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AFOSR Grant Nr. AFOSR-860157

Annual Technical Report

Period: May, 1986 - November, 1987

"Calculated Unsteady Aerodynamics of Wings"

J.E. McCune

Masssachusetts Institute of Technology

Department of Aeronautics and Astronautics

Abstract .

* Progress is reported for the contract period covering the past 18 months.
Substantial advances in the analysis of the large-amplitude unsteady aerodynamics
of wings have been achieved and are summarized in the attached papers. .,Special
focus has been placed on developing techniques for describing the exact non-linear
convection, deformation, and roll-up of the vorticity wakes above and behind
active wing surfaces. Using a combination of analytic and computer-interactive
methods, new insights and more exact aerodynamic performance results have been
generated. The effects of dissipative internal "cores" in the overall 3D wake
structures above deltas have been analyzed in the slenderwing limit. New paths
for further computer-assisted advances, including improved understanding of
wing-wake interaction in severe maneuver, vortex core formation and break-up,
and aerodynamic history effects have been charted. , --

Statement of Progress

The papers attached summarize as carefully as we are able the sequential
aspects of the progress made during the above contract period. In addition to
these three papers, two key Master of Science thesis reports (see attached list)
have proved to be major contributors to our understanding of wing aerodynamics
involving both large-scale unsteady motion and viscous-related phenomena such
as leading-edge separation, bubble formation and reattachment and vortex coreevolution.

In paper 1 "?onlinear Aerodynamics of Two-Dimensional Airfoils in Severe
Maneuver" (Scott/McCune), advanced computer-interactive techniques for
studying large-amplitude unsteady wake motion behind host airfoils is

described. The nonlinear generalization of the classical Wagner equation
is included.
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In paper 2 "Interactive Aerodynamics of Wings in Severe Maneuver?' (McCune,

Colorado Springs), analysis of exact nonlinear unsteady wake convection
over slender delta wings in severe maneuver is described. Application of

paper 1 to that problem is detailed.

In paper 3 "Slender Wing Theory Including Regions of Embedded Total Pressure
Loss"'(McCune, Tavares, Lee, Weissbein), seif-consistent wake development over

slender wings including the development of dissipative, low-total-pressure
core regions is described. Viscous relatpd criteria for the sizing and
evolution of core size shape and intensity are discussed. The importance

of the "history" effect of wake development on wing performance is pointed

out.

List of Publications Prepared During Subject Period

1. Scott, Matthew T., J.E. McCune, "Nonlinear Aerodynamics of Two-Dimensional
Airfoils in Severe Maneuver", AIAA Paper Nr. 88-0129, AIAA 26th Aerospace

Sciences Meeting, Reno NV, Jan., 1988. Attached.

2. McCune, J.E., "Interactive Aerodynamics of Wings in Severe Maneuver."
To be included in Proceedings of Workshop II on Unsteady Flow, United

States Air Force Academy, July 28-30, 1987. To be published. Attached.

3. McCune, J.E., T.S. Tavares, N.K.W. Lee, and D. Weissbein, "Slender Wing
Theory Including Regions of Embedded Total Pressure Loss", AIAA Paper Nr.

88-0320, AIAA 26th Aerospace Sciences Meeting, Reno NV, Jan., 1988. Attached.

List of Related M.I.T. Theses (Master of Science)

1. Weissbein, D., "Embedded Vortical Regions Within Otherwise Irrotational Flows",
M.I.T. S.M. Thesis, June 1987.

2. Scott, M., "Nonlinear Airfoil Wake Interaction in Large Amplitude Unsteady
Flow", M.I.T. S.M. Thesis, June 1987.
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NONLINEAR AERODYNAMICS OF TWO-DIMENSIONAL

AIRFOILS IN SEVERE MANEUVER+

Matthew T. Scott*
Engineer, Aer9dynamic Technology

Bell Helicopter Textron, Fort Worth, Texas

James E. McCune**

Professor. Dept. of Aeronautics and Astronautics
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract Y, (X.t) Position of the airfoil or camber line in
physical (airfoil) plane

This paper presents a nonlinear theory of forces and
moment acting on a two-dimensional airfoil in unsteady C, (8) Total tangential velocity on the airfoil
potential flow. Results are obtained for cases of both
large and small amplitude motion. The analysis, which uW (a) Wake-induced tangential velocity on
is based on an extension of Wagner's integral equation the airfoil
to the nonlinear regime. takes full advantage of the
trailing wake's tendency to deform under local veloci- uW (B) Wake-induced velocity normal to the
ties. Interactive computational results are presented airfoil
that show examples of wake-induced lift and moment

* augmentation on the order of 20 percent of quasi-static s Distance along the wake from the
values. The expandability and flexibility of the present trailing edge
computational method are noted, as well as the relative
speed with which solutions are obtained. Smax (t) The location of the end of the wake

farthest from the trailing edge
Nomenclature

Yw(S. t) Strength of vorticity in the wake
a t Angle of attack

(fit8)) Average tangential (parallel) velocity
hot) Height of airfoil midchord above component ontheairfoil:

reference axis (L&B)) = (S) + a(B+,))/2

. v,, Radial and tangential components of At!(B) The difference in velocity components
velocity in the transformed (circle) on the upper and lower surfaces of the
plane airfoil; equal to the strength of the

vorticity on the airfoil:

a Radius of airfoil in transformed (circle) .1s) = d(s) - 4(B + i) = Y(B)
plane Un o, Free stream velocity and density,

8 T Angular running variables in trans- respectively
formed (circle) plane * Potential function

r Circulation strength
L (t). M (t) Lift and moment on the airfoil

Cartesian coordinates fixed on global
reference axes in the physical (airfoil) c Chord length
plane r, (t) Quasi-steady bound circulation

. Cartesian coordinates parallel and

normal to the airfoil (., t) Discrete vortex location in the wake

2 t Location of the trailing edge

Introduction

This study was supported by AFOSR Grant No. 86-
157 and by NASA Langley Grant No. NAG- 1-658. Early studies of the linearized response of the forces

• Presented at the 26th Aerospace Sciences Meeting and moment acting on an airfoil in unsteady flow,

of the American Institute of Aeronautics and including the effects of its own unsteady wake. have
Astronautics, Reno, Nevada,January t988. been described by such authors as Theodorsen.1 von

* Associate Fellow AIAA Karman, 2 Kussner.3 Sears,4 and Wagner.5 Limiting

0



assumptions in the classical two-dimensional analysis In equation (4). Y, 1 x.t) denotes the position of the plate
are that the airflow be idealized as a potential flow, that or, more generally, the camber line of a given airfoil.
the wake be approximated as trailed out flat behind the Given this formulation, we note that the substantial
airfoil, and that the amplitude of airfoil motion be derivative Dq'Dt must vanish at y=0. 10 Therefore, if
correspondingly small. However, modern requirements the equation for the position of the airfoil is defined, the
for aircraft maneuverability now dictate that problems velocity on the airfoil at a given time t and position x
associated with fully nonlinear, large-amplitude. may be computed. The present formulation of Y¥x.t)
unsteady flows be addressed. Thus, the theoretical basis involves the uncoupled use of two parameters: h~t), the
for the linearized response must be reformulated and height of the midchord above the reference axis, and
extended to allow the inclusion of nonlinear effects, atJ. the angle of attack relative to the free stream. An
including wake deformation. The wake musi be allowed input or "forcing" function is defined by setting the
to convect freely, so that an effective "history" of the variation of these two parameters with time. The input
airfoil motion is present in the wake elements. An function then yields surface velocity components
extension of Wagner's integral equation 2 .5 is necessary through the use of the substantial derivative.8
to relate, in a time accurate sense, the strengths and
positions of each of these wake elements to the Conjugate function theory requires that the veloci-
circulation on the airfoil. ties impinging upon the airfoil due to the presence of

wake vorticity be "removed" from the problem before
With the interactive capabilities of a VAX 11-750 proceeding. This process is illustrated in Figures 1

computer and solving for only one unknown per time through 3.
step, it is possible to convect the wake very quickly, and
this enables the user of the program to see the wake
unfold and flow downstream as the program runs.
Output of force and moment histories is generated on-
line, enabling a quick test-and-evaluation turnaround
time of only a few minutes per case. The following
sections outline the derivation and implementation of
this interactive nonlinear solution and present results
for typical input histories.

Derivation Figure 1. Apparent wake-induced velocity on an airfoil.

Laplace's equation in the vicinity of an oscillating
airfoil in a two-dimensional flowfield can be solved
explicitly by means of the classical Joukowski
transformation of the region to complex space. 6 .7 By
using the theory of conjugate functions, and following
the explicit derivation of reference 8, we can describe
the radial and tangential components of velocity that
exist on the airfoil in the transformed plane as follows:

U a./ a~t, coi Lt d (1) Figure 2. Velocity at airfoil surfacedue to additional
rr 0 2bound vorticity.

LaV' r cot 7 d r (2)
2 o. t - 2a-

To generate the appropriate circulation on the airfoil
and in the wake, the Kutta value of circulation is
applied, and (2) can be rewritten:

. .. .- uI. it 3

g, sn c (3)'I* . " 2;TLj ' cot o Figure 3. Net flow with normal velocity cancelled at
Boundary conditions at the surface of the airfoil are airfoil surface.

* prescribed in the manner of reference 9 by the use of an
implicit variable formulation. For purposes of Figure 1 shows the apparent wake-induced velocity
simplicity, the airfoil in the present study has been" .' impinging on the plate. [i order to counter the normal

, assumed to be a flat plate whose instantaneous position velocity a "'fictional" problem must be created (Figure 2)
"a relative to a global reference system can be described by in which additional bound vorticity is produced on the

a function q as follows: surface of the airfoil. When these two solutions are

added (Figure 3), the no-flow-through boundary con-
S ., =-Y y '(4) dition of the net flow on the plate is achieved. Conjugate

.



function theory must create the "fictional" flow by Calculation of loading, lift. and moment proceeds
* measuring the wake-induced upwash at each station along classical lines by means of the unsteady Bernoulli

and then inducing the bound vorticity on the plate to equation:
counter the upwash. Thus we may write that the total
velocity component parallel to the plate, a(0), is
composed of the addition of the wake-induced -Ip =p ,w(p) a (p +,a(Lo-
component, uldo), and the conjugate function denoted I*1
by equation (3). Reduction of the resulting expressions requires a

judicious use of the Glauert Integral and ultimately
leads to the following final equations:8

si#)= ps r (u l ~tanaw + L*P)
2a 0 2 sn a cs

I +cosC d r + u )(5) J
sn r EVEN

2 U. sina(t) (I - cos P) - 4f (P)) dp +Co

uJB) may be derived by the use of the Biot-Savart C K 2 u cosa i
law in complex form:

EVEN d (10)(2 U,,,' si a (2 , t - cos#) - 4 p)) # 10
-Lv j y (s.t) ds (6) K

2~at M st

Since the circulation on the airfoil can be described
as the difference between the velocities WS) and
(8 +r), the loading, lift, and moment can be computed k/(0 sin a M cos+ 0- U P(2U sia(t) x

if the velocity a(s) can be found for values of 8 between 0
and 21. One very important outcome of this analysis is
that, for the general nonlinear case, the following
expression is always true: EVEN IttrIe -cs)4 pIp - os2P) x

(a0fl))= U. cosa(t) + Ut (P) (7)

(2U. sin a M)U - Cos d)(p(II)
where (4 (8) is taken to be the average of the velocities (i C)
a(S) and a (a+i. This result proves that the only in-
fluencing factors on the average platewise velocity are where we have defined:
the free stream, the angle of attack, and the location of
the wake's vortex elements. The linearized theory is EVEN
recovered if the wake is trailed out flat behind the airfoil X i/) =
and the angle of attack is small. Equation (7) then CK
reduces to the familiar expression (a(S))=U. as re-
quired. 2  

_-C s #_____s _ (12)
+ - to u ( cos ) (s I)

The expression for the vorticity on the plate at a
position 8 is more complicated, but still conveys The lift has been adjusted for the "leading edge force"
meaning: in the classical manner, and the moment is about the

semi-chord. If (10) and (11) are expanded, a few
%i i important points become evident:

- = ,,n P ) 1) Linear terms are recovered.

2) Between the prescribed modes of motion h(t) and
• -8dQ., - 2( I-cos 4 I+CO L dr (8) a(t) and their time derivatives, cross-coupling

-SW /Z~. ) Cos r -Cos#Jd becomes very important.
3) No single term requires more than a double

where vw( ) is measured at a station & on the airfoil and quadrature over the surface of the airfoil, and
'' is derived by means of equation (6). We notice that the most integrations require only a single sweep.

first two terms on the right-hand side of(8) are classical
linear terms, while the final two are nonlinear. Reference 8 gives a full explication of the terms.

..,.



Wagner's Nonlinear Integral Equation Typical results for the program are given in Figures
4 through 7. In Figure 4 we recreate Karman's starting

Wagner's integral equation. 2 .5 shown in equation problem by imposing a step function of magnitude one
(13). may be described as the relationship between the degree in angle of attack at t=5 in order to apply
quasi-static circulation r,, (t) bound to the airfoil and the instantaneously a constant bound circulation strength
strength of the trailing vorticity at a position & in the to the airfoil. Figure 4a is a trace of the input function,
wake. The extension to the nonlinear regime effectively and Figure 4b is a picture of the airfoil and wake taken
frees the wake to convect under local velocities by at t=80. The free stream velocity, which is the same for
allowing the streaming variable s to integrate over all cases presented in this section. is equal to c14 per
complex space where the wake now resides. The time step. Figure 4b shows the characteristic roll-up of
resulting equation 114) is valid when we are careful not the starting vortex as well as the bowing and overall
to integrate from one branch to another, as proven in downward displacement of the wake.
appendix A of reference 8.

