca., for a DBMS supported information
management system.

20-4

• Grumman Data Systems, Woodbury, N.Y., for an Ada/SQL test generator DBMS.

• Computer Sciences Corporation, Falls Church, Va., for transparent sequential in-
put/output support.

• SAIC Comsystems, McLean, Va., for an Ada report production system.

• Unisys Corp., Paoli, Pa., for reusability library framework.

The WIS (World Wide Military Command and Control System (WWMCCS) Infor-
mation System) effort has been heavily involved in the Ada/DBMS interface effort. WIS
provided the original support for the development of the Ada/SQL Proposed Binding.
They have also funded Computer Corporation of America, Cambridge, MA to imple-
ment this binding for their DBMS Model 204. Further information may be obtained
from:

Lt Col Terry Courtwright
WIS JPMO
Washington, D.C. 20330
(703) 285-5067
court@MITRE.ARPA

20.3 4GLs and Ada

There two ways in which Ada and fourth generation languages (4GLs) interact.

The first way is in using 4GLs, such as program generators, during the production of
Ada programs. This is discussed in Section 20.3.1. The second way is in interfacing Ada
applications to expert systems. This was discussed in Edition 1, Section 7.2.

20.3.1 Program Generators

4GLs such as program generators are widely used in industry and DoD for languages
such as FORTRAN and COBOL. Demand for such tools for use in developing Ada
programs is increasing. This raises some issues that are currently being researched:

• A program generated by a 4GL may not take full advantage of the features of the
Ada language,

• The 4GL may produce unmaintainable code, and

• The 4GL may produce slow or inefficient code.

20-5

The above points will be especially true of programs generated by translating a

program written in some other programming language. In general the quality of the
Ada code produced will depend on the quality and intelligence of the 4GL tool.

The advantage of these tools is that less development time will be necessary and

there will be less development cost. Industry sentiment tends to favor the development
of these tools for Ada so long as they produce maintainable Ada code.

Some examples of efforts being made in this area are:

• In the area of network protocol prototype, WIS is supporting the specification of
a tool which will automatically generate Ada protocol software. [ABB86]

• Research from Bradford University, England includes a dialogue development sys-
tem for the Ada programming language which supports the production of multi-
level adaptable interfaces. [B&R86] The system, ADDS (Ada Dialogue Develop-

ment System), is designed for and implemented in Ada. In addition, development
tools are provided that enable dialogue specific software to be automatically gen-
erated from the constituent specifications.

20.3.2 Artificial Intelligence and Ada

Due to projects such as the Strategic Defense Initiative (SDI), the DoD is recogniz-
ing the need to use artificial intelligence (AI) in their applications. Current literature
and industry belief range from "Ada is better than LISP for AI applications" to "Ada
cannot cut it in the AI arena."

It is argued that any language can be used for AI applications. The issue is not
necessarily "Can Ada be used?" so much as the issue "Is using Ada more cost effective?"
Questions such as, "If it takes twice the time and cost to implement, but is far easier
to maintain and debug, then is Ada better?" are being asked. Edition 1, Section 7.2
explored these topics.

There are several important technical issues to be evaluated when deciding whether
Ada can handle a particular AI task. Some of these are: representation of parallelism,
object oriented programming, and program verification and validation.

Massive parallelism is seen as a way to achieve the type of computational power
required for many advanced forms of artificial intelligence. Ada with its tasking feature

has a built-in method for specifying parallel operations, a needed capability. Active
research is investigating very promising alternate methods for representing parallelism.
In the future, it may be advantageous to adopt one of these alternate models for the
construction of new AI software.

A central concept in today's AI world is object oriented programming. This ap-

20-6

proach is best known in terms of Smalltalk and LISP Flavors. There are three major com-

ponents to an object oriented programming language: data abstraction, inheritance13,
and program elements as objects. Ada supports data abstraction very well, but its sup-
port of inheritance and program elements as objects is awkward. Ada provides only
a limited capability in order to strike a balance between the power of these concepts

and their ability to introduce large numbers of errors into an application. Ada provides
the capability to pass operations and data onto dependent or "child" packages, but the
language requires the developer to specify exactly what is to be passed and how it is to
be used. This is extra effort but avoids many errors.

