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INTRODUCTION

Fiber reinforced composites are widely used in high technology design and manu-
facture of helicopters, aircraft, missiles, and other weapon components. The tough-
ness of the designed composite depends on the properties of the fibers, bulk matrix,
and the interfaces between them. Understanding of the fiber-matrix interfaces and
the correlation of these findings to the mechanical properties of the composite is
essential for developing micro-mechanical models and failure mechanisms of the com-
posite, and might lead to improvement and optimization of desired composite

materials.

The structures of carbon fibers (CF) are fairly well documented,1 - 4 but their
surfaces after liquid oxidation modification and oxygen gas treatment have not been

extensively investigated. The fibers are sually given a surface treatment after
fabrication to improve adhesive properties of the surface. Understanding of the
interactions between fiber and matrix (e.g., the chemical nature of fiber surface
layers, interactive forces between fiber and matrix, and fiber surface roughness and
porosity) is essential for a complete structural and surface characterization.

The present investigation was carried out as part of The Technical Cooperative
% Program (TTCP) in which England, Canada, and the U.S. participated. Using available

analytical facilities in the Materials Characterization Division of the U.S. Army
* Materials Technology Laboratory, the structure and chemistry of fibers were examined

in detail. The data obtained was used to classify and grade various commercial
fibers, and might be helpful in designing tougher composite materials. The current
study is aimed at selecting physical and chemical parameters sufficient to describe
major characteristics of the fibers that can be employed on a selection basis in
order to optimize properties of the fabricated composite material. They include:
(1) major mechanical properties, (2) crystal structure information, and (3)
morphological chemical characteristics of the fiber surface.

EXPERIMENTAL

Fiber Samples

The following carbon fiber samples, obtained from the TTCP program, were made
by Courtaulds Co. and distributed by Royal Aircraft Establishment (RAE):

(Al) Grafil Apollo XA-U HS 12,000 filament tow. Reference 6662-1, Batch
0 No. 5257, Strength 5.10 GPa, Modulus 254 GPa, Density 1.82 g/cc,

Weight per unit length 396 mg/m.

(A2) Same as Al, Batch No. 5258, treated and unsized.

(A3) Same as Al, Batch No. 5256, treated and 1% size A.

I. DELMONTE. J. Ti chnologv of-(arhoon and Graphite Composites. Chapter 6, Van Nostrand Reinhold Co., 1980.a SCOLA. D.A. Composite Materials EP. Plueddemann. ed., Chapter 7, v. 6, Academic Press, 1974.
3. SCOLA, D.A.. and BROOKS, C.S. Surface Aspects of/.ew Fihers. Boron, Fiicon Carbide. and Graphite. 3. Adhesion, v 2. 1970.

4. RIGGS. D.M., SHUFORD. R... and LEWIS, R.W. Graphite Fibers and Composites Handbook of 'omposites. G. Lubin, ed., Van
Nostrand Reinhold Co.. 1982.

5 DRAZEL. L.T. The SuorJae Compositions and Energetics of Type A Graphite Iih'rrs Carbon, v. 15. 1977. p. 129-138.



(BI) Grafil Apollo IM 12,000 filament tow. Reference 6661-1, Batch
No. 5447, Strength 3.90 GPa, Modulus 306 GPa, Density 1.76 g/cc,
Weight 370 mg/m.

(B2) Same as B1, Batch No. 5445, Strength 3.82 GPa, Modulus 308 GPa,
treated and unsized.

(B3) Same as Bi, Batch No. 5443, Strength 3.90 GPa, Modulus 313 GPa,
treated and 1% size A.

Instruments/Procedures

X-Ray Powder Diffraction

Norelco X-ray power supply and diffractometer units were employed to charac-
terize structure parameters. The fiber was first ground into powder by a SPEX
miller, and the X-ray powder diffraction pattern was taken using Cu K. radiation on
a strip chart recorder. The patterns were then transferred to an IBM personal com-
puter, and the structure parameters were computed.

Scanning Electron Microscopy (SEM)

A JEOL JXA-840 scanning electron microanalyzer was used to examine surface mor-
phology of the fibers. The irregularities of the fibrous surface could be examined
in detail under high magnification. The cross-sectional morphology of the fiber
could reveal the internal array of graphite basal planes.