In Figure 4c, the lift coefficient asymptotes to its
steady value as the starting vortex convects down-

", .~(13) stream. In addition, Karmain's starting value of the lift
, " - , coefficient is recreated. Just as in the classical case,

CL(t) attains half its steady magnitude immediately
after the motion is completed. The nose-down pitching
moment (Figure 4d) about the midchord shows initial

He( (14) overshoot of the steady value, but like the lift
,t, ,( j y..,.ti ',coefficient, the moment coefficient eventually decays

" - Ltoward the steady asymptotic solution. The overshoot
gives insight for the case where the airfoil is uncon-

In equation (14). the wake vortex location ;L.s.t) is strained in motion, since the increased nose-up moment
measured in the coordinate system fixed to the plate, would tend to increase the angle of attack of an airfoil
and s,,ax 't) is taken to be the end of the wake farthest responding to induced forces.
from the trailing edge xt , Equation (14) is written to
take advantage of the discrete vortex method of Figure 5 shows the results of a large-amplitude
modeling the wake. and the integration relies on the oscillation of the height of the airfoil around the
fact that the flow is assumed to be non-dissipative. This reference axis. The plunging airfoil experiences the
assumption assures that an effective "history" is motion shown in Figure 5a, and the resulting wake
maintained in the wake. It also guarantees that there shows the large-scale roll-up patterns of Figure 5b. This
are two unknowns at each time step: the strength and wavy wake resembles an early stage in the development
the position of the vortex formed closest to the trailing of the Khirmin vortex street as exemplified in Van
edge. As is also discussed by Scott,d an effective and DykeI3 or Mook et al. 12 Figures 5c and 5d detail the
useful solution to this problem is to use an offset or lead-lag characteristics of the motion, with Figure 5c
"threshold" distance that is small in relation to the showing that for a reduced frequency of 0.05 cycle based
chord length (typically c .. 2 to c 4). Such a preset on the semi-chord, the unsteady total lift leads the
position yields y,, (s.t) as the only unknown. r,, t) is a quasi-static lift by approximately 29 degrees. The
known quantity at each time step because it depends amount of lead or lag that is presently predicted by the
only on the velocity and position of the airfoil, which in program for a range of reduced frequencies from 0.005
the present case is a prescribed quantity. cycle to 0.1 cycle shows divergence from the classical

results for linearized small-amplitude unsteady motion
Implementation and Results derived by von Kfrmin and Sears. 3 However, the

amount of phase divergence is fairly small, ranging
The preceding analysis has been incorporated into a from six degrees at low reduced frequencies to 30

fast and efficient interactive computer program. Inputs degrees at the higher end, and is purely a numerical
to the prgram include the threshold vortex offset dis- error. The present theory may be rewritten, as outlined
tance and the history of the motion of the airfoil. by ScottS and McCune 9 . so that this computational
Analytic or continuous functions are not required as inaccuracy in calculating the normal force and moment
inputs, so the user may create effective histories for each on the airfoil is eliminated.
of the independent and overlapping control variables
h,t) and w t) by construction, using pieces of functions Figures 6 and 7 show two simple maneuvers and
such as ramps, sinusoids, and steps as building blocks, their effects on the loading of the airfoil. In the first
Our experience shows that the only limiting parameter maneuver, the airfoil undergoes a sinusoidal oscillation
to this representation is the commonly seen breakdown in angle of attack for one complete cycle, then stops its
of a wake formed of point vortices. Many models such as motion altogether, as shown in Figure 6a. Figure 6b
the Rankine vortex, the cloud-in-cell formulation. I I and shows the wake curling up downstream, while Figure 6c
the scheme proposed by Mook et al. 12 have been offered shows the effect of the maneuver on the total lift coeffi-
as viable solutions to this inherent instability and will cient. The lift vector is shifted away from the forcing
not be discussed here. Present coding allows function atj. In addition, both the lift and the moment
considerable leeway in the choice of time increment and (Figure 6d) show the residual effect of the wake's
reduced frequency to obtain acceptable results.1 presence after the maneuver has stopped. The overshoot

* - -. 0- N _. N



in both cases is only 5 to 10 percent of the maximum stantially larger than that observed in the preceding CL
values, and the sense of direction of the overshoot is that history.
of the last completed maneuver. [n other words, the

motion of the airfoil is an upward pitch as it completes Conclusion
the sinusoid; this motion sheds counterclockwise
vorticity into the wake, in turn creating a downwash on
the airfoil. The downwash causes a decrease in the The strong points of the present computational
airfoil's lift as well as a sizable nose-up moment. method are its speed and flexibility. Since we solve for

only one unknown per time step, the results may be

The controlling factor for the amount of overshoot displayed interactively on a graphics screen. A typical
appears to be the magnitude of the derivative of the run of 80 time steps, which may extend the wake 20
forcing function. This is illustrated in Figures 7, where chord lengths or more downstream, takes only 5 to 10
the input is a step function in angle of attack followed by minutes to generate when run on a DEC VAX 11-750
the negative of this step 30 time increments later computer. In fact, the speed of the graphics plotting
(Figure 7a). Figure 7b shows that the wake has a package is usually the limiting factor in such a
"square wave" appearance, and the lift augmentation calculation. In terms of flexibility, the program can

(Figure 7c) is instantaneously on the order of 20 percent accept any combination of sinusoids, pieces of sinusoids.
,% of the quasi-static value. Step changes cause the airfoil step functions, or constant values in each of the input

to move at high velocities (computationally finite but variables h(t) and aO. The user is free to "fly" a given
theoretically infinite). These velocities then introduce maneuver on his own. having only to "construct" a
large amounts of vorticity into the wake. In the present realistic forcing function history with an interactive

study, instantaneous lift augmentation on the order of input. The advantages of the method are therefore
50 percent has been seen. And, as shown in Figure 7d, threefold: the user input is flexible, the program is fast,
the moment augmentation for the test case is sub- and the results are completelv nonlinear and exact.

'p.
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Figure 4. The starting problem: Instantaneous loading Figure 5. Sinusoidal oscillation: Time variant loading
of an airfoil. of an airfoil.

fell,

'p /fell

Figure 4a. Input angle of attack history (w)) Figure 5a. Input plunging velocity history h( t).

pCO NIOP

Figure 4b. Airfoil and wake at t=80O. Figure 5b. Airfoil and wake at t =80.

C, an

.14 C C/ A

,,ex

Figure 4c. History of lift coefficient. Figure .5c. History of lift coefficient.

l -iI1c C.

*WA 7 AC.w*C

Figure 4d. History of moment coefficient. Figure-3d. History of moment coefficient.



Figure 6. Sinusoidal maneuver: Time variant loading Figure 7. Completed step function: Instantaneous
and unloading of an airfoil. loading and unloading of an airfoil.

*Figure 6a. Input angle of attack history CL( W. Figure 7a. Input angle of attack history ot).
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Figure 6. History of lifet coefficient. Figure 7. History of lifet coefficient.
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INTERACTIVE AERODYNAMICS OF WINGS IN SEVERE
MANEUVER~t

J.E. McCUNE

Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT role of this vorticity, emanating via Oleading.edge separa-
tion,' is to maintain acceptably smooth flow at the wing

This paper describes an interactive technique for the edges. At sufficiently large Reynolds numbers, this smooth
study and analysis of the aerodynamics of wings in severe flow requirement is often called, even in this context, a
maneuver. Both the 2D airfoil case and the cross-flow prop- "Kutta condition.2
erties for slender 3D wings are addressed. To begin the The present paper emphasizes recent progress in the de-
study, the non-linear interaction of a 2D airfoil undergo- velopment of a new method for studying on-line the dynam-
ing large-amplitude unsteady motion with its wake of shed ical effects of these two cross-flow wakes for the 3D wing.
vorticity was studied interactively on the computer using The method proceeds in analogy with, but also extends,
quick and effcient codes. The user can now input a "ma- techniques used in the 2D airfoil cae. Additional ideas
neuver" and study and observe on-line the non-linear wake and theoretical framework needed for the 3D case are out-

[ evolution and airfoil response. The allowable maneuvers lined. It is shown that the wake structures above a delta
for the airfoil presently include any combination of pitch- can be determined in a manner similar to the 2D airfoil
ing and plunging, suddenly imposed. Also, airfoil response problem, and that these structures have a history unique
to sudden large-ampLitude gusts of any shape and relative to any given maneuver.
passage speed can be observed and analyzed. A detailed
review of progress and results from this part of our work As discussed in the body of the paper, the model of the

is provided by Scott. I I In the present report we empha- wake structure used is somewhat idealized, in that the de-

size application of related techniques to 3D slender wings. velopment during wake roll-up of vortex "cores" at finite

We also provide information on improved methods of cal- Reynolds Numbers, with attendant regions of distributed

,-lating lift and moment via wake integrals, emphasizing total pressure lose, is not addressed. Similarly, the related
conservation of impulse, for the 2D as well as the 3D case. occurrence of vortex breakup is not included in the present

model. Our recent efforts to deal with these matters, as
an elaboration of the technique described here, will be re-

L Introduction ported elsewhere.

One important use of the non-linear 2D airfoil study is 2 Non-Linear Unsteady Wake Convec-
, provide a test of the exact wake evolution method, ap-

* ..ed at low amplitudes, against classical linearized airfoil tion

-heory. This tests the accuracy and e~ciency of the present
approach, at least in the classical limit. But, in addition, 2.1 2D Case
,he 2D work has set the stage for significant advances in the
study of the 3D non-linear aerodynamic response of low-to- Any free vorticity associated with unsteady plane
moderate A wings (delta and other) to severe imposed 2D fluid motion in the incompressible limit obeys the
maneuvers. Helmholts relation

It has long been recognized that at large but finite
Reynolds Nru. the cross-flow at any chordwise station of DQ, 300,
a slender wing must include two "wakes* (actually, wake a t .

-:-ces) representing concentrated vorticity, often partially where V is th
-r:1led into 'cores,* convecting above the wing surface. The e p flui velo ly, therefor, an' "A (1)curl V = (0,0,Cl,(z,y/,t)). Formally, therefore, if

'This work is dedicated to my teacher, Prof. Win. R. Sears, A 1 = A(z,y,t) and A (
2

) = v(z, y, t) are two independent
in honor of his ?3th birthday. characteristic solutions of

-0 "This study was supported by the AFOSR under Grant Nr.
AFOSR-18.o57. Earlier phases of the resesrch were also sup,- DA(m)

00% ported by NASA Langley under Grant Nr. NAG-I-e5s. = (
-' ' ( 2
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.% -. N0%



with appropriate boundary ( initial) conditions, then O. = Thus, in the 2D ca." we can write 40 = A (A), and dr =
fl(', A). Boundary conditions can be specified such that dr(A) - d s r-'(X)dA where

one of these characteristic variables, v7,, say, is constant 4A

on streLklines drawn at fixed t. The remaining variable, A, t - (2.9)
can be chosen to be
:_W and

A t -r (2.3) an

where - + < V > .V - (2.10)

Dr Here, 7' is the 'mean* drift time of fluid elements within
5 . (2.4) the vortex sheet.

is then the Eulerian 3 drift time3 with the usual si- The variable . can be expressed in the form 77c
r'~~~ ~ ~ ~ is With theost onea theif streakh-h uua am

ple physical interpretation [21. But if the velocity field is Y - Y(f', t) where - = v. With 17 =const. on the streak-

discontinuous as in the classical model of concentrated vor- line, we have y = const.+ YK(T, t) on that line. When f is

tex sheets representing the wakes behind wings and airfoils, expressed in terms of z at any t we define a space curve,

this formulation may not be convenient. Y = y(z; t), giving the usual instantaneous picture of an
airfoil wake. (See Figures 1 and 2.)

It turns out, however, that when a concentrated vortex
sheet is embedded in the flow the variable t7 can be con- As noted above, condition (2.8) was derived by requir-

veniently replaced by a continuous function, ,, say, which ing that there be no net force anywhere on the free vortex

instead of (2.2) satisfies sheet. For systems of conserved global circulation, this cor-

responds to guaranteeing conservation of impulse for the
} airfoil-plus-wake.

D 0 (2.5) In the linear case, in which the wake is assumed simply
and AV • *711 0 to lie along the z-axis extending from the trailing edge with

the vorticity within it convected at free-stream speed U0 0 ,

i.e., 17, is constant on the sheet, and the sheet is a streak the above exact results reduce to

surface (streakline in 2D), whose deformation is controlled

by convection at the mean velocity, < >:

-. < V >= I V -+ -) 26
(22 dA I

dz U.
As with a vortex sheet,

so that, if -1(z, t) is the wake vorticity in that limit,
AV V- + - V - (2.7)

(dr(A)(linear) y (z, t) d

-as no component perpendicular to the sheet at any time,

as stated in (2.5(b)). and

In a distance do along the sheet at any fixed t the ele-
41 mental change in circulation, dr, is determined by the local

:. mp across the sheet of the velocity potential O(z, y, t) such dx(lin) d- 1 d (hn) o Z

reproducing the classical result in the linear limit.

