RD-A189 541 RAPID PROTOTVPING OF RPPLICRTION SPECIFIC PROCESSORS 1/2
U) MR ORCE INST OF TECH WRIGHT-PAT ERS AFB OH
NGINEERING M GALLRGHER DEC 6
UNCLASSIFIED ﬁlT/GE/ENG/B?D 19 F/G 12/6

=g
i [=
_&:EFEEFE
EEEE

TR —
.
4| 0O
H

flléf
Ll

=

e b v REGUITION Ti33 CHART
-

‘i\' OIS

W
N R
VT e SR % t{‘“
“Q‘C‘.g"!““g"‘. .‘:‘..’0,’!’.‘5'. W q.l’i.’,. :.‘..!.I’M: DO) N

2=
-ETg

Wt IR I ORI O GYRY R
.:l‘:::::‘o‘.'o". o ot }."‘ IR ."::: - -k"‘:.}f-:‘::‘.- NN
. h -

\ S5 NN .
» -"'v"\.:_\"'- RO RE e
. MW

A
Tt
S CRRSIx C
~

"y
e

r:::\-\
NN
‘

rs
"

L J
. -
¢,

- e v ¥y b By)
Es“ LA
i
s

oL

L3 KA L M b NS

AP AN AT AR YR Veikia btm hra R BYa drat ok cah et e batab v,

[OTE riLE Coey -

AD-A189 541

RAPID PROTOTYPING OF
I~ APPLICATION SPECIFIC PROCESSORS

THESIS

David M. Gallagher
L Captain, USAF
. AFIT/GE/ENG/87D-19

s‘\‘:»‘:'[sj L4 Ty LY,

* PP

A]

:‘.:{\"\4 X .
a2

'y
NS
X5

-
' v
A &y

DTIC

ELECTE
‘ . MAR 021988 F;

g. 2
»
A

5
<
Py

ok

P

DEPARTMENT OF THE AIR FORCE A H
- AIR UNIVERSITY

| AIR FORCE INSTITUTE OF TECHNOLOGY R

P @ T
R ‘_'.
d z
AARS

Pd

o
P
Y

Wright-Patterson Air Force Base, QOhio "N

-
DISTRIBUTION STA 8 R

Approved for public release) . 88 3 ol 17 AR
Distribution Unlimited AN

%

PN s
AN

L4
bl

(3
v

'S
) ,\('if o
\I'J‘"fq
LN,
22

‘.I’
Pl

>
\'-

o
XY » ({ Tt Tt N R s I 3% e el - g LY D% 3% s] WL ML WL WL N MM LW, W LN, WL W - -\.‘-
'.!.‘.!“.:'"" .:".' » ""‘- ACTCOIIN l"-‘ 0% Wt Y, OO W, ". > n # l.D..O-I. 'f X " f { " ‘. .4 < I'. " A 3 "t

\ el L),
‘a?g

L4 '.'.-—‘M’ “aa =

-
-

%7

e 4

P e

Y

» = NI Ny R, OO s AT T T N A T T e T T e
L A o T e o R e e A e s e o

AFIT/GE/ENG/87D-19

RAPID PROTOTYPING OF
APPLICATION SPECIFIC PROCESSORS

THESIS

{
"
N

sl

'~
v
UAS

wt
~I o
L Sl e

David M. Gallagher
Captain, USAF
AFIT/GE/ENG/87D-19

Approved for public release; distribution unlimited SRR
DTIC_ &
MAR 0 2 1988 N

<+ O
H

- -

C NS
R

up an"

e

g

.

- -

e

™

AN OACIAR AN AN

AFIT/GE/ENG/87D-19

RAPID PROTOTYPING
OF
APPLICATION SPECIFIC PROCESSORS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

David M. Gallagher, B.S.

Captain, USAF

December 1987

Approved for public release; distribution unlimited.

LRI » P ® A NN N A" [] 3, . 2 Y W Y Y) A TS IO TS AR AL SR L AR A S
O Serlie i Ol et WAL .0 W AL)) Lalalafa \\. wa " Nt "'."'" N

- o o -

i)

PR ILK 4

R Ry

e

[2

=

»

) "'.'fl. A",’x‘.h".'sﬁ.h MY

ACKNOWLEDGEMENTS

I would like to thank my wonderful wife Kathy for her loving support during this
thesis effort. Her patience, cheerfulness, and love provided strength and stability to my

home environment, allowing me to apply unburdened attention to my research.

I would like to thank my thesis advisor, Dr. Richard Linderman, for his help and
wise insight. In addition to the outstanding wealth of knowledge he provides, he has
developed an excellent VLSI design environment for thesis research. I appreciate the time
and guidance Major Joseph DeGroat and Captain Bruce George provided through their
careful reading of this manuscript. I would also like to thank the other students in the

VLSI design group for the ideas and suggestions they have shared.

Most importantly, I would like to thank and praise the Lord Jesus Christ for the
strength and wisdom He provides. The success of this thesis is due solely to His

undeserved favor. To God be all the glory!

o DTIC TAB
Unannouncead
Justification

Distributionr/
-

——

Speciul

A
N

i

Accession Por
| NTIS GRA&I
0
a

BY o]

Availability Codrs
T iawall eecdger

T

e

wyw o S R S A SRR T Ry R
a'ld'.ln‘\l“l ¢ ‘ . ..{ ‘-~" Sal o ' ‘

a 4

LTSI
Xu B

UV I S T S T S
T . .

PR R S R A e RN PR
Lo P ™ --".’.--

P

(ol

)
".’S,
' %
o o

A

.
g

%
a

‘.
»
-
2
3
.
-«

o
&.f

CACh

’ '. g

NS
ALAARXE|

7 |

vy,
€§G§~

¥

~
A

?i "b
7

h]

5

o
o S

£

%
S

;:&&
$

B

e]
W

.I L)
o
% %
»

AL

Y I I3 » 4 4 v \J L] 1 1 & * , \ \! + L] ﬁ' "V!
o
I l::'l::‘
!;§I
\J
s
TABLE OF CONTENTS P 2
Rty
u e
;-* .
b
: e N
) AckDOWIEdZEMENtS ...uviiieiiieeeiiiiitee ettt ettt st et esbae e ee e i - A
; A
* LiSt Of FIGUIES ..coiiiiiiiii e ettt ix -
t g A% 8
’)
%t LiSt OF TABIESouvvemuiurenreienreiseesisnesssesesseess e sess et ees oo xii .';'_:'&
.'i -\ 4
y W
RN ADSEIACE c.oeieiiii ittt ettt ettt ettt ea ettt e e e e Xiii '3:",
y sy
» Common Abbreviationsccccooviiiiiiiiiniiniiiiicie e XV ',:.f
u . ~r
W Chapter 1: Introduction o
W) W4
) "y
: 1.1 BaCKEIOUNA ..ot e et ese e e e eae e e e 1 :\'::.-_
A R
h O 1.2 Problem Statementcccoooiiiiiviiiiieiii et 2 e
: g
“»
- 1.8 SCOPE ..ttt et 3 <
;‘. 1.3.1 Scope of the Problem.cccocociiiiiiiiiiiiiiiecccceec e 3 ::::,‘_ '
g > 1.3.2 Scope of the SOIUtION.ccoeviiiiiiieiiiiiie ettt 4 o !
”‘ 'au \(.i"
¢ Ly . -f“'

o
o:'
2

1.4 Summary of Current Knowledge

..

bagds
4) e
" 1.5 ASSUMPLIONS ..eviiiiiiiiiiiiie et tee ettt s sttt e eee et e e et e e e et e e eenaeeeenees) e
!.: f . "f:f:
d 5
iy . 1.6 APPIOach ..o e e, 5 o
":: 1.7 Materials and Equipment ..., 6 :::: ’
e .','-\
0 o
WK 1.8 Sequence of Presentationcccccoooeiiiiiiiiiiiiiiii e 7 TN
‘l & Y
» Chapter 2: Review of Current Processor Design :;._
: XX
g . NN
v 2.1 INEPOAUCHION .eiiiiiie ittt et 9 e
f ~Oa
i Es"..\
5 § 2.2 Processor Desigh Approachesccccooiiiiiiiiiiii e
X
Y iii
\]
v -

v

‘.

A
A) - n W W W N W ', = L Wl L F S W, S
LA A AT N 0,0 VT, 00 U Ty " MY N .‘c"h AN VL V) "A:.mmm‘ %

‘ Meo'hie
: i i
, R
v‘ TABLE OF CONTENTS (continued) '%:\
o '
: \
: u ey
® 2.2.1 The CISC APPIoach.c.cocieviiiiiiiicie ettt ettt 10 NIt
R 2.2.2 The RISC APPLOACh. ..orveereeeeeeeeeeeeeeeeeeseseeeeseseeeesse e eeeseese s e 11 R0
“ 2.2.3 A Fuzzy DistinCtion. ..oocooovieiiiiecee ettt 13 '\"\ '
¥ >
;; g 2.3 Relevant Processor ArchitectUrescccooiviieiiiiiiiieiirniereeeeeeeneerars s e 14 *’
% 2.3.1 IBM 801 MiRICOMPULET.oooouorviemunniisascnscss st 14 w
;:' 2.3.2 The UCB RISC Project.ccccoeneee ettt teee e —ee e be e e ibea et aeette e nreenneen 15 :i:f’f
N 2.3.3 The Stanford MIPS Processor.ccccooiiimiieeeiiiieeee e 17 L
) 2.3.4 Motorola 68020,ccooviiieiiiiiteceiee et iee s et e et ea et 19 .
A g o
K e
:: 2.4 CONCIUSION ..ovoiiiiiiiiiii it e e e et e e ettt a e e aeaeeseeeses e s s ssenssnnsnneeenbenene 20 ;:f.:
" o
) Ny
Chapter 3: Problem Analysis e
3 W
h X -":.h‘").
'a _ﬁ 3.1 INtroduction ...ooiiiiiiiiiii e e 22 "?N ‘
M o
'E‘ 3.2 Possible SOIULIONSoooiiiiiiiiiii e 22 &.: (i
P 3.2.1 Totally Custom Processors.coooiiiiiiiimiiiieirreiees e ersarvreene s 23 NN
S 3.2.2 GAte ATTAYS. ..ooveieiieieieeeeee ettt ettt ee et et ettt ettt 24 ;::':
R f 3.2.3 Off-the-Shelf CoOmpPOReNts.ccc.ouvurueueriieieieriiiiece e 25 .,:::"-
» 3.2.4 Semi-Custom ADPProach.occcociiviiieiiiiiiiieie ettt 25 ;&E :
o 3.3 Architectural SPecificationcccocveriiiiiiiiiieni it 28 :'i-‘f:
2 o 3.3.1 Number Representation.ccocooveiiriiiiimiieiiietieeeeeeeeeiee et eeieereeeen e 30 ‘.‘.__
: :‘f. 3.3.2 Width of Datapath.ccoccooiiiiiiiiie e 31 ::-;3‘_-_
Dy 3.3.3 Number of Datapath Busses.ccociiiii 31 Y
- 334 T/O Path. oo 32 o
Y 3.3.5 General-Purpose RegiSters.cccccciiviiiiiiiiiiiieieiecc e 32 :_,::;‘,'
:: 3.3.6 Barrel Shifter. ..o 33 E‘_;':
¥ a 3.3.7 Arithmetic Logic URit. ...oo...ccooirimieiriiirmeiniremiisr oo 33 v
2 3.3.8 Literal INSertion.cocoiiiiiiiiii it 35 -
':‘ 3.3.9 Control Sectioncooiiiiiiiiiiiii i 35) \"
8 :::"
:’ 3.4 CONCIUSION o.oviiiiiei e e 11 :""\-"l ‘
v in"' 9 X
) o .-TE'::J;
; 5]
¢ " Ry
" . o
|7 'F:d
;': :\:":"l

R h e e m YA A A e .- ot e r e h LA o™
P NN R RN,

DO y - QU IO OO SO0 Y VW N O ™ T ™]
OO DRI ST TR LM S0 DR o ¢ o e Py

. | -
Y
'

s
"n

- - -

ORI

B

LS u\\ !

OO
R
ot
B
TABLE OF CONTENTS (continued) { v, :?:E
N
1%y
Chapter 4: VLSI Architectural Design } '3
hah
4.1 INtPOAUCEION 1iiiiiiii ittt ce e s e s st e v et e e e e e ettt aaaa s tansraeanennrnraeeens 42 “ 5)&
4.2 ASP Control SeCtiONoooiiiiiiiiiieiciiiiiieiie e ee e e ettt e e e e e e 42 A
4.2.1 ASP XROM. ...coomiimiiiiesitctes sttt e 44 i
4.2.2 ASP Pipeline Register.c.coccoiviiiiiiiiiiiiiie e 48 ::::.35
4.2.3 MiCTOPIrOZTAIM SEQUENCET. ..evvvireerirrrrereriririeeersnirnreressnsineerasaeasssnessesensensrseees 50 A
4.2.3.1 Micro-Program Counter.ccccccciiiiiiiiiiiiiiiiiiieieiieee e 52 T
4.2.3.2 INCrementer.ccooiiiiiiiiii i 53 N ‘:
4.2.3.3 Address Multiplexer.ccooiiiiiiiii 55 Ny
4.2.3.4 Subroutine Stack.coooiiiiiiiii e 56 "\,:5:.:
4.2.3.5 Branch Condition Multiplexer.ccccooiviiiiiiiiiii e 57 5
4.2.3.6 Sequencer Control.c.cceoviiiiiiiiinniicii e e 61 ::;'.:}
L 9tt
"ons
4.3 ASP Datapath Sectioncccccviiiiiiiiiiie et 61 ;ﬁ:
4.3.1 Datapath BUusses.coooiiiiiiiiiiiiiiie e 63 :i"‘_
4.3.2 ReZISEEr ATTAY. ..iviiiviiiiiiieiiiiiinreseiiinrnreeeatbrteesaaatmraeeeessntetaase s ssernnsse s ersnsnnees 65)
433 I/O Path. (i 69 N
4.3.4 Literal INSErtion.cocoiiiiiiiiieiiiii e et eetee ettt e erna e 73 4::::*:::
4.3.5 Barrel Shifter. ... 75 ;::i\k
-
4.3.6 Integer ALU.ocooiiiiiiiiiei et 78 N
4.3.6.1 Integer Adder. ... 80 N
4.3.6.2 ALU FURCHIONS. ...oviiieiiciiiiet ettt et 85 k:—;
4.3.6.3 ALU Control Circuitry.cocooviiiiiiiiiiiiiiiiiic e 86 :-.;:-“
4.23.6.4 ALU FIAZS. ©oooooiioiee oottt 88 .“_-;\t:.
4.3.6.5 ALU Integer Multiply.oooiiiiiiii e 90
4.3.7 Floating Point Hardware.ccoooiiiiiiiii e 90 oy
4.3.8 Special-Purpose Arithmetic Hardware, ... 94 ",t:k}:
1 .f]
Chapter 5: VLSI Implementation SR
In%A
5.1 INtPOAUCLION oottt e 96 NN
L 4 d
n;'.l“ﬁ
. - F‘.;J':'
5.2 Hardware Implementationccocoooiiiiiiin 97 Qe
5.2.1 FIoOIPIan. oo e 97
ALY
N
_:I?‘-F.'1
' 5
DAY
{
s
A AL RERHE ‘- (ol lats 3! e Conly e l‘n.'. Yot ';‘;";'\.’:';' Nk '. o - X

,‘vEA .

o e o N . s ~ TN T L e S T W T T W Y
‘!.",“"‘\'?‘l‘,‘l‘!‘l.,‘l'sl'n 'E’ 2 MO l"n‘l'o‘l‘q SABALS |. (‘D‘QO.QO.L G IINRNS, N ‘ok."l 2 B ‘ "-‘ Aal ‘. 'r ‘r * *\J‘\'- " {\" s

TABLE OF CONTENTS (continued))
$49.0,
R
|
BRaun
5.2.2 ConLrol HATAWATe. .eonoieieeeiee e et r e e e e e e et eere e e v 98 AT
5.2.3 Datapath HardWare.ccccoooiimiiiieeiiiiiii et 98 VA

5.2.4 Hardware Design for Testability.c.cc.oovoiieiiiieniciiieeciee e 98 R
LN

5.3 Microcode Developmentcccoiiiiiiiiiiiiii s 102 WS
5.4 Design Verificationcociiiiiiiiiieeie ettt ettt ere e e 105 N
5.5 FabDIICALION ..ocooiiiieiictiieicce ettt 108 '
. ::s. e\,
5.6 TeSUIME .oooeiieiieiie ittt et ettt ettt et eerat e e re e ae e st s 108 s

5.6.1 ASP Prototype Testing.ccoommmoorimieieoeiecie e 108 .:,l.)
5.6.2 Multiplier TeSting.c.oovveueiiiiicrieeiete et e 108 2

Chapter 6: Application of the Rapid Prototyping Methodology N
6.1 INtPOdUCEION .ooiiiiiiiiiiie ittt err e ettt e et 109 e
6.2 The Rapid Prototyping MethodOlogycooovvvioiiiiiii e 109 g

. N

6.3 ASP ArChiteCtUrescoccoiiiiiiiiiiiie ettt e e e ee e st re e et tae e, 115 ot
6.3.1 Prototype Integer Processor.ccccoviiiiiiiiiiiiiiie e, 115 .
6.3.2 PFA Controller. et e e teae et eeeea i tb—erre ettt reteteaataaaeaanan e aarnrne 116]

6.3.3 Kalman Filter Processor.coociiiiiiiiiiiiiiiieeee et 117 ::"e'f'r

B.4 ConCIUSION ..o e e 118

"
Chapter 7: Conclusions/Recommendations ¥ g
7.1 ConClUSIONSooiiiiiiiii e 120

7.2 RecommMeEndations ...ooooovmniiiiiiiii et 121 T
T.2.1 ASP LIBrary. ..ot 121 :ﬁ,_q'*:
7.2.2 Microcode Development Tools.cocoiiiiiii 122 sond
7.2.3 VHDL Interface to ASPS. oot e 122
7.2.4 Test Vector GeneTation. ..oooooviii ittt et 123

R
Pl NNe
ALY
AR

vi

<
“

> o ¥
AL

sl
54-{‘.

,.
Wl s" 4

Y]
I*I ’

g, 1,

Pt R s

s) e w o Y

<,

! TABLE OF CONTENTS (continued)

.._

t

"
2

7.2.5 Computer ReSOUTCES.ccvuiiieiiiiiieiiee e ee e e

%
7.2.6 Prototyping EXPerts. ..oocooiiiiiiiiiiiie ettt e st e e et 124 o
.& -
: A5
Appendix A: Floating Point Multiplier -
' N o
L] Lo
I A1 IDEPOAUCHION ...vivivieiiieeet ettt ettt ettt cs st ee et erees 126]
" N,
kY -"rt W
(] o~ M
¢ A.2 IEEE Floating Point Standardcocovieiiieiiiiiie et 126 ot
o o
:: o~ A.3 Sign and Exponent Computationcccoovviieiiiietiiiiiie e 128 :'::
@ At
: | 3
:: A.4 Mantissa COmMPULALIONocoiiiiiiiiiieiiiieeeee ettt et et e e eee s 130 NG
) .. L,
A.5 Special Condition HardwWarecoocooiiiiiiiiiiiiiiiiieece e 135 "'.1-
W S::\'
. . . . A
A.6 Implementation, Verification, and Fabricationccoocoiviiiiiiiiiiiii 135 "\.}.
YRS
AT ConCIUSION ..o.viieiiiiiie ettt e et et et et et e e 138 oy
' 483
ﬁ .):f.
Appendix B: Circuit Extraction to VHDL I
o
B.1 INErodUCtiOnooocvviiieieeiiieie e e et e s ettt et e e str s e e e eeerareaeeaeas et s e ee e e e arare e s 139 S
.\'I\~P
.“‘\::*
B" B.2 Software DesiZRcoceeeeiiiiiiiieiiiiiiie ettt e et e e e 140 :ﬁ}f
B.2.1 Design Strategy. ..oooooiiiiiiiieiiiiiee ittt e et e ettt ee et eanes 140 l:':_::*
B.2.2 Input FOrmat. ..ottt 140 -
B.2.3 QUtPUt FOTMAt. ..oovriiiiiiii ettt e et e et ea e e ce e 141 :\'\
0%
B.2.4 Data SUTUCLUTE. .oooooiiiii ettt 144 fa
B.2.4.1 Hash Table.ooooiiiioii e 144 oy
B &
B.2.4.2 NOES.ooooooeiiieieeieeeieee ettt 144]
B.2.4.3 TransiStors. ...ooooiiiiiiiiieiii i ieei ettt re e e e e e s e et e e er e e e e aa e 145 N
B.2.4.4 Gate and Logic StruCtUre.cccooiiioiiiiiiiiiieie et 145 o
B.2.5 AIZOTILhM. ..ottt 146 Y
38 R

.. B.3 Nofeed and FiXTOml oottt 147

cgt gd gt (ALY UWLIW VS UR UV RUE TR RN P WMy v ceta. g g la g o gty

ot
¥ TABLE OF CONTENTS (continued) DN
! VA
L ;
B.4 CONCIUSIONS ...ttt ettt s es e 151 ::::x j
oy
4 .
: Appendix C: ASP Microcode Word e ;
N) A%,
-;:j & Appendix D: Translation Table for Microcode Assembler el
B I *
::: Appendix E: ASP Prototype Microcode & '
» a Bibliography BN
¥ S
::: Vita :.r::
'.! '.
W el
B Govl
'1 d
o :
e 2 29N
) e
" o
i .\..:ﬂ.
[RS
% & i
Yol .
" e
l' c:.‘q
~ -~
4 S
L il, ':":.:::
B NS
—
. -
; o
q N
e oA
A)
: R

'y
-

.
N » : 'y :
'.‘ N J
.)
) .~J
B
» viii RN
” Y
 Jhat
" .. Wy
>
N > ".':.r"
l.} .‘.
D e
: et
(] MEP RN L ‘ﬂ"‘ N TS SIS IS TS AN A PRI R T L SR . L. L N N AP A e Y LS P e e o P
..n.l.-.t‘!‘\', POMT AT N Ad o %y, * l! o = Lalh =a '."* 3 > Pl S " o L N Y .’. ‘ _, .’ A ORI

A gk 0 *) dg 4 aa vy gt st 4.° " gt gt @V Rt ¢ g b g p s ba b g e dine" N ba g U v ? g ‘a b

LIST OF FIGURES e

Figure 1: Comparison of Speed and Power Dissipation of Various Technologies 30 . ".o.'
a Figure 2: ASP Control Sectioncoccouiiiiiiiiiiiiieriiirier e iiiee e e eane e et e rtae e e ernaeans. 36 TRy
Figure 3: ASP Control Section with Pipeline Registerc.cccoccocciiiinniiinn, 37 R
Figure 4: Major Sections of ASP Architecturecccooeeeiiiiiiiiiiiiicc e 43 Wl
m Figure 5: ASP Control SeCtiOncceeevveiiiiiirieirneieereriioraeeeerreeeeseiiaeaesereiaees ereeens 44 s JQ.r.\
Figure 6: AFIT XROM ettt reerene ettt et atareaaeean e tetaaeean e at et ttaera e b et ernaeenns 46

Figure 7: XROM Storage Cell «.....ovvomveeoeoooee oo 47 S

&S

Figure 8: Pipeline Registercccccoiiiiiiiiiiiiiiiiic i e 49

oy
€
-

N
b NS

Figure 9: Pipeline Register Cell 50

RV o S
. [2
>

Figure 10: Microprogram SeqUeNCErvvvviuemrmmuenieeieeieieeeeeseeeee e ae e ee e eaeeeeeess 51 A
Figure 11: Sources of Sequencer Next Addresscccoeeoieeiiiiiiiirreeiriiiiiieeeeeeieee e, 53
Figure 12: Program Counter Cellc..coooiiiiiiiiiii 53 N
-, Figure 13: INCTeMeENterc.oeoiiiiiiiiiiiiiei e et e 54 "Q_..F o

y
Figure 14: Half Adder oo 53 el

2y

Figure 15: 4:1 Multiplexercooooiiiiiniiiiii e 56

.

.
o] l..‘
st

X

PALs

W) Figure 16: Address Stackooooiiiiiiiiiiiii e 58

7

Figure 17: Stack MSFF ... O S PR U PRI 539

e

ST ke

sP,
PP
o

atatal e

L

Figure 18: Condition Multiplexeroooo.oiiiiii 60

-
¢

-
o
f—
%’
Ny
[y
s

Figure 19: Branch Condition Signal ...

>/ .'.bn“

)
2

"l"
. o _f
4$%45%%
Ly X4
ﬂ{\‘\
PPN

Wy
o

L}

'
X N P

A

|]

-

Cog . A g, 8t s L 0 J 1. at 1 LN 12 . AN LN LW LN ‘b VU N ¥ ‘af ‘a8 b \ U ~ N M * At . ‘\’0'.\.\"

1':0

B o

: NI
) LIST OF FIGURES (continued) ::ésj
’ j

-
B

;:’ Figure 20: Block Diagram of ASP Datapathcooooiiiiiiiiiiiiiii e 63 Sﬁf
0 Y
i« | Y
K Figure 21: Datapath Pitchcccocooiiiiii e 64 o
) .
. Figure 22: Datapath BUSSIIEcuvuviiuiiiiieiiriiieee i 66 ;
.
%
W RS
;:' Figure 23: Basic Register Cellcoooiiiiiiiiiiiii e et 67 ;t;,:
(. P\' A,
N <y
D Figure 24: ASP Clock Cyelecoovriiirrimmimiieiieeeee et 68 Sanfa
& N
.:: g Figure 25: Register NAND Decodercccuuuimimiiiieiiiiiiiiiieeeeeeee e eee e e e e ee e e 69 :-r:&
D Wl
A . .)]
¢ Figure 26: Address Register Cellccccooiiiiiiiiiiiiiiii e 70 oY
A ¥t
Figure 27: Data Register Cell ..ottt e e, 70 R
>
> NN
';; :% Figure 28: Data Transfer to ASP from HOStocoiviiiiioeiiie oo 71 ;::';
| r‘.v"

2
B

Figure 29: Data Transfer from ASP to Host

...

A

»:t Figure 30: ASP Handshaking with Memory

-
N
"
‘v ¥

'(— -‘- .l.)
PR,

- -
0

b]

Figure 31: Literal Insertion CircUitryciioiiieiie et eee e 75

B
e’
xR

Figure 32: 4-Bit Barrel Shifteroooooiiiiii e 76

AT

W
Pg

‘?--J

K- Figure 33: Barrel Shifter with Arithmetic Left Shiftocooociiiiiiiiiiiiieee 77

o
e

4
Sy
I %

Figure 34: Barrel Shifter with Arvhmetic Right Shift ... 78

74

.

Figure 35: Shifter Interface to Bussescccooiimiiiiiiiiiiii e 79

,..,;‘».
AN
Pld

:0’, e Figure 36: ALU Block Diagram e e e 80

=

Figure 37: Implementation of Logic Functionsccccocoiiiiiiiiiiin e 81

LA
Wy o/

v Figure 38: Carry-Select Adderooiiiiiriiiiiiii e 83

ey
- _a
<,
ML

»
k]
A

Figure 39: Carry Propasgate Adder Cell ... 84

ry,
';_'d‘}ﬂ

2

[
[4

Vol 3 i Qq S
L) P\' v
) 23

o
2
l-.
=
L]
.
3
L]
,
]
L]
s
v
3o
P4

R AN R ALY AN IR A A TR AERE AN A N ML B g w me a.h bt Bt B 9t a2 a b e g 8Tk 8 b R At Bt g 9.0 8. R Bt 6. g% g0 ho? S’ Bo¥ B2’ Bt Bat

W
AL

P %P,

LIST OF FIGURES (continued)

AR AR

7

I
5
s
e

Figure 40: Carry Flag RegISterooiiiiiiiiiiiiiii ittt er e e e 89 .:,
- i
. Figure 41: Exponent Calculation for Floating Point Adderc..o.oooiioiiiiniiii 92 ;. _-:j
\'.
Lo
Figure 42: Mantissa Calculation for Floating Point Addercccoooviiiiiiiiiiiiiniiianinen.e. g3
rﬁn\
n g
Figure 43: Prototype ASP Floorplanccccoiiiiiiiiiiiiicicee e 99 %5.:5:
:-.::\"
Y
Figure 44: Pipeline Register Modified for Testabilitycccoovvvviiiiiiiiiiii e, 101 W
i Pl J
$ Figure 45: Flowchart of Microcode for the Prototype ASPcoviiiiiiiiiiiiiiiiiie e 104 v \." :"'
MASAS
.-".I\J‘
Figure 46: IEEE Format for Floating Point NUIMDETS «..v.vvvvvevveevesooeoooeeoeoeeeoeoseoe e 127 Sy
'.';-.;\ :
Figure 47: Exponent Section of the Floating Point Multiplierccccoeeeiiiiiiiiinnn, 129 s
YA
. NN,
:2 Figure 48: Mantissa Section of the Floating Point Multipliercoo.o, 132 :}\::: ,
Ny
N
Figure 49: The Wallace Tree APProachocoiiiiiiiiiiioeiineeeeee e e e 133 ':;:‘;:
Figure 50: Carry Propagate Adder with Driven Qutputscccccociiiiiiiiiniiniieniiiiiiiiiiinnn, 134 ’;N}.‘__ A
3 RN,
A Figure 51: Floorplan or Floating Point Multiplier Chipccccovvviiiiiiiii 137 ",:f_\:
NG
el
Figure 52: Removal of MSFF Feedback by Nofeedoooiviiiiiiiiiiiiiin e 148 p
B
L] \
Figure 53: Fixrom Modification of XROM Storage Cellccccccriiiiiiiiiiiiiiiniiii 149 ;J".:J'\
g; ey
] A "'
Figure 54: Fixrom Modification of XROM Senseamp «...........ovverrverroreremeeesseseemsesrrenes 150 A
LYy ". 1!
RN’
R~ﬁ.h‘

YA
‘.~ “n‘)
AN
R
AN
~ -.,\ "
-, Mo
W yﬂ' ~

xi R

LS

N
cl
"; .: (i
N
SRR

-

o

R N T N P g AN LN
i o m&ﬁm&gﬁ.{ﬁm PR NI

»
I3

r
v

LIST OF TABLES

Table 1: Comparison of CMOS and nMOS Technologycccoovvviiiiiiiiieiiiieiiiiiie e,
Table 2: Microcode Sequencer OPerationsccovevveiverereeeeriurnrerereremosierreeennaererenaeeanens
; g Table 3: Microcode Sequencer Control Signalsccoeoriiiiiiiiiiiiiiiii s
Table 4: ALU OPErationsc..coeviiiiiiieiiiieiiiiineiiiieereeeeeeeeeereeeeteraesceneasaaeeeeaeaareaeeeeianeens

Table 5: Control Requirements of ALU Operations U URUURPUPTRIIN

Pl 2

Table B: ALU OPErationscccuciivriiieiintieeerieeererineritierrroneerraiaerenneerraneerroererioeeerroneseens

3

.

;

B

N &% I
' R

| \fp."\

1.8 \}\- A

3 Y \..\

=
§{

2

L)
.
Ny

o+ o o4
v o .
'll

Xii

P
Pl
-'.'-‘\-

\"- N

rer
Yy
Py

-y

:

»
.
R A]

e v : N
i h
0 e
- -’ »
o \).*\ v "
- " ‘

3

g PR » n - -’q “mn 'J' ["L -' -,-'u 3 ("L) \'.'\ D% Y S AR W " \.'\"'v
NN IR e LA S A AOAC Y SATRENS A, N Lt TR T 4 Il s L d i D ot NG

D

[AAA =35 &E

AFIT/GE/ENG/87D-19

ABSTRACT

Numerous applications throughout the Department of Defense, industry, and
academia require the design of custom processor architectures. Design of these proces-
sors, however, is normally a lengthy process. This thesis defines a2 methodology for rapid
prototyping custom VLSI processor architectures. Using this methodology, the design
and implementation of applicati;)n specific processors can be reduced from several years
to two months. This reduction makes a high-performance VLSI solution feasible for
Department of Defense applications that would otherwise have settled for a lower-

performance alternative.

The rapid prototyping methodology is based upon the specification of a general pur-
pose architecture customized via microcode to solve unique applications. Since processing
requirements will vary, the designer chooses appropriate macrocells from a design library
to provide the best hardware support. A high-level language description of the problem
is then translated into microcode. The microcode is automatically assembled and
designed into a ROM (read-only memory), resulting in a processor customized to solve
the given application. By allowing the designer to quickly convert ideas into implemen-
tations, the rapid prototyping methodology frees the designer to be creative rather than

becoming mired in implementation details.

A general purpose VLSI architecture was designed to support the rapid prototyping
methodology. The control section of the architecture centers on the microcode ROM

(read-only memory) and a microcode sequencer, which provides proper addressing to the

xiii

LY

Ly
i

b7

s'*
2

y]
A

h J

L 2
&

P
. A'r}}

Y
ey

-.'-}
i

Y

&,

Y4

~
O,
&

N

%
3

o
-,

>
.

s

LA
NS
LY

5

¥
rd s
& A

A B

i
X

<

SRR
27 7%

h S T B8
Pg
]

I‘.f

%
LA

%
»

elIni
YN
RS

sy

s

555

e

ROM. The datapath section (1/O path, registers, and arithmetic hardware) uses the con-
trol signals from the ROM to perform the required processing. The datapath macrocells
were designed in a "bit-slice” fashion, allowing easy configuration to different data types
and widths. A prototype processor was implemented to test the architecture for funec-
tionality, performance, and operating characteristics. Additionally, a parallel floating
point multiplier, applying Booth’s modified algorithm in a Wallace tree structure, was
fabricated. To further support the rapid prototyping methodology, severai design tools
were developed. These include a program to automatically generate a ROM in the Magic
format and an extraction tool which generates a VHDL description of a circuit from a
transistor listing, allowing high-level simulation of the circuit and thereby closing the

"design loop."”

The rapid prototyping methodology has been successfully applied to three different
applications. These applications demonstrate that a custom application specific processor
can be designed in less than two months using this methodology. This reduced design
time also translates into reduced cost and program "risk.” This dramatic decrease in
design time could result in a significant increase in the usage of VLSI/VHSIC solutions to

Department of Defense applications.

Lt
LA A
{5;.1 P
aast

»
A

e P
7y ?; Y,

-

e
P
P

hY

’.l
’ 7
Pd

ey Yol
2
S,

2

LS

o]
2 /./
4-‘-'-"
A

X
27
aaaa

P ard
A
P4
P A A

a
.

&

el
%\‘%@{j

5
fb;);[

N

L 4
Ia

S

jﬁ¢-
'SIS >
LY

¥,
(4
Pd

-’.:*wf;

;

.......

COMMON ABBREVIATIONS

Abbreviation Explanation

g ALU Arithmetic Logic Unit

AND "And" Gate
ASP Application Specific Processor
CAD Computer Aided Design
CISC Complex Instruction Set Computer)
o % CMOS Complementary Metal-Oxide-Semiconductor o
} DoD Department of Defense N
DRC Design Rule Check NN
GND Ground - "Low" Voltage 3
HOL High-Order Language
LSB Least Significant Bit v el
“ MSB Most Significant Bit ""':f-:
3 MUX Multiplexer SR
= NaN Not-a-Number ::}f;’
NAND "Nand"” gate -.:,a“'
OR "Or" Gate =
PLA Programmable Logic Array N0
PQ1 System Clock - Phase 1 N

L8
4 4 ey
Pe
4y 4
P

PQ2 System Clock - Phase 2 e
RISC Reduced Instruction Set Computer el
ROM Read-Only Memory AR
Vdd Source Voltage - "High" (+5v)

VHDL VHSIC Hardware Description Language

VLSI Very Large-scale Integration

VHSIC Very High-speed Integrated Circuits

XOR "Exclusive-or” Gate

XROM Read-Only Memory w,/ X-shaped Storage Cell

'

- 7!
RELHE

»
s_s

L,
P
s

X

.:,' e
v s e
XAAL,

=
iy
e

prEEA
L%)
i

&

i

YER S % . Bac ga% st A% o b % A b ml b AN Iy WY g WY T OW N W W U W D) oAt

n RAPID PROTOTYPING
j OF
":! APPLICATION SPECIFIC PROCESSORS
:gi 8
o CHAPTER 1
y a Introduction
!:; -

1.1 Background

2
EE:: k: Advances in integrated circuit technology have made possible the design of VLSI
‘:::, (very large-scale integration} chips containing several hundred thousand transistors. A
:S single chip can now perform functions that several years ago would have required a
ge main-frame computer. As a result, VLSI architectures can now be applied to a broad
:: range of difficult problems. The challenge for VLSI designers is to translate the ideas fos-
P tered by this new capability into reliable VLSI implementations.

:
:: :\' An important VLSI area of study is the design of processor architectures to perform
‘ computation and provide control for special-purpose applications. Research programs
E}j throughout the Department of Defense (DoD) require application specific processors
..o‘ (ASPs) customized to accomplish one particular task. For example, several research
K efforts currently underway at AFIT have identified the need for VLSI architectures to
"
‘:: provide system processing and control. These include:
B
§ .
.: 1

A

AFIT CAM-puter system

WFT (Winograd Fourier Transform) project

VWE (Vector Wave Equation) processor

Silicon Brain and Optoelectronic Retina Architectures
Laser fusing for air-to-air missiles

O =

To meet specifications, the VLSI processors/controllers for these projects must often be

custom-designed. The specification, design, layout, verification, and fabrication of an

application specific processor, however, can require two years or more to complete. Due
to this lengthy time, and the perceived "risk" of using custom VLSI architectures, pro-

gram managers are hesitant to commit to a VLSI solution to their processing needs.

One way to solve this problem is to design a general-purpose architecture that can
be customized to specific applications. By customizing the microcode instructions stored
in an on-chip ROM (read-only memory), a general-purpose architecture can be applied to
specific problems. Using automated tools, the software microcode can be developed easily.
allowing the rapid prototyping of a custom ASP. This ability to rapidly design reliable
custom architectures will facilitate "VLSI insertion” into DoD programs. A primary pur-
pose of this effort is to demonstrate that custom VLSI designs can provide reliable,
economic, and higher performance solutions to many research programs which now use

“off-the-shelf" products fabricated in old technologies.

1.2 Problem Statement

The goal of this thesis effort is to formulate a methodology for the rapid design.
layout, and verification of custom processor architectures. The intention is to dramati-

cally decrease the time required for these phases of processor development.

A general-purpose processor architecture containing a ROM to store microcode will

be specified. A prototype processor will then be designed and implemented in VLRI The

L8554 %

EEECS
rJ
& J..} I..A’.'

A

R

e > T

- .

R

- . -

- -

'.l|!‘l

initial architecture will be implemented using a 3 micron CMOS, double-metal fabrica-
tion process. Throughout design, emphasis will be placed upon the ability to modify the
designed the macrocells (via a "bit slice” design style) for use in different ASP applica-

tions.

1.3 Scope

This thesis is bounded both in the type of problems to which it applies and in the

scope of the solution it presents.

1.3.1 Scope of the Problem. This methodology formulated for the rapid pro-
totyping of ASPs is targeted . applications that are algorithmic in nature. The algo-
rithm for the application should initiaily be specified by a HOL (high-order language)
program. This program can then be translated into the microcode that will be incor-

porated into the ASP.

Applications that cannot be specified algorithmically, or which have special
hardware requirements not easily provided by the general-purpose architecture. may not
be good candidates for this rapid prototyping methodology. These types of problems will
require increased design time and may not be easily implemented using existing macro-
cells. One example of a poor candidate for rapid prototyping is an I O-bound problem
requiring special bussing and external interface. Implementation would require extensive
hardware re-design, lengthening the time required for prototyping. Another example is
an application that uses trigonometric functions extensively. It would not achieve good

performance without specialized hardware, thereby increasing its design time.

) v e R N T RS PRI FRPLT RS SEAN RN AP
OO ORI W ‘.l.c N S (% SRt NN TR CL T YW I G A A

L g -'\(

A4 &

. LJ
i
ALY
o,
S
~
g

AR
Y

4
l“

PR
AR
[y
Ly

[AS

3
e

e g e 0 .

parAEs

L[]
]

> 0

7.
a0

l..
]
s

va's
«

[g8 S

1.3.2 Scope of the Solution. The rapid prototyping methodology entails both
the hardware and software aspects of ASP development. The hardware aspect of ASP
development involves the design of the general-purpose architecture that can be custom-
ized with microcode to solve different problems. An important aspect of the hardware
design and implementation is the creation of a cell library containing a variety of the
macrocells necessary for ASP development. These macrocells can be easily modified,

allowing the ASP architecture to be adapted to a variety of problems.

The software aspect of ASP development involves the specification of the microcode
fields (instruction set), writing the microcode, and then incorporating this microcode into
the design (creating the microcode ROM). A methodology is necessary for specifying the
microword and translaiing the high-order language description into microcode.
Automated tools are needed to assemble the microcode into binary form and then gen-

erate the ROM layout.

1.4 Summary of Current Knowledge

Considerable research has already been conducted at AFIT in the area of applica-
tion specific processors. Several ASPs have been designed in past thesis efforts and class
projects [Dia87, Gal86]. A prototype of the CAM system controller has been fabricated
and tested [Fre86]. A processor for the WFT project has been also implemented and i~

currently being fabricated !She86|.

In addition to the insight gained from these projects, numerous macrocells useful in

an ASP architecture have already been designed. The CAN controller contams a control
section similar to that envisioned for the ASP architecture Adder, incrementable register
stack, and barre] shifter macrocells are also available withm the AFI'T cell hbrary

o

e AW LTE e N T S ™ T e e Y e T N “~u
DG, A 0 VL K NN SO TA AL A

-

~ L
\-P\-f\l

255
Moo
2

L

S
2L SIS
; ;‘:4; vt
LN
L

2 ®

S
=,

2

2 22LZ

LG
e

& 5 N
P2
& %
b

[N

&
%
P

%
x

3
)
p)

-é:’
3

<,

VA
\‘
i

LINUIN I
4

PR R
h Y
i
S
Ay

Py
vV ANS

YR P

>
h:«(-.'
:\,\{\.

MY
A

»
X
e
v
5

'-’.
%
[/ :'.'

Y
hY

"s‘;l
”-’:’
.—. .

to
SRR
LA
AN

h A
Cd
L4 N
i
.

LA

’y

(4

g
.

"R P N
XA s'sf:'."'

Ba

0

W
!

")'.I

Py
.
.
L]
[L SRR
4 &

AT AP
Ll

%4
st

[

CLLS L
IRA RN
L]

s

R

= .

o

=53

¢

{

&2 S

Although these cells will have to be adapted to the ASP architecture, the design of these

cells is already well understood.

Perhaps the most significant work accomplished toward the rapid prototyping of
ASPs is the development of the XROM Optimizer by Captain Rossbach [Ros85. The
XROM Optimizer inputs a file containing the desired contents of the XROM (a ROM
whose basic storage cell is designed in an X’ shape) and automatically generates an
XROM layout in the Caesar format [Ous87|. The program also re-orders the address
and data lines to minimize the number of transistors and drains required within the
XROM. This, in turn, decreases the power requirements and increases the yield (and

possibly the speed) of the design.

This XROM Optimizer greatly facilitates the rapid prototyping of ASPs. Once the
general-purpose ASP architecture is designed, the major task in prototyping an ASP will
be to customize the microcode stored in the XROM. Since the XROM Optimizer
automatically implements the microcode in hardware, the only remaining task is to

develop the binary description of the microcode for input to the XROM Optimizer.

1.5 Aasumptions

In parallel with this eflort, an IEEE-standard floating point adder is being
developed and will be incorporated into the cell library. Design and initial implementa-
tion of this macrocell has begun and it should be available for use in future ASP archi-

tectures.

1.6 Approach

Since the software aspect of this effort was dependent upon the hardware developed.

this thesis effort initially emphasized the design and implementation of the processor

}'L
2

"
oy

._::":".’
A%]

'l‘l
5

i
S
% 5™

(}'ﬁ
L]

A Ay

oy
VN
s:;.“x s

IRV
LN
N
el ¥

'-,'q.'s's:;.

ot)

A -'.'-’\'n:..- [
A

N
)

U's
4 %
. '.'.:'%4'1

P N d
4 5 %

’
.,
XA

”
4
o

-
Lih 9% v

A A

‘

oy

'

\v

-

-

-
b

[N

U IV T U U U YUY U O N Y U U U U T U VT VS U US U R VN U U X ‘ VS R PN TN UL LR XY

architecture.

