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ABSTRACT

Numerous applications throughout the Department of Defense, industry, and

academia require the design of custom processor architectures. Design of these proces- I
sors, however, is normally a lengthy process. This thesis defines a methodology for rapid

prototyping custom VLSI processor architectures. Using this methodology, the design N,

and implementation of application specific processors can be reduced from several years

to two months. This reduction makes a high-performance VLSI solution feasible for

Department of Defense applications that would otherwise have settled for a lower-

performance alternative.

The rapid prototyping methodology is based upon the specification of a general pur-

pose architecture customized via microcode to solve unique applications. Since processing

requirements will vary, the designer chooses appropriate macrocells from a design library

to provide the best hardware support. A high-level language description of the problem

is then translated into microcode. The microcode is automatically assembled and

designed into a ROIM (read-only memory), resulting in a processor customized to solve

the given application. By allowing the designer to quickly convert ideas into implemen-L tations, the rapid prototyping methodology frees the designer to be creative rather than

becoming mired in implementation details.

A general purpose VLSI architecture was designed to support the rapid prototyping ,.

methodology. The control section of the architecture centers on the microcode ROM '

(read-only memory) and a microcode sequencer, which provides proper addressing to the

: ~xiii ,

methodology.~~~~~~~~~~~~~~~ Thoto eto fteacietr etr ntemcooeRN
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ROM. The datapath section (1/0 path, registers, and arithmetic hardware) uses the con-

trol signals from the ROM to perform the required processing. The datapath macrocells

were designed in a "bit-slice" fashion, allowing easy configuration to different data types . e

and widths. A prototype processor was implemented to test the architecture for func-

tionality, performance, and operating characteristics. Additionally, a parallel floating

point multiplier, applying Booth's modified algorithm in a Wallace tree structure, was

fabricated. To further support the rapid prototyping methodology, several design tools

were developed. These include a program to automatically generate a ROM in the Magic

format and an extraction tool which generates a VHDL description of a circuit from a

transistor listing, allowing high-level simulation of the circuit and thereby closing the

"design loop.",%

The rapid prototyping methodology has been successfully applied to three different ,"

applications. These applications demonstrate that a custom application specific processor

can be designed in less than two months using this methodology. This reduced design
' % % .,

time also translates into reduced cost and program "risk." This dramatic decrease in

design time could result in a significant increase in the usage of VLSI,'VHSIC solutions to

Department of Defense applicatiorns.

I -

,,.:..,.
,'V<:.*

XiY *•* *.

,,x, iv

..............................-. ,.....'.-. ."*'v*.~.~*

- \ . .' * ~ **~%*~,*%** % *< ~ %**~* '°%%*'** *;



COMMON ABBREVIATIONS

Abbreviation Explanation

ALU Arithmetic Logic Unit
AND "And" Gate
ASP Application Specific Processor I
CAD Computer Aided Design

CISC Complex Instruction Set Computer
CMOS Complementary Metal-Oxide-Semiconductor
DoD Department of Defense
DRC Design Rule Check
GND Ground - "Low" Voltage
HOL High-Order Language
LSB Least Significant Bit
MSB Most Significant Bit
MUX Multiplexer
NaN Not-a-Number
NAND "Nand" gate
OR "Or" Gate
PLA Programmable Logic Array
PQ1 System Clock -Phase 1
PQ2 System Clock - Phase 2
RISC Reduced Instruction Set Computer
ROM Read-Only Memory -
Vdd Source Voltage - "High" (-+-5v)
VHDL VHSIC Hardware Description Language
VLSI Very Large-scale Integration
VHSIC Very High-speed Integrated Circuits
XOR "Exclusive-or" Gate
XROM Read-Only Memory w/' X-shaped Storage Cel --
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II

RAPID PROTOTYPING

OF

APPLICATION SPECIFIC PROCESSORS

CHAPTER I

Introduction

1.1 Background

v Advances in integrated circuit technology have made possible the design of VLSI

(very large-scale integration) chips containing several hundred thousand transistors. A

single chip can now perform functions that several years ago would have required a

main-frame computer. As a result, VLSI architectures can now be applied to a broad

range of difficult problems. The challenge for VLSI designers is to translate the ideas fos-

tered by this new capability into reliable VLSI implementations.

. An important VLSI area of study is the design of processor architectures to perform

computation and provide control for special-purpose applications. Research programs

throughout the Department of Defense (DoD) require application specific processors ,%

(ASPs) customized to accomplish one particular task. For example, several research .

efforts currently underway at AFIT have identified the need for VLSI architectures to

provide system processing and control. These include: II
1 U'



1. AFIT CAM-puter system
2. WFT (Winograd Fourier Transform) project
3. VWE (Vector Wave Equation) processor
4. Silicon Brain and Optoelectronic Retina Architectures
5. Laser fusing for air-to-air missiles

To meet specifications, the VLSI processors/controllers for these projects must often be

custom-designed. The specification, design, layout, verification, and fabrication of an

application specific processor, however, can require two years or more to complete. Due

to this lengthy time, and the perceived "risk" of using custom VLSI architectures, pro-

gram managers are hesitant to commit to a VLSI solution to their processing needs
S%

One way to solve this problem is to design a general-purpose architecture that can

be customized to specific applications. By customizing the microcode instructions stored

in an on-chip ROM (read-only memory), a general-purpose architecture can be applied to

specific problems. Using automated tools, the software microcode can be developed easily,

allowing the rapid prototyping of a custom ASP. This ability to rapidly design reliable

custom architectures will facilitate "VLSI insertion" into DoD programs. A primary pur-

pose of this effort is to demonstrate that custom VLSI designs can provide reliable,

economic, and higher performance solutions to many research programs which now use

"off-the-shelf" products fabricated in old technologies.

1.2 Problem Statement

The goal of this thesis effort is to formulate a methodology for the rapid design,

layout, and verification of custom processor architectures. The intention is to dramati-

cally decrease the time required for these phases of processor dvelopment.

A general-purpose processor architecture containing a RO\ to store microcode will

be specified. A prototype processor will then be designed and implemented in VI\TI. The

2
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initial architecture will be implemented using a 3 micron CMOS, double-metal fabrica- %

tion process. Throughout design, emphasis will be placed upon the ability to modify the

designed the macrocells (via a "bit slice" design style) for use in different ASP applica-

tions.

1.3 Scope

This thesis is bounded both in the type of problems to which it applies and in the
* %

scope of the solution it presents.

1.3.1 Scope of the Problem. This methodology formulated for the rapid pro-

totyping of ASPs is targeted applications that are algorithmic in nature. The algo-

rithm for the application should initiaily be specified by a HOL (high-order language)

program. This program can then be translated into the microcode that will be incor-

porated into the ASP. ,.

Applications that cannot be specified algorithmically, or which have special

hardware requirements not easily provided by the general-purpose architecture, may not

be good candidates for this rapid prototyping methodology. These types of problems will

require increased design time and may not be easily implemented using existing macro-

cells. One example of a poor candidate for rapid prototyping is an I O-bound problem

requiring special bussing and external interface. Implementation would require extensive

hardware re-design, lengthening the time required for prototyping. Another example is

an application that uses trigonometric functions extensively. It would not achieve g,,od

performance without specialized hardware, thereby increasing its design time.

'.*% 
1.0,
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1.3.2 Scope of the Solution. The rapid prototyping methodology entails both
lot

the hardware and software aspects of ASP development. The hardware aspect of ASP

development involves the design of the general-purpose architecture that can be custom-

ized with microcode to solve different problems. An important aspect of the hardware

design and implementation is the creation of a cell library containing a variety of the

macrocells necessary for ASP development. These macrocells can be easily modified, 1

allowing the ASP architecture to be adapted to a variety of problems.

The software aspect of ASP development involves the specification of the microcode rr . l

fields (instruction set), writing the microcode, and then incorporating this microcode into %

the design (creating the microcode ROM). A methodology is necessary for specifying the %

microword and translating the high-order language description into microcode. - %

Automated tools are needed to assemble the microcode into binary form and then gen-
.2.*. 5.

erate the ROM layout.

1.4 Summary of Current Knowledge

Considerable research has already been conducted at AFIT in the area of applica-

tion specific processors. Several ASPs have been designed in past thesis efforts and class

projects [Dia87, Ga1861. A prototype of the CAM system controller has been fabricated ."

and tested [Fre86J. A processor for the \VFT project has been also implemented and 1-.

currently being fabricated She86j. %

In addition to the insight gained frotn these projects, num reroiis tn icrfwi' kusefI III

an ASP architecture have already been designed The ('..\I cnntrollcr c ni wis t :,,,ntr-i -.

section similar to that envisioned for the ASP architecture Adder, inireniii:l, rtatter -

stack, and barrel shifter macrocells are also avail;)ble Aitbm tb e .\FIlT ,,'11  1llr:it, ,

4
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Although these cells will have to be adapted to the ASP architecture, the design of these

cells is already well understood.

Perhaps the most significant work accomplished toward the rapid prototyping of

ASPs is the development of the XROM Optimizer by Captain Rossbach Ros85. The

XROM Optimizer inputs a file containing the desired contents of the XROM (a ROM

whose basic storage cell is designed in an 'X' shape) and automatically generates an

XROM layout in the Caesar format [Ous87]. The program also re-orders the address

and data lines to minimize the number of transistors and drains required within the

XROM. This, in turn, decreases the power requirements and increases the yield (and

possibly the speed) of the design.

This XROM Optimizer greatly facilitates the rapid prototyping of ASPs. Once the
b%.a

general-purpose ASP architecture is designed, the major task in prototyping an ASP will

be to customize the microcode stored in the XROM. Since the XROM Optimizer

automatically implements the microcode in hardware, the only remaining task is to

develop the binary description of the microcode for input to the XROM Optimizer.

1.5 Assumptions

In parallel with this effort, an IEEE-standard floating point adder is being

developed and will be incorporated into the cell library. Design and initial implementa-

tion of this macrocell has begun and it should be available for use in future .ASTP archi-

:::~~his:*.1:~tectures. ..

1.6 Approach

Since the software aspect of this effort was dependent upon the hardware deVl,,let.d.I - h ithis thesis effort initially emphasized the design and implementation of the proces,-,,r

.it..,

".:-'.:-
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architecture. 6?A.

The first step in processor design was to analyze the types of problems that must be
pII

solved, and to survey the approaches to processor design that have been used by both

industry and educational institutions. The requirements for the architecture were then

specified and the processor designed. Once VLSI design was complete, a prototype ASP

chip was fabricated.

After the processor architecture had been submitted for fabrication, the software

methodology involved in rapid prototyping was addressed. Since the XROM Optimizer

inputs a binary representation of the microcode fields, the desired algorithm must be con-

verted to this binary representation. Extensions to the XROM Optimizer program were .

also examined to simplify its interface and to further develop its automated layout capa-

bilities.

Once the fabricated chips were returned, they were be tested for both functional

correctness and performance. These results in turn suggested improvements to the pro-

cessor design that can be incorporated into future ASPs. %J1.

1.7 Materials and Equipment

The VLSI implementation of the processor architecture will rely heavily upon the

Berkeley VLSI design tools Ca186], including Magic, \Iextra, and Esim. Additionally,

design tools developed at AFIT such as the XROM Optimizer, Cstat rlinS5, and Stove

I GaI86A] were used. These tools required use of both ELXSI computers, the VAX (SSC)

computer, an AED767 graphics terminal with digitizer pad, a Versatec plotter, and a Sun

workstation. This equipment was all available at the beginning of this effort.

6
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Fabrication of the ASP required the support of the MOS Implementation System -

a (MOSIS) located at the University of Southern California. Fabrication through MOSIS is

funded by the Defense Advanced Research Projects Agency (DARPA) and required Al

approximately 10 weeks. Communication with MOSIS was accomplished via the

Arpanet system.

1.8 Sequence of Presentation

Chapter 1 has provided the background to this thesis effort and has defined the

particular problem that will be solved. The scope of the problem and an approach to its X11%

solution were presented.

Chapter 2 reviews two general approaches that both industry and educational insti-

tutions have taken to processor design. Four specific architectures, representing both

approaches, are overviewed.

Chapter 3 contains a detailed analysis of developing a methodology form rapid pro-

totyping. Emphasis is placed upon specifying the processor architecture necessary for

this methodology. Alternate approaches for developing an application specific processor

are examined. The rationale for the chosen approach is then presented, followed by a the

high-level architectural specification of the ASP processor.

Chapter 4 examines the detailed VLSI design of the ASP architecture which was

described in Chapter 3. The architecture is divided into two major sections: 1) the con-

trol section, containing the microcode ROM! and a microcode sequencer which provides

addressing to the ROM; and 2) the datapath, which provides data storage and computa-

tion.

7
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Chapter 5 describes the implementation of a prototype integer ASP. The procedure

for "pad-to-pad" verification of the processor is presented, followed by a description of

the fabrication process.

Chapter 6 details the rapid prototyping methodology and presents four test cases in

which it has been successfully applied. The design time in each of these cases has been

dramatically reduced.

Finally, Chapter 7 provides the conclusions from this effort and recommendations

for further study in rapid prototyping of application specific processors.
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CHAPTER 2

I Review of Current Processor Design I.IN

2.1 Introduction

Considerable advances have been made in recent years in the design of general-

purpose processor architectures. Architectures which fully support a 32-bit word have

become commonplace. Although the need for even more powerful processors is univer-

sally acknowledged, debate still rages as to the best approach to processor design. This

chapter examines the two popular design approaches and provides a survey of several

specific architectures.

2.2 Processor Design Approaches

During the past few years, computer architects have begun realizing that "current
,.%41

architectures have serious shortcomings" [Mye82]. One critical problem has been termed

the "semantic gap". Myers defined the semantic gap as "a measure of the difference

between the concepts in high-level languages and the concepts in the underlying corn-

puter architecture" [Mye82). Traditionally, hardware designers have made design deci-

sions based on cost, ease of design, and performance of the machine instruction set.

They have failed to analyze the nature of the high-level languages that use the architec-

ture. As a result, the hardware often provides little support for many common high-level

language functions. Myers identified arrays and procedure calls as two often used high-

level constructs that generally receive little support from the underlying architecture.

!I
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A great deal of research effort is now being directed toward closing the semantic %

gap. VLSI designers are realizing that the real measure of a processor's performance is

not how well it implements machine instructions, but in "the ability of the architecture

to execute high-level language programs" [Hen841. A processor that can be clocked at 25

MHz, but not providing adequate hardware support for many often used high-lwvel

language constructs, may show poor performance within an actual computer system.

Despite the large number of transistors that can be placed on a VLSI chip, the

transistors must still be considered a limited resource [Kat85]. Efforts to reduce the

semantic gap have diverged into two separate paths, relating to the use of this limited .. -•

area. The major trend in processor design has been to use the increased transistor ,
S

resources toward providing more complex instruction sets. These more complex instruc-

tion sets are designed to provide powerful machine-level instructions to support high-

level language functions. A second approach to the use of transistor resources has been

to implement a simple carefully-chosen instruction set and to provide hardware support

to operate this simpler architecture at a higher speed than the complex architectures. .

2.2.1 The CISC Approach. The "complex instruction set computer" (CISC)

approach attempts to close the semantic gap by providing a more powerful instruction N

set. Many CISC processors are architectural successors of earlier processors 'IKatS5,

such as the Intel 80386 and the Motorola 68020. These new processors provide a wider

data path (number of bits of internal representation), a larger instruction set, and new . ..

addressing modes. As a result of the more complex instruction set, the instruction decod-

ing logic of these processors must become more complex, often slowing doN~in the max-

% . %imum clock rate of the machine's entire instruction set [Col8.5:. "

10
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A key feature of CISC architectures is the use of microcode. Microcode is a series of

logic-level instructions stored on the processor chip, usually in a ROI. When the CISC!S
processor receives an instruction, this instruction points to a sequence of logic instruc-

tions in the ROM that will be executed to accomplish the required task. Thus, the pro- " .'- *

cessor will usually require numerous clock cycles to execute a single command. The

microcode allows the addition of more complex commands by merely adding new instruc- .