The last issue is validation and verification of an AI system once it is built. This
is the process of ensuring that, in a military environment where Expert Systems are

used, the software does its intended job correctly. This task is not easy. Verification of
programs written in Ada is very complex (see Edition 3, Section 17). The typical AI
languages such as Smalltalk or LISP with Flavors are far more difficult. These languages

are not strongly typed; in fact LISP allows dynamic binding of symbols to objects of
varying type. The scope of symbol binding in LISP is not limited by lexical scope.
Procedures can be passed and modified as data before execution. Industry belief is that
if systems written in Ada cannot be verified and validated, then systems written in a
language such as LISP are even less likely to be verified and validated.

AI applications span many areas including robotics, natural language, machine

vision, speech synthesis, knowledge representation, and expert systems. Efforts, to date,
are mainly underway in the area of interfacing Ada with AI Expert Systems. A synopsis
of these efforts follows.

Sirius, Inc. has developed ALICE (Ada/Lattice Integrated Conceptual Environ-
ment). ALICE is a set of tools written in Ada to extend and annotate Ada for AI.

The Knowledge-Based Maintenance System (KNOMES) prototype [BRF86] for the
Remote Manipulator System (RMS) of the NASA Space Station Mobile Service Center
was built from a software architecture based on Ada tasking and packaging. "Each mod-
ule in the system contains Ada packages of standard systems services, which interface
with an artificial intelligence knowledge-based system (AI/KBS) language component
that performs knowledge-based reasoning." By using Ada as the fundamental structure,
a well-structured, maintainable program was produced; by retaining the AI/KBS lan-

guage component, a system able to capture the knowledge needed to solve ill-structured,
dynamic, and/or non-algorithmic problems was produced.

''Inheritance describes the ability of passing procedures and operations on a given object to new data
objects derived from the first one. A new data object may inherit from one or more parents depending
on the language.

20-7

20.4 Graphics and Ada

In the area of interfacing Ada to graphic systems, the same software engineering
issues apply. The interface standard being adopted for Ada is the Graphical Kernel
System (GKS), an ANSI standard. This standard is currently used in industry and
supports applications written in other languages such as FORTRAN. Commercial and
research efforts in the Ada/GKS interface area are underway. For example, Software
Technology Inc., Melbourne, Fla., is devising an Ada binding to GKS [FCW87]. In beta
tests, this binding has already proved workable in Ada and is reported to execute almost
as fast as FORTRAN.

A Master's thesis at the Air Force Institute of Technology [Han86] reports that
"an abstract interface with a graphical environment was accomplished." The system
contains two graphics programming environments. The first used pragma Interface to

achieve access to a FORTRAN library of GKS commands. The second was implemented
through calls to the first and focused on creating and displaying graphics data.

The WIS effort is also supporting the development of the WIS Graphics Systems.
[FHD86] This provides an interface which will enhance the productivity of both develop-
ers and users of applications operating within the WIS environment. The specifications
for this system were developed by experts in the computer graphics field.

20.5 Other efforts

According to [FCW87], the DoD also expects to fund work on developing an in-
terface with X Windows, as proposed by Science Applications International Corp., San
Diego, CA. X Windows technology was developed by researchers at the Massachusetts
Institute of Technology and is software available in the public domain. An interface to
X Windows for Ada aids in the development of state-of-the-art workstations for Ada
engineers.

20-8

Section 21
CASE (Computer-Aided Software Engineering)

Today, a new software technology is beginning to emerge, based on the personal
workstation equipped with Computer-Aided Software Engineering (CASE) tools (often
used on a network with a mainframe providing the needed coordination between worksta-
tions). It provides a combination of software tools and methodologies that facilitate an
automated discipline for software development, maintenance, and project management.

21.1 Description and Purpose

Using a computer to aid software development has been a goal of researchers al-
most since the computer was invented. Many substantial advances in productivity have
resulted from application of computer resources to specific aspects of software develop-
ment (e.g., compilers). Since the early to mid 1970s some researchers have worked on
the concept of an integrated set of computer tools supporting the entire software life
cycle. Some of these early efforts focused on the development of real-time embedded
systems (TRW - SREM, DCDS; Teledyne Brown - TAGS), but the majority focused on
the management information system world (Yourdon, etc.).

In the mid to late 1980s the expanding power and lower price of personal workstation
hardware brought a new popularity to these ideas. There was a simultaneous change in

the integrated methods themselves. These changes were caused by a combination of more
sophisticated host machines (i.e., powerful workstations), and new application areas that
combined the properties of real-time and information management applications.