The first step in processor design was to analyze the types of problems that must be
solved, and to survey the approaches to processor design that have been used by both
industry and educational institutions. The requirements for the architecture were then
specified and the processor designed. Once VLSI design was complete, a prototype ASP

chip was fabricated.

After the processor architecture had been submitted for fabrication, the software
methodology involved in rapid prototyping was addressed. Since the XROM Optimizer
inputs a binary representation of the microcode fields, the desired algorithm must be con-
verted to this binary representation. Extensions to the XROM Optimizer program were
also examined to simplify its interface and to further develop its automated layout capa-
bilities.

Once the fabricated chips were returned, they were be tested for both functional
correctness and performance. These results in turn suggested improvements to the pro-

cessor design that can be incorporated into future ASPs.

1.7 Materials and Equipment

The VLSI implementation of the processor architecture will rely heavily upon the
Berkeley VLSI design tools {Cal86], including Magic, Mextra, and Esim. Additionally,
design tools developed at AFIT such as the XROM Optimizer, Cstat Lin83!, and Stove
[{Gal86A| were used. These tools required use of both ELXSI computers. the VAX (SSC)
computer, an AED767 graphics terminal with digitizer pad, a Versatec plotter. and a Sun

workstation. This equipment was al} available at the beginning of this effort.

o ‘.‘ '\..'t..‘f"*\)\ N N

. >, -
NN S R NN LN N S N LS, YL SR SR SR
ROLA L L O R G N A A AT AN AL AN AN

7 &
I'ﬁ

SRR
i
Yol

s
b
Ul

4

v
=)

Yy
o

s‘.
.0;1

Ny Yy
i

]
¥

W)
X

"'.':\':-\'
.
g

.

»
»
At

‘l
‘l
D

)
DAY
.
LN
\
N

al
.

o4,
.' »

13
]

LN
.
P
I.l

]

P
‘7.'

s

Py

s

»
7
5-

L

I

‘f';.'.:
LAy
L

'y
‘s

g
.
2.

Fabrication of the ASP required the support of the MOS Implementation System
(MOSIS) located at the University of Southern California. Fabrication through MOSIS is
funded by the Defense Advanced Research Projects Agency (DARPA) and required
approximately 10 weeks. Communication with MOSIS was accomplished via the

Arpanet system.

b

g
[y o}
>

1.8 Sequence of Presentation

N "y
P
']

;a

5

Chapter 1 has provided the background to this thesis effort and has defined the

-
[y

particular problem that will be solved. The scope of the problem and an approach to its

7
r S oq

i

solution were presented.

Chapter 2 reviews two general approaches that both industry and educational insti-

[NEN

tutions have taken to processor design. Four specific architectures, representing both

A
PA A'.'f -‘"1‘ i{

oA

approaches, are overviewed.

.S

u

Chapter 3 contains a detailed analysis of developing a methodology form rapid pro-

'l
A
¥

-
a
'{ (-{‘i

-
.
'

totyping. Emphasis is placed upon specifying the processor architecture necessary for

..?.:“: [Y S v
“4 s

this methodology. Alternate approaches for developing an application specific processor
are examined. The rationale for the chosen approach is then presented, followed by a the

high-level architectural specification of the ASP processor.

Chapter 4 examines the detailed VLSI design of the ASP architecture which was
described in Chapter 3. The architecture is divided into two major sections: 1) the con-
trol section, containing the microcode ROM and a microcode sequencer which provides

addressing to the ROM; and 2) the datapath, which provides data storage and computa-

A
I\I.\

)L

tion.

LS

et
s

" .

Pl S

(Y
B

"

r

Y

X VAl Al q C gy ¥ T A YATN" K"’ Tl e« "a"s " TR T a® T TATE ", "
ol. ", '..'l. .l.l‘ "k \')" AN ‘V‘ .\.‘ . ,»_0. .

IR I T W RTINS
T R NN PN NN

=

SEREIEN

Chapter 5 describes the implementation of a prototype integer ASP. The procedure

for "pad-to-pad” verification of the processor is presented, followed by a description of

the fabrication process.

Chapter 6 details the rapid prototyping methodology and presents four test cases in
which it has been successfully applied. The design time in each of these cases has been

dramatically reduced.

Finally, Chapter 7 provides the conclusions from this effort and recommendations

for further study in rapid prototyping of application specific processors.

~. ~.’_.. ‘,-";‘F.l*'- .; .:' - .-,&:’.‘-,l_-"- 'v:_ﬁ' .‘- \t - ~- \'r ‘-'“‘- w\r .‘1 i\i \(~|(\-r‘\ f\“\'-'.':\’:\ﬂ"s"..’x‘:*‘."‘ g
8 . h A g 5 y X Nadofalla ol - v

i

~

-

Lol o
e,

- e 4

A
AL
NG,

T

e

F:"l
X
5

Y Gy,
oy
NTYYYS

.lf‘: 1

[4

}::n-"l “- b
sl":’\‘{ 4
b 20 e)

'
P
l. l' "

A

AR IR TR
T .‘.u -‘-
falals

.
NN

‘." 'l.'_’ '

vy

0.“(."",

CHAPTER 2

' Review of Current Processor Design

o

N .-.
P4

¥
”

oy J’s'
o
>

,
b
I
l‘} ?’~

5

P

& 2.1 Introduction

9 .‘ N
P e

a

%
=

LS 22

Considerable advances have been made in recent years in the design of general-

5

4

purpose processor architectures. Architectures which fully support a 32-bit word have

'A-v -
A

"
iy r'-';"
oA

become commonplace. Although the need for even more powerful processors is univer-

v

)

sally acknowledged, debate still rages as to the best approach to processor design. This

LR
%

chapter examines the two popular design approaches and provides a survey of several

specific architectures,

P d

.,,,-
. 1‘
s
SN

&
N
2

5
(S ;r’

L}

,

‘P
P

‘g:.:

2.2 Processor Design Approaches

<

During the past few years, computer architects have begun realizing that "current

&x

e

x5,
.}I

{-
o

6 architectures have serious shortcomings” {Mye82]. One critical problem has been termed

I 0 o o'
P-e
R

the “semantic gap”. Myers defined the semantic gap as "a measure of the difference

ST Aud
")
3

>,
%
»

between the concepts in high-level languages and the concepts in the underlying com-

A
4 % v
'l‘.l"
,I{I}.

1
—".l'l ’

puter architecture” [Mye82]. Traditionally, hardware designers have made design deci-

2t

A, Y 4

b
.‘.

sions based on cost, ease of design, and performance of the machine instruction set.

."'i
s

P4

They have failed to analyze the nature of the high-level languages that use the architec-

Ny

[l
)
RN

P

R

ture. As a result, the hardware often provides little support for many common high-level

oy
MG N
7
-

PAs

language functions. Myers identified arrays and procedure calls as two often used high-

 OF
&%
LA

h G
4/

e

level constructs that generally receive little support from the underlying architecture.

EXs
AL LM

‘;&‘3.'
7

.

=
&

b
N

1} .‘
',y
s

'J'.-

»
x4
)

‘alal

40

W

P
Ny

e

'~

3

s
7
.l

7

W P MV W o VW ® QU LW Ny ATy W 0 T R A R TR SR TN L R A LS LA
":‘_ f l'l."‘. l.ml‘t M ‘Q W '. W "' 5 v - .. & = 2N ". . ’ *}"r\‘. ""

» ™ S

A great deal of research effort is now being directed toward closing the semantic
gap. VLSI designers are realizing that the real measure of a processor’'s performance is
not how well it implements machine instructions, but in "the ability of the architecture
to execute high-level language programs” [Hen84]. A processor that can be clocked at 25
MHz, but- rot providing adequate hardware support for many often used high-l:vel

language constructs, may show poor performance within an actual computer system.

Despite the large number of transistors that can be placed on a VLSI chip, the
transistors must still be considered a limited resource [Kat835]. Efforts to reduce the
semantic gap have diverged into two separate paths, relating to the use of this limited
area. The major trend in processor design has been to use the increased transistor
resources toward providing more complex instruction sets. These more complex instruc-
tion sets are designed to provide powerful machine-level instructions to support high-
level language functions. A second approach to the use of transistor resources has been
to implement a simple carefully-chosen instruction set and to provide hardware support

to operate this simpler architecture at a higher speed than the complex architectures.

2.2.1 The CISC Approach. The "complex instruction set computer” (CISC)
approach attempts to close the semantic gap by providing a more powerfﬁl instructicn
set. Many CISC processors are architectural successors of earlier processors Kat853
such as the Intel 80386 and the Motorola 68020. These new processors provide a wider
data path (number of bits of internal representation), a larger instruction set. and new
addressing modes. As a result of the more complex instruction set, the instruction decod-
ing logic of these processors must become more complex, often slowing down the max-

imum clock rate of the machine’s entire instruction set [Col853:.

10

....- >

P

“I~(.'l‘._ o ¥ f‘f..f.'f\-‘,-f.‘(‘f‘f,‘-’- f\f\-"vf%f

Y
o
..

’

s

Pt 4
PR

3
1

iRy

A
v
‘{ N

L4

x

>
)

-

2 TY ® ar
]
L
»
L
4 r
L 2L
20 A A b A A

S

AAAAN

~ <
A A eV ."‘n'.q

» "
"5.{& R

(A

[

- .
AL
. .Y

@ e,
»

.

s

%
4

Y,
4o %

b

7’7

s
A key feature of CISC architectures is the use of microcode. Microcode is a series of N }'\q
logic-level instructions stored on the processor chip, usually in a ROM. When the CISC P

! processor receives an instruction, this instruction points to a sequence of logic instruc-

NS,
LR
A
LAXAAR

tions in the ROM that will be executed to accomplish the required task. Thus, the pro-

Gy
L4
L4

)
_n

LN
hY

cessor will usually require numerous clock cycles to execute a single command. The

r
-

f=s

’
'v"

microcode allows the addition of more complex cominands by merely adding new instruc-

R IR
PR
»ﬁhﬁ¥
oy

T
YA A

tions to the microcode stored on the chip [Col85)].

“2
PaLs
X
¢
:«.
(s

¥

b

The complex instruction set has several advantages. Since a single complex instruc-

tion can accomplish more tasks, the size of the executable image can be smaller [Hen84].

ity
ALY
l. 1. l'
LS l‘i .'i "n

- e
Yl

.
o

‘_ \:"; 5

N n

PPN
r 1

B

o~
P

This is significant, since the bandwidth (rate of information transfer) is much less

° t."-
e
*

o

between chips than it is on a chip [Kat85]. Thus, a CISC will pass fewer instructions

» > .
LY

e
s
.\‘-'v
'’

e
LY
.-

: between itself and memory, resulting in rapid execution. Another advantage of a complex

LA

instruction set is the ability to efficiently service a wider range of applications, since

*F
hy

&
S

different applications use different sets of instructions [Hen84].

e
PR
g
X

o~
‘-‘-)"l
{f;.r'

[d
84

LN
)Y
a2,

<

e
A A

2.2.2 The RISC Approach. The "reduced instruction set computer” (RISC)

~
hY
5

approach to processor architecture attempts to optimize performance by providing a

LY}
,"\.', .'..f\d ®
-;f;z_ >
¢
a » T ." '.' "R

~ small instruction set that can operate at high speed. The basic premise of the RISC

\J -
(.' ',."‘-
4

(I
was
Id

[N

w approach is that a program regularly uses only a small subset of a processor’s instruction

5
[4

2L
Pd
tf

set. The majority of the complex instructions are rarely used. Proponents of the RISC

approach feel that the inclusion of these rarely used instructions into a processor's

instruction set "has more negative effects on performance than it has positive ones”
(Kat85]. The complex control hardware required to implement these instructions slows

down the speed of the processor, and the area required for this hardware could be better

M)
! spent. v.—-v-r—
l'.-“-.t'-.I
:‘.-:‘.r"r:
11 NN
. oo rts
RS
r\ ‘-. l\ l‘
) o
g
L] T)
“a WA
&4
S
- - . - . g -~ B R L YR R, |
1 0 W LWL A)Y ‘N W ',-‘,-,-' « Py ,'\"\J_.I'\ *‘* ﬁf\,'\vw"\f'\’ \\n‘.i'u ‘.{'\J"d'.--f\i"l‘d‘f.ffﬂf- '.(‘..
A .!.l'-. N T o e i e S S I e O O GO Kal Bl 0 SN = ¥) TSI N

S

The common features that identify RISC architectures are Col85, Joh87':

1) Single-cycle execution. Since RISC processors use only a simple instruction set,
most commands can be executed in a single clock cycle. Although many RISC archi-
tectures are pipelined and the latency through the pipeline may be several clock
cycles, the execution stage of the pipeline is accomplished in one clock cycle. A new
instruction can be inserted into the pipeline on during each clock cycle. This is in
contrast to CISCs, in which one command triggers a sequence of microcoded instruc-

tions, requiring numerous clock cycles to execute.

2) Load / Store design. As already noted, more time is usually required to access
information off-chip than to pass information within a chip. Since RISC processors
wish to execute most instructions in a single clock cycle and to keep the length of the
clock cycle to a minimum, they allow only simple load and store instructions to

access memory. More complex instructions which must access memory, such as

mem|[C| + mem[A] + mem|B|

are not used since they would require either a longer clock cycle or multiple clock
cycles to execute. The above operation would be executed by a RISC as a sequence

of load and store instructions.

3) Hardwired control. An instruction loaded into the processor is decoded to directly
provide the control signals that drive the hardware. This contrasts with the CISC
approach, in which the incoming instruction provides a vector to a microcode routine

stored on the processor. RISC processors generally do not use microcode.

3

‘.(
Pd

"f'ﬁl" F ot

>
s
)

[¢
20,
A K &

A
A
&l

.

PP
50
} -
W

»"
k)

[
'.".

’
[/

:1. . ‘.
. .‘;}‘

O
i

Y
B

»

NN

AT
=
-l

L X AR
s
X

D
—

2

o

0y
$A

S
"
':":.'."l

K ."..:'. LSS
.'4' &

Yy .‘

Sl

S

AR 2000

3 _’I_\ﬂ ;!-::‘,5 ,‘-, .

vy ~,'~::-/
boaresy

E A Xy

o
gy
)

RN
-.}'- "

a4 5
l{l"L,l o A

[4
[
o«

" X
;

:

RS
< .

r‘;'."l:"v;“r EA A':. -,

P

‘-, :
'..J 4

A

L]

>
St
L

4) Relatively few instructions and addressing modes. RISC processors take their

name from the reduced number of instructions they support. By reducing the
number of instructions and limiting the number of addressing modes, the control

hardware is simplified and the clock cycle of the processor can be reduced.

5) Fixed instruction format. This simplifies instruction decoding, in turn reducing

duration of the clock cycle.

6) More compile-time effort. RISC processors often reduce the hardware complexity
in exchange for increased compiler time. This extra time is due to the post-compile
processing required to ensure that the assembly code complies with hardware con-
straints. The time is paid for only once, during program compilation, and simplifies
run-time execution. For example, several RISC architectures simplify their pipeiine
control hardware by placing constraints on the instruction flow the compiler is

allowed to produce.

2.2.3 A Fuzzy Distinction. The “avalanche of publicity” [Col85] RISC proces-

sors have received in recent years has caused the distinction between RISC and CISC
architectures to become somewhat clouded. A large number of new processors have been
developed under the "RISC" label, but many of these do not satisfy the characteristics of
a RISC offered above. Perhaps one source of confusion between the RISC and CISC
approaches is the acronyms themselves [Col85]. They tend to promote the concept that

the number of instructions in a processor’s instruction set alone determines whether it is

a RISC or CISC architecture.

The interpretation of performance comparisons has further clouded the issue of

RISC versus CISC architectures. Benchmark tests on certain RISC processors have

13

A o Y AT P N T N N N LN N

ﬂa‘
{‘.
"-» -~

.
ES
“~

-
a

Y
hY
b Y

P AL

N
h
o J
ay

PP
A
’

S
.
o8

2
)
“(

b
?&:‘

o
l- l. l"

R R

SN

. Pl LL
JOVL e
) »
&
")

I
.
g

”

,
0
.

.
B

&

vy

P
v

NN

k]

-
-

@
2

'
a0

<,
;. (\

P ui
e
=~
Ny A

o|® 15
P

ey

RS B WL AR

-
N
P
".-"."' A

e e d
s
»te

5

'-
e lad
P
.

.'J.
1

S
\".l\
%

o
P
A

A

shown that they operate significantly faster than their CISC counterparts. But it

remains unclear if the increased performance of these processors is due to the RISC
approach, the particular programs used in the testing, or the hardware advances (such as

a register stack) incorporated into some RISC processors [Col85].

2.3 Relevant Processor Architectures

The special-purpose processors required for Department of Defense programs will
not require many of the features necessary in general-purpose RISC or CISC processors.
For example, custom processors do not need the memory management or operating sys-
tem support that the latest general-purpose processors are providing. Much can be
learned, however, from a study of RISC/CISC processor architectures. The implementa-
tion of the datapath in these architectures of particular interest. This section will pro-
vide an overview of four processor architectures: three that use the RISC approach and

one using the traditional CISC approach.

2.3.1 IBM 801 Minicomputer. The IBM 801 project was the first architecture
to use the RISC approach. The IBM 801 is not a VLSI microprocessor; rather, it is com-
posed of a set of MSI (medium-scale integration) chips using ECL (a high-speed, high-
power device technology). Even though it is categorized as a RISC, its instruction set
contains over 100 instructions. To reduce the frequency of off-chip data fetches, a set of

32 registers is provided.

The IBM 801 is a true 32-bit architecture. Its internal data path operates on 32-bit
two's-complement integers. It provides a 32-bit barrel shifter and logic functions. The
ALU (arithmetic logic unit) provides only basic add/subtract functions, but special

"multiply-step” and "divide-step” instructions provide an "add and shift” operation to

5

P Vo d
"-.;x‘;_\._-.

P
\v%\‘x\,‘l‘_

km‘_

o
W

Y. YL N

"‘-b
5 %
v
)

)

Flol /Wl

e
o
7y

T
A
]

-~

]
[

-

sl'-
e
7.

['d

z

(‘-‘\"
(S
F f

Y

=7

&

J'

[
)
4

00
b0
250
_"‘

B
?’ Pt
y | l. ‘.
K
"

DR A
P sl
4

3o

ooty

e de
’ a
- ’)"lﬁi..tx _

A I' .,' { ‘I ’.'J'-q- \-'.:...
rg S
El 0. .‘.".{
eyl SN

-h-“-l
,l

|

»
.

4, 4 4
Y

.,.
i
i

LY

y
7'

| »

E a4

’11

AR
e,
v K v

LAA]

Pt

vl

sy

support multiplication and division routines. The primary data path requires only two
busses, since the results from the ALU are not returned to the registers until the next

clock cycle.

The majority of the 801’s instructions execute in a single cycle. Testing of the 801
showed that it averages 1.1 cycles/instruction when tested on applications requiring few

memory accesses.

2.3.2 The UCB RISC Project. The RISC project at Berkeley was the first
RISC architecture implemented as a single VLSI chip. The Berkeley RISC project began
in 1980 and the first chip, appropriately called RISC I, was fabricated in 1982, A
follow-on chip, RISC II, was completed in 1983. Current research at Berkeley is concen-
trated in two areas: the development of a RISC-style architecture called SOAR
(Smalltalk on a RISC) and a multiprocessor workstation called SPUR (Symbolic Process-
ing using RISCs) {Rob87]. This paper will focus on the RISC II architecture, which is the

foundation for Berkeley’'s current research.

RISC II is a 32-bit architecture, able to address up to 4 gigabytes of virtual
memory. It performs 32-bit addition/ subtraction on signed two's complement numbers,
but provides no hardware support for either multiply or divide operations. The ALU
performs boolean logic and compare functions on 32-bit unsigned integers. The data
path provides full-range shifting by use of a barrel shifter. RISC Il uses a two-bus
precharged data path, with the result of one cycle’s operation returned to the register

bank on the subsequent clock cycle.

-

RISC NI is designed with a three-stage pipeline: fetch, operate. write result.

Through the use of a 4-phase clock, the data path can both perform computations on

15

« 1 e
s, h)
P A A
f.fff-

AL

PR S
':-';'I"
[N
5,\{

TS g
[-\"-.{-.'\ 5 4!
I R
A .
ALY

A

T

;{?:V#“

Selas
Y% &N

R
0 '.'.'} e

SN NN

e)T
QA
’ 'l
P,

L]

A
rxy;
““I'

4

.,
PG
NS
.
Y

-

RITILIRI
AAXXAAN

EN's

AN Rl]
D l'l"t.

VT

"]
x

)

by

current cycle operands and write the previous cycle’s results during the same clock cycle.
Since the storage of results is delayed for one clock cycle, it is the compiler’s job to rear-

range instructions to ensure that the subsequent cycle does not depend upon current

clock cycle results.

RISC II's instruction set is the result of an extensive evaluation of the type and fre-
quency of instructions used by typical programs [Kat85]. It is streamlined, containing
only 39 instructions, each only a single word long. The instructions are in a three-
operand format and most can be executed in a single clock cycle (the ezecution requires
one clock cycle, but the latency through the pipeline is three clock cycles). The only

exception is the load and store instructions, which must access memory {Hen84..

The analysis of instruction usage also led the Berkeley team to realize that the
majority of instructions involved either moves between operands or simple operations
involving two sources and a destination operand. They concluded that for the processor
to operate at a high rate of speed, the access to these operands had to be rapid. Since
of-chip access time is significantly longer than on-chip access, the team concluded that
the processor required a large amount of on-chip register storage. RISC II has a register
bank of 138 registers, 32 of which are available at any time. The registers are organized
as a register stack, so that subroutine calls and returns can be performed rapidly,
without the overhead of storing the registers. Several of the registers overlap two levels
of the stack, allowing parameter passing during subroutine calls. Proponents of the
CISC approach credit this register stack (rather than the RISC approach) with the

majority of the RISC II's performance success.

RISC II was built using a 3 micron nMOS process, and uses 41,000 transistors. [t

can be clocked at 12 MHz. Due to its sunplitied instruction set, it generally requires more

16

LG

TCICCFLOTE
"\f'i'\, AN ¢,
,‘, 'y (3t}

v -

A
G 4

U=, =
i
A

» .
PR
«
K
£

5 Y s,
W
A

0 B
o
{

l'l
55

- ‘I.I.A.'C.' N
tlf.'l«'
\)"J‘/ WPy
SN

X

SN

"
L4

APy
LI
st

T e
'-
%

-(-
P
A

fav'%a ' nt
N

JE, 0

instructions than CISC architectures to accomplish a given task (approximately 30¢¢
more instructions than a VAX- 11). Since most of RISC II's instructions are single cycle.
however, RISC Il was able to run a series of 11 benchmark programs 2-3 times faster

than its CISC counterparts [Hen84|.

2.3.3 The Stanford MIPS Processor. Stanford University is currently
researching the RISC approach with its MIPS project, which began in 1981. The MIPS
chip was fabricated in 1983, using 4 micron nMOS technology. It uses 24,000 transistors

and has a 4 MHz clock rate. MIPS uses a two-phase clocking scheme.

Like many of today’s architectures, MIPS uses a 2-bus data path. Two different
approaches were examined for reducing the propagation delay along the datapath. The

first approach was a precharged bus structure. Testing showed that this structure would

still have a 40ns delay, in addition to the precharge time [Hen82]. The second approach

was a clamped bus structure. This structure reduces the voltage swing required to
change the logic state of the bus by a factor of four. A voltage change on the bus is
detected by a circuit similar to a sense amplifier. The bus delay with this setup was

reduced to approximately 10ns and did not require precharging the bus.

The MIPS ALU provides full addition, subtraction, and logical functions, with a
80ns carry-lookahead tree adder. A barrel shifter provides shift capability. A special
"add and double-shift” instruction supports Booth’s modified algorithm for multiplica-
tion. An "add and single-shift” instruction supports division. No floating point support
is provided. Internal storage is provided by 16 dynamic registers that are automatically

refreshed if not written to.

o,
g

5

PELL
\Y

%
P A

=

R

"‘,"‘

A

(AN
e

»

‘s
4 4

£

£
e, | v

i

>

2
L}
>

Pg
.
L4

2

NN
r

%2

h DRI

o,
e

[

h Yl

l ,?l.. lS -
) 5 fl" fl.

R By

Yoy

. . . A M TR ——— = = ——— — = — — —

o

o
NN

P o

The MIPS architecture employs a 3-stage pipeline: fetch, decode instrurtion. decade
operand, execute, complete load. A new instruction enters the pipeline every two clock
cycles, so that at any given time there may be three different instructions being executed
by the pipeline. Since load, /store hardware is separated from the datapath, MIPS is able
to execute simple ALU operations during the same clock cycle that 1t performs a

load /store instruction.

The MIPS acronym stands for "microprocessor without interlocked pipe stages”
[Sil86]. A non-interlocked pipeline architecture provides no hardware support to elim-
inate pipeline conflicts. For example, a conflict would arise if the incoming instructions
specified an "add” on a value fetched during the previous instruction. Since both instruc-
tions are in the pipeline at the same time, the "add" would require the value before the
previous instruction had completed fetching it [Sil86]. Similar to the approach which
other RISCs use, MIPS requires that the compiler prevent instruction conflicts such as

this from occurring.

The MIPS compiler executes in two stages. The first stage is a standard compiler
that converts the high-level language down to processor instructions. The second stage is
a code re-organizer that re-orders the compiler output to avoid pipeline conflicts. The
re-organizer also rearranges "branch” instructions to preclude flushing the pipeline (get
rid of instructions that were pre-fetched but should not be executed because of the

branch).

The MIPS processor was tested against the Motorola 68000 on such benchmark
problems as Tower of Hanoi, Quicksort, and matrix multiplication. The MIPS processor

out-performed the Motorola chip by a factor of five on these problems.

18

‘f"‘lcﬂ."

My,)

RS U T D I I I S T S U I T U U S T N S SR
> o CACs P AN
I-r"..‘ LN J'J'_.J S \._\f__i'\vr L .\._.'_\ X \f} o . I’ \

I NN
. ,s's'\;.\'
aRAN LAYy
L ddd’ 1

£

o
PSR

)
l'i

s

A
[

4

>
CA
>
n’_‘l
<

‘N

[

. B 1
R

- .‘o’ﬁ.'-.-"i’ g
.
g 4 Yy 'l‘, '

LY

I}
L

(o
LAY

o1
4"1' < >
AR

«

TANVKAS
"s’ st'.:’
P

[)

B e
S
ltl
e

AN e

0

AS AN
[N

’
| A

St

& N

"),_a ',
8 2L

n’.ll--’
45
b

W]

RATAR,
.

.
PR
.

¢

P B e)

[y
.

0
»

e !
-
b
[}
.
A

Yaes'y

s
*
£

L2 L1

SN
"‘-'- (]

)
s
'
N
’
-‘A‘

.
~ LAY

b

2%}

<4

In 1986, Stanford fabricated MIPS-X. a 2 micron CMOS follow-on to the MIPS pro-
cessor. Although the test chip had design errors. the Stanford team wus able to test
MIPS-X up to 17 MHz (the design goal was 20 MHz) The design rrors were o rrocted

and a new chip is currently being fabricated Hens?

2.3.4 Motorola 88020. The Motorola 868020 = 4 - rnmer o

pTooessor o whn b

uses the CISC approach. Built as a follow-on to the BNO0O 22 ns0200 s 0 e 1

first successful extension of a 16- bit processor inte a 3200t ;0 wasr b oo 320

address and data busses, as well as a 32-bit internal $414; 400

The Motorola 68020 was implemented i 2 mur o ¢ MOS0 0 oy e 4 g2
180,000 transistors and dissipating approximately 15 warrs o wer [0 g

at 16 MHz, performing at a 2.7 MIPS (million instructine per <o 18 ryee Nyown

The 68020 employs a three-stage pipeline with a different justro o woipyime
each stage. The pipeline stages are: instruction decode contrl generate and esecyte
Instruction fetch is not included in the pipeline. since the processcr possesses 1 tid-word
(each 32 bits) instruction cache. Sixteen working registers are als jrovided The 68020
instruction set is quite complex, with over 100 instructions and 11 different addressing

modes. It is a superset of the 68000 instruction set.

Motorola provides a high degree of parallehsm in the architecture. with three
separate datapaths for instruction address, operand address. and data computations
Each of these datapaths provides a 32-bit adder. The data execution unit contains a
barrel shifter and hardware support for Booth's modified algorithm Parallelism s
further provided by separating the bus controller section from the execution umit This

allows the bus controller to perform fetch ‘store operations during the same clock evele

19

LJ
St
SN
YRS

-~ ~
- -9
“> “
“~ -
- -
LS
\
Y
3

R SRS
ARCRC
AR

T

B "™ K T I Ry

"ptp

(= At

N

that computations are being performed in the ALU.

Although the 68020 contains a large microcode store, the average number of clock
cycles to execute an instruction is only 7, compared to the 13.5 cycles required by the
68000. This efficiency, combined with the higher clock rate, allows the 68020 to execute

instructions approximately 4.5 times faster than the 68000 [Mac86..

2.4 Conclusion

The four architectures surveyed represent only a small portion of the research that
has been done both at educational institutions and by industry. They are representative,
however, of the different approaches taken to processor design, and provide insight into

the techniques that computer architects are using to increase processing speed.

Debate continues to rage between proponents of the two design approaches: RISC
and CISC. Both RISC and CISC architectures have shown excellent performance.
Although most commercial architectures still use the CISC approach, more and more are

employing techniques developed for the RISC architectures, such as a large register stack.

The ASP architecture designed for this thesis effort does not require all of the
features that general-purpose processors provide. For example, the ASP architecture
does not need to support a variety of addressing modes, since it will be programmed at
the microcode level. A great deal can be learned, however, by studying other VL3I
designers’ approaches to processor design. The simple instruction set employed by RISC
architectures will reduce the clock cycle duration for the ASP architecture. without
significant reduction in processing capability. Pipelining the ASP architecture will also
serve to reduce the clock cycle. Parallelism, as provided by the Motorola 68020, can

allow the ASP to perform more processing during each clock cyele. Each of the surveyed

AT N NN N RN

O

"
XA
2y

T 2 S

¥ l‘sl’l-"’~
st
XA A

v
ALY,

o,
v
w

LS

"3

o]
4.

"'.
X
s
e Y

v

v,
v
S
AA

7

£ T,
Sy
[4
4Ty

{“'-"

A

[%
.

[

.

TXTH o - R { KT CLLEL Y o
MY TRANS Z Sl A B > U
\..m,.r& : I IR “ﬂ s m..‘....n..x..xn.x......... _muu..\f..\sf\w.wm RO
X Pl Sy P DAL B N Y NN
By gele)t o .l o .\-....--.N UYL AN o A.}-.u-fl-).
PP LI @ 554 PN NS Fela vyl @ A
14 uw.a\;... 2y % ghos: e .x....-..v\.?J Ly el g
LG I L, o T [T rvwv.r.u..«.r.r_....r SN AR N4
a2 Lo - L B R A (] . SanaL AN
5 a--\-,n :n).\-. !N-.\\.\-N-N .-Sf\fvh!\ f L d h-. ...-.-o-»- .).h .rifkﬂf\f\)\f..wm —...... s F-P--A

A large register set, or even on-chip

Chapter 3 outlines the architectural decisions made in specifying the

RAM, would allow the ASP to perform less memory access, increasing performance.
The ASP architecture will incorporate the best ideas from the processors surveyed

processes provided similar computational hardware.

in this chapter.
ASP architecture.

.4
‘.l

[

< <
BN

k’

C

CHAPTER 3

Problem Analysis

3.1 Introduction

The need for application specific processors is widespread. Research efforts
throughout the Department of Defense (DoD) require special-purpose processors and con-
trollers to provide processing and control. This need provides the impetus for the
development of a methodology to rapidly prototype special-purpose processors. Funda-
mental to this methodology is the definition of the architecture. The ASP architecture
must be flexible enough for use in a variety of applications, yet powerful enough to pro-
vide high performance. This chapter analyzes the architectural design requirements and

specifies a processor architecture to meet these requirements.

3.2 Possible Solutions

The architecture for a application specific processor can be provided in several ways.
The special-purpose processor can be totally custom designed, as AFIT projects have
often done in the past. A processor can be developed using gate arrays, with the assis-
tance of an automatic layout tool. DoD efforts have largely opted for off-the-shelf proces-
sors, customized with an external memory store. A final solution is to use a semi-custom
general-purpose architecture which can be customized to a particular problem via micro-

code. Each of these options will be examined individually.

2
[+

B A

~

taf Vet gt

[
s
.I

-..’

.._
¥

‘."'.- 25 f
7

_;:;z Yy
e

P
'
2y

%

-
.
>

LY
73

[4
%%

T '{"’
S
.'5 s 2

»

AWK
2
"3

tetal
s

‘v
Y
X

. e,
R}
LY
[
.
O

“‘:‘;‘;*;":. L:_:,‘ .
o PRI A
IARIRASAN CORA
Sy el

L4
4

[V g

‘
7
e

5

5H % \”.
[}
2
-

&
&y
(AR S

NS N
S
57

Wl d

A 4
e
-
"-

4

48y
i
l“.l'

"1’ © o

« '." N l"‘..'.T.frl.'-

PN o
g A NS S
e - Al
AR RS t‘sj'\'x"'

.
[4

)
"l -
4 _4
h)

:.
s
.
4
.

'c' .T
s

.'":'"‘ .
R
S0

Bl b

2Pl

Y5
EAS
h i

0

LN

s

3

-

e B W

RUALY
s

R,

‘.

YN

L)
’ AN TS LY
‘.e‘l. AN .'..

LR W Ny, B T T WL)

3.2.1 Totally Custom Processors. \When presented with an application
requiring special-purpose processing, the most obvious solution is to employ a fully-
custom VLSI architecture to solve the problem. By customizing the architecture to the
application, the optimum performance can usually be achieved. The "area-time product”

metric can be minimized through this approach.

The design time for the fully custom approach, however, is quite lengthy. In
defense industry, this long delay from concept to tested silicon results in an hesitancy to
use fully custom designs. Program managers cannot afford to wait the several years
required to design and fabricate a custom chip. As a result, they usually elect to go with
gate arrays or an off-the-shelf product, even though it may result in performance degra-

dation.

In the academic environment, the required design time usually equates to 2-3 thesis
cvcles. A student is currently unable to take an idea from initial concept, through sys-
tem design and VLSI implementation, and see it through to fabrication and testing. Not
only does this hamper the student’s learning, but also results in a loss of expertise when
the student graduates, since whoever inherits the project must re-follow the same learn-

ing curve.

Another major difficulty with fully custom design is reliability. Many of defense
industry’s current projects have extremely high reliability requirements. For example,
the Strategic Defense Initiative (SDI) effort understandably requires extremely high relia-
bility. As the number of gates on a VLSI chip increases, the testing problem increases
exponentially. Unless careful steps are taken during the design phase (design for testabil-
ity), it can become impossible to achieve 1007¢ fault coverage. As a result, it 1s

extremely difficult to exhaustively test today's VLSI designs containing several hundred

23

[N

)
AT AR ISR e

BRI LI LI

4 5 %5
» ety
»

LY
'l
hY

«

[

(
ol

o<
42,7,
{l" .“

i
Ay iy
LAY
2 "1 %
[y
M¥ s a2 A A

Xl
%

.‘:
<L

'
.
’

L5

LA
1
R 4
™

‘
“
v

J‘

13

I'd
V'

/"j -
/l
4 _

"y
)

»
0

1
3
[

et e ow W S M e N T e s,) - = Cmgt Al Wt . -~"~
S, 'J-"J'-}-“'}_‘w“.‘-“.\a'_‘ > .- AR SN “.r,“-" J-“.-‘f"})k “ﬂ‘.’:‘f\ N

" £

o ol el el i e o

» ol ot BV A W

>

Pats
S

’

&}‘h

-
)

&5

N

thousand transistors. Their functional correctness is, therefore, difficult to verify. Addi-
tionally, even though a design may be functionally correct, the dependability of a VLSI]
chip is not established until the chip has been operationally tested over a period of time.
As a result, defense industry has been slow to embrace custom VLSI designs. This issue
of VLSI/VHSIC insertion is receiving increasing attention throughout the defense com-

munity.

3.2.2 Gate Arrays. Gate arrays are used widely by defense industry in the
design of application specific integrated circuits (ASIC). Since the fabrication masks for
these chips are already available and the fabrication process is well understood, the cost
of implementing a design using gate arrays is probably much less than a custom
approach [Wes85]. The regular structure of the gate array facilitates the use of
computer-aided design (CAD) tools to perform automated layout of the design. Thus.
the design of a circuit using gate arrays primarily involves the specification of the
boolean logic of the circuit. The implementation phase, which normally would require
the greatest investment in time, is virtually eliminated. The reliability of the design is
high (assuming accurate CAD tools), since the underlying gate array has already been
proven in other applications. Similar to custom design, however, providing 100¢ fault

coverage is extremely difficult.

The primary drawback to gate arrays is performance. The designer is highly con-
strained in the types of circuit elements he has at his disposal. For example, to imple-
ment the boolean logic of "a + bcd + d7, the designer would have to use a combination of
several "and" and “or" gates. This might prove much less efficient than a direct imple-
mentation of the same expression using custom logic The designer i also limited in the
sizing of circuit elements using gate arrays. He cannot easily increase the current drive of

24

Ao el

S o - R R I LUl TP UL I A L A U ST IR TR ST SN SR T T S .- TS PR
f e ettty B R A R R O T T, G L TV S S O
» - L) " £ . . v B > A B

“

o,
L4
4
d

LSO Y

La¥ U g o'y
5-
e

.

s
’
0
o
‘.

P

PAL

vaa
/¢

.
APV
.

..“ ’l

i
s

I A A
S '.‘.
G

..
« %)

.

e 7
5
‘f‘/"'
e

x

yry

P '.'r.":
-

LA o e

PRI

Y
p

PASAR
<,
X

®

N
e s

.
»
.

~l
IO

*w
S
N
y
.
.

."
Al

-",1. g 'l

-~
5

2L,
rJ

[174
e ;{'{

*ﬁz:}
z
AN

x = s
% %
[

a circuit component or modify the ratioing. The result of these limitations is a design

7,

oy
A
S er,

with a poor "area-time product”. Although the increased area is of concern, the dramatic

. @ :s
y A

reduction in speed of the gate array approach, as opposed to a custom design, will likely

X Y ;-
2
W

[Y
L Rl

result in unacceptable performance for high-speed applications.

I
I"I~
s
FROF

i

3.2.3 Off-the-Shelf Components. [n order to meet reliability specifications,

R |

most program engineers and managers within the defense industry are using older, pro- Yy
155 ’,;;\.-'
ven circuits in their projects. Not only has the design itself been proven reliable, but the ey
-.- - -
3 fabrication process is usually well established and better understood, resulting in higher e
¥ .1'“ LRl
: I N
yield. The cost of an off-the-shelf chip is usually low, since design costs are eliminated NN
-':\"'«.’-.‘
. . . . - NN
and the circuit is already being produced in mass quantities. Design time for the circuit W
Rt
< is eliminated, and the overall "risk" to the project is greatly reduced. RS
r LN
B AP -,
Using this approach, a project requiring a special-purpose processor will generally y
4
take a general-purpose processor which is commercially available and then customize it to rop A
-:'_J"_'.-:r:
o the particular application with an external memory store. The main problem with this NN
e ' RN
~ . .))) ,s'_-.,_’.
approach is, again, the performance of the design, which is even worse than that of gate ':;-::'d'::;.
[} ¥ |
arrays. The lack of custom hardware support and the use of external memory will result :‘:.'
o
% in speed degradation of a factor of 10 or more over a fully custom design. Y
" By
1:‘ [.:J
e
3.2.4 Semi-Custom Approach. As a compromise between a fully custom ® =
ey
N
. . . -h ha
approach and the off-the-shelf approach, a semi-custom design can provide acceptable - N
Y
RS U'\l N
:D' performance, cost, and reliability. In this approach, a general-purpose architecture is
. ®
defined, and then customized to meet project specifications. Rather than customizing RO
AN
et)
. RSSO
with an external memory store, the architecture is customized to the application via its ALy Wy
RS YL
X : . , : : -M‘f\";f
A internal microcode store. The remainder of the processor can be further modified to fit AN
. @
RS AN
'\-'--“-':'.
AR
= N
EahYGH
B
~ AP LI

‘e

e AR
\{\ “\J\:

N

i " . - . e .~y . -, . R A S S|

I I N O B T T A N N R A g A T I G A AN AL L F R ARAE AR N

b0k -3 Yt oA \AIA:ALA).L‘IAJA‘A:A‘I.CA:.A}.L‘;};..a','.n}.\.'t.f.r}.r_'.'_.fl:'." SIS IS

the application by choosing different macrocells from a cell library.

The design time for this approach is minimal compared to the design time for a
fully custom design. If the application requires no special hardware, the design merely
involves the development of the microcode. Minor architectural changes can be accom-
plished rapidly by substituting macrocells from the cell library. All macrocells are
designed to be easily modified, so that design time is minimized Using this approach,
prototype design time can be reduced from several vears to several months. The cost of
this approach will be greater than the off-the-shelf approach, but much less than the cus-

tom approach due to the reduced time investment.

The reliability of the semi-custom approach approaches that of the off-the-shelf
approach. Once the general-purpose architecture and the additional macrocells from the
cell library have been proven reliable, changing the microcode personalization or adding
cells from the library will cause little or no degradation in reliability. Design for testabil-

ity is already built into the architecture, simplifying the generation of test vectors.

The performance of this approach, however, will be significantly better than the
off-the-shelf approach for three reasons. First, the bandwidth from the on-chip micro-
code store is significantly higher than that of an off-chip memory. Transferring data
within a chip involves moving the data over shorter distances and fighting less capaci-
tance, resulting in faster data transfer and thus a higher clock rate. Additionally, storing
the control software in a microcode store eliminates the need to decode the software as it
is brought onto the chip. A normal instruction, which might be 8, 16, or 32 bits wide,
must be decoded on the chip prior to being used. In contrast, a typical microcode word
would be 60 bits wide, almost entirely decoded. Elimination of the decoding reduces the

time to perform an instruction and allows an higher clock rate.

26

-

5
o
(Lol
%

(XA

o
0
P

A %

'y
'l

Pl o
[f‘b
F
A
L))

9 Q‘
[d
%
;: 5 %
"y
47

.,

A

X
‘.j: .1:
R
‘\-I‘-

)

A

7
wx
\"

v
3
L

LL,

x
'.f
]

Py
[

FJ
7

~
7
7,
¢

"%
s
b
w7
'if
i

7

Yo

Lo
5
k)
o

s
b »
‘-:'r:\
RN

>
L, 4
3

Py

A F @
L)

a\
«;a
44
>

5\ %
.

sl

N

"

‘l

Y,
RS

«
P
&
4

L

X

rre
wA
JAXAXD
242
g
Ny
’e
."-\I

v,
LN

5

vz

/,

A

20T,
AR
Lalatnr el
)
d
. ;.;s';-. b
o'y

’l
{_:.
I}:
]

r“’ﬂ/:v‘,
>y
o
5
-
LAY

<,
22
e
o
A
27Ty
ﬁ'ff;

Ef_.
gs

1 '.
Yy

x

¥
o
'v" ;
7%
o
!
[&

-
r

[)=
T ENs,
E&

&
=%

L4

o
tll'.'
AR

.
P

o
X

A

Ly

Secondly, a semi-custom approach allows for more parallelism in the hardware If

hY

f o ¢
7
ol

:

. the software is stored off chip and decoded, the decoding restricts the means by which
the hardware can be driven. Some parallelism which the hardware might provide is not '::C::V

allowed due to the limited instruction set available. Programming the architecture with :}Q

C an o su aw o a

microcode provides much more direct control over the hardware and will allow a greater

n

poe exploitation of the hardware’s parallelism. ;
; . S
Thirdly, the semi-custom approach allows modification of the hardware to the NS

. ‘-:! P
@ specific application. For instance, if the application is I/O bound, a second I ‘'O channel YA

g C . . . :’-'.':':‘

b can be added. If the application relies heavily on division, trigonometric functions. or RSN
TN
. ’--‘_n“J:
some other operation which is not optimally supported by a general-purpose architecture, AT
]

. special hardware can be added to significantly increase performance. In order to keep :'\"r:'
N Sl
N e
- design time short, performance of this approach will be less than the fully custom A0S

o -'\-.\‘
- o
approach. A semi-custom architecture can be developed rapidly, however, usually with “"‘ -

less than a factor of two degradation in performance. ~-

0 -

.h -
e The methodology for the rapid prototyping of ASPs will use the semi-custocm archi-

tecture approach. This approach will result in a reliable product which can be rapidly ;'\'\"
) N
_ designed, with a smail decrease in performance from a fully custom design. The goal of RO

", LN
- Y
v rapid prototyping is not to produce a chip optimized for performance. Rather, prototyp- A

Ve ' —
ing is concerned with "proving the concept” and providing an approximation of the per- f-_';'f_-:
formance that can be achieved. This is significant, in light of the problems currently

.":

] being encountered in VLSI/VHSIC insertion. A primary purpose of this effort is to show

]
that a custom or semi-custom VLSI design can reliably and economically solve problems &,‘
WS

much faster than older, off-the-shelf products. A

e

R ,','_‘.-".r_‘f.::_'.f

e e P e Ta e T
SAN

R A e T R RN T

YA

g]

-

A

This approach is somewhat of a cross between the RISC and CISC approaches
which were examined in Chapter 2. Like a CISC, the ASP architecture will rely on a
microcode store. Instead of having a complex instruction set which vectors the processor
into the microcode, however, the ASP architecture will normally have almost no external
instruction set. In fact, many ASP applications may have a handshaking as simple as
"Go - Done", where the host tells the processor to begin the processing and the processor
reports when it has completed the predefined task. This "reduced” instruction set and

the simpler decoding are more typical of the RISC approach.