-% i

tions to the microcode stored on the chip [Co185]. .- '. .,

The complex instruction set has several advantages. Since a single complex instruc-

tion can accomplish more tasks, the size of the executable image can be smaller [Hen84.

This is significant, since the bandwidth (rate of information transfer) is much less %

between chips than it is on a chip [Kat85]. Thus, a CISC will pass fewer instructions
."%,,P . 0 ,

between itself and memory, resulting in rapid execution. Another advantage of a complex

instruction set is the ability to efficiently service a wider range of applications, since

different applications use different sets of instructions [Hen84].

., .d'*,,,

2.2.2 The RISC Approach. The "reduced instruction set computer" (RISC)

approach to processor architecture attempts to optimize performance by providing a , /.

small instruction set that can operate at high speed. The basic premise of the RISC

approach is that a program regularly uses only a small subset of a processor's instruction

set. The majority of the complex instructions are rarely used. Proponents of the RISC
% .

approach feel that the inclusion of these rarely used instructions into a processor's

instruction set "has more negative effects on performance than it has positive ones"

[Kat85]. The complex control hardware required to implement these instructions slows

down the speed of the processor, and the area required for this hardware could be better

spent. 5
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The common features that identify RISC architectures are 'Co185, Joh87': -e

1) Single-cycle execution. Since RISC processors use only a simple instruction set, ,

most commands can be executed in a single clock cycle. Although many RISC archi-

tectures are pipelined and the latency through the pipeline may be several clock

cycles, the execution stage of the pipeline is accomplished in one clock cycle. A new

instruction can be inserted into the pipeline on during each clock cycle. This is in f,,I

contrast to CISCs, in which one command triggers a sequence of microcoded instruc-
S

tions, requiring numerous clock cycles to execute.

2) Load / Store design. As already noted, more time is usually required to access

information off-chip than to pass information within a chip. Since RISC processors

wish to execute most instructions in a single clock cycle and to keep the length of the

clock cycle to a minimum, they allow only simple load and store instructions to

access memory. More complex instructions which must access memory, such as

mem[C] 4-- mem[A] + mem[B]

are not used since they would require either a longer clock cycle or multiple clock

cycles to execute. The above operation would be executed by a RISC as a sequence

of load and store instructions.

3) Hardwired control. An instruction loaded into the processor is decoded to directly

provide the control signals that drive the hardware. This contrasts with the CISC

approach, in which the incoming instruction provides a vector to a microco(de routine -.

stored on the processor. RISC processors generally do not use microcode.

12
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4) Relatively few instructions and addressing modes. RISC processors take their

name from the reduced number of instructions they support. By reducing the

number of instructions and limiting the number of addressing modes, the control 'N

hardware is simplified and the clock cycle of the processor can be reduced.

5) Fixed instruction format. This simplifies instruction decoding, in turn reducing

duration of the clock cycle.

6) More compile-time effort. RISC processors often reduce the hardware complexity

in exchange for increased compiler time. This extra time is due to the post-compile

processing required to ensure that the assembly code complies with hardware con-

straints. The time is paid for only once, during program compilation, and simplifies

run-time execution. For example, several RISC architectures simplify their pipeline

control hardware by placing constraints on the instruction flow the compiler is '--

- ..'-,

allowed to produce. .'

j-4

2.2.3 A Fuzzy Distinction. The "avalanche of publicity" [Co1851 RISC proces-

sors have received in recent years has caused the distinction between RISC and CISC

architectures to become somewhat clouded. A large number of new processors have been
., :..-', ..

developed under the "RISC" label, but many of these do not satisfy the characteristics of

a RISC offered above. Perhaps one source of confusion between the RISC and CISC

approaches is the acronyms themselves [Co1851. They tend to promote the concept that

the number of instructions in a processor's instruction set alone determines whether it is

a RISC or CISC architecture.

The interpretation of performance comparisons has further clouded the issue of

RISC versus CISC architectures. Benchmark tests on certain RISC processors have

13 ,.. ;
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shown that they operate significantly faster than their CISC counterparts. But it pe.

remains unclear if the increased performance of these processors is due to the RISC

approach, the particular programs used in the testing, or the hardware advances (such as

a register stack) incorporated into some RISC processors FCoI851.

2.3 Relevant Processor Architectures

The special-purpose processors required for Department of Defense programs will

not require many of the features necessary in general-purpose RISC or CISC processors.

For example, custom processors do not need the memory management or operating sys- W,.,.

tem support that the latest general-purpose processors are providing. Much can be

learned, however, from a study of RISC/CISC processor architectures. The implementa-

tion of the datapath in these architectures of particular interest. This section will pro-

vide an overview of four processor architectures: three that use the RISC approach and _.J.J,

one using the traditional CISC approach.

2.3.1 IBM 801 Minicomputer. The IBM 801 project was the first architecture

to use the RISC approach. The IBM 801 is not a VLSI microprocessor; rather, it is com-

posed of a set of MSI (medium-scale integration) chips using ECL (a high-speed, high-

power device technology). Even though it is categorized as a RISC, its instruction set .. -

contains over 100 instructions. To reduce the frequency of off-chip data fetches, a set of-

32 registers is provided . ' , ,

The IBM 801 is a true 32-bit architecture. Its internal data path operates on 32-bit

two's-complement integers. It provides a 32-bit barrel shifter and logic functions. The

ALU (arithmetic logic unit) provides only basic add'subtract functions, but special

"multiply-step" and "divide-step" instructions provide an "add and shift" operation to

14
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support multiplication and division routines. The primary data path requires only two %
V

busses, since the results from the ALU are not returned to the registers until the next %

clock cycle.

The majority of the 801's instructions execute in a single cycle. Testing of the 801

showed that it averages 1.1 cycles/instruction when tested on applications requiring few

memory accesses.

2.3.2 The UCB RISC Project. The RISC project at Berkeley was the first

RISC architecture implemented as a single VLSI chip. The Berkeley RISC project began

in 1980 and the first chip, appropriately called RISC I, was fabricated in 1982. A

follow-on chip, RISC II, was completed in 1983. Current research at Berkeley is concen-

trated in two areas: the development of a RISC-style architecture called SOAR

(Smalltalk on a RISC) and a multiprocessor workstation called SPUR (Symbolic Process-

ing using RISCs) [Rob87]. This paper will focus on the RISC II architecture, which is the ,-

foundation for Berkeley's current research.

RISC II is a 32-bit architecture, able to address up to 4 gigabytes of virtual

memory. It performs 32-bit addition/ subtraction on signed two's complement numbers,

but provides no hardware support for either multiply or divide operations. The ALU

performs boolean logic and compare functions on 32-bit unsigned integers. The data

path provides full-range shifting by use of a barrel shifter. RISC II uses a two-bus

precharged data path, with the result of one cycle's operation returned to the register -

bank on the subsequent clock cycle.

RISC II is designed with a three-stage pipeline: fetch, operate, write result.

Through the use of a 4-phase clock, the data path can both perform computations on .. _

%1



current cycle operands and write the previous cycle's results during the same clock cycle.

Since the storage of results is delayed for one clock cycle, it is the compiler's job to rear-

range instructions to ensure that the subsequent cycle does not depend upon current

clock cycle results.

RISC II's instruction set is the result of an extensive evaluation of the type and fre-

quency of instructions used by typical programs [Kat85]. It is streamlined, containing%%

only 39 instructions, each only a single word long. The instructions are in a three-

operand format and most can be executed in a single clock cycle (the execution requires

one clock cycle, but the latency through the pipeline is three clock cycles). The only

exception is the load and store instructions, which must access memory rHen84'.

The analysis of instruction usage also led the Berkeley team to realize that the

majority of instructions involved either moves between operands or simple operations

involving two sources and a destination operand. They concluded that for the processor L

to operate at a high rate of speed, the access to these operands had to be rapid. Since

off-chip access time is significantly longer than on-chip access, the team concluded that

the processor required a large amount of on-chip register storage. RISC II has a register
--.py-

bank of 138 registers, 32 of which are available at any time. The registers are organized

as a register stack, so that subroutine calls and returns can be performed rapidly .,.

without the overhead of storing the registers. Several of the registers overlap two levels

of the stack, allowing parameter passing during subroutine calls. Proponents of the

CISC approach credit this register stack (rather than the RISC approach) with the

majority of the RISC I1's performance success.

RISC II was built using a 3 micron nMOS process, and uses -11,000 transistors. It

can be clocked at 12 MIz. Due to its siinplihied instruction set, it generally requires more

16
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more it) mI c

instructions than CISC architectures to accomplish a given task (approximately 50'c

~more instructions than a VAX- 11). Since most of RISC II's instructions are single cycle. '

however, RISC II was able to run a series of 11 benchmark programs 2-1 times faster

than its CISC counterparts [Hen841.

2.3.3 The Stanford MIPS Processor. Stanford University is currently

researching the RISC approach with its MIPS project, which began in 1981. The MIPS

chip was fabricated in 1983, using 4 micron nMOS technology. It uses 24,000 transistors

and has a 4 MHz clock rate. MIPS uses a two-phase clocking scheme. %$%

Like many of today's architectures, MIPS uses a 2-bus data path. Two different %

approaches were examined for reducing the propagation delay along the datapath. The

first approach was a precharged bus structure. Testing showed that this structure would

still have a 40ns delay, in addition to the precharge time [Hen82]. The second approach

was a clamped bus structure. This structure reduces the voltage swing required to

change the logic state of the bus by a factor of four. A voltage change on the bus is

detected by a circuit similar to a sense amplifier. The bus delay with this setup was ':

reduced to approximately 1Ons and did not require precharging the bus.

The MIPS ALU provides full addition, subtraction, and logical functions, with a

80ns carry-lookahead tree adder. A barrel shifter provides shift capability. A special

"add and double-shift" instruction supports Booth's modified algorithm for multiplica-
%

tion. An "add and single-shift" instruction supports division. No floating point support

is provided. Internal storage is provided by 16 dynamic registers that are automatically

refreshed if not written to.
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The MIPS architecture employs a 5-stage pipeline: fetch, decode instrution. d,-cd-e

operand, execute, complete load. A new instruction enters the pipeline ever t Io clock

cycles, so that at any given time there may be three different instructions being executed

by the pipeline. Since load/store hardware is separated from the datapath, MIPS is able

to execute simple ALU operations during the same clock cycle that it performs a

load/store instruction.

The MIPS acronym stands for "microprocessor without interlocked pipe stages" " "

jSil86j. A non-interlocked pipeline architecture provides no hardware support to elin-

inate pipeline conflicts. For example, a conflict would arise if the incoming instructions '--.*

specified an "add" on a value fetched during the previous instruction. Since both instruc- %

tions are in the pipeline at the same time, the "add" would require the value before the

previous instruction had completed fetching it !Si86K. Similar to the approach which e...

other RISCs use, MIPS requires that the compiler prevent instruction conflicts such as ' ' -

this from occurring. Y

V P."d, r"

The MIPS compiler executes in two stages. The first stage is a standard compiler

that converts the high-level language down to processor instructions. The second stage i.S

a code re-organizer that re-orders the compiler output to avoid pipeline conflicts. The

re-organizer also rearranges "branch" instructions to preclude flushing the pipeline (get

rid of instructions that were pre-fetched but should not be executed because of the

branch). %

problems as Tower of Hanoi, Quicksort, and matrix multiplication. The MIPS processor

out-performed the fMotorola chip by a factor of five on these problems.

18%'
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In 1986, Stanford fabricated NIIPS-X, a 2 micron CMOS folk,w-on t,: the NNlN tr'-

cessor. Although the test chip had design errors. the .tanf, 'd teamn \: :d . tet

NHPS-X up to 17 NM-Iz (the design goal was 20 lHz The dei~n -rr r, . rr..,1 V

and a new chip is currently being fabricated lteni7 . -.. *

2.3.4 Motorola 88020. The Motorola 602() rn. r i. : r r * i,', k ,d " %

uses the CISC approach. Built as a follow-,r t', thle b'(M '. '2, :6..9X

first successful extension of a 1- bit processor nt, :A 32-t ..t. r' -

p
address and data busses, as well as a 32-bit mtern I ; ie:..

The Motorola 68020 was implemented in 2 ,11,r 1 \1( Z N

180,000 transistors and dissipating apprnximatel1 I .. . I , .

at 16 MHz, performing at a 2.7 MIPS (milhon inst ri,-,t , i, w .-r I

The 68020 employs a three-stage pipeline with A ,iffr,..r intr Ti. "

each stage. T he pipeline stages are: instruction dec :de. (,.nt r. I g,.i erit,, tll' ! \ v te %,

Instruction fetch is not included in the pipeline, since the pr,.ce.s,,r , i - ..e

(each 32 bits) instruction cache. Sixteen working registers are :ii- r, T h.-11 l', ti02-

instruction set is quite c mplex, with over 100 instructins mrid I I dfl,.r,nt ilr..i -

modes. It is a superset of the 68000 instruction set.

Motorola provides a high degree of parallelism in the :,rchit,-jrire. %th thr,.-

separate datapaths for instruction address, operand address, anid (ita ((illputi t .--.

Each of these datapaths provides a 32-bit adder. The dat a exerutiin unit clmtiti-a .. "

barrel shifter and hardware support for Booth's modified algorithrm raldh~rm iP if--h-

further provided by separating the bus controller section from the ,'ecuti.) iiit li I.-

allows the bus controller to perform fetch store operations during the .,,ne cI.,ck cycle

%
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that computations are being performed in the ALU.

g Although the 68020 contains a large microcode store, the average number of clock

cycles to execute an instruction is only 7, compared to the 13.5 cycles required by the

68000. This efficiency, combined with the higher clock rate, allows the 68020 to execute

instructions approximately 4.5 times faster than the 68000 JMacS6;.

2.4 Conclusion

The four architectures surveyed represent only a small portion of the research that

has been done both at educational institutions and by industry. They are representative, 

however, of the different approaches taken to processor design, and provide insight into

the techniques that computer architects are using to increase processing speed.

Debate continues to rage between proponents of the two design approaches: RISC

and CISC. Both RISC and CISC architectures have shown excellent performance.

Although most commercial architectures still use the CISC approach, more and more are

employing techniques developed for the RISC architectures, such as a large register stack.

The ASP architecture designed for this thesis effort does not require all of the

features that general-purpose processors provide. For example, the ASP architecture

. .does not need to support a variety of addressing modes, since it will be programmed at

the microcode level. A great deal can be learned, however, by studying other VLSI

designers' approaches to processor design. The simple instruction set employed by RISC'

~~architectures will reduce the clock cycle duration for the ASP architecture, wvithout .,

significant reduction in processing capability. Pipelining the ASP architecture will also

serve to reduce the clock cycle. Parallelism, as provided by the Motorola S020, can

allow the ASP to perform more processing during each clock cycle. Each of the surveyed

20



processes provided similar computational hardware. A large register set, or even on-chip d,

RAM, would allow the ASP to perform less memory access, increasing performance.
S0

The ASP architecture will incorporate the best ideas from the processors surveyed

in this chapter. Chapter 3 outlines the architectural decisions made in specifying the

ASP architecture.
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II
CHAPTER 3

a' %

Problem Analysis

3.1 Introduction

The need for application specific processors is widespread. Research efforts ---

throughout the Department of Defense (DoD) require special-purpose processors and con-
S

trollers to provide processing and control. This need provides the impetus for the

development of a methodology to rapidly prototype special-purpose processors. Funda-

mental to this methodology is the definition of the architecture. The ASP architecture S

must be flexible enough for use in a variety of applications, yet powerful enough to pro- 0.*.

vide high performance. This chapter analyzes the architectural design requirements and

specifies a processor architecture to meet these requirements. S
...