-dr = dsA-- = do AO = dAO (fixed t) In the actual non-linear situation A replaces z as the use-a Ts- ful parameter along the vortex sheet representing the wake,

d'- In the 2D unsteady case the strength of this potential jump, whether the wake is distorting and rolling-up or not. Thus,

._0, occurring at the sheet specified by 1. = constant, is a for example, the total wake circulation at any given time t

function of both z and t which must be determined. But Is

application of the Bernoulli equation on either side of the fesheet, together with the requirement that there be no jump = dr'(A). (2.11)

in static pressure acrou the sheet, yields the restriction waket. -

+ < V>V 0Further, the (plane, 2D) velocity induced by the wake can
, -at be written in complex-variable notation as

NB
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Although this model is certainly oversimplified because
of such effects as separation of the return boundary layers' ,M wke(:, Y1 t) - waks (3, 1- t)=wwake (z, t)

~wakg, t) won the wing upper surface (leading to secondary" and 'ter-

= .- Xr'(A) 1(212) tiary" vortices (9, (101), it offers an important improvement
2rs 2 - z.(A', t) for real flows over the completely inviscid classical theory

ee, + -, and a, = a + iis the complex location (Re S oo) with its singular flow at the edges 111. This
Here,z: muland pro +vide s t eru toole focwrtin tegho h tct speue ob eemnds
at t of the vortex element having circulation dr('), postulated wake pattern is often referred to as the result

.r(A). of 'leading-edge separation" in the present context. The
;"-This formulation provides a. powerful tool for writing strength of the vorticity is presumed to be determined so

down exactly all the various non-linear effects related to as to provide Kutta conditions (smooth flow) at both wing
the wake in a manner which conveniently follows the con- edges. (Section 3.)
tortions of the wake, including roll-up, as it evolves. Since At higher angles of attack, even in steady flow, the model
" is conserved during the history of each fluid element in pattern in Figure 3 ha a further defect. Vortex breakup

q. the wake, it provides a convenient label for each such el- [121, [131, [t41 can be expected to occur at some conditions
ement. In the present example of interest with a consequent sudden and intense change
which a given element entered the wake at the airfoil trail-at some chordwise location of the vorticity pattern above

ing edge. Figure I illustrates a portion of the evolution of a the wing. This paper does not attempt to deal with vortex

streakline constituting a vortex sheet, and Figure 2 shows bre pe ena.

a typical example of a computer-generated version of the

wake behind an oecillating airfoil. In the unsteady case, especially for 3D wings in severe
maneuver, the classical wake pattern also has other de-On the computer, of course, the above continuous vortex ect. Clearly, for example, a pilot could well be able o

replacedroll or pitch so rapidly as to catch and move through his. sheet model is relcdby an approximate discretised ver- sr fcniinwl eur mrvdudrtnigo h

sion. Individual discreet vortices of strength gr(T) replace
* the line elements of the sheet. Details of how to do this own wake pattern. Uaderstanding wing response to that

properly so as to maximize the effectiveness of the approx- vorticity distribution within the cores themselves and any

imation have been discussed by Mook, et. al. 131 and morerecently bySot l.asociated total head loss within the wake system. (151, (18[
r ..b t For that matter, the same improved understanding of the

The computer screen provides an almost ideal tool for cores and total pressure defects appears to be required to
'epicting and understanding wake evolution in this frame- itterpret vortex breakup J121. In the following discussions
work. At each time step each fluid element (and free citcu- we largely ignore such defects, leaving their treatment for
ation element) is advanced to its new location in z and y, future elaborations of the technique we wish to describe
moving in the field of all its neighbors. Since A is constant here.
for any fluid element and t is known, then Y is determined The evolution of the free 3D wake pattern over the wing

Sat each new location at each t. In effect, the computer au-
"matically maps the drift time field. When all the fluid proceeds in a manner analogous to the 2D case, complicated

elements in a given wake are shown in their new positions only by the need for an additional characteristic variable
it each new time, t, for example, the line through them in the chordwise direction. To maintain zero net force on
and the trailing edge at that moment is a streakline which the free wake system each circulation element, - z,
lepicts the momentary shape and location of the vortical once it enters the wake pattern at a wing edge location, is

convected unchanged at the speed determined by the mean
wake. We discussion Seeont 3r hwteinvidul tenWgths, velocity at the sheet, including the motion 'induced" by all
117, of the circulation elements are determined (the Wagner itnegbrgvoexle ns.huai,

-quaton).its neighboring vortex elements. Thus, again,
* eq uation).

2.2 3D Case (2) < V > VA=1 3)

The classical picture of the 3D vortex-wake pattern above where V = (u, t, w) and
a _Jelta wing in steady flow at large Reynolds Nr. and mod-
est angle of attack is shown in Figures 3 and 4. At any < V >- (V - V) (2.14)
chordwise station the trace of the double wake (somewhat

dealized) is as illustrated in the inset of Figure 3. The Once more we define the mean drift time, 7, now in the
4 ., ecessity for a wake pattern resembling this structure, in 3D field, such that

order to provide acceptably smooth flow at the wing edges
at large Re, has been recognised by many authors [4, a 5>,  8

[,"Pee., V >Vf 1(2.15)
.5"0 r7J, [81. Even though the vorticity may roll up partially < V
into two strong "cores,' the strength of these cores must
vary in the chordwiu direction, which requires the exit- and reintroduce h variable (now 3D)
ence of the joining umbilical vortical sheets from the edges

to the cores, as illustrated. a t - (f

- "



which is constant, as before, for each fluid element moving plane. In the unsteady case, these traces will deform, con-
in the vortex wake system. tort, and appear to roll-up, much as if we were observing a

2D airfoil with two wake@ rather than one.
What emerges is the description of the overall 3D wake

pattern, however contorted, made up of twisted streaklines In Figure 5 we illustrate the sort of wake surfaces, and

i f vorticity extending at any instant from the plane of obser- their traces, to be expected above a delta wing undergoing
vation at a given chordwise location to the upstream wing yaw and roll. Simultaneous observation of the wake trace
edge location at which the corresponding vortex elements behavior at sveral cros-wdow planes can provide significant
have entered or are entering the wake system. To describe insight as to the interactive aerodynamics associated with
the shape and location of these streaklines we again need violent maneuvers. On-line use of computer graphics, in-
the characteristic, n,, as defined in (2.5), and one additional cluding split screen capabilities, promises to be very helpful
characteristic in understanding the large-scale unsteady behavior of the

z - Z (z, y, z, t) (2.17) wing and its wake.

On taking account of the right hand rule in the definition
where _of circulation, each circulation element in each trace at fixed

DZ. aZ,
Dt at + < V > .VZ, = W. (2.18) z and t can now be described in terms of the above variables

as

F:r the latter we can choose the boundary condition Z. = 0
at or along any wing edge so that Z. is just the chordwise drs e °  = -dA0( .J) s 7B °

distance at any t and z a given element of the wake has tray- CPO = = +dAO( ., ,)PO°tr (2.19)

elled since entering the system at the upstream chordwise
location ., and at a corresponding earlier time A. Thus, in view of (2.13). (In the steady cas, with nothing changing

, = 0 for any wake element entering the pattern at the in time at a given z, only the first variable need appear and

* wing vertex, and ;. = z for any element just entering at the dr = dr(: - z.(z, y, z)) = '(maI).) in each wake.

plane of observation at z. The q. and ;, variables define The drift time ? observed at z and t for any element in
instantaneous surfaces in the 3D case, and their interec- either of the two wake traces is related to ,, so that we
tions are the streaklines making up the wake pattern at any can find '( ,,z,z,t), and/or the inverse. Then, the total
given moment. circulation at fixed z and t in either trace (starboard or

t$. port) can be written
In analogy with the 2D case one can express the variables

r. and ;. in the forms r r o.PoR ,(zt) )
wake-wake " -I (fixeda.i)

=7 Y - Z (F, , , t) F r m  '~
=  

-- d,

*i ,n turn, is a function at each z and t of z, the height of gr a \oD.Por

-he wake element above the wing surface. For example, in = : - + - -) (2.20)
the linear model of a wake, with wake elements convected 3z dt dgj
:n straight lines at speed U0 as depicted in Figure 4(b), Note that in the linear case or for slender wings at mean
we have angle of attack d, -

? = = Y As discussed in Section 3.2, the incremental circulationu j Zedge ; 7 edge associated with each vortex element is determined just as
* y = Yedge(Zedge) -f f-U cosd it enters the wake pattern so as to always maintain the pos-

z = Zedg e +€ U., cosf f tulated smooth flow at the edges. After that, each element
is simply convected, at fixed elemental circulation, to new

t that the simple surfaces locations in the wake pattern.

z-Zedge = tana 3 Determining the Vortex Strength

-' 'dge ~Distribution in the WakesY - Yedge = tan

Lre formed. The more realistic non-Linear case follows sim- 3.1 2D Airfoil Case
t¢ /,ir rules and is depicted in Figure 4(a).

Wrhuesnd seted aivn F igure ocatio, zIn our treatment of this case we assume the Kutta con-
When observed at a given chordwise location, a, in the dition to hold at the airfoil trailing edge at any instant.

-:)rresponding cross-flow plane including the wing trace, the The airfoil itself is assumed to be a fiat plate' in arbitrary
vortex pattern over the wing create a trace (actually, a pair A
:f traces) of the wake as it passes through the observation Aeneral 2D airfoil profile can be treated in the same man-

ner. with only a minor elaboration of the technique used here.

0 4



plunging and/or pitching motion.
As already discuued, the unsteady airfoil motion requires

the existence of a wake such as illustrated in Figure 2, so r,(t) = (, t)d

that the net circulation of the wake-plus-airfoil is constant.
No linearizations of the airfoil motion of wake contortions f' (', I- (
are admitted in the present treatment. = 2 f di Owake(1,0) 7- (3.7)

The airfoil circulation can be described conveniently in
two parts. The first, ro(t), is the Oquasi-steady' Kutta The quantity 0wake(l t) can be obtained readily from
value associated with the airfoil motion itself and calculated (2.12). Using a system 1 = e-.&(')(z - ih(t)) = f + tj ro-
as if no wake were present. Thus, ro(t) is known for any tating and plunging with the airfoil, the normal component
specified airfoil motion. The general expression is of the apparent wake velocity at the airfoil is determined.

Inserting the result in (3.7) yields an expression for ri(t)
in terms of an integral over the wake vorticity. Details of

_sn - - (3.1) this calculation are available in Ref. (11.r. =-wcu. sin a(t) +2 f dloo(ft) =1 (3.1)
- - The next step is to apply the Kelvin Theorem in the form

where 'c' is the airfoil chord, a(t) is the angle of attack,
i: is the instantaneous chordwise coordinate along the air- rairfoil(t) + rwake(t) = constant = r(0) (3.8)
foil, and 0o(i,t) is the actual normal component of fluid
velocity at the oscillating and plunging plate necessary to where r(o) is any existing initial or steady-state airfoil cir-
accommodate its unsteady motion. (See Figure 6). Then, culation. For example, if the airfoil maneuver begins from
without approximation, (see Ref. [I] for more details) steady flight at angle of attack ao,

Oo = i cosa(t) -2 (3.2)
r(o) -rc sin no.

* and
i2 But we havere(t) = -. (u00 sin a- Acosa) - -& . (3.3)

4
rairfoil = (t) + r,(t)

The bound vorticity associated with Io and tO is called
" 7(2, t) and and rwake(t) is written out in Eq. (2.11), also in terms

-f of an integral over the wake circulation elements. Cancel-
re(t) = ' o(1, t)d 2. (3.4) lations occur, and the final result is, in compiex-variable

f'-f notation,

Defining the angle variable 3 such that I cos 3, we
can write

70(2,t) = -2(U 0 sina-kcosa) 1-cost ro(t)-r(o) .(A )-.

- Cd sinllin (3.5) Rfdr()
where "Re" means real part implied and

. This "quasi-steady' bound vorticity would be all that is
present if it weren't for the wake. But, as illustrated in 1. e' (z. - sh(t))

Figure 6, and calculated in Eq. (2.12), the wake causes
in apparent upwash at the airfoil which must be cancelled with z, as defined below (2.12).

:ut by the action of additional bound vorticity on the air- Equation (3.9) was first derived by Wagner '17', in
Sfoil, -YI(l,t). The amount needed is given by the theory of the linearized limit, and used by many authors to under-

.*:njugate functions in the form stand airfoil response to sudden starts, sudden (but small)
changes in angle of attack, and flying through gusts. 181,

-( )( o191 It seems remarkable that the non-linear version (3.9)
-Cos - . d "(-20wake)(I + Cos,) (3.6) of Wagner's equation is essentially the same as his origi-

, si comr - cos o nal except that 1.(A, t) is complex, reflecting the distortion
and roll-up of the wake. The principal mathematical nicety

where, as in (3.5), the Kutta condition has been applied at in the non-linear case is the need to determine the correct

- the trailing edge. Correspondingly, the additional circula- branch of the complex square root occurring in the integral.