3.3 Architectural Specification

The ASP architecture is designed using CMOS technology, which is the predom-
inant technology in use today. As the number of transistors which can be placed on a
chip increases, power dissipation has become a more and more significant issue. Figure 1
[Sed82] shows a comparison of the speed and power requirements of popular technologies.
Its high power dissipation has made bipolar technology impractical for many VLSI appli-
cations. nMOS technology, which had been prevalent in VLSI design in recent years,
suffers the problem of static power dissipation. As a result, CMOS technology has
become more and more popular as chip complexity increases. Table 1 shows a com-

parison of CMOS to nMOS technology.

The microcoded ASP approach leads to several architectural decisions. The ASP
must obviously include a ROM to store the microcode. The control section of the ASP is
simplified from other architectures, since no instruction decoding is required. The pri-

mary architectural decisions deal with the specification of the datapath. The foilowing

sections describe the decisions which have been made.

ops

,‘-
A.ksl
':s"\?
‘e

S

~ ¥

o n
“
oY

e
<a

at sl

Y
3

e
R Y

A
LR
Y

Py

LT

UL A A

AR
N
oy
ALY

]
ss

L]
[]
<

NN S T N oo
?? SR
Yy " A

o YA
L -,,\;.’s%
.!._’-.r-u\'.s

‘2';" o
o
4
R

P4

S
4%
AN

»_r
i
oy ‘.:‘

£

»
.':-
20
Y

&2

Pl L O
£]® o
A k)

s 4

,Jl
'\lﬁl
R
4
e

X
%

LA
LY
4

e

14
‘:

S'¥"
Ve
'« %

«

o
3

'y
]
S %

\f‘.r‘:'l\-‘l‘-
P AP
%:5:; ‘-'

> [
RIS

ot
./

"
PN
't

a’

res,

. v gt _ i . UL [} » 1 LA LN L W U LW L fag v \ LR R .+ g X g Vg Y iag A TR V) gt . . T OUTU Sab Vgt .‘.‘.
;:o‘ ':' 9
S v
!.| l..‘
RN g :.l'u
7% |
2 C.Q»
'." -K'-
"’ 1-,'\-1
:‘:’ el
4y e

I Table 1. Comparison of CMOS and nMOS Technology ‘Wes85'
v';.'p ‘ \5':')
:‘:l t
3
,:-‘. Characteristic CMOS nMOS Wi
! ?
N E‘E Logic Levels Fully Restored Weak Zero :‘z)
% 8
AKS
! Transition Times Rise/Fall Equal Rise Time Slower :':»'_:
W ~Im
<, . a0
' Transmission Gates | Passes 0/1s Well Passes Weak 1; T-gate |
I :3 Cannot Drive Another :_-\...;
2N JEN T-Gate P
D - L _.}‘
» .) _ ff;
Ny Power Dissipation Almost No Static Static Power to gy
!:! Some Dynamic Power | Output O; Dynamic 2as
. Dissipation Power also o

? - . - Ny
o 75 Power Supply 1.5 - 15 Volts Fixed by Resistive N
P Ratio e
'-: "‘J‘:
Density 2 Devices/Input to 1 Device/Input b
a a Gate A
.l" Pl
ﬁ Layout Regular Less Regular A
o O e
g A
e =
9’} \.. - ~A’

. o '-‘ *
e R

11'

-
aa =
o4

-5 oy > >
D i"‘u)
£ X5

-
854
? 4

7

] e
I

e

)
A
1

5

&, 4
7

¢, %
LAL

AN
A
IRy LN Y L RN L L ST A Ll RNl I U I I N I I I I T A DR L T U I TN S R I I DO IR T R e
R e D L G ot S Ty v T R ety e Ty T TR T TR A R £ e R TRV T L AL RS

QN L

s

N

L

P 2

N

3

\'l?

> W

O A

10 ms

I ms

100 ns

Propagation delay

TTL

]
10ns S

N
NeSTTL
AN
ECL 10K
s N\
1 ns ECL;II
1 uW 10 uW 100 uW 1 mW 10 mW 100 mW

Power/Gate

Figure 1 Comparison of Speed and Power Dissipation of Various Technologies ‘Sed82,

3.3.1 Number Representation. The fundamental question which must be
addressed in datapath specification deals with the number representations which will be
supported. Of particular significance, should the hardware support floating point
numbers? The obvious answer is .uat the floating point representation is inherent in
most scientific applications and must be supported. Some applications, however, will
require only integer processing. One solution was to design two separate ASP architec-
tures, one for floating point applications and another for integer-only applications. A
floating point processor, however, must also support integer operations. Even if the data
is floating point, integers are still used for addressing and in iterative constructs. Thus,

an integer ALU must still be present on a floating point architecture. The integer-only

30

e L e At e i ek (s A RV S et AR

.'‘
;‘:‘_-
AR

.(
Z,
2o

g

\,:-
AN

AR A
L9

P S

325

P
%% S

“» B _V_" I‘.- -,
"".i";}'n W
AR
A

<
}.’fil‘-’,f g
Ly

-.; WY
A

y -

LN

'
)

O
N e T

-l ‘
)

2

¢ 5 a m s, -
'.'v. "v‘ _\. ,‘-"v..‘.
A8
Iy

AN
g

N

v

IV
I MV
TS

Y
>~.l.'

’

Tagy
)
A

Pl b by bl
b
p e
AL

™

Y

.

N T D A R

g ;"-
X o
! architecture, then, is actually a subset of the floating point chip rather than a separate :::j':
i .

\ chip. Only one ASP architecture is required, but it should be composed of a number a %

\ 5 macrocells which can be easily added/deleted to provide the required hardware. :w
: e
A 3.3.2 Width of Datapath. The ASP architecture will perform floating point f‘
i !
. \.4 operations on 32-bit IEEE Standard floating point numbers [IEE85]. This single- I

"t Rt

; precision representation should suffice for the majority of applications requiring floating ::-\.
: point computations. Applications which require integer operations, however, can vary in '_-_d::
. Q’E data width anywhere from a single bit to 64-bits. Even wider formats may require pro- ""E)
‘: " cessing using a combination of hardware and software. The width of the ASP datapath El:,::.':;
| o
j must therefore be variable. The macrocells which compose the datapath should be built f‘:'f'.i-
. ¥ in a "bit splice” manner, so that the width of the datapath can be easily modified. \:\?‘:
T RN
. 3.3.3 Number of Datapath Busses. Virtually all of the processors surveyed j’::-:
r used either a two or three bus datapath. Processors using the three bus structure use hehuhe
K D ;
‘.‘ E;. two busses to provide data to the processing elements (ALU and shifter) and the third as %‘?:-
k a result bus to return data to the register array. Two bus architectures drive the data V:ﬁ'
:. from the registers to the ALU/shifter on one clock cycle and then used one of these same

E ' busses to return the data to the registers during the next clock cycle or during a later

: phase of the same clock cycle. The architectures which used only two busses required ;’-"'S;
; either a complex clocking structure (4-phase clock) or imposed limitations upon the .:E'.EE.‘
:) microinstructions in order to deconflict bus usage. The driving motivation for the two :t’-.

&
%

bus structure seems to be an effort to reduce the pitch of the datapath by eliminating the

:'..‘-“;!,‘:!,‘?
o
LS
\-’ Pd

"

third bus. The ASP architecture will employ a three bus structure. This will simphfy the

»

L
oy L
Iy
rry

N design and eliminate restrictions upon the microcode.

s

,.- -

R
e '
el

)

L L LI
FREME
“s N
l.n.

- B ey
nd
.

~ycp - - ~pm - .t T [IV T Y [D T T T T S T S A Y N G e S L
.I I‘.‘.‘.. ! ‘..l“..\ B 0T , .“.. . ' J 5"\ . - '~*~ W }“*\ o~ ..'.\¢ ‘ * | “- " {~ ~. h *\'.‘ -"--1 v '\(' {N...'J. .. *‘ v .‘ -.

WA ATRS I N e EE R T, . " Ta T B Wy B I E_ V. Ve T T s n A CAXERAEE LA LN DBy e 1T KK

A8

o
l.‘

ra

3.3.4 I/O Path. Most applications for the ASP architecture should require a

single I/O channel. The ASP should contain enough register space to store temporary
data so that the [/O bandwidth requirement is limited. For some applications, however.
a singe I/O channel will not suffice. For example, an application requiring the manipula-
tion of large matrices would require a high I/O bandwidth. If the solution to the prob-
lem becomes I/O limited, the ASP architecture should be able to easily support a second

1/O channel.

Each I/O channel will consist of two data streams: the address stream and the data
stream. This is implemented in the ASP using a two register scheme. A memory
address register outputs the required address to the memory. A bi-directional data regis-
ter can either drive data to the memory or be loaded from mermory. These two registers
must also have access to the ALU for simple operations such as incrementing the address

register.

3.3.5 General-Purpose Registers. Most processors which have been recently
developed have either 16 or 32 general-purpese registers available. Even the RISC pro-
ject at the University of California at Berkeley, which has a large register stack, has only
32 registers available at any one time. The ASP architecture should possess enough
registers to minimize the I/O bandwidth, as discussed in the previous section. But the
number of registers must be limited both for area and speed considerations. An increase
in the number of registers results in an increased register decode time and in an increase

in the length of the datapath, which increases datapath capacitance and slows execution.

The number of registers which the ASP will employ is highly dependent upon the
application. Therefore, the register array must be built in a "bit-slice” manner. so that

only the required number of registers are provided. A convenient number of registers 1s

32

T o R Tt N R e T T
Sat g™ A R SR IRV A SISO SV PRI P TS P

-".._ -
)

[A

. . ~ w.d_-“
P e Ty T g
S INN A s A SNV

b
00K,

b4
%

[% NN DN
S
5/“):.-‘..;‘

e
f‘.f
4 %

S L L.
. [} .'.‘ '.
P A
\"‘\""u ‘s %
-l ddd il dld

YIS Yy
.l L]
L]

LS
ey
(l

,

e
A :‘

-.A...*- -
o

o
v
l"
7.7
AN

- f‘_f\:~.'\'f_;¢<.;f_ .',..:,;.r_;.',_z I A A A A L LA T AT L e e e e : LR I R

yux

"..f.—

s

2N

v

on-l. 15 31, etc. For example, if a 5-bit word is used to decode 31 registers, the other
decoding can be used to specify none of the registers. This is necessary because other
hardware, such as the 1/O path, will need to use the datapath. Therefore, it is simpler

to leave one decoding to specify that none of the general-purpose registers is selected.

3.3.6 Barrel Shifter. All of the architectures surveyed in Chapter 2 provided
a shifter in the datapath. Since a full crossbar switch is impractical (requiring n* control
signals for n bits), most processors provide a barrel shifter. There are a variety of design
options available, however, for barrel shifters. A shifter can shift uni- or bi-directionally.
The shifter can perform a circular shift or a circular shift through carry. Another option
is to perform arithmetic shifts. In arithmetic shifts, left-shifts shift in zeros into the least

significant bit. Right-shifts perform a sign extension on the most significant bit.

The type of barrel shifter used in the ASP will depend upon the computational
requirements of the application algorithm. The design of a single shifter macrocell to
perform all of the functions mentioned in the previous paragraph would be impractical.
The methodology to rapidly prototype an ASP should therefore provide several library
options for the types of shifters which might be required. The designer can then employ

a barrel shifter from the cell library which is best suited to the application.

3.3.7 Arithmetic Logic Unit. The ALU must provide logical operations.
integer arithmetic, floating point arithmetic, and possibly other operations such as tri-
gonometric functions. Most design efforts either use software or employ a co-processing
unit to provide the majority of the functions. The increased circuit density now avail-
able, however, allows these functions to be performed by on-chip hardware. As seen eur-

lier, the on-chip bandwidth for data is much higher than the bandwidth between chips

33

R A

s

R
5
5,

-
&
o
s

V)

Lol 2
.’l
J

.,;., P
4
Y

> {':’
Jl

J

oYY

ST
5,5.»‘:"';""')
LA

x
25

4N

R}
27

AT

”

“ale

‘F
-
YNy

»
*
g

Ls
i.'
[2 l(

s Al
z:.r; 3 .IJ
e

4
"

S

4~
<t (.‘
:{:.';/*1
LA

¢

Xy,
o

/‘;.' ’
'{ "
7

I'¢ -
. ‘.(‘-

.."‘.
LS’
MY

s ¥
L0 O N
R
A RAA:

$°0
P
N
L}

L]

The ASP architecture will provide needed hardware on-chip. The key, then. is to deter-

i
)

‘ mine what is "needed"” hardware.

Obviously, addition, subtraction, and logic operations on integer numbers is easily

and cheaply (in terms of area) provided. The functions will provide the ALU core for all

-

ASP applications. What other hardware is provided will depend upon an evaluation of

£,

B

the application algorithm. The algorithm must be dissected to determine what types of
operations are required and their frequency. Of special interest would be the "inner loop

operations”, which are performed iteratively during the algorithm. These operations

L2/

-~
which are used extensively should be supported with special-purpose hardware, while less
often used functions might more wisely be provided by software. For floating point

., applications, a floating point adder macrocell is a necessity. Evaluation of the algorithm

will determine if a floating point multiplier is a prudent investment of silicon. Similarly,
an integer multiplier and hardware support for division should be employed only if war-

ranted.

3
-

IS

The ALU hardware for an ASP architecture will thus vary, dependent upon the
algorithm. The ASP macrocell library, however, must provide support for the majority

of processing requirements which might be encountered. As a minimum, macrocells to

-
,I
- perform floating point addition and multiplication, and integer multiplication are
required. Additionally, hardware to support division (both integer and floating point).
- trigonometric functions, square root, and exponentials should be available. Hardware in
A
¢ K
& this second category might not actually perform the computation, but might support a -
. e
software solution to the required operation. For instance, a small lookup table contain- ,':: ‘
e
ey
ing the first 4 bits of the quotient would significantly speed up a convergence routine A
D Y

used to perform the division function.

34

‘2 L AN AP ILEEI™ CPF TP I P BT s NI AT VEEE S XKLL AR Y LA, IS K KA SE——— W R -

RS NN A NN

PRI I A I R g) BT I T IR
R SRS SA A WALV MAEN

3.3.8 Literal Insertion. The majority of datapath computations are per-
formed on data stored in the register set. Occasionally, data must be inserted from out-
side the datapath. The microcode should have the capability of injecting a literal into
the datapath, so that constants can be stored in the microcode itself. The width of the
datapath, often 32 bits or wider, precludes inserting all bits of the datapath during a sin-
gle clock cycle. This would require an extremely wide microword, which increases capaci-
tance and reduces access time of the ROM. One alternative is to store only a portion of
the constant in the microcode, loading a full constant into the datapath via a series of
insertions and shifts. If less than the full wordlength is inserted, the remaining bits in
the datapath must also be controlled. This can be accomplished using a single bit from

the ROM, which determines if the remaining bits should be driven high or pulled low.

3.3.9 Control Section. Programming the ASP architecture at the microcode
level significantly simplifies the control section, since decoding of off-chip instructions is
not required. Since all control signals are generated by the microcode ROM, processor
control is chiefly a problem of generating the proper addressing to the ROM. Figure 2

shows a block diagram of the required hardware.

The program counter provides the address to the ROM for the next microword
instruction. The next address hardware is required to provide sequential microcode exe-
cution, branch capability (conditional or unconditional), subroutine call and return. and
external address control. External address control provides the designer with the capa-
bility to directly load the next ROM address from an source outside the control section:

possibly from an instruction mapping PLA [Fre®6’, the input pads, or the datapath.

In order to maximize the clock frequency of the processor, the length of the critical

timing path must be minimized. During each clock cycle, the program counter must

35

TNV ST,
LR RE R R "
AT Mg

EhERLY W
Sy N
®
,:.'r \;.-:.':r
A ATAS
AN
YR
AN
'._"’_\:t'. TN
“e)‘- ,\ ',‘\

®
Fa ' A
A

N >
-‘;\(\ \i
«n .
Fala
\r\"o*'!'\ J
e
MRy
. g ®
‘] }‘”‘\ ~, " |
."\"'x*'. '.".‘."\"\
AR LCOE RN O
A A NN N
AT HLSARL VAN
L \-I_ ﬂ...l",\-‘\f\f\
N D R

FAFATNAT 2SS
N SLNDEIAN
b 0% WS
-.v A] .' Y v
N AT NI
.
PO R N,
AT A NN AP ATAE,!
PSS
NN
o e LAy
"\ >] '\ & L,
PSS EH

v s

et
.
[y

Y
@y,
|

SRR

WA Y]
o)
,

WAL LT
o AP
n
:\i‘

o
’;

AT

Y

.
'
N

P

..
LA
.

WAL YA

®,

]
s
“a
P
2
.
i

o .t _
PR t.:'}.’,
g
P
>

b ® ;.',
0y
>
|™,
x

P
4,

1

b
(O A4

~‘
[N
S
%

L
AL
':' P
[o
5
:l:":"al'- 4,
P ok Y ¥ A
LYENN
P A A
I gh
P

_'i";g
7
‘I

L,
[J
{
.
»
[

k3
s

A
SerR
SAree
DN
(Y
g

hY

0
’
"’a;f
<
s
E%

b
>

[
‘_\
k)

-

o

e - e > m - -

-

3

<
L 9

i
¢

2S5 h

o,

Control Signals to Datapath Address
Control
Fields

XROM

Address
from

Datapath

Microcode Sequencer

Flags

Figure 2. ASP Control Section

provide the address to the ROM, which, after its access time, will produce the required
control signals. These signals must be driven to the datapath, at which time the actual
processing can begin. The critical timing path through the chip is from program counter
providing the correct addresses until all computation has been completed. This critical
timing path can be broken, however, by the use of "pipelining”. Using pipelining, the
results of one stage of the pipeline is transferred to the next stage of the pipeline. to be
operated upon during the subsequent clock cycle. When applied to the control section of
the ASP architecture, the fetching of control signals from the ROM is accomplished on

the clock cycle prior to these signals actually being used. The control signals from the

36

L

Wy, S N N N I e e R R i A I T e A I N I NN
1% Pt s G G G Ay N, 0, T R S I R (A A TR WL, Ot

AR AL, T
Lo Dup o} .AL-A}_A‘.L}.A‘.'_:).A)

A
Yy 4 B
A

':I
L

7

'’
7’

-
[l
."-'-\

(.‘.-','.‘-‘-'b'

B
L hA

.P' ("f

S

-

P
1]

"'y

.' I ‘(l

v

S AERRAN

SR NN ety
p e R

AR
> ®
L N

-pe.-

IS
.

»

ROM are stored in a pipeline register until the next clock cycle. In this manner, the
datapath is operating on control signals fetched during the preceding clock cycle, while
the control section is simultaneously generating the next set of control signals. Figure 3

shows the ASP control section with the pipeline register added.

Control Signals to Datapath

%%

e
&

Address
XROM Control
Fields
Address
from
Datapath

Figure 3. ASP Control Section with Pipeline Register

37

'u'*‘\."r‘b;_\;r\".,'\"

» ®
L S P
- "JC‘..-:.-:.'*:‘J
N AT
A A
A J,-..'_\ RS
ey . La ."_-n

- \!.

BN R
e W e
:PNU'Q'\-‘

R .:a:‘.({;:

N
.'.:_\.i-. _"-::\:\':
SN LRI
A A
DSOSy
RSN
TATAT AT AN A

«
'

L,

%
.‘l
s, ¢
e
g
v

(]

g
442
L

?
1 s
D
L
4
‘
GG ENS

~
r

l:./

[y
Tr

2
PR RN

‘:"7 Y

27
7
T

”

sl

%

.,.,,
Pl
e
<
Ty
e

4
)

kR R RN
L4

v
A
S 4w

A
P
2, s
XA
/.'v‘ 5-
[35 Sl B BN

o
|

AN
eNNL G
O "f:',‘c;"«"f“
-R ALATY
BLAR LAY

e

- - e e

L -

2 a s 8 & AD

S

x|

LI 2 e

~ac
‘r’v’-'

{ -'l‘ "l'.

»

e

R 82 had haa Rkl i Vo0 h At ' a'h e B 24 2tk avh ats ath et atistall o > da» at - 4 U

A pipelined control section has the following advantages:

1) It allows the majority of the clock cycle for operations specified by the control
word. If a pipeline register is not present, operations cannot begin with the control
word until it has been read from the ROM. This ROM access would require nearly as

much time as the computations themselves.

With the pipelined apprcach, the word which was accessed from the ROM during the
previous clock cycle is driven to the rest of the chip on the leading edge the new clock
cycle (rising edge of PQ1). All required computations have from the rise of PQI until
the data is latched back into the registers (on falling edge of PQ2) to complete. This

allows all but 2-3 nanoseconds of the clock cycle for operations.

2) The pipelined approach removes components off of the critical timing path.
Without a pipelined approach, other components cannot begin executing until after
the ROM has been accessed. Thus, the length of the clock cycle is set by the access
time of the ROM plus the time for the slowest other components to perform their
functions. With the pipeline register, components such as the next address hardware,
which might otherwise be on the critical path, are removed from the critical path.

Thus, they can be designed simpler, smaller, and more reliably.

3) The pipelined approach provides buflering for the control signals coming out of
the ROM. The AFIT XROM is designed to precharge during PQ1l. During PQI. all
bit lines in the XROM are driven high. Since the outputs of the XROM may be
inverted by sign bits, the control signals coming out of the XROM will be random in
value during precharge. After PQI falls, the selected bit lines will begin to be pulled

down and the outputs of the NROM will settle to their correct value. THowever.

38

.n el I o e A e et N W S S oL I SRR N A VR O e LA
Pl ol sale ufl ALY T 2 . . &) N A 3al A Bal 3

o
L

i .

L]
[]

1511

%

[4

.
]

i
Lk
e

2 X

e
o
Y

i

LY
LA

[d

oW A

APy
a

}1::(1(.‘ N

- L
hY

-I:‘_: hY '\-'_
ryNa

RN >

..l .l
S A
e

BN

Cd

"-

N \j-.
~

)
A

: during this access time the control signals are in a unknown state and should not be
! : driven to the rest of the chip.

: A pipeline register solves this problem. It latches the value of the XROM outputs on
E the falling edge of PQ2, after these outputs are valid. During the next clock cycle.
: G these valid outputs are driven to the chip. The lack of buffering on previous VLSI

-

designs at AFIT has resulted in problems during testing of the fabricated chips

! [Freg6).

. vt
D E 4) A pipelined control section allows for a higher clock rate. As already seen, the S
TaRL AN
N NS
clock cycle for a non-pipelined architecture is determined by the ROM access time N
1, 'l.\f\
' o
plus the time to perform the required operations. With a pipelined approach, the -
N e
. ’E. length of the clock cycle is the maximum of the ROM access time or the execution A
L 'J.'_-.'
‘ . . « - . .’N'..'
! time of the control signals. For the ASP architecture, the ROM access time will nor- NN,
N
. mally be slightly shorter (dependent upon the size of the ROM) than the execution TG
] AT
3 s,
' 0-: time of the datapath. Thus, the datapath execution time will impose the limiting A
e A
) factcr upon the ASP architecture’s clocking frequency. NN
' R
5) The pipeline register can provide testability to the design. The pipeline register 1:-',_
T e
4 G
“ can be designed to act as a shift register during testing. In the test mode, the con- NI
; v
tents of the shift register can be shifted out to provide observability of the XROM =]
h A
: outputs. Additionally, new control values can be shifted in, providing controllability .\;\
! &3 '\:
O to the design. b
(
N S I
N The use of a pipeline register is not without its disadvantages. The disadvantages HASSY
'.r":r-\.-'
BASASA
and problems associated with the pipelined approach are highlighted below: :.'\-',:'_’,:
R AN
[
i 1) The pipeline register requires additional hardware. Although the hardware :\;:':\5
RSASAN
, i
‘ i R
: AN
- At
4
= TN
P
U s SN
R A e R e s D S T

- e B as =

- g dasi N

[

s |

Ve

2

<

-
LY

ENA

7

L4

T ™ 00" 0" 00’ hat SaB PR 0 0 Aan' 000 Aok Lol Reg o0 0 LoR Log Sob Sof o), STRRURTRT RN A B R N AU AL ALY VN

required is fairly simple, the pipeline register requires the storage of each output bit
of the ROM. Thus the pipeline register will run che entire length of the ROM above

the sense amps, adding to the effective height of the ROM.

2) The pipeline register requires extra microcode support. During sequential micro-
code execution the only penalty imposed by the pipeline register is the extra clock
cycle to fill the register. For non- sequential execution, however, the pipeline register

requires special handling within the microcode.

When the microcode branch logic encounters a jump instruction, it is operating on
control signals which were fetched from the ROM during the previous clock cycle.
The ROM has already fetched the next sequential instruction, which would normally

not be executed if a branch occurs. This problem can be handled in various ways.

The hardware approach would be to prevent execution of the next instruction by
somehow clearing the pipeline register during the next clock cycle, effectively "flush-
ing” the pipeline each time a branch instruction is executed. This would require addi-
tional hardware, and, probably more importantly, would waste a clock cycle each

time a jump is required.

A better approach is to handle the branching problem with the microcode. If the
instruction following the branch is a NOP or some "don’t care” instruction, this
instruction can be executed without causing any side effects. Better yet, the branch
instruction can be put into the microcode one instruction prior to the point where the
designer wishes for the branch to occur. Thus, the instruction which follows the

branch will be executed "on the fly" since it will already be in the pipeline, thus pro-

ducing no wasted clock cycles. Studies at Stanford [Hen84, have shown that micro-

A

2
<

g

-
)

PR
Sy
¢ 2
F Ay Ry S5 N

R0
ﬁ‘v'
,.,1"

£
& 4

Wy

L3

)
S
LN G

(A AP
,"I' ,,l:"l
f'J'YJ?-’ td

| I S

F 4

5
%

E R
»
‘
'S

AL LA
'}I ’

4
FLARAN

[
5'a,

(oY
::'..a' A
"L’L’l!‘h"-d.

f.:f'
’l

»

'll

X
A
]

i
ﬁ‘."

P

Y w ™
7

- e
it e ey

t
l

.I .l
p
A

AN
.
PR

Tahn
[

N W

o, |

'-.{.., 3

Lol

N

‘e

-I:.'::;.-"E
code can be manipulated such that the pipelined approach will typically result in less f':.,:.
T
than a 5% increase in size of the code. AN

3) The pipeline register results in a delayed response to external control signals. If
the ASP is looping, waiting for an external signal, the arrival of the external signal
may occur during the execution of the loop instruction or during the "don't care”

instruction which follows it. Thus, the ASP may require either one or two clock

cycles to begin its response to the external signal.

- A [
ML
O

i
o
Wl

The ASP architecture will employ a pipelined control section.

-

T S LS
2t
Ll

%‘:

3.4 Conclusion

el
A, f:‘
ales

s

This chapter has provided an analysis of the architectural requirements of the ASP

-.' [
A
AT T
P
AN

4

architecture and examined various solutions to the problem. A semi-custom approach,

Fer
(AR

Sy y

which is customized by microcode, was chosen as the proper approach for the ASP archi-

N

tecture. The architecture of the ASP was then specified at the macrocell level. This
architecture can be easily modified to solve a wide range of algorithmic-type applications.
The next chapter will describe the VLSI design of the macrocells required to meet the

given specifications.

n..; :

h]

'.';.'"'/.
XA As
LA

LI A

N
)
‘o

[

’ﬁ‘\
-y

s L

1~
sy
ratd

. "' a5
.

41

« s e
5,5, 0
LAANY

-

]
L4
-

D N LI R I A -
TN R SRR AN

e

2 & a

h 0N

&

CHAPTER 4

VLSI Architectural Design

4.1 Introduction

This chapter describes the VLSI design of the m:;crocells for the application specific
processor architecture. As described in the previous chapter, the actual hardware that
will be employed for a particular application is dependent upon the problem algorithm.
Therefore, the VLSI design of the ASP architecture centers upon the design of a library
of macrocells which can be easily assembled to provide the required hardware. The ASP
architecture (Figure 4) is comprised of two major sections: the control section, which gen-
erates the necessary control signals, and the datapath, which performs the data process-
ing. Due to the ASP architecture’s pipelined control section, the datapath operates in
response to control signals fetched during the previous clock cycle. This chapter

describes the VLSI design of the control section and datapath.

4.2 ASP Control Section

The control section of the ASP architecture is responsible for generating the control
signals to drive the datapath computations. Unlike the control sections of most proces-
sors, which are primarily involved with decoding an instruction which is received from
off-chip, the ASP control section derives its control signals directly from an on-chip
ROM. Since the outputs of the ROM do not require decoding, the primary job of the

ASP control section is to provide the correct addressing to the ROM so that the proper

control signals are generated. Figure 5 shows the primary functional blocks of the ASP

v
g

[
e

Y S
7,

VX o

[N

v T

P]

LAY
s
L4

2N
K29
AL

'.I..'.'Q,-/-l' g
X

il B

e

4

o i 3

' %

PR A
. %,
*:‘ Il'd' L
LYY .S

)
o
Ay

i
Ay

)
h,.
.
E«.
Y
Lgts

-".n". |
[]
:' v
¥ L A

P
]

.
AP
L
R R W NS

3‘
_p

say

‘l
h AN
x
55

»

.. .:
5

L]

1 3
W s
TN AP
SASNSNY,
VARANAEY

’
2

s
\)'

P
-~

<

AN

,'.
[
[

|
i

YLl A
[%'t o]
'{Zf{aés

(A4
P

L4
’ »
b J

X
.
g
7
P X

!
]
,'A'_

7

%%
I
b

o

e

vs 8

g

o n.
. 2

»

Ay

Sk

»y
1

R‘

"-ﬁv v

(5

Registers | Shifter

I Pipeline Reg I

XROM

Microcode Sequencer

Control Section

Figure 4. Major Sections of ASP Architecture

control section. Central is the AFIT XROM, which stores the control signals. The pipe-
line register, which receives the XROM'’s outputs, is responsible for delaying them for one
clock cycle. The next address hardware, or microprogram sequencer, is responsible for

providing the address to the XROM. Each of these macrocells will be examined in detail.

43

e M- T T TN U R
._-".‘f '_‘-r.'-'...\.r_ I\I‘\ﬁ \._!.-‘.N:_'. N .r\,‘- T _‘.r__,_ _-\, o .r AT

-I"J" ~ \-_

",
N

i
s

o r
'-"{

_T
J”i;ﬂ?
Sy L gy
NN

X7
>
S

o

o
s, './'- ..S
e

RIS
%“‘. S

v, .._.»}-
s
AR TEN

" % Yy

M A
LA n"!"v.

» \1"1 L
AR AR

(P S g s

7’
g

L]
ML

Rt
2SN -

s a)ay
XY

s

;

& & 4
'S
R

AY

(A
5 A

222

L
,

S84 %
ccedd
=)

AT S N o

Control Signals to Datapath

oY T
o

AN YN
II:-

L'y

70
>)
|]

o
IS % &

g
oy %
/

L

“> :'{‘)
X

Pipeline Register

)
“»

L
A4

[
5 A

S50
5
s

b
)

-{-
s
IS
L
‘..l
D 4

5 &

1

“ 4
O

AL,
L]
555

e Tk P
g

IJ

-
1]

h v
s

Address b
Control
Fields

Address
from

Datapath

Microcode Sequencer

Flags

Figure 5. ASP Control Section

4.2.1 ASP XROM. The design for the AFIT XROM (Figure 6) was first
presented by Captain Paul Rossbach [Ros85]. Since the XROM was designed to be used
in high-speed processors, it was designed for access times of less than 50 ns. The NROM
was also designed to facilitate automatic silicon compilation. The address decoders are
responsible for decoding the input address and selecting one of the horizontal wordlines

to go high. The presence or absence of transistors along this wordline determines

44

LY

K

B A T P A S R R S N b

~
S LN L |

whether the corresponding output bit for the selected word will be high or low.

Figure 7 shows a close-up of the hasic XROM storage cell. Note the "X- shape”
from which the XROM derived its name. Depending upon AO, the least significant bit of
the address, either the AO or AObar line will be pulled to ground and the other will be
charged to 5 volts. When the selected wordline is raised to 5 volts, the gates of transis-
tors along that wordline are activated, allowing the bitline to discharge through the
transistor to either the AO or AObar line, depending upon which is set to ground. Thus,
the presence of a transistor in a given location will allow the bitline to be pulled low,
indicating that this bit is high for the particular address selected. Note that in the case
in which transistors connect to both the AO and ACbar line, "fighting” will occur on the
bitline and it will settle to a voltage slightly less than 2.5 volts. This causes no difficulty,
however, because the senseamp circuitry is designed to "sense"” a low voltage for any vol-

tage below 4 volts.

Captain Rossbach also developed the initial version of an optimizing silicon com-
piler for the XROM [Ros85, Ros87]. The compiler was later refined by Captain Linder-
man and this author. This tool provides automatic layout of the main XROM array.
The optimizer inputs a file which contains an integer representation of the binary values
that are to be stored in the XROM. Output of the optimizer is a set of 12 files which

describe the XROM in a Caesar format.

In addition to automatic layout, the XROM Optimizer attempts to minimize the
transistor count and the number of drains in the main storage arrays [Ros87". This dev-
Ice minimization serves to increase reliability and to reduce power dissipation and access
time. The primary vehicle for reducing the transistor count is the use of row and column

sign bits. If any given word in the XROM contains more 'I's than '0's, a row sign bit

45

A

L
P

*
g4
Ry
-
-
S
»

. A.t}j‘:.
o

ANNE NS

v'e

VA

v
)

]
v
{a

L L4

MM

L]
NN

i+ L

AR

L- P 4
f)
LYy PR X

P e e >e z
a..&.ﬂ... NN 0 R AN BT A AN ..xa
LAXARALL PR

Al

BIIy UIRJA

_ .._. v _
St B S G BRC S A ,,a....“”n .zww....s........
e :...:A..:

5% 5 -.Ffffff.(f'f,.. SaSLE el F(A'

IEEEEE

sdury osuag

siug mding

_ [.~ —— —— ——— - m W

[= TN, A R

SI9POI3(

$SQIPPV

SAN!

e I
| 2 7 BN XA

72 b ‘
I 2R PR AR

191Uno))
weidoid
woi,

SSIIPPY

AFIT XROM

Figure 6.

46

TRT TR
. ‘-'-."r P

Shaia

..
-
'»

.

T T AT At Etate A
.“-'_f_\r\ac AT ST

DL AT AR

i

PP LA A P NP L

"
)

Ty

(£

e

EX A

73

A L R, S

. ‘1'

Bit Line

Precharge

o

Word Lines

A0 AObar

Figure 7. XROM Storage Cell

can be employed to indicate that the entire row is inverted. Thus, the polarity of the
row is reversed and there will be less '1's than ’0’s. Likewise, column sign bits are used
to ensure that all columns will contain less than 509% transistors. If none of the four
transistors which form the "X" are present, the drain which forms the junction of these
transistors can be removed. By reordering of rows and columns, the number of unneeded
drains was maximized. In the case of a 54K XROM developed for the WFT16 effort, the
optimizer was able to achieve a 44% reduction in transistor count and a 51¢ reduction

47

s

Ve
L]

7 7’ 8
\)'b
h]
¢ &
v

b
i
g

UL
> l&:.:
SAN
" ‘e »

e
MNCTS
LA
ESROA
Il

h]
l(‘l‘

.‘l’l:l
s 'l.“l 5“"

(o
"
7

%

a4
LT

i

2t
P
24

2
[N
.

i
y 2
PN
o

2

7
51@
77

)
]

AR

TLALAL S

e
LG

relrll
25N

2hd
o
7o

LS
Y%

ﬁ“.'ﬁ
Y

PR RS
A
XN,

P XA
‘1

&
o
lﬁ
PRd

A® b
|

7

I

v
B
x

Y]
> 2
v

2

L4
D

NN
L S
A

(A4
"

»

% 5

UL &)
Ilsf
o+

S Tetarar
e
e

"
P

o
-

L
~
~

S

in number of drains Ros87’. :

. Since this tool was developed, AFIT and a majority of other institutions are now
using the Magic layout tool for VLSI design, as opposed to Caesar. As part of this effort, S
the layout portion of the XROM Optimizer was modified to output the XROM descrip- L

tion in the Magic format. Additionally, the layout program was extended. so that all ,

" .':'.')

. e
Wl S

1
1

required XROM subcells are now placed. Further extension is still possible, such that the

e
s e

pipeline register cells are placed and the control bus is automatically "personalized” to the

.
e e

particular column ordering.

X3

7
lﬁ‘.
s
L+,

-
XA
A

L

To generate a custom XROM, the Optimizer must be run on the desired data to be

‘.'"“"l
P g

»
¥

[2%

stored. In addition to the Magic files produced by the Optimizer, cells from the XROM

R Sl
(X7
s

/

. library must be included. Due to possible timestamp differences in the cells, Magic may

v

‘I
e
Ay
v

o
2

want to design-rule check (DRC) the entire XROM. Additionally, Magic tends to be

4
LR, LS

“r s
"f I'd
'y

\
b
&
5

quite slow when handling a cell hierarchy as laid out by the Optimizer. Magic's perfor-

t

mance can be significantly improved by flattening the cell hierarchy in the main XROM

‘
2-\
4 array.

For a further description of the AFIT XROM design, sec Ros85' and 'Ros87".

‘; 4.2.2 ASP Pipeline Register. The pipeline register is designed to sit atop the
XROM, buffering between the senseamp outputs and the remainder of the RISC chip.
The current XROM design places the senseamps 52 lambda apart, setting the maximum
width of the pipeline cell at 56 lambda (allowing for a 4 lambda overlap of power lines).

The pipeline register then becomes simply an array of pipeline cells, one cell immediately

above each of the XROM's senseamps (Figure 8).

’
o\

48

@ W FTET "3 JJ VW ¥ T MBS Y. T.2".T s VTHEE "B BT R T ¥ §F 4 B AT W W W W W ISl § m . TaTTe W WY omssESFSeSsEY—_m——e———, e
. . & e .
Shats

O A Y NN A g

a0 i AN
AN Al oy e

T
1" 4 '.'7.,',"

Pipeline
Cell

Control Signals to Chip

Pipeline
Cell

Pipeline
Cell

Pipeline
Cell

Pipeline

Cell

Bitlines from Main XROM Array

Figure 8.

Pipeline Register

The design of the pipeline register cell is simple. The pipeline register must merely

latch the control word while it is valid and then drive it to the rest of the chip on the

next clock cycle. This can be accomplished using a master-slave flip-flop (MSFF). as

shown in Figure 9. The output of the MSFF is staged up through inverters to provide

the current drive to send the control signals across the chip. The initial design of the

pipeline register called for resetting the register during chip reset. This, however. 15 not

necessary and was not implemented. Resetting the register to 0 would not insure that all

control signals were being deactivated, since some are active low. Additionally. even if

Ca ™y
(PGP P

-’

P Y N

- ,l‘,a . . .

T

B A A

-

-

~

19

e * e .

RN

L,y v e -

D

. B S
W AN ENENE GRS GOV IS RS

« -

NS, T

A

SR T

.“.._-- AT
e

.) -
ORI AL

'll;'.".‘;-l';:l;:;(\J
| N '
i

NAaNN

o .\"\.

-
]

l"(I’
Lyl
I’ s

'

NN AN
w AR
PO RN

q
oo

.'
A‘.'v‘ -~
<’

bR

R d
L]

S

oL,

(AR

the register is reset, the XROM will fetch another invalid control word during the cycle
after reset (during this bad clock cycle, the program counter will be reset to zero. and
will provide valid signais from then on). Thus, resetting the pipeline register would be
meaningless. The invalid control word will cause no problem to the chip, since during

chip reset, the chip is storing no data which can be lost by the bad control word.

4.2.3 Microprogram Sequencer. The microprogram sequencer is responsible
for providing addressing for the XROM control word. The sequencer hardware for the
ASP architecture was adapted from a macrocell designed by Lt. French for the CAM
RISC [Fre86]. The design is based on the microprogram sequencer described by Mano in
[Man82].

Figure 10 shows a block diagram of the ASP microprogram sequencer. The design
is centered around the program counter, which contains the actual address which will be
driven to the XROM. The remainder of the functional blocks are responsible for loading

the program counter with the proper address for correct program execution.

As shown in Figure 11, the next address to be loaded into the program counter can

come from one of four lecations:

PQ2 PQl

From To
XROM Chip
Senseamps

12bar Philbar

Figure 9. Pipeline Register Cell

P TR
LYY TN

[y

N R

o5
l‘l_‘
P

L]
]

7,

h
hY

‘.:-1’ "
54
XA
L

v

x

.
2
»

a
.

Y

<
v,

e e
+ "J'I
)

. s
L I

LA LN
l- Py

)

LA A
'.“,' &

o
22,

Sl . ..

e .,
FURRY

']

L g
(AL 4

.
’y

‘v
2

b Y

2

A Ny

CRNRESS
rur«. o \f\..\. L
0

P

LN ik
..... S WS

redeie oL,

ATy P Jo Y X ML AN
o A) \\\ (Y
' ® ”...‘....x,....”xf\r..w.s.. Sl

..»-.a.!- f..-c.fn. 2, -..\-\

A4
Ch NREuNSS

! P s
....\\.f..fﬁ\)...w\v\f.. .
2 IIA

e iy, X

PR A

st AP A)

IWOUX

[onuo)
SSAIPPY

HONI

J4INNOD
NVYDOUd

JAOVILS
ddNSs

A

Y

XAON T -t
SSHYAAV

PIRTd
SSAIPPY

sud
puo)

01307
youeig

% A

[euloxg

Microprogram Sequencer

Figure 10.

51

N '.},'
WIS ANENE TN,

PSS

Ce s
WAREL LGP

e S N
RIS IN I AN

AT

ki

“© g Ao B Ao gt Yabocap oy 4og vag Vo *af ¥ - Bep'S 8.8 5, A8 00 4.0 00" .4 '0 2" v aTh ath'ots -nis oUa o iabala - Jiat gat et bat o lal o Y

1. The incremented contents of the program counter. Loading this value into the

program counter provides sequential program execution.

2. The contents of the subroutine stack. This option equates to a return from sub-
routine.

3. The contents of the XROM Literal/Address field. Loading this field provides pro-
gram branching capability.

4. The contents of the external address bus. Loading this value allows direct
branching to a XROM memory location specified outside the control section. The
external address bus can be connected to the datapath to allow branching to a loca-

tion specified by a register or to the chips input pads, so that the system can directly

control addressing of the XROM.

4.2.3.1 Micro-Program Counter. The micro-program counter provides
addressing to the XROM decoders. The number of bits, or width, of the program
counter (n) is determined by the number of words in the XROM (u), such that: w <2".
Therefore, an XROM with 1K words would require a 10-bit program counter. The
design a single bit of the program counter is shown in Figure 12. The cell is basically a
MSFF which can be loaded from the address multiplexer, the output of the incrementer,
or be reset. The reset line is connected to chip reset, so that the program counter will
start up with a deterministic value. Similar to the pipeline register seen earlier, the pro-
gram counter drives on PQI and latches (loads) on PQ2. The microcode sequencer was
designed so that the width of the program counter can be easily modified by merely

adding or deleting the subcells which form the individual bits.