ESCA Surface Study

The ESCA/Auger instrument made by Physical Electronic Industries, Inc., PHI
Model 548 with a double pass cylindrical mirror analyzer (CMA) and MgK, X-ray
radiation, was used for surface characterization. To prepare the specimen, a bundle
of fibers was densely packed and aligned to give an area of -4/2-inch square. The
fiber ends were trimmed and clamped with a conductive, adhesive copper tape.

Structural and Surface Properties

The following information, observed or calculated from X-ray diffraction, ESCA,
and SEM experiments, is essential for a thorough characterization of the fiber:

1. X-Ray Diffraction

(a) Average graphite layer spacing (from the 002 peak position)
(b) Average crystal size Lc (from the 002 peak width)
(fherto fthc0 pekfrea to he totpal ifftiohae(c) Average crystal size La (from the 100 peak width)
(d) Average lattice dimension a-axis (from the 100 peak position)
(e) The ratio of the peak area to the diffused area
(f) The ratio of the 002 peak area to the total diffraction area
(g) The ratio of the 100 peak area to the total diffraction area
(h) The ratio between the 100 and 002 peak areas
(i) Crystallinity index (from a comparison of the X-ray diffraction

patterns of known crystallized and amorphous carbons).

.1



2. SEM Morphology Studies

(a) Morphological examination of surfaces along the axis of carbon
fibers and fiber cross-sections

(b) Average diameters of carbon fiber samples.

3. ESCA Surface Studies

(a) Oxygen-to-carbon peak area ratio (calculated from the integrated
area under the 0 1s and CIs peaks in ESCA spectra)

(b) Oxidized carbon-to-carbon ratio (the ratio of oxygen attached to
carbons, including hydroxyl, ether, ester, carbonyl and carboxyl
functional groups, with no oxygen linkage from the Cls peak pro-
file in ESCA spectra).

RESULTS

The experimentally obtained parameters listed above together with the mechan-
ical properties supplied by manufacturers are son in Table 1. The procedures for
obtaining these parameters are well documented, and brief descriptions are given
below.

Table 1. CHARACTERISTICS OF CARBON FIBERS

Parameter A-I A-2 A-3 B-i B-2 B-3

1. U.T. Strength (GPA) 5.1 5.1 5.1 3.9 3.82 3.9

2. Modulus (GPA) 254 254 254 306 308 313

3. Max. Strain (%)

4. Density (g/cc) 1.82 1.82 1.82 1.76 1.76 1.76

. 5. Diameter (1,m) 4.5 4.5 4.5 4.8 4.8 4.8

4 6. Surface Area (m2 /9)

7. d-002 Spacing (A) 3.55 3.56 3.57 3.50 3.49 3.51

8. Dimension Lc (A) 15.6 15.1 17.0 28.1 23.7 25.0

9. Oimension La (4) 79.3 66.9 62.1 77.3 91.2 87.8

1 10. Frac. 002/Total 0.397 0.341 0.312 0.348 0.376 0.373

11. Frac. lO0/Total 0.031 0.032 0.039 0.050 0.032 0.033

* 12. Frac. Peak/Total 0.485 0.418 0.415 0.442 0.473 0.482

13. Ratio 100/002 0.079 0.093 0.124 0.143 0.086 0.089

14. Frac. Surface Oxygen 0.051 0.14 0.15 0.033 0.092 0.161

15. Surface C-O/C Ratio 0.184 0.281 0.284 0.221 0.319 0.449

16. Crystalline Index 0.35 0.32 0.28 0.43 0.48 0.46

The physical parameters from lines 1 to 6 are obtained from the literature pro-
vided with commercial fibers; occasionally, some are missing. Average diameter (No.
5) and surface area (No. 6) can be estimated from the SEM photographs. The surface
area could also be approximated from the average diameter and surface roughness.