"ion on the airfoil, ri(t), is given by

I N



The left-hanid side of (3.9) is known as a function of t for growth or shrinking of the wing trace at any s. For ma,

any given imposed airfoil motion (se Eqn. (3.3), for exam- neuvers with very rapid forward acceleration or complete

pie), so Eqn. (3.9) is an interol equa tion for the strfngtho, changes in kight direction, a frame fixed in the atmosphere

dr(A), of the circulation elements in the wake. may be preferable, with the wing flying 'through* the ob-

Operationally, on the computer, use of Eqn. (3.9) to servation plane or planes. Of course, one could also choose

determine the wake vorticity is relatively straightforward, an obrvlation system fixed in the wing, with attendant
except for finding the initial incremental vortex element complications associated with non-inertial frames of refer-
at the very start of a maneuver. Difficulties arise there ence. For our present purposes, we dopt the scheme shown

because the kernel on the rho of (3.9) is singular. An e- in Figure 7.

fective method for treating this crucial first moment of the In complex-variable notation the quasi-2D cross-flow ve-
'starting problem' is described in Ref. [11. After the pro- locity field associated with the wakes is, with Z = X - tY,

cedure has been properly started, however, it runs easily
because once the strength of a vortex element has been de- Vwake Wwake(Z)
termined by (3.9), at the instant it enters the wake, that Uwake - I

strength, as measured by its incremental circulation, re- 1 9fddrs '( e, ) I
mains unchanged as the element convects to its subsequent = 2ws"J 0od . Z - Zs( a  3

positions in the wake.

+ .drpoir( ',,A) 1

3.2 3-D Case. Smooth Flow at Both fore . Z - o r

Edge@ in analogy with (2.12). Here, we have used (2.19) and
Z~~m( ,tZ)and us°T(€t,) the instantaneous

From Kelvin's theorem we know the net circulation in complex locations in any given cros-flow plane (z, V) of theeach cross-dow plane is zero: vorticity elements in the starboard and port wake traies re-

spectively. In the following we also have use for

rsroo + rpoitr + rtAC& = 0 (3.10) w - -Kw

We treat the 3D case in this paper in the slender-wing = t'wake -t'Vwake"
(,ow A) limit, determining the velocity and potential field
.n each cross-flow plane on a quasi-two-dimensional basis The boundary condition at the wing trace as viewed in
.n the spirit of Ref. [11]. In that limit we must determine each cross-fow plane can be written in a form somewhat

:.e 2D potential solution in each observation plane corre- similar to that in (3.2) for the 2D airfoil. Using the coor-

sponding to the concentrated vorticity on the wing trace dinates suggested in Figure 7 the actual component of ve-

and in the traces of the two wakes (Figure 7).2 locity in the (z, V) plane normal to the instantaneous wing

In order to treat a general large-amplitude maneuver and trace can be written

still maintain an inertial frame "almost' moving with the
wing, we specify a system moving with the mean or initial D.Xo(z,t) cosK+ Yo(z,tsinK
steady Bight condition, as sketched in the figure. This ini- 0 (, ,t) - Dt Dt

* t~tl or mean forward speed is U., with angle of attack 5. D.K(Zt (3.12)
A cross-fow observation plane at any fixed z (analogous to -Y De

'he computer screen) is oriented normal to the wing sur-
face in its initial or mean configuration. The observer in where - = a +W-. For a low A wing in steady forward
:is plane sees an incoming steady free stream of speed U, ight without pitch or yaw, for example, W = U. cos 3,

at angle 5 to the z axis. Additional pitch, yaw, or roll of since the additional fluid speed in the chordwise direction
,he wing, as well as plunging or sideslip of the wing ver- is neglible because of the wing slenderness. During pitch

'ex, are perceived in each observation plane as vertical or and yaw, however, W requires adjustment to allow for the
3ideways displacements, Xo(z,t) and Yo(z,t). Acceleration instantaneous flight angles and the fact that the chordwise

or deceleration of the vertex in the z-direction is seen as a (or slenderness') direction is then misaliged with the a-

"For 3D wings and their wakes during sudden and violent ma- axis chosen in Figure 7.
% neuver the *slenderness direction' becomes somewhat ambigu-,,u.Na n ni.lwA wig o xmlqatte Starting from the mean or initial steady flight condition% Ous. Near and on the low A wing, for example, quantities

W. may vary slowly in space only in the instantaneous chordwlse described above, an observer on the wing sees an effective
hrection. wherea this is generally misaligned with the original crow-flow from below of U.. sin 5, the normal component
x-axis of Figure 7. The main !LM structure, on the other hand. of which is U., sin acos K. Eqn. (3.12) then allows for any

* may still tend to be *slender' with respect to the original Bight additional unsteady wing motion, including any accelera-
alignments. Ultimately, of course. use of the full 3D relations
to required. We are suggesting here, however, that this be done ion of the wing vertex as well as pitch, yaw and roll about
after fully exploiting the additional insights to be gained in the specified axes. Any built-in camber of the wing can also be
Jones-Munk tradition. included in the form (3.12). The angle 'K' is an apparent

* 6
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troll* angle, observed at fixed z, which is actually a com- Ai oltrace at both edges of the wing if our Kutta-condition
posite of the usual Euler angles. For this reason Xo, Yo and postulate is to be satisfied. Note that at this point we
K can depend on s as well as t. For simplicity we assume can no longer simply assume rRACD = 0, but must apply
the wing trace to be fldat, although the method used here can (3.10) in order to try to determine it.
be generalised to include any moderately thin cross section In Eqn. (3.15) &wake( , t) can be written down in terms
as well as control surface deflections. Note that 9, in this of the wake integrals in (3.11). Cancellation of the singu-
case, is the instantaneous spanwise coordinate as shown in larities at both wing edges then requires
Figure 7, and - is the effective semispan at that instant at
the specified z. Thus, Xo(z,t), Yo(z,t) give the instanta- for #-
neous position of the mid-effective span which is not on the 2 [ sU sin 5 - coo K -sin K ''+.Yo I DK.K
wing center line during yaw. Dt D t Dt

If there were no wake the discontinuous part of the ve- =
*locity at the wing trace, Ai~o, would be dr-t r6dSO

11oktrace =+Re~f d;.c +
si29 [osK- sin KE.1 - { (2.o,r)2 + 6' V/(2)STBD) + L2

f o r 9 = A(, 22[U i d X co K -sin KL'u iZDK
L/-. +2 - s D (3.3) Dt Dt
2- .. 2 *- - 9(3.13 2rrAC.(Z,t)

since in that cas, according to (3.10), we would have drPOR? sT5O

I'RACB = 0. For example, in the limit of steady motion at +Re + f + J2
small N and with no yaw, pitch or roll, (3.13) reduces to V(2) + It 1. +

2y

1Mo ltrace =  a U", (3.13a) In the above relations

_Y- 2.Po.r = e-K(,,t) (ZPoa?(r ,Zz) (Xo + j'o))

corresponding to Jones' classical result [11]. Note that in and
either (3.13) or (3.13a) the flow predicted in this way (with-
out vortical wakes above the wing) is singular at the wing ,sao = e-,(,(Zst ( 4 , t,z) - (Xo + iYo))
edges. The next step is to add the wakes and to determine

r. their vorticity distributions so as to "smooth' the flow at with the Z. as defined below (3.11).
the edges. Taking the difference of the two equations involving

In a manner similar to that used for the 2D airfoil, we rranc. yields rJRAC = (!.) D so that we obtain
introduce an 'angle variable* such that the constraint

Pr D. Kb r = -t (1 (zt) + r I rao(z, 0 (3.16)
2i (.4 2 Dt

* axnd use the theory of conjugate functions to write down The sum of the two relations then yields an equation for
the additional rj pi rthe vorticity strengths (circulation elements) in the wake(o ing traces which is analogous to the Wagner integral equation
trace in order to continue to satisfy the boundary condition
(3.12) despite the velocity field (3.11) induced by the wakes.

U sin a - L cos K - sin K D.Yo

1Al6 trace - A1goltrace + A41tltrace Dt

where Re _ ___ + _ _ "
S2rrtACA(z, 0) TV(±P.o 0ir ) 2 + k! 3 s.

2 ' Ti" c rcoo e (3.17)
2 tan5 f d(-wakcos ) (3.15) The left-hand-side of (3.17) is known at each z and t

iJ coo r - coo for any given imposed wing motion. Thus, (3.17), together

with (3.16) and (2.20), determines the circulation elements
The wing-edge singularities in these additional "wake- throughout the wake system within the present model. So-

induced' terms must exactly cancel the singularities in lution proceeds in a manner mathematically quite similar
to the 2D airfoil case.

*1T
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4 Loads, Forces and Moments more useful here simply to note that Ci wake vanishes iden-
tically in the linear limits of a wake extending straight be-

4.1 2D ATloll Case. Large-Amptude hind the airfoil since it involves awake" Also, we have notAnste od l Casse yet encountered a ca, even in the non-linear treatment, for
Unsteady Reponse which ( t wake has been important, even though it clear!y

ca.n be significant or even crucial, for a maneuver in which
In Ref. [1 the forces and moments occurring on 2D air- the airfoil flies through,' or just above or below, its own

foils in large-amplitude unsteady motion were calculated wake.
using the presures over the airfoil surface as predicted by
the Bernoulli equation for unsteady potential flow. In reck- The fourth term on the rby of (4.1) also vanishes in the

.-ning the lift, a *leading-edge force" was included in the linear limit, since in that case both f ( ) and Ucos a ap-
classical manner, except that no linearizations were admit- proach U'.. This term in fact illustrates the numerical ad-
ted. This procedure was built into the 4NLWAKE* code vantage of the wake-integral formulation, since it represents
reported in (11.  explicitly the partial cancellation between two otherwise

More recently, we have reformulated the lift and moment quite large terms.

expressions by taking advantage of the possibility of ex- The drst three terms on the te of (4.1), on the other
pressing all or most wake-related terms (without linearis- hand, approach their classical linear counterparts exactly
ing) in terms of the corresponding 'wake integrals" - in- in the limit of small amplitude motion. The 2nd term is
tegrals over the (known) wake vorticity. This step mimics often called the 'apparent mass' term, and the 3rd the
classical procedures in the linear theory [181 and establishes 'wake effect." Thus, on using (4.1), we know that the non-
the equivalence of the original formulation in Ref. [I with linear theory appropriately reproduces the linear version,

. the application of the principle of conservation of impulse. and includes it.
Most importantly, the reformulation greatly improves %he The corresponding moment coefficient, C 0 , about mid-

* numerical accuracy achievable in the codes. The reason chord is given in similar fahsion by
is that several large contributing terms in Ce and C,, in
NLWAKE almost exactly cancel, leaving crucial small dif- Ucos a di I -yo(2, t)
ferences which can be difficult to calculate with sufficient C.o1 t) = -2 J_ c2 U .

accuracy. In the extension of NLWAKE to include the new
formulation, these partial cancellations are explicit and the d
:emainders are written in a manner more suited to precise + - (4.2)
aumerical evaluation. U .  P U.

The (non-linear) expressions for lift and moment includ- I R cidt"() eC ca 1

rig the appropriate wake integrals in this way are written U.2c U. 2 c"
,ut here both for completeness and for comparison with ca - i
their classical linear versions. For the lift coefficient, using -Re c - 1- cos a

c 0 m dt) a*he notation of Eqn. (2.11), (3.3) and (3.5), we find

e 2- (U 2c dC , wake W t(6" t)= - -- f_- -wh r
+e/U~c \U 0.  U0. coca it _. c2U. hr

7t c
,wake~t

- Re f 4 I(4.1) -2 [Ccosa b \2it V -J -w e)(o(1,t)--y(:,t)) (4.2a)

2 f 1 di ifk a-- 0' -1 0 (,0
-2Re A-(A) .c - Ucos a -Ic cos a 2 7t Once again, the final two terms on the rh. of (4.2) vanish at

- small amplitudes, and the first three terms reduce precisely...... -Cewake (t)
.k (0to their classical counterparts in the linear limit.

where a = 21./c with 2. defined as below (3.9), and U Computer-generated results corresponding to Eqns. (4.1)
U, -,-/ttan a. The small non-linear term Ct wake() is and (4.2) are illustrated in Section 5 in terms of 2D airfoil

"response to large-amplitude imposed motions.
Ce wake(t)

2 f
-dl Gwake(2,t)(10(,t) +r(z,t)), 4.2 3D Case. Loads and Normal-ForcecU-. c J- Distribution on Slender Wings

(4.1a) The pressure difference, or loading, across the wing for
and can also be written out in terms of wake integrals. The the 3D case can again be calculated using the Bernoulli
resulting expression is cumbersome, however. It is perhaps equation for unsteady potential flow on either side of the

1% e
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wing. As before, the wake-related terms are two-fold. First, D.Xo sK DY ool (45)
the associated velocity field of the wake, as given by Eqn. DtsDneDtcosK .5

(3.11), contributes directly to the pressure variations. Sec- +C.wake + C
ondly, the apparent upwash caused by the wake must be whke
cancelled out by the effects of an addition wing-trace vor- where
ticity, AV1(q,t), as given in (3.15), thus implying a ad-I D -
ditional jump in the V term in the Bernoulli relation. In Cwake/ (2 d(cos' C)&wake

calculating the latter we take advantage of the posibility
of writing (z, y, t) on the wing on either side (+, -) as

= '(Z' o) Z _
7

R } (. 1a2

where the coordinates (, 9) are as illustrated in Figure 7. and
We find, for slender wings, with V = (1, 0, tb)

1 -! t- ,]P(z,t) t- = o (Ai" o -,)- A+ ;) (4.5b)

PC* J bottom
(4.3) Using (3.11) we can express Cwake,(,t) in terms of a

=< V> .V+ ." , (4) wake integral analogous to the 2D airfoil case. The result

_< p>,, p.is

, s D; +in K -- coo K
Dt )tD

where -D = y + Wf- as before. In writing (4.3) we have C.wake(Z't)

also used the notation defined in (2.6) and (2.7) and below i D, f drarov [1

(3.12), as well as in Figure 7. f d17-U

As mentioned in Section (3.2) proper use of the slender- + dr'0  V-aT- (4.6)
wing concept allows us to repace iV with W, provided we 2--(
recall that the low A wing is "slender' along the chordwise
direction and not necessarily along the z-direction during where
violent pitch and yaw.