3.2 Possible Solutions

The architecture for a application specific processor can be provided in several ways.

The special-purpose processor can be totally custom designed, as AFIT projects have

often done in the past. A processor can be developed using gate arrays, with the assis- "".-".-

tance of an automatic layout tool. DoD efforts have largely opted for off-the-shelf proces- -

sors, customized with an external memory store. A final solution is to use a scmi-custom

general-purpose architecture which can be customized to a particular problem via micro-

D
code. Each of these options will be examined individually.

P.

% .J..

22% '%l

• ? J

"S -- *' %



3.2.1 Totally Custom Processors. When presented with an application

requiring special-purpose processing, the most obvious solution is to employ a fully-

custom VLSI architecture to solve the problem. By customizing the architecture to the

application, the optimum performance can usually be achieved. The "area-time product"

metric can be minimized through this approach.

The design time for the fully custom approach, however, is quite lengthy. In

defense industry, this long delay from concept to tested silicon results in an hesitancy to

use fully custom designs. Program managers cannot afford to wait the several years

required to design and fabricate a custom chip. As a result, they usually elect to go with

gate arrays or an off-the-shelf product, even though it may result in performance degra-

dation.

In the academic environment, the required design time usually equates to 2-3 thesis

cycles. A student is currently unable to take an idea from initial concept, through svs-

tem design and VLSI implementation, and see it through to fabrication and testing. Not

- only does this hamper the student's learning, but also results in a loss of expertise when

the student graduates, since whoever inherits the project must re-follow the same learn-

ing curve. %

". Another major difficulty with fully custom design is reliability. Many of defense

industry's current projects have extremely high reliability requirements. For example,

the Strategic Defense Initiative (SDI) effort understandably requires extremely high relia-

bility. As the number of gates on a VLSI chip increases, the testing problem increases

exponentially. Unless careful steps are taken during the design phase (design for testabil-

ity), it can become impossible to achieve 100% fault coverage. ks a result, it is

extremely difficult to exhaustively test today's VLSI designs containing several hundred
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thousand transistors. Their functional correctness is, therefore, difficult to verify. Addi-
°.

tionally, even though a design may be functionally correct, the dependability of a VLSI

chip is not established until the chip has been operationally tested over a period of time.

As a result, defense industry has been slow to embrace custom VLSI designs. This issue

of VLSI/VHSIC insertion is receiving increasing attention throughout the defense com-

munity.

3.2.2 Gate Arrays. Gate arrays are used widely by defense industry in the %

design of application specific integrated circuits (ASIC). Since the fabrication masks for

these chips are already available and the fabrication process is well understood, the cost

of implementing a design using gate arrays is probably much less than a custom

Sapproach [\Ves85]. The regular structure of the gate array facilitates the use of

computer-aided design (CAD) tools to perform automated layout of the design. Thus.

the design of a circuit using gate arrays primarily involves the specification of the

boolean logic of the circuit. The implementation phase, which normally would require .N,-

the greatest investment in time, is virtually eliminated. The reliability of the design is

high (assuming accurate CAD tools), since the underlying gate array has already been

proven in other applications. Similar to custom design, however, providing 100%,- fault

, " coverage is extremely difficult.

The primary drawback to gate arrays is performance. The designer is highly con-

strained in the types of circuit elements he has at his disposal. For example, to imple-

ment the boolean logic of "a + bcd + d', the designer would have to use a combination of

several "and" and "or" gates. This might prove much less efficient than a direct imple-

mentation of the same expression using custom logic The designer :. also limited in the

sizing of circuit elements using gate arrays. lie cannot e.asily increase the current drive of
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a circuit component or modify the ratioing. The result of these limitations is a design

with a poor "area-time product". Although the increased area is of concern, the dramatic

reduction in speed of the gate array approach, as opposed to a custom design, will likely -%

result in unacceptable performance for high-speed applications.

3.2.3 Off-the-Shelf Components. In order to meet reliability specifications,

most program engineers and managers within the defense industry are using older, pro-

ven circuits in their projects. Not only has the design itself been proven reliable, but the

fabrication process is usually well established and better understood, resulting in higher

yield. The cost of an off-the-shelf chip is usually low, since design costs are eliminatedJ'

and the circuit is already being produced in mass quantities. Design time for the circuit 0
* -e#

is eliminated, and the overall "risk" to the project is greatly reduced.

Using this approach, a project requiring a special-purpose processor will generally

take a general-purpose processor which is commercially available and then customize it to S

the particular application with an external memory store. The main problem with this ,.:-.,..

approach is, again, the performance of the design, which is even worse than that of gate

arrays. The lack of custom hardware support and the use of external memory will result

in speed degradation of a factor of 10 or more over a fully custom design.

3.2.4 Semi-Custom Approach. As a compromise between a fully custom

approach and the off-the-shelf approach, a semi-custom design can provide acceptable

performance, cost, and reliability. In this approach, a general-purpose architecture is

defined, and then customized to meet project specifications. Rather than customizing

with an external memory store, the architecture is customized to the application via its

internal microcode store. The remainder of the processor can be further modified to fit
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the application by choosing different macrocells from a cell library.

The design time for this approach is minimal compared to the design time for a .___"
_

"
* 0

fully custom design. If the application requires no special hardware, the design merely

involves the development of the microcode. Minor architectural changes can be accom-

plished rapidly by substituting macrocells from the cell library. All macrocells are

designed to be easily modified, so that design time is minimized Using this approach, .0

prototype design time can be reduced from several years to several months. The cost of

this approach will be greater than the off-the-shelf approach, but much less than the cus-
1p% N %.

S%. %_• * %-.
tom approach due to the reduced time investment.

The reliability of the semi-custom approach approaches that of the off-the-shelf
0 0

approach. Once the general-purpose architecture and the additional macrocells from the N % X..

cell library have been proven reliable, changing the microcode personalization or adding

cells from the library will cause little or no degradation in reliability. Design for testabil- *

ity is already built into the architecture, simplifying the generation of test vectors. .

The performance of this approach, however, will be significantly better than the

off-the-shelf approach for three reasons. First, the bandwidth from the on-chip micro-

code store is significantly higher than that of an off-chip memory. Transferring data

within a chip involves moving the data over shorter distances and fighting less capaci-

tance, resulting in faster data transfer and thus a higher clock rate. Additionally, storing

the control software in a microcode store eliminates the need to decode the software as it

is brought onto the chip. A normal instruction, which might be 8. 16, or 32 bits wide,

must be decoded on the chip prior to being used. In contrast, a typical microcode word

would be 60 bits wide, almost entirely decoded. Elimination of the decoding reduces the

time to perform an instruction and allows an higher clock rate. ___
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Secondly, a semi-custom approach allows for more parallelism in the hardware. If

the software is stored off chip and decoded, the decoding restricts the means by which

the hardware can be driven. Some parallelism which the hardware might provide is not

allowed due to the limited instruction set available. Programming the architecture with V-.Y

microcode provides much more direct control over the hardware and will allow a greater

exploitation of the hardware's parallelism.

Thirdly, the semi-custom approach allows modification of the hardware to the

specific application. For instance, if the application is 1/0 bound, a second 1 ' channel

can be added. If the application relies heavily on division, trigonometric functions, or

some other operation which is not optimally supported by a general-purpose architecture,

special hardware can be added to significantly increase performance. In order to keep

design time short, performance of this approach will be less than the fully custom

approach. A semi-custom architecture can be developed rapidly, however, usually with

less than a factor of two degradation in performance.

The methodology for the rapid prototyping of ASPs will use the semi-custom archi-

tecture approach. This approach will result in a reliable product which can be rapidly

designed, with a small decrease in performance from a fully custom design. The goal of

• :rapid prototyping is not to produce a chip optimized for performance. Rather, prototyp-

ing is concerned with "proving the concept" and providing an approximation of the per-

formance that can be achieved. This is significant, in light of the problems currently

being encountered in VLSI/VHSIC insertion. A primary purpose of this effort is to show

that a custom or semi-custom VLSI design can reliably and economically solve problems F -

much faster than older, off-the-shelf products.

27 ' *

% .

*55'%"

' - -%- V- *°' *2''*"," ' 
'd

€ -" ° ''-€" " --%-- -- m . ..'- C' '. "



This approach is somewhat of a cross between the RISC and CISC approaches

which were examined in Chapter 2. Like a CISC, the ASP architecture will rely on a

microcode store. Instead of having a complex instruction set which vectors the processor %

into the microcode, however, the ASP architecture will normally have almost no external

instruction set. In fact, many ASP applications may have a handshaking as simple as

"Go - Done", where the host tells the processor to begin the processing and the processor

reports when it has completed the predefined task. This "reduced" instruction set and

the simpler decoding are more typical of the RISC approach. S

%--

3.3 Architectural Specification

The ASP architecture is designed using CMOS technology, which is the predom-

inant technology in use today. As the number of transistors which can be placed on a

chip increases, power dissipation has become a more and more significant issue. Figure 1

jSed82j shows a comparison of the speed and power requirements of popular technoogies. S

Its high power dissipation has made bipolar technology impractical for many VLSI appli- -.'_%"

cations. nMOS technology, which had been prevalent in VLSI design in recent Nears,

suffers the problem of static power dissipation. As a result, CMOS technology has

become more and more popular as chip complexity increases. Table 1 shows a com- ,N.,F % O

parison of CMOS to nMOS technology.

The microcoded ASP approach leads to several architectural decisions. The ASP 0

must obviously include a ROM to store the microcode. The control section of the ASP is

simplified from other architectures, since no instruction decoding is required. The pri- -

mary architectural decisions deal with the specification of the datapath. The foilowing

sections describe the decisions which have been made.
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I Table 1. Comparison of CMOS and nMOS Technology 'Ves8.5'

Characteristic CMOS nMOS

Logic Levels Fully Restored Weak Zero

Transition Times Rise/Fall Equal Rise Time Slower

Transmission Gates Passes 0/is Well Passes Weak 1; T-gate
Cannot Drive Another
T-Gate -*..*

,VI

Power Dissipation Almost No Static Static Power to
Some Dynamic Power Output 0; Dynamic
Dissipation Power also

Power Supply 1.5- 15 Volts Fixed by Resistive
Ratio

Density 2 Devices/Input to 1 Device/Input

a Gate

Layout Regular Less Regular

A-e
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Figure 1 Comparison of Speed and Power Dissipation of Various Technologies rSedS2.,- _

3.3.1 Number Representation. The fundamental question which must be.' "

S
addressed in datapath specification deals with the number representations which will be ''

supported. Of particular significance, should the hardware support floating point -_..-_

" ~numbers? The obvious answer is .. at the floating point representation is inherent in ":

"s .. ' -,

most scientific applications and must be supported. Some applications, however, will :% '

require only integer processing. One solution was to design two separate ASP architec- _.,

tures, one for floating point applications and another for integer-only applications. A .,,_

floating point processor, however, must also support integer operations. Even if the data

is floating point, integers are still used for addressing and in iterative constructs. Thus,

an integer ALU must still be present on a floating point architecture. The integer-only )
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architecture, then, is actually a subset of the floating point chip rather than a separate

chip. Only one ASP architecture is required, but it should be composed of a number a

macrocells which can be easily added/deleted to provide the required hardware.

3.3.2 Width of Datapath. The ASP architecture will perform floating point

operations on 32-bit IEEE Standard floating point numbers ,IEE85]. This single-
M...

precision representation should suffice for the majority of applications requiring floating

point computations. Applications which require integer operations, however, can vary in .

data width anywhere from a single bit to 64-bits. Even wider formats may require pro- "' /

cessing using a combination of hardware and software. The width of the ASP datapath

must therefore be variable. The macrocells which compose the datapath should be built

in a "bit splice" manner, so that the width of the datapath can be easily modified.- "-

3.3.3 Number of Datapath Busses. Virtually all of the processors surveyed

used either a two or three bus datapath. Processors using the three bus structure use , WTL

two busses to provide data to the processing elements (ALU and shifter) and the third as

a result bus to return data to the register array. Two bus architectures drive the data

from the registers to the ALU/shifter on one clock cycle and then used one of these same

busses to return the data to the registers during the next clock cycle or during a later

phase of the same clock cycle. The architectures which used only two busses required

either a complex clocking structure (4-phase clock) or imposed limitations upon the

microinstructions in order to deconflict bus usage. The driving motivation for the two

bus structure seems to be an effort to reduce the pitch of the datapath by eliminating the

third bus. The ASP architecture will employ a three bus structure. This will simplify the

A design and eliminate restrictions upon the microcode.
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3.3.4 I/O Path. Most applications for the ASP architecture should require a

single I/O channel. The ASP should contain enough register space to store temporary r

data so that the I/O bandwidth requirement is limited. For some applications, however. ,-..de

a singe I/O channel will not suffice. For example, an application requiring the manipula- INA

tion of large matrices would require a high I/O bandwidth. If the solution to the prob-

lem becomes I/O limited, the ASP architecture should be able to easily support a second

%
I/O channel.

Each I/O channel will consist of two data streams: the address stream and the data

stream. This is implemented in the ASP using a two register scheme. A memory .

address register outputs the required address to the memory. A bi-directional data regis- ,..'_-.

ter can either drive data to the memory or be loaded from memory. These two registers

must also have access to the ALU for simple operations such as incrementing the address

register. .

3.3.5 General-Purpose Registers. Most processors which have been recently .

developed have either 16 or 32 general-purpose registers available. Even the RISC pro-

ject at the University of C:lifornia at Berkeley, which has a large register stack, has only

32 registers available at any one time. The ASP architecture should possess enough

registers to minimize the I/0 bandwidth, as discussed in the previous section. But the

number of registers must be limited both for area and speed considerations. An increase N ,

in the number of registers results in an increased register decode time and in an increase

in the length of the datapath, which increases datapath capacitance and slows execution.

The number of registers which the ASP will employ is highly dependent upon tl'.

application. Therefore, the register array must be built in a "bit-.lice" manner, so that r%-'

only the required number of registers are provided . A convenient number of regi-ters is

32 .
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2n - 1 : 15, 31, etc. For example, if a 5-bit word is used to decode 31 registers, the other- .-

decoding can be used to specify none of the registers. This is necessary because other
m)

hardware, such as the I/O path, will need to use the datapath. Therefore, it is simpler

to leave one decoding to specify that none of the general-purpose registers is selected.

3.3.5 Barrel Shifter. All of the architectures surveyed in Chapter 2 provided. - ,/ 4. ..

a shifter in the datapath. Since a full crossbar switch is impractical (requiring n control

signals for n bits), most processors provide a barrel shifter. There are a variety of design

options available, however, for barrel shifters. A shifter can shift uni- or bi-directionally.

The shifter can perform a circular shift or a circular shift through carry. Another option

is to perform arithmetic shifts. In arithmetic shifts, left-shifts shift in zeros into the least %'%

significant bit. Right-shifts perform a sign extension on the most significant bit. .

The type of barrel shifter used in the ASP will depend upon the computational

requirements of the application algorithm. The design of a single shifter macrocell to

perform all of the functions mentioned in the previous paragraph would be impractical.

The methodology to rapidly prototype an ASP should therefore provide several library

options for the types of shifters which might be required. The designer can then employ %

a barrel shifter from the cell library which is best suited to the application.