41
[

g g s e s LA S WS A SR A

v
X
'r%‘.‘:.
(A 0

s
VA

- - - - - -
A,
A AL IS
LS AT .‘.\ ‘
AR R
AT
P A
[Nl Sl S R S
F A NN
AR YA A
-.‘, ~ \f*._,\'
- ‘ =-,
% W T YN
\‘\"\'.\{L{\
AR PR Y
SR O
PR A A
o e R
LN A
SIS AN
A
SN *\ A
L9 a"n”n au!

~
A
o

SN A

LY

XROM Address
Address from
Increment Field Datapath

LUK
PN
SIS

£,

o

PR RN
LS A
P A Al
I

ADDRESS
MULTIPLEXER

AN 5
P4
4 %

(X4
g

l('l
LN

'\.'v'_‘- AN *
e
I'l
FRARAARS

3

To Program Counter

Figure 11. Sources of Sequencer Next Address

.."i’.‘.’.l".l‘ .I‘ N

To XROM

Phi2bar Philbar

Figure 12. Program Counter Cell

4.2.3.2 Incrementer. Obviously, the incrementer is responsible for computing

the value of the program counter plus one. Since the equation for an incrementer is

2Ll

. - - - - - » - - - - - - - - - - - - - - - » . - - -
o .;.r I o P 4 .r .r'.r,"‘.r P .r',\'u-_ .r\.;_‘.,\'.r____.r\ .r\.__.‘.r J

oy

T I Il T S R TTy y Y T Y TIT TIRR R NR o -
RS SARREANRNV Y X A X B A A sNx:\M\MM i me..ruwsﬂs.“uvnﬂ
DAY X S e RSSO O S A)

EACAE I i -..-\-- i .u f-.- -.n-.-.»-. PR, PP AP

C Yy PR IO S YRY MR E IAANSPHE N A o

.N..x..x..\..\w_mff. r\ Y, .,\‘....,... AN ..\Hu. ,..-'x.«\f\.... Y i 2 \M

Ry eV T SR I IR DN R el L S O |
Y ok xawﬂ\.m.._ ...W“x.\. O BN OO \.\.“sws.“s“n...a.n 20002, \\r“h, % .
e O, A UL LS P A A A S e X e

n : s "
— o ~
' Land m =
) n
3 t 5L
=3 - :
@ R
= TR -
- =] i =] =
=& e T [
3 - 3 i = — O g
- W =% o B 3
= o = -— v
[o % o~ (=} = <
= w0 = o >
= b = 5
2 - 5 .
- (%) m @ = mw WJ e v
o - N [.
. & T 5 5 o N = o %
~=] O) o I - ! o pat .
— A — rﬁlv. o] =] o n e
e = bt o O ~ -
-) < ¥ e
I - g = g g O w Y &
=] = by o s 2 = 2 m = .
= <= -t 5] 5 = S = g < '
o o, I O Q i o g m M — 5 = mlv m
e m A . — < = © o o v — ..-
I = = = o e Q3 —— (@] < "
a » O Q — = b — =
/mv\ B [__ 2 ..naub o - g A — - oY
-+ 0 m — « w = r@. 5 o P . v o
o 22 ...m 4 .o Fe) Pact — S ™ e
n < o ' = ~ % 1m 0 — o)
< © N Q £ had -0 & P @ .
—_ ' o] b ey = Y b .
= @ > o gel .m 5 =] a. u =] "
o A ~— w - = m m m > % S
+ |w = O g Mv Sl =} @ o — m % .
2 — o . =2 - v} .
R t E & 4 & 3 3 = .
g 3 o = 2 o = 7 o 1, v
bt m a £ o0 " :
= [I~ (&5 - 4] A
. 0 e m [3 e .
8 (O % o =g 3 4 = — y >
e S © m £ N 5o ~] E ‘
Mw n = — = .Mm = 9] rnl.v = e = .v.
3] - =
a g b e < - e Y = @ Q5 7 ~
‘&0 m Q] = w Ry o hd =] L —— e N O f———- ’
& 3 = <« T 2 0w ¢ = 8 =3 .
o = 2
5 S __ 5 » % S % <g .
I g [= B g 4 3 — g
(%] > = Q = [N
. [v [+] .=} o o
3] = o g b £ © = @ ’
El 3 o = < < © 0 @ w K
N = = on O o ® 3 = .
Q o m pey o 7 - B
0] - .
£ M,. = Q - w -
@ 3] n N
L S = 3 "
el —t = . — 5
=y (3] T wn m bl -~

RS LRy

Sum = A xor Cin °

SR
.

v
")
o

1.‘.
‘o,
.

z

s
o
2725

:Q;.l;'

’l
s

Carry out = A Cin N

®

&

[)
bw o
Carry_out :‘7 E{’;.; X

v »

—
v
P
®
s
L

s
v s g
B 4
. i

Ve
e
E&_;(" '
P NS
[Tl
2

'
.A ‘s

[t Wy Y
v

«:_.
.‘A,ll

Y
.l
v

;Z;l’f
e

LR
Lol NS
- AT
oq ;; Cin o
p—— \:_\
q o
~

i

_‘__
vy a
P X
i
e,
- f‘fj‘f f? ®
A
l. 'y

{' L]

”

7
y

1

“I

2y
ol
»
e
,l e
'f.:.'
Pd

Sum Out

s
1[5

L
bY
"
’
.l

)

L/

Figure 14. Half Adder

Sum = A xor C = A xor 1 = Abar

Carry = AC=A

Thus, only a single inverter is required to implement the LSB of the incrementer.

4.2.3.3 Address Multiplexer. As seen earlier, the input to the program
counter can come from one of four sources. Since the design of the program counter
itself allows the increment option to be loaded directly into the program counter. a
means is required for selecting which of the other three options should be made available
to the program counter. This is accomplished through the 4:1 address multiplexer
Although only three of the inputs of the 4:1 mux are actually required, the fourth input

is provided to allow for future expansion of the microcode sequencer and to maintain

-\'

~
1]
N

‘2
g N

55

P

x 0
s

R T S S R IR P T I) .- . - LA AL
~f‘-“\ "} .u'\f\’f‘f .J‘\-'» g e ot «fa W -,.-I' N ‘-.'

))

>

vy
]

P

compatibility with the multiplexers in the condition multiplexer. Figure 15 shows the :1

multiplexer as designed by Lt. French.

4.2.3.4 Subroutine Stack. The subroutine stack is essential to the implemen-
tation of subroutine calls and returns. During subroutine calls, the contents of the pro-
gram counter plus one (i.e. the output of the incrementer) must be "pushed” onto the
last-in first-out (LIFO) stack. Conversely, when a return from subroutine is required. the
top of the subroutine stack should be "popped” and loaded into the program counter.
The width of the subroutine stack is determined by the width of the program counter.
The depth of the stack will vary between various ASP implementations. The depth is
determined by evaluating the target algorithm and determining the number of levels of

nested subroutines required.

= DK
Cl1
- >o>o—
To
ma— >k o
o D

Figure 15. 4.1 Multiplexer

e
f.'(‘
['4 { A

‘,
’

.
!

-
-

*n
»

7’ 7

@ U

";.','
LA

4

K

) »
gy
P A
2, '.,'-f&,\'n
AARNAR]
b Bl ol ol Bn

S

x\(
AN

g

.

RN
A
SRR A
LAP AR |

LYWy
St

%
4
L

Ca s o 000
2
&'r'v K

.

W
A

NS

Ry Sl
S *.:-;-.;;. ORRAY
.‘\(‘:’sl ‘: I\
- {_4’ Pl ALy
Dl

[
&
7,

*x \.'
N
&}‘.

Ah,

s
4 &
a

224
X

)
.

s
OV

AP I
o 4y
'i,‘-,.- ".
»_8
.";*J‘J. _

g f;c' L
(

Y
fl
A

L}
I
5‘-

¢
L

5

i
Y
..\
-
R
-

L U LA U U U U U U DR U LR LR U TR A AT AN R T AV TR AN AT R R AW A8 Vol ol Nop "o V.0 "af Yal G0 0 Aol ta Sl bt ta a2k b ad "al. ‘al.'al ‘ad b ‘sl ot Tav *

5
h o]
< I\I_‘I"I.‘

Figure 16 shows the desigi of the address stack. The "push"” signal allows data to

A

-'
F A0

YLy

h
f'vfs -

transfer between the MSFFs, moving deeper into the stack. Correspondingly. the "pop”

11

s

causes the data to move toward the address bus. Twelve columns of MSFFs provide

R
)
%

s
W

s

%
lﬁ.
v

storage of the addresses. Although not required by most implementations. an extra

‘\:\ - "W
oy

N

5;-

v Jnd
v
>

column can be added to the stack to keep track of the number of words currently stored

e |
T
B
o

. in the stack. This column is initially reset to all 0’s during chip reset. If a "push” :',:f.
occurs, a '1’ is pushed into the first MSFF in this column. Thus, a ’'1’ stored in this EI..-
MSFF serves as a flag that the stack is not empty. A '’ in the deepest MSFF in this E\-.\:
§ column indicates that the stack is full. When the stack is popped, a "0" is shifted into :;\.E:
the deepest MSFF. :E.E:j
. The MSFF required for the stack (Figure 17) is similar to that required for the pro- ;t;:;':
. gram counter. It must be loadable from two t-gates and be resettable (required for tag f’é;%g:
column only). The row of MSFFs which form the "top” of the stack require staged-up g._'-:.:-;‘
Y

buffers to drive the address multiplexer when a "pop” command is received. -

o
'l r » 8
.

4.2.3.5 Branch Condition Multiplexer. The branch condition multiplexer is

AR
P A

o

|]
used to provide conditional branching within the microcode. The branch multiplexer is O,
-

P
[
"

designed as a 32:1 mux. A 5-bit field from the ROM can then select one of 32 conditions

LR 2

w

S
LA

LEACANEAY

as the branch condition. Flags from the datapath such as zero, overflow, or negative, or

..0-
L

error conditions such as the IEEE not-a-number (NaN) can be used as branch conditions.

b s
f. &
S
)l
.
(SRR
a B 4 4 B

Additionally, these conditions can be combined together with boolean logic to form such

b
.
e

branch conditions as "greater than" or "less than or equal to”

{j. f‘.' PN
.

/

Y

L]
2
]

»_s
LS
N

P4
o
Ay -

rrl Ll

The design of the 32:1 multiplexer (Figure 18) is simply a combination of 4:1 multi-

v s
P X4

[

“a

&, S

4

v plexers, similar to the 4:1 multiplexers used in the address multiplexer. To lessen the

.,)*.‘»‘p
L5
PRAAAL

capacitive loading on the 5 control lines, these lines are distributed over different :.ages

s L
q AN

L)

A%
ALK

57

SN
1S

g
‘."

[)
;zzz
‘l

»

-?;a
P4

[
_

“
-4

t

'y
!
7l

e %r »
Py
el
P dl's
_‘:"1/':
LAY

»
”

]
I'
‘,
«
“y
& Y
s
.

gL aL ol BRI e
AP0 B RARA LEA R IR
...h.rx (XA PALANI T et A
h] . N Ay : -.... e
Y L LARR NS P arl i OO

.o -. L. T \$ ™
R AL

[

..-. [-\.n\-n\..\. -\ L4
R W AN R A e
TR AANAY Thhhhiahh N I

% %
,.........f.. \.. Ay

v
“"hnh T

VRN * AN
R ,.N..u of NN g

[)
--!--\.h RN

LN AS

v

OV OvV1d
T yorlS g U Aq pIopy W ALIWE
dog dogd
FER EA_'I w Y 45 4ds FERY 44SI
ysng usng ysnd ysnd ysnd usnd
W_A L_V_A LV_A u LI
dod dog dog q
XN
dog dog dod ssarppv
- X K"
FED L&Al& X ||V_A FEN EER 445 14SI VK oD
ysng ysng ysng ysnd ysng ysndg werdoig
dod dod dog (1-u) 03 ¢ SLIA
A, ;x VM- A A R P

PO)
WA NN
LA

Address Stack

Figure 16.

e e MRS 20 2 o Jaten NG YA 5 ok A PRI LA LA i ST A
L IRy N s B SOOI RAARRE bl nrr e [OS
‘AL e oSS XN LA O ST Sl el
., .--p- N 11"- -I-f\..\’\fd rLd LALs oo g L h ‘-u- A!.t}..!. 54" DR i \nﬂ\-\-\-u 1) Ve s, --u-‘h
S P R PXRARAAT A I et R e WA
o ..W.ﬂrm...ff%.ﬁ oK S Ol wo et st 2l @ v, S OSSN @
: y LRI L AN
. NN INENS LRI AR Sh ATy

7 r X ..\.....\.\.
B NARS ﬁ. L - [N . >
I A de PR AA YN ! C

.# AR .f.f.f._,w RS <Rt Sy me. BLEACA N O R

L

2

<= ! N A -~ -]
50 By < x5 = c = &
3 = a4 — = = = - A
R o - " X3
S 2, = E B ¢ ¢ ¢ =« Z 5
LY > = — o} «
oo S pm wM ch = r vmuC bo > = Wo m a5
HZw Seed o, v = o z = = = Pt
o LA w»m 8 o - = P z < T 4
5 2 = - 4 e & c =
—_— - <
W ﬂ [+ = [m ~ - -.-\
-~ - © b0 = = .= N i ~
X = A = A
H LM. = - = kw.u, = 3 g
Rt v = r
5 © § o = <
oot et .© @ = - = .
8 o s 4 5 - = & ©
— [} m ..m - Rt hnd ;ﬂb._ — = A
= O = = - 3 = © ;
~ d -~ T ¢ £ % L, T £ »
(] = © Q —) jo) = B
8 N) = [o o = e
2] o m © L H M -~ e
A <} B - »
o = o < % o} 2 Rt m [
— [B had o o < = m by & »r
(@] n g [3 < %0 > o 3
o > &= ° o _ & & - 5 E 1
e PO > « = g 3 - >
-5 v =2 > 3 =) < b0 — <
Q - « ?
< = 2.] o o > = > r
A Sl e Q 4 ° = = .
w0 2 ® o = I © i o Py
a . ° = 2 = o = 5 w2 by
o . i~ @ = o = e I} P =
~ ~ o < B0 = a. = > '
- = w g
. ® > S 2 5 - 9o = © = &
5 B, o £ = o = - .
) >
6o o T E o = © T =2 % o
= e °) i = > = = = ﬁe 51
= - o
g o k = £ 5 £ B 5 & = o7
Q O 2 a.lb het ..m = L .© a o --v-
o, B [= @ [®] - b3 o
3] £ W 2 2= = & .
n o) o O = @
et L = - O = -~ = o
o .2 & = het e} =) o,
2 [g m - © = ‘S -f 4
L —_—
“ < = RC < 2 o] = = >
. ~— fend — Q. -.m “ *'
ﬂ - m mU m £] - g (B
% . = 3 - o g o . 2 =,
£ 5 5 - » = 5 £ ¢ g :
g 5 £ 8 % S = 5 3 = 3 2
] ™ < = =% 2 Py o] - = LY
m ab M E 3 @] = N n i = m v &4
o — p— =1 =] 23 (o
b= nﬂ.m v 2 = Rz &0 < © = A
g a = 2 . © O]
3 s g £ s 3= o = -
- & - = & o & o 23
[e) - L0 [3) A S = m = .
A
sy
S
=

ot

Sh S

' .-..:
RAZAEII) PR I T A A .-\-.Pvr o 4 AN .._......rx..,...\“._
3 At o . * o . il ae « v % ! NN A
PN PN P T R A P AR PN OTANIPRVITR X AL PN AR RN A XA) X
-_
y 1
-,
P4
o
L1
-\
o
1
..u....._
S K
=2 7
G ss K
— o - n-\A
BOO 4

-,
ol

0

L o
J'}A.‘

Y

~

R A O A
A A A N e T

Condition Multiplexer

60
N

4:1
Mux

—1 4:1
Mux

Figure 18.

'

1
1

]

-

4:1
Mux
4.
1 Mux
4:
Mux
4.
' Mux
4:
Mux
4.
1 Mux
4:
Mux
4.
Mux

—_—
—_—
';J‘\'J'

L

5

A [A iy ARR P Ly |

z8

g
sA N

Output
of 32:1
Mux

___ Branch
Signal

Negative
Polarity

Figure 19. Branch Condition Signal

4.2.3.8 Sequencer Control. The subcells of the Microcode Sequencer described
above require several control signals as input. The stack requires push pop signals. The
program counter and address multiplexer require signals to determine which of the four
nexi address options to load into the program counter. These signals are derived from a

3-bit field from the XROM, called the Next Address Field (NAF).

Table 2 shows the options provided by the Sequencer which can be selected by the
NAF field. From this table, the Karnaugh maps can be developed for the required con-
trol signals and the boolean logic derived (Table 3). Implementation of the boolean logic

to realize these signals is then trivial.

4.3 ASP Datapath Section

Whercas the function of the Control Section is to generate the required control siz-
nals for the ASP architecture, the function of the Datapath Section s to operate on the

data in response to the signals. The datapath serves to transfer data to from off-chip,

61

NPT S

{‘
»
-

-.%s

)
A
»

,
o
-

PR XA
AT)
1.’.’/1-".
5&5 (P "?
P AP
y L

"'.l'. f
oy
/77

-

L}

1
N h 4 & 4
[4

<y
I [}
e
RN

].

A

L S
Pk aRY
.

- .-I.
AL BTSUN

L3

~.

Py

T
.,‘-)
}) >

& 'y

A
g

LY
Sl
7

rov »

’-’1‘.“.
5%
’

4

Yo
AT IR

LR
[/

s

&
’
RO
F4
v L]
A

.

. N
N Bt
T et ettt avg -“\.',-.., -’\.. --.\"*\ \)\'_ ..-\‘.-.‘,\ _‘\

VAN ATy Le't.a 4.2 20 a% ala'die’ate’,d (AT RNy 8'c 8% 2% Ma’ 8.%28 %l ‘el ‘ol i o, ‘40 el 6.0 L 0%, v, o '8 o¥i e

Table 2. Microcode Sequencer Operations

pd

‘ NAF Meaning AddMux MuxControl | Push | Pop
000 Continue don't care XX 0 0
, 001 Return Pop Stack 10 0 1
~ 010 | Call Branch Field 01 1 0
011 Branch Branch Field 01 0 0
= 100 Cond. Datapath Load | Datapath 00 0 0
~ 101 Cond. Return Pop Stack 10 0 1
110 Cond. Call Branch Field 01 1 0
~ 111 Cond. Branch Branch Field 01 0 0

Table 3. Microcode Sequencer Control Signals

Control Signal Boolean Equation
Addmux] NAF1
" Addmux2 NAF1b * NAFO
Push NAF1 * NAFOb * (NAF2b ~ BranchCond)
Pop NAF1b * NAFO * (NAF2b -+ BranchCand)
:..', LoadPC NAF2 * BranchCeondbar < NAF2b * (NAFO - NAFI)
5
IncrPC LoadPChar
,:d'
- store the data, and perform computations upon the data. Regardless of the type of dara,
62

s J5s TR TN S I LAY Tl I TP R U RS SR I S S e L 4
P 2 P A S P A L DR AL
R T A A A SR SRV R AT ST NN

L4 Ly
s At

“~

38

L)

-
LI

%Y

whether floating point, two’s complement, signed magnitude, or some other format. the

datapath is responsible for performing the required operations.

Figure 20 shows a block diagram of the ASP datapath. As depicted in this figure.
each of the macrocells of the ASP datapath is designed such that the datapath can be
laid out in a linear manner. The following sections examine the design of each of these

macrocells in detail.

4.3.1 Datapath Busses. The ASP datapath is designed in a linear fashion, so
that the data busses pass through the individual macrocells at a fixed spacing. This
style, proposed by Mead and Conway Mea81;, allows the datapath to be a regular struc-
ture, as shown is Figure 21. For the ASP architecture, the intra-bus spacing is %1
lambda (lambda is a scalable size parameter used in VLSI design: a common size is
lambda=1.5 microns), sometimes referred to as 81-pitch. This means that the spacing
All macro-

between different bits of the same bus is kept at a fixed spacing a 81 lambda.

cells which make up the datapath are designed to conform to this 81-pitch.

I/0
Path

Register Barrel

Array Shifter

kel iale
Z
c

Figure 20 Block Diagram of ASP Dutapath
63
o, L. LeL e e - o e AT Al Tt e T e A 8T
N e e e e e P e e R e e e P A N A A T N N SN AN M A

ors

.

A
Y
s'a

e
K

e

[a

R

TR]

Sy
f‘-
50 L8N
RN

L%

NG N NS
P

P
A RA]
'y
L 4

*

LI
\

.
[
PPN
et
LY

W

5

a4
AN
A9 S
B LL L s

‘a ' ‘.' ia Ltl‘,.f

e,

LA s e

PALSL S

o
P
Y
S

-" v‘

|. .’." ')

LN

Bit O

Bit 1

Subcell
1

Subcell
2

Bus A

Subcell
3

Bus B

Bus C

Subcell
1

Subcell
2

Subcell
3

Bus A
Bus B
Bus C

a) Datapath Approach

81 Lambda

Subcell
1

Busses

Subcell

Subcell
3

2

b) Non-Datapath Approach

Figure 21.

Datapath Pitch

AR
F**”
» ..‘ ..l‘ "- N
A

2 .

2
74
I\J

A%

R
-
2’
Ny
[y,
f]

L3
P s
P

~

PRy,
>

A S a3 28

A
a
o

P Ty
A
"l

X

’
>~

A

~
e @
o %
4
i R

v [
‘P::I“'r'
il

o
>

o8 -'.-, .\ .\ .\
-“‘A\'l..'

4

v

\. \. .‘- ‘: V l..:"-
»)

3>
F
»

.,.\,.
@ T TS

..
‘e
M
et
S

LA
"\. AN

v."
s
’

A) .

5
b

r e

P
R
AR

.'. . ‘.l'_“'.'
Wt P

e e
ORI

"-‘
y % vty

A B
X
A

3
N
ll,"
waal

AN
~ -
S _:I‘,_I
- .
RS _*.ﬁ\;
AN

®

.'-.._:’ e

RSO
S

~ B

LY
A

FRR A

.
"

The ASP architecture employs a three-bus structure (Figure 22). The "A Bus" and

"B Bus" are used to transfer data from the storage devices (usually the register set) to
arithmetic hardware (ALU and shifter), while the "C Bus" is responsible for returning

results from the arithmetic hardware back to the registers.

Due to the high capacitive load on the datapath busses, various processor architec-
tures apply different techniques in attempt to increase the speed of the busses. As seen
in Chapter 2, precharging the bus and clamping the bus have been investigated. In
CMOS design, another option is to provide large complementary drivers to circuits which
must drive the bus. The ASP architecture utilizes a precharged design for source busses
(Bus A and Bus B), and a conventional CMOS approach to the return bus (BUS C).
Although precharging is less advantageous in a CMOS design than in an nMOS design
(since CMOS employs p-channel pullups), the precharged approach resulted in smaller
register cells and in less capacitive loading on the output driver control lines. The
precharge signal must be timed such that it remains active until all register select control
lines have settled to their new values, so that spurious select signals do not inadvertently
discharge the busses. It was not practical to precharge the return bus, since the arith-

metic hardware is not self-timed (it does not "signal” when the computation is complete).

4.3.2 Register Array. The general-purpose register array provides the pri-
mary data storage capability for the ASP datapath. As seen previously, the actual size
of the register array for any given application is dependent upon the requirements of the
algorithm. To simplify decoding, an array size which is some power of two, minus one, 1s

preferred. The width of each register is set by the width of the datapath.

Figure 23 shows the design of the basic register cell. The heart of the cell 15 a

MSFF, which drives new data on the rising edge of PQ1 and litches (loads) data on the

65

e
LAAATON

.

eaTal

AR BN
.\..;,:‘1 .
R

fl"
s 'ty

’(lrl'l
l"'
"

8 e

Y] IS

Bus A Bus B

Bus C

%
:

) ol
...r.-r......v.w f»..&..ﬁ

<A

[ohres

AN

PN

v S
3 . o
u O m..v
o 9 = &
o4} —

" v m =
Q 5
] R
—

3

Barrel
Shifter

ALU

Datapath Bussing

Figure 22.

d Oy s
PO

o &

h Y

.

66

trailing edge of PQ2 (Figure 24). The usable portion of each clock cycle. then, is from
the rising edge of PQ1 (when new data is available to be driver onto the bus) until the
falling edge of PQ2, when arithmetic results must be present at the input to the MSFF
so that it will be latched. Actually, the usable period of time is reduced slightly, since

the register drive signals cannot become active until the precharge signal is inactive.

The layout of the register cell diagramed in Figure 23 is set to the 81-pitch of the
datapath. Since each register cell provides one bit, the register array is easily formed by
laying out a regular array of cells, m bits high by n bits wide, where m is the number of

bits in a word and = is the number of registers required.

The register array is controlled by three sets of decoders, one for each of the three
busses. Two of the decoder sets select which one of the registers (if any) is enabled to
drive the A Bus and the B Bus. The third decoder selects which of the registers will load
from the C Bus. Regardless of its usage, the design of all decoders is the same. Obvi-
ously, the width of the decoders must vary with the number of general-purpose registers

required. The selected register is decoded using a fully complementary NAND gate. In

order to avoid unneccssary power dissipation, the output of the decoder must be ANDed

LoadC PQ2 PQ1 Drive A
Cbus Abus
Bbus
Phi2bar Philbar DriveB
Figure 23. Basic Register Cell
67
LTl e T "’-C &'x"_ WS CHESEN AR Nt "s."w."\"_-.'}.'_-.':x"_-.':-.',\"~.’ OO

‘,‘- (HCh] LK

&

n'-‘.‘(r

PR, 4
AT

L R S

S AT A

Y {.l'--' d
", .‘—-"nl"n .l ‘-l

SR
A
.;_*.‘,\ i ..-s.:,,
AR

1 *‘ - <

T e
e

'y
"
v

%
» 1";

L
l\}
)
AR

Y
“r '
P
e,

P
P4

- |
I
Y
A
Sy

AN SSY

' ’ o
1]

‘"
by

~
S
AN

5
Y
5

“x

Pl

s
<

I 4

S5

A

»

"

<

“

.

’
"n

5

{_:

h 2 e] N(‘r

2

.
»

8

a's s

Y

P
P

.
B

[

L R R R R R R R T R O Ry U 7 O T R T U O L Ty T T T O P N P W ™ S W S O A Y OO O P U W P W W W VTP Y M P T T

Usable Portion of Cycle

l..-..-.’q’.:r,-
|<—_>‘ NN ~
A
LN
N

Precharge
w—

PQ1 _J

)
AN
A

'
e
A
£y
x
e

Y e
LA
.

l‘ l' -

‘

PQ2

,.
AN
P A A
KN
o
)

l< Clock Cycle —>‘

Figure 24. ASP Clock Cycle

I‘l
g

r
N

Calk}

with the inverse of the bus precharge signal (Figure 25). If the decoders were allowed to

select a register while the busses were being precharged, the register pull-down driver

would "fight" with the precharging circuit (if the register was attempting to output a '0’).

The layout of the register decoder was patterned after the XROM address decoders,
which allows for easy (and possibly automated) personalization of the decoder. Both
polarities of each bit of the register select field are propagated through the decoders, so
that personalization is accomplished by merely placing contacts at the appropriate inter-

section.

T I
ot e

.~
SN AT ERTARS K

TYPUARYY

R N AR A A R N N N A Y WA A R OO .8 Ll 0ot Bal et Gt tan'd 2% a0 2th oY % ath st ath ath ath ald”

)) Register
a Select
b Prechargebar
C
d

Figure 25. Register NAND Decoder

4.3.3 I/O Path. As described in Chapter 3, the I/O path consists of one or
more /O channels. Each of these channels supports both an address stream and a data
stream. The address stream is provided by an address register, which directly drives out-
put pads to control memory addressing. Figure 26 diagrams the design of the address
register cell. This register is a simple modification of the general-purpose register cell.
Like the standard register cell, the address register loads from the C Bus and can drive
the A Bus. However, in place of a driver for the B Bus, the address register incorporates

an ungated driver to the output pads.

The data stream is supported by the data register (Figure 27). Similar to the
address register, the data register can load from the C Bus and drive the A Bus. Addi-
tionally, the data register can load from or drive bi-directional data pads. The given

designs for the address and data registers do not provide the capability to drive data

69

>
Pl
_‘.
5
o

,
=

<

R .
PR R

”

Y

7

;';
s
X

Ay

y L4
x

rl RS

RASSEANTC
.
X

%0y
e
oY
BA
e

"%

;

‘l
.
i
o
.‘1
-

s S
L L

L o
'

S

» ¥»
LAy

i

!

'|!-'Y ' -,
SO W

Drive A

Cbus Abus

To
Address
Pads

Phi2bar Philbar

Figure 26. Address Register Cell

onto the B Bus. This capability could easily be added by employing another output

driver, but was not implemented in order to miniinize the size of these registers.

The address and data registers can each drive the A bus. Obviously, these registers
cannot drive the A Bus at the same time one of the general-purpose reéisters is selected
to drive the bus. The designer must therefore be careful in writing the microcode that
this condition does not occur. The current microcode assembler does not provide an
automated capability of deconflicting these instructions. In the case of loading from the

C Bus, however, there is no contention. The I/O registers and general-purpose registers

LoadC PQ2 PQ1 DriveA
Cbus Abus
Data
Pads —]ggm
Load from Pads Pads
Phi2bar Philbar

Figure 27. Data Register Cell

70

PP I RN I T P I S R DN IR Y R L T T S O IS O 4 iy ¥ L N P Wy Ty mT N LT T A S A Y,
e e A N N &.n e \?_\.\ g ‘xﬁx‘.j\‘\“\ N R S e A A

A

Kd

‘N

PEEET
-Ehmﬂ
Y
%2

2
i

&

yr,
<
~sh

PO A LA

b
4
Aty

5 4

I
A

;

A
t.-
N

s
s

17
o

v
s .
POV S S

/
/5.“'

LN Y

v

28t
.'

A NS AN ST

’r"“,-ﬁ
PO o PO
A (]
III_(II
ICRALAP

.
)

can load during the same clock cycle.

Two types of handshaking are envisioned for an I/O path: with a "host” controller
or with memory. Data exchange between the ASP architecture and an intelligent host
can be accomplished with a simple 4-line handshaking. After the ASP algorithm has been
initiated by the host, the ASP hardware will initiate the handshaking for any necessary
transfer. For data transfer to the ASP (Figure 28), the ASP will initially raise and main-
tain the DataRequest line. The host will then provide the necessary data on the data
stream and raise the DataValid signal. Upon receipt of DataValid, the ASP loads the
data register and then drops DataRequest. The host will maintain the data on the data

stream until the DataRequest signal drops, at which time the host can release the data

DataReqguest (A
q (A)

DataValid (H)

LoadData (A)

DataStream (H) X (VALID) X

(H) - Host Action (A) - ASP Action

Figure 28. Data Transfer to ASP from Host

AR L S U W N
o

e e e
LIS] R A I U I
et L s T A A

. - L] ! .‘ L] %
A
RN
o b'. "'(
@
Fw AW, s om
i< ~f&$\.$\$\"
AL S

“w

'\ \L I".l

g
.
x,
3y

v ¥
5

."l
&

[}
¢

L
LY

,
[

¥ '{'}:
[4
. ’l'
f.'i'
43

‘.

* %

-y
4

2

I—.l-
e
{'. L ". «
2
LS S
l, r
-

r

“x "#
.

£
“

5
'}‘,i'

~
)

:"I
r
o
¥
o !

X
. f"r’
5 %
%, "‘
e
v l.-

'{':7

’ ’lz,
'}.
A

1
.

At
Y

“u
%
‘-‘\
SN N
\‘\. \‘.‘\ d
PENDIWRN

ok
s
[

O,
N WL AN
AT
o -.\J'_ S N
LIPS a¥ +" m
DA
ST AN
.J\.w MO \
PR N
NS

1
UL

stream and drop the DataValid line. For data transfer from the ASP to the host (Figure
29), the ASP drives the data register onto the data stream and then raises the
DataAvailable signal. When the host has received the data, it sends DataReceived. The

ASP can then lower DataAvailable and release the data stream.

Handshaking between the ASP architecture and a memory array is straightforward
(Figure 30). A Read/Write line determines the direction of data flow along the data
stream. A WriteEnable signal ensures that spurious data is not written while the
address and data streams are unstable. This simple approach should place a minimal
requirement on the memory hardware. If necessary, the designer can allow for a slow

memory access time by inserting additional clock cycles into the microcode.

DataAuvailable (A)

DataReceived (H)

LoadData (H)

DataStream (/i)X (VALID) X

(H) - Host Action (A) - ASP Action

Figure 29. Data Transfer from ASP to Host

~1
(&)

L e g M L A e e O Tl i o AN AL AT

, .
8 AL

[N
'y "y Y.I.l:i'
B

AL

{-..
:J
o

a e .
v
U
r
P

Qs

/
’

- Lt
Kttty
> I:‘ J
'l
A '_‘l. v
r'r“r.‘r
LA

:1
Pal'd
v

<

.-..‘ 1.’ 'I ./ .‘. r'..'.
e, w D
L4
/

»
n

7

W

AS
“r

PR PN
-

L NN

‘)"/’..'1.'-'
%

>
LN

Ha Y S
.

e

h]

-..
e
8

Fd

>

P
hY

.._.
\l
[N

a2ty _p 4

s
.

o
:
-. .‘
:

»
a
v
",
LA
P
"\
7,4

P
N
l‘
;Y
S 5

Cl's

Ay

"b
A
-
o

Sx 1T
)
.

.
’

ol
4" 2
l.

. &

X
4
20

%

(3
P
h

“n
-":
P

.l
Su Y
P4

N
2’

5,
%S

2

.,'i ‘s

“
h

‘l
v

)
(\

s
’l

P

LY W'y

o f

i

X

The ability to read data from memory allows the ASP architecture to load and exe-

cute assembly code instructions. This is accomplished in much the same manner as a
CISC architecture. The instruction loaded into the ASP can be moved into an instruc-
tion register, from which the instruction is decoded into cperation code (opcode) and
register fields. The opcode portion of the assembly instruction is mapped into an address
in the microcode ROM, using the Conditional Datapath Load microinstruction. Similar
to a CISC, the assembly instruction is executed as a sequence of microoperations in the
microcode store. Register mapping hardware decodes the register fields into the

appropriate register select signals.

4.3.4 Literal Insertion. Although the I/O path allows the exchange of data
between the ASP and a host, the majority of applications will use only a simple "Go-
Done" handshaking. The ASP hardware must have the capability of providing the con-
stants which are necessary for the algorithm. This is accomplished by storing constant
data in a field of the ASP microcode XROM. Due to the width of the datapath, it is

impractical to store an entire constant in a single XROM word.

Literal insertion is accomplished using the circuit in Figure 31. The literal field is
inserted onto the LSBs of the A Bus if the InsertLiteral line is activated. If the designer
wishes to pull the remaining bits of the A Bus low, the LiteralZero line is activated.
Absence of the LiteralZero signal will cause the remainder of the bus to remain
precharged high. The insertion of a literal onto the A Bus must be deconflicted with use

of the A Bus by the register array and the I/O registers.

If a small constant, such as a loop variable, is all that is required, it can be inserted
onto to A Bus and operated on during a single clock cycle. If insertion of a full-width

constant is required, the constant can be loaded in two clock cycles. During the first

73

'
[

P
s

!

AT Y]

h«‘
5 N

N AAA
PR

<

,V .Y
r.‘_s o'y

i

S ¢« 1 3 ¥

‘5_\.'-'*.,11.'
FONARRY

@ YA IO NS
?""{-‘:‘5}1"?} o

2"

!
4

LYY
)
55
S e

7
g

.l
¢
2
l‘. .

2
A
P) ',

o

RN
s

e afa) XA .v.
. [
LN ,...,.\f..f\z.... 4.2

LA SRASASNS

- I.q f!-'l

DRy B S z.)u..uf,

PN B TP
0F ..._ OOy

NS

Ny Yy

-,
\.-ﬁ

EL PSS

5 2 ' . G5 %Y

AT I AN o«ww...n.:v.... 1@
\d..m\...w\uw

NLELHLYRSS

R/'W

WriteEnable

LoadData

'-v-- -ndln.- P

X e X

DataStream

Pp—
DRSS NSN

(vam) X

A

a) Read Cycle

AddressStream

; 5 g AN
..a.s..rm.xwx“..\.rﬁ..m ﬂ.. SRR
" S S e [
P XN NERTNENS
e (..(ﬂl\.f\)?n#\t PRI,
LI CANS AN S
AL \wsm RPN "9
AL AR
VAT AAAE, A

P4 ﬂ,“.% Pg ﬂ.\“»-
]
»
4 \..\,.xuwm ®
..\f\as
Y,

NN
...\hv\‘\\ﬁ !

R/W

N NXAEE
wh 1 fff(.r
o A AYS
,-.a....a.,...., vy
AN
Fasaanx
5 ...\....x.xr...x.
ﬂ--.-.-...-.ﬂ-\]

WriteEnable

144

i n--

Y

Y

W Je e

S LA

ot

'L

AddressStream

P
m- PRE N
Y ..\ 4 ~.-_r\ ._

L -‘Aw..

X (V%D)X

b) Write Cycle

DataStream

Figure 30. ASP Handshaking with Memory

74

A

AW A,

P

Y

als
o n

- -

&

. .'f'- ;

A

2
%
[t
7
=]
%

vyt
) '.)

ey
>

'i.{s'.
£

Y

'.J'
'n"-
L4

(‘I

<

,

L4

2y
ks
H5%4 N

x
5
o
LS
g

Literal from XROM °

-

L

LA
> 5 .
e
i
x
'.r:::'.'_'z
AP e
Loy
-

‘;:
7
l. []
2,
77

e
2
"'{‘
[,
A
’

LiteralZero
1 AN
SN
InsertLiteral .

_l__ W

P4

'y

'-}'v

.n‘
Pl
‘
LI
oy
R

17

@ ¢
i

{"ﬂ
[4

& &

.
54
by
]
.

«

Bus A Bus A

'
.

b
.s,"l *‘
oy

A 3]

A

A
» ll

N

LG

W
.br-‘.:: ‘.:‘ ™ .,“h
ﬁ'\‘ f.L‘L-
[J

.
5
[/

Bus B Bus B

o>

Bus C Bus C

v e

M "
v v

»
.
v "y
»

DatapathBits with Literal to insert Bits without Literal

1

s "o

Figure 31. Literal Insertion Circuitry

P A
¢
G

SR
>
CANS LA

clock cycle, the MSBs of the constant are placed on the A Bus and shifted into the most

I

3

b

';{ o,
vy

significant half of the datapath word. On the second clock cycle, the LSBs of the con-

R
1'4

X
l..
o

...
-
2L
24

o'
4

s
fl

y
‘e

VSN
RN

stant are inserted and ORed with the previously inserted bits. The completed constant

P
IR
l"

e
=)
v
3

AT
JNAS
VYR

.

ll'
l.’l
Y

g

is then ready for use during the subsequent clock cycle. .

<
’l
4

v

4@
|

- -
o
o *s

id

.‘.:- ':v
-x '4.

4.3.5 Barrel Shifter. Techniques for the design of barrel shifters are well esta-

Ty
s s s

blished. The design of ASP barrel shifter is patterned after the shifters describes by

P A s

Mead and Conway [Mea81]. Figure 32 shows the design of a simple 4-bit circular barrel

~

shifter. The regularity of this structure facilitates the design of a standard shifter cell. :4‘
o

r-

, , -

This standard cell can then be arrayed in a n by n structure (with an 81-lambda pitch i

between bits) to provide an n-bit circular shift.

e,

-
P

75

)
S S R e L R T BRI,
n o Y) PRI T T W A P 4
-**.'-.ll'~(.4‘-‘.u\h.x TP PP o4

I SN AT NG NN ERE AT RE T N

‘) VNN : >0 . TE RSN i DAL ! e
L NN R Y) y LA S A X S O,
AL B ARDIR .nu..-...v ..ml..u..u. X Vo Lttt [y

O TOADI p IECR R AT, IR I BRI e
Eo e @ it @ SIS o v X IR o AR
P A A 2. 9. @ O N O
. \..x,.s... .,r\.....rx AN LR AN ~..u.ww RN L) " »".. .,.xv........ .5 >

2iat el " o LA P ! f R ([.

B, ‘o .NA n-bf%:»u-&f&f‘.f.u TNy, B h h . I ’ - U ATSARSERS r =

If a

If the other

A N
Shifter Out
¥

A
F

h‘Tj/
Shift3

If a circular shift is not required, only half of the shifter array is required. Figure

76

y.
A
Due to their complementary shape, including both

- —
-
2
e
>
dd
Shift2
4-Bit Barrel Shifter

> 4
4

b3
l &
b—lfy
y.
1
Shiftl
Figure 32

Bit 3

L
BusIn { J
!
i
T
Shift0

Bit O

In this case, the value of the MSB is shifted into the most significant bits.

d
N

halves of the shift array will require little increase in area from the use of a uni-

)
/o)
b
[
—
o
)
(o]
—
e
<
-
=
=
w
L%
=~
R
Qs
o
12}
L%
=
=
=
o
=
-~
QL
<
-
-
-5
—
=
o
-8
)
.2
e
=
=
72}
2
.t
@
=
-
.r
a
—_
<
<
.S
-~
Q
-3}
[
=
o
L
£

included in the ASP architecture.

directional shifter.

33 shows the 4-bit shifter, this time performing a left-shift, shifting in zeros into the least
half of the shift array is implemented, as in Figure 34, an arithmetic right-shift is imple-

significant bits. This is the shifter design to provide an arithmetic left-shift.

mented.

P
5 .\-.\f.-u-\. [T c#\.. !
..JJ#..‘. A AT

[
R

ROt e it
LS J\-o.-f\ ..._.

5 H %Y
--—-- L

5
o
Y 5\
=

- o S B BB BT N ARt TR o0 o Pridion St sa AR SN
2 -n-v 2 & W_\] \.-_ -.- ” .-. .AP- Ry .(\-4- ..\.-\.}

I

..fM...”f.”..Af.” AL NSNS
-f RO | N PRLSATNEN i o f-uJ\.- AR .J.\f- -
CEALERG LAY UMUK
\ufl-)-l- s -q- LA g .\ by -Nf- s '4\-- —«\f ’.
LD R R A

A A

s st @ MY RASASEIMY I
RE AR ; AT XA .
’ .f.f\...(.r L A NS M A A S

o g N

ML N e "
O

Shift3

-

1 e

P

//)/

7

P

Bit O

. b

>
Bus I
~a

Shift0

Barrel Shifter with Arithmetic Left Shift

Figure 33.

Decoding for the barrel shifter is performed by a PLA. The PLA design used in the

kY

The basic

3

3.

I

ASP architecture was initially developed for the WFT16 processor [Ros8

subcells for this design were obtained from the AFIT cell library. The PLA also provides

a decoding for Shift0, which indicates that no shift is required. This signal is used by

the shifter’s bus interface logic (Figure 35) to determine whether the shift result is to be

arithmetic

In order to deconflict with other

driven onto the result bus (C Bus).

hardware, it is important that the shifter only drive the C Bus when a shift is selected.

AT AN LA o B = A el ey
RS Pt L S O s
s ...,.. ...I\n.&l- 5 ‘.f\-v\ \i.\. S, o V.\ e,
PR S ANy
PR LMY

Srl AN AN
DACACAAA B e e NORNNEY RN NNNN,
.?..,-..-\)..- s AR TR A P\-r-. OV

ASP archi-

Shifter Out

y 2
Shift2 Shift3
Barrel Shifter with Arithmetic Right Shift

Vs
p 4
.
4

?
) /
— o7

e

a
v
if

For applications that do not require floating-point arith-

3. Boolean Logic - AND, OR, XOR, Complement

tectures which process primarily floating point data will still require an integer ALU for
address computations and to support software operations such as looping. The integer

metic, the integer ALU is responsible for providing all arithmetic processing.

s.
=
o
Py
(8]
=
=
e
b0
B
. z £
N \ o] S c 2 2
= o £ N
g g : g 3| 4 2 £E87 %
Q et ' @ Me Re
! & 5 g = 55 B
— [g ¥ ~ .=t b0 %0 @ L o Mnﬂu
¢ g & | 2 T g%
o 3 © 5, sesed
- o = « S E e o
R — o « = S 8B~ =
O L
/M o ~ i o3 <
—
<<

Shifter >0 “po—

bus B I

bus C | J

Figure 35. Shifter Interface to Busses

J“[\J“ “"
SRR)

Figure 36 shows a block diagram of a design to provide the required functions. Pro-

4
1
h

2

essing is accomplished by five functional units, which perform the addition, AND, OR,
‘OR, and pass (move) functions. The A Bus feeds these five functions directly. The B
Jus, however, is fed into the B select unit, which sends one of four possible values (B,
3_bar, 0, 1) to the functional units, dependent upon the function desired. The third
nput to the ALU is provided by the carry in logic, which can input carry, carry_bar, 0,
r 1 into the ALU’s carry in. A 5:1 multiplexer selects which of the five functions will be

ated onto the C Bus. Additionally, the ALU will generate signals for four flags: Zero.
vegative, Overflow, and Carry.