The At occurring in (4.3) can be written a. E 2Z."5tm/b ; a, = 2Z,*o"r/b

-~(9,z,t) = FrSE(z,t) and we note a. = -i at the starboard edge and a, +t at

/_A (~~) 44 the port edge.

In the interactive method for the slender wing case this
latter 'wake-integral" is easy to calculate on the computer,

where A9 is given in (3.i3) and (3.15). Further, < >= since the necessary information becomes available automat-
-U. sin sinK + Vwake. ically at the same time the wake structure itself is being

Expression (4.3), with (4.4), lends itself to relatively generated using the method described in Section (3).
s:aightforward calculation of the normal force distribution The C'((z, t) term can also be calculated in terms of wake
C: ,(zt). Spanwise integration with respect to J proceeds integrals, and that approach appears to be the most con-
in a manner mathematically the same as for the 2D airfoil venient and numerically accurate method to determine its
zase, except that in the present model no edge forces are value. We note here only that C, has no linear counterpart
.ncluded. The lift and drag and also the roll, pitch, and vanishes by symmetry in certain simple f.ight config-(.andvaihsbsymtyicetisipedgtcn-
yaw moments of a given wing can be reckoned in a simi- urations), yet its effect appears to be potentially of great
:3.r manner, on including subsequent weighted integrations importance in certain maneuvers involving intimate inter-
;ver z. We find action between the wing and its wakes.

2 The first term on the rts of (4.5) corresponds for small 1
C.(Zt) - (zt)-d p (0 z,t) to the linear theory result of Ref. ill. In fact, for pointed

slender wings in steady flight at small N, this term inte-1 D, r" sb
- -- r-U. sinacoo K grates chordwise to yield

2b \ D.Xo K Yo s K c . (4.)

( -- ) in a sin K the classical Jones result. The additional terms in the corre-
U12 Dt sponding curly brackets represent the local, instantaneous

* 9



normal-force effects of plunge, pitch, etc., that would arise the maneuver, from start to finish, the airfoil advances 5
if there were no wake*. chord lengths in this example. Both 'apparent mass' ef-

rep. fects and upwash associated with the developing wake play
OWTewake-integral temC.wk (,t ad 'i s ),rp vital roles in the net result.

resent 'history effects' in the relationship between wing
motion and wing loading or respone. As we have seen, The pitching moment for this example, though large in

the various vorticity elements in each wake reflect condi- amplitude, is essentially classical in response, except for the

tions imposed at upstream wing edges, each at an earlier relatively pronounced history effect alter the maneuver is

time. Thus, for example, in the event of a sudden maneu- complete (Figure 10(c)).
ver of short duration, the outer parts of the wake affecting A number of additional examples of airfoil response to
C, (z,t) will often represent wing attitude and other condi- imposed large-amplitude motions of various types are re-
tions in effect before the maneuver began. Conversely, af- ported in Ref. (1i. It is especially instructive, in addition
ter a given maneuver is "over*, many outer wake elements to the figure., to actually run the codes of [1) on-line tak-
will still reflect the actions taken during the maneuver, so ing advantage of the almost instantaneous wake displays to
that wing loading will take time to adjust and/or return to develop a sense of airfoil response and the reasons for it.
.normal.' Naturally, any occurrence of vortex breakup can Several of these 'flight' sessions have been taped recently.
have a drastic effect on this history-related part of the wing In the 3D case one can carry out similar on-line runs with
response, although it may not always be unfavorable. Of split-screen displays of the wing configuration, wake defor-
course, before we can regard wing response as 'determinis- mations at various locations, and wing loading response.
tic' we must learn how to predict both the occurrence and
specific nature of such vortex bursting. [121-(141 References

5. Scott, Matthew T., 'Nonlinear Airfoil-Wake Inter-
* e 5 Typical On-Line Result!: Non- actions in Large Amplitude Unsteady Flow,' M.I.T.

Linear 2D Airfoil Response Master's Thesis, June, 1987. See also: Scott, M. and
McCune, J.E. ALAA paper Nr. 88-0129, ALA.A 26th

A critical part of studying the behavior of wings in ma- Aerospace Science Meeting, Reno NV, Jan., 1988.

neuver is the understanding of the wing's aerodynamic re- 2. Lamb, Sir Horace, Hydrodynamics, 6th edition, Dover
"ponse to new conditions suddenly imposed. Representa. Publ., N.Y., 1945.
-ive of such response are, for the 2D case, the results of the
:lassical Wagner problem, illustrated for the low-amplitude 3. Mook, D.T., et.al., "On the Numerical Simulation of
.inear) case in Figure 8(a). The net bound circulation on the Unsteady Wake Behind an Airfoil," AIAA-87-0190,

the airfoil, ro + ri, adjusts only gradually to the suddenly Jan., 1987.
;mposed change in angle-of-attack as represented by the 4. Adams, Mac, "Leading Edge Separation from Delta
:,i mp in ro. The lift coefficient jumps to 1 its eventual 4.Aasvac"LdigE eSprtonfmDla

2 Wings at Supersonic Speeds," J. Aeron. Sci., 21, Read-
value and gradually adjusts. Note that the relaxation to

" he quasi-steady result, is very slow. On the Figures, time
:s n rmalized to ( ) (c/Uo). 5. Edwards, R.H. 'Leading Edge Separation from Delta

The corresponding nonlinear (large-amplitude) case is il- Wings," J. Aeron. Sci., 21, Readers Forum, Nov.,

S..!trated in Figure 9(a). Note that the response is very 1953.
4.=..lar to the linearized result, despite the relatively severe 6. Cheng, H.K., "Remarks on Non-Linear Lift and V rtex

* ~I.':rmation of the wake as illustrated in Figure 9(b). This Separation," J. Aeron. Sci., .1, Readers Forum. Dec.,
itppears to be a result of the fact that the wing in each 1953.
i: se is adjusting to shed vorticity which is rather strongly

- : : enratd toward the flar reaches of the wake, ultimately 7. Brown, C.E., and "ichael. W.H., Jr., 'Effects of Lead-

everal chord lengths downstream. ing Edge Separation :n the Lift )f a Delta Wing," J.
Aeron. Sci., _.2, 1954.

A IPllustration of the airfoil's aerodynamic response to a
- -4'mentary but severe maneuver is illustrated in Figure 8. Mangler, K.W., and Smith, J.H.B., "A Theory of the
I -), There, a sudden single-cycle sinusoidal angle of attack Flow Past a Slender Delta Wing with Leading Edge
v.a.ation of large amplitude is imposed and just as suddenly Separation,' Proe-Roy Soc. 251, 200-217, 1959.

_::pped. The wake vorticity coagulates and begins roll-up 9. Powell, Kenneth G., Vortical Solutions of the Conical
-,:nout significant net displacem ent from the plane of the . o e l E n n s,* M .oT. Ph.D . T he Ju n 19 7

. il (Figure 10(a)). The lift jump. quickly, and then leads Euler Equations." M.I.T. Ph.D. Thesis, June, 1987.
quai-steady value into the negative lift region (Figure 10. MUller, Berudhard, and Rizzi, Arthur, 'Navier-Stokes

I --yb)). It then overshoots the recovery, plunges again, and Computation of Transonic Vortices Over a Round
.. y very slowly recovers to the state before the maneuvers, Leading Edge Delta Wing," AIAA Paper Nr. 87-1227,

.:;strating a "history effect" for the 2D case suggestive of ALAA 19th Fluid Dyn., Plas. Dyn., and Laser Conf.,
-. e phenomena discussed at the end of Section 4. During Honolulu, June, 1987.

* 10
%'o N



11. Jones, R.T., *Properties of Low-Aspect-Ratio Pointed
Wings at Speeds Below and Above the Speed of
Sound,* NACA TR 835, 1946.

12. Hall, M.G., 'Vortex Breakdown,* Annual Review of
Fluid Mechanics, Vol. 4, 1972, pp. 195-218.

13. Lambourne, N.C. and Bryer, D.W., *The Bursting of
Leading Edge Vortices; Some Observation and Dis-
cussion of the Phenomenon,* Aeronautical Research
Council, R and M 3282, 1961.

14. Reynolds, G.A. and Abtahi, Ali, "Vortex Dynamics for
Transient Flight Conditions," Lockheed-Georgia Com-
pany, Presented at AFOSR Workshop on Unsteady
Separated Flows, Air Force Academy, 28-30, July,
1987.

15. Murman, E.M., Powell, K.G., Goodsell, A.M., and
Landahl, M.T., 'Leading Edge Vortex Solutions with
Large Total Pressure Loes,* AIAA Paper Nr. 87-
0039, AIAA 25th Aerospace Sciences Meeting, Reno,
NV, Jan., 1987.

- 16. McCune, J.E., Tavares, T. Sean, Lee, Norman, and
Weisebein, David, OSlender Wing Theory Including
Regions of Embedded Total Pressure Loss,' AIAA Pa-
per Nr. 88-0320, AIAA 26th Aerospace Sciences Meet-
ing, Reno, NV, Jan. 1988.

17. Wagner, H., 'Dynamischer Auftrieb von Tragfd eln,"
Zeitschr, f. Angew. Math. u. Mech. (ZA.MN), 5, 17,
1925.

18. von Karman, T., and Sears, W.R., "Airfoil Theory for
Non-Uniform Motion,' J. Aeron. Sci., 5, 10, 1935.

I). Kissner, H.G., "Zusammenfaeender Bericht diber
den instationiren Auftrieb von Flageln,' Luftfahrt-

.- forschung, Bd. 13, page 410, 1936.

. D. Ashley, H. and Landahl, M., Aerodynamics of Wing#
and Bodies, Dover edition, Dover Publ., N.Y., 1985.

..



'%K

Figure Captions

1. Particle Paths vs. Streakline. Formation of a Vortex Sheet.

2. Wake Behind an Oscillating Airfoil.

%. 3. Sketch of Wakes from a Delta Wing.

I-l4. Typical Wake Traces. a) Non-Linear. b) Linear, Idealized

5. Wing in Maneuver. a) Wing and Wake Traces at Various Chordwise Locations. b) A Streak Surface, Starboard
Side, for given t.

6. Superposition Algorithm for Determining Bound Vorticity Necessary to Cancel Upwuh at the Plate.

7. Choice of Cross-Flow Observation Planes. a) z - z Projection. b) z - y Projections and "Roll'.

8. Airfoil Response to Low-amplitude Step Change in Attitude. a) Circulation and Ct us. Time. b) Wake Display.

9. Airfoil Response to Large Amplitude Step Change in Attitude. a) Circulation and Ci vs. Time. b) Wake Display.

10. Airfoil Response to a Single Full-cycle Completed Imposed Oscillation. a) Wake Display. b) Lift and Circulation
va. Quasi-steady Values. c) Moment Coef.cient, with HIstory Effect.
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Slender Wing Theory Including Regions of Embedded Total
Pressure Loss'

James E. McCune,t T. Sean Tavares,$ Norman K.W. Lee,1  and David Weissbein'

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract regions is determined interactively with the larger-scale in-
viscid flow, but their very existence depends on the pres-

An aerodynamic theory of the flow about slender delta ence of viscous action occurring somewhere, especially at
wings is described. The theory includes a treatment of the various interfaces with the outer flow.
the sef-consistent development of the vortex wake patterns To the extent that such an hypothesis is viable one
above the wing necessary to maintain smooth flow at the can contemplate an analytic approach, albeit computer-
wing edges. The paper focuses eopecialy on the formation assisted, to the study of non-linear, unsteady wing aerody-
within the wake of vortex 'cores' as embedded regions of namics. In many situations the outer flow will be potential;
total pressure los, fed and maintained by umbilical vortex even the embedded flow regions, when of large enough sale,

Ssheets emanating from the wing edges. Criteria are devel- may be essentially inviscid within, although they must then
oped for determining the growing sise and location of the" be surrounded by viscous layers or %heaths separating
cores, as well as the distribution and strength of the vortic- them from the outer (potential) flow. A common feature
ity within them. In this paper, however, the possibility of shared among the embedded flow regions, however, is that
vortex breakup is omitted. The aerodynamic consequences they will not be irrotational; reduced total pressure, dis-
of the presence and evolution of the cores and the a8so- tributed variously over the inner regions, will be present.
ciated wake structure are illustrated and discussed. It is In addition, when any of the embedded flows detach from
noted that wake history effects can have substantial influ- the wing surface a key part of the aerodynamic problem is
ence on the distribution of normal force on the wing as well to determine their evolution, in size, shape and location, as
as on its magnitude. affected both by convection in and viscous interaction with

the surrounding flows. When compressibility is important,
the possible formation of shocks as well as the propagation