3.3.7 Arithmetic Logic Unit. The ALU must provide logical operations.

integer arithmetic, floating point arithmetic, and possibly other operations such as tri-

gonometric functions. Most design efforts either use software or employ a co-processing

unit to provide the majority of the functions. The increased circuit density now avail-

able, however, allows these functions to be performed by on-chip hardware. As seen e:tr-

lier, the on-chip bandwidth for data is much higher than the bandwidth between chips
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The ASP architecture will provide needed hardware on-chip. The key, then. is to deter-

mine what is "needed" hardware.

Obviously, addition, subtraction, and logic operations on integer numbers is easily

and cheaply (in terms of area) provided. The functions will provide the ALU core for all

ASP applications. What other hardware is provided will depend upon an evaluation of

the application algorithm. The algorithm must be dissected to determine what types of

operations are required and their frequency. Of special interest would be the "inner loop

operations", which are performed iteratively during the algorithm. These operations V-.

which are used extensively should be supported with special-purpose hardware, while less

often used functions might more wisely be provided by software. For floating point

applications, a floating point adder macrocell is a necessity, Evaluation of the algorithm

Swill determine if a floating point multiplier is a prudent investment of silicon. Similarly,

an integer multiplier and hardware support for division should be employed only if war-

ranted.

The ALU hardware for an ASP architecture will thus vary, dependent upon the .

algorithm. The ASP macrocell library, however, must provide support for the majority

of processing requirements which might be encountered. As a minimum, macrocells to

perform floating point addition and multiplication, and integer multiplication are "

required. Additionally, hardware to support division (both integer and floating point),

trigonometric functions, square root, and exponentials should be available. Hardware in

this second category might not actually perform the computation, but might support a

software solution to the required operation. For instance, a small lookup table colntain-

ing the first 4 bits of the quotient would significantly speedt up a convergence routie

used to perform the division function.
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3.3.8 Literal Insertion. The majority of datapath computations are per-

formed on data stored in the register set. Occasionally, data must be inserted from out- '

side the datapath. The microcode should have the capability of injecting a literal into

the datapath, so that constants can be stored in the microcode itself. The width of the %

datapath, often 32 bits or wider, precludes inserting all bits of the datapath during a sin-

gle clock cycle. This would require an extremely wide microword, which increases capaci-

tance and reduces access time of the ROM. One alternative is to store only a portion of

the constant in the microcode, loading a full constant into the datapath via a series of S

insertions and shifts. If less than the full wordlength is inserted, the remaining bits in %

the datapath must also be controlled. This can be accomplished using a single bit from
A •

the ROM, which determines if the remaining bits should be driven high or pulled low.

3.3.9 Control Section. Programming the ASP architecture at the microcode

level significantly simplifies the control section, since decoding of off-chip instructions is * S

not required. Since all control signals are generated by the microcode RONI, processor - e. ,

control is chiefly a problem of generating the proper addressing to the ROM. Figure 2

shows a block diagram of the required hardware. - "

The program counter provides the address to the ROY! for the next microword

instruction. The next address hardware is required to provide sequential microcode exe-

cution, branch capability (conditional or unconditional), subroutine call and return, and

external address control. External address control provides the designer with the capa-

bility to directly load the next RON! address from an source outside the control section 0 0
, %., ,% • %,' %_

possibly from an instruction mapping PLA FreS6:, the input pads, or the dat ipath -.

In order to maximize the clock frequency of the processor, the length of the critic :11

timing path must be minimized. During each clock cycle, the progrmn counter must
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Control Signals to Datapath Address

XROM

Address

Cofrlom" "

DataathMicrocode Sequencer

%.

Figure 2. ASP Control Section

provide the address to the ROMI, which, after its access time, will prodlice the required

control signals. These signals must be driven to the datapath, at which time the actual
V

processing can begin. The critical timing path through the chip is from program counter

providing the correct addresses until all computation has been completed. This critical

timing path can be broken, however, by the use of "pipelining'. Uising pipelining. thle

results of one stage of the pipeline is transferred to the next stage of the pipeline, to be e

operated upon during the subsequent clock cycle. hen applied to the control section of

the ASP architecture, the retching of cortroi signals from the reu is accomplished on

the clock cycle prior to these signals actually being used. The control signals frompg m the
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ROMI are stored in a pipeline register until the next clock cycle. In this manner, the

datapath is operating on control signals fetched during the preceding clock cycle, while ______

*v S

the control section is simultaneously generating the next set of control signals. Figure 3

shows the ASP control section with the pipeline register added.

.% ,

%%~ %**

Control Signals to Datapath .

10 0

AddessI W.1~ J"

XROM Control
Fields

Address

'\ %

*%

Flaas-

Figure 3. ASP Control Section with Pipeline Register
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A pipelined control section has the following advantages:

Xg,

1) It allows the majority of the clock cycle for operations specified by the control

word. If a pipeline register is not present, operations cannot begin with the control

word until it has been read from the ROM. This ROM access would require nearly as

.p much time as the computations themselves. -:,-

With the pipelined ,inpix ,h,the word which was accessed from the ROM during the

previous clock cycle is driven to the rest of the chip on the leading edge the new clock

%' cycle (rising edge of PQ1). All required computations have from the rise of PQ1 until

the data is latched back into the registers (on falling edge of PQ2) to complete. This

allows all but 2-3 nanoseconds of the clock cycle for operations.

, :*. !-'-

2) The pipelined approach removes components off of the critical timing path.

Without a pipelined approach, other components cannot begin executing until after

the ROM has been accessed. Thus, the length of the clock cycle is set by the access

time of the ROM plus the time for the slowest other components to perform their

functions. With the pipeline register, components such as the next address hardware,

which might otherwise be on the critical path, are removed from the critical path.

Thus, they can be designed simpler, smaller, and more reliably.

3) The pipelined approach provides buffering for the control signals coining out of

the ROM. The AFIT XROM is designed to precharge during POI. During 11Q1. all

bit lines in the XROM are driven high. Since the outputs of the XROM may be

inverted by sign bits, the control signals coming out of the XROMN will be random in

value during precharge. After PQ1 falls, the selected bit lines will begin to be pulled %

down and the outputs of the XRONI will settle to their correct value. Ilowever,

38
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during this access time the control signals are in a unknown state and should not be

driven to the rest of the chip.

F '.

A pipeline register solves this problem. It latches the value of the XiROM outputs on

the falling edge of PQ2, after these outputs are valid. During the next clock cycle.

these valid outputs are driven to the chip. The lack of buffering on previous VLSI

designs at AFIT has resulted in problems during testing of the fabricated chips -we

[Fre86].

4) A pipelined control section allows for a higher clock rate. As already seen, the

clock cycle for a non-pipelined architecture is determined by the ROM access time 2
plus the time to perform the required operations. With a pipelined approach, the

length of the clock cycle is the maximum of the ROM access time or the execution

time of the control signals. For the ASP architecture, the ROM access time will nor-

mally be slightly shorter (dependent upon the size of the ROM) than the execution

time of the datapatb. Thus, the datapath execution time will impose the limiting

factor upon the ASP architecture's clocking frequency.

5) The pipeline register can provide testability to the design. The pipeline register

can be designed to act as a shift register during testing. In the test mode, the con-

tents of the shift register can be shifted out to provide observability of the XROM

outputs. Additionally, new control values can be shifted in, providing controllability

to the design.

The use of a pipeline register is not without its disadvantages. The disadvantages

and problems associated with the pipelined approach are highlighted below:

1) The pipeline register requires additional hardware. Although the hardware

3'9%.
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required is fairly simple, the pipeline register requires the storage of each output bit

of the ROM. Thus the pipeline register will run che entire length of the ROM above

the sense amps, adding to the effective height of the ROM. P

2) The pipeline register requires extra microcode support. During sequential micro- ,

code execution the only penalty imposed by the pipeline register is the extra clock

cycle to fill the register. For non- sequential execution, however, the pipeline register .

requires special handling within the microcode.

When the microcode branch logic encounters a jump instruction, it is operating on

control signals which were fetched from the ROM during the previous clock cycle.

The ROM has already fetched the next sequential instruction, which would normally

not be executed if a branch occurs. This problem can be handled in various ways. -..

The hardware approach would be to prevent execution of the next instruction by

somehow clearing the pipeline register during the next clock cycle, effectively "flush- -

ing" the pipeline each time a branch instruction is executed. This would require addi-

tional hardware, and, probably more importantly, would waste a clock cycle each

time a jump is required.

.e A better approach is to handle the branching problem with the microcode. If the

instruction following the branch is a NOP or some "don't care" instruction, this

instruction can be executed without causing any side effects. Better yet, the branch

instruction can be put into the microcode one instruction prior to the point where the

designer wishes for the branch to occur. Thus, the instruction which follows the

branch will be executed "on the flv" since it will already be in the pipeline, thus pro-

ducing no wasted clock cycles. Studies at Stanford lien8-1 have shown that micro- ,.
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code can be manipulated such that the pipelined approach will typically result in less

than a 5% increase in size of the code.

' A
3) The pipeline register results in a delayed response to external control signals. If %-0%

the ASP is looping, waiting for an external signal, the arrival of the external signal

may occur during the execution of the loop instruction or during the "don't care"

instruction which follows it. Thus, the ASP may require either one or two clock

cycles to begin its response to the external signal.

%

The ASP architecture will employ a pipelined control section.

3.4 Conclusion I
-..,-. ,-,

This chapter has provided an analysis of the architectural requirements of the ASP

architecture and examined various solutions to the problem. A semi-custom approach,

which is customized by microcode, was chosen as the proper approach for the ASP archi-

tecture. The architecture of the ASP was then specified at the macrocell level. This

architecture can be easily modified to solve a wide range of algorithmic-type applications.

The next chapter will describe the VLSI design of the macrocells required to meet the - I

given specifications.

I

,-~ ' -1,
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CHAPTER 4

VLSI Architectural Design

4.1 Introduction

This chapter describes the VLSI design of the macrocells for the application specific

,
processor architecture. As described in the previous chapter, the actual hardware that

S
will be employed for a particular application is dependent upon the problem algorithm.

Therefore, the VLSI design of the ASP architecture centers upon the design of a library

of macrocells which can be easily assembled to provide the required hardware. The ASP

architecture (Figure 4) is comprised of two major sections: the control section, which gen-

erates the necessary control signals, and the datapath, which performs the data process-

ing. Due to the ASP architecture's pipelined control section, the datapath operates in

response to control signals fetched during the previous clock cycle. This chapter
< ,...... . I

describes the VLSI design of the control section and datapath. ,,.'.,.

4.2 ASP Control Section %ASPP

The control section of the ASP architecture is responsible for generating the control J-%

signals to drive the datapath computations. Unlike the control sections of most proces-

sors, which are primarily involved with decoding an instruction which is received from

off-chip, the ASP control section derives its control signals directly from an on-chip N -W

ROM. Since the outputs of the ROM do not require decoding, the primary job of the

ASP control section is to provide the correct addressing to the ROMI so that the proper

control signals are generated. Figure 5 shows the primary functional blocks of the ASP ,-

.12
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Figure 4. Major Sections of ASP Architecture

control section. Central is the AFIT XROM, which stores the control signals. The pipe- ".-

line register, which receives the XROM's outputs, is responsible for delaying them for one

clock cycle. The next address hardware, or microprogram sequencer, is responsible for

providing the address to the XROM. Each of these macrocells will be examined in detail.
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Figure 5. ASP Control Section ~

4.2.1 ASP xROM. The design for the AFIT XRONJ (Figure 6) wa-s first

presented by Captain Paul Rossbach [Ros85]. Since the XROMI wits designed to be used

in high-speed processors, it was designed for access times of less than 50 ns. The XROM

was also designed to facilitate automatic silicon compilation. The address decoders are

responsible for decoding the input address and selecting one of the horizontal wordlines.1

to go high. The presence or absence of transistors along this wordline (leterlles1
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whether the corresponding output bit for the selected word will be high or low. %J--.: ,

Figure 7 shows a close-up of the basic XROM storage cell. Note the 'X- shape" "

from which the XROM derived its name. Depending upon AO, the least significant bit of -

the address, either the AO or AObar line will be pulled to ground and the other will be %

charged to 5 volts. When the selected wordline is raised to 5 volts, the gates of transis-

tors along that wordline are activated, allowing the bitline to discharge through the . "

transistor to either the AO or AObar line, depending upon which is set to ground. Thus,

the presence of a transistor in a given location will allow the bitline to be pulled low, •

indicating that this bit is high for the particular address selected. Note that in the case ,. .-

in which transistors connect to both the AO and AObar line, "fighting" will occur on the ?, -

bitline and it will settle to a voltage slightly less than 2.5 volts. This causes no difficulty,

however, because the senseamp circuitry is designed to "sense" a low voltage for any vol- '

tage below 4 volts. • , -. ,
e

Captain Rossbach also developed the initial version of an optimizing silicon corn-

piler for the XROM [Ros85, Ros87]. The compiler was later refined by Captain Linder-

man and this author. This tool provides automatic layout of the main XROMI array. .

The optimizer inputs a file which contains an integer representation of the binary values "'

that are to be stored in the XROM. Output of the optimizer is a set of 12 files which ... .

describe the XROM in a Caesar format. z-% ] -l, 
-Z%,

In addition to automatic layout, the XROM Optimizer attempts to minimize the I %b

transistor count and the number of drains in the main storage arrays [Ros7'. This dev- -

ice minimization serves to increase reliability and to reduce power dissipation and access

time. The primary vehicle for reducing the transistor count is the use of row and column

sign bits. If any given word in the XRO.I contains more 'l's than 'O's, a row sign bit A.N
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can be employed to indicate that the entire row is inverted. Thus, the polarity of the I

row is reversed and there will be less 'l's than '0's. Likewise, column sign bits are used .,,

to ensure that all columns will contain less than 50 transistors. If none of the four

transistors which form the '4" are present, the drain which forms the junction of these •

transistors can be removed. By' reordering of rows and columns, the number of unneeded""-"'

*drains was maximized. In the case of a 54IK XRONI developed for the %VFTI6 effort, the ,. .. •*

optimizer was able to achieve a 4t-1% reduction in transistor count and a 51% reduction . ... ,

U....-- -

. . . . . . . . . . . . . . . . . . . . .'.* **.. .** .--



in number of drains 'RosS7.

Since this tool was developed, AFIT and a majority of other institutions are now

using the Magic layout tool for VLSI design, as opposed to Caesar. As part of this effort. %

the layout portion of the XROM Optimizer was modified to output the XROM descrip- N41%

tion in the Magic format. Additionally, the layout program was extended, so that all

required XROM subcells are now placed. Further extension is still possible, such that the

pipeline register cells are placed and the control bus is automatically "personalized" to the
-% .'.

particular column ordering.

12

To generate a custom XROM, the Optimizer must be run on the desired data to be -

stored. In addition to the Magic files produced by the Optimizer, cells from the XRONI

library must be included. Due to possible timestamp differences in the cells, Magic may

want to design-rule check (DRC) the entire XROM. Additionally, Magic tends to be % %

quite slow when handling a cell hierarchy as laid out by the Optimizer. Magic's perfor-

mance can be significantly improved by flattening the cell hierarchy in the main XROM

array.

For a further description of the AFIT XROM design, see !Ros85 and RosS,.

4.2.2 ASP Pipeline Register. The pipeline register is designed to sit atop the -

XROM, buffering between the senseamp outputs and the remainder of the RISC chip.

The current XROM design places the senseamps 52 lambda apart, setting the maximum

width of the pipeline cell at 56 lambda ( allowing for a -1 lambda overlap of power lines V ,..