6. HECKMAN, F.A. ,ilicrroct re of Carhon Bla(k Rubber (henistry and Technol.. v. 37, no. 5. December 1964.
7. KOZLOWSKI. C.. and SHERWOOD, P.M.A. X-Rat Photoele( tron Spectros olm Studies of Carbon Fiher Surfaces. Part 1Il. Electro-

chemical Treatrnent in Arninoniun Salt Ehetrol es (arhon. ,. 24 1986. P 357-363.
8 HOPFGARTEN. F ESCA Studtes of Carh,,n and 0%1 ge e in Carbon thers Fiber Sci. Technol.. v. 12. 1979, p. 283.
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* However, due to irregularities on the fiber surface, reliable results can be

obtained only from gas absorption measurement.

The surface morphologies observed from the SEM images of the untreated,
treated, and treated-sized Grafil XA-UHS carbon fibers revealed many distinct
appearances as shown in Figure 1. Under 3000X magnification, all surfaces have fine
striations along the length of the fiber. The untreated carbon fibers are rather
smooth, without scales, deposits or pits; however, the treated and treated-sized
fibers show many coagulations, scales and wrinkles. Moreover, tiny chips and debris
from cutting had adhered to the surfaces. Occasionally a layer of coating or scale
can be seen on the cross sections of the sized filaments. The internal array of
graphite basal planes appears to be random from other magnified SEM images (not
shown).

The parameters listed from lines 7 to 13 are obtained from X-ray diffraction
data. A typical X-ray diffraction pattern is shown in Figure 2. The d-002 spacing
(No. 7) is calculated from the position at the maximum peak height. The maximum
position is determined by the mid-point of the peak width at half-height. The
lattice spacing is calculated from the Bragg equation as:

nX = 2d sine (1)

where

X = wavelength of X-rays,
d = distance between planes of the same Miller indices, and

e = angle of diffraction.

The dimensions L and L (Nos. 8 and 9) of graphite crystallites are calculated
from the half-widths of the 802 and 100 peaks. The Scherrer equation,

L = KW/B cosO , (2)

4 where

L = crystallite dimension,
B = half-width in radians,

e = diffraction angle,
' . = wavelength, and

K = shape factor,

0 is used for 'he computation. The constant K is taken as K = 1.84 for La and K =

0.90 for L A background correction is made before the Ralf-width B calculation.
Since the T00 peak is usually overlapped with the 110 peak, only the left shoulder

and the maximum position of the peak are used to establish the half-width; this
might introduce a large uncertainty in the L calculation. It is well known that
the a-axial unit cell length is fairly uniform among many graphite-like structures.
Consequently, the position of the 100 peak is assumed to be identical for all

* diffraction patterns.

The fractions of peak areas 002 and 100 to the total diffraction area (Nos. 10

and 11, Table 1) are calculated from the X-ray diffraction pattern. The background
diffraction is obtained from a blank sample holder with only Scotch mounting tape.
These two parameters denote the proportions of crystalline carbons oriented along

Oj



a A- 1 untreated

A

a

Figure 1. SEM images of carbon fibers.

the two major axes (a and c). The orientation of the graphite crystallites is an
important factor in determining the physical strength of a continuous carbon fila-
ment.
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. . Figure 2. A typical X-ray diffraction pattern of carbon fiber. Two diffused broad peaks are usually observed in the range
, 4-600 under Cu radiation. The d-002 spacing is calculated from the peak position determined by half-widths, and crystal-

lite dimensions La and Lc from respective peak widths at given Miller indices. Other parameters listed in Table 1 are also~computed from the areas of diffraction. B-series fibers have larger sizes of crystallites than A-series fibers.

Since the physical characteristics of fibers are, in some cases, dependent on
the crystalline and amorphous portions of the carbon structures, the fraction of all
peak areas to the total diffraction area (No. 12) is used to demonstrate the pro-
portion of carbons in crystalline form. This parameter approximates the degree of
crystallinity of the fiber.

The ratio of two peak areas (100 and 002, No. 13) illustrates the orientation
of crystallites in the fiber structure. While this ratio may duplicate the pre-
ceding parameters, a clear crystallite arrangement can be easily derived from this

variable.