1 Introduction of acoustic disturbances can also affect the interplay of the
inner and outer flows. In this paper, however, we limit

• The underlying assumption adopted in this work is that ourselves to the incompressible case.
at the Raynolds numbers of full-scale flight it should be If flow models of wing aerodynamics are constructed
possible to advance our understanding of the aerodynamic along these lines, fully three-dimensional analytic studies of
behavior of wings, even in severe maneuver, without nec- the problem can be carried out and the procedure is essen-
essarily resorting to the full Navier-Stokes equations. This tially classical. Given a wing's geometry and attitude and

" classical notion envisions the flow past the wing as con- its flight status or sequence, the precise boundary condi-
" sisting of large surrounding 'outer regions of essentially tions needed to determine the flow can be written down and

inviscid flow in which are embedded 'inner' flows, many classical potential flow techniques applied. The inner flows
key features of which an viscous or viocous-relatod. The" can be treated using a variety of approximate treatments."embedded flows may include not only the usual boundary The algebraic complexities in the 3D case are formidable,

N. layers and viscous wakes but also larger recirculating re- however, and (at least at the outset) may serve only to
gions (such as separation bubbles) as well as shed vortices obscure the progress we wish to make with an analytic or' and vortex 'streets" complete with their own inner 'cores'.Th ndortx 'srets'dcompe wt the inner cres f quasi-analytic approach. In this paper, therefore, we adopt
The location, size, and shape of the inner embedded flow the ideas of the slender wing theory of R.T. Jones [lJ as

'This work was supported by the AFOSR under Grant Nr. a means of illustrating the proposed techniques in a some-
AFOSR-S6-137. Barlier phases of the research were also sup.- what simplified framework. Jones' quasi-2D treatment for
ported by NASA Langley under Grant Nr. NAG-l-668. low aspect-ratio wings is a remarkably powerful and insight-

P 'Professor. Associate Fellow, AIAA'rfessor, Assian, tbe r, AAA ful tool which historically has also provided a framework for'Research Assistant, Member, AlAA

'Research Assistant understanding the results and trends of more exact numer-
'Member, AIAA. Present address: Northrop Aircraft ical studies.

I Northrop Ave., Dept. 3812/82, Hawthorne, California 902d0 Advances beyond Jones' theory, sepeci&lUy as applied to
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-- delta wings, began with the recognition by many authors to localized separation of the wing boundary layers, and
•- .[21, [31, [4], [5] of the need for a vortex wake structure the phenomena of vortex breakup, are explicitly omitted.

above the suction surface of the wing. (Fig. 1) The roleofti-ae atr omwa dal"dhr i h i- In the course of the non-linear evolution of the (ideal,
of this wake pattern, somewhat idealized here in the fig- inviscid) vortex-sheet patterns as in [61, the wakes gener-
ure, is to provide meas of establishing smoother flow (a ally tend to "coagulate,* with the vortex trace. spiralling
'Kutta condition') at the wing edges than that arising in in on themselves and "rolling up.* (See Fig. 2) If this is

" the original Jones treatment. The resulting modifications the case and the Reynolds number is finite (no matter how
provide predictions more commensurate with real flows at large), viscous dissipation and smearing out of the vorticity
large but finite Reynolds Nr. One can view such a dou-
ble wake structure as the result of a form of leading-edge must become important at some stage as the contortions
s otof the ideal wake traces become more and more intricate.sitThe result, as sketched in Fig. 2, is the creation of a re-

In this paper we discuss the self-consistent development gion of smeared-out vorticity in the 'core' of each wake.
of the wake pattern above a low aspect-ratio delta wing at (Multiple cores can also occur.) In these core regions, a

*.' modest angle of attack in the context of its effect on slender corresponding embedded region of total pressure deficit is
wing theory. In particular, we undertake to include in our created. Both numerical and experimental evidence exists
treatment the presence of embedded cores of distributed for such embedded regions; see, for example, references J7[,
vorticity, or regions of reduced total pressure, near the end [81, 19], 110[, ill].
of each wake trace as illustrated in Fig. 2. The physical
reasons for the presence of these embedded regions are dis-
cussed briety in the next Section. We will find in later Sec- 2.2 Coordinate System: A 'Time-Anal-
tions that the effect of embedded low-total-pressure regions ogy' Approach
on the development along the wing of various flow quanti-
ties, including static pressure, requires careful attention. A Although the wakes may partially roll up into 'cores'

* sel-consistent procedure for determining these parameters as discussed above, we still require a careful treatment of
in the slender-wing limit is developed in this paper and those portions of the wake which remain thin and sheet-like,
compared with the classical case of purely potential flow. with negligible total pressure loss across them. For exam-
In addition, we derive criteria for determining the sise and pie, the strength of the cores must change as they move
evolution of the vortex cores. However, in this paper we do downstream over the wing, not least because of chordwiss
not consider the possibility of vortex breakup. Some of our variations in wing geometry. Thus, sheet-like portions of
recent work on that subject will be reported elsewhere. each wake can be regarded as 'umbilicals' feeding each

core (see Figures), and to these the analysis of [6] applies
almost without change.

2 Wake Formation in Potential Flow In the present paper, however, we wish to take advan-

tage of a form of the time-analogy approach inherent in the
2.1 Development of Wakes with Total classical Jones-Munk treatment of slender wings and bod-

Pressure Los ies. [1], [12] For simplicity in the present discussion we take
the wing to be a delta of planar geometry and in steady mo-

In Reference [6] the self-consistent development of vor- tion at small, constant angle of attack, omitting the radical
tex patterns above slender delta wings in large-amplitude maneuvers discussed in [6].
unsteady motion is discussed from the point of view of an- Jones suggested an observation coordinate frame fixed in
alysing the cross-flow pattern at each chordwise station. In the still atmosphere through which the wing being observed

" that work, however, the wakes are treated ideally, as if they penetrates during its flight. Extending the ideas of Munk,
were simply vortex sheets of complex shape, with no total Jones pointed out that if the wing was slender enough (i.e.,
pressure lose in the flow. The focus there is on determining of low aspect ratio) an observer fixed in this frame would
interactively the shapes of the two required wakes as viewed see, in a "cro-flow plane' oriented normal to wing surface,
in successive cross-flow planes. The distribution of vortic- a quasi-2D, but unsteady, flow pattern. The unsteadiness
ity along them is determined so as to maintain smooth flow would arise, for example, because the observer would see,
along the wing leading edges. The method extends the clam- in the cross-flow plane, a wing trace 'growing' in span ac-

S sical literature [2], [3], [4], [5] so as to allow for severe wing cording to

motion during maneuver. Non-linear self-consistent vortex
wake evolution is explicitly included. b(t) = tz = U, cos U,- (2.1)

As pointed out in that paper, such a model of the wake 2 2 2

structure is somewhat too idealised, in that the develop- In addition, in Jones' scheme, the wing would appear to be
ment during wake roll up of vortex cores at finite Reynolds plunging at constant rate U. sin a ;i U.a.

. numbers, with attendant regions of distributed total pres- As illustrated in Fig. 3, we adopt in this paper the Jones
sure loss, is not addressed. Similarly, the related occur- 'tie-analogy iew , w texptin that e tope"..?renes f aconary paatio "bbbls,"whih aisedue "time-anaogy" view, with the exception that we 'stop*
e o n e n l h ithe apparent plunging by including a countering crosflow
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velocity (from the left, in Fig. 3) of magnitude U. sin a. We make use of Eq. (2.3) in writing out the Owake-
Thus, in the crose-flow obeervation plane, the origin of the history" integrals below. In [61 it is shown that A is a
z - I frame remains fixed on the wing center line as the 'purely-convected' quantity, acting as a label for a given
wing passes through. circulation element in the wake.

It is in describing the evolution of the two wake traces
that the time analogy approach has its greatest appeal. In 2.4 Determining the Vortex Strength Dis-
the spirit of Jones' low aspect-ratio-limit treatment, the po- tribution in Ideal Wakes
tential flow solution in the observation plane at each instant

represents an instantaneous solution of Laplace's Equation The net circulation in the cross flow plane is zero for all
corresponding to the boundary conditions of the moment. times by Kelvin's Theorem;
But these now include not only the apparently growing wing
trace, but also the developing wakes (or wake traces) eme- rsTBD + r"" + rrR4CS = o• (2.4)
nating from the wing edges. Moreover, at any instant t the
outer portions of each wake trace, including and approach- where rRACB is the cros-flow circulation of the wing
ing the cores, carry with them the "history" of the wing's trace, and r3tD, reo n r refer to the starboard and port
penetration of our observation plane; the vorticity in those wake traces. From the symmetry of the problem with zero
parts of the wake were generated at times previous to t. roll angle we see that

When the wing is in steady flight at angle of attack a, we

can relate time variations seen in the present observation AACA = - (2.5)
frame to chordwise variations referred to in [61 through the rvRACS = 0.

transform (See Fig. 4) (For caes involving asymmetric maneuver

-' rTRACB must be worked out, and will not generally vanish.)

* - = U. cos a S- s U. (2.2) In complex-variable notation the quasi-2D crossflow ve-
,--,rlocity associated with the wakes is, with Z - z + iy

2.3 Convection of Ideal Wakes
° '.Uwake - 'wake Wwake(Z )

The mathematical description of the non-linear convec-
tion and evolution of ideal wakes is contained in Reference 1 ff .
61 and will not be repeated here. However, a synopsis of 2ri 0I IZZ-P(2.6 r

the general approach is useful.

In formulating the ideal wake model the only concession +f dA { J

to the existence of viscous-related phenomena is to enforce ZZ.sD

a Kutta condition - i.e., smooth flow - at each edge of the
wing trace. Once an element of circulation has been shed, in In writing Eq. (2.6) we have made use of Eq. (2.3). In

that model, the wake is treated in the inviscid limit. Thus addition, Z ,r(A) and Zr 5 0 (A) are the instantaneous

each increment of vorticity is convected in accordance with complex locations in the cros flow plane (z, y) of the vor-
the inviscid Helmholtz relation. ticity elements in the port and starboard wake traces, re-

spectively.
Moreover, the ideal treatment requires that each wake

trace be 'force-free' along its entire length. The wake vor- For our chosen reference frame, the boundary condition

ticity then convects at the local flow velocity. In the cross- of no flow through the wing trace is written
Bow plane this convection velocity at any point on the wakes b b
is the sum of the cros-flow component of the free stream Ulwing trace = 0, -- _ V < - , Z = 0 . (2.7)

2- 2
velocity, U. sin a, and the 'induced" velocities associated
with all the neighboring vorticity on the wing trace and in In Eq. (2.7) y is the instantaneous spanwise coordinate, andthe port and starboard wake. 2 is the semispan at the specified t. (Fig. 4).

Owing to the wake history, each element of a specified We define the complex velocity W = Uo - sVo to be that

wake trace (i.e., port or starboard) can be identified accord- which would occur if there were no wakes. In that case,

ing to the time it emanated from the wing edge. Denoting imposition of boundary condition Eq. (2.7) in the presence

this time as A, the two wake traces at each instant t are of the cross flow U. sin a leads to a discontinuous part of
streaklines along which A varies from 0 at the far reaches the velocity at the wing trace, Ato:

of the wake trace to t at the wing trace ends. (See Fig. 4) s
Hence the incremental circulation, dr, can be written AVItrace = 2U sin a (2.8)

dr dX. (2.3) This is Jones' classical result in the limit of small angle of
attack, sin a = a. It is also singular at the wing edges.

I3



, Next, we introduce the complex velocity W, - U, - i V wing trace, that strength, as measured by its incremental
to rep:esent the Blow field associated with the additional circulation, remains unchanged as the element convects in
vorticity at the wing trace needed to continue to satisfy the wake. Throughout the evolution of the wake we 'track'
Eq. (2.7) in the presence of Wwake as given by Eq. (2.6). the locations of the elements by the method of [6] and de-
Using the theory of conjugate functions we find velop a "history' of the wake vorticity density. Thus all the

information needed to carry out the wake integrations (such
as in Eq. (2.11)) is present except for that part which de-

' _ 2 tan j3 f dr (-Uwke cos) pends on the elements currently being shed into each wake.
-V-ltrace -Cos - Cos 9) Eq. (2.11) then determines these additional entries so that

the edge flow remains smooth.

where AV, is the jump in V, at the wing trace. In Eq.
m] (2.10) the 'angle variable' i3 is

(2.) t2.5 Extension of the Cross-Flow Wagner
Y = b sinj (2.10) Integral Equation to Flows with Dis-

2 tributed Vortlclty
with 0 being f and - at the port and starboard wing
edges, respectively. Eq. (2.11) can be reformulated to incorporate wakes in

The wing-edge in te which there are regions of smeared out vorticity as well as
inced' wnes singularitises n these additional "we- ideal" regions. As an intermediate step in this reformula-

induced' terms must exactly cancel the singularities as tion we simply write the expression for the wake 'induced'
ongiven sn Eq. (2.8) at both edgs of the wing if the Kutta- velocity components in terms of integrals taken over the in-

c i r e sstantaneous lengths of the umbilicals (i.e., those portions of

In Eq. (2.9) Uwake can be written down in terms of the the wake which are thin and sheetlike) and over the areas
wake integrals in (2.6). Cancellation of the singularities at of the vortical cores. (See Fig. 5) Along the umbilicals the
both wing edges (y = + !, - t) then requires incremental circulation is written

dr
dr d (2.12)

• ..' ,,. sin a

( ( OR where di is the differential length measured along the in-
Re dA -(2.11) stantaneous trace. In the cores the incremental circulation

Re + is given by
(Z.t )2 + 6 dr = fldA (2.13)

.-fsB Dwhere 0 is the vorticity density and dA the differential area.