The hardware to realize the boolean functions is trivial. Figure 37 shows the desicy
f these units. Due to the simplicity of this boolean hardware, and the fuct th
omputations on one bit are independent of all other bits, none of these v

ritical timing path.

L4 L B W T By T WSS
Pl alelad ey N T T e AT

sTATS P
L "-"'

AD-A189 541 RRPID PROTOTYPING OF ﬂPPLlCﬂTION SPECIF IC PROCESSORS 2/2
(U) IR FORCE INST OF TECH WRIGHT-PAT RSON AFB 0
L OF ENGINEERING M GALLAGHER DEC
UNCLASSIFIED ﬁFIT/GE/ENO/B?D-iS F/G 12/6 NL

PP T L S P LT AR ATEAE NS AN AT ST R TR ULy ‘e fve Blocdig Bla aba €0 d¥e b, gt gV a0 .~'."

'a et
e &J: 3
i 'c" ':' ':‘ c\v
.0".'0:#' s o

ety
A NSRSy
o.' "::‘::'

10 4wy
I | ”Eiu. m ' 0 o
= 18 N
= L)).r
= TN L
'.' '5'.‘ |.'o‘ !‘
,.

.5:..: ~'|45."~.

Sl Py HIGRRUTION Tiii CHART
by

T 'u‘ ‘0

;:."‘k:'u.\ oy

R s s \" "l,‘\t AN y
:"‘A .‘: AR) o :'l 0 ..0" .::::.I g
':' \ " o":‘. :‘:“ o ol R o‘h‘.\{:ﬁ:\.’ o D
‘ . 2 ' KX “' ‘0 .v ‘: \ "‘ tc"‘s" ." ot A to"..:'l.c":i' LM t

l"

.

\'!

A Bus B Bus

B Select

'

Xor

X X

CY |l
in

Add

X X

Or

Pass

O|O|N}|Z

DriveC

Figure 36. ALU Block Diagram

4.3.6.1 Integer Adder. The adder circuitry, therefore, establishes the critical
timing path through the integer ALU. In fact, since the barrel shifter is very fast and
any floating point operations will probably be accomplished over 2 clock cycles, the delay

through the integer adder becomes the critical path through the entire arithmetic section

of the datapath. The delay through the adder must be minimized.

For a simple ripple-carry type adder, addition of the input bits does not become
effective until carry signal from the previous bit becomes valid. To speed up the carry

signal, carry propagate adders compute the carry-out signal rapidly, so that the carry

80

1IN 0" W NP SEAG AN
l‘?“'ﬁ'l’» », '..'IA I~ ~f

{ At t_ b
¢ ."‘. :'.‘(.‘:"
N A se!
e
R NOG N

b
XK

'.'.'-
<

[

e
e
Vel

L

LAYy
r‘_:()
l,'}l.

;&;‘
{ [#
2

.(v
[
Pty

P
Pl
b

7/’
44 4

(AL
’::5 49
PRAS
5t

4’!

s
s

A

»

i.;
Y’

<,
£

e
o
o

L% Y

=

p =

D
)

St e

. AN RERERA IR N AT IR A PAPR IR VRPN WY VY Lo Bt 4. Bl A%, AV, 2t gl AV, % ' At at. atl a® "l A, Al a6 @b 28 b, AN At sl 2%, gt g} ¢

signal is propagated faster than the sums are computed. The carry out of a block of
several bits can be computed even faster using carry lookahead adders [Wes85]. In this
scheme, the words to be added are broken up into blocks of bits. The carry-out of a

block of bits is computed entirely separately from the sums, using a static boolean logic

design.

An even faster adder can be built using the carry-select adder approach, which
significantly increases the area required by the adder. The carry-select approach relies
upon the fact that all the bits to be added become valid at the inputs at approximately
the same time. The carry-select adder can thus begin adding all bits at the same time.

Using this approach, the words to be added are again broken up into blocks, as shown in

Bbar_,'
A AorB
Bbar
A A and B
B
Bbar 1

A K
Do >
B

Figure 37. Implementation of Logic Functions

81

L LS L o T T T A AT AT AT A LT e T e T AT A Yt T T AT T AT AT AT A T AT AT A TR oo R
.c, “'N\ .o ~$*‘\"."~ "’ '~ AN ‘-""‘ sl PO N NI "*"'\ N N " " J. \ .a.. > 5 .‘ N

"

’

Sl
.Y A.‘\,

- .8

5 & K

NN
LS
Pl)
W S %

y E

Lo
- I&-

s

-

[
XA

"«

B Ay Yy o
Pl P

|

¥
':"
o s 2

5
"1;"'
-

[#

» '.: -,: M Bl |
s

-’.'-'.:". };, e

‘5 LSS

L 4

e
A

RPN

[

o'y
5

CAAL,
4

"
h
%%

5

%

2
%

]

Lot o N)
(A
I
TR ARRS

P

Figure 38. For each block, or stage, of the adder after the least significant block, two
adders are provided for each bit. One of the adders computes its sums and carry-out
based on a carry-in of zero, while the other computes based on a carry in of one. Once
the previous stage computes its carry-out, this stage merely has to select one of its two
possible carry-out signals via a 2:1 multiplexer. Thus, the delay from carry-in to carry-
out of the block is merely the delay through the mux: a single one logic delay. In a

same manner, the proper sum value can be selected by the carry-in of the stage.

The ASP integer ALU employs the carry-select adder approach. This approach
results in a fairly constant add time for various widths of datapath, since adding an
additional stage of 4-6 bits requires only one additional logic delay to compute. The
adders within each block are designed using a carry propagate style. Figure 39 shows the
design of this adder. The adder is built using a t-gate design and introduces only a sin-
gle t-gate delay from carry-in to carry-out. The adder is designed using a slightly
different form of the full-adder equations than is normal. The most common equations

for the sum and carry of a full adder are:

sum = A xor B xor C
carry = AB + AC + BC
However, analysis of the Karnaugh map for a full adder reveals an alternate form for the

carry equation:

carry = (A xor B)C + (A xnor B)A
From this form of the equation, it is seen that the carry signal can be generated by a
simple multiplexer, based on the results of the XOR and XNOR operations. The adder

in Figure 39 uses XOR gates to compute “A xor B" and "A xnor B”, then uses these sig-

82

e
.".:.
.t. Al

W)
.‘. l“ Vo
ety

2y
[%

,...--
7{ 2E0Y,

L] »
P AAA X,

'-.".l‘.

"-
P
)

A8
LN NI,
\ -

A o
M A%

PR
5 8
% ':.
a
;

.{:‘_
<y

e
.

i
’

AP

F

e o 2

‘s %o
LTSS

e

)
L9

Pd

%
;'r

e

."_
PR
.l

%
i

® .
>

ot
-":.l
PG
0
L4 .l .'

[N
oWNs
'y
S
)

)

A

Ay
"
'l
R
5., Y

9
Lu

o

7

10

o

12

-
=
(]

O

Figure 38. Carry-Select Adder

}5
f‘

..x.»-.N

)-".’ A
..-_‘.4'\.5‘
.r\.-.

ERCY 5 V)'x.
e
> g
W &i'\-'),*\

W‘«.

YaK
\-h
.r_:_

)
)
“
hl
's

lx\,h- AN

.VH::.'O' ‘t‘ho"‘*

o, "'
\|"I W

e
Cin sum0 f:..‘fct'!:

& - . g 1.-.-‘: o
' o T
|':‘:“"|‘"

bo X § |‘|

MR) O
xnor0 -'ﬁ‘::lz:"

H >0 | ot
: o
R

- b

b0

xor(
cy0 N
% ' '.‘).-l".'\.'\
aobuff)Rf‘ !

- Ty

1
5 %5
L%

o
> 7 oL

2P
A
",5:5 "
L X

&
20

)

5, S Y Y W
1'

0
b

e

—_—

. o,

This inverter added to remove feedback. :f.;l‘...f
\'J.-":".f-

f L
:ﬁ Figure 39. Carry Propagate Adder Cell E.Ez;\]

' ‘

T
‘>

nals to select the sum and carry. Since the XOR and XNOR signal can be computed

22

§ prior to the arrival of the carry-in signal, carry delay through the adder is only one t- er
"‘ . 4
gate delay, which is comparable to the delay of a carry lookahead adder. Note in Figure
R
39 that the A signal into the carry mux in generated by inverting A_bar, rather than pARr
AT
ﬂ using the A signal already present. This extra inverter was added so that the ESIN R l"\‘.
‘ switch simulator would not be confused by what is construes as feedback in the circuit. .,' AT
ONCRAN,
L
i A
A
FH 'I\‘d‘.‘n\
: » {

N IR T, PRI 0
L9 e I RCANOCOO)

¥ LS

"i

Using this carry-select adder approach, the ASP architecture can perform a 32-bit
add in approximately 24 ns (worst case, assuming a 3 micron CMOS fabrication process),
from stable inputs until stable outputs of the adder. Overall add time for the integer
ALU will be longer, due to overhead required to select the B input (prior to the add) and

to drive the result through the 5:1 mux and buffer it onto the C Bus (following the add).

4.3.8.2 ALU Functions. Table 4 shows a listing of how desired operations are
realized from the ALU hardware. Simple addition is accomplished using a carry-in of 0,
while the add-carry operation uses a carry-in based upon the status of the carry flag.
Subtraction is realized by complementing B and adding A, with a carry-in of 1.
Subtract-with-borrow is not immediately obvious. If borrow is set (actually, the carry
flag), then the difference would be A + B_bar; but if borrow is not set, the difference is A
+ B_bar + 1. Thus, the proper equation for subtract-with-borrow is A + B_bar +
Carry_bar. Then increment/decrement functions and most of the boolean functions are
fairly obvious. The complement function is realized by using the XOR function. The set
and res.et. carry functions were accomplished by a direct set/reset of the carry flag regis-

ter. An alternate solution would have been to use the following equations:

set carry = A + (all 1’s) + 1 (always resulting in carry-out)
reset carry = A + (all 0’s) + O (never resulting in a carry)

The move function could also have been provided by:

move = A or (all 0's)

85

-
-
-l

-
z
!f ﬁ.

PO

P

o

Ly

s
2

4
¢

L

P

PR Ad
T
“

. .‘. a a
5 4 g
1':-' '
.
-’l P

:.‘ ‘o" N

¢

PPN od
W ".-".-1'1";
'([l Y

TR
.l..'l‘g.>'x

Table 4. ALU Operations W

s
e

Aol L
‘ Operation Implementation S—

Invert A C = A xor (all 1s) ey
ARRY
a AND C=AandB —
u,“‘. A:‘r“
XOR C=AxorB Q){f\'\r N
““:;kr":
OR C=AorB Ly
A i
MOVe C = A .] ‘..".
S EXRGN
Set Carry Directly Set Flag Reg. L) ?\
bR
Reset Carry | Directly Reset Flag Reg. ..0.":2'.:!'
Incr C=A+(all0s) +1 gJC‘ ::;
X R
) Decr C=A+(allls) +0 sl
.H‘;ﬁ,‘ :‘
Adc C=A+B+cy R
Add C=A+B
g Sub C = A + Bbar +1
Sbb C = A + Bbar + cybar >
’ A
e Ly
Compare A + Bbar + 1 it
l§ “':J':
D) ‘n".l‘ l"
. .
YoM
_
4.3.6.3 ALU Control Circuitry. Table 5 shows the integer ALU functions, & a'\
:“h: W,
showing the necessary operation, B select, and carry-in to realize the function. The table -:.\ ;‘
I,
R
g also shows which flags will be modified by each of the functions. The functions have AL
A
been reordered to simplify the boolean equations for control signals. From Table 5, Kar- :gs:‘ij\
:‘.'-,.‘L\"f'
- naugh maps can be drawn for the required ALU control signals. Table 6 shows the RN
. '
« N
.. boolean equations which were derived from the Karnaugh maps. Simple implementation []
ARG O
N

86 .;}\-N-i'

VN \J \ LU

of this boolean logic provides the necessary ALU control signals.

Table 5. Control Requirements of ALU Operations

a ALU 3-0 Operation BSelect | Function | Cyln | Flags
0000 NOP X X X -
0001 C = Abar 1 XOR X y/
a 0010 C=AandB B AND X Y/
i 0011 C=AxorB B XOR X zZ
E | 0100 [C=AorB B OR X z
F 3 0101 | C = A (mov) X Pass X i
0110 Set Carry X X X C
: 0111 Reset Carry X X X C
& 1000 | C=IncrA 0 ADD 1| Au
. 1001 C = Decr A 1 ADD 0 All
i 1010 | C=A+B+cy B ADD Cy All
g % 1011 C=A+B ' B ADD 0 All
) 1100 Not Defined X X X X
1101 C=A-B Bbar ADD 1 All
g 1110 C = A-B- borrow Bbar ADD Cybar All
i 1111 Compare A, B Bbar ADD 1 All
| &
87

42

a0’

AT II I IE T ’ LW 0 P o Ca P Cn O 00 Y 1 ACLOACCI R AT g SRR CIREE NS ES
’J‘.‘.‘.-.n. EaYath .n.\‘_o.,l..l.ﬁ.. BN S g > N ., "' W .c rada

Table 6. ALU Operations

Function

Control Sig

Boolean Logic

Bselect

- -

% Function

o]

Carry In

v<s

Y DriveC
5 LoadNegFlag

LoadOverFlag
: g LoadCarryFlag

LoadZeroFlag

Bbar

XOR

OR

AND

Drive

Load

Load

Load

Load

ALU2b * ALU1b * ALUCb

ALU2b * ALU1b * ALUO

ALU3b * ALU2 + ALU2b * ALU1b
ALU3 * ALU2

ALU3b * ALU2b * ALUO

ALU3b * ALU2b * ALUO

ALU3b * ALU1b * ALUOb

ALU3b * ALU1 * ALUOb

ALU3

ALU2b * ALU1 * ALUOb

ALU2 * ALU1 * ALUOb

ALU2b * ALUO

ALU2 * ALUO + ALU2 * ALU1b + ALU1 * ALUOb
ALU3 + ALU2 + ALU1 + ALUO
ALU3

ALU3

ALU3

ALU3 + ALU2b * ALUI + ALU2 * ALU1b * ALUOb

PR

L
% 4.3.6.4 ALU Flags.

t..
Ka
1
#
‘ » L]
L

SN

F

The integer ALU flags are easily obtained. Each of the

88

BTN W STl RETLLT L h i S AN C A N A S L
WL LY, () 1) N o C s o i 20 i B o M By

U .;.‘

s
AR
2 A [A
",-",n":"a"«' '-'?)
LN

B
b

LN
AR ‘.",-:_-:‘1 5
RN
ARASS D

P,
NN

s
{‘

X4
ELRK

i
15,

P

-

.
f;
'

5:‘.'
o

T AN NN)T
XN
PELL Y

- 4

r

P /51.,.\3
’ " l’

S
AR AT

:-’ 2
v

;.

U

.> "lel‘.l
A & & g
)]]
.,‘- 'r{':' Y

=

e

1

8|

r
’-‘A‘-.l L) ‘

¥ T gt (LA LU U UV N U LN LN U W U UL LA LU Y gl g b b gt gt ab. gl pu g8 oV gt b at

flags is stored in a register cell, similar to the bacic register cell designed for the register
array. The carry flag register (Figure 40) additionally requires a set/reset capability.
The Zero Flag is obtained using a multiple-input NOR gate which samples the output of
each bit of the ALU. Since the ALU assumes two's complement arithmetic, the Negative
Flag is the output of the ALU’s MSB. Overflow is detected when the carry-out of the
two MSBs of the ALU is not the same. Therefore, the Overflow Flag is obtained from an
XOR of these two signals. The Carry Flag is derived from the carry-out of the MSB.
For addition-type operations (add, ade, or incr), the MSB carry-out signifies ALU Carry.
However, for subtraction operations (sub, sbb, compare, or decr), the MSB carry-out
signifies Carry_bar. Therefore, the Carry Flag is derives as the XOR of the MSB carry-
out and a signal indicating a subtract- type operation (ALU2 + ALUlbar * ALUO). The

load conditions for these flags was shown in the previous section.

A
SetCyban-d#

LoadCy PQ2 PQ1

D | j CyFlag
ALUCy

ResetCy—li

Phi2bar Phitbar

Figure 40. Carry Flag Register

89

[| LIPS) LA TR AT TN LR T I N S TR N N T\
LRMEWLL O LIR N e e S D Nt ot

A
~
o

(s

N
22

> - .
¢
N

Y AN

P PO

>
7

:'.‘f;: 4

AL

ﬁ

‘s’
‘g
r’s

|

WS ARSL 4

PN

\") A,

PACAEN P |
[s
o

-

5
':’& W

1
LS
]

N .
fo'e sl W

o ' gtn L ca av v in et YW N N PNEIVEN A TURTLN VL LN . bl ‘ ‘ I ki ‘l.x’:::":;‘l
OOOO0N0
OGN

..'..Q‘...,
: ORI

iy
4.3.6.5 ALU Integer Multiply. Many integer applications will require a multi- &%

]
i ply function from the ALU. Most processors today perform the integer multiply in nt's,

‘%}&} \:!
s

software, using a series of shifts and adds. Some processors provide limited hardware

support for the software multiply, in the form of a special "add and shift" instruction o

nﬁ’\' ‘c::..'

which employs Booth’s modified algorithm to halve the number of adds required. a—

2 . SR

This approach is desirable if multiplies are required infrequently. However, if the "-.r: N

.:;\::\.::-.

application’s algorithm requires frequent multiplies, further hardware support is war- ,-:.';-;:::

5 ranted. A hardware multiplier can perform the multiply in less than 100 ns. A -.;’,.{)_“h
A

B - Y

N hardware multiplier has therefore been designed for the ASP architecture. This integer -':::.; "

L A
%
'l }

multiplier iS incorporated into the floating point multiplier which is described in Appen- ;'f:;: N

f\ dix A. the multiplier will multiply two 24-bit integers, producing either a 24-bit or 48- :‘:"-.‘,’—

) AN

< bit product. The main multiplier array employs Booth’s modified algorithm in a Wallace -;:J:i

o -\--\"-

tree structure to provide an integer multiply time of less than 75 ns. “‘.’:'.:.":.'

3 | S

ey 4.3.7 Floating Point Hardware. The ASP architecture’s primary hardware Lot

) :ﬁ&&

support for floating point data is in the form of a floating point adder and multiplier. P sl

Both the adder and the multiplier perform floating point calculations based on the IEEE ?.'E:.i::."-:

;:‘:: standard floating point format [IEE85]. The design of the floating point multiplier, :E_.%E:.

> which has been implemented and tested, is described in detail in Appendix A. ‘f‘i‘.‘xi\

Design of the floating point adder was initiated as a EE695 class project during the Q;-::?:

& Winter 1987 quarter [God87]. Design goals for the adder was a 50 ns add time, accom- :_-.'L_'E'..ﬁ
ach

[{

plished within a 2000 X 3000 lambda area. Since the ASP integer hardware is designed

DNEATA
e

. . . ‘.' \ ..
for a 50 ns clock cycle, it would be impractical to drive data to the adder, perform the at _")‘:

e et

-“-"\"u

. . o " P o v,
t:;_ floating point addition, and return the result to the register array within one clock cycle. N :.&
L {
The floating point addition will thus require two clock cycles. The data will be latched RAEAR

(¢

{‘

JsTsla"

90 .-‘\-.-,'

[$
;)
a

ERg)
3 v
Ry ﬁl"

(t(l.’\{‘.{ _ '_5.’;_-

. F' . -."-.‘ ".‘;‘;/\('1"-..\'

P

)‘
M

ey
LA

-

into input registers during the first clock cycle and the result will be available during the

subsequent clock cycle.

The architecture of the floating point adder logically divides into two sections: the
exponent section and the mantissa section. Figure 41 shows the design of the exponent
section. The first step in the exponent section is to subtract the two exponents to deter-
mine which is greater. The two’s complement circuitry ensures that the result is in
signed-magnitude form. This signed-magnitude result is passed to the mantissa to indi-
cate which mantissa should be denormalized and how far to shift this mantissa. The
larger of the two exponents is then gated to the renormalization adder. If renormaliza-
tion is required after the mantissa addition, the exponent is added to the renormalization

amount to determine the correct exponent to output.

The mantissa section (Figure 42) must await the exponent comparison before it can
begin processing. This comparison tells the mantissa section which mantissa to gate into
the barrel shifter and how far it must be shifted for denormalization. After the proper
mantissa has been denormalized, a 25-bit full adder will either add or subtract the
mantissas, dependent upon the two sign bits. A good description of the
addition/subtraction algorithm for signed magnitude numbers can be found in [Man82.
The output of the adder is then converted back to signed-magnitude format and tested
for overflow or leading zeros, either of which would require renormalization. If renormali-
zation is required, the amount is passed to the exponent section and the mantissa is
renormalized via a shifter. Contradictory to [God87], the shift will not always be left,

since in the case of overflow the mantissa will have to be shifted one right.

The critical timing path through the floating point adder is through the exponent

difference circuitry, then through mantissa denormalization, through mantissa addition,

91

LS

BB

,

%

CA Ay
K

.{5
.;?
PR

“sang Py
L o
£ L

‘I.

"

Y
~{
!.J'

(ALY
"
(&

AP

RSN
T
% ‘v""..n _‘l 4
AN

oN

1 'l .
~
ik
)\{‘.

7z
DN

Py
-~
5

b

»

<
P

..’t‘
pL

5

Ny

'z

£

)
L

: ' }
'y ¥
:‘

[4
s

S5

LRSS

r 4
MY
sfrvas

v “"’.'.1, -" = /)

“a 08’ -
N "';:;:1.
LTI
,A:L'.L'l:‘.

5
."
4o a_ A

2

A
u

ﬁ
v

L4

Exponent A Exponent B

A8

X

l

Cyln

9-Bit Adder (Compare) &

1

To
» Mantissa

Convert to Sign Mag.

VK

/ 5

'y

Exponent Select

Section

Renorm

!

Renormalization
Adder

Exponent Out

Amount
from
Mantissa
Section

Figure 41. Exponent Calculation for Floating Point Adder

T RS SR S e A S

0_
.:‘|

.':::.

RRCH RO

‘y
7l
’!
[t
'f:.'z_:'
|
ol
.S
L

’.
‘7,

5
g
‘.

R

A
/

~ Ny
P,
o
’ l.

%5

"
"y
g, 4
P 4 n’”
-":“‘v"
f F

X

2.4,
)

XX

7

Ny
(XS
(%

5

o SR
’l Ve) :
R

‘_‘ A *

. U >y

WA

.,' N [y
. ’

e
o
o

.I
r

-.";.
A

5
1]
RS
'l .' -
(4
<,
P
' g

l."
PO
.-F‘

e

[]
[4

Y,
5

o>
[}
.

‘—',f
"

.
i
,o
7

A

Py

r

Mantissa A Mantissa B

¢ J.

Sign of .
Exponent — ™ Mantissa Select
Compare
23 A 23
Denorm
?;gmunt Denorm Denormalization Shifter
D . -
Exponent} Decode (Right Shift)
A 23
24
Y
Pass / Invert Pass / Invert
/f 24 /¢’ 23
Mantissa Adder <— CylIn
/{ 25
iﬁ,ﬁ’gﬂﬁ} Denorm <—] Conversion to Two’s Comp
to - ——— ¢
Exponent
Section Detect
—
Renormalization Shifter

/tzs

Mantissa Out

Figure 42. Mantissa Calculation for Floating Point Adder

"v.-
S

Sy

A

s
.. " ﬁ

)

AR
A

s
il
.)

-y
1]
«
o

| .
:'j
£ | A

-~ -~

L N

Ty
s‘l'
[

[8
..I
Al

[

overflow/leading zero detection, and finally through the exponent renormalization adder.
Keys to the adder speed will be fast adders, barrel shifters, and, maybe most impor-

tantly, fast encoding/decoding of shift-amount vectors.

Detailed design and implementation of the floating point adder were beyond the

scope of this thesis.

4.3.8 Special-Purpose Arithmetic Hardware. [t would be inane to assume
that all ASP applications could be implemented efficiently with merely an adder and a
multiplier. However, it would also be impractical to attempt to provide a full hardware
implementation to all possible operations. The ASP architecture provides a simple solu-
tion to this problem. Numeric methods, such as the Newton-Raphson approach, have
been developed to calculate most conceivable operations using convergence algorithms.
For an in-depth analysis at convergence algorithms, see [Bai87]. A corﬁmon characteris-
tic of all convergence algorithms is that they converge much more rapidly in the initial
"guess" is close to the actual solution. For example, an algorithm which calculates a
result with 32-bit precision might require only 3-4 iterations to converge from a 4-bit
"seed", but might require 8-10 iterations to converge if no seed is provided. In fact,
many algorithms require that the initial guess be within certain limits for the algorithm

to converge.

The ASP architecture supports these numeric methods by providing allowing a seed
to be inserted into the datapath. The seed is gated onto the datapath in a manner simi-
lar to literal insertion from the XROM. In this case, the addressing for the seed is
received from the input data which is driven onto the A Bus. For example if the opera-
tion "1/1" is required, "z" is driven onto the A Bus and acts as the address of a ROM or

PLA which contains the initial guess at "1/z". The output of the lookup table ROM,/PLA

94

,-
@

\

I W
3, ‘_9‘
N
vy
; '

1o
WX
bl
y -"(
2 0 !
]
5 M %
-
st

RN

PS4
AN S
e N
vl"l‘ .

3t
uf-.':\'_s)

»"sﬁ
o]
X
] 'I}
P
1]

7

g

‘. I"'

X :’-.""’
Jp

Il
LS
P
e Y
l:” {

‘.’ ¥
ol PR

S
ﬂl

t,
l' 5 (5“‘:
s,
ya
29
oy
S

L 2% §
5
o
-
&

Pg

“‘y
P
:

yf

7’

)

5

ir
é.
2
o

2
',{'. g
2

N

8
Z

2

h)

AL
'} N

-

z
[4

&
[&

is gated onto the C Bus, from which it can be stored in any register. The size of the
lookup table (both number of words and the number of bits to be inserted) is determined
by analysis of the convergence algorithm. Simulation of the algorithm in a HOL will
determine the number of iterations required based on various seed sizes and accuracy

required.

Once the size of the lookup table is known, the table can easily be implemented
using a ROM or PLA. In general, a PLA is only practical for small lookup tables (32
words or less). The PLA can quickly be laid out using the standard PLA cells from the
AFIT library. For larger tables, the XROM Optimizer can be used to automatically lay

out the table.

95

< N

Y N " " e A" N " " QT u Tl g ® Lo
\.,."\.,\. w'_'.f\ ‘.f\'\.\"- RS

.
LSRN

oo

.
.
»
I
P
. [}
v e

P
D
tatata’al

NANAS

RS
h‘: "' ." »
K,

bt
s:'j

‘.’.:('l'
P A
NN

Py

ey
Pl g
Y
2P

.
.
2
a
'3
Py
LA

X
b

.
LY
-.r‘!

D

s
S
LN

'l

- %
Py
Ny
'L“_’\.

a
{L

]

.t
i

el
7 Pt
P
¥ .'J'

N 1y
LI A)

L4
»

“y

- <, *
P
4y 4 &

X~

AW
-
»
a8,

»
a ‘.l .’l {L'

h
A

X
7

o
1) S’

- »
e

R

q-s_ﬁﬁ
P
s‘l
S;' AR

2n B
. Pt

[
" A
L

.I ‘l
Ay
N

e
wWhh!

o et g~ ata B 4% sv evs &% at wtl g5 n'a RV0 ta gt st oN. o aiu a2 doo ato d¢o 8V, 8ty g0 Aty gt ' gbs gl gt

CHAPTER 5

VLSI Implementation

5.1 Introduction

In order to verify the macrocells that were developed for the ASP design library, a
prototype ASP design should to be fabricated. This prototype would verify not only the
functional correctness of the macrocells, but will also provide data on the maximum clock
frequency that the hardware will support. Two approaches were considered for the pro-
totype ASP: applying the ASP architecture to an actual application or building a chip

with the microcode optimized for testing. Since the primary purpose of the prototype

N

S
Rl
R

L.

g

[ACN e
i
ASP was to verify the hardware, the decision was made to implement a chip which con- RSN
"\.').'- ‘v.‘_
tained microcode specifically written to exercise the ASP hardware. Implementation of an e ___
SN
actual application would likely not provide full microcode capabilities to test all func- &: \J'l'-r‘ N
: b:\f‘:k
tions. .\z\ft\": N
i v
1 H v*r-r!r .,
Several macrocells from the ASP library have already been fabricated. The AFIT -}.-'\‘.r:‘r:.r%
RN N AT
TN,
XROM is being thoroughly tested with a separate XROM chip which was implemented ;{-::;::::-‘-:{
o (_.-.‘
Mo
for the VLSI Design course (EENG695) during the Winter 87 quarter. This chip contains o "":"*L‘
four different XROMs of size 12K, 24K, 48K, and 72K, which contain lookup table data _-:-.a:a\:\:-;‘
SASLSARCREN
. " S
for several mathematical functions. The XROM chip will verify access times for different ::‘_": ::::_‘:\:
BTN
size XROMs. Additionally, the IEEE floating point multiplier (described in Appendix A) "o
ARG A A AN
. P AN
was implemented as a separate chip. It will verify the functional correctness and perfor- NN
- \' - [
- SRR
mance of the multiplier. PRt
> f\\n“)‘i“u
.] {
-’:_- o, . g
- °
96 -_.,
7
PSS I
O R O R R R R R A N R PO ORI O N IR R RS

e
n
N
G ThA
AN
: : . "":Q W
has not been completed, the ASP prototype processor will be an integer-only architec- bt !-- ot

At K

Since the multiplier is being tested separately, and the IEEE floating point adder

. . . LA,
ture. The ASP datapath macrocells were designed such that inclusion or exclusion of the :::%‘:ﬂ-,
W AN
. . . , AN
floating point macrocells would not impact the operation of other macrocells (other than S, "'?‘)

an increase in capacitance on the data busses). Thus, testing of the ASP architecture

r

~
. . - 3 l\

without the floating point macrocells will provide an accurate gauge of the ASP capabili- RN
~

.\t
b

»’"'\ 3

-

ties. : -

"I‘..'
<
Ps

The prototype processor is designed for a clock frequency of 20 MHz. Since the chip
is using precharged busses, approximately 40ns of the 50ns clock clock cycle is available
to drive the data from the registers, through the ALU or shifter, and back to the regis-

ters.

5.2 Hardware Implementation

5.2.1 Floorplan. The prototype ASP chip was implemented as a 24-bit
integer processor. Figure 43 shows a floorplan diagram of the prototype chip, showing
the pinout and approximate relative sizes of the major subsections. The ASP layout was
designed to fit in a 64-pin 7900 X 9200 micron package. The pinout of the prototype

chip provides the following signals:

8 - Vdd /GND b CORATALAS
5 - Clock (PQ1, PQ2, TestPQl, TestPQ2, Precharge) :-P:f".’f::f:: Y {‘
24 - Data (bi-directional) DO
. "’\"\'\“ N

10 - Program Counter output .:::\:.\-‘.,:A: ~
1 - Branch Condition output F,_!:'ﬂﬁ'__t',',\
1 - Chip Reset [[
4 - Flags output -,:.r__:.-_':.-,::_..'ﬁ
DA AR

4 - Handshaking to Host TR
4 - Testability pins \';:.:'u’:.'\'\
2-8 AR
" Spare AREIRA
""""""" . L) ¢
63 - Total Pins (one pin left free for substrate contact) ST
: :(-::.r:.-.:t'.:.-:.:

NN,

AL NN -

97 RO

-_'.& ',_;.r.;z\‘(.‘.r__.'\f,.f\,-\.-_..r{.-,‘- X ._.-__ WA

5.2.2 Control Hardware. The control hardware will vary little between
different ASP applications. The prototype control section contains a 13K-bit XROM,
organized as 256 words of 52 bits each. Although the prototype onlv requires an 8-bit
program counter and a three-deep subroutine stack, the library microcode sequencer was
used, which provides a 10-bit counter and 7-word stack. Only 8 of the 32 possikle

branch conditions were needed.

5.2.3 Datapath Hardware. The prototype datapath is 24 bits wide. The
datapath provides 15 general-purpose registers in the register array, requiring only simple
NAND type decoders. A single I/O channel is provided, consisting of an address and a
data register. The I/O channel provides 4-line handshaking with a host, but no memory
interface was implemented. In order to free pins for testability, the address register out-
put is not driven to output pads. The other source of data to the datapath is provided
by the literal insertion hardware. Since it is impractical to insert 24 bits in one cycle, 12
bits can be inserted and the remaining 12 bits can collectively be set to zerc or left at
one. Arithmetic processing is provided by a barrel shifter and integer ALU. A 24 X 24
barrel shifter is employed, which provides circular shift. The 24-bit integer ALU was
easily implemented from library cells, using carry-select stages of 4-4-5-5-6 to provide the

required width.

5.2.4 Hardware Design for Testability. The primary goals of design for testa-
bility are controllability, testability, and predictability [Fuj85]. Controllability is the
ability to drive the inputs of the hardware to a known state. Observability is the ability

to "see” the output of the hardware. Predictability is concerned with driving the

hardware so that testing can begin at a known state of the hardware.

98

v iy A IS IV 2N %) IR I TR R T Pl L YR TATIT NI N N A NN VNN AN e
‘t’.‘\‘!‘t‘:‘\'&'l\ (A v ‘? v ‘- v 8 (|l‘0 ‘ “l‘ A * .r X NN . Fe, .

A Pty Ui Uy Rl a0 5.0 V0%

[N
@

AA
o7

Ll
x
Ly
2ir
Ll 55N
& -

5
A
<

".’-.‘-.4
AR
Ry

[AT e PR
f..[.:’. 'o' "."slﬁl
CY 00
‘ Pl
| a o
% 5,- > }.‘J'I
{ ;‘ ‘h‘, e iiid

o« of £
“'A."\::":u ’2; ol
W

‘{’\Jr
) >

fﬁ"ﬁ' [N LY
/

F s

‘(L «

p P AHs
AN,

=

CF A
oL 2]
et

A
z

1, 4
4'/)_-'

[l
NN
v

“»
e
. " :'

Ay
I 4

-‘. ls-_.-

5

"S‘“:’""
SRR
'-5{'; 2t
SN
L ACS

[4
5

VAN
S
$

-
~
.

oAl “. @

PN
. .
D "‘.l' " L

L

o
A4 °

P
[
T S

]
LA A A
-I. .

SN

- »
s:-.' (A%
sA
&I\'

v o4
SN

5 > vl BxX e v s s s .rvuv Pt Pt e 7 ® Perererd AR Y]
m ; \.ﬂ.-..‘ ; n.h s .v\.“...”bf..w 5 .“ :N..\...\\.a”./..a....\;_ . a&..u%V. _w........\..xp...“\...-\-m . .m......x..\..s.... .m... , WAL,
1 . M g & > d] 'y A o x Y ---)h- h ForalSh [A nl- o -f-f-*.h'-'.?-
. X LRI B RN B GAA L R AT SRS b A AT S i XK AN
NS * 7 SARAT B I .r.wvx..s..ﬂ..»..\w @ IARRIY of M\..\..”N\ff.“ o,y ‘% \...u oL, \....,.. Y RGN LRI
d i~ 2d [4 Ll b o - A X d L nf o | '.'.-.-.-] [l o 9N e L Dy o RS
£ S A “\11 Sl \ff)f-‘. If-.r}lf B, P A A Ye'slee e AR)
et A o N P A u " 2 4 A SRR
LA A= & 4 &Lm\...y...mv. .ax.... R A .f...,r..a.f..r .a...- K .vn.v ‘i ﬁ.a..... e T A N RIS I SARRRRS MANAAA

|48

L= = o
[as] ‘,
g & L
w w o
w L |
ER TIL. Ve
w = .\L
K

A

AI\..

&

...h.h

By

Shift

99

Prototype ASP Floorplan

Datapath
Pipeline Reg

Control Bus
Microcode Sequencer

Registers

Figure 43.

/O

DATAI12
DATA13
DATA14
DATA1S
DATA16
DATA17
DATA18
DATA19
DATA22

N
Predictability is easily provided in the ASP prototype. A master "Reset” input to ""i(:.-
the chip is provided, which resets the value of the program counter to zero. The micro-
o . . . AT

code is written *~ begin at Word O. It is not necessary to reset the datapath registers, N o
since the microcode will not use the value of a register until the register has been loaded. ::;:-J‘S.' ML LN

The only other storage circuit that requires care are the flag registers. Since they are not

reset upon chip reset, the microcode should not attempt any conditional branches based NN
“YalaaL
N
on these flags until they are set by an arithmetic operation. ._::.;_':::_::.r X
- e ®
Controllability and observability involve not merely the ASP prototype as a whole, NIRRT
:\ﬁ:‘:\"g*x .
SO LA B Ny
but also the ability to test subsections of the architecture. Controllability is provided to ;:::,::::.\5.
';Q"'\fx"\"t"
the ASP control section via chip reset and the conditional datapath load. Controllability e X .'n!:!
®
of the control section involves the ability to drive the program counter to a desired value. ';\.’_-' N ::'_;
.‘ y .l -\ £
The chip reset obviously allows the tester to drive the program counter to zero. The con- :::" : :"::
- -:j:
< W
ditional datapath load allows the tester to set the program counter to any value desired, - ® ahe
. . : . L : Sy
by loading this value into the data register, driving it onto the A bus, and then executing S .).‘\i"
-V.t\?".r:;:
.\i“"‘.“ L.
a conditional datapath load. The ability to set the program counter to any value allows UL

b 2 3
P X4
5
22
5
Ay

the designer to write microcode test routines and then cause the hardware to execute

them if necessary.

Observability of the control section is provided in several ways. The value of the

program counter is driven directly to output pads, so that the tester can easily track the

state of the hardware and progress of the microcode. To provide further observability of f:: :‘\,::,-.:
_-‘. .,,:: _,.:.-: _'.:: A
the microcode sequencer, the "branch condition” output of the branch multiplexer is LN
"*Q BRI
driven to an output pad. This will allow the tester to better isolate any problems encoun- e ‘
tered with program branches. The control section also provides observability of the :_\':':.' ‘ :

actual control signals which are produced by the XROM. This is accomplished using a

100

BRSO AU AN N A AT AR AT REAN X

~ L S oy,
R T T

N

o

PR TR R I T N T I U U RN R R A KN AR K AN R R N ERY RN RLU O g a0a° 0p ala o¥a atp 202"

pipeline register which is modified for testability.

The ASP prototype has a 52-bit control word. Since it is impractical to connect
each of these control signals to an output for observability, the pipeline register is
reconfigured as a shift register. Figure 44 shows the design of the modified pipeline regis-
ter cell. The MSFF is altered so that it can load from one of two sources, dependent
upon the value of the Test pin. When the Test signal is low, the pipeline register contin-
ues to function normally, delaying the XROM output one clock cycle. When Test is
high, however, the pipeline register loads the value which was previously stored on the
adjacent register. In this manner the entire microcode control word can be shifted
through the pipeline register. The shift-in and shift-out to the pipe are connected

directly to an input and an output pad. By connecting the shift-in pad to the shift-out

To Next
Pipeline
Register
Testbar
From
XROM'__IH<|
Senseamps TestPQ2 TestPQ1
[
To
Chip
Test
Phi2bar Philbar
From
Adjacent
Pipeline
Register

Figure 44. Pipeline Register Modified for Testability

101

>

Y &
FY NN
PPLE
PR
; "f,". .
S g

SII >
&= =
'-

R
U4

N
” o
h 3
£
A

e Y
'd

"A

v

L)

L

A.,{;:o '.
It

<%
‘.'-

=_w

-

\"{’V
b
SREE

Yy Ay

2
<

=,
Pg.v:} s

5555
o

b

2 Y

S
. ~ %
—n v

A

S®F -

,
e
T

v

b

;,5, AR
-

5

% w0
5
WY
.
A

5 W RN S0

L }\.."l N l'..~'.('.
AATCAIA
LA (A0
Wy W Y N

* .

o
l’.’-
7]

,.
Lot
[s
2
%
‘I‘- ".

a

z,:.»','z
e

»
y
vt

RSANANN

.:;.

X
‘

Py
[
17"

o %y At
Ay
NA A

"‘ "A

Pl

gt

1]
’

ﬁ’
L]

,:'

v ¢

A
3

()
g
vt".

{

*;g
A
[d
P50

&

;;:3-.'

e

e

DENER

N
.
vl

e

'\
»

>

pad, a circular shift can be accomplished, allowing the tester to observe, but not alter,
the contents of the pipeline register. Note that the PQ1 and PQ2 signals of the pipeline
register must be cycled to shift data through the pipeline. However, if these clock signals
are cycling throughout the remainder of the chip, the invalid control signals being shifted
along the pipeline will drive the rest of the chip into an invalid state. Thus, the clock
signals to the pipeline are provided by the TestPQl and TestPQ2 input signals. During
normal operation, these signals are same as the clock signals provided to the rest of the

chip. During pipeline register shifts, however, only the test clock lines are cycled.

The shiftable pipeline register also provides controllability to the datapath section
of the ASP prototype. Instead on connecting the shift-in pad of the pipeline register to
the shift-out pad (for a circular shift), a new control word can be shifted into the pipeline
via the shift-in pad. The shift-out pad can still be observed to determine the old value
of the pipeline register. Controllability over the datapath is further provided by the I;O
channel. By loading the data register with the data which he wants tested, the tester
can input the data that he wants the microcode routines to process. Observability of the
datapath is also primarily provided by the data register. The microcode loads the results
of most computations into the data register and drives them to the data pads. Thus, the
arithme.:tic results can be observed directly at the data pads, usually on the clock cycle
following the computation. Additional observability of the datapath can also be

achieved by observing the result of conditional datapath load microinstructions.

5.3 Microcode Development

For most ASP applications, the microcode is derived from a HOL description of the
algorithm. For the prototype chip, however, the microcode is used only to test the
hardware. The actual microcode for the ASP prototype is contained in Appendix F.

102

..- -
‘.:.'-:,\- e \‘\J’\'_\'r‘-l‘."\"'.

b "':
k)
¥

T ?
2

LA

PR S
'R
}"t
qu

[s

e |
5
"I‘

ALY
S
‘-.{‘. g
ISI_ 4, f"fs.f
2P

'y
Fd

.I
N
~
~
-'
K

5{\)\{

-
SAN

LA

(4

L4
\{‘c
L AR

¥
A

s
LA Y

L ﬂ"‘v’ «
IS Y
"'I‘,S

.
.
'.*.\v

P

« t: .‘-,\- \-:.‘.. . :

¢

i{®

x
.

)
a.. ... I’.
2204
o - A

»

«
(]

g
» "

P4
[4

LA AR
'
2
."..' -~
2

19,"

ll
", 3

SN A

A
455

A »
P s

5 80,0,
Y
.‘i':t{‘r)‘-. 'y
I/ oo

Ty

XK
2 s
e

PG

.,S':\ :n 1

SR ARR)

'

- l" ."

R
A

R

k4
&,
.
Y
.

L9 by

:.A‘
» l’ UJ
'-1
K L4

' s v .
."i.

-'J:‘.v' _.-'\-f\- .