The CASE tools are different from other software tools in that they focus on the
productivity of the individual, professional software developer. They are designed to:

• support a dedicated, personal computing environment,

• use graphics to specify and document software systems,

• link together all phases of the software life cycle,

• capture on the computer all information about an evolving software system from
initial requirements through ongoing maintenance activities, and

• use artificial intelligence to perform many routine tasks automatically.

A CASE System is a set of integrated CASE tools that share a common user inter-
face and run in a common computer environment. CASE systems provide computerized

21-1

assistance for the development, maintenance, and management of software systems.
They differ from earlier programming environments in their breadth of coverage of the

software life cycle.

The objectives of a CASE system are:

• greater overall control of software development and maintenance,

• improved productivity, reduced software costs, and automated project manage-
ment,

• automated software development and maintenance, integrated development steps
and tools, automated generation of software code, and faster software development
process,

• software reusability and software portability across environments,

• automated error checking, reduced number of errors, and improved software qual-
ity, and

• standardized software documentation, automated generation of software documen-
tation, and documentation reusability.

A complete CASE system has the following characteristics:

• graphics interface for drawing structured diagrams,

• information repository for storing and managing all software system information,

• highly integrated toolset sharing a common user interface,

• tools to assist every phase of the life cycle,

• prototyping tools, and

• automatic code generation from design specifications.

An integrated CASE environment is a system thit links, coordinates, and manages
the activities, information, and deliverables that are the critical foundation of software
engineering in a team environment. The CASE environment accommodates specialized
tools through a consistent, friendly interface. It does not necessarily depend on one life
cycle methodology or language but can encompass many of each.

21-2

21.2 Impact on Ada

Many CASE implementers are beginning to realize the potential in the Ada lan-
guage. Ada is the first language designed from the beginning to support software en-
gineering techniques throughout the software life cycle, with not only the language but
also the run-time and programming environments specified. The existence of the Stone-
man definition for the APSE has given an incentive to support the software development

in Ada with CASE systems.

Currently, few CASE tools are targeted to Ada systems. There is a trend developing,
however, for an increasing number of CASE tools available to support Ada development.
Many of the companies that have existing CASE tools are adding an Ada capability to
those tools. This is especially true of those companies whose focus is real-time devel-
opment and those that offer real-time enhancements to their standard packages. There
are also new CASE tools being developed with Ada software as the primary focus.

A cross-section of the tools either on the market or under development include:

BCASE The Bendix Computer-Aided Software Engineering system is an environment
:'or large-scale software engineering based on Ada. It utilizes a knowledge-assisted
graphical editor for capturing and modifying the software designs expressed in a
graphical design language (Ada/GDL).

BYRON 14 The system is a PDL environment with an integrated document generator
and Ada compiler.

IAW The Interactive Ada Workstation develops Ada code from a graphical represen-
tation based on Buhr diagrams. (See Section 18.4)

MAESTRO 15 This system emphasizes the organizational and management aspects of
the software life cycle. It provides a three tier system: the target system where
compilation and testing occur, the departmental minicomputer for coordination
and configuration management, and the development workstation. The Maestro
system provides a very detailed real-time project management and time accounting

system, giving the program manager a detailed look at the latest performance data
on line. This data is collected as part of the standard development procedure and
requires little or no extra effort on the part of the developers. Design methods are

left up to the development organization's unique standards. Maestro does provide
graphics editing, configuration management, standard review cycles, etc., but no
rigorous support of individual methods.

SOFTWARE THROUGH PICTURES 16 This is an open architecture system that
14Byron is a registered trademark of Intermetrics, Inc.
15Maestro is a registered trademark of Softlab, Inc.
lflSoftware Through Pictures is a trademark of Interactive Development Environments.

21-3

allows the definition of graphics specification and design techniques and their trans-

lation into code templates. It comes with several methods already defined includ-
ing: Jackson Data Structure charts, Chen Entity Relationship diagrams, Yourdon

Data and Control Flow Diagrams, Constantine Structure Charts, Transition Dia-
grams, State Transition Diagrams, and a Table Editor.

RULETOOL 1T This is another open architecture tool for graphic methodologies, but
the emphasis is more on the syntax and semantic rules of the methods involved.