The pipeline register then becomes simply an array of pipeline cells, one cell im mediately

above each of the XROM's senseamps (Figure 8).
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Figure S. Pipeline Register
%

The design of the pipeline register cell is simple. The pipeline register must rnerel Y'

latch the control word while it is valid and then drive it to the rest of the chip on tile

next clock cycle. This can be accomplished using a ma-ster-slave flip-flop (NISFF). asL

shown in Figure 9. The output of the NISFF is staged up through inverters to providle

the current drive to send the control signals across the chip. The Initial dt' ,i,-T of tile

pipeline register called for resetting the register during chip reset. This, hocwever. 1i lnt

necessary and was not implemented. Resetting the register to 0 would not ins ure tHim all ~

control signals were being deactivated, since some are active lw.Addition:dlv. evenl If
;F e1

. %

"r "

Pipeline...M ... PipeJ..line.. -~- -A.. ~~*~ Pieln Ppeie ip lne- . .



the register is reset, the XROM will fetch another invalid control word during the cycle %.%

after reset (during this bad clock cycle, the program counter will be reset to zero. and

will provide valid signals from then on). Thus, resetting the pipeline register would be

meaningless. The invalid control word will cause no problem to the chip. since during

chip reset, the chip is storing no data which can be lost by the bad control word.

4.2.3 Microprogram Sequencer. The microprogram sequencer is responsible

for providing addressing for the XROM control word. The sequencer hardware for the
I

ASP architecture was adapted from a macrocell designed by Lt. French for the CAM,

RISC [Fre86j. The design is based on the microprogram sequencer described by Mano in ,"'",,

[Man82].

Figure 10 shows a block diagram of the ASP microprogram sequencer. The design

is centered around the program counter, which contains the actual address which will be

driven to the XROM. The remainder of the functional blocks are responsible for loading

the program counter with the proper address for correct program execution.

As shown in Figure 11, the next address to be loaded into the program counter can <1'

come from one of four locations:

PQ2 PO1 _

From To,-"""-,
XROM Chip . . .

", ~~~Sensea mps "-"- -

P i2bar Philbar -"" T

Figure 9. Pipeline Register Cell ,?,'
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%%

1. The incremented contents of the program counter. Loading this value into the
'. , -p ' * w

program counter provides sequential program execution. ,.-".-*

2. The contents of the subroutine stack. This option equates to a return from sub- %

routine. -

3. Th.c contents of the XROM Literal/Address field. Loading this field provides pro-

gram branching capability.

4. The contents of the external address bus. Loading this value allows direct

branching to a XROM memory location specified outside the control section. The .

external address bus can be connected to the datapath to allow branching to a loca-

tion specified by a register or to the chips input pads, so that the system can directly

control addressing of the XROM. "J.

4.2.3.1 Micro-Program Counter. The micro-program counter provides

addressing to the XROM decoders. The number of bits, or width, of the program

counter (n) is determined by the number of words in the XROM (w), such that: u' < 2'.

Therefore, an XROM with 1K words would require a 10-bit program counter. The .

design a single bit of the program counter is shown in Figure 12. The cell is basically a -'.

MSFF which can be loaded from the address multiplexer, the output of the incrementer, VA,- '... ,

or be reset. The reset line is connected to chip reset, so that the program counter will

start up with a deterministic value. Similar to the pipeline register seen earlier, the pro- -.% N

gram counter drives on PQO and latches (loads) on PQ2. The microcode sequencer was .- .- " ,

designed so that the width of the program counter can be easily modified by merely .

adding or deleting the subcells which form the individual bits.

N.
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Figure 11. Sources of Sequencer Next Address 
"

From
Half

From T RN
-. Addressr,-

Mux

Figure 12. Program Counter Cell

4.2.3.2 Incrementer. Obv iouslv, the incremen ter is responsible fo~r oum ptink

the value of the program counter pis one. Since the equation for an incremnen rer is

V,. 53



Sum =register contents -i-all O's - (carry-in 1),%

%

the boolean equations for a full adder can be simplified, since the B input to the adder is -

V

always zero. For each bit:

Sum = A xor Bxor C Axor 0xor C =A xor C

Carry =A(A xnor B) + C(A xor B) =AC

The incrementer is thus implemented with a series of half-adders, as shown in Figure 13. j%

Since the carry signal is propagated through a series of transmission gates, the carry

must be buffered each four bits. The design of the half-adder is shown in Figure 14.

Note that in the least significant bit of the incrementer, the carry in will always he

'I' so the equations for this bit simplify to:

% W

From Program Counter

1/21
%. %~ %

(no carry) crr

S%

Output of Incrementer

Figure 13. Incrementer -
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A Sum A xor Cin

Carry out =A Gin %

--
r

Cin .. . .. . .

%

Figure~-C 14 af de

Sum = Axor C = Axor 1 = Abar

Carry =AC A

Thus, only a single inverter is required to implement the LSB of the incrementer.

4.2.3.3 Address Multiplexer. As seen earlier, the input to the program

counter can come from one of four sources. Since the design of the program counter

itself allows the increment option to be loaded directly into the program counter, a

means is required for selecting which of the other three options should 1)e made available

to the program counter. This is accomplished through the 4:1 address nuiltiplexer

Although only three of the inputs of the '1:1 mux are actually required, the fourth input P %

is provided to allow for future expansion of the microcode sequencer mnd to inalinai____

* X %

VT~. -'
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compatibility with the multiplexers in the condition multiplexer. Figure 15 shows the 11

multiplexer as designed by Lt. French.
U0

4.2.3.4 Subroutine Stack. The subroutine stack is essential to the implemen-

tation of subroutine calls and returns. During subroutine calls, the contents of the pro-

gram counter plus one (i.e. the output of the incrementer) must be "pushed" onto the ,

last-in first-out (LIFO) stack. Conversely, when a return from subroutine is required. the

top of the subroutine stack should be "popped" and loaded into the program counter PI J,

The width of the subroutine stack is determined by the width of the program counter. % %

The depth of the stack will vary between various ASP implementations. The depth is

determined by evaluating the target algorithm and determining the number of levels of .0

nested subroutines required.