Figure 45 shows a flowchart of the prototype microccde. The test microcode first tests

;
‘.'-g;-f:g‘ o
A & ‘:é' '\'

VR
oy
. the datapath. No branch instructions are used during initial datapath testing, so that ;‘
. . . . : . A A
errors in the microcode sequencer will not prevent datapath testing. First, the ability to ,\,,.:_,.:5,
NS
.) R
load data from the data pads and drive results to the data pads is tested. The data ::.-_‘.-:..-
Ly
ST
which has been loaded is then used to test each of the arithmetic functions available. In ®
g v\l A4
case an error prevents data from being loaded from data pads, the next portion of the Yy,' .n.‘
N %
microcode loads data into two registers using the literal insertion hardware. The same ;b"
Ay
arithmetic tests are again performed on this new data. .-,,.—-n
& o
" . . : . RURIAY
The next portion of the microcode tests the microcode sequencer. Conditional and :;:,,Q,.
) 'ﬁqc
unconditional jumps, calls, and returns are tested. Nested subroutines are also tested. >
e
. - AR A
o Finally, the microcode tests the conditional datapath load. Using this capability, the tes- AN
N SASCN
* ter can repeatedly load a branch address and perform the arithmetic function located at \';A'::"':
- Nt
& W]
. S
that address. This allows the ASP to perform similar to a CISC architecture, since the ° -
: . . POV
1‘_,_\ addresses the tester loads cause arithmetic microcode routines to be performed. The pro- ;: N,
} B Y
- ; \E \i
Y g Ca
- vided microcode routines allow normal ALU functions, as well as a software multiply j.-‘\v:et;-
!_i\‘c\'l:\
routine. o .
.-__.';.-_‘.-
EAC NN
o After the microcode was written, the next step was to create a translation table to ::f-‘-"-
”. ’ RAGALN
s . A
- interface the microcode to Lt. Hauser’s microcode assembler (Hau87]. Appendix D shows RN
_.- =
the fields which compose the 52-bit microcode word used by the prototype ASP. These T
e
ﬁ fields are easily recast into the format of the translation table required by the assembler ,- .::NZ:_".':
] .-_:.r\.';.-
» N I
« (Appendix E). Next, the assembler was executed, producing an integer file which was “.“"‘\
. . . . : o NN
input into the XROM Optimizer, which produced a Magic-format description of the RN
R w e
--:'\:_\::\‘1
XROM. RS

AR

s’ -~
-kt

.' .l
h
3

U] oatE s LY IWENMRENENER SR CY Y CAta AV gb, AV ty 4’ | g F ‘o g ‘a4t U 0 Lo gl g av,t l-.w"~‘qo.||"u
e '
A
. .
*a *N“‘-

By Qs :
SR
N :: "u

oy :
1

A" ¢
Ry

[
?Q'i“'-ﬁgt;"

S

Load Registers : OGOl
g ’ ffgﬂf\i?

from Pads AN
\ SR

Test ALU :-‘*.,{{-_
Functions _ e
¢ SN AT

Load Registers AN
from XROM X N

A .\
N NN
Gasal |_‘_H'.._

Test ALU Kb ON §\:
~ - J
Functions]

Test R
Microcode AR
Sequencer S .:,::‘.}-:.:.f

IS e

J‘ﬁi\;ﬂﬂﬂ
® —
S

?ﬁﬁﬂ.#z;
Execute : A LA
User 4 :.'-Z"«f-.-’-.'\.f

Command A
¢ S

Figure 45. Flowchart of Microcode for the Prototype ASP

gy
A
'I [
o
"y
.

’,

v
2

»

7/

5

Yy

104

..
A
’
.

.“' AR A
F s

;v

".

|

=

o, h)
&'3{
(?‘
_&'.
}‘}.
RN
Pl
LY

a
kS
Ed

a

Py

- N o S e gt . » LR P o« 2 L g
B R I P e A A St AR A

. .
ﬂ".lv“-\“;"‘al".’! |'.‘-.‘..| A WLY

5.4 Design Verification

The first step in verifying the design was to ensure the circuit was laid out in accor-
dance with established design rules. Magic’s built-in design rule checker (DRC) capabil-
ity makes this step trivial. Most errors were caught immediately during layout. Any
unnoticed errors (perhaps generated by automatic layout tools such as the XROM
" Optimizer) can. be detected by asking Magic to re-check the entire circuit. An even
quicker way to determine if errors exist in any of the Magic files was to perform the Unix

command “fgrep error *.mag" upon the directories containing the design.

The next verification step was to check the design for two insidious errors which
Magic does not check for: "floating wells" and zener diodes. If a P-well is not grounded,
or an N-well is not tied to Vdd, the circuit will not work properly. Likewise, if a "well
contact” is shorted to a node which is supposed to contain data, a zener diode is formed
and the circuit will not perform as desired. Techniques have been developed to identify

problems of these types, using Unix script files and a modified Magic technology file.

After design errors have been eliminated, the next step was to output the circuit

description from Magic into the CalTech Intermediate Form (CIF), which, like Magic.
describes the circuit as a series of rectangles on different layers. The circuit extraction
tool, Mextra (Manhattan Circuit Extractor), can then process this CIF file to create a
transistor-level description of the circuit. Mextra outputs the circuit description in the
SIM format, which is a listing of the transistors and the capacitance of the nodes in the
circuit. Additionally, Mextra outputs several other files which are very useful in debug-
ging the circuit: the Nodes file, the Alias file, and the Log file. The Nodes file contains a
listing of all of the nodes in the circuit. The Alias file provides a list of all nodes in the

circuit which are logically shorted together. The infamous "GND-Vdd" short is a sure

105

Retlytgy
7
Wt

vn"
N
» - ‘—‘
[]
‘?“.-:.-:i,:q
o

g i':*

o
0
[

ﬁ
LY XX
: '
e
\ ox)

2
o
~.:,\

b
Ly

’
Ky

4
‘l

5
l,

L

}& ’\-

3

h
b e s

&
N A
':"1'
'~ l(a
By

VKN
]

C g
1

L LY
\;.
”’

)
)

. @
%

l-l
vy
2
4 &
'I
%
A

N
"-.' <
‘r‘r, g

, gy
Y .:,s'.-'
KA
Al
.‘I ..I .
OANPRE,

24
L}
&
.
5} R EXA

‘Y
PO
Al
e
5
e

RENTN
PP
"'i

S Yo

.‘-
2
- ::-’.'

'A
Ll
U'd

oy
S-'-‘

.
5

R)p)
:
£

A d
;NN
.l
Ay
[y
e

.
e
1]
Sl
A A
3

Ay
'S
a, =,

}\\
P A
LA

s
& __,.Q

)
o LA
»
NN
\n"{-
N

Y 8
5
2N

%
.A

e,

2],

270,
‘n,‘,
“‘.

l'l
oo

i
l.}‘.

’
(9N
<

é?
7

-.1.
]

s
e
‘-f-.’&

FPLLS
Ik
‘i']
" & -
L]
PXNAN

.".':J
2710

‘ ‘.:‘-.

L"‘- ‘u

5
R ALh

f

Y

.
]
)

4 4
A "
.’I-'c'.
1

"'
ay 4
T

NG
“~
YA
Y
Y

vy

'l
1 ""‘I
o
’
L S

indication that the layout contains errors. The Log file provides a list of labeling incon-

sistencies which Mextra discovered during extraction. For example, the Log file identifies
any label which is attached to two nodes which are not logically connected. This is often
a sign that the connection of the two nodes was overlooked. Prior to any further circuit

verification, all entries in the Log and Alias files must be either explained or corrected.

The next verification tool applied was Cstat. This tool inputs the circuit descrip-
tion in the SIM format and performs connectivity checks upon the circuit. The most
useful output of Cstat is a list of all nodes in the circuit which cannot be set to 0/1,
whose value cannot be effected by the inputs, or whose value cannot effect the outputs.
Obviously, the designer has to question the function of any node which cannot effect the
output of the circuit. This tool often identifies entire sections of the circuit which have

been hooked up improperly.

When all Cstat anomalies have been explained, Stove can be run on the SIM file.
Stove, which was developed at AFIT, extracts higher-level circuit elements from the SIM
file’s transistor description. For example, Stove identifies inverters, t-gates, and logic
gates (AND, OR, NAND, NOR, etc). The output of Stove can be useful in several ways.
First, if the actual count of structures extracted does not correspond to the number
designed, a problem may exist. Second, Stove provides a listing of all of the transistors
which it failed to extract to a higher structure. Examination of this listing often reveals
layout errors. Finally, Stove uses the Nofeed and Fixrom tools to produce the FIX file, a
modified description of the circuit in the SIM format which is more compatible with
Esim, the switch-level simulator. A detailed description of Stove is located at Appendix

B.

106

" .\;-f‘gf G q#._f'-r.‘,r\a o N

..'
"
NS

X "]
P J'J'i“g
L
e
{

o
b8
* 7

J O S

. C'I'
l-l'.
Rk
XA

2
.7

".ll

a2

P
" l.

o5
vy

A
PR
.

o
2N
". .'-
-

.
P?t:‘.')
XX

-

"
-

A

ST

e e S I e)
st e,
OO AL

Y
W

£

Nofeed and Fixrom are routines which correct deficiencies in Esim, allowing it to
correctly simulate the ASP architecture. Nofeed identifies and removes the feedback
loops from MSFFs, converting them to dynamic flip-flops. Although static flip-flops are
desirable for the actual circuit, Esim cannot simulate them properly. Fixrom modifies

two portions of the XROM circuitry to make it compatible with Esim:
1) The main XROM storage cell is modified to eliminate "fighting” on the drain.

2) A static pulldown inverter in the senseamps is converted into a standard CMOS

inverter which Esim is able to simulate.

See Appendix B for a further description of Nofeed and Fixrom.

Once the FIX file has been obtained, the circuit can then be simulated using Esim.
The entire ASP chip was simulated "pad-to-pad”, which means that inputs to the simula-
tion were only made at the input pads and the simulation results were examined at the
outputs. Simulation using Esim is an iterative process, in which simulation is performed,
the circuit corrected, the CAD tools are rerun, and the process is repeated until the
correct results are obtained. The ASP prototype was completely verified with Esim. The
entire microcode was stepped through, one clock cycle at a time, verifying proper perfor-

mance and yielding high confidence in the circuit which was fabricated.

The process described above for the ASP prototype was also followed to verify the
design of the floating point multiplier. The multiplier was simulated "pad-to-pad” prior

to fabrication and showed accurate performance.

107

A

PR

Ty

::-."'\a
N
IS\
\-\rs

17

A
N

e
S

(.- ... ':
'

oY

&

%

.
£

]

,o
P

Y
-
I

.
Ay %

.,
AN

s
[

.Il ll (N
N
(AL

P .'/

3
“

%

s v

5.5 Fabrication

The completed ASP prototype chip will be fabricated using a 3 micron dual-metal
P-well CMOS process. For an explanation of this process, refer to [Wes85|. Fabrication
will be provided through the MOS Implementation Service (MOSIS). MOSIS acts as an
interface between designers at universities and the actual fabrication facilities {Fre86].
The chip fabrication was funded by the Defense Advanced Research Projects Agency
(DARPA). MOSIS requires that the design be submitted in the CIF format. Communi-

cation with MOSIS and submittal of the CIF description are accomplished via Arpanet.

The IEEE floating point multiplier (described in Appendix A) was also fabricated
through MOSIS. It used a 2 micron N-well CMOS process. Fabrication of the multiplier

required approximately 12 weeks.

5.8 Testing

5.8.1 ASP Prototype Testing. The ASP prototype chip has been completed,
but has not yet been fabricated. Testing of the chip will be accomplished as part of a
follow-on thesis or as part of the EE795 course during the Fall 88 quarter. This docu-

ment, other circuit notes, and the Magic layout will be available to aid testing.

5.8.2 Multiplier Testing. The floating point multiplier chip has been received
from MOSIS and is currently undergoing functional, performance, and parametric test-
ing. The primary test goals are to verify the functionality of the multiplier and to deter-
mine its maximum operating frequency (minimum multiply time). Final testing results
on the floating point multiplier were not available at the time of this writing, but will be

included in {Jon87}.

108

e et

[

f:,'_\ o
P

4

Lol

b
A

h]

s
LY 5‘5
o N

(S

.
r

L
48
AR

A

NI
-
4 A

l' &
.

ChA AN
.‘.

*y

P

o&w
o
~

2
-aﬁ
%

-.
'1

7, 4
g

-
)

A
.\.’ij:.\::sj
SANGNGNNY

2]
1
>

A
LN,

g

5
XK
T

i
57

s
s
}%
&
£
13

g
AN

f

e

@ J
EATUA |

CHAPTER 6

Application of the Rapid Prototyping Methodology

6.1 Introduction

The preceding chapters have described the design of a general-purpose architecture
which can be modified to solve a wide variety of problems. This chapter outlines the
methodology to rapidly prototype an application specific processor using this general-
purpose architecture. The methodology description is followed by case studies of three

applications to which this methodology has been applied.

6.2 The Rapid Prototyping Methodology

Customizing the general-purpose ASP architecture to a particular application
requires selection of the proper macrocells from the ASP cell library and development of
a customized microcode ROM. The rapid prototyping methodology requires the follow-

ing steps:

1) The first step in the rapid prototyping methodology is to fully define the given
application in algorithmic form. The algorithm to solve the problem should be
described in terms of some high-order language (HOL). An excellent language to use
in describing the problem algorithm would be the VLSI/VHSIC Hardware Description
Language (VHDL). VHDL can be used to describe both the hardware of the ASP and
the algorithm which will be stored in the microcode. During this phase of ASP
development, a behavioral description of the algorithm is developed. VHDL will be

used throughout the ASP design cycle.

109

O . R RN R L I
) AN AR AR LS O AR LA

e

®
k‘:‘:"'r 3

. \-..: :::: :: »
NNl
L)

h

3
.
;,j

.l
554555

Py
AN

»
NN
p)
v

s
.

Ny
s

5'{'.
2
LS

......,
SI:I. AR
”
W
(])' '.
SO
LA AP

.]_ & {'

"2
0
%

%

0

)

X :-'.'-‘"J‘

AR
. 5’ ‘.

LRy

Y hY
% % %
AR

by

l' !‘ ‘. I

‘.II
/
pp

L/

PSS
4
A
/)

»

o
Y,

4
.

% 5"
. ‘x
S
«a
o "
Ri's

N
S S
-® - - -

> e .

A ~
N AN
o AR
.’.-.-'-'l
A
AV

2) The next step in the rapid prototyping methodology is to verify that the defined

algorithm will perform as required. The VHDL behavioral description of the algo-
rithm should be simulated to verify that the algorithm is correct. Since this
behavioral description will serve as the model for microcode development, it is critical

that the VHDL model be accurate.

3) Once the application has been described algorithmically, the next step is to
analyze the computational requirements of the algorithm. The goal in this step is to
determine what types of operations are required by the algorithm, so that the
appropriate hardware can be applied to provide an efficient, high-performance solu-
tion. The designer should determine the exact operations that the algorithm requires
and their frequency of occurrence. He should examine in particular the iterative
structure of the algorithm. Instructions which occur outside the iterative structure
are executed only once. Conversely, instructions located within nested subroutines

will be executed repetitively.

The frequency of occurrence of a particular operation will determine the approach to
providing the operation in the ASP. The more frequent an operation is used. the
more hardware support will be provided. For example, if the "floating point divide"”
operation is required by the algorithm, but it is only executed a few times, the opera-
tion might best be provided by a microcode subroutine. If the divide is required
often, a lookup table and convergence algorithm might be provided. If the divide
operation is fundamental to the algorithm, a full hardware divider might be

employed.

Additionally, examination of the algorithm will provide basic information to the

designer. The accuracy requirements and the format of the input data will determine

110

P
e
I.‘I

%
P03

P

Ly

W)
il
LA
S
KX
L8

Y

ALY
o [

e

fLL

L3
g
g7

"
1
1

54455 Y%
4

’
[d

s S
4L 5

"
Xk

o 4
55/#/.
155"
ﬂf({f?
[]
NN,

4

A
Xy

@
5
(A A A

° X
>
|

'ﬁiﬁﬂ

LY

R
LAy

Fa4
!
«
Tt "‘n
e .

RN
LS
P
PR ACH
B S ARy
7 g

‘? -
o

N L

r

Sy

s

-. “u
.\u

the required width of the data word. The subroutine depth of the algorithm will
approximate the depth of subroutine stack which will be required by the control sec-
tion of the hardware. The overall amount of code involved in the algorithm will indi-
cate the approximate length of microcode, so that the width of the micro-program
counter can ge determined. The I/O requirements of the algorithm may indicate that
addition of a second [/O path will increase the ASP performance. In this manner.
the nature of the algorithm is mapped into the hardware requirements for high-

performance solution of the problem.

4) From the requirements identified through algorithm analysis, the ASP hardware
can be fully specified. This step primarily involved selection of the proper macrocells
from the ASP library. Unique hardware requirements may require the modification
of existing macrocells or the limited design of new macrocells. A VHDL architectural
description should be developed for any new or modified macrocell (the macrocell
library should include a VHDL description of each macrocell). The ASP hardware
can then be specified using a VHDL architectural description of the interface between

the required macrocells.

5) Once the required hardware has been specified, the control signals necessary to
drive that hardware can be determined. The combination of these required control
signals will form the microword for this particular ASP application. In defining the
microword, care should be used in the orderirg of the fields within the microword.
Since the microcode assembler requires that the ordering of the mnemonics used in
the microcode be the same as the ordering in the microword, the microcode which

will be developed can be made more readable by careful ordering of the microword

111

W AT T O T

AN AN

!,
al %‘ -
e Y

T A,

P o oY o
'y % :-..'l "l‘.

s
"

i

4 ot
s
L

R AY
l..‘

s
e o]l
l. I.

5
e

NS
‘.;5-;»
£3

L} - b’

. %
’I"

:) Y &:..
X

’
)

XA
AP
P ddds
" L4 l.
S"{Ilt'c

oy -: l: 4
I'4
(s

% v e
'.-...'
IYYYX
[)
7,7,

.‘.l
.“"5 x
1"'-’,.
4

e
»
»

fields.

Additionally during this step, the mnemonics for each microword field are defined.
The purpose of this step is to create a translation table which will be used by the
microcode assembler to translate microcode mnemonics into binary representations of
each microword field. Again, careful choice of the mnemonics can greatly enhance the
readability of the microcode. A default value for each field within the microword is
also defined, to tell the assembler what value to assign to a field if no mnemonic for

this field as present in the microcode. For a description of the exact format required

for the translation table, see [Hau87)].

6) The VHDL behavioral description can now be translated into microcode. To
minimize the risk of translation error, the hierarchical structure of the microcode
should closely follow the structure of the VHDL algorithm, including most subroutine
calls and iterative constructs. Standard subroutines should be used to provide opera-
tions not executable in a single instruction, such as divide or trigonometric opera-
tions. Due to the time overhead required for subroutines, however, care should be
exercised not to overuse subroutines unnecessarily. The manual method now
employed for microcode translation is a tedious, error-laden process. Although no
software tools are currently available to perform this step, translation from VHDL
into microcode is an excellent application for an automated tool to significantly

enhance the rapid prototyping methodology.

7) The completed microcode can now be assembled using the microcode assembler
developed by Lt Hauser [Hau87!. The assembler requires two input files: the transla-

tion table which defines the meaning of the mnemonics used: and the microcode itself

» 'I'I'ﬁ'

[T AR AT S
e

o

[)

2

* P
o

>
%
te

AN
e
P,

-~

YY)

&, y

b .1~.' KNI

vl
’l

DA AR
5L %Y%Y :
X
Y
TS

o,

.
l’:

Cwd
WYy

A
]
.

'N'f{

A A
CAl A
[
e

% N
R

<,
['#

h
&

2
2

15:::3
®

5

‘,5 ~'l~ l~ lx I‘ :’

A
R

.-
Y

"N Y L

1, t N

w4y
-"-

O
-

LY A S
PO

-

<y

s

57
-

g
5

4<%

o .~ :l

R

AN

A A o
s""s"l.:} LY N
LR AR

%

 J

e
A
A
o
, _."_."‘.*',. Pl

A

LY

LU T S T]
e e

.l
A

z
-
»

‘a

LS

<< |

Y %

*y & "a

1Y
- 2

A 'xf.‘(
s

PR A
AR
P S
Ancs Y

The microcode assembler provides error-checking of the microcode during assembly
It produces several useful output files. The first is the assembler reference file, which
provides a listing of the microcode and the value of the actual microword fields which
were assembled from the microcode. This file is useful for locating any format errors
in the microcode and to check that the translation table is properly defined. The
second output file produced by the assembler is the "Addresses” file, which contains a
binary representation of the microcode in a format compatible for input into the
XROM Optimizer tool. A third output from the assembler is a VHDL description of
the XROM which will be developed from the assembler microcode. This VHDL

description will be used during the next phase of the rapid prototyping methodology.

8) The required hardware to provide the ASP solution to the given application is
now fully defined. The VHDL description of the XROM developed during the previ-
ous step can be combined with the macrocell descriptions specified earlier, to form a
complete VHDL architectural description of the hardware design. This proposed
hardware solution can now be simulated using the same input vectors previously used
to verify the original behavioral description of the algorithm. This simulation will
verify that the proposed design will properly meet the application’s requirements.
This step will reveal any errors made in translating the algorithm into microcode.
An iterative process of correcting the microcode, assembling it, and then simulating it

in VHDL can be employed until the design simulates properly.

8) The verified microcode is next input into the XROM Optimizer. The XROM
Optimizer will produce a implementation of the ASP microcode in an XROM micro-

code store. The Optimizer provid:s a complete description of the XROM. in the

113

5 5
4
5
<

P ARAN
b NS
I' l.\"‘
PR
h

"?,- 5-,’\’

>, AL

L4

'-(S
b3

LA

T
l. Ay 5
)
v %
A

AORLY

XA

~
AN
P
)
.
LA
S
Pl

v
3 *.;;.H

oy

x5
."

Ve

o LR R
%Y LA
..I’ffl 5‘.
L% Ta]
."-\,‘.
F4
' =
Lavh

o &

f'r'
.
' d
o
L O
55N

LY X 4
:t‘a
:(-‘
NS
n

N -.;-.

O
.

LR
“
s‘

ZIA
[/ :51 4

ey
P
g
!

& “:.’
viyig ®
¥ -,1.
r'.:'.

A

e

PACE A

(A4
»,
v

[A

1’.{.1._'1 .
v Y
AL
AR
B
(NN

»
(A4
AN
".{‘n NN
’\'\
[y

T
r's *
Y i
. rs{\‘ .I”'l _'n
- ‘\‘;. b
A 1]
o]

BT
B
A)

.A..
Jaas A

-'I,L

(S

’I

L

s{uj

¢
[4
s
Py
-..

R

27
a
P4
¢
P4

Magic format. The Magic files provide a hierarchical description of the XROM, with
the main storage arrays containing a very large number of cell instantiations. Since
Magic has difficulty with the large number of cell instantiations, Magic’s performance
can be enhanced by "flattening” the Magic description of these arrays to eliminate the
cell instantiations. Also, due to the timestamp which Magic employs for each of its

files, the entire XROM may require DRC (design-rule checking).

10) The entire design can next be implemented in Magic. [mplementation will pri-
marily involve the placement and routing of the macrocells which were previously
specified. New CAD tools being developed at the University of California at Berkeley

may soon automate this placement and routing task.

11) The implemented design is then verified using the switch-level verification pro-
cess described in Chapter 5. This verification process is an iterative process of
extracting the correcting the implementation, circuit extraction, and then simulating

the extracted transistor description using a switch-level simulator such as Esim.

12) The final step in the rapid prototyping methodology is to extract and simulate a
VHDL description of the implementation. This is made possible by the Stove toal,
which extracts higher-abstraction circuit components from a transistor description of
the circuit, and then outputs a VHDL description of the extracted circuit. This
VHDL description of the actual circuit implementation can be simulated. using the

original vectors developed to simulate the original algorithm.

This effectively closes the design loop, since the same simulation vectars which were
used to verify the original specification of the problem were also used to verify that the

actual implementation is functionally correct. The implementation is thus logically

114

WA NN A WA AT AT AT A DAY

(' -

s ‘7
P e,
Waidsse |
r{sfss\‘\'.li
LN AT

-y v NS YN

.-'1"‘-1_1_.-1

¥

X
b |

.
B A

.
% >,
RN
X ,

A AR

’ H 54

p
o
TEEARA

L Ll

0
ryi

A 1o
ol

equivalent to the specification. Closing the design loop yields a high level of confidence in AN
- . | . AR
the reliability of the completed design. VHDL was highly useful throughout the "life-
o
" :\ | Sp%e) ‘.
cycle” of the design process. It was used to define the original task, verify that the cir- _s';-j-.:’i‘;s
A e -
. :"?’:"f“z\ 8
cuit specification of the solution was correct, and then to verify that the actual imple- p\\f:ﬁft A
AN
NN
mentation was correct. e
0, .}-‘.-‘j“
SR
. . . L ol
8.3 ASP Architectures Three ASP architectures have been specified using the general- :;-:_::-Q.‘
Nt .\"\."-'
)) . \."':;\"','-\.’"-..‘)
purpose architecture developed for the rapid prototyping methodology. Two of these "o
. . S . RDATY.
architectures have been fully implemented and are ready for fabrication, while the third },\,:-.,.'_‘-,:
| | | . RIS
was specified through microcode implementation. .'-'~(?'-'_'(_C.j
.f A l’
:'.‘.&,A\J‘:"A
L]
6.3.1 Prototype Integer Processor. As described in Chapter 5, a prototype Tl
AN
. . Loy A
integer processor was developed as part of this efflort. The prototype processor was '-T:'t*:;:f
i) EAE IS
A '-“;\-"
developed concurrently with the macrocells which form the ASP architecture library. f?fa":"'-"
: s
Design and implementation of this processor required approximately 3 months. A large :w‘-':\r:f:
Al
. . : . :ﬁxtdpt
portion of this design time was due to the fact that the majority of the required macro- AT yj‘_vj\jx-
ORIASLY
_ o . _ ,\-&".’\".\‘:\
cells had not been developed prior to the beginning of implementation and had to be cus- °
P I

v

tom designed.

At the time of implementation, VHDL descriptions of the ASP macrocells had not
been written. Additionally, the VHDL environment at AFIT is still under development
As a result, the full rapid prototyping methodology was not applied to the prototype

ASP architecture and VHDL was not integrated into the design process. Nevertheless,

the prototype processor was fully verified at the switch level and shown to be function-

.
VAL 4
,‘-‘-"'-
re LS
LYY Y

(AR

ally correct. The microcode incorporated into the prototype processor was designed to "

e
e
Ve
g gy
AKX
WA

directly test the hardware and did not require translation from a HOIL..

Xy

LAYl
l", »

vl

. .'.-’ P

A

l.' ».. -‘

115

PR

.'s
LK
»

s
L4
P4
A

A
2
2

) S Vaqdy*R” v LRI RAEAL VAL . PO TR ‘-.- ., - - -,--._-_.-_'-_.-..- T _.._'._._.-_-...._.. . o - ettt
A -J\.' A V\ -. ~ '.(- \1.-. -. }- . !-..\'..-_\._\, P N P S N S N A I A A

8.3.2 PFA Controller. Concurrent with the design of the prototype processor,
Lt. Hauser developed the Prime Factor Algorithm (PFA) controller for the Winograd
Fourier Transform (WFT) project at AFIT [Hau87]. The PFA controller architecture is
responsible for controlling the three WFT processors and their associated memories, as
well as interfacing to the host processor. The system specifications require that the chip
operate at 20 MHz. The PFA controller is primarily responsible for monitoring status of

the WFT system hardware and responding to any discrepancies in their operation. [t

requires integer operations on 16-bit numbers.

The PFA was designed using the rapid prototyping methodology. Like the proto-
type processor, the PFA controller effort was unable to employ VHDL in the design pro-
cess. The PFA controller design benefited from the availability of the ASP macrocell
library. As a result, even though the complexity of the PFA controller is similar to that
of the prototype ASP, the design time for the PFA controller was reduced to two
months. The PFA controller implementation was also verified at the switch level using
Esim. The verification process for this chip was easier, since most of the macrocells used

had already been verified in the prototype ASP.

‘The available ASP library cells were adequate for the majority of the PFA
controller’s processing needs. The major exception was the PFA controller’s register
array. The ASP library provides a general-purpose register array which communicates
with a host processor via the 1/O registers. The PFA controller, however, operates under
direct control from the host processor and the host processor requires the capability of
directly reading or writing to several of the PFA controller registers. Lt. Hauser there-
fore was required to design a custom interface to the register set, which allowed direct

host control over the registers. This custom design added two weeks to the design and

116

, L
N"‘i .*.‘-. ‘
‘-*:f:-'?f_‘.*t
A AN A
TN AT A
A R
YA -~ .r"::‘
X, CATRY "

-

5

au s
1 l‘ A. "
'v.\ '3
RENEN R

>
Al

a AN

AN
e

3 [N h |

-
P

LY
L}

'y
2
v
0N

>
™
'.)\
b
b

\.‘
W
a e
R
l"ﬁ

X
[} I,‘

.
L
~ L]
.

.
l."
'y

P

. %

A
W

AN
7
4

L
S S

LRI g |

P

. '.;},]O

T
S REA
P
R
‘e fy
« ",

N

o a
5
PaCa
']

o

»

Y
Vs
'J

»

¥,

,‘/‘ e
200,09, "{
PN
SV NN) /1.
. .. ‘l ‘l .l

R i
P
AESPS
[T)

',

implementation of the PFA controller.

The microcode developed for the PFA controller was implemented directly from
flowcharts of the controller algorithm, without the use of an intermediate HOL descrip-
tion. Switch-level simulation of the chip revealed several microcoding errors, which
would have been discovered earlier had VHDL been available to the design effort. The
"microword forhat of the PFA controller was improved over the prototype ASP micro-
word, resulting in more readable microcode. Additionally, Lt. Hauser was able to use
more meaningful mnemonics which combined several microword fields into one, resulting
in even more readability. Much understanding of the microcode definition process was

gained from the development of the PFA controller microcode.

6.3.3 Kalman Filter Processor. The Kalman Filter processor is one of several
processors will be needed for the Space Surveillance effort at AFIT. As part of his thesis
research, Captain Shand has modelled the Space Surveillance system using Network 2.5,
ADAS, and VHDL. The rapid prototyping methodology was applied to the problem of
designing the processor which performs Kalman filtering (an algorithm to perform target
tracking). Initially, Captain Shand modelled the Kalman Filter processor using ADAS,
and then developed a VHDL behavioral description of the Kalman algorithm. Analysis
of the VHDL description revealed that the algorithm required 32-bit floating point opera-
tions. Floating point addition and multiplication were frequent, but floating point divi-
sion was also used widely within the inner loop of the algorithm. Further analysis
showed, however, that the divisor in the inner loop divisions was always the same.
Therefore, the divisor and its inverse (1/z) could be calculated outside the iterative struc-
ture. The algorithm could then merely multiply by the inverse during inner loop opera-

tions. The inversion operation was seldom needed and could be performed using a

117

'
’J
-
-

g
N A
P s
d e’
P s

{.‘. W

XA

“..,

LA
L3 EY

.:.'
oy
'l

b
2

(A ARL
AN
A A

5% (‘5)
&
L1
'_'1
“

" Ja'?
W

4,
l.l{
a! o

v
[N "} a

I
[)
2
R
s
X
2,

“» \,ﬁ,‘l“
| N
2%
[

A %y
XY
r‘yln"-

o i
Y
Al
2
<

¢!
:'4
[‘l.
5

NS

»

% i
27 "A‘/"::’/
«S
£
[&

"’
2

L e
(NG :
I'd
P
/s

convergence algorithm without seed (i.e. no hardware support). Kalman filtering also TN
requires the square root operation to be performed once during the algorithm. It was

also be provided by a software convergence algorithm. T

Once the algorithm was analyzed, the hardware could be specified. The standard ft::.-‘-\c.'\'-'
ASP library macrocells (floating point adder and multiplier) were sufficient to provide all . - '
required arithmetic support. From the hardware specification, the microword and micro-
code format were defined. Finally, the VHDL behavioral description of the Kalman

filtering algorithm was translated into microcode.

The application of the rapid prototyping methodology to the Kalman Filter proces-
sor was performed as a demonstration during the AFIT Association of Graduates Sympo-
sium in October 1987. Prior to the symposium, Captain Shand had completed the
VHDL behavioral description of the Kalman algorithm. In a three day period during the
symposium, the rapid prototyping methodology was applied to this application to obtain
a hardware specification of the Kalman Filter processor and the required microcode to
allow the processor to perform Kalman filtering. The ability to rapidly design a custom
application specific processor from a VHDL description of the required algorithm was well

demonstrated.

6.4 Conclusion

This chapter has described the rapid prototyping methodology developed to apply
the general-purpose ASP architecture to a specific application. The methodology relies
heavily upon the use of VHDL as a modelling and simulation tool. Extension of the
AFIT VHDL environment will greatly facilitate the development of application specific

processors. The rapid prototyping methodology has been successfully appned to three

118

O LG TN I N R Ny T R A AT AT AT AT T

YN X o N WP aE A A& LT e .n- N -y T G PR . .
(ol fn-a-—hu.(.\f.vfau ”-\\fc" ”-if-i AV’JV \f\ J\. \1. .~ -\q\ ,f\-fn\\n-\.vinr \f\if\. ”\u‘-- .\u.\-n\ ..'.s < \A PQ-» “\H-.no-\ H\f\.ﬂuﬂ f\'“lf n-f -b'-\. “ - ’
& 224 ..MZ.. e i A VYN . e NyLge
g ..w..\ O oY h%h . u ABCN o DN .v...... AL v @S ¥ ...u.a..&ww.
BT, uYy -rlv \l.-.-.h-uq AR S ..-....\..-. Sate i ", P oy '
R e S A ¥ v u\-.--n-‘ . Y .J.p.-.f_-t-‘-.nn 5N Y A
SRS ﬂ....nw.)w«.v....\...» e A R o ARk 7 PO w.’r.‘ > N N .-.
* e P ‘o PLAPL L -, .u-..-- Ty ° P2 ‘ e] v A ')
NP v ..--f.-u. .-.(.)..M-I\, \Hv\#. PAENPAST S I W R AL AR AT ... {..bn.. AR A A f\..\.. ..\ .-\. .\%\af\ s -\ufﬁu

As experience was

mplemented for fabrication.
The Kalman processor demons-

two of which have been fully i

tinued to decrease. These successful applications of the methodology demonstrate that
the capability now exists to design most custom processor architectures in less than three

The first prototype processor required approximately three months, but this time was
gained in developing custom ASP architectures, the design time for these processors con-

tration required only three days to define the processor architecture.

reduced to two months for design of the PFA controller.

different custom processors,

months.

CHAPTER 7

Conclusions/Recommendations

7.1 Conclusions

Numerous research programs within the Department of Defense require application
specific processors to perform computation and provide control. High-performance VLSI
solutions are seldom being applied to these applications, however, due to the prohibitive
time required for the design and verification of custom VLSI architectures. This effort

presents a solution to this problem.

This thesis has described the hardware and software methods required for the rapid

prototyping of application specific processors (ASPs). The methodology is based upon
the design of a general-purpose processor architecture that can be modified via microcode
to solve specific applications. The ASP architecture can be easily adapted to meet various
types of applications. The control section can be used in most applications without
modification. The XROM is automatically laid out. Each of the macrocells in the data-
path is designed using a bit-splice aﬁproach, so that the width of the datapath is easily
modified. The busses within the datapath are laid out in a regular structure, so that
macrocells fit together easily. This allows the easy addition or removal of macrocells to fit

any application.

A prototype processor, which contains the majority of the ASP hardware with the
exception of the floating point macrocells, has been impler.ented and fabricated. An

IEEE standard floating point multiplier was implemented, fabricated, and tested. The

XROM Optimizer CAD tool was modified and extended to layout XROMs in the Magic

120

AR " al gt ety Al gL AV gt gl a%. gt oV a2

L
hah Gt
HORLLEY
it Oyt
@
I~!~-'\.$-
PR
CORSLNY

! . ¥

R

i

:2".‘:4' 2.
A

Ld

I

[y

*
s

~
S

£

i,
9%
' il‘
’

e
}(.)

l‘..

L

Ay
S5
bR

L
>
i
[
?"

ot

[N
it S »
WA
%

I v -
» s

A s;s':.‘ _~.':-.:;~.' ,‘-'1 ‘
NS y'."‘a":..ﬂ 1,

P A As '
L% -.;- UL

format. The Stove program was developed to facilitate the verification process and to
close the design loop, allowing VHDL simulation of the implemented circuit. A metho-
dology was described for translating a high-order language description of the application
algorithm into microcode, which can be assembled by the microcode assembler, optim-

ized, and finally implemented in the XROM.

The methodology for rapid prototyping of application specific processors has been
successfully applied to three different applications. These test cases have demonstrated
that the rapid prototyping methodology can produce a custom processor implementation
in less than three months. The design time for future ASPs using this methodology has
thus been dramatically reduced. Using the rapid prototyping methodology, design
becomes more a problem of specifying an algorithm than a problem of designing

hardware. Transforming ideas into implementations has become a much simpler process.

Rapid prototyping of ASPs can reap rewards within education and throughout the
DoD. Ideas, which have in the past required several years to realize, can now be imple-
mented and tested within a single thesis cycle. Rapid prototyping can have a large
impact within the DoD toward the insertion of VLSI/VHSIC hardware into new projects.
The feasibility of an ASP architecture can be demonstrated quickly, so that project
managers will be more inclined toward a VLSI/VHSIC approach, rather than accepting

the degraded performance of the ofl-the-sheif approach.

7.2 Recommendations

7.2.1 ASP Library. A major portion of this effort has been the establishment
of an ASP cell library. For rapid prototyping to be possible in the future. this cell

library must be maintained. Numerous difficulties were encountered during this effort in

"

Tt » o
A AVASKY

AN WL M AT AT ‘_}"-“_-\.-“_-_-“,-_f_n\'}"-3.-".-\3_.__-:'\-\;.\

L
l-'v,':
N T]

".. WO * .'
A
l. .

P o

N
:'; '»
‘l"l‘.
LAAA

e T BN o Dot
“,"){ﬁf‘.
P XL

5 "2
Y]
LRAN

-
-
&
"\

Enlataty)
. i

)

Y
5
k3

2

PR
P
efs a

e

i

»
s
P
.
v
P

s
PP

N Ay
DA
l....

ot
*

>
s

s %2 T
8
[4

"
o'y
4

* '.f.,-'.l'
o
s
L

P
.

attempting to use existing AFIT library cells, due to the lack of maintenance and docu-
mentation. Procedures must be established for modifying or adding to the ASP library.
Most importantly, an individual should be designated to the library manager, responsible

for its proper maintenance.

7.2.2 Microcode Development Tools. The scope of this thesis did not include
the production of any software tools for microcode development. Development of these
tools would significantly enhance the rapid prototyping methodology. The microcode
assembler developed by Lt. Hauser {Hau87] is an very useful tool, but can be further
enhanced to increase flexibility, "user friendliness”, and error detection. An automated
tool for translating a HOL description of the algorithm directly into a format compatible
with the assembler would dramatically reduce the time required for microcode develop-

ment.

One lesson learned during the microcode development for the prototype ASP was
that the ordering of fields within the microword and the mnemonics used within each
field had a large impact on the readability of the microcode. In order to make the micro-
code easy to understand and debug, the mapping of the ASP hardware onto the micro-
code assembler needs further study. By standardizing the ordering of the microcode
fields and using meaningful mnemonics, the microcode would be much more understand-

able to someone not intimately familiar with the particular architecture.

7.2.3 VHDL Interface to ASPs. There is considerable interest in interfacing
VHDL with other VLSI software tools and methodologies. In Chapter 6, the usefulness of

VHDL in the rapid prototyping methodology was described. VHDL is useful throughout

the design cycle, from initial simulation of the application’s behavioral description

o ‘:J",CI o

)

N AN N

"
RPN
AR
4
A

4,

Py
F Ao

5

,;P

PN
ﬁ;l
Ay

‘nx" 2
" ;'Z"!
4% ‘:,"}.
l.l. ;

L

’2Y,
.-; i
e
N
XN

L9

Ty
Y

x{
&

A2
5

]

A

a A.l.."

Y

v
77/
l'
4
v
A AL

e
R
LY

4"{;
YA
5
0

."‘f
%l
AhNYS

L
P

[.I
o,
. ',;

e

N

."a{': .

£ ‘l" »
L)
e
Ay

I L4
A4
’.l
“{ ’
Le'e',
[}
V.2

g‘
v
M

v, LN]
2" .
e B
XA "’
s «
P A A 3
f"f.'l:'j . / {
' .‘1 .1" l‘)“).'}l.J

N
o
TV Y

B

K
-~
TNy
I.:' A
FX A

Py

jo
4l

IO
2o’
XA
RAVAP A s
i'.

Py

a_ e PNy

o'x
e %
0

&4
’E;,
s
{

i
I

Lo
(4 .- ;.,.‘J

AR

'
4 Yy

'l
5

through simulation of the implemented circuit. The development of automated tools to
further interface VHDL to the design process would be an extremely fruitful area of
research. An automated tool could take the VHDL behavioral description and generate
the required ASP microcode. This interface could be take even further by developing a
silicon compiler which converts VHDL descriptions into completed Magic layouts. This
compiler would be responsible for determining which macrocells from the ASP cell library

are required, automatically placing these cells, and finally performing the necessary signal

routing between macrocells. CAD tools already developed at the University of California

’l
.
v
L ’ i
»
"

p LS
ats

at Berkeley can provide the placement and routing aspects of the compiler. The VLSI

[4
[5D

e

PN
[4
’

designer could use VHDL to describe both the hardware and software of the application.

[
iy
L
4y &
g
[4
5%

a
A
2

P
a
’
ﬂ.'

and then simulate the performance of the described design. Following successful VVHDL

s
'/:'a
'’
o
"
7.

:
s

simulation, the architecture could then be automatically generated from the VHDL

l'
I‘.! (X4

[4
.E

s

F s

."
d LS
»
"y
o)
s
Ay

description. The ability to generate layout from a high-level description of the circuit

would allow the computer architect with little VLSI design experience to quickly take an j:'.:l_::-::'-'.:-:.'
idea from initial concept through implementation in silicon. This ability to design a cir-
cuit at the highest possible level of abstraction allows creative individuals to stay creative

rather than becoming mired in implementation details.

7.2.4 Test Vector Generation.

The use of fault simulation during the development of test vectors needs to be

further emphasized at AFIT. Often, the designer merely chooses several general cases to

test the hardware, perhaps attempting to set up some particular situation within the cir-

]
;

o*
A

N
N

%
0
)

A
.
s

% N
h)

cuit. Although the circuit may be fully simulated using these vectors, the functional

l\"
X

4 4,
P

.p‘.’ff
"\\\
Fie
f“{
)

correctness of the design has not actually been verified.

o
=
e
@

1
A
i

(. L]
r "

.
v
e
o0y,
o e
[XA

123 .

et L P L T T
[} wva . -
AL AN

The fault simulator can determine the actual fault coverage of proposed test set. as

well as identify portions of the circuit which are not being thoroughly simulated. Using
an iterative process of improving the test set and then determining the resultant fault
coverage, the designer can develop test vectors which better evaluate the functionality of
the circuit. If total (1009%) fault coverage is required. the circuit may require

modification to add further testability.

7.2.5 Computer Resources. For rapid prototyping to be effective. computer
resources must be readily available. Due to their efficiency as VLSI workstations. the
Sun workstations should continue to be dedicated to VLSI design. One or more Suns.
with memory and disk upgrades, should be purchased for dedicated VLSI use. It is
important that VLSI designers do not have to compete with other applications (such as
Interleaf or ADAS) for usage of the dedicated VLSI SUN workstations. Perhaps more
importantly, computer resources must be readily available Tor the "number crunching”
associated with circuit extraction and simulation. Severe delays were experienced in the
ASP development due to the loading on computer resources. To rapidly implement and
verify an ASP architecture, the usage of VLSI-dedicated computer resources (i.e. the
ELXSI) needs to be limited to VLSI applications , so that computation-intensive opera-

tions can be completed as rapidly as possible.

7.2.8 Prototyping Experts. One consideration involved with the rapid proto-
typing methodology is the expertise required for its efficient use. A designer who is well
familiar with the ASP macrocell library would be able to generate a custom ASP design
more rapidly .han one with little familiarity. This implies that a full-time designer will

be more effective than, perhaps, a thesis student who will use the methodology only once.