Where Software Through Pictures only allows informal rule checking, Ruletool
allows the specification of detailed rules that will be checked by the machine during
an interactive session. Many of the standard methods are predefined as above, but
there are additions such as program management tools and a data dictionary.

RAPID The Reusable Ada Package for Information Management Development consists
of a methodology for the development of reusable software components in Ada
as well as a system for the retrieval of reusable components according to user
specifications.

STATEMATE This system provides a structural, functional, and behavioral view of
a real-time and embedded Ada system. This is a new CASE system developed
for Ada systems (especially real-time). It includes an innovative representation

technique for real-time dynamics as well as support for many of the standard
representation techniques. The first real production version is due to hit the market
in the fall of 1987.

Software Technology for Adaptable, Reliable Systems (STARS) will provide tools
and environments for building Ada programs on a common base. The STARS program
consists of four parts:

• Common Ada Foundations,

• Ada environments,

• Shadow projects, and

• An Ada repository.

The Common Ada Foundation consists of soliciting the development of reusable
Ada software modules. The goal is to provide Ada building block components for several
foundation areas (such as software design, text processing, operating systems, graphics,
etc.).

17Ruletool is a trademark of The CADWARE Group, Ltd.

21-4

The Ada environments consists of building environments based on the Common

Ada Foundation. They will be integrated, adaptable collections of methods and tools.

The shadow projects will use the environments to duplicate existing projects in
order to demonstrate that the STARS methods can produce programs faster, cheaper,
and more reliably than the current methods.

The repository will be an integral part of the STARS program. All deliverables,
including documentation as well as code, will be placed in the repository and made
available to future software developments.

The European Economic Community is sponsoring a CASE tool which is a software
development system based on a denotational semantics metalanguage. (See Sections
17.1.1 and 17.5.1 for a discussion of denotational semantics.) The system has three ma-
jor components: a software project management system, a project graph, and a library
of verified transformations. The nodes in the project graph represent documents, speci-
fications, software modules, etc. Their interconnections are used to show the derivation
or construction of the software. The goal of this CASE tool is to enable less highly

trained personnel to develop more reliable software by underpinning the environment
with the principles of formal methods and verification.

21.3 Environment Standards and CASE

It would be advantageous for future CASE tools to be developed for Stoneman and
CAIS environments (see Section 18 for a description of these system interfaces). This
would help solve some of the major problems faced by the users of CASE tools today.
Some of the biggest problems are:

• There is no interoperability between CASE tools,

• CASE tools cannot be easily transported between processing environments, and

• Many CASE tools cannot support the networking or multi-tier environments re-
quired for coordination between developers.

These are precisely the problems addressed by the Stoneman and now by CAIS.
As Ada becomes a more important part of the CASE market and as CAIS becomes a
more important part of the Ada community, we should see CASE products conforming
to CAIS interfaces.

21-5

21.4 CASE Activities

Several CASE Symposia have been held to date. In June 1987, a CASE Sympo-
sium was held in Washington D.C.. Proceedings of the symposium are available. An
information packet was produced by:

Digital Consulting Inc.
6 Windsor Street
Andover, MA 01810
(617) 470-3870

The First International Workshop on CASE was held in May 1987 in Cambridge,
MA. Proceedings are available through:

CASE '87
First International Workshop on
Computer-Aided Software Engineering

c/o Index Technology Corporation
One Main Street
Cambridge, MA 02142

21-6

Appendix A
References

[ABB86] Agrawala, A., Bloom, M., Boorstyn, R., Buhr, R.J., Heystek, D., Ada
Foundation Technology, Volume 9, Software Requirements for
WIS (WWMCCS (World Wide Military Command and Control System)
Information System) Network Protocol Prototypes, Institute for
Defense Analyses, Alexandria, VA, December 1986.

[ADETS87] Ada Education and Training Study, Volume 1, AFCEA, Fairfax
VA, July 1987.

[BRF86] Brauer, D.C., Roach, P.P., Frank, M.S., Knackstedt, R.P., Ada and
Knowledge-based Systems: A Prototype Combining the Best of Both Worlds,
McDonnell Douglas Astronaut. Co., Huntingdon Beach, CA, October 1986.

[B&N78] Basili, Victor R. and Noonan, Robert E., A Comparison of the Axiomatic
and Functional Models of Structured Programming, TR-630, University
of Maryland, College Park, Maryland, February 1978.