InO

I 1 " " '.1
,

Program*In2 Couinter• --

~~~In3"":-

CC

Figure 15. 4:1 Multiplexer ' ," -

t
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Figure 16 shows the desigi, of the address stack. The "push" signal allows data to

transfer between the MSFFs, moving deeper into the stack. Correspondingly, the "pop"

causes the data to move toward the address bus. Twelve columns of NISFFs provide

storage of the addresses. Although not required by most implementations. an extra

column can be added to the stack to keep track of the number of words currently stored

in the stack. This column is initially reset to all O's during chip reset. If a "push"?.

occurs, a '1' is pushed into the first MSFF in this column. Thus, a '1' stored in this

MSFF serves as a flag that the stack is not empty. A '1' in the deepest MSFF in this I

column indicates that the stack is full. When the stack is popped, a 0' is shifted into

the deepest MSFF.

S

The MSFF required for the stack (Figure 17) is similar to that required for the pro-

gram counter. It must be loadable from two t-gates and be resettable (required for tag

column only ). The row of MSFFs which form the "top" of the stack require staged-up I-'." '

buffers to drive the address multiplexer when a "pop" command is received.

4.2.3.5 Branch Condition Multiplexer. The branch condition multiplexer is

used to provide conditional branching within the microcode. The branch multip!exer is

designed as a 32:1 mux. A 5-bit field from the ROM can then select one of 32 conditions

as the branch condition. Flags from the datapath such as zero, overflow, or negative, or "-'..'q"

error conditions such as the IEEE not-a-number (NaN) can be used as branch conditions.

Additionally, these conditions can be combined together with boolean logic to form such .4 '..
J-. r

branch conditions as "greater than" or "less than or equal to". I"

The design of the 32:1 multiplexer (Figure 18) is simply a combination of 4:1 multi-

plexers, similar to the 4:1 multiplexers used in the address multiplexer. To lessen the

capacitive loading on the 5 control lines, these lines are distributed over different -ages

.:'.,:',:.
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Stage

Figure 17". Stack MSFF

of the multiplexer, as described in Fre861. The eff'ect is to decrease the delay through r-

the multiplexer. .

The polarity (active high/low) of the output of the 32:1 multiplexer is determined

by a single bit coming from the XROM. The mux output and this bit, called the "Bran.-

chOn" bit, are XORed together to form the actual branch condition Signal (Figure 19).

A "high" on the BranchOn line, then, signifies a negative polarity on the branch condi1-
9i

tion. As an example, to form the condition "jump not zero", the 3-bit condition field

would select the zero condition and the polarity bit would be set high, indicating a "not

zero" condition. NWith the capability of branching on either polarity of 32 conditions, the

branch condition multiplexer in effect provides 6.1 different branch options.
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Figure 19. Branch Condition Signal

4.2.3.0 Sequencer Control. The subcells of the Microcode Sequencer described

above require several control signals as input. The stack requires push pop signals. The

program counter and address multiplexer require signals to determine which of the four

next address options to load into the program counter. These signals are derived from a .

3-bit field from the XROM, called the Next Address Field (NAF).

Table 2 shows the options provided by the Sequencer which can be selected by the 0

NAF field. From this table, the Karnaugh maps can be developed for the required con-

trol signals and the boolean logic derived (Table 3). Implementation of the boolean logic-

to realize these signals is then trivial.

4.3 ASP Datapath Section

Whereas the function of the Control Section is to generate the requir,,d c(itrI-

nals for the ASP architecture, the function of the Datapath Se,'ti,,n is to -1pvr:tt, ,,m th -

data in response to the signals. The datapath serves to transfer da:tt to frm Jf-chlp,

61
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Table 2. Microcode Sequencer Operations

NAF Meaning AddMux %luxControl Push Pp .

000 Continue don't care xx 0 0

001 Return Pop Stack 10 0 1

010 Call Branch Field 01 1 0

011 Branch Branch Field 01 0 0

100 Cond. Datapath Load Datapath 00 0 0 '.e.,.'.'

101 Cond. Return Pop Stack 10 0 1

110 Cond. Call Branch Field 01 1 0

111 Cond. Branch Branch Field 01 0 0

Table 3. Microcode Sequencer Control Signals

Control Signal Boolean Equation

Addmuxl NAFI

Addmux2 NAFIb * NAF0

Push NAF1 * N.AOb * (N.AF2b - Branch(' oI 1)-.

Pop NAFIb * NAFO (N.\F2 --- Branch(ci,l)

" Load1PC NAIY2 * BranchCc ndbar- N\F2 ) N.\() N.F\ I
I

lncrPC LoadP()'ar

store the data, aid perform cormput:iti ns upoln tho data HegirtlV.>. th, tv , , (11:1. I

.~V.
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whether floating point, two's complement, signed magnitude, or some other format, the

datapath is responsible for performing the required operations.Si S

Figure 20 shows a block diagram of the ASP datapath. As depicted in this figure.

each of the macrocells of the ASP datapath is designed such that the datapath can be

laid out in a linear manner. The following sections examine the design of each of these

macrocells in detail.

4.3.1 Datapath Busses. The ASP datapath is designed in a linear fashion, so-

that the data busses pass through the individual macrocells at a fixed spacing. This "

style, proposed by Mead and Conwav MIeaSl, allows the datapath to be a regular struc-

ture, as shown is Figure 21. For the ASP architecture, the intra-bus spacing is SI

lambda (lambda is a scalable size parameter used in VLSI design: a common size is

lambda=1.5 microns), sometimes referred to as 81-pitch. This means that the spacing

between different bits of the same bus is kept at a fixed spacing a SI lambda. All macr-

cells which make up the datapath are designed to conform to this SI-pitch.
..,, .~

%

rp--

1I/0 Register T Barrel
E ALU

Path Array R Shifter

Figure 20 Block Diagrmi n (f A\SP DOi ):tth~ii
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The ASP architecture employs a three-bus structure (Figure 22). The "A Bus" and

"B Bus" are used to transfer data from the storage devices (usually the register set) to

arithmetic hardware (ALU and shifter), while the "C Bus" is responsible for returning '

results from the arithmetic hardware back to the registers.

Due to the high capacitive load on the datapath busses, various processor architec-

tures apply different techniques in attempt to increase the speed of the busses. As seen

in Chapter 2, precharging the bus and clamping the bus have been investigated. In

CMOS design, another option is to provide large complementary drivers to circuits which

must drive the bus. The ASP architecture utilizes a precharged design for source busses

(Bus A and Bus B), and a conventional CMOS approach to the return bus (BUS C).
0

Although precharging is less advantageous in a CMOS design than in an nMOS design

(since CMOS employs p-channel pullups), the precharged approach resulted in smaller

register cells and in less capacitive loading on the output driver control lines. The

precharge signal must be timed such that it remains active until all register select control

lines have settled to their new values, so that spurious select signals do not inadvertently

discharge the busses. It was not practical to precharge the return bus. since the arith- S

metic hardware is not self-timed (it does not "signal" when the computation is complete).

4.3.2 Register Array. The general-purpose register array provides the pri-

mary data storage capability for the ASP datapath. As seen previously, the actual size

of the register array for any given application is dependent upon the requirements of the

algorithm. To simplify decoding, an array size which is some power of two, minus one, is S

preferred. The width of each register is set by the width of the datnpath.

Figure 23 shows the design of the basic register ce!l. The heart of the cell is a

NISF. which drives new data onl the rising edge of PO1 ind L tches (1,,ds) (lata on the

65
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trailing edge of PQ2 (Figure 24). The usable portion of each clock cycle, then, is from

the rising edge of PQ1 (when new data is available to be driven onto the bus) until the 0
e 0 .P

falling edge of PQ2, when arithmetic results must be present at the input to the MSFF ' ' * %:

so that it will be latched. Actually, the usable period of time is reduced slightly, since

the register drive signals cannot become active until the precharge signal is inactive.

The layout of the register cell diagramed in Figure 23 is set to the 81-pitch of the

datapath. Since each register cell provides one bit, the register array is easily formed by

laying out a regular array of cells, m bits high by n bits wide, where m is the number of

bits in a word and n is the number of registers required.

The register array is controlled by three sets of decoders, one for each of the three O

busses. Two of the decoder sets select which one of the registers (if any) is enabled to

drive the A Bus and the B Bus. The third decoder selects which of the registers will load . -.. ..~

from the C Bus. Regardless of its usage, the design of all decoders is the same. Obvi- 0

ously, the width of the decoders must vary with the number of general-purpose registers

required. The selected register is decoded using a fully complementary NAND gate. In

order to avoid unnecessary power dissipation, the output of the decoder must be ANDed

LoadC P02 Q
Cbus A US .

Phi2bar Philbar "DriveB -"-"'3 "' '

Figure 23. Basic Register Cell
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Figure 24. ASP Clock Cycle

with the inverse of the bus precharge signal (Figure 25). If the decoders were allowed to

select a register while the busses were being precharged, the register pull-down driver

would "fight" with the precharging circuit (if the register was attempting to output a '0').

The layout of the register decoder was patterned after the XRONI address decoders, f..- '%.%'

which allows for easy (and possibly automated) personalization of the decoder. Both

polarities of each bit of the register select field are propagated through the decoders, so

that personalization is accomplished by merely placing contacts at the appropriate inter- , ',.... . .

section.

t.. ft %.. -

*1 ft... - I I

* ft-f

Si::i:!--::]

.,%. ft.,
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Figure 25. Register NANDT Decoder

4.3.3 1/0 Path. As described in Chapter 3, the 1/0 path consists of one or

more 1/0 channels. Each of these channels supports both an address stream and a data 7; 7

stream. The address stream is provided by an address register, which directly drives out-

put pads to control memory addressing. Figure 26 diagrams the design of the address

e
register cell. This register is a simple modification of the general-purpose register cell.

Like the standard register cell, the address register loads from the C Bus and can drive

the A Bus. However, in place of a driver for the B Bus, the address register incorporates

an ungated driver to the output pads.

The data stream is supported by the data register (Figure 27). Similar to the

address register, the data register can load from the C Bus and drive the A Bus. Addi- . 0

.. ,A .

tionally, the data register can load from or drive hi-directional data pads. The given

designs for the address and data registers do not provide the capability to drive data
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onto th, B Bus. This capability could easily be added by employing another output

driver, but was not implemented in order to minimize the size of these registers.

The address and data registers can each drive the A bus. Obviously, these registers

cannot drive the A Bus at the same time one of the general-purpose registers is selected .

to drive the bus. The designer must therefore be careful in writing the microcode that

this condition does not occur. The current microcode assembler does not provide an

automated capability of deconflicting these instructions. In the case of loading from the
I

C Bus, however, there is no contention. The I/O registers and general-purpose registers

LoadC PQ2 PQ1 ,C.u- A'-s

To --

Data 
e.'.

DataPaddss ., p €Load from Pads Pibrhla Pads

Figure 27. Data Register Cell
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1. -. . ?can load during the same clock cycle. . ,,,

Two types of handshaking are envisioned for an I/O path: with a "host" controller

or with memory. Data exchange between the ASP architecture and an intelligent host

can be accomplished with a simple 4-line handshaking. After the ASP algorithm has been " --

initiated by the host, the ASP hardware will initiate the handshaking for any necessary

transfer. For data transfer to the ASP (Figure 28), the ASP will initially raise and main-

tain the DataRequest line. The host will then provide the necessary data on the data
J

stream and raise the DataValid signal. Upon receipt of DataValid, the ASP loads the

data register and then drops DataRequest. The host will maintain the data on the data %

stream until the DataRequest signal drops, at which time the host can release the data

DataRequest (A)

C' -. , "7V -.. °.

Dadarta () VALID)..-

- X . %% . %

(H) - Host Action (A) - ASP Action

Figure 28. Data Transfer to ASP from Htost -
%
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stream and drop the DataValid line. For data transfer from the ASP to the host (Figure %

29), the ASP drives the data register onto the data stream and then raises the-"s

DataAvailable signal. When the host has received the data, it sends DataReceived. The -

ASP can then lower DataAvailable and release the data stream. -

Handshaking between the ASP architecture and a memory array is straightforward

(Figure 30). A Read/Write line determines the direction of data flow along the data

stream. A WriteEnable signal ensures that spurious data is not written while the N

address and data streams are unstable. This simple approach should place a minimal ,

requirement on the memory hardware. If necessary, the designer can allow for a slow

memory access time by inserting additional clock cycles into the microcode. _

DataAvailable (A)

DataReceived (H) .L'-,- '

LoadData (H)

DataStrem (AX( VALID)

(H) - Host Action (A) - ASP Action

Figure 29, Data Transfer from ASP to Host

a.

,- % , .
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The ability to read data from memory allows the ASP architecture to load and exe-

cute assembly code instructions. This is accomplished in much the same manner as a

CISC architecture. The instruction loaded into the ASP can be moved into an instruc- -

tion register, from which the instruction is decoded into operation code (opcode) and .- -'

register fields. The opcode portion of the assembly instruction is mapped into an address

in the microcode ROM, using the Conditional Datapath Load microinstruction. Similar

to a CISC, the assembly instruction is executed as a sequence of microoperations in the -

microcode store. Register mapping hardware decodes the register fields into the S

appropriate register select signals.

4.3.4 Literal Insertio. Although the I/O path allows the exchange of data

between the ASP and a host, the majority of applications will use only a simple "Go-

Done" handshaking. The ASP hardware must have the capability of providing the con- .,,_

stants which are necessary for the algorithm. This is accomplished by storing constant S

data in a field of the ASP microcode XROM. Due to the width of the datapath, it is

impractical to store an entire constant in a single XROM word.

Literal insertion is accomplished using the circuit in Figure 31. The literal field is

inserted onto the LSBs of the A Bus if the InsertLiteral line is activated. If the designer .

wishes to pull the remaining bits of the A Bus low, the LiteralZero line is activated
S?-

Absence of the LiteralZero signal will cause the remainder of the bus to remain .1

precharged high. The insertion of a literal onto the A Bus must be deconflicted with use

of the A Bus by the register array and the I/O registers. I

If a small constant, such as a loop variable, is all that is required, it can be inserted

onto to A Bus and operated on during a single clock cycle. If insertion of a full-width

constant is required, the constant can be loaded in two clock cycles. During the first

73 ',.-. -
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LiteralZero •

InsertLiteral
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BusB Bus B
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DatapathBits with Literal to insert Bits without Literal
:.'. ,~ -': -%

Figure 31. Literal Insertion Circuitry

clock cycle, the MSBs of the constant are placed on the A Bus and shifted into the most

significant half of the datapath word. On the second clock cycle, the LSBs of the con-

stant are inserted and ORed with the previously inserted bits. The completed constant

is then ready for use during the subsequent clock cycle.

4.3.5 Barrel Shifter. Techniques for the design of barrel shifters are well esta- "

blished. The design of ASP barrel shifter is patterned after the shifters describes by % %

Mead and Conway [MeaSl]. Figure 32 shows the design of a simple 4-bit circular barrel e 0,

shifter. The regularity of this structure facilitates the design of a standard shifter cell. N"..\' ,

This standard cell can then be arrayed in a n by n structure (with an 81-lambda pitch

between bits) to provide an n-bit circular shift.
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Figure 33. Barrel Shifter with Arithmetic Left Shift - .- , .,....

the shifter's bus interface logic (Figure 35) to determine whether the shift result is to be W

driven onto the result bus (C Bus). In order to deconflict with other arithmetic

hardware, it is important that the shifter only drive the C Bus when a shift is selected. A A
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Bit 0 ______________ ~-

Bus In

Shiftr Ou

Shif tO Shift! Shif t2 Shift3

Figure 34. Barrel Shifter with Arithmetic Right Shift '~

4.3.6 Integer ALU. For applications that do not require floating-point arith-

metic, the integer ALL' is responsible for providing all arithmetic processing. ASP archl-

tectures which process primarily floating point data will still require an integer ALLU for

address computations and to support software operations such as looping. The integer a

ALU should provide the following functions:

I1. Addition/Subtraction %-..
2. Increment/Decrement

3. Boolean Logic - AND, OR, XOR, Complement
4. Set/Reset Carry
5. Move Between Registers ~*
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busB "..B._,'-._.v_,_

busC "-___ _ _ _

Figure 35. Shifter Interface to Busses

Figure 36 shows a block diagram of a design to provide the required functions. Pro-

essing is accomplished by five functional units, which perform the addition, AND, OR,

OR, and pass (move) functions. The A Bus feeds these five functions directly. The B

us, however, is fed into the B select unit, which sends one of four possible values (B,

L-bar, 0, 1) to the functional units, dependent upon the function desired. The third

nput to the ALU is provided by the carry in logic, which can input carry, carry-bar, 0, "-

,r 1 into the ALU's carry in. A 5:1 multiplexer selects which of the five functions will be

:ated onto the C Bus. Additionally, the ALU will generate signals for four flags: Zero.

,egative, Overflow, and Carry.

The hardware to realize the boolean functions is trivial. Figure 37 shows th. ,i:.-

,f these units. Due to the simplicity of this boolean hardware, and th- f:i' t, t'

omputations on one bit are independent of all other bits, none of th , ,,:!--

ritical timing path.
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Figure 36. ALU Block Diagram .

4.3.6.1 Integer Adder. The adder circuitry, therefore, establishes the critical

timing path through the integer ALU. In fact, since the barrel shifter is very fast and

any floating point operations will probably be accomplished over 2 clock cycles, the delay

through the integer adder becomes the critical path through the entire arithmetic section '" -

of the datapath. The delay through the adder must be minimized.

For a simple ripple-carry type adder, addition of the input bits does not become

effective until carry signal from the previous bit becomes valid. To speed up the carry

signal, carry propagate adders compute the carry-out signal rapidly, so that the carry
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signal is propagated faster than the sums are computed. The carry out of a block of

several bits can be computed even faster using carry lookahead adders [Wes851. In this

scheme, the words to be added are broken up into blocks of bits. The carry-out of a I ,

block of bits is computed entirely separately from the sums, using a static boolean logic

design.

An even faster adder can be built using the carry-select adder approach, which

significantly increases the area required by the adder. The carry-select approach relies

upon the fact that all the bits to be added become valid at the inputs at approximately

the same time. The carry-select adder can thus begin adding all bits at the same time.

Using this approach, the words to be added are again broken up into blocks, as shown in

WI

Bbar

A KA or B

Bbar

A A andB

B
Bbar L -

A7Ir3A xor B

T %I

Figure 37. Implementation of Logic Functions
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I7M
Figure 38. For each block, or stage, of the adder after the least significant block, two

adders are provided for each bit. One of the adders computes its sums and carry-out

based on a carry-in of zero, while the other computes based on a carry in of one. Once

the previous stage computes its carry-out, this stage merely has to select one of its two

' 0

possible carry-out signals via a 2:1 multiplexer. Thus, the delay from carry-in to carry- U
out of the block is merely the delay through the mux: a single one logic delay. In aN

same manner, the proper sum value can be selected by the carry-in of the stage. N..%

The ASP integer ALU employs the carry-select adder approach. This approach .

results in a fairly constant add time for various widths of datapath, since adding an

additional stage of 4-6 bits requires only one additional logic delay to compute. The

adders within each block are designed using a carry propagate style. Figure 39 shows the )%

design of this adder. The adder is built using a t-gate design and introduces only a sin-

gle t-gate delay from carry-in to carry-out. The adder is designed using a slightly