:*. -.'_-.i-. g
e
1
.r,:.- s
Pl e
-'::-F..f
RO
Lot
f\-',,'f
Lo -
a
|
t
ST
A
ARSI
ST AN
o ’
A
P
,
N
LIS
A
Ry
i
el
I:-Q:(
:
-': <
s
:.“:~
.-.:‘-
-
]
RN I N
e
c.
»
..\::
u
Qﬁ
LY
Tt
FAIIEIN
R A ACAUA S
. A NI L
RN A AENSAT
."\. 'l', \J\f\
RERSINGYS
.‘.\' - ~]
L ‘.- o, ‘-'.\
- .h{ .f ‘.\..‘:f
A A AT
, . o
IR f:f:q‘\;(_
- PG
N ~
o [

"))
§s:
a.
)
ot
o
2
o
[&
a
o
5
L
-
L
u
(=}
S
a
n
L
—
c
8
-
@
<
L
&
[]
-
[=}
@
(&)
®
-
a
=
-~
.4
E
«
b
o
el
-
o
2
n
=
(&)
a
o
o
2
e
]
c
3
[3]
—
-,

®s

ASP for DoD agencies, would be more effective using this methodology than a de-

NN
LMY 5

_f\ nc%-- N

centralized approach. Gathering VLSI design expertise to form a VLSI, VHSIC "center of

&5

excellence” would provide the continuity and synergy to create an optimal environment

WAl

for the rapid prototyping of application specific processors.

rEElS LA AL o A
\.-\vvn-.- SERAC “v f\- L LY ﬂl.o
PR AL A X A h#\..#-.\.f&nh
%.ul-. " ..-..... -y n\f.. .)\ \f\n«- Sy
¢ AR ° ﬂauzx:h e
Wy e |
AUV ».W.a y EAREAN
[]

[NN A
. AN
t-v\f..‘-\-.\. \q-\-“
B A

AL Y5 Y
\..... 7, ’,, -‘q \.-\n .

el
[|

vt)t -.--.-? o

AR op .)

I ﬁf.w!.-.. »
\..\..\..\.-\..\.-\...

PR N

e ee
AR

Ny

v
.~ \-ﬁ\d‘

ALY

.-

s

A IR
f~{\- .

PP

APPENDIX A

Floating Point Multiplier

A.l Introduction

This appendix describes the design, implementation, and verification of an IEEE

Standard floating point multiplier.

The design approach for the multiplier was to

attempt to maximize the speed of the multiply, if necessary at the sacrifice of area,

power, and ease of design. The design of the floating point multiplier was initiated as a

class project for EE695, VLSI Design. This initial design laid the foundation for the

design and implementation completed by this author and Captain Keith Jones.

The

design of the floating point multiplier logically breaks up intc the hardware required for

sign, exponent, mantissa, and special case computation.

A.2 IEEE Floating Point Standard

The floating point multiplier was designed to conform to the IEEE Standard for

Binary Floating-Point Arithmetic [IEE85]. Figure 46 shows the format of a single-

precision floating point number. The 8-bit exponent can store values from -126 to +127.

The exponent is biased by adding +127 to the actual exponent value, causing the stored

value to always be positive.

number when mantissa is not zero or zerc if the mantissa equals zero.

An exponent of zero is used to indicate a denormalized

An exponent

v

value of 255 (all 1's) is used to indicate not-a-number (NaN) or infinity, depending upon

the mantissa.

The 23-bit mantissa is in unsigned integer format, where the stored

mantissa bits makes up the fractional portion of the actual mantissa, in the format: 1 x.

WL

alls

R WA

SR

L0 By

126

SN

a“ e

\ ™~ " P AT T > ‘.. et

.

[}
ERPENN
.;-‘f,-.::ﬂ. "
PHNAIM,

U
A
CA 4
5

;‘(A
Fry

%y

5 %

:E#'*I’N
U '\’\
AN
N
L)

I4
20

Pd
.'5

»
r',-". '.'{"I o .
5
v
4
[)
i
[]

10

*

P

1
A

& A
l'f/{t'v'.’xft'

'I‘

.I
PR
by

[N Aty
[/ ﬁr‘.f P
1]

"y
'S

N

oL SRl RS
?

w
)‘..
S S LS
LN] >\"f
5
ARS

:-.
(S
s

o

s

4
[y

.('
R
b A

’
Pl
I’

[%
s
/

v
Z
¢
‘D
’
"
A

XA
KN
N s}
Z
Yy '.; {'.

}l'.’n
x
7,

o IO
ety
NN
ks

LY

iy
“

I ,
v
l'{
Flls
LA
s
P

sy
S
‘:‘
.7
L 3

‘l-

o

X
."t

“

Fd

P4

Thus, the floating point multiply requires multiplication of 24-bit mantissas, both of ":'-"':"-:-*“:

which have a ’1’ in the most significant bit. L,

LSy

The IEEE Standard requires rounding of the resultant product. Since the multipli- ?{':'
cation produces a 48-bit product of the mantissas, oniy the most significant 24 bits are s’;
g

saved. These bits are rounded to the nearest value, unless the bits to be rounded are

Lo
S

exactly between two rounding values. In this case, the product is rounded so that the R \: -_.:_'.::
-:"-:"\ R ~
o e
LSB of the remaining bits is zero. The Standard also requires that the hardware trap on A SENENIIEN
Y B -
certain exception conditions. The multiplier signals underflow, overflow, NaN, and Kb
infinity. For a further description of the requirements for rounding and traps. see ::::",
:";»'.':'s
Ve
AL
. . e
Sign Exponent Mantissa DAARERASAY
TN L. AN
- - '.‘-\‘ N
2 C o I
8 <9 NAFARIaYN
. . o
msb Isb msb Isb '-gg-‘\-';;.:““" \
AU
Sl
. ‘\r‘t-: W)
Sign: 0 - Positive; 1 - Negative NN

Exponent: Range -126 to +127; biased +127
Stored value 0 to +255

Exponent zero indicates NaN or zero
Exponent +255 indicates NaN or infinity

Mantissa: Unsigned integer;

Stored as fractional portion of mantissa
with understood 1 in front (1.x) A
v

AN SSS
P .
‘? Ny NN
%) ‘:‘
{.':.'I'-.,"(‘
SOV
ol i

]
(4
h

Figure 46. IEEE Format for Floating Point Numbers erte

»
%
%
e,

' .‘. g - 4.' » ; ' |,'.l’.7 W DT A N

" LR TR IS 1P % " ' 1 DR I IS T e S) TS IS PR R i AT RS LW e e e e e
!, v S ool AR PIL AT A A N CatC S N o
1, Vs, Wt v, NI RN S A S o L G z 8

IR O R O O O O R R N R U R P W W W WP T W W WO W W W W WU PP P P FC I T W VT U T WU T U v

~

. C4
3 %

'.;‘l

X
7

IEESS).

e
N

>,

A.3 Sign and Exponent Computation

Computation of the sign bit for floating point multiplication is trivial. Since the
sign bit is only negative if the signs of the two inputs are different, the resultant sign bit
is simply the exclusive-or of the two input signs. The computation of the exponent (Fig-
ure 47) is somewhat more involved. When two floating point numbers are multiplied.
their exponents must be added. An 8-hit adder is thus required to add the two
exponents. However, each of the two input exponents is biased by 127, so the desired

exponent would be:

exponent_out = exponentA + exponentB - 127
This equation can be easily implemented by adding the two exponents, with a carry-in of

1. The result is then input into a simple subtractor which subtracts 128 from the result.

Since the exponent computation is not on the critical path of the multiplier. a sim-

ple carry-propagate adder is used to perform the addition. After the first four bits. the

\ carry signal must be buffered since it has passed through a series of t-gates. The 128
|

subtractor is implemented using an inverter and a half-subtracter. For the purpose of

this discussion, the MSB cutput of the adder will be called a7 and the carry out of the
add will be called a8. To subtract 128 from the output of the adder, 1 must be sub-
tracted from a7. The output, €7, is thus the inversion of a7. The next bit, €], is equal
to a8 if there was no borrow from the previous bit, i.e. if a7 was 1. If there was a bor-

row, e8 is derived from the inversion of a8 The equation for eR is thus:

e8 =— a7 XNOR a8

\
L
% .
.'l "
3%

The borrow out of the subtractor, €9, is high only if a7 and a® are low: X

[4

LA

't“" g
) "
".

Sy
NS
YY)
AR
AnDY

RTATNEN
.‘

128 e

r

[Bl
R
Ps

PN

4
0
A
i

)
o

Y

[

(A

[
W

D
h Y
., 4

LR g

'l
/
P

o’

GG A AN ML IOEY,

Frdddl Foveesed RRAIANT LSERSA Jad) e ‘..a..\..\.\\ S Y 1\.:?\.\-.\ || AR
s s R Rl B R s
B A L 7 e eSS RIS <, . BN e TaJn]
0 oAU e A N e T et o enen ot
LKASn araler s b o T Yo LA XA XA A o, LA
3 ﬁtnrt T ..ﬁ o \e\..\ fw..ﬁ..\ A AR Kl " 5 .\..\.(x..vr\f A V\ﬂf\a\. PO A
5 % ARSNSY AR R ..\,.4.-““ e SSNINSDY, LN AN RS G
E v
— o o
[} [olNe}
3 = E=h=
=, O
@) =]
w O
«) O
3 bt e
2} v
K = A
D ——
5 o |32
et et
: o, < - e S =
’ > ol = o O =
: % 3 | c o IS
Q, » O 0
»f O m p— N
ol O Q =
oW - w [F)
> > =
A C et
: I
- — o, 2.
= < — m S
) O ia e
o ~ | — O
0 = =)
. 2 N] g =
5 _ o
o0 o 00
-
0 —{ -
3]
n S
w b
ot (@)
m o =
— V]
// D

Exponent Section of the Floating Point Multiplier

Figure 47.

129

SN

et
RV Wy

L.

La l‘\..

s

)

....\.m

Ya

'n

e9 = a7_bar AND a8_bar

Although €8 and e9 are not actually output from the exponent logic, they are used to

,..l..' 1-.."..
form the underflow and overflow signals. Underflow occurs when the addition of the two o -‘:-':4-:.-

exponents produces a negative number, since exponents are always supposed to be biased
positive. If the subtraction of 128 causes a borrow into E9, underflow has occurred.
Similarly, overflow occurs when the addition results in a carry-out into a8 which is not

eliminated by the subtract, ie. a7 and a8 were both 'l The equations for

underflow/overflow are thus:

underflow = 9 :

7,
f,. A
L4
.
> "
I.I .

overflow = e9_bar AND eS8

The 10-bit exponent result must next be incremented again to form the exponent in
the case that the mantissa section signals that renormalization is required. The 10-bit
incrementer is formed from an inverter and 9 half- adders. Renormalization on the
mantissa would require at most a single shift to the right, in which case the incremented
exponent would then provide the proper output. When the renormalization signal
arrives, a multiplexer selects which of the 10-bit exponents is correct. The correct

exponent will then determine which underflow/overflow condition is correct.

Assuming no exceptions are raised, the selected exponent is gated to the output of

the multiplier.

A.4 Mantissa Computation

5

AL)

The mantissa computation is the most complex and time-consuming portion of the

PR
"l‘\.
4 °

»
P A

multiply. The mantissa multiply is a 24 X 24 two’s complement integer multiply. so it

"(
L]

«
7

can serve the dual role as an integer multiplier. The 24 bits of the two inputs are formed -y

-«

g
el a e

130

LRGN N
P

~

O B T o A A A A S A A e A A AT R T AN

0.0 B8 a6 2. 8'e 8'aa8"2 80 0% % U e gt At at.at ‘ghe at. aly als 4'a’als’ad vab "at. all 'ad.” "ol "al sl N

by the 23 mantissa bits and the "understood” leading-edge '1’. Much of the theory for
the integer multiply <vas obtained from a thesis written by Peter Reusens at Cornell

[Reu83|.

A 24 X 24 multiplier, in its simplest form, is laid out as 2 24 X 24 array of adders.
The critical path timing delay through this 24 X 24 adder array is the 24 vertical addi-
tions, followed by the 24-bit carry propagation along the bottom of the array (Figure
48). Although little can be done about the 24-bit carry along the bottom. techniques
have been developed to reduce the effective height of the adder array. The most common
technique is the application of Booth’s modified algorithm. By encoding three bits of the
multiplier at a time, a 24-bit multiplier must be multiplied by the multiplicand only 12
times. The effect is to reduce the height of the adder array to 12. For a further discus-

sion of Booth’s encoding, see [Reu83|.

The vertical height of the tree was further reduced by structuring the required addi-
tions using a Wallace tree structure [Wal64]. The basis for the Wallace tree is that all of
the partial product bits are presented to the adder array at the same time. Figure 49
shows how the Wallace tree structure is employed. The partial products for a 6 X 6 mul-
tiply are shown. For the column indicated, a05 and al4 would normally be added
together first, then their sum would be added to a23 (with a carry from previous
columr), then with a32, then a4l, and finally this sum would be added to a30. Using the
Wallace tree approach, a05, al4, and a23 are added together. At the same time. bits
a32, a4l, and a50 are also being added. The results of these "level 1" adds are then added
together by a "level 2" adder, along with a carry from previous column. The result is that
the vertical delay through the 6-bit multiplier was reduced from five to three. For the 21

X 24 multiplier, Wallace trees further reduced the height of the adder array from 1210 6

131

[

Y
v ..’..'.

ORI S P LA
A A AN AT N ST AT NS

\"
>
3

3]
s
"
5
a

LA,
L4

PR

¢ 'l ’

RN
b
N4
Ny

P
‘u"\
>

' P T 20 00 20 90 4
e e
ey Y
X NN

B

}'v'v'i"-

P

LN .
7’ P f.f"f
Y
SN

h

NN Y

]

_
i\f v
.
‘.{

.

LAY, : RNt R o (X
SLERRAE AN TOALIOR N W AN N,
?\n a8 L A N»l.l-l- LA A Lo AN AN A
[4 \N RN R A .r.).f.;.. A &85 U SRR A) N
2 \n\u .m_.\unmr - L NN NN . 7\ ...\..\,. @ ...n..«.u.:..u L2
LY “~ — [N (A \ ..- . .\I A <, 7y \- .- -.- -- H YN N RALM .
\\“'-\ \\\-ﬁ\\ -.-..-<..I 4 g .)n. .-\..-\-\-N.. s KR . i 2, Ve
: SRR, ASYANSNY] Ty)N.r.\ \f\.{\-.«...&.«\».\..ﬂ.] ‘....\.-..-.\-@ .-..., AR AP . P ; S
; bz
K .\.....
= [
K w P>
| o= ",
\ s
:] Re ;
3 c geige 24
K — P ~ oD [aPie /
; O .E 02 oA
- el Q =
. - a8 : :
”v C S A ..Ml ”f\
b rrrr 1 T T TR =
; e S o - =
b o o o e - \.1\
< B © o« o ~ > = y
K « 7 ¥ n m >
E « e) e "7
= » @Y7 ST R ol BV of e o - O m o0 T
* LT L] O 5 = 3
= S A N = o
- n = — u S \-\
: 3 +2 Q 3 o >
% y 1 C n O O & .
4 M < n (D) Pomaed - = [
: = — - —»1 O] pe re
K Q — 1 s
< Q Q 2] & ¢
s "] VD > ~ 170} 9 —
: ™ . = 0 = 5 2
: X = WJ Q 2 o b Y
- 9 > — wn - (a1 4 _.J ;
‘ 53 13 I _.
: < aZ © £ = 4
_ 3 2 | 18] |3 m :
: 7] o !
] w|||L a n_b = %
*
N t Id
J = u M ® "
R o Q™ B mu - ‘P © ~¢
M SRS ~ (PRy = R
3 T ot
2 S = SVS &0 u.”
g . A
: g A
- o]
" = »
- o 4
: ~ 23
“ -
: =
N7
e -.-.
LA

,
™
)

3
A

LA

a0S a04 a03 a02 a0l a00
al5 al4 al3 al2 all al0
a25 a24 a23 a22 a2l a20
a35 a34 a33 a32 a3l a30
a45 ad44 a43 ad42 a4l adl

a55 a34 a33 as2 a5l as50

Wallace Approach:

First Level Add: Suml =a05 + al4 + a23
Sum?2 =a32 + a41 + aS0

Second Level Add: Sum3

Suml + Sum?2 + carry in

Third Level Add: Sum4

Sum3 + carryin + carryin

Figure 49. The Wallace Tree Approach

The 24 X 24 multiplier was designed using a combination of the Booth's algorithm
and the Wallace tree structure. Figure 50 shows the design of the basic adder cell for the
adder array. Note that the outputs of the adder have been buffered, due to long routing
lines within the array. Special Booth multiplexers provided the partial product bits to

the "level 1" adders within the array.

In addition to the basic adder cell, two 24-bit carrv-select adders were emploved
within the adder nrray. These carry-select adders perform the vertical carry-propagation

down through the adder tree and the horizontal carry along the bottom of the arrav.

133

Salotaloal ol fig Ay S'at 4t alraala gl 4 d ¥

: J\;' » .\,‘I
{ Y. '})‘-(_’h

Do >'.'3-"ﬁ‘4
o 5t

PO

7

A
e

h,
2

B
3
2
[4

G
X;
E&‘
L L4

o

I
Y J

.l 'l ‘l’
P
i

EA A
LR
Pl &]

i
)
5 Y

»
1 4

& [}
L
s,
¢
[
‘,-'

r
77,
iﬂt’
-
Pl
e

I

{' »
a_?
e
g
[]

}‘&

'P
L

4

I‘ I' '.
APy
LA
".l "’.l
I. Pd
7" "'}

»

LA
>

.7,
7
Pl
':I

o

N
-\
N

“x
7

v
s

l'
"n‘

s
’ 4
£
5

%
&

- P
s
P AL L
L0y
P

[4

3

PSS
e
‘@ "v
o A
rﬁ‘;‘)‘

PR

PP

4, G by
.

f\'f"
1"’

T,
v" .o

a,

f’l
*, LI
7ol

YRR

N2
h
N

L4
I's
s
e

L4
»
2y

"

v,
5
. Iy

»
e
X
S

N
?
Y
Li
)
%
F)

LN |
S A

«
o
‘.'i)l

..
(Al

. r
ey
v
»
» 2

<«

-
e

!
.

R
Ix L]
g
N
W
a »

%
-.l s & 4

° :\-‘.:'-\
AP A]
r‘i"\‘.\""
LA

4 xk 2tk g A ek 2Tk x Tl AV A a VR a bk fabi adh aka a®atat 1¥ata atat i Matatat ku #26 Fat-g.8 @ab PR UrETRTTY R Ay @i f¥ OV ITRITOTRS b 28 ol

‘ E sum0

Cin
]
© b0
a0 Xor
b0 Xnor

| i
b0b
‘ cvl

D° aobull
—_—

This inverter added to remove feedback.

Figure 50. Carry Propagate Adder with Driven Outputs

For a discussion of carry-select adders, see the description of the ALU adder in Chapter

4.

Since the two 24-bit mantissas that were multiplied were in the range 1.0 <=m <
2.0, their product will be in the range 1.0 <= m < 4.0. If the product is 2.0 or greater,
it must be renormalized to floating point format via a right-shift. As discussed earlier,
this also requires incrementing the exponent. Additionally, the 48-bit product must be
rounded. This rounding may require 24 MSBs of the mantissa to be incremented. How-

ever, which bits make of the 24 MSBs is also dependent upon whether renormalization

134

f » - LAS A" 5% 0% el .'I S ‘-)l h J%) v o e = "'\'\‘ﬁJ'\ '-*"-*'\J" ™t Twm A . ‘f"‘f"-\ \l"'
s_l‘;‘l‘.‘l'p,‘"t.‘l'ﬁ?‘.'. (X '-.‘ .l.,.,l 's Ve 2% p,‘ 'y VY. el ' 1% L% U L ., ‘('-)."(. ‘* o W kR "A* '\f .

P
”,
2,

5
@}

~

W’y

Yy
2

4
'h

z

S AN
N
%

r v N %
<,
Pyl

,
<N Nh

T

e PN
Kewss

P AR s
5.;.;{\\
R

D

« ¥
e Ca
Ay Ny

L
o

.

2T
ot
.

P
;’|. -
5‘1.:'.
A
LNl

»
.:l
L
.
._’.
VeSSl

:':5"-&-.
r
@R
'-"{; _]a‘l‘- .
o
)

Y
o

Y
NI
(AN
B
W

a'a
o

AP

.
“- 2
% "
" a
S
<

L !
.

L
P‘-’-'l
@,
»
A
L3N]
' »

»
»

7% 'y
(\'
3,
;-.
l'
A

.‘,"_-j .
X
@
AN
. b4
FA AN

oy &
A

s
% r
5

bt
%
(4

5
[y

. v
4
o o
10]
7

A
!
3

3
~
>
oy
“~
O
'l 'l
'’
1

»
s
4 4
s

'l

bt

b

XX>
NS
'Y
l.. ‘l
Yy
.P

Ve ey
I.I
e
1]
[\l
]
%
‘A_I.J_I

R

(A
X L7
res s

LY

Wy
e
1

' % YD
s

,A
Ay
l l’ a4
%
IV
DAY
o

b

was necessary. The multiplier must, therefore, first determine if renormalization is neces-

sary (a '’ in MSB of product), which in turn determines which bits will actually be
rounded. Rounding, if required, can then be accomplished by incrementing the proper
24 bits. Since rounding is on the critical path of the multiply, the incrementer was built
as a carry-select incrementer, similar to the carry-select adder. The 23 LSBs of the incre-
ment form the product mantissa, unless exceptions were raised elsewhere in the multi-

plier.

A.5 Special Condition Hardware

The floating point multiplier must detect if certain exception conditions occur. The
exponent section is responsible for detecting underflow/overflow. If underflow is
detected, it is flagged and the product is set to zero. If overflow occurs, the product is
set to infinity. The multiplier must also detect special conditions on the input numbers.
Static NAND/NOR gates are used to detect all zeros or ones in the mantissas or
exponents. If either input is NaN, the result will be NaN. If either is infinity, the result
is infinity. Likewise, a zero input produces a zero result. The multiplier does not support
multiplication of denormalized numbers, but instead raises an exception indicating that
one of the inputs was a denormalized number. Implementation of these special cases is
accomplished using multiplexers at the outputs of the exponent and mantissa sections,

which set the outputs to the proper value if a special condition is detected.

A.8 Implementation, Verification, and Fabrication

The floating point multiplier was implemented using the Magic lavout tool. Layout
of the exponent section was relatively easy. The subcells required for the mantissa sec-

tion were easily developed, but routing of the signals through the Wallace tree required a

135

P X As
.ﬂ‘:."'~‘
z.,.\‘-'
2’ 4
R
f .':"'a

I

s
k]
.
Sy
%
27,

[s
hY

5, ',:'
‘2
gL

ol]

h
L4
3
e

4
Wy
o

II "'I‘l o]
(S
L
o
A

&

e
- .' ..

“w n
r;"

Y
»

RO
[y
'

>

2,
l"
-l

{»j.
P
o

5 54y
Y
L &{}

PRy
,“x"_r";' n
£

'..;l'l".

G
)

e

2
20),

2

N A

VY RD
Pd P
o)

A
; inly
o, %
L 4
fa "
7,
N

“y v
v
[N
I

.

A Ta

"™y
h Y I A
Y . I. P
'h.L':’5

y

»
LRV

B4
Sy
s 2 s
S

»

»

LA

Pl l’
aMsS

.i
.,‘: Y
AN

»
"7
5%

2 ¢
4

‘.I\ b
b

2
%
X

P
VTR

Pa
r

L]
t
L]
t
L]
i
L]

LXAMAER

[
o
,l
l'.
v
s
&Y

‘. '.l "l
e,
2'2r |

.
AT
.
’
Y

)
"
&r 'v('v
{. '..

",

N

U

B
'.,'.,"'".:‘-
4804S

- ~
CAataT e
o

’

. %
&
pk
27

significant investment in time and area. Although the layout of the tree was designed to

minimize the required routing, ihe nature of the tree required some long routing lines,

which impacts the performance of the multiplier.

In order to test the functionality and performance of the multiplier, a test chip con-
taining only the multiplier was implemented. A block diagram of this chip is shown is
Figure 51. Three registers are used to interface the multiplier to the tester. Two of
these registers act as input registers, so that the tester can load the values to be multi-
plied. This is accomplished bu placing the data on the bi-directional data pads and
strobing the LoadA or LoadB input. The result can be read from the third register, by
raising the DriveC input, driving the contents of the result register to the data pads.
Since the registers are designed as static MSFFs, the loading and reading of registers can
be performed at the tester’s convenience. The actual multiplication is initiated by the

Mult signal, which drives the values contained in the input registers to the multiplier.

The Mult signal also allows the output register to load to results of the multiply. The
output register is latched on the falling edge of Mult. The actual multiply time can be

determined by varying the width of the Mult strobe. The multiply time is the minimum

time that the Mult strobe must be maintained high in order to load the correct value

into the result register.

After implementation, the multiplier chip design was thoroughly verified using all
available tools. The chip was switch-level simulated using Esim and verified to be func-
tionally correct from "pad to pad”. The chip was then submitted to MOSIS for fabrica-

tion using a 2 micron P-well CMOS process.

(e L Gt A L S S

S St ey

-I
P AL

LAY
I~.
f

Y

e
a

L4

.'l
LR
N
.I
L4
LT

s
*

&-

., [,
~ N

£ ‘
SEOEE

4

v
. N e N
G

LY
b
T

Py
-

SR N g S . ¥ §

Fa
| }-: l:. N
[J S

“

o
o
2

71

?l

.;l;.:—
., .l ﬂ
I':: ::"
AvS

"
%
‘i Pl

1;5
o
%
L’L’

'R

e oy cmvaar m s Al atgtsam e A - e
PRIl BICARA X r\ A B R A A WXARA ..H..\...nm..,..w-. AL Lty
.In-. .r. \. -J\J\-n\.- .4....-.\ ...\... X \-\.-. #\r\f\.- Ju r-- ..-.. R) ..\.. , ... : ,.... - .. . S : \..\ .\-.L .r A -.;-\I\.--- A Nf\f\f \
CYASAS YN g :] PN . Sodag g [N RPN ALY s
PR A I 8 O SaYn @ i Sl @S I AY TN v
NOEOCANS ..::..L R PRI AR e R R B o) L O e, O

-
-
3
5

T18

MANTI14
MANT!1
MANTI16
MANTI19
MANT20
MANT21
MANT22
DriveC
GND

VDD
MANTI2
MANT!

| MaNTIY
MAN

o
5 g S z
o] = 7 =
. % = M o m ma .E
8 + B .8 MR =
= IS e 3] “ = 22
7 o A 1ls o 5 g
Bh sl]E 2 35 =
o4 S 5 - M 0 3 o= s t~
<+ = M E s Ol B = =
m (o] « .m O b
2 = © 5
5 8 =
A“. [
i 5
3
g VOZ e DFW &
<] o
5 mXa 07 m7Z - 7] Or-medu A
%
1%

—\EXP xm O _ DENORM

Figure 51.

0zA

A.7 Conclusion

' The achieved performance of the multiplier was obtained at the expense of a large
investment in time and area. It also resulted in a design with a fairly irregular structure
that does not conform to the 81-pitch datapath of the other ASP hardware. Despite the

reduction in logical height of the adder array due to the Wallace tree approach, the time

=50

savings in required number of adds was somewhat offset by the longer length of the rout-

ing lines.
t: If maximum speed is the driving design parameter, then this approach using the
v
W
Wallace tree is proper. For applications, however, which do not require optimal speed.
the standard Booth encoding approach can result in a significant savings in layout time
& and complexity. Using the Booth’s modified algorithm, the multiplier array would be
KA
s
much more regular and could be adapted to match the pitch of the ASP datapath.
e
~3
ay
-“
™

5.5

.):

Y

138

2

AT AT A AT AT A T A e
R AT PN i ey

% Yy
o

(A
5
>
£

'I' "l
2,
A
Fi

YA AY
.
h |
o

e "/_f.-' i
P
LA
AN,

[SN
] ,') R
LY
4

”

W
I
>
e

’-."'.‘ .
l'
4

4
‘i
2,

)
o0
XX

Y
%
~I

’)
£ XN

X
“
A .\

s
‘I':I s
[
4
LN
aa sl

4 &
%

» l‘
N
!
{’N?
F5

N
)

Y e s s
»
e
gs
[

20 !

T x
A
LA

e

N
<

:554.4\,
B Ay
YH55
-

r
]

Pl \‘8

x

~ “w
050N
o
OO
N

-

e

_-I

°

1
o

o

i

A &
(A

I

et

',[. v_'._\ .
. \.‘s h Y
A7

.
NS
(]

gl ‘-/'u :l ‘

Sl
3

&

3

L]

f

e S v e
.

APPENDIX B

Circuit Extraction to VHDL

B.1 Introduction

The rapid prototyping methodology depends heavily upon VHDL. The initial
specification of the problem algorithm is accomplished using VHDL. Once the hardware
has been specified and the microcode developed, VHDL is again used to demonstrate that
the design is correct. Once the designer is convinced that his design will accomplish its
purpose, the design must be laid out at the transistor level, hopefully with the aid of
some automated placement and routing tool. Once the layout is complete, the designer
needs to verify that the transistor-level design will perform the same function as the
higher abstraction design. This simulation is usually done with a transistor level simula-

tor, such as Esim.

Simulation at this level, however, requirps quite a large investment of both the
designer’s time and CPU time. It would be much better to run the same test vectors
developed for the original VHDL simulation on the completed design. This would
effectively close the design loop and result in higher confidence in the completed design.
Thus, the need exists for a tool which can extract circuits of a higher level of abstraction

from the transistor level and then translate this description into VIIDL for simulation.

This appendix describes the tool Stove (.SIN to VHDL extractor), which meets the
need for circuit extraction to VHDL. This tool inputs a list of transistors in the SIN
format, extracts the structures which it recognizes, and outputs the higher-abstraction
sircuit in VHDL format. The program also serves as a front-end for producing circunt

139

I S % % T e
I ia e ing

%

~
)

» . ™

':":,'f'\ A X ‘\1‘\-;‘\);‘.':' St t" e \ \‘_:.‘ -.‘_\}-‘_;.__\’_-.:_\. VR TR NS

»

'IA
ety

P

[

-

r"\" .
o

2

Pa

€S

[
s}j
5 4
'1

x
3

S
LU

I'd
e
7
L 4
[/
7

~10®

7

WA
iy

AN

AN
AN

.
LA o
‘% Y
“‘IIn‘/f
LGNy
s Py

LA

)

Y

descriptions in the CHIEFS format to provide fault-tolerance testing of the de~.on

B.2 Software Design

B.2.1 Design Strategy. The design strategy of Stove was to perform circu.
extraction of the transistor file in stages, each stage being a higher level of abstraction.
At each stage or level of abstraction, the components already extracted can be combined

to form components of the next level.

At the lowest level of abstraction, all of the components are transistors. At the next
stage, which is called the GATE level, the program extracts inverters, transmission gates
(t-gates), and clocked inverters. As the program begins to extract to the third stage, the
LOGIC level, it builds its logic components from inverters, t-gates, clocked inverters, and
any transistors which were not extracted at the gate level. After each stage, any com-

ponent which is not extracted is redefined as a component of the next level.

B.2.2 Input Format. The input into the Stove program is a list of transistors
in the .SIM format. Each line in the input file contains data on one structure, delimited
by spaces. Note that commas cannot be used as delimiters. The first element in the
.SIM.line is an identifier of what type of data is contained in the line. Stove accepts the
following characters as the first element;:

p - p-channel transistor

e - n-channel transistor

d - depletion mode transistor

f - transistor identified as "funny"” by Mextra
N - nodes

i- inputs

140

- R . -) LS .
N R N P R R I L A T T TR A LR A R T o S T Tt au a a3 S AT S R gt R
L2 . » L) > ' - - n P & . »! g - A » L L

At

<

- . »
\d‘._vl‘\-_‘.\-:
o
-

s
>
A
Ao

R

sty 4
P AP

e Yy ‘Jll'
LA

lll v

A

'

“l‘.ljl/l “
s 5
1,4

®"
T
hl
£
]
'l
»
o 5

x
.

- ". ~‘
7.
2

PN
)

)@
|

«
b
.*.l -V'

PN

PRI
“
o

)

LS

Py

'.Y‘l‘l"
e

Ld
4,4,
2

s
ool

o,
l,

‘.l

P
a'e

! o0 - outputs
C - capacitance values of the nodes

|- comments

If Stove does not find one of these characters at the beginning of the input line, it will
print an error message. After identifying the first character, Stove will process the input

line based on the type of data it contains. Lines which contain capacitance data and

comments are ignored.

If the input line is a transistor, it must contain at least four and no more than eight

elements. The data on the input line must have the following format:
kind gatenode sourcenode drainnode length width Xpos Ypos

The first four elements (kind,gate,;source,drain) are required, while the last four are
optional. If they are not present, Stove will assume a default length and width of 2 and
will set the X and Y position to 0. The "kind" field must be a single character, as
specified above. The three node fields must be a character string of less than 100 charac-
ters, the first 32 of which must be unique. The last four fields can be either integer or

floating point values, but will be rounded to integer values by Stove.

B.2.3 Output Format. Stove provides four different outputs. The first is the
status information which is sent to the standard output device. As Stove inputs the
data, it will report any format errors in the data. As it processes the input data, Stove
prints its extraction results. Stove initially prints the amount of memory required to
represent the inpuc data, the number of nodes, and the number of cach type of transistor

found in the input file. As the program finished extracting a particular pattern. it will

141

N MW NV R Y

. "R W BT T Y AT & AV AT RV -" AT I AT IO RN N 'J"J"J"-'..'"J':J“f_‘f'f-q\.f--'
WY, ACI IR T Ry X ~_ ‘_ 9. 0% '..l’.. N R "V\{ f'\ N 4 ", . \"\ LAY » e e N .

(Y 8.8V,

5% %%

Pl
L
AN

A
r &L

"

<

“xa
5 5

e,
ll‘l .

-
[N ~
r. .
.
ARG
'.‘:J‘:-’_ ol
NN,
LA ol S..
ROt
L] . - -
S Ny
:‘" ‘) LR
. '_-- ’n"- W
VR AR,
' .
PG N AN
PR AN
"-
-
. k
® -
r.._‘- > 2 ;‘\;
e u-\-'k ,
ey
Y

report the number of those patterns found. When Stove completes extraction of a level
of abstraction, it reports data on the number of transistors it was unable to extract at

that level.

The second output from Stove is a list of the transistors it was unable to extract.
When the program has extracted to its highest level of abstraction, any transistors not
extracted will be output into the file <stove.out>. This transistor data can be very
useful in identifying design errors, since often Stove may have been unable to extract the
transistor because of an error during layout. Stove has been successful at discovering
numerous design errors in AFIT projects. Stove outputs this transistor data in the .SI\I

format with 8 fields.

Stove’s third output is the file <stovelogic>>. This file contains the structures
which Stove was able to extract at its highest level of abstraction. This file can be used
as the front end of a tool to extract a CHIEFS description (or some other similar descrip-
tion) of the circuit. The format of the data output will depend upon the level of abstrac-
tion which Stove currently supports. The current version of Stove extracts to the logic
level. The output format at this level consists of seven fields:

kind IN1 IN2 OUT GATE Xpos Ypos

The "kind" field is a single character which identifies the type of component. The follow-

ing codes are currently being used:

TRANS level
p - p-channel transistor
e - n-channel transistor
d - depletion mode transistor
f - funny transistor

VORI LSO N, "‘f_.f .rvr\.r-\.r' WS RO) <-‘.-\-r\.-.\.:‘_:.,'.:..:,..'_. .‘\-:__r'..:\4‘_-.'\-‘.\-:..-{_\.._.-'_‘.'_.-‘_-. s
! o » L) LJ L) L) - N B . o) ! o

ol S

w r

«
h]

) &
5 5
‘S e
?\I‘.‘
\."‘."i
Pl

h k)

"

%
A
s
A.

R
L4
A

¢

Y

.l
LA
P)
(AR S

hJ
o

LY
5 8

!

- ". :I‘.“.- .1;

v
R
s.‘
.
a
3
> -
A
P]

«

a
aa
3

L
s
i

LY

. ":
X

4
%

'y
i'l.t’

EA LYY
\‘I¥

P 3
i

%I(J'-

N N
. b
PYXN
Vods e
55
L‘??f

PN
AN

R

A FaLs
T

L
“
M)

-,
v
¢

':
&-

DR Wl

GATE level
vV - inverters
t - t-gates

k - clocked inverters

LOGIC level
a - AND gates
o - OR gates
n - NAND gates (2-input)
r - NOR gates (2-input)

x - XOR gates
y - bad XOR gates
q - MUXs

] - resettable NAND gates

b - bad buffers (an error condition)
g - 3-input NAND gates

h - 3-input NOR gates

The next four fields contain the names of nodes connected to structure. IN1 and
IN2 are the input nodes, OUT is the output node, and GATE is the node which activates
the structure (in case of MUX, the select node). If the nodes are not used, they are set to
Vdd. For example, an AND gate does not have a GATE node, so it is set to Vdd. The
final two fields contain the approximate X and Y position of the structure. These values

reflect the location of one of the transistors which make of the structure.

The final output of the Stove program is the VHDL description itself. The VHDL
description provides an entity declaration of the chip, declaring nodes whose names begin
with "IZ", "OZ", or "BZ" as inputs, outputs, and bi- directional ports of the circuit. This
naming format follows the convention used by several transistor-level VLSI design tools,
such as Cstat. Stove also outputs an architectural description of the extracted circuit.
This is accomplished by examining the data structure to determine what component
types have been found during extraction. These components are declared in the architec-
tural description. Next, a VHDIL component instantiation is created for each logic-level
structure in the Stove data structure. In this manner, a complete VHDIL description of

143

ERE S N N AT A TR T AN

AR

v
v,
RhE
[
r\'f.:e o
3 a0

v
kY

l'f(-.f‘:
Ll A
&\..
by

<
P24
A
ARG

Gt
xS

I"..
'R
2

e

X
oSy
XXX

F g
Lol

.

)
o
i
P

‘e
2/

v

= '-l
.'.

e !
P

S

W
b

/1,

-54
f'%l.

/
.‘.:",

“ N
e

y
"
P4

-

&
[

5
<’
[d

\.
»
e

Fale™; ARCAACY
,-.'f:".'_'l,'. ';-‘]
e
R '.\'.\f-‘
BN D CAUALACY
'\)' _\., 'I»J‘
KW WA
Lo ‘.-,-:,'J-
» >
RNt Y

the circuit is created and stored as an output file.

B.2.4 Data Structure. Stove was designed to run as quickly as possible.
Since it must operate on VLSI designs which contain hundreds of thousands of transis-
tors, the data structure must allow rapid search for transistors which match a given pat-
tern. The efficiency of the data structure rather than its size is critical. The data struc-
ture used by Stove was derived from the data structure used by Clark Baker of MIT in

designing his STAT program.

B.2.4.1 Hash Table. At the transistor level, the data is represented by two
basic structures, NODES and TRANS (transistors). To allow rapid access to the nodes,
the node names are "hashed” into an integer value, which corresponds to a slot in a hash
table array. Each location within the hash table acts as a "hash bucket”, which holds all
of the nodes whose name hashed to that location. Each location in the table actually con-
sists of a pointer to one node in the "bucket”, which is the head of a linked list of nodes
contained in the bucket. Each node then contains a pointer to the next node which is

contained in the same bucket. The size of Stove’s hash array is 11731 buckets.

B.2.4.2 Nodes. FEach node is stored as a record which contains 17 fields.
Among these fields are NODE pointers to the next node in the bucket and pointers to
linked lists of structures to which this node connects. Each node has three TRANS
pointers, which point to linked lists of transistors. The "glink” pointer pointers to a list
of transistors whose gate is connected to this node. Similarly, the "slink™ and "dlink™
pointers point to lists of transistors whose source and drain are connected to this node
This data structure allows rapid searching of the data. For example. if Stove is extract-

ing a t- gate, it looks for an e/p transistor pair which share common source and drain

el
|
o]
g

)
3 s e

5
o p{ ¥
k

Wyttt

T
o
LN

PEl S

el
R

KR

'l.|

i

'’

PRy
| Ja Y
(Y
Y
.

L
AR RN
P XA i

T

.,.
oy

Y

~ @

’ ‘.‘El_" b
RARANY
E?.Ehh
A
L &

h)

5
L85

7@ [+

Pl s
oo

Y 1
)
{l

2

f

ﬂ
[

Pk o o o
e

Phaa

e

Y
f".{‘r Ay

(4
l'

L4

L4

TRy

I d
.l
[4
]
Id

h]
> \4'\."'-:‘.' <,
Y

5

yoer
]
]
L]
. N

S
l‘

»
L}
»
»
2z s

2
»

S

(4 "
'h“.'v

»‘,‘

4

'A'f: Fe

> -
ot
)

;
;

]
“
}'l
.’3
2 b 4
Pd

,r
'! IF.
. :
Yy

LR
PR
.

Py

Lgws
»

i
-

0
P
2

<,

A
ffk{
R
»

-y
.'
l'

s

)

.

{.l

Y

%

13
4y a4

~
N

~
.
.
"~
[

hY
G NN

‘..
P, :".4‘.
I{ .|

)
o
et
I‘

-

-~
A

TR

‘o

“w

e

nodes. To determine if a particular node is an input or output of a t-gate, Stove merely

searches the source and drain lists of the node, which are normally quite short.

In the same way that it maintains TRANS pointers, each node maintains pointers
to GATE and LOGIC level structures, allowing easy search of these structures as Stove

extracts higher levels of components.

A final pointer maintained by a node is the "inverts” pointer, which points to a
linked list of nodes which are the logical inverse of the node. For example, when Stove
finds an inverter, it identifies the input and output nodes as "inverts" of each other.
Thus, when Stove later needs to know if two nodes are the logical inverse of each other,
as it would when extracting t-gates (whose gates must be the inverse of each other), it

merely has to search the node’s "inverts” list.

B.2.4.3 Transistors. Transistors are stored by Stove as a record containing
13 fields. The transistor record maintains NODE pointers to its gate, source, and drain
nodes. It has TRANS pointers which connect the linked list of transistors which are
headed by a node’s "glink", "slink”, or "dlink"” pointers. A transistor record also contains
a pointer called "team"”, which will be used to link the transistor into a list of transistors

which compose a higher level structure. The transistor record also maintains data on its

kind, size, position, and what higher level structure it is a component of.

B.2.4.4 Gate and Logic Structure. Stove also maintains separate structures
for the GATE and LOGIC levels of abstraction. Since these structures are quite similar
to the transistor record, they will not be described in detail. Each of these structures

maintains a pointer to the lower level components which it is constructed from. These

pointers point to the "team” list previously mentioned.

o "'.“ AT AT A Y n’ "- Ty [\"\d‘\¢ \f*lf\-“& h"\.""-"'-'\-'\"‘\-'\-" I‘;-' .‘.I "_-“‘ i
" ¥ LS PLAUPU A A AN N N o i X Lo o

.l
‘.
"
’u
2

b
‘;‘

?
)

:;.";
O
{'. 8§
S h
LA

%

»
(7

2@ V.1
<
' 7,

e
AL
et Ll

SNy
O
SRRy
PR ‘J
B e
LN

s
.
P !ﬂ'
(44

a3l e

P

F RS

LSRR RANES
v > .
‘ LA - \.-~.
'.N .- '.\' - Y
ISR
\:\'\::\ S)
P
ST
. AR

SCUABCCHANANY O

B.2.5 Algorithm. The algorithm used by Stove is straight-forward, composed

of the following steps:

1) Loading the data. The input file is read a line at a time. If the line defines an
uode, input, or output, a new node is created and initialized. If the line defines a new
transistor, the transistor is created and initialized. Each of the nodes which connect
to the transistor must be created if they do not already exist. These nodes must also
be linked to the transistor through the node’s glink, slink, or dlink pointers Thus.

the data structure is created as each transistor is read in.

2) Extract all desired structures from the transistor level. Inverters, t- gates, and

clocked inverters are extracted and defined at the gate level.
3) Re-define all unextracted transistors as gate level structures.

4) Repeat Steps 2 and 3, extracting to the logic level. These steps can repeated
numerous times, each time extracting to a higher level of abstraction. At each level.
all lower level data structures are preserved and pointers to these lower level struc-
tures are created. Thus, an XOR gate has pointers to the t-gates it was derived

from, and those t-gates have pointers to the transistors that they were made from.

This strategy allows for both horizontal and vertical growth of the program. As

new patterns are defined, they can be added into the existing structure, expanding it hor-
izontally. For example, if 2 new method of building inverters becomes common. the pat-
tern for this new structure can be added into the program during gate level extraction.
The program can grow vertically by extracting to higher abstractions. Stove currently

only extracts to the logic level, but the data structure at this level s developed so that it

146

s e fa e

s
.l .'

P W 4

would be easy to begin extraction to the next level.