[B&R86] Burns, A., Robinson, J., ADDS - A Dialogue Development System for the
Ada Programming Language, Bradford University, England, February 1986.

[Coh86] Cohen, Norman H., "Ada Axiomatic Semantics: Problems and Solutions,"
SofTech TP-223, Proceedings, Ada-Europe Conference,

Edinburgh, Scotland, February 1986.

[CohN86] Cohen, Norman H., "MAVEN: The Modular Ada Validation Environment,"
SofTech TP-227, Third IDA Workshop on Ada Verification,
Raleigh, North Carolina, May 1986.

[Dye83] Dyer, M., Software validation in the cleanroom method.
Technical Report TR 86.0003, IBM Federal Systems Division,
Bethesda, Maryland, August 19, 1983.

[FCW87] "DOD Plows funds into R&D for Ada Tools", Federal Computer Week,

August 24, 1987.

A-l

:FHD86] Foley, J., Hrycyszyn, J.D., Denbrook, P., Gilroy, K., Green, M., Ada
Foundation Technology, Volume 8, Software Requirements for

WIS (WWMCCS (World Wide Military Command and Control System)
Information System) Graphics System Prototypes, Institute for

Defense Analyses, Alexandria, VA, December 1986.

[F&B86] Friedman, F.J., Brykczynski, B.R. Ada/SQL: A Standard, Portable

Ada-DBMS Interface, RACOM Computer Professionals, Annandale, VA,
February 1986.

[Han86] Hansom,M .S., Application of Advanced Ada Language Features to Data
Structures in a Graphic Programming Environment Master's Thesis,
Air Force Institute of Technology, Wright-Patterson AFB,
OH, December 1986.

[HVR??] Hood, P.E., Vanderminden, C.A., Ruegsegger, T.B., "Automating
IDEFo to Ada Translation", SofTech, Inc., Waltham MA,
(Unpublished).

[L&G86] Liskov, B. and Guttag, J., Abstraction and Specification in Program
Development, The Massachusetts Institute of Technology, 1986.

[L&H84] Luckham, David C. and von Henke, Friedrich W., "An Overview of Anna,
a Specification Language for Ada," IEEE Computer Society 1984
Conference on Ada Applications and Environments, IEEE Computer
Society Press, Silver Spring, Maryland, 1984, 116-127.

[Mar87] Marmelstein, Lt Robert E., "The Interactive Ada Workstation: A Prototype
for Next Generation Software Environments", Proceedings of the
Joint Ada Conference, Fifth National Conference on Ada Technology
and Washington Ada Symposium, March 16-19, 1987, pp 54-61.

[Mye79] Myers, Glenford J., The Art of Software Testing, John Wiley & Sons,
New York, 1979.

M&C??j Munck, R., and Cohen, S., "SAda Project Overview", MITRE
Corporation, Bedford MA, (Unpublished).

[PMP86] Greene, J.S., Jr., Probert, T., Riddle, W., Giese, C, Quindry,
T.L., Trimble, J., Software Technology for Adaptable, Reliable

A-2

Systems (STARS) Program Management Plan, STARS JPO, August 6,

1986.

SBB85] Selby, Richard W., Jr., Basili, Victor R., and Baker, F. Terry, CLEANROOM
Software Development: An Empirical Evaluation, TR-1415,
University of Maryland, College Park, Maryland, February 1985.

SDME86] System Specification for the Software Development and Maintenance
Environment, Prepared by WIS Division, GTE Government Systems,
October 29, 1986.

Sto80] Buxton, J., Department of Defense Requirements for Ada
Programming Support Environments "Stoneman", DoD,
February 1980.

TPP86] Greene, J.S., Jr., Probert, T., Riddle, W., Giese, C, Quindry,
T.L., Trimble, J., Software Technology for Adaptable, Reliable
Systems (STARS) Technical Program Plan, STARS JPO, August 6,

198(T

[Tra87] Tracz, Will, "Ada Reusability Efforts: A Survey of the State of the Practice",
Proceedings of the Joint Ada Conference, Fifth National Conference
on Ada Technology and Washington Ada Symposium, March 16-19, 1987,

pp 35-44.

A-3

Appendix B
Bibliography

"Ada's Role in the $300+ Million Case Market", Ada Data, January, 1987,
Volume 5, Number 1, pp 1-16.

Back, R.J.R., Correctness of Explicitly Specified Procedures, Mathematical,
Amsterdam, 1980.