different form of the full-adder equations than is normal. The most common equations ,

for the sum and carry of a full adder are: .

sum - A xor B xor C

carry = AB + AC + BC

However, analysis of the Karnaugh map for a full adder reveals an alternate form for the

carry equation:

carry = (A xor B)C + (A xnor B)A

From this form of the equation, it is seen that the carry signal can be generated by a '." 77

simple multiplexer, based on the results of the XOR and XNOR operations. The adder .. 6 .1 -

in Figure 39 uses XOR gates to compute "A xor B" and "A xnor B", then uses these sig-
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Figure 39. Carry Propagate Adder Cell

nals to select the sum and carry. Since the XOR and XNOR signal can be computed

prior to the arrival of the carry-in signal, carry delay through the adder is only one t-

gate delay, which is comparable to the delay of a carry lookahead adder. Note in Figure

39 that the A signal into the carry mux in generated by inverting A-bar, rather than

using the A signal already present. This extra inverter was added so that the ESINI ,I

switch simulator would not be confused by what is construes as feedback in the circuit.
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Using this carry-select adder approach, the ASP architecture can perform a 32-bit A

add in approximately 24 ns (worst case, assuming a 3 micron CMOS fabrication process),

from stable inputs until stable outputs of the adder. Overall add time for the integer

ALU will be longer, due to overhead required to select the B input (prior to the add) and

to drive the result through the 5:1 mux and buffer it onto the C Bus (following the add).

4.3.6.2 ALU Functions. Table 4 shows a listing of how desired operations are

realized from the ALU hardware. Simple addition is accomplished using a carry-in of 0,

while the add-carry operation uses a carry-in based upon the status of the carry flag.

Subtraction is realized by complementing B and adding A, with a carry-in of 1.

Subtract-with-borrow is not immediately obvious. If borrow is set (actually, the carry .- .:

flag), then the difference would be A + B.bar; but if borrow is not set, the difference is A

+ B.bar + 1. Thus, the proper equation for subtract-with-borrow is A + B-bar +

Carry-bar. Then increment/decrement functions and most of the boolean functions are

fairly obvious. The complement function is realized by using the XOR function. The set %

and reset carry functions were accomplished by a direct set/reset of the carry flag regis-,

ter. An alternate solution would have been to use the following equations:

set carry = A + (all l's) + 1 (always resulting in carry-out)

reset carry = A + (all O's) + 0 (never resulting in a carry)

The move function could also have been provided by:
* ,.= %

move = A or (all O's)

'4..-..
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Table 4. ALU Operations

Operation Implementation

Invert A C = A xor (all is)

AND C = A and B

XOR C = A xor B IN,

OR C= A or B

Move C =A

Set Carry Directly Set Flag Reg.

Reset Carry Directly Reset Flag Reg.

Incr C = A + (all Os) + I

Decr C= A + (all ls) + 0

Adc C = A + B + cy

Add C = A + B

Sub C = A + Bbar + 1

Sbb C = A + Bbar + cybar

Compare A + Bbar + 1

4.3.8.3 ALU Control Circuitry. Table 5 shows the integer ALU functions,

showing the necessary operation, B select, and carry-in to realize the function. The table

also shows which flags will be modified by each of the functions. The functions have

been reordered to simplify the boolean equations for control signals. From Table 5, Kar- %

naugh maps can be drawn for the required ALU control signals. Table 6 shows the

boolean equations which were derived from the Karnaugh maps. Simple implementation

It.
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of this boolean logic provides the necessary ALU control signals.

Table 5. Control Requirements of ALU Operations

ALU 3-0 Operation BSelect Function Cymn Flags

0000 NOP X X X -

0001 C -Abar 1 XOR X Z

0010 C A and B B AND X Z

0011 C = A xor B B XOR X Z

0100 C=AorB B OR X Z

0101 C A (mov) X Pass X .

0110 Set Carry X X X C

0111 Reset Carry X X X C ; :*

1000 C -- Incr A 0 ADD 1 All.. ." "

1001 C Decr A I ADD 0 All-" "

1010 C - A + B + cy B ADD Cy All

1011 C == A + B B ADD 0 All

1100 Not Defined X X X

1101 C A A- B Bbar ADD 1 All

1110 C A - B - borrow Bbar ADD Cybar All

I111 Compare A, B Bbar ADD1 All

87-. :



Table 6. ALU Operations

Function Control Sig Boolean Logic ~

Bselect 0 ALU2b * ALMi * ALUOb

1 ALU2b * ALUib * ALUO

B ALU3b * ALU2 + ALU2b *ALUib

Bbar ALU3 * ALU2

Function Pass ALU3b * ALU2b * ALUOXO LI AUb*AU
OR ALU3b * ALUM * ALUOb

AND ALU3b *ALUl ALUOb --

ADD ALU3

Carry In Cy ALU2b * ALM ALUOb

lie %

Cybar ALU2 * ALUl * ALUOb

0 ALU2b *ALUO

1 ALU2 * ALUO + ALU2 * ALMi + ALM ALU~b %

DriveCDriveALU3 + ALU2 + ALUl + ALUO

LoadNegFlag Load ALU3g -

LoadOverFlag Load ALU3

LoadCarryFlag Load ALU3

LoadZeroFlag Load ALU3 + ALU2b *ALUI + ALU2 *ALMi * ALU',b

4.3.6.4 ALU Flags. The integer ALU flags are easily obtained. Each of theA
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flags is stored in a register cell, similar to the ba.:c register cell designed for the register :sJ

array. The carry flag register (Figure 40) additionally requires a set/reset capability.

The Zero Flag is obtained using a multiple-input NOR gate which samples the output of i"'

each bit of the ALU. Since the ALU assumes two's complement arithmetic, the Negative

Flag is the output of the ALU's MSB. Overflow is detected when the carry-out of the

two MSBs of the ALU is not the same. Therefore, the Overflow Flag is obtained from an

XOR of these two signals. The Carry Flag is derived from the carry-out of the MSB.

For addition-type operations (add, adc, or incr), the MSB carry-out signifies ALU Carry.

However, for subtraction operations (sub, sbb, compare, or decr), the MSB carry-out %

signifies Carry-bar. Therefore, the Carry Flag is derives as the XOR of the MSB carry-

out and a signal indicating a subtract- type operation (ALU2 + ALUlbar * ALUO). The

load conditions for these flags was shown in the previous section. '?.-

A4-

S etC yb a r 
, .

LoadCy PQ2 PQ1 Cy "g

ALUCy

Phi2bar Philbar 4

Figure 40. Carry Flag Register
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4.3.8.5 ALU Integer Multiply. Many integer applications will require a multi-

ply function from the ALU. Most processors today perform the integer multiply in

software, using a series of shifts and adds. Some processors provide limited hardware

support for the software multiply, in the form of a special "add and shift" instruction

which employs Booth's modified algorithm to halve the number of adds required.
• ..

This approach is desirable if multiplies are required infrequently. However, if the .

application's algorithm requires frequent multiplies, further hardware support is war-

ranted. A hardware multiplier can perform the multiply in less than 100 ns. A

hardware multiplier has therefore been designed for the ASP architecture. This integer %

multiplier is incorporated into the floating point multiplier which is described in Appen-

dix A. the multiplier will multiply two 24-bit integers, producing either a 24-bit or 48-

bit product. The main multiplier array employs Booth's modified algorithm in a Wallace

tree structure to provide an integer multiply time of less than 75 ns. A "

4.3.7 Floating Point Hardware. The ASP architecture's primary hardware .

support for floating point data is in the form of a floating point adder and multiplier.

Both the adder and the multiplier perform floating point calculations based on the IEEE " S."

standard floating point format [IEE85]. The design of the floating point multiplier, .

which has been implemented and tested, is described in detail in Appendix A.

Design of the floating point adder was initiated as a EE695 class project during the

Winter 1987 quarter [God87]. Design goals for the adder was a 50 ns add time, accom-

plished within a 2000 X 3000 lambda area. Since the ASP integer hardware is designed

for a 50 ns clock cycle, it would be impractical to drive data to the adder, perform the

floating point addition, and return the result to the register array within one clock cycle.

The floating point addition will thus require two clock cycles. The data will be latched

90 -
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into input registers during the first clock cycle and the result will be available during the E l
. ~subsequent clock cycle. -

The architecture of the floating point adder logically divides into two sections: the

exponent section and the mantissa section. Figure 41 shows the design of the exponent

section. The first step in the exponent section is to subtract the two exponents to deter-

mine which is greater. The two's complement circuitry ensures that the result is in %

signed-magnitude form. This signed-magnitude result is passed to the mantissa to indi-

cate which mantissa should be denormalized and how far to shift this mantissa. The 0

larger of the two exponents is then gated to the renormalization adder. If renormaliza- 0%

tion is required after the mantissa addition, the exponent is added to the renormalization

amount to determine the correct exponent to output.

The mantissa section (Figure 42) must await the exponent comparison before it can

begin processing. This comparison tells the mantissa section which mantissa to gate into

the barrel shifter and how far it must be shifted for denormalization. After the proper

mantissa has been denormalized, a 25-bit full adder will either add or subtract the

mantissas, dependent upon the two sign bits. A good description of the V

addition/subtraction algorithm for signed magnitude numbers can be found in ManS2].

The output of the adder is then converted back to signed-magnitude format and tested

for overflow or leading zeros, either of which would require renormalization. If renormali-

zation is required, the amount is passed to the exponent section and the mantissa is

renormalized via a shifter. Contradictory to [God87], the shift will not always be left,

since in the case of overflow the mantissa will have to be shifted one right.

The critical timing path through the floating point adder is through the exponent

L difference circuitry, then through mantissa denormalization, through mantissa addition, •
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overflow/leading zero detection, and finally through the exponent renormalization adder.

Keys to the adder speed will be fast adders, barrel shifters, and, maybe most impor-

tantly, fast encoding/decoding of shift-amount vectors.

Detailed design and implementation of the floating point adder were beyond the

scope of this thesis.

4.3.8 Special-Purpose Arithmetic Hardware. It would be inane to assume %

that all ASP applications could be implemented efficiently with merely an adder and a

multiplier. However, it would also be impractical to attempt to provide a full hardware ".

implementation to all possible operations. The ASP architecture provides a simple solu-

tion to this problem. Numeric methods, such as the Newton-Raphson approach, have 0

been developed to calculate most conceivable operations using convergence algorithms. ,..
,-.**-*. .. .

For an in-depth analysis at convergence algorithms, see [Bai87]. A common characteris-

tic of all convergence algorithms is that they converge much more rapidly in the initial

guess is close to the actual solution. For example, an algorithm which calculates a

result with 32-bit precision might require only 3-4 iterations to converge from a 4-bit

seed", but might require 8-10 iterations to converge if no seed is provided. In fact,

many algorithms require that the initial guess be within certain limits for the algorithm -. '..

to converge. p -

The ASP architecture supports these numeric methods by providing allowing a seed - -

to be inserted into the datapath. The seed is gated onto the datapath in a manner simi-

lar to literal insertion from the XROM. In this case, the addressing for the seed is

received from the input data which is driven onto the A Bus. For example if the opera-

tion "l/i' is required, "' is driven onto the A Bus and acts as the address of a RONI or

PLA which contains the initial guess at "l/i". The output of the lookup table ROM/iPLA
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is gated onto the C Bus, from which it can be stored in any register. The size of the

lookup table (both number of words and the number of bits to be inserted) is determined

by analysis of the convergence algorithm. Simulation of the algorithm in a HOL will

determine the number of iterations required based on various seed sizes and accuracy

required.

Once the size of the lookup table is known, the table can easily be implemented .lj-

using a ROM or PLA. In general, a PLA is only practical for small lookup tables (32

words or less). The PLA can quickly be laid out using the standard PLA cells from the

AFIT library. For larger tables, the XROM Optimizer can be used to automatically lay
.% NO:,,

out the table. N A
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CHAPTER 5 %

VLSI Implementation W, W<

5.1 Introduction

In order to verify the macrocells that were developed for the ASP design library, a

prototype ASP design should to be fabricated. This prototype would verify not only the
O

functional correctness of the macrocells, but will also provide data on the maximum clock

frequency that the hardware will support. Two approaches were considered for the pro-

totype ASP: applying the ASP architecture to an actual application or building a chip

with the microcode optimized for testing. Since the primary purpose of the prototype

ASP was to verify the hardware, the decision was made to implement a chip which con-

tained microcode specifically written to exercise the ASP hardware. Implementation of an •

actual application would likely not provide full microcode capabilities to test all func-

tions.

Several macrocells from the ASP library have already been fabricated. The AFIT - "

XROM is being thoroughly tested with a separate XROM chip which was implemented
%%

for the VLSI Design course (EENG695) during the Winter 87 quarter. This chip contains

four different XROMs of size 12K, 24K, 48K, and 72K, which contain lookup table data

for several mathematical functions. The XROM chip will verify access times for different,.. - *. %

size XROMs. Additionally, the IEEE floating point multiplier (described in Appendix A)

was implemented as a separate chip. It will verify the functional correctness and perfor- . Z

mance of the multiplier.
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Since the multiplier is being tested separately, and the IEEE floating point adder Mw.).o .P

has not been completed, the ASP prototype processor will be an integer-only architec-

ture. The ASP datapath macrocells were designed such that inclusion or exclusion of the %

floating point macrocells would not impact the operation of other macrocells (other than , ?

an increase in capacitance on the data busses). Thus, testing of the ASP architecture

without the floating point macrocells will provide an accurate gauge of the ASP capabili- :.':..

ties.

The prototype processor is designed for a clock frequency of 20 MHz. Since the chip

is using precharged busses, approximately 40ns of the 50ns clock clock cycle is available

to drive the data from the registers, through the ALU or shifter, and back to the regis- .

. j. .. %-ters.

5.2 Hardware Implementation "

5.2.1 Floorplan. The prototype ASP chip was implemented as a 24-bit

integer processor. Figure 43 shows a floorplan diagram of the prototype chip, showing

the pinout and approximate relative sizes of the major subsections. The ASP layout was 0

designed to fit in a 64-pin 7900 X 9200 micron package. The pinout of the prototype

chip provides the following signals: .. ,
-k k

8- Vdd /GND
5 - Clock (PQ1, PQ2, TestPQ1, TestPQ2, Precharge) .. \.

24- Data (bi-directional)
10- Program Counter output
I - Branch Condition output
1 -Chip Reset
4 - Flags output
4- Handshaking to [lost
4- Testability pins -
2- Spare I" PI J

63 - Total Pins (one pin left free for substrate contact)

97 ? **

Prole IM , 61 % PIP



5.2.2 Control Hardware. The control hardware will vary little between

different ASP applications. The prototype control section contains a 13K-bit XROM,

organized as 256 words of 52 bits each. Although the prototype only requires an 8-bit

program counter and a three-deep subroutine stack, the library microcode sequencer was -

used, which provides a 10-bit counter and 7-word stack. Only 8 of the 32 possible

branch conditions were needed.

5.2.3 Datapath Hardware. The prototype datapath is 24 bits wide. The

datapath provides 15 general-purpose registers in the register array, requiring only simple

NAND type decoders. A single I/O channel is provided, consisting of an address and a

data register. The I/O channel provides 4-line handshaking with a host, but no memory

interface was implemented. In order to free pins for testability, the address register out- .,. %,-.
,£% - ,%

put is not driven to output pads. The other source of data to the datapath is provided -%. "

by the literal insertion hardware. Since it is impractical to insert 24 bits in one cycle, 12

bits can be inserted and the remaining 12 bits can collectively be set to zero or left at

one. Arithmetic processing is provided by a barrel shifter and integer ALU. A 24 X 24

barrel shifter is employed, which provides circular shift. The 24-bit integer ALU was -.-
* • .+ . +.

easily implemented from library cells, using carry-select stages of 4-4-5-5-6 to provide the "..., .%-

% % "

required width.

5.2.4 Hardware Design for Testability. The primary goals of design for testa-

bility are controllability, testability, and predictability [Fuj85]. Controllability is the

ability to drive the inputs of the hardware to a known state. Observability is the ability
'. .. o. -i

to "see" the output of the hardware. Predictability is concerned with driving the
e"% % %

hardware so that testing can begin at a known state of the hardware.

..
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Figure .43. Prototype ASP Floorplan
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Predictability is easily provided in the ASP prototype. A master "Reset" input to

the chip is provided, which resets the value of the program counter to zero. The micro-

code is written -) begin at Word 0. It is not necessary to reset the datapath registers,

since the microcode will not use the value of a register until the register has been loaded. ,

The only other storage circuit that requires care are the flag registers. Since they are not

reset upon chip reset, the microcode should not attempt any conditional branches based u

on these flags until they are set by an arithmetic operation.
-

Controllability and observability involve not merely the ASP prototype as a whole,

but also the ability to test subsections of the architecture. Controllability is provided to -0,
% '. %

the ASP control section via chip reset and the conditional datapath load. Controllability

%
of the control section involves the ability to drive the program counter to a desired value.

The chip reset obviously allows the tester to drive the program counter to zero. The con-

ditional datapath load allows the tester to set the program counter to any value desired,

by loading this value into the data register, driving it onto the A bus, and then executing

a conditional datapath load. The ability to set the program counter to any value allows

the designer to write microcode test routines and then cause the hardware to execute S

them if necessary.

Observability of the control section is provided in several ways. The value of the
0 -'

program counter is driven directly to output pads, so that the tester can easily track the

state of the hardware and progress of the microcode. To provide further observability of %

the microcode sequencer, the "branch condition" output of the branch multiplexer is

driven to an output pad. This will allow the tester to better isolate any problems encoun-

tered with program branches. The control section also provides observability of the

actual control signals which are produced by the XRONI. This is acconplislhed using a

100
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Th SP prototype has a 52-bit control word. Since it is impractical to connect 9
.2

each of these control signals to an output for observability, the pipeline register is

reconfigured as a shift register. Figure 44 shows the design of the modified pipeline regis-

ter cell. The MSFF is altered so that it can load from one of two sources, dependent

upon the value of the Test pin. When the Test signal is low, the pipeline register contin-, -

ues to function normally, delaying the XROM output one clock cycle. When Test is -

high, however, the pipeline register loads the value which was previously stored on the ..'J V/,

adjacent register. In this manner the entire microcode control word can be shifted

through the pipeline register. The shift-in and shift-out to the pipe are connected

directly to an input and an output pad. By connecting the shift-in pad to the shift-out ~. J *... ,.,

0

To Next
Pipeline .
Register *",o.-%,-.

Testbar

From . e
XROMNVSenOMps TestPQ2 TestPQ 1Senseamps , [ """'-.-

Chip" "*" "

Test + q::''

Phi2bar Philbar
From %
Adjacent
Pipeline S
Register

.-. %. . N
V ." 

"

Figure -44. Pipeline Register Modified for Testability
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pad, a circular shift can be accomplished, allowing the tester to observe, but not alter,

the contents of the pipeline register. Note that the PQ1 and PQ2 signals of the pipeline

register must be cycled to shift data through the pipeline. However, if these clock signals

are cycling throughout the remainder of the chip, the invalid control signals being shifted

along the pipeline will drive the rest of the chip into an invalid state. Thus, the clock

signals to the pipeline are provided by the TestPQ1 and TestPQ2 input signals. During .%"

normal operation, these signals are same as the clock signals provided to the rest of the %

chip. During pipeline register shifts, however, only the test clock lines are cycled. ,

The shiftable pipeline register also provides controllability to the datapath section

of the ASP prototype. Instead on connecting the shift-in pad of the pipeline register to
".. A 1" '

the shift-out pad (for a circular shift), a new control word can be shifted into the pipeline '.'e':.--

via the shift-in pad. The shift-out pad can still be observed to determine the old value

of the pipeline register. Controllability over the datapath is further provided by the 1,/ 0