B.3 Nofeed and Fixrom

Two variants of Stove were developed to support switch-level simulation. The
simulation tool currently used at many universities, Esim, is unable to accurately model
certain transistor structures. In particular, it does not properly account for the sizing of
the transistors within the circuit. In order to correct this problem, two programs were
developed as extensions to Stove. Since Stove already identifies logic structures, it is a
simple problem to locate structures which Esim handles improperly and to convert them

into a logically equivalent form which Esim can accurately simulate.

The first program, called Nofeed, serves to correct a problem in modelling fully
static master-slave flop-flops (MSFFs). Esim can, however, model dynamic flip-flops.
which do not have a feedback loop containing a tristate inverter. Nofeed, therefore,
locates static MSFFs within the transistor description (.SIM file) and converts them into
dynamic flip-flops by eliminating the transistors which form the feedback loop (Figure
52). This is accomplished by marking the transistors to be eliminated. All unmarked
transistors are then output into the data file specified by the user. This output results in

a .SIM file exactly like the input data file, but without the transistors which created feed-

back in the MSFF's.

The second program, Fixrom, modifies two portions of the XROM! circuitry to make
it compatible with Esim. Figure 53 shows the modification made to the SIN description
of the XROM storage cell. As discussed in Chapter 4, if two transistors are present in
the XROM which are gated by the same wordline and share a common drain, the bitline

will be pulled to slightly less than 2.5 volts. Esim does not realize that the senseamp

N
G
SRR
@
e
SR

N)
ol
- Care

LAt

g

)
§

¢ e
£ " s
LT N
PP

vau

'l
O
"
.
5
5
N

[
.
’
e
‘.‘-'nlll

B2 TAANYNYSY g e >
' - N hA
AP Nr..ﬂf.....‘.......u......ru n”..f....... NN .n..w g : SO N A
x .r\.-\”ﬁ“-ﬁ .“ ..\..\.r.-w.-\.f\fw..ﬂ. .\ .V\”..”..f.-«r»ﬂm g p YA \f- oS el L IO e
..ﬂ.. Aty B A AR . ¢ M.s..hfwﬁ PACANX A SRR
o i‘,ﬁff& PR A L R POl LA A) LRI R

J R Y - ik S0 a8 a0 e radh 4 Chai s -
L= g AR OAR A AN o ‘T Pl ORI 94 Y
P .ﬂt\r... B L N AR ot AM..J! * I AR W)

"

problem was corrected by adding two extra transistors which eliminate "fighting” on the

Esim understands static
Fixrom replaces the static

Philbar

PQ1

148

b) MSFF after Nofeed

PQ2

Figure 52. Removal of MSFF Feedback by Nofeed

Phi2bar
a) Fully Static MSFF
PQ2 PQ1 Dc

.)
2,
.
-
s
h
h
.
"

Thus, Esim cannot correctly simulate the inverter.

pullups, assuming that they are sized properly, but does not understand static pull-

detects this a low signal, and thus Esim cannot determine the value of the node. This
node. Figure 54 shows the second Fixrom modification. This circuit uses a static pull-

down inverter design to minimize capacitance on the bitline.

pulldown with a fully complementary CMOS inverter.

downs.

VRS

»
L AP

L

Bit_Line

.._

Drain

Wordline

AOCOLbar

A0COL

r‘I -li -l ul .

A) Actual XROM Cell

Bit_Line

|

Wordline

AOCOLbar

AOCOL

I 4

‘ h- l- \ -Q ‘
N '

S

s .
Gl te et e N

B) Modified XROM Cell

l- .l ~- \l -—4 -l-w ’

Fixrom Modification of XROM Storage Cell
149

Figure 53.

Triggers at - 4V

Senseamp out

+5

q
+st’

+5
Precharg_e_c1
Bit_Line

A) Actual Senseamp

+5

A A

Senseamp out

'y e
NAAAS AL A

A+5

Precharge
=L

Bit_Line

3
[l
D

B) Modified Senseamp

Fixrom Modification of XROM Senseamp

Figure 54.

D

.
",
1l

T
A

.
Oty

.2.\
(%"9%

-

TN

N

B.4 Conclusions

Although Stove is an ongoing project, testing results have shown that Stove 1s suc-
cessful at extracting the vast majority of transistors from an average file designed using
CMOS pass logic. The data structures and extraction techniques are satisfactory for

extracting a higher level circuit description which can be used to generate VHDL or

CHIEFS code.

In addition to Stove's capability for circuit extraction, it demonstrated an unex-
pected capability of error detection within the design. Since Stove extracts by pattern
matching to structures which are regularly used in CMOS design, the transistors which it
cannot extract are either seldom-used patterns which Stove fails to search for, or an error
in the design. Stove can be also used to search for patterns which are not desired. For
example, the AFIT VLSI program at one time had a bad XOR cell which had been
integrated into several of the designs. By searching for that pattern, Stove would be able
to flag any occurrence and then output its location so that the error could be eliminated.
Stove’s error detection capability may be as nearly important as its extraction capabihty

Indeed, this area may become the focus of the future development of Stove.

Stove has demonstrated the feasibility of circuit extraction from a transistor list. It
is useful as a VLSI design to in discovering layout errors. Most importantly, Stove serves
to close the VLSI design loop by providing extraction capability to VHDL. The imple-
mented design can now be simulated in the same high-level language in which 1t was

specified, resulting in high reliability for the fabricated circuit.

t . . - Ay -)
TR . S S R .

MR

L B
RN
]

S

‘F

Ld
-
4

NN e

f
1)
5 fy

P

P
e
T N \4- ®

L

Pl

S

Y

L)
a

LIS e
548
'(. 1.1
’h.\ \.

,.
~
sie

5 &

..1'”
AR
rLaLl
"J‘.?"I
Y LA
L0 Y
S

5 %NS

%
'4".]'-'
’

el
L]
&

g]

S d
4 Y

S
!

~%YY

Py

Bits 0-2

Bit 3

Bits 4-8

Bits 9-20

Bits 21-24

Bits 25-28

Bits 29-32

.]

e

rr S
A

X

APPENDIX C e

X
e
..‘'/‘:
L
‘elrele
LA L
PN AN

'y

»
RN
-
v
2
'I
I.l
N
’
hY
L

E’

ASP Microcode Word ..o

N,
PR oY

Aé

[

L]

5

Y

NAF(3) - Next Address Field

: Continue (Increment)

: Return

Call

Branch

: Conditional Datapath Load
: Conditional Return

: Conditional Call

: Conditional Branch

NO U e W = O

BRO(1) - Branch On - polarity of branch condition
0: positive logic
1: negative logic
CMS(5) - Conditional Mux Select - selects one of 32
branch conditions)
: true (unconditional branch) e
: zero
. negative
- overflow
: carry ’
skip)
. inpval
: outrec
8-31: not defined

\IO:S‘.{\:&NIOHO

Literal Field(12) - Serves as branch address field and -)
literal for datapath insertion. *

DriveA Field(1) - Selects register which will drive
the A Bus
0: NOP
1-15: Registers 1-15

DriveB Field() - Selects register whicii will drive

S

the B Bus E"‘
0: NOP -
1-15: Registers 1-15 ‘n

LoadC Field(4) - Selects register which will load from

152

1-15: Registers 1-15

the C Bus
0: NOP

AddDriveA(1) - Drives Address Register onto A Bus

Bit 33

0: NOP

1: Drive

AddLoadC(1) - Loads Address Register from C Bus

Bit 34

0: NOP
1: Load

DataDriveA(1) - Drives Data Register onto A bus

Bit 35

.- A l- M -
T Ry

oy
i ..,......x..\. 7.,

0: NOP
1: Drive

e
Lt
I A
LRI

2l

DataLoadC(1) - Loads Data Register from C Bus

Bit 36

0: NOP

1: Load

\f-n-a-l.\(--.-.- il
NN RN
A XA AN
PN
pee el

\J.\ .\a-\- e
L %2 T

DatalLoadPads(1) - Loads Data Register from Data

Pads
0: NOP

1: Load

ShAm(5) - Shift Amount for Barrel Shifter

Bits 38-42

1-23: Circular shift 1-23 positions to left

0: NOP

LitIns(1) - Insert 12-bit literal into LSBs of datapath

1: Insert literal

0: NOP

LA . .\._ ..
.-.\(\... ’, . .1--:

Lit0(1) - Set 12 MSBs to 0

LI \- -2
XX A

LS

. ,

rro, @SN e,

ORAAASAS
LAPERE S-S I B

AN AN

e e

1: Pull bits to GND

0: NOP

153

&k
A n

»
~IIA\--- *

A)

LANENAT N

Lo Al R 4

L4

’ .l

h TR R Y
ﬁﬁéﬁﬁ

" s s e

AorB

A+
A-1

5

s

-
-\ﬂf

.ot

Wl

.-‘
.

c"\f-"' ..'l' o’

= A (move)
t carry flag

st et B g A Y i Y AT AN

= A xor B
set carry flag

@

VOBEOO T

C:=A+B+cy

C
0
C:=A+B
NOP
Data Request
Data Valid

0: NOP

ALU(4) - ALU function select

Bits 45-48

1: Complement A - C := A’
2:C:=Aand B

3

4
5
6
7
8
9
1

12: not defined
14: C:= A - B - borrow
15: Compare A,B (C Bus not affected)

13:C:=A-B

11

DataReq(1) - Request for input data

Bit 49

1:

0:

0: NOP

1:

DataValid(1) - Output data is valid at pads
Not Defined(1)

Bit 50
Bit 51

1

o

A

5f\1$qu T A

| P
y K

', ’
A%

4% 4%,

7 s, &

‘¥

R—
h--

TYRTORUAIUR

avyt

ELILIS
/ mr .WMWA...W
e

&..&l-l\

APPENDIX D

o ¥’

MARRARAY
ﬁ\f\ \f\l\f

5
L
.‘.\(\ '\-\ ..l

Translation Table for Microcode Assembler

Vs

NAF

5% . ’s R . 7 by : rd r 7 FArd-.-.\‘ A
N DR AN STV BRI A _ e Bl AT - B G R R ATy S
(oL AL ALY\ J-. . o XYy EN ra K [/ - --cffn-f I.-r-/.-.f..-.-ﬂ [N A
LANAEANE NN SIS S D ol BRI A XA XXX A RARS
2 ISy e WOy xr A L PONrACY .«.n..u M L g .-r\.r“.r.... S @, \f. f.\... RRRA r.-.-..... < ® ”.nf / \..\.rs..\..\a o, .\f.\.“....\...\.”\.u .r_..”....... W
Ot AL A AT . y Yy AR AR N e . SN
LRI RO Y AL BN T MR T S XN RAA, NN Y
o, plp it e e e AR AN re Ll l S AR A L e o T DA A S e TSN
LIS ..-\.p- AR ..--n -n- Nf ..-\.I Rl .-4 .-_. ~ﬂ ..,.J .q M -f .). ..v»f . .v.. DRI .-...I N .fh .r \f\l\ \u& AR A -\« -l -\\ AR -\- e ..P\.‘. nl\
L] [
..-
-l-.
-
s
-"
l'-
)
-{\
3
h'-.
-’\
--'l
-‘-\
. ’]
¥
o
oV
--'n\
LS
X
>
- -I
.l
R
5
g
hy
&
-(-
Y
’
A-l
£

”.n-l”: If‘

h] "v ‘\., f—"'jlfr‘f"-f"f.'-"f-ﬂ

— O — O -
llmo‘ll 101%101 10]%101

o 5
o7y .
9§ o = "
3% o = 38 & "

= Bg s = e Rt eogﬂ Q> & Leu b0 S =™ T P
eambeam 3] 2E s w3 & m019.3456789111111 s
O = O - M e S Naoowm.B o - (e i o Alfa o Ao Jlo o Sl Al e Jlo e Al e J o o A o 4 A
[P o

b7

P

AddDriveA 0
AddDrA 1
AddLoadC 0
AddLdC 1
DataDriveA 0
DataDrA 1
DataloadC 0
Datal.dC 1
Datal.oadPads 0
Datal.dPads 1
ShAm 00000
shiftl 00001
shift2 00010
shift3 00011
shift4 00100
shifts 00101
shift6 00110
shift7 00111
shift8 01000
shift9 01001
shift10 01010
shiftll 01011
shift12 01100
shift13 01101
shiftl4 01110
shift15 01111
shift16 10000
shift17 10001
shift18 10010
shift19 10011
shift20 10100
shift21 10101
shift22 10110
shift23 10111
LitInsert

Litlns 1
LiteralZero 0
LitZero 1

156

P

L4

-
LY
P
y
ll.‘
7

T
), R
A LA
.’\55' FaC
Y7

~
4

[T 2 B
’
:.':'\"

A

)

P

)
-'~/"v N _'v AR
LA A A AN

»
4
"~

PN
%

LA

.
(4

.
4
Y

7

TN
l(‘l LY
[] . 1]
LY

s
[

oot \ ey,
Waaaal Yl e A X ; S S RN SOA LS
ARSI PG R - Fd (&AL L S ¢l
Al NEANNNY A .) ~ L . M“M\ M\ SIS LTSI A %
K h Sl AR % -»nﬁu\v\ —.\- .I\f
el e ek e
L P] .n- LK d
¢ ﬁv.. WANAN FANIASN IJUONN
t..A
3 “A
K 3
&
e
..A
'
= ey
>
v

S

’l‘ ,l. "
atalal .’

0
R S A AP A)
AT N AN I:::J‘\

, e)

lOlmlo-l. _— D) -t o O
8885558888823
QO O O mi vt vt v red vt —t O —~ O o~ o
E, +
4]
" 5 o
: o = Lo
v o o — =
- Re va <&«
: oy o > @
: 2 > D% . n & 84 83 A2
: memrouwcw.mwwnwm g« A3 0
= BdxcEfLEvwaddmo AA AAQ Z

WPV PO R TS S W R g\, gt ab At

’

t
-

NS
AT
Dialaly
L]
IR
AN
APPENDIX E ':':\"'::"h _::
NN
ASP Prototype Microcode 8 ...
B
SATENS
R
:“" :::r;.r
P,
begin: nop; the first section of microcode tests NN
nop; the functionality of the datapath
nop; in case microcode sequencer 1s not
; working properly, only sequential
; instructions are executed at this point
DataReq; - R
Datal.dPads; load test data from datapads "t i
DataVal; GV
RO RO R1 DataDrA mov; put data in R1 :f.':;:f::f:
R1 RO RO DatalLdC mov; test ability to put back into datareg DAY
DataVal; output value :j,:::::;’,:
R1 RO R1 incr; test ALU iner function and busses A Ry
R1 RO RO DataLdC mov; o
R1 RO R1 incr DataVal; ;:",;\';:f.'
R1 RO RI incr; SRS,
R1 RO R1 DataldC incr; NN
R1 RO R1 DataLdC decr DataVal; test decr function :.-:':_‘:::‘_'.:}{
R1 RO RO Datal.dC mov DataVal; test mov et
R1 RO R1 inv DataVal; test complement
R1 RO R2 DatalLdC mov DataReq; save data in R2
DataldPads; get new data
RO RO R3 DataDrA mov DataReq; putin R3
DatalLdPads; get more data o
RO RO R4 DataDrA mov: and put in R4 ’_.'_._ .
R3 R4 RO Datal.dC and; test and function .‘,\:-:‘}\:\
R3 R4 RO Datal.dC or DataVal; test or ORI
R3 R4 RO Datal.dC xor DataVal; test xor ‘::‘::':-"‘.;\
R3 R4 RO DatalLdC add DataVal;, test add :.;-.::'_ ';?_;-\.
R3 R4 RO Datal.dC sub DataVal; test sub °*
R3 R4 RO DatalLdC comp DataVal, test compare ';.J_:? R
resetcy DataVal; S
R3 R4 RO Datal.dC adc; test adc w/ cy—-0 :-i-:::-:::-::
R3 R4 RO Datal.dC sbbt DataVal, test shb w cy-=0 dedaar
AR GAY.
setcy DataVal; Ll GLN g
R3 R4 RO Datal.dC adc; test adc w, cy-—1 _.

setcy DataVal;

R3 R4 RO DataldC sbb; test adc w/ ¢cy=-1
R3 RO RO Datal.dC shiftl DataVal; test shift register
R3 RO RO DatalLdC shift5 DataVal;

R3 RO RO Datal.dC shift15 DataVal;

R3 RO RO DataLdC shift23 DataVal,

PR

N
]
AT B
VR
o sl
A
.l

158

RS
LIRS
@5, "

[
AR
'~....~.

v

-

DCPE PR W \’-_' LIPS -_-...‘ W
TP P PR VL ' ST SN R N ¢

NN NN e et

ERR R N N
ANAS o At AT A el Al

e

A:

L a% 20,2 YU WL LW 1 BT TR R AU A RTTY T ATRT EN RU AMN Y OO KON N, g tag Vol Vo4

DataVal;

: the next section of code is the same
; as the previous, except that a literal
: field from XROM! inserts data. this
; allows testing if [O path is faulty
#010100011001 RO RO R6 DatalLdC Litlns LitZero mov;

R6 RO R6 shift12 DataVal;

#0010601010101 RO RO R7 DataLdC Litlns LitZero mov;

R6 R7 R3 DatalLdC or DataVal; combine first word in R3
DataDrA DatalLdC incr DataVal, check alu functions

DataDrA DataldC decr DataVal;

DataDrA DataldC inv DataVal;

#010100010101 RO RO R6 Litlns LitZero mov DataVal:

R6 RO R6 shift12 ;

#000111000100 RO RO R7 Litlns LitZero mov;

R6 R7 R4 Datal.dC or ; combine second data word in R4
R3 R4 RO DatalLdC and DataVal; test alu functions

R3 R4 RO Datal.dC or DataVal:

R3 R4 RO DataLdC xor DataVal;

R3 R4 RO DataLdC add DataVal;

R3 R4 RO DatalLdC sub DataVal;

R3 R4 RO DataLdC comp DataVal;

resetcy DataVal;

R3 R4 RO DataldC adc;

R3 R4 RO DataldC sbb DataVal;

setcy DataVal,

R3 R4 RO DataldC adc;

R3 R4 RO DatalLdC sbb DataVal;

R3 RO RO DataldC shift2 DataVal; test shifter

R3 RO RO Datal.dC shift8 DataVal;

R3 RO RO DatalLdC shift18 DataVal;

R3 RO RO DataLdC shift22 DataVal;

; the next section of the microcode
; tests the microcode sequencer

; functions

Jmp A DataVal; test unconditional jump

nop;

nop;

DataReq;

DataVal;

JmpCond skip D; skip allows portions of code to he
; circumvented (so one bad operation
; will not prevent subsequent tests
nop;

JmpCond not inpval B DataReq; test external pin control of mmpval
DataReq;:

setcy,

JmpCond not cy C DataReq;

159

SR e v WA, WA A A LAY, TR SR WO, VG A)

L A N A A N A AT g :r e '.':‘.-: .:‘ :

'i}':, >
o &
- "

P v W ¥
AN

LY
‘b'i..),
Pl A4
ANROR
RN Y

CA

AP
Y

4

A
L4
*, "- \’\ s %

4
v
PAS

i e 2 J
N
Y

a
ae
XA
0

>
Rl J

b

L7
P

F.

4
455%%
'.I\;.f,{,’

-‘.- g

NN

A
L A
YRS S
P

CA s
ﬁ,"

L)
oy
I’l.l
L
LY

CAPPRE

C
3
.

«
13

N

‘ ‘
N Ny
PRt

.

*
o

I\' l\. D.‘

.“'
.I

(T4

»

¢ g a -
® i

.

'Y '."\
[N
il‘.'.-'

[2 T
[

L4

“

's{\:-
ah)

.
XA

Iy
)
4

(4

a8,
5
LAy

P
hJh)
oy
/4

AL
'I%\‘

vaAN
(s

-‘._'i

.I\l{
955595
Sl

."

]

)

l.‘ 1
q

»
«“
P
."1' .

[}
N
AA]

k'

P

Sy

BRI
N

VYA

.
[
o0
7L

.

.

v

e
I's

.

TR

»

‘.

".
'

-..'! -
---". I‘
L NG LN,
®
N

a¥sr

-

vl
[/

s
L
4

ARy
POV
s

»
- J.—,‘.,

v 4
%‘

rE e
» ’
AAASe
’ !\/

Id

X'

¥
2

ARy SN -.\-n.-.
NN 4

’- ..\-\-\-\
] DL |
A s AN
it 2 s ta PO T T
= 5]
= =)
3] M <
@ - m\n
= = L - 9
=] = P =
[¥] - —_ ma
o w « 4] RO
(== Pt c = mu.IOn
pel o) .2 pey =
] = = = =2
e 2 3 o @ 5
s 8 E I =
=2 =
n nOu © n rmm
2 RS 5 o L =
a o - 3 =0
E £ 3 g g <
‘n 3] s = V..O.
5 % = % 3%
QL
3 m S 3 LS
[
7 g g
3 8 £
.. 2 o s
.. . .. -
€3] [o) 2, s w M
I.M kS LQAU L& n..-“t QL I..M Y]
.. - - - - .- 8T R - A -
o =4 = 1 g o a2 oooS coogov ol o
O e} .) .- o oL ow,Q Vveeea R - I VR VA s -
o O = O @] O = sN: Ao E=RC) ek R oM < —
Sdas ez dzasdagaacsesRacsft a8 S=sdsas 85858889
—_— = —_ —_— et — = - -
aomoaoaoaoomoaoomama.womaaaﬁw.aaaaaﬁaaw.ﬂw.aw.ﬂw.aoeoe
Ae=eceLaLalaagsacalagmA-A0 - oY=l aY. A -NaYaNal.Na¥.NaRCEr-N.- A -NORr-N. Er-N GRr-N Or-N

D
E
H:
N
hY
F
G:

¢mdO:

get2:
Gl:

G2:

add:
sub:
and:
or:
Xor:
shift:

mult:

ml:

m3:

. . o,
'A..' W n b, .'1‘..'0“.‘ “

nop;
nop;

nop;

nop;

nop;

Call get2 DataRegq;
nop;

Jmp N DataRegq;
DataReq;

JmpCond not inpval G1 DataReq;

DataldPads DataReq ;
RO RO R1 DataDrA mov ;
DataRegq;

JmpCond not inpval G2 DataReq;

Datal.dPads DataReq ;

RO RO R2 DataDrA mov ;
Ret;

DataReq;

Jmp N R1 R2 Datal.dC add;
DataVal;

Jmp N R1 R2 DataLdC sub;
DataVal;

Jmp N R1 R2 DatalLdC and;
DataVal;

Jinp N R1 R2 DataldC or;
DataVal;

Jmp N R1 R2 DatalLdC xor;
DataVal;

Jmp N R1 RO R1 DataldC shiftl;

DataVal;
R2 RO R4 mov;
RO RO R3 Litlns LitZero mov ;

#000000010111 RO RO R5 Litlns LitZero mov ; R5 = 23 (loop count)
#000000000001 RO R+ RO LitIns LitZero and ; and to check LSB

JmpCond zero ml,
R4 RO R4 shift23 ;
R3 R1 R3 add;

R3 RO R3 shift23;

#000000000001 RO R4 RO Litlns LitZero and;

JmpCond zero m3;

R4 RO R4 shift23 ;

R3 R1 R3 add;

R5 RO R5 decr;

JmpCond not zero m1,
nop;

R3 RO RO Datal.dC shift23;
Jmp N DataVal,

DataVal;

R e

Dhi it it

instruction to load 2 registers

load data
put it in R1

load second data value
load it in R2

add instruction

o'y
PR
]

subtract instruction

L
-

vy
S

PAr

Ay &

]

L AR)
0

A .y
AN

and instruction

;.'*.'

»
55,
A S ST
'’
L

or instruction

,;

v

¢

O]
' @

.l
P
.

[l's

Xor instruction

“ae
L]
a
'i

]

f’./!

){.
Py

¢’
.)
.
[]
v
»

shift instruction -

-
.l.
- 7

,l"ll
’1 -~
LN '}
[
l(’

multiply instruction
R3 =0

o,z
PR
/4

‘-'{“r>11
Py
7t A,

s
‘I
LI
o,
&

.
v

+
)
3

PRI

/l."l '."
Yy
LY S
}f’.{'{

J

il LSB zero add multipiier
shift temp result BAY

Yid

decr loop count TR

if not 0, continue mult SR AN

AT NN

AN AR

. . DA

shift result right 1 ;-‘?\-;."_'.‘_(:

LY * ’

all done; return NIV
... 9

RN R

RS Ny

DAt

Y

161 e

A

LA

RS

At Ay

YRS -..\-‘.q - 'f-

JJ-I:-(J 2, L » ..-.... [N 5G5S

\ g 5'\\ I} eéElLld . \fn\ \f f'hﬂfv \foVl- I\ M’ \.v\ .-.-. A \-\-\f\f\f\hl\ﬁ \\i&\.ﬂ\-
s..._.as LK a.‘.,.........s,....r...... x. ...«.ﬁv.. _. aRns ..: ", SRR A ey e oAtz
f.....«..aﬁﬁf PRAMRIE \.,.,,.. DAY AR A . ol S @l
A. Al XN Rt ot U mv\.\ \a\.r\rﬁ. L SAAANCIACY ALY
\-\N\-V A-!J-- 5% --J.l et r-u-l F\MA- \\.v-. v \- l.\.\..h.\-\-t\l- PP -\rn..

OO0 I AL ML At = pLAS S RN A A R AL s
i

-.\
g

--\
..\.

o
Q‘.It
-’~I~
%

.
-\.
-ll$-

'

s
-"-v

Ny

-
-
'™

e
TR

shift R1 amount in R2
\"-

JmpCond not zero shR1 R1 RO R1 shiftl;

R1 DatalLdC mov;
Jmp N DataVal;

DataVal;

162
el

o
-\

T,

A

AN

Y

o o

shR1: R2 RO R2 decr;
end;
RN

[Bai87]

[Bie85]

[Cal86]

[Col85]

[Dia87)

[Fre86]

[Fuj85]

[Gal86]

[Gal86A|

[God87|

[Hau87|

Hen84]

[Hen82]

Ca A ded e P
P A I VP I S R T S,

P TN T N T T T R T T U N AN R U L AN X OO W Sah Vul caf fall ol ol talval val ‘al.Talotale pb. g

BIBLIOGRAPHY

Bailey, Mickey J., “High Speed Transcendental Elementary Function Architec-
ture in Support of the Vector Wave Equation,” MS Thesis,
AFIT/GE/ENG/87D-8, School of Engineering, Air Force Institute of Technol-
ogy (AU), (to be published December 1987).

Biems, J. L. and others, “The MC68020 32-Bit MPU: Opening New Doors,”
Reprint from Wescon 1985 Profesional Program Papers, Motorola Bulletin
AR232, Motorola Literature Distribution, Phoenix, AZ (1985).

California, University of Berkeley, Berkeley Distribution of VLSI Design Tools,
Computer Science Division, EECS Department, University of California at
Berkeley (1986).

Colwell, R. P. and others, “Computers, Complexity, and Controversy,”’ Com-
puter 18 pp. 8-19 (September 1985).

Diaz, Juan E. and J. W. DeGroat, “Microcoded RISC Processor for Calculation
of the Vector Wave Equation,” Proceedings of the IEEE 1987 Custom
Integrated Circuits Conference, IEEE Press, (March 1987).

French, L. E., “A RISC Controller for the CAM-PUTER System,” M.S.
Thesis, AFIT/GE/ENG/86D-58, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, (December 1986).

Fujiwara, H., Logic Testing and Design for Testability, MIT Press, Cambridge
(1985).
Gallagher, David M. and others, “A RISC Optimized for Solving Systems of

Linear Equations,” EENG 588 Class Project, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH (September 1986).

Gallagher, David M., “Circuit Extraction from SIM to VHDL,” EENG 653

Class Project, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH (December 1986).

Godfrey, Jim and others, ““An IEEE Floating Point Adder,” EENG 695 Class
Project, School of Engineering, Air Force Institute of Technology (AU).
Wright-Patterson AFB, OH (March 1987).

Hauser, Robert S., “Design and Implementation of a VLSI Prime Factor Algo-
rithm Processor,”” MS Thesis, AFIT/GCE/ENG/87D-5, School of Engineering,
Air Force Institute of Technology (AU), (to be published December 1987).

Hennessey, J. L., “VLSI Processor Architecture,” IEEE Trensactions on Com-
puters C-33 pp. 1221-1246 (December 1984).

Hennessey, J. L. and others, “The MIPS Machine,” Proceedings of IEEE
COMPCON Spring 1982, pp. 2-7 (February 1982).

Bib-1

DI I AP N S A T A AP AP P I U DN A Tl Wl Wl YL

el et Lt e 2 AN AN .

e rmramaeae e e ey e aem et et e e e ettt
NI T A e e AR T e T e e e e TR e e A AT e,

o

‘(.3 L’
&

h]
A

-

ax
Y
S
N, '5

G

[
Knsns

g

fr

ll l’ ll ‘.
%

«

Fa

2

72
5

P I/ I}
rNe
r,
Y P
LA
‘. "y
fd
-

P
Y
?

o
;V,'
v

N

]
ANt FE
PRl W 4 ’

¢
OIS)

5
e

AR
frelS
W8y
) 1

"«

2]

I’.'.f.t"f‘,

[AT DU

LR AR
b AR
l"
4

'y

Ly
~ v Jl
,’4. AL

N

i

e

P YEEN.
; "‘:":“f"
‘, -'. _";i A A
i
~ fxf.'f
PN,

{l
’
o
?

A
-

)
o

i

o

" .

 J
'

NN,
P

".
.
P

~
o

y v
£,

&

h

Y
Ly
\‘,'\

-:\ ‘5\

‘e 4% B 8°8 8 28 A0 Bt G0 AP £V L' Gy b g ™ ‘3 avm ath ala J8a et it Nt o8 gon 00 4"0.0 88" WAUY URLUWUN LW e g8, b

[Hen87]

EES5)

[Joh87]

[Jon87)

(Kat85]

[Lin85]

[Mac86]

[Man82]
[Mea81]
Mye82]

[Ous87]

(Prz86]

[Rad83]
[Reu83]
[Rob87|

{Ros87]

'Ros85]

Hennessy, John and others, “Research in VLSI Systems,” Technical Progress
Report. Report to DARPA Conference, Center for Integrated Systems, Stan-
ford University, Stanford, CA (December 1986 - March 1987).

IEEE, Computer Society Standards Committee, “IEEE Standard for Binary
Floating-Point Arithmetic,” ANSI/IEEE Std 754-1985, IEEE Press, New
York (1985).

Johnson, Thomas L., “The RISC / CISC Melting Pot,” Byte 12 pp. 153-160
(April 1987).
Jones, Keith and David M. Gallagher, “Testing of the Floating Point Multi-

plier Chip,” EENG 795 Class Project, School of Engineering, Air Force Insti-
tute of Technology (AU), Wright-Patterson AFB, OH (December 1987).

Katevenis, Manolis G. H., Reduced Instruction Set Computer Architectures for
VLSI, The MIT Press, Cambridge, MA (1985).

Linderman, Richard W. and others, ““CSTAT: Sim File Checker for CMOS
Chips,” AFIT CAD Tool Documentation, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH {July 1985).

MacGregor, D. and others, “The Motorola MC68020,” pp. 429-446 in Tutorial
on Advanced Microprocessors and High-Level Language Computer Architectures,
ed. Veljko Milutinovic,IEEE Computer Society Press, Washington DC (1986).

Mano, M. Morris, Computer System Architecture, Prentice-Hall, Englewood
Cliffs, N.J. (1982).

Mead, C. A. and L. Conway, Introduction to VLSI Sytems, Addison-Wesley,
New York (1981).

Myers, G. J., Advances in Computer Architecture, Wiley, New York (1982).

Ousterhout, John, “Editing VLSI Circuits with Caesar,” User’s Manual, Com-
puter Science Division, EECS Department, University of California at Berkeley
(January 1987).

Przybylski, S. A. and others, “Organization and VLSI Implementation of
MIPS,” pp. 202-240 in Tutorial on Advanced Microprocessors and High-Level
Language Computer Architectures, ed. Veljko Milutinovic,JEEE Computer
Society Press, Washington DC (1986).

Radin, G., “The 801 Minicomputer,” IBM Journal of Research and Develop-
ment 27 pp. 237-246 (May 1983).

Reusens, P.P., “High Performance VLSI Digital Signal Processing Architectures
and Chip Design,” Ph.D. Thesis Cornell University, (August 1983).

Robinson, Phillip, “How Much of a RISC?,” Byte 12 pp. 143-150 (April 1987).
Rossbach, P. C., R. W. Linderman, and D. M. Gallagher, “An Optimizing

XROM Silicon Compiler,” Proc. of the [EEE Custom Integrated Circuits
Conference, pp. 13-16 (1987).

Rossbach, Paul C., “Control Circuitry for High Speed VLSI Winograd Fourier
Transform Processors,” MS Thesis, GE/ENG/85D-85, School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
(December 1985).

Bib-2

X & _X_& R
&""5 -.:i.‘
el
e

s
b
o7

W 'l, .L_"l,?, . ¢F

. s

¢

IS

ain I S
A
';-'/ Tl

RV AV
. .

(Y

'. v . “

“x s '
@ :
G &y

’.{"III

2
b T

5

i
4
«
e
o~

-

’ e

NaNA A YA

FFES

P’
e s

.
AN Yy

PN

(Sed82 Sedra, Adel S. and Kenneth C. Smith, Micro-FElectronic Circuits, Holt,
Rinehart, and Winston, New York (1982).

[She86] Shephard, Carl G., “Integration and Design for Testability of a High Speed
Winograd Fourier Transform Processor,” M.S. Thesis, AFIT/GE/ENG:86D-
46, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, (December 1986).

[Sil86] Silbey, A. and others, “A survey of Advanced Microprocessors and HLL Com-
puter Architecture,” Computer 19 pp. 72-85 (August 1986).

[Wal64] Wallace, C. S., “A Suggestion for a Fast Multiplier,” IEEE Transactions on
: Electronic Computers EC-11 pp. 14-17 (February 1964).

[Wes85] Weste, N. H. E. and K. Eshraghian, Principles of CMOS VLSI Design,
Addison-Wesley Publishing Company, Reading, MA (1985).

Bib-3

S

5
-
el

5
o
X

L Ch
5

2

ANA
[' J'
. .:.’..J.

PP
f"t' "'5
e Yo

b
2
"t

55

'l

-
4%
5

fd
L Y

-
"' N
-
r’
‘-l"’L

e
£
’I

]
()

PRI
O
s Y ‘e

>
»

s
‘r‘).
. _4
7

[P

7
|
J

o
At

Al
nd

. s
LA A ¥
AR 5

X a0,
[
ALhl

P

z
"’i
r-l:
o

7

77,

':;.t.‘r
A7

‘.

‘."\ ., o
5

h o

»
b

b T 3 T
par Wals
r

Ja P
bk

-

o

&
"'1
4

hY
4.7

X

TR X XK N WP iy Sy TR 1
& S EPE . 4% % b - b z T o -
A N - I oy YA VY2 ey Cece em .y
--(-\\f-,-d\\.v /J-nvlfan_ *, m-h-f-..ﬁ*. SRR R PR ﬂfff\l-
L A R I AN - b PP XA XA T A AAMRS, FLLSS,
P AR AP e S Y o) " N e N R A
L MYNNMMYCE TR 1 PRREEBLD LSS
EASPPLES o e T LN S
LA S LY P A AR v- P \-&-»n\l-i\
x-v--...--\--n. PN AL U Y 1 ,‘*htl-VAn " %
VOUWNRNY AN d O A
ER N R A AN Y% gl e, thhf\.\\ -
m o
& - e
. — &)
& o 50 o s %3 - o3
[5] o= D - W o [
2 o] - o b0 3 a
o = o @ o A 8 8 e
© b - v = o o= 60 =} — =
€9 Z £ 1m = < (54 =] = o [e)
> -~ G . [¥7) . -
t~ -~) S £ \'o) Il =
. - z = = Q @ o w <
2 2 00a . = = d £ = 3 o =
° 2 9 s 3 & = 3 9 R O
@ . <4 % S8 o o2z W om o« - -
g o © — @ mw - .8 . O o =
[e) - e .y m — S 7o) ~ O [
<= = o < ~ i o 0 Q < <
O = 5 o s g 0 0 SRS = A
8 5 - o= < = 1.1 o =] =
P = > [L, P = v
g < A g T B o - =« &
3 - = ~ = [
A o Fey @] P =) Q
e S % ¢ 3 o 8 8 T -0z <
= 3 = S g &4 m << 2 9 <<
W s 8 w» T L < © 3 = -
(/2] @ Q —_—
= [=] [O -y ! - o) b0 =
=] 3 TR a s &= M & 7)
il -2 = =] = fxy =
=) el MM b0 o ..M A = m (]
-nw. b0 o g =] m = % [£
= I~ — = .
% m sm o % |mu W % (e} m s 9} n
5 2 ¢ & g = <= O 2 &
e = < +>) I%
— - [S] % - = Y By
o = =] 2 3 —] - = Ay
= Q = 8= [25) o = ey [by
w0 S Q « S 0 a '
« o joN ;) o a = = — .f
= = Q. =9] = -]
] - <] o - [o '] -f
@]] as] 3 2 (@) © S
> g = g & o .
. [« o Q, - - (o) = N
—t a -4 m T - fz, s
- w g 0 3 ™ © y
=] L wn Q f— a.
~ — o> =1 o (o} o .— (e
1 Rt — e Pt A 3] A
> z @ 5 o 5 -) .
s) O Q. e o - - [%
— @)] b Sa [0 - .
a - — O o Q s
g [@ @ .20 w e} '
- = 3 =t 17 o v S >
3 4 - £ § 9= & 5 =5 5 .
s g8 T £ a = & 5 3 o ;
S ¢ ¢ § - 4 3 7 & s = h
- - B @ o
b

TR

4

‘ LN

i UNCLASSIFIED , ~ =
ECURITY CLASSIFICATION OF THIiS PAGE /} ‘ - sint

]
Form Approved [LN
REPORT DOCUMENTATION PAGE OMB No 0704-0188 A Y
1a. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS X0
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approyed for plﬂ)}l? Release; e .
Distribution Unlimited :-\.:-.:-u:
LSSy
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) ‘.:-.:\.':,».:x
ey
AFIT/GE/ENG/87D-19 BOSRGOAY
(
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION e ety
(If applicable)
School of Engineering AFIT/ENG
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433-6583

8a. NAME OF FUNDING / SPONSORING 8b, OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER .
ORGANIZATION Air Force OFf.| (f applicable) BRSNS,
of Scientific Research AFOSR/XP AN

A S
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS :-'_'{':":i:'
, , PROGRAM PROJECT TASK WORK UNIT R
Bolling AFB, Washingtén D.C. 20332 ELEMENT NO. NO. NO ACCESSION NO ::\:‘; A

11. TITLE (Include Security Classification)

1
£ RAPID PROTOTYPING OF APPLICATION SPECIFIC PROCESSORS (Unclassified)

12. PERSONAL AUTHOR(S)
David M. Gallagher, B.S., Captain, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT J—
MS Thesis FROM TO 1987 December 182 e
16. SUPPLEMENTARY NOTATION :.',-'._"
’.".'—
[N Lol
R :{_',“

EN
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) : P VW,

gg—o GRO{”’ SUB-GROUP Computer Architecture, RISC, Integrated Circuits,
0 .
Microprocessor, VLSI, Computer Aided Desiqgn

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Richard W. Linderman, PhD., Captain, USAF
Assistant Professor of Electrical Engineering

P ot T releasa: 1AW AFR l9°-¢
g 10Fer— 3 0.3
Dad for b . and Professional Developmend

Air Force Institute ef Techaclogy (MCT
Wright-Pattetson AFB OH 45433

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION ®
I UNCLASSIFIED/UNLIMITED B0 SAME AS RPT [] DTIC USERS UNCLASSIFIED ERCAAA
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL ,-:..:.,:'_\-:\
Richard W. Linderman, PhD., Capt, USAF 513-255-3576 AFIT/ENG DAVAN
DD form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE '.:‘..-,,"\\L':.:
TN
UNCLASSIFIED B EAR
[]
NS NN
..'r\.._\::\'_ \
R
I T T B I T T T i P L S L T IL I Nt T e et T e Tt T e Tt AT AT T AT e T Y
e e A: ;,ﬂ:-’\";{&.:;f;{;-.ﬂ:’;'.1‘.,’:::\‘_{5‘.- . J- '\l_.'-{.- ~‘_ SRR .-_.\-__ A A s ‘.-,',-.'-',‘-'.‘.-“.r .‘_\-.,.J_\d__r\ A u"'l A

X A5 K

3

i
'

S - -
‘3..” ‘....". N‘b}\\\"-‘\ﬁ\"ﬁ *’5.’

gt an® Bac Ba® ta" Ba” ¥a' 02 ata’ a2 aV4 %1 2% 2'd 2'0 2°8.8 8.2 4.8 1l ¥af Sak Sall _Sat * AN KN VY Yo B%a Bha A"

UNCLASSIFIED

19. ABSTRACT

Numerous applications throughout the Department of Defense, industry, and
academia require the design of custom proéqssor architectures. Design of these proces-
sors, however, is normally a lengthy process. \This thesis defines a methodology for rapid
prototyping custom VLSI processor architectures., Using this methodology, the design
and implementation of application specific prp;eas{)rs can be reduced from several years
to two months. This reduction makes a high-performance VLSI solution feasible for
Department of- Defense applications that would otherwise have settled for a lower-
performance alternative.

Li'l'he rapid prototyping methodology is based upon the specification of a general pur-
pose architecture customized via microcode to solve unique applications. Since processing
requirements will vary, the designer chooses appropriate macrocells from a design library
to provide the best hardware support. A high-level language description of the problem
is then translated into microcode. The microcode is automatically assembled and
designed into a ROM (read-only memory), resulting in a processor customized to solve
the given application. By allowing the designer to quickly convert ideas into implemen-
tations, the rapid prototyping methodology frees the designer to be creative rather than
becoming mired in implementation details.

A general purpose VLSI architecture was designed to support the rapid prototyping
methodology. The control section of the architecture centers on the microcode ROM
(read-only memory) and a microcode sequencer, which provides proper addressing to the
ROM. The datapath section (I/O path, registers, and arithmetic hardware) uses the con-
trol signals from thec ROM to_perform the required processing. The datapath macrocells
were desngned in a”"bit-slice™ fashion, allowing easy configuration to different data types

and widths. ,A prototype processor was implemented to test the architecture for func-
tionality, petformance, and operating characteristics. Additionally, a parallel floating

point multlpller, applying Booth’s modified algorithm in a Wallace tree structure, was
fabricated. To further support the rapid prototyping methodology, several design tools
were developed. These include a program to automatically generate a ROM in the Magic
format and an extraction tool which generates a VHDL description of a circuit from a
transistor listing, allowing high-level simulation of the circuit and thereby closing the
“design loop."”

The rapid prototyping methodology has been successfully applied to three different
applications. These applications demonstrate that a custom application specific processor
can be designed in less than two months using this methodology. This reduced design
time also translates into reduced cost and program "risk.” This dramatic decrease in
design time could result in a significant increase in the usage of VLSI/VHSIC solutions to

Department of Defense applications.

UNCLASSIFIED

'\- e e _\,- RS .
- '. "’ ~* J. " A_.L.L“l-m&n\ L

o

al.

Lal

as

Cas

| LA

PR A
SR RN
l."l'l
L4500

T I%f‘
/ P

N

2
.

’
»

o \- .‘u s

o Ny
L]
b IR

~
v

- . y p e iy . P PP p - O S oy PYTY Y
o e AL &P Sl B N R 2 B A A LA LA BN 22 | EZLELLAA Iy ynnsnsn s as s SN
.I* &!&Iw -'\f“} ?ﬁf\f\\u’\ .’Hi).\f. -a-l‘-.-\l -l \I .n(\-\.f- ,-' ._ . -\sn .v\-(.\v-f -1-‘”-&.’ _.F ﬁ&f Hﬁlv P%Nﬁ.\\lnrﬁnnf\tf.‘ %' .”O‘l ..\U\\f&f \anJ f.----f.-f.-u--? \fn [4 I\I\ .-. 5y
> AT IR AR LA, Y220.0.040 RN L' ALaa000 o RN SSRGS ol bl Iy SR \.,\.....\ -
i NN

i FOWY W PEW

* e,

TN

Tgbe'nty et

A R N N R A L R NN

.

i

L]

ECI gy 2 O TSI P, DPPF e,] e | Cew e a e b, o, [OXOCW T o Yime -