Basili, V.R. and Mills, H.D., Understanding and Documenting Programs ,
Technical Report TR-884, University of Maryland, Computer Science
Center, April 1980.

Computer-Aided Software Engineering Symposium, Digital Consulting, Inc.
Summer 1987 Edition.

Correll, Claus H., Proving Programs In Several Steps of Refinement, Computer
Sciences Department, IBM Thomas J. Watson Research Center,
November 8, 1976.

Dahl, Ole-Johan, "Can Program Proving Be Made Practical?", Lectures

presented at the EEC-CREST course On Programming Foundations,
Toulouse, France, May 1978.

Dunlop, Douglas D., An Investigation of Functional Correctness Issues, Technical
Report TR-1135, University of Maryland, Computer Science Center,
January 1982.

Elspas, B, Hare, D.F., Levitt, K.N., and Snyder, D.L., Jovial Program Verifier
Rugged Jovial Environment, SRI International, Rome Air
Development Center, Griffiss Air Force Base, October 1982.

Foreman, J., and Goodenough, J., Ada Adoption Handbook: A Program
Manager's Guide, ESD-TR-87-110, Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh, PA,
May 1987.

Friedman, F., Keller, A., Salasin, J., Wiederhold, G., Berkowitz, M.R.,
Spooner, D.L., Reference Model for Ada Interfaces to Database

B-l

Management Systems, RACOM Computer Professionals, Annandale, VA,

February 1986.

Hill, I.D. and Meek, B.L., Programming Language Standardization, Ellis
Horwood Limited, 1980.

Jenkins, Joyce R., Automated Generation of Input Output Pairs for the CAIS
Validation Test Suite. Doctoral Thesis, Air Force Institute of

Technology, Wright-Patterson AFB, OH, May 1986.

Kamel, Z., Vines, D.H. Jr., A Virtual Database Interface for Ada Applications,
GTE Communication Systems, Phoeniz, AZ, February 1986.

Kramer, J.F., Oberndorf, P., Long, J., Robinson, R.M., Roby, C, Chludzinski,
J., Clouse, J., The CAIS Reader's Guide, Institute for Defense
Analyses, December 1985.

Manley, Dr. John H., "Computer Aided Software Engineering (CASE) Foundation
for Software Factories", IEEE. 1984, pp 84-91.

Maurer, W.D., Introduction to Programming Science, Part II: Proofs of
Assertions About Programs, Electronics Research Laboratory,
College of Engineering, University of California, Berkeley,

August 21, 1973.

Mills, H.D., Basili, V.R., Gannon, J.D., Hamlet, R.G., Principles of Computer
Programming, A Mathematical Approach, Allyn and Bacon Inc., 1987.

Mills, H.D. and Linger, R.C., "Data Structured Programming: Program
Design without Arrays and Pointers", IEEE Transactions on
Software Engineering, Volume SE-12, Number 2, February 1986,
pp 192-197.

Schmidt, David A., Denotational Semantics a Methodology for Language
Development, Allyn and Bacon, Inc., 1986.

Schwartz, J.H., "The Bendix Computer-Aided Software Engineering System:
A New Approach to an Ada Design Language", IEEE. 1986.

Schwartz, R.L., Melliar-Smith, P.M., The Suitability of Ada for Artificial
Intelligence Applications, SRI International, Menlo Park,

B-2

CA, May 1980.

Sparks, M.R., Gallop, J.R., Language Bindings For Computer Graphics Standards
SDC/Burroughs, Huntsville, AL, August 1986.

Stamps, David, "CASE: Cranking Out Productivity", Datamation Magazine,
July 1, 1987, pp 55-58.

Stoy, Joseph, The Scott-Strachey Approach to the Mathematical Semantics
of Programming Languages, Massachusetts Institute of Technology
December 1974.

Waychoff, Richard, "The Stars Program Today", CASE '87 First International
Workshop on Computer-Aided Software Engineering, Advance Papers,
Volume 1, May 27-29, 1987, pp 492-494.