The two surface parameters derived from ESCA peaks, shown in Figure 3, are used
to demonstrate surface atomic constituents of the fiber. The adhesion behavior of
the fiber surface is strongly dependent on the amount of oxygen on the fiber sur-
face. 5 '8 9 Thus, the concentration of oxygen on the surface, regardless of the

chemical form or the amount of oxygen attaching to carbon (Nos. 14 and 15), is in-
trinsic to surface adhesion. Parameter 14 is calculated from the relative amount

9. ]SHITANLA. Application of X-Ray Photoelectron Spectroscopy to Surface Analysis of Carbon Fiber. Carbon, v. 19, 1981, p. 269.

66
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Figure 3. Carbon and oxygen peak profiles in ESCA spectra. In carbon profiles, the oxygen
content increases with the treated and the treated-sized fibers as shown on the shoulders of
these peak profiles. These oxygen are found to be alcohol, carbonyl, lactone and carboxyl
function groups. In oxygen profiles, the treated fibers show wide peak half-widths, indicating
there are many different binding states of oxygen on the modified surface.

of oxygen on the surface. First, the areas under all peaks are integrated and cor-
4 rected for atomic sensitivities. Then, the atomic fraction of oxygen is derived

from the integrated and corrected concentrations of surface atoms, including carbon,

oxygen, and nitrogen. The second parameter (No. 15) is the ratio of oxygen-attached
carbon to unreacted carbon that may show some active oxygen-carbon linkages on the
surface. These data are derived from the deconvolution of the C l5 peak into two

7



components: the carbons in C-C, C=C and C-H linkages and oxidized carbons such as
alcohol, carbonyl, ester, and carboxyl.

X-ray scattering of fibrous materials shows the presence of sharp and diffuse
diffraction patterns, indicating crynal phases interspersed with amorphous regions.
The concept of the crystalline index is derived from the fact that a portion of

* the X-ray scattering from a fiber is diffused and contributes to the so-called
amorphous background. Thus, a simple method of estimating the crystallinity is
obtained by separating the diffraction pattern into crystalline (sharp) and amor-
phous (diffuse) components. It should be emphasized that the index obtained by the
present method is not an absolute numerical result, but rather an indication of

* relative degree in which some important physical properties are found to correlate.

The crystallinity index (No. 16) is a complicated parameter derived from the
X-ray diffraction patterns of amorphous and crystalline reference materials and the
sample of interest. A comparison is made between the patterns of standards and the
fiber sample of interest as illustrated in Figure 4. The choice of these two stand-
ards is rather arbitrary. In this study, highly graphitized carbon black powder
(Graphon made by Cabot Co.) was used as the crystalline standard, and the carbon

compound with no crystal structure was taken as the amorphous standard (Coke in this
, -case). The index is calculated and averaged over the entire diffraction range of

4-60' at intef als of 0.4' (140 data points). The detailed computation is reported
in literature and presented here, in graphic form, in Figure 5. This index has
been widely used in fiber industry for the measurement of fiber strength.

DISCUSSION

The structure of fibrous materials could be described as the arrangement and
interdispersion of micro-crystalline phases into amorphous regions in an oriented
fashion. This simplified fiber structure is not fully compatible with more recent
findings that the structure consists of many single crystals, chain folding,
lamellar crystal growths, and intermediate crystal objects such as axialites and
hedrites, lattice dislocation, pores and voids, and one- and two-dimensional order-
ing in drawn fibers. However, this new crystal-defect concept, as opposed to the
earlier two-phase concept, is nevertheless derived from the crystallinity of fibrous
materials.

Even the relative degree of crystallinity is not unambiguously defined and is

also subject to experimental procedure and measurements. The physical and mechan-
ical properties of fibers are profoundly dependent on the degree of crystallinity,
regardless of the chosen method of measurement. The tensile strength and modulus of
elasticity of carbon fibers are directly related to the degree of alignment and
stiffness of molecular chains parallel to the fiber axis and, hence, to the degree
of crystallinity. Likewise, the yield stress of a fiber increases with the degree
of crystallinity.

The six fiber samples used in the TTCP program were obtained from two sources.

Groups A and B are batches from two different processes. The parameters presented

S K I[IN 1, . . VI1R(IN I.S, and CRYSTAL, L;. Dcelopment and Comparison of Two X-Ray Methods for Detennining the
('ri talinat 4I ('otton (el/uhlos J. Appl. Phy)., v. 22. 1959. p. 1654.