+]dA + 2 (See Fig. 5) Recalling that the Biot-Savart law applies as
I (ZSr )2 

+ well to distributed vortical regions we obtain the "induc-
tion' equation

This equation provides us with the means to calculate
the rate at which vorticity is shed from the wing edges Wwake U Uwake - iVwake =
analogous to that used by Wagner [131 in developing an f d did

, integral equation for the wake vorticity in unsteady airfoil 2 J o? Z - j zuzmrboj
problems. For this reason we refer to Eq. (2.11) as the

r ti f 0 apoir A I'Cross Flow Wagner Integral Equation'. +f dA +f dA (.4

The left hand side of Eq. (2.11) is known, being sim- core core
ply the cros-flow component of the free stream.' Opera- where 'Lumb' and 'Acore' represent integrations along
tionaly, on the computer the use of Eq. (2.11) is relatively the umbilicals and over the areas of the cores respectively.
straightforward, except for finding the initial incremental

% vortex elements shed at the instant the point of the delta Since the shapes and strengths of the umbilicals are not
pierces the cross flow plane (i.e., at t = 0). Difficulties known a priori we again use the concept of history integrals
arise there since the kernel of the rho is singular. An effec- and ideal wake tracking and obtain:
tive method for treating this critical first moment can be
developed in analogy with the method given in [141. After Wwake = Uwke - %'wake =
the procedure has been properly started it proceeds without I POarT rsD

r

further difficulty. Once the strength of a vortex element has 1 z 0 +  dX 41

been determined by Eq. (2.11) at the instant it leaves the xjunct ( junct

'The thei of Eq. (2.11) is really a step function, being sero ff PORT ' SB
for t < 0 and U. sin a thereafter. For the present case. if a is + f dAr PR + A m (2.15)
limited to simall angles of attack, Uisina o Uaa. Pol zc-oZ

P ° r
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The lower limit of the history integrals A-unct denotes We write the velocity vector Z, in the form

the circulation element of the ends of the umbilical at the
juncture with the cores while the upper limit t pertains to X = V L + WL, (3.1)

the vorticity currently entering the wake at the wing edges.
The value of Aju n ct iscreas in time as vorticity from the where
umbilicals "feed' the core, and must be determined. (See (u,a) = , (3.2)

5). are the cartesian velocity components in the cross-flow

Applying the boundary condition of no flow through the plane. Similarly, if 0 = curl v is the vorticity,

wing trace Eq. (2.7), and enforcing the Kutta conditions il.2- . + Q± (3.3)
we obtain in a manner analogous to that of § 2.4:

where
U., sin a =

0Re- (ax, ay) - a 8Y

11 f. un (Zrotr7)2 + L9 Jv =9 8w 8 w
2L 0, - - - f-(

drsaB y as' =3: a'

+ 3?-We next introduce the slenderness parameter, e, charac-

fjunct ,(ZSrfo) 2 + terizing the wing aspect ratio, /A. We can then write

fdAa }o /Vi.=0(f).- (3.5)
JApoRtV 1(.r oirT

2  orde
core In the light of Eq. (3.5), the order of magnitude c: vari-

0 f f fl ous terms in Eqs. (3.1) through (3.4) can be worked out.
+ A. (2.16) Based on the time-analogy approach discussed in Section

fAD x (ZS-aD ) 2 +L 2.2, chordwise variations are related to time variations as
core +" in Eq. (2.2). Eq. (3.5) is then equivalent to

Denoting the net circulation in the core as rcore, and that 8

in the umbilical as rumb, the total circulation in the wake I V/(U.IvI) = coe, 0(f)
is written =0(c) (3.6)
is rwake = rcore + rumb. (2.17)

" since U., is of order unity. Note also that div ( = 0, so

As pointed out in the Introduction the formation of em-

bedded vortical regions is dependent on the action of vis- 9,1 (3.7)
cosity no matter how large the Reynolds number. In those az
regions the ideal wake tracking method is no longer directly and consequently
applicable. Therefore we need to size and locate each core
and determine its vorticity distribution before the extended 10.1/It , = 0(e) . (3.8)
integral equation Eq. (2.16) can be helpful to us. We show
in Section 6 that one must consider the role of viscous in- Eqs. (3.4), (3.5) and (3.8) then imply
teraction between the cores and surrounding flow and also W
include criteria to determine the rate at which vorticity is i = O(E) . (3.9)
removed from the umbilical. A sample calculation, includ-
ing the sizing of the coeis described there.i s f r d dThe above corresponds to the standard procedure show-

ing how slenderness is employed to make approximations

3 Slender Wing Expansion for low /A wings; the technique is used throughout this

paper.

* *3.1 Ordering In the Slenderness Parame-

ter: Formal Procedure. 3.2 Flow Quantities in the Cross-Flow
Plane Through First Order.

Suppose we fix ourselves in a reference frame defined by
r L L , ; where ,. and L, are the unit vectors in the § 3.1 establishes a formal procedure for calculating the
cros-flow plane depicted in Fig. 3, and , = x k, is magnitude of various flow quantities under the slenderness

. aligned with the center-line of the wing. In this reference approximation. One begins by considering the cros-flow
frame the wing appears to travel in the -z-direction at a plane. In this section we make use of slenderness to derive
speed U., coe a. In addition there is the steady cros-flow, the basic governing equations in that plane, including first-
U., sin a described above, order ftime'-variations in the time-analogy.

5
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The continuity equation in incompressible dow is The usefulness of this equation will be seen in 5.
V = 0. (3.10) Utilizing Eq. (3.11), we also have V' $ = 0, defining the

usual potential problem in the cros-flow plane, [IJ, {12].

Since = 0( 2 ) Eq. (3.10) reduces to By contrast, in the ginner* vortical embedded regions

(see 11), even if they are essentially inviscid, we must adopt

- + - ±. = 0. (3.11) a somewhat different approach. Using Eq. (3.12), we can
8Z TY rewrite Eq. (3.17) in this case as

through first order in e. This can be satisfied at any instant 'a-(2
using a streamfunction O(z, y; t) such that - 1 P. o = 0. V.L + Vi. a . (3.20)p a

VL = (.,,V,) = V.O x , (3.12) In exploring how to use this relation, it is helpful to note
its implications in seroth order: if

to the required order. (Note that yj. = U. sin on

UOC, far away from the wing trace in the cross-flow p.1  = P±+o()
plane.) The z-component of the vorticity is then, to the 0, = .( °

) + 0(f)

same order, f,+0e
ri = . (3.13) then, since 'T O 0(e)

The unexpanded momentum equation in the 'inviscid'

regions described in the Introduction can be written as ° = -

+V = -!Vp. (3.14) This implies P()= P(O- (@) to seroth order, and conse-
at -P10 ..quently 3(O° ) = fl3(=°() aswell. In fact,

Again using slenderness, Eq. (3.14) becomes, through first

order, 0l(o)( ) --- _. PjL(O) (3.21)

H, i + V j. ,L -V p. (3.15) P
at Pcan be taken as a lowest-order characteristic feature ofHere, * is the (constant) fluid density and "p" the static an embedded vortical region. It implies that the 'totalpressure. Eq. (3.15) can also be written as (151 pressure', PLo, tends to vary only across (instantaneous)

av1 streamlines, but is constant along them, corresponding to
at + t , , the Bernoulli result in lowest order. In this order, one could~at

!L2 also determine 0 by solving
SV. J.(P+P2) =(3.16)o - (3.21a)

ar with appropriate boundary or matching conditions, pro-

+t p,~i=(.7 vided one knew 0lj.))(0,). (See [161 and [171 and 5 4).

through first order in e. Here, vi is the magnitude of .. L, The presence of the 'perturbation' term involving V in

and P- = +p (!--' is the cros-flow 'total' pressure in Eq. (3.20), however, can have a profound influence on this
conclusion, especially for recirculating embedded flows. For

the incompressible limit, through first order in e. 3uch flows the dominant part of V± (!U), particularly if fQ.

When the flow is irrotational, as in the *outer' flows is changing locally in time, is itself in the V.Lf-direction.
discused in 1 1, Eq. (3.17) can be treated in the usual This, in turn, implies first-order variation of P±0 along
way. Replacing X,± by Vi# and noting 0, = 0, we have "streamlines". But if the flow is in fact recirculating, PI."

must be cyclic (see § 4), requiring either that f = 0 in
must _ at

VL L v.Po (3.18) the embedded region, or that an appropriate cyclic average

or tof Va around the recirculation path must vanish. Phys-
P.I.r p aically, for recirculating embedded regions large enough to

+ L = (0) = const (3.19) be essentially inviscid, this observation corresponds to the

statement that the local angular momentum cannot change
for irrotational flow. Note that in this frame of reference, other than by transport or storage of that quantity in a
therefore, the quantity P." is discontinuous wherever 0 or given control volume. (Recall that lines of constant 0, as
,94 is discontinuous, as on the umbilical vortex sheets in the treated here, are "instantaneous streamlines' only: through
wakes and on the wing trace. Application of Eq. (3.19) on first order there is generally a flux across them.)

J both sides of the umbilical at the juncture (Fig. 6) yields
To illustrate in a simple example, we consider a circular

aP-0 / o - Pz 0 a ._ 03core embedded region with solid-body flow, V, = 0, Ve =

*'ptp$ - at (, = wo(t), where r is measured from the epicenter of the



convecting core. In that case, 0, + Oo(t), and in (S 3.2).) The 0( and 0(e) terms can be
V, - (it a. ) , where Wo - k Since I , x t" = accounted for by writing

-f e, we recover from Eq. (3.20) "(, t) = F(O) + f(0,1) (4.3)
/wo~r Jo"~

- .= --'-, + -"-e . (3.22) where t is a measure of the distance along a streamline, and
f is of higher order than F. With this substitution for 0.,

In this case, for an embedded, recirculating circular flow Eq. (4.2) becomes
we must conclude that &o = 0, since -= 0. For such O
a simple embedded flow, therefore, (see 5 5) we would find T + V± = vV.F; (4.4)
Q, = constant, independent of time and space throughout +t

the confined region, even though that confined region itself correct to 0(A-) and 0(c). Eq. (4.4) can be rewritten as
may grow in time. Lf =,,V2F-FO 4S

In the general case, application of the cyclic constraints IV.Lul e. J F - t P (4.5)
ideas discussed in § 4 provides information on the cross- at
streamline variation of P-L, For the circular-flow case, as When the streamlines (lines of constant 0) 'connect' to
in Eq. (3.22), the radial variation of P." is determined, infinity, or to any region of known flow conditions, P1o(0)
provided we can determine wo. In either came, on matching and hence fl(1) (= F(0)) are determined. Solution of Eq.
the inner with the outer flow, one determines the static (3.13) with appropriate boundary conditions then proceeds
pressure within the core as well, as usual and determines the flow to lowest order.