B-3

Appendix C
Points of Contact for Ada Information

Ada Board - Ada Technology and
Standards Panel

Bill Carlson
Intermetrics, Inc.
4733 Bethesda Ave.
Suite 415
Bethesda, MD 20814

Ada/SQL Proposed Binding Lt Col Terry Courtwright
WIS JPMO
Washington, D.C. 20330
(703) 285-5067

court@MITRE.ARPA

Ada/SQL Working Group (ASWG) Bill Brykczynski
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
brykczyn@AJPO.SEI.CMU.EDU

Ada Test and Verification System

(ATVS)

Deborah A. Cerino

RADC/COEE
Griffiss Air Force Base, NY 13441
(315) 330-2054
AUTOVON 587-2054
cerino@RADC-SOFTVAX.ARPA

Ada Validation Office (AVO) Audrey Hook
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
(703) 824-5501

C-l

ADETS Report Brig. General, Kirby Lamar, (Ret.)

Director, Corporate Affairs

AFCEA
4400 Fair Lakes Court

Fairfax, VA 22033-3899
(703) 631-6235

Automated Measurement System
(AMS)

Roger J. Dziegiel, Jr.
RADC/COEE
Griffiss Air Force Base, NY 13441
(315) 330-2054

AUTOVON 587-2054
dziegiel@RADC-SOFTVAX.ARPA

CAIS Revision A Patricia Oberndorf

Code 423
Naval Ocean Systems Center
421 Catalina Boulevard
San Diego, CA 92152-5000
(619) 225-6682/7401
AUTOVON 933-6682/7401
oberndor@AJPO.SEI.CMU.EDU

CAIS Implementation Validation
Capabilities

Ray Szymanski

Air Force Wright Aeronautical Laboratories
AFWAL/AAAF-2
Dayton, OH 45433
(513) 255-2446

AUTOVON 785-2446
rszymanski@ADA20.ISI.EDU

CASE Symposium
Washington D.C., June 1987

Digital Consulting Inc.
6 Windsor Street
Andover, MA 01810

(617) 470-3870

C-2

CASE

The First International Workshop
Cambridge, MA, May 1987

CASE '87
First International Workshop on

Computer-Aided Software Engineering
c/o Index Technology Corporation
One Main Street

Cambridge, MA 02142

Computational Logic Michael Smith
Computational Logic
1717 West 6th, Suite 290
Austin, TX 78703
(512) 322-9951

Dansk Datamatik Center Hansen, Kurt W.

Dansk Datamatik Center
Lundtoftevej 1C
DK-2800 Lyngby
Denmark
+45 2 87 26 22
khansen@ADA20.ISI.EDU

Electronic Systems Division (ESD)
Security Analysis of Ada Programs

Lt John N. Molloy
ESD/SYC-2
14 Oak Heart

MITRE Building L
Bedford, MA 01730
(617) 271-5053

Institute for Defense Analyses (IDA)
Ada Verification

Terry Mayfield
Institute for Defense Analyses
1801 North Beauregard Street

Alexandria, VA 22311
(703) 824-5524

C-3

Interactive Ada Workstation (IAW) Lt Robert Marmelstein

AFWAL/AAAF
Air Force Wright Aeronautical Labs

Wright-Patterson Air Force Base, OH 45433-6543
(513) 255-6548/3947

AUTOVON 785-6548/3947
rmarmelstein@ADA20.ISI.EDU

PolyAnna Don Elefante
RADC/COTC
Griffiss Air Force Base, NY 13441

(315) 330-3241
AUTOVON 587-3241
elefante@RADC-MULTICS.ARPA

Revision of Ada Investigation Dr. John Kramer
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
(703) 845-2263

AUTOVON 289-1948 ext 2263

SDME Capt James B. Hogan
Headquarters

Electronic Systems Division
ESD/SYW-2P1
Hanscom AFB, MA 01731-5000
(617) 377-4754
AUTOVON 478-4754
hogan@MITRE.ARPA

SIGAda - Formal Methods Committee Richard A. Platek
Odyssey Research Associates, Inc.
1283 Trumansburg Road

Ithaca, NY 14850-1313
(607) 277-2020
rplatek@Ada20.ISI.EDU

C-4

Software Life Cycle Support
Environment (SLCSE)

Frank S. LaMonica
RADC/COEE
Griffiss Air Force Base, N.Y. 13441
(315) 330-2054
AUTOVON 587-2054
lamonica@RADC-SOFTVAX.ARPA

STARS Col Joseph S. Greene, Jr.
Director, STARS
STARS JPO
Office of Secretary of Defense
OUSDRE (R&AT/CET),
The Pentagon, Rm. 3E114
Washington, DC 20301
(202) 694-0210

C-5