II. (,1I(,ON M_. 031 RLIN. A.. and DLSARMOT. ( ,Iicrotti'ture and Structure of Some Ifigh Tensile Strength PAN Base Carbcn
1-icrn Ihcr Sc and Fchnol.. v 2. 1984. ) . 177.

8
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Figure 4. X-ray diffraction patterns of sample crystalline and amorphous reference carbons. These three patterns are
compared and integrated to yield crystalline index.

in Table 1 could be used to evaluate/compare the wide range of characteristics of
commercial fibers. The differences are clearly shown in the two structure param-
eters (Nos. 8 and 9) that give the average dimensions of crystallites along the a-
and c-axes. The large crystallite dimensions seem to improve the modulus (No. 2)
but decrease the strength (No. 1). Group B has an average of seven basal planes of

'V crystallites as compared to five in Group A. The d-spacing (No. 7) is easily ob-
tainable from the X-ray~measurement. For a perfect graphite structure, the inter-
planar spacing is 3.35 A; an increase in this parameter signifies the extent of

* deviation from the perfect structure. Thus, the structure disorder and mismatch of
-~ the graphite basal planes, which tend to reduce the physical strengths of carbon

fibers, increase with increasing length of the d-002 spacing. Similarly, the
numbers of stacking carbon basal planes also reflect on the fractions of the 002
peak area to the total area (No. 10). The larger the crystallite thickness, the
higher the magnitude of parameter No. 10.

Samples A-2 and B-2, surface treated fibers, exhibit a three-fold increase in
oxygen surface concentration as compared to untreated fibers (see parameter No.
14). Similarly, parameter 15, which describes the amount of oxidized carbon, is
also found to increase. From the peak profiles shown in Figure 3, the peak widths
of the 01 peaks after treatment (A-2, B-2) increase markedly, indicating that there

.04 are many aifferent forms of oxygen on the surface. An increment of surface oxygen

N 9
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Figure 5. Graphic presentation of crystalline index. Crystalline index is obtained from the Ic-I Vs. lu'a plot for all
diffraction angles from 4-600 at an interval of 0.40 . The least-square treatment of data yields the slope as crystalline
index and the standard deviation as scatter. Subscripts a, c and u refer to amorphous, crystalline and unknown
patterns, and I is a relative diffraction intensity.

0 magnitudes is also observed on the sized fibers, A-3 and B-3. The oxygen peak
positions are found to shift considerably from those of the untreated and treated
fibers.

The chemical composition of the sizing compound has more influence over the
surface oxygen concentration. The sizing was usually employed less than I wt% and

-v-. was coated on the fiber surface to facilitate handling of bundled filaments. The
oxygen magnitudes of parameters 14 and 15 for the sized fibers increased, and are
comparable to those of the treated fibers. Evidently the sizing compounds are
composed of many oxygen-containing resins. Especially for the sized B-3 fiber, the

surface oxygen concentration increased more than that of the treated one. The
sizing compound used in the B-fiber is probably different from that used in the

10
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A-fiber. This difference is shown in the carbon peak profiles (Figure 3) having

more oxygen functional groups.

Since sizing has little effect on fiber matrix adhesion, 12 the two parameters
obtained from the ESCA study might not yield direct information about surface adhe-
sive behavior. Thus, the present surface parameters have no significant meaning.
In addition to oxygen, a small concentration of N, presumably derived from the pre-
cursor of PAN fibers, is observed on these fibers. The N amount is usually very

small; consequently, it is believed to have no significant effect on adhesion.

The crystallinity index 1 0 is calculated from the complex computation of 140
data sets, giving a least-square regression line in which the slope is the crystal-
linity index. The standard deviation is rather scattered. This large deviation is
partially caused by the misalignment of graphite basal planes in turbostratic
graphitic structures and the improper choice of standard materials. The trend of
the index is roughly in parallel to the crystalline peak fractions (Nos. 10-12)
between the A and B fibers. Since the large scattering is frequently associated
with the index, the usefulness of the index in the characterization of carbon fiber

requires further examination.
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