On the other hand, for an embedded region of distributed
4 Embedded Cross - Flow Regions: vorticity, the streamlines are not connected to an outer,

0 Cyclic Constraints, and The Sheath known region, and the above standard treatment is not ap-
plicable. In such regions, since the instantaneous stream-

Model lines close on themselves to lowest order, a different re-
quirement must be met which will turn out to determine

4.1 Cyclic Constraint: Low-Shear-Stress the flow. This new requirement states that, for purpoes of

Recirculating Regions physical continuity, the integral over a closed streamline of
the variation of any property along that particular stream-
Line must vanish. In other words, the embedded flow has toDetermining the distribution of the vorticity and the cor- be cyclic . n th wor s applied to h1 to

responding total pressure loss within embedded flow re- be cyclic. When this cyclic constraint i applied tof(i, ),
quires considerations special to the recirculatory nature of it implies
the flows within them [16], [171. Introduction of "cyclic dt Of('0. t) = 0 (4.8)
constraints" at finite Reynolds number to account for the
recirculating feature of the streamlines in the presence of where the integral is to be taken along closed streamlines.
viscosity is a key to determining f0,(0) within the cores. Eqs. (4.5) and (4.6) then yield
The following illustrates the construction of typical cyclic
constraint conditions. f V2F F 0 (4.7)

I Iv~t, V.L jV~tThe full Helmholts equation which includes viscous ef-
fects (sometimes called the dissipative Helmholts equation) Defining dat dt/lV±.l, r(o) f= jvi8 d, r(O)

is given by f dot/ti and also noting V2.F = F'V2 0 + F" IVi LO' =
<':".: g + .VQ,=Q,. V+iVQ (4.1) -FF' + oIF", Eq. (4.7) becomes

a,..' (!dF", -0F' (4.8)
Using the slenderness approximation, the z-component of [F" - 7FF'] - F' )=0
Eq. (4.1) becomes

in the low-shear-stress region of the embedded flow in thea90, + V±" V.Lo, = LV + 0( ) (4.2) cross-flow plane.
"a. Interpretation of Eq. (4.8) through first order in e, i.e.,

The first two terms on the left-hand side of (4.2) are of including the term, provides additional information.order i and unity respectively; and the disipation term This term is equivalent to the 80 term discussed in con-

on the right-hand side is of 0( '), when Re being the nection with the momentum balance in Eq. (3.20) for
Reynolds number. One solution to Eq. (4.2) is .l = 0, embedded flows, which we recognized there as being a&-

*. representing potential flow. When the flow is rotational and sociated with the flux of angular momentum across the
in the absence of strong shear stress, (2, = F(0) satisfies instantaneous recirculating streamlines, 0 = const. It can
Eq. (4.2) to seroth order. (Note F(O,) is equivalent to be argued, in fact, that in large Reynolds number (low-

shear-stress) regions the integrated , term of Eq. (4.8),

4-7
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being 0(t), is inherently much larger than the term propor- work a model for the leading edge separation and reattach-
tion to 'v', which is 0 In that case we must impose ment over a two-dimensional plate is developed. The study
the separate constraint utilizes Eq. (4.8b) to deduce the form of vorticity in the

embedded core regions. The model for the viscous sheath
. 0. (4.8a) consists of a shear layer made up of two sub-layers. (See

K JU.- Fig. 7) The inner sublayer, being in direct contact with the
Unless F'(0) is strictly zero this implies, as in j 3, that embedded region, consists of recirculating flow that incor-
any part of 0 which is not simply periodic in the cyclic porates the boundary layer on the upper-side of the plate.
variable st must vanish. Again, for simple core shapes, In contrast the outer sub-layer, of which a portion is the
one concludes that the mean vorticity density tends to be boundary layer on the underside of the plate, is bounded
time independent in embedded recirculatory regions. Fi- by the irrotational outer flow.
nally, note that when Eq. (4.8a) applies separately, the In this sheath model the outer sub-layer is considered
remaining cyclic constraint is in the form originally treated to drive the inner sub-layer via shear stress. One impor-
by Batchelor: tant criterion emerging from this two-layer model is that, to

v [I F" - r FF"I = 0 , (4.8b) maintain its recirculating nature, the inner sub-layer flow
must be given enough energy to overcome viscous disipa-

corresponding to a strictly two-dimensional embedded vor- tion on the plate. In other words, the gain in total pressure
tical flow with recirculating streamlines, of a fluid particle travelling from A through B to C must

For the simple core geometries that tend to be observed turn out to exactly balance the loss in the same quantity
the practical solution of Eq. (4.8b) is essentially F = con- as the particle completes the cycle by moving from C back
stant, [161, [171. Only very weak variation about this condi- to A. This corresponds to an application of the general-
tion can be found for reasonable distributions of r(o) and ized cyclic constraint idea. It is used together with the fact

* r(O) in such geometries. However, the conclusion F = con- that the static pressure along the outer edge of the sheath
stant, or essentially so, does not mean that the core flow is governed by the outer flow to deduce the sheath profile
is circular or 'solid-body'. In [171, for example, a range of and its peripheral static pressure distribution via an iter-
elliptical embedded vortical regions, together with detailed ative procedure. Figs. 8 and 9 show results obtained for
variations of F about its dominant constant value, were two different Reynolds numbers: streamlines for the exter-
studied. But the primary feature of these embedded re- nal flow are presented in (a) and those for the embedded
gions remains that F is essentially constant in space in the region in (b). Such results provide a framework from which
low-shear-stress regime. Our conclusions from Eq. (4.8a) techniques developed so far can be extended to include cor-
then provide the additional information that F is constant rections for unsteady effects. But in addition, as illustrated
in time as well. in S 5, these ideas provide one of the final links necessary

to determine the vortex core evolution.

4.2 The Sheath Model and Cyclic Con-
straints In General 5 Closure of the Aerodynamic Prob-

lem with an Embedded CircularIn the absence of any viscosity-dominated regions what-
soever, Kelvin's theorem would not allow a vortical but Core
essentially inviscid core to be embedded in an irrotational
flow. This then implies, under the high Re assumption, the This section illustrates how one can systematically em-

* presence of a viscous sheath surrounding the core in order ploy the techniques developed in the previous sections to
to impart vorticity to the flow entrained into the core. determine the flow in an embedded region based on a sim-

n tple, but physically revealing model. In particular the role.-. Using this sheath model we cain complete the deferrl- of interaction between the umbilical and viscous sheath is
"'- " nation of the total pressure distribution in the cross-flow clearly demonstrated. The model consists of a strictly cir-

plane. On account of Eqs. (3.19) and (3.20), a difference cular core, with a convective epicenter and with a spatially
in the evolution of total pressure, Pi 0 , inside and outsideth oe sieitbe"hesethpasth oeofrds constant, time-invariant vorticity density wo. This vorticity

41the core is inevitable. The sheath plays the role of redi- distribution is consistent with the results of S 4. A 'core"
tributing P.o at the core edges, thus smoothing out any can be said to be present when the structure of a portion
otherwise forbidden "umps in P.o- Moreover, the length of the wake becomes so rolled up as to form a spiral with
around the perimeter of the cores needed for the viscous ac- spacing between successive turs which is comparable to
tion to provide a specified change of P1, grows with some that of an appropriate diffusion thickness of the umbilical
power of the Reynolds number [171. This fact, combined
with the required sheet strengths of the umbilicals, will be
used in § 5 to determine the core sizes as they develop. Using a simple estimate for the influence of viscosity on

the umbilical sheet we find that each circulation elementAn example involving both the applcation of Batche- hs a thickness which develop@ as
Ior's cyclic constraint and the redistribution of total pres-
sure by the viscous sheaths is illustrated in [171. In that 6 = 4Vi (5.1)

O4



where v is the kinematic viscosity of the fluid and r is the Additional information relating nunct, wo and r4 can in
'drift time' associated with that particular v-ke element, principle be obtained from a sheath model Like that of Ref.
It follows from (5.1) that 6 increases monotonically along [17]. However in this context it suffices to adopt an even
the umbilical from sero thikeas at the wing edge, to a simpler model in which the sheath is taken to be of constant
maximum at the point where the umbilical joins the viscous thickness equal to that of the umbilical at 'juncture" In this
sheath surrounding the core. The drift time at this point case the total pressure loss around the perimeter of the core
8is 'unct t - Ajnct (1 2). Alternatively (5.1) can be is given by

rewritten 1 aVU4-Apo At, (5.7)

.-. ~ 6 ?5.
4 5a junct

To where U. is the velocity at the edge of the core U. =

and and At is the perimeter of the core, At = 2wr. Recalling
- from Section (3.2) that the total pressure loss around the

-=n-Y (5.16) core is equal to the rate of change of core circulation, andR., ) '  that for a solid body core,

where R,, is the Reynolds number based on the wing chord 2

length, R., osa@, and To in the characteristic time rcore Ir wo T& (5.8)

of the unsteady crosflow problem To U"0 we finally obtain

Having introduced the concept of a diffusion thickness,
we proceed to establish a "cut-oir criterion for determin- dr (5.9)
ing the core formation. We first approximate the rolled-up dt 32 1 unct
portion of the ideal wake by a spiral defined by

r oe In the long run, t >> (-tform + LNform). Eq. (5.6)
F(8) (5.2) becomes

where r(e) is the distance from the center of the spiral at
angle 9, and ro is a constant. Denoting the number of nct ,unct- , (5.10)
encirclements about the spiral centre by N, the relation

ri = Nro (5.3) the unknown parameters being 1Junct, r and wo.

is obtained for N >> 1. We can now seek a relation be- Inspection of Eq. (5.10) reveals two limits of the behavior

tween ro and 6,junct with the aim of establishing the cut-off of rjunc t which give important insight into the rate of core

* criterion for the core; that is, determining where and when growth. The first is the one for which

to replace the ideal wake by an equivalent vortical core. Wechoos Tj'unct % t . ( .

r7 = 6june t  (5.4) This is the limit of a small or very slowly growing core. In

since in that case one can no longer ignore the effects re- this case, using (5.9) the core grows asymptotically as
suiting from the diffusion of vorticity among the vortex el- (
ements in the contorted wake region, i.e., the core becomes rk - t . (5.12)
smeared out and diffused.

Next, recall from § 3 that once a circular core is estab- The second limit illustrates the case in which the core is
lished at some initial stage, it will have a spatially-constant, entraining wake vorticity as fast as the umbilical can supply
time-invariant vorticity, wo. The drift time can now be ea- it. For sufficiently large times,
ployed to formulate

f '-form),A--t - tform - u = d /nc 5.3
jun-a ( o and the core grows according to

4w (N - Nform )  (5.5) 74 ., -°-t 1 
. (5.14)

WO
where t form is the time when the core first appears; Nform
corresponds to N at t = tform. Recall that nunct is the Eq. (2.16) allows one to express at any instant the total
drift time associated with the vortex element ai the umbil- circulation of the vortex elements lying between any loca-
ical/core juncture at time t. Eqs. (5.3), (5.4), (5.5) can be tion along the wake and the free end of the wake as a func-
combined with To and R. to give tion of the drift time associated with the element at that

n _ 4 4w particular location. Hence there exists a one-to-one corre-
junct junct W- tier + oNform spondence between rcore and 7,unct. Eliminating wo from

"., (1.7 V/- Eqs. (5.8) and (5.10) then gives r& as a function of iunct"

= " O- (5.6) Such a relation between r, and 'unct, together with Eq.

9%
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- (5.9), finally determines runct and rb. As a result rcore 6. McCune, J.E., aInteractive Aerodynamics of Wings

and wo are determined, in Severe Maneuver.* To be included in Proceedings

Tof Workshop II on Unsteady Flow, United States Air
sThe analyis can ako be xondd to determine Norm Force Academy, July 28-30, 1987. To be published.

achieved by projecting backwards in time to t = tform. 7. Hoeijmakers, H.W.M., Numerical Simulaiion of Vorti-
Eqs. (5.6), (5.8), (5.9) are then solved in much the same cai Flow, MP 86032 U, NLR, 1986.
way as before, the unknowns now being Nform, F6, ')unct
instead of wo, r&, n1 unct" Once Nfom is obtained, tform is 8. Powel, K.G., "Vortical Solutions of the Conical Euler
determined. Equations.' M.I.T. Ph.D. Thesis, June 1987.

Once the shape, location and circulation distribution of 9 Earnahaw, PB., 'An Experimental Investigation of the
each wake has been determined, the information is at hand
to calculate the loading and force on the wing. Eq. (2.15) Structure of a Leading Edge Vortex.' Aero. Re.
is used to find the induced velocity at the wing trace associ-
ated with the wake. Eq. (2.9) then serves to determine the 1J. Thomas, J.L., Taylor, S.L. Anderson, W.K.. 'Navier-
discountinuous part of the tangential velocity required to Stokes Computations of Vortical Flows Over Low As-
satisfy the boundary condition Eq. (2.7) of no flow through pect Ratio Wings.' AIAA 87-0207, January 1987.
the trace. This is added to the 'wake free' velocity jump
AVe given by Eq. (2.8). Then the unsteady Bernoulli Equa- II. Newsome, R.W., Kandil, O.A., 'Vortical Flow Aero-
tion determines the instantaneous loading at each point on dynamics - Physical Aspects and Numerical Simula-
the trace, (as in [61) which can be integrated to yield the tion.' ALAA 87-0205, January 1987.
normal force on the wing per unit chord. Hence the local
force coefficient (i.e., the force per unit chord normalised 12. Munk, M., 'The Aerodynamic Forces on Airship

by the dynamic pressure and the local span) is given by Hulls.' NACA Report 184.

ir/R. 13. Wagner, H. 'Dynamicher Auftrieb von Traofugeln,'
C, - sin a + wake history effects (5.15) Zeitschr. f. Agnew. Math. u. Mech. (ZAMM), 5, 17,

1925.
where the first term is Jones' classical wake free contribu-
tion and where the wake history effects are calculated by 14. Scott, Matthew T., 'Nonlinear Airfoil-Wake Inter-
the integrals just cited. actions in Large Amplitude Unsteady Flow,* M.I.T.

This result emphasize. that the forces depend not only Master's Thesis, June, 1987. See also: Scott, M. and

on the local angle of attack and spanwise growth of the McCune, J.E., AIAA Paper Nr. 88-0129, AIAA 26th

Lrace but also on the cumulative effects of all events in the Aerospace Sciences Meeting, Reno NV, Jan., 1988.

evolution of the wakes up to that point. This would imply
change in the magnitude and distribution of the normal 15. Lamb, Sir Horace, Hydrodynamics, 6th Ed., Dover

force acros the chord which will have a substantial effect Publications, N.Y., 1945.

on the wing's overall lift, drag, and moment. 16. Batchelor, G.K., 'On Steady Laminar Flow with

Closed Streamlines at Large Reynolds Number.' Jour-
Referenees nal of Fluid Mechanics, Part II, p. 177, 1956.
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