channel. By loading the data register with the data which he wants tested, the tester . .

%*
can input the data that he wants the microcode routines to process. Observability of the "

datapath is also primarily provided by the data register. The microcode loads the results %

of most computations into the data register and drives them to the data pads. Thus, the

arithmetic results can be observed directly at the data pads, usually on the clock cycle ..

following the computation. Additional observability of the datapath can also be

achieved by observing the result of conditional datapath load microinstructions.

5.3 Microcode Development

For most ASP applications, the microcode is derived from a IOL description of the

algorithm. For the prototype chip, however, the microcode is used only to test the . %

hardware. The actual microcode for the ASP prototype is contained in Appendix F.
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Figure 45 shows a flowchart of the prototype microcode. The test microcode first tests

the datapath. No branch instructions are used during initial datapath testing, so that

errors in the microcode sequencer will not prevent datapath testing. First, the ability to r. .

load data from the data pads and drive results to the data pads is tested. The data

which has been loaded is then used to test each of the arithmetic functions available. In

case an error prevents data from being loaded from data pads, the next portion of the

microcode loads data into two registers using the literal insertion hardware. The same

arithmetic tests are again performed on this new data. .

The next portion of the microcode tests the microcode sequencer. Conditional and

unconditional jumps, calls, and returns are tested. Nested subroutines are also tested.

Finally, the microcode tests the conditional datapath load. Using this capability, the tes-

ter can repeatedly load a branch address and perform the arithmetic function located at

that address. This allows the ASP to perform similar to a CISC architecture, since the

addresses the tester loads cause arithmetic microcode routines to be performed. The pro-

vided microcode routines allow normal ALU functions, as well as a software multiply

routine. •
.. . ..

After the microcode was written, the next step was to create a translation table to

interface the microcode to Lt. Hauser's microcode assembler [Hau87J. Appendix D shows ---

the fields which compose the 52-bit microcode word used by the prototype ASP. These*..

fields are easily recast into the format of the translation table required by the assembler..

(Appendix E). Next, the assembler was executed, producing an integer file which was

input into the XROM Optimizer, which produced a Magic-format description of the

XROM. %
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5.4 Design Verification %

The first step in verifying the design was to ensure the circuit was laid out in accor-

dance with established design rules. Magic's built-in design rule checker (DRC) capabil-

ity makes this step trivial. Most errors were caught immediately during layout. Any

unnoticed errors (perhaps generated by automatic layout tools such as the XROM

Optimizer) can be detected by asking Magic to re-check the entire circuit. An even

quicker way to determine if errors exist in any of the Magic files was to perform the Unix ,%

command "fgrep error *.mag" upon the directories containing the design. '

The next verification step was to check the design for two insidious errors which

Magic does not check for: "floating wells" and zener diodes. If a P-well is not grounded, -

or an N-well is not tied to Vdd, the circuit will not work properly. Likewise, if a "well

contact" is shorted to a node which is supposed to contain data, a zener diode is formed

and the circuit will not perform as desired. Techniques have been developed to identify __

problems of these types, using Unix script files and a modified Magic technology file.

After design errors have been eliminated, the next step was to output the circuit

description from Magic into the CalTech Intermediate Form (CIF), which, like Magic.

describes the circuit as a series of rectangles on different layers. The circuit extraction

tool, Mextra (Manhattan Circuit Extractor), can then process this CIF file to create a

transistor-level description of the circuit. Mextra outputs the circuit description in the % %

SIM format, which is a listing of the transistors and the capacitance of the nodes in the

circuit. Additionally, Mextra outputs several other files which are very useful in debug- •

ging the circuit: the Nodes file, the Alias file, and the Log file. The Nodes file contains a .

listing of all of the nodes in the circuit. The Alias file provides a list of all nodes in the

circuit which are logically shorted together. The infamous "GND-Vdd" short is a sure .'*-.,,,

105 .. %'
105-.'"-- "--



. .. %1

indication that the layout contains errors. The Log file provides a list of labeling incon-

sistencies which Mextra discovered during extraction. For example, the Log file identifies

any label which is attached to two nodes which are not logically connected. This is often

a sign that the connection of the two nodes was overlooked. Prior to any further circuit .

verification, all entries in the Log and Alias files must be either explained or corrected. 0, ] . ,.

The next verification tool applied was Cstat. This tool inputs the circuit descrip- ,'.

tion in the SIM format and performs connectivity checks upon the circuit. The most _ ,e

useful output of Cstat is a list of all nodes in the circuit which cannot be set to 0/1,

whose value cannot be effected by the inputs, or whose value cannot effect the outputs.

Obviously, the designer has to question the function of any node which cannot effect the

output of the circuit. This tool often identifies entire sections of the circuit which have "'* . -

been hooked up improperly.

When all Cstat anomalies have been explained, Stove can be run on the SIM file. 0

Stove, which was developed at AFIT, extracts higher-level circuit elements from the SINI %

file's transistor description. For example, Stove identifies inverters, t-gates, and logic % -

* 4
gates (AND, OR, NAND, NOR, etc). The output of Stove can be useful in several ways.

First, if the actual count of structures extracted does not correspond to the number

designed, a problem may exist. Second, Stove provides a listing of all of the transistors

which it failed to extract to a higher structure. Examination of this listing often reveals . ,-.--

layout errors. Finally, Stove uses the Nofeed and Fixrom tools to produce the FIX file, a

modified description of the circuit in the SIM format which is more compatible with NW

Esim, the switch-level simulator. A detailed description of Stove is located at Appendix
," .p .- %."

B. - .

-% % F '-

.% -
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WVk,

Nofeed and Fixrom are routines which correct deficiencies in Esim, allowing it to

correctly simulate the ASP architecture. Nofeed identifies and removes the feedback

loops from MSFFs, converting them to dynamic flip-flops. Although static flip-flops are

desirable for the actual circuit, Esim cannot simulate them properly. Fixrom modifies we

two portions of the XROM circuitry to make it compatible with Esim:

1) The main XROM storage cell is modified to eliminate "fighting" on the drain.

2) A static pulldown inverter in the senseamps is converted into a standard CMOS

inverter which Esim is able to simulate. '',-

See Appendix B for a further description of Nofeed and Fixrom. I

j Once the FIX file has been obtained, the circuit can then be simulated using Esim.

The entire ASP chip was simulated "pad-to-pad", which means that inputs to the simula-
I

tion were only made at the input pads and the simulation results were examined at the

outputs. Simulation using Esim is an iterative process, in which simulation is performed,

the circuit corrected, the CAD tools are rerun, and the process is repeated until the

correct results are obtained. The ASP prototype was completely verified with Esim. The

entire microcode was stepped through, one clock cycle at a time, verifying proper perfor-

mance and yielding high confidence in the circuit which was fabricated.

The process described above for the ASP prototype was also followed to verify the

design of the floating point multiplier. The multiplier was simulated "pad-to-pad" prior

to fabrication and showed accurate performance.

. -
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5.5 Fabrication e ' ..,,
% ,%

The completed ASP prototype chip will be fabricated using a 3 micron dual-metal

P-well CMOS process. For an explanation of this process, refer to [Wes85]. Fabrication

will be provided through the MOS Implementation Service (MOSIS). MOSIS acts as an

interface between designers at universities and the actual fabrication facilities [Fre86].

The chip fabrication was funded by the Defense Advanced Research Projects Agency

(DARPA). MOSIS requires that the design be submitted in the CIF format. Communi-

cation with MOSIS and submittal of the CIF description are accomplished via Arpanet.

The IEEE floating point multiplier (described in Appendix A) was also fabricated,.

through MOSIS. It used a 2 micron N-well CMOS process. Fabrication of the multiplier

required approximately 12 weeks.

5.8 Testing

5.8.1 ASP Prototype Testing. The ASP prototype chip has been completed,

but has not yet been fabricated. Testing of the chip will be accomplished as part of a

follow-on thesis or as part of the EE795 course during the Fall 88 quarter. This docu-
-"..' 5 .

ment, other circuit notes, and the Magic layout will be available to aid testing.

5.8.2 Multiplier Testing. The floating point multiplier chip has been received .

from MOSIS and is currently undergoing functional, performance, and parametric test-

ing. The primary test goals are to verify the functionality of the multiplier and to deter- "

mine its maximum operating frequency (minimum multiply time). Final testing results _

on the floating point multiplier were not available at the time of this writing, but will be

included in [Jon871.
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Application of the Rapid Prototyping Methodology

8.1 Introduction .

The preceding chapters have described the design of a general-purpose architecture ,~.''. "..

0 . P,

,%

% %.

which can be modified to solve a wide variety of problems. This chapter outlines the _ __

methodology to rapidly prototype an application specific processor using this general-
%/ %

purpose architecture. The methodology description is followed by case studies of three

applications to which this methodology has been applied.

8.2 The Rapid Prototyping Methodology

Customizing the general-purpose ASP architecture to a particular application

requires selection of the proper macrocells from the ASP cell library and development of

a customized microcode ROM. The rapid prototyping methodology requires the follow- %

ing steps:

1) The first step in the rapid prototyping methodology is to fully define the given

application in algorithmic form. The algorithm to solve the problem should be "----..

described in terms of some high-order language (HOL). An excellent language to use

in describing the problem algorithm would be the VLSI/VHSIC Hardware Description
e e

Language (VHDL). VHDL can be used to describe both the hardware of the ASP and •

the algorithm which will be stored in the microcode. During this phase of ASP

'11D ,il be r
development, a behavioral description of the algorithm is developed. VhDL will be

used throughout the ASP design cycle.
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2) The next step in the rapid prototyping methodology is to verify that the defined

algorithm will perform as required. The VHDL behavioral description of the algo-

rithm should be simulated to verify that the algorithm is correct. Since this .. 0 -.
. '. %.

behavioral description will serve as the model for microcode development, it is critical % % -%

that the VHDL model be accurate.

3) Once the application has been described algorithmically, the next step is to

analyze the computational requirements of the algorithm. The goal in this step is to

determine what types of operations are required by the algorithm, so that the

appropriate hardware can be applied to provide an efficient, high-performance solu-

tion. The designer should determine the exact operations that the algorithm requires

and their frequency of occurrence. He should examine in particular the iterative F,-,,j
% %% %-'-"

structure of the algorithm. Instructions which occur outside the iterative structure

are executed only once. Conversely, instructions located within nested subroutines

will be executed repetitively.

The frequency of occurrence of a particular operation will determine the approach to , -.
%

providing the operation in the ASP. The more frequent an operation is used, the

more hardware support will be provided. For example, if the "floating point divide" -.

operation is required by the algorithm, but it is only executed a few times, the opera-

tion might best be provided by a microcode subroutine. If the divide is required

often, a lookup table and convergence algorithm might be provided. If the divide

operation is fundamental to the algorithm, a full hardware divider might be S

.. _%.4_ .i-.

employed.

Additionally, examination of the algorithm will provide basic information to the

designer. The accuracy requirements and the format of the input data will deterrmint-
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0..-.. _. __:::

.. 5,,.' q,



the required width of the data word. The subroutine depth of the algorithm will - "

approximate the depth of subroutine stack which will be required by the control sec-

tion of the hardware. The overall amount of code involved in the algorithm will indi-

cate the approximate length of microcode, so that the width of the micro-program

counter can ge determined. The I/O requirements of the algorithm may indicate that

addition of a second I/O path will increase the ASP performance. In this manner, .. ,.-. -.

the nature of the algorithm is mapped into the hardware requirements for high- %

performance solution of the problem. •
% % N

4) From the requirements identified through algorithm analysis, the ASP hardware. -

can be fully specified. This step primarily involved selection of the proper macrocells

from the ASP library. Unique hardware requirements may require the modification

of existing macrocells or the limited design of new macrocells. A VHDL architectural

description should be developed for any new or modified macrocell (the macrocell -

library should include a VHDL description of each macrocell). The ASP hardware . . ..

can then be specified using a VHDL architectural description of the interface between %

the required macrocells. . .......

5) Once the required hardware has been specified, the control signals necessary to .-.

drive that hardware can be determined. The combination of these required control

signals will form the microword for this particular ASP application. In defining the

microword, care should be used in the orderirg of the fields within the microword.

Since the microcode assembler requires that the ordering of the mnemonics used in

the microcode be the same as the ordering in the microword, the microcode which

will be developed can be made more readable by careful ordering of the microword -% .. %

111 %
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fields. Vky'-.

Additionally during this step, the mnemonics for each microword field are defined. A

The purpose of this step is to create a translation table which will be used by the

microcode assembler to translate microcode mnemonics into binary representations of

each microword field. Again, careful choice of the mnemonics can greatly enhance the

readability of the microcode. A default value for each field within the microword is

also defined, to tell the assembler what value to assign to a field if no mnemonic for

this field as present in the microcode. For a description of the exact format required

for the translation table, see [Hau87].

6) The VHDL behavioral description can now be translated into microcode. To S

minimize the risk of translation error, the hierarchical structure of the microcode .

should closely follow the structure of the VHDL algorithm, including most subroutine % '

calls and iterative constructs. Standard subroutines should be used to provide opera-

tions not executable in a single instruction, such as divide or trigonometric opera-

tions. Due to the time overhead required for subroutines, however, care should be e. .-
exercised not to overuse subroutines unnecessarily. The manual method now,

employed for microcode translation is a tedious, error-laden process. Although no

software tools are currently available to perform this step, translation from V]hDL

into microcode is an excellent application for an automated tool to significantly

enhance the rapid prototyping methodology.

7) The completed microcode can now be assembled using the microcode amsenibler . .-.

developed by Lt Ilauser [lau87. The assembler requires two input files: the transla-

tion table which defines the meaning of the innernoni's used and the mi('r<. )l aitelf
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The microcode assembler provides error-checking of the microcode during assembly

It produces several useful output files. The first is the assembler reference file, which -

V
provides a listing of the microcode and the value of the actual microword fields which

were assembled from the microcode. This file is useful for locating any format errors

in the microcode and to check that the translation table is properly defined. The

second output file produced by the assembler is the "Addresses" file, which contains a

binary representation of the microcode in a format compatible for input into the

XROM Optimizer tool. A third output from the assembler is a VHDL description of . W V

the XROM which will be developed from the assembler microcode. This VHDL

description will be used during the next phase of the rapid prototyping methodology. % ,,

8) The required hardware to provide the ASP solution to the given application is .. ,..,..

now fully defined. The VHDL description of the XIROM developed during the previ-

ous step can be combined with the macrocell descriptions specified earlier, to form a

complete VHDL architectural description of the hardware design. This proposed

hardware solution can now be simulated using the same input vectors previously used =

to verify the original behavioral description of the algorithm. This simulation will

verify that the proposed design will properly meet the application's requirements.

This step will reveal any errors made in translating the algorithm into microcode.

An iterative process of correcting the microcode, assembling it, and then simulating it

in VtlDL can be employed until the design simulates properly.

%

9) The verified microcode is next input into the XROM Optimizer. The XROM

Optimizer will produce a implementation of the ASP microcode in an XRONI micro-

code store. The Optimizer provid -s a complete description of the XROM, in the r-. •-o%4
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Magic format. The Magic files provide a hierarchical description of the XROM, with ,.%- . -'

the main storage arrays containing a very large number of cell instantiations. Since

Magic has difficulty with the large number of cell instantiations, Magic's performance % % %%%

can be enhanced by "flattening" the Magic description of these arrays to eliminate the -e r

cell instantiations. Also, due to the timestamp which Magic employs for each of its

files, the entire XROM may require DRC (design-rule checking). %

10) The entire design can next be implemented in Magic. Implementation Nbill pri-

marily involve the placement and routing of the macrocells which were previously
°,% % '

specified. New CAD tools being developed at the University of California at Berkeley

may soon automate this placement and routing task.

11) The implemented design is then verified using the switch-level verification pro-

cess described in Chapter 5. This verification process is an iterative process of . - -

extracting the correcting the implementation, circuit extraction, and then simulating

the extracted transistor description using a switch-level simulator such as Esim. ."' '

12) The final step in the rapid prototyping methodology is to extract and simulate a

VHDL description of the implementation. This is made possible by the Stove tool. "

which extracts higher-abstraction circuit components from a transistor description of

the circuit, and then outputs a VIIDL description of the extracted circuit. This

VHDL description of the actual circuit implementation can be simulated. usinIg the ''

original vectors developed to simulate the original algorithm. ,

This effectively closes the design loop, since the same simulation vectcrs which were

used to verify the original specification of the problem were also used to verify thAt tile

actual implementation is functionally correct. The implementation is thus I,,gically
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equivalent to the specification. Closing the design loop yields a high level of confidence in " " "

the reliability of the completed design. VHDL was highly useful throughout the "life-
0 o

cycle" of the design process. It was used to define the original task, verify that the cir- %.% %

cult specification of the solution was correct, and then to verify that the actual imple-

mentation was correct.

4- % N

8.3 ASP Architectures Three ASP architectures have been specified using the general-

purpose architecture developed for the rapid prototyping methodology. Two of these

architectures have been fully implemented and are ready for fabrication, while the third
.€' ,' . o. . ,,

was specified through microcode implementation.

0.3.1 Prototype Integer Processor. As described in Chapter 5, a prototype -

integer processor was developed as part of this effort. The prototype processor was

developed concurrently with the macrocells which form the ASP architecture library.

Design and implementation of this processor required approximately 3 months. A large

portion of this design time was due to the fact that the majority of the required macro-
or,4. .

cells had not been developed prior to the beginning of implementation and had to be cus-
W. %r I.,

tom designed.

At the time of implementation, VHDL descriptions of the ASP macrocells had no:

been written. Additionally, the VHDL environment at AFIT is still under development.

As a result, the full rapid prototvping methodology was not applied to the prototype

ASP architecture and VIII)L was not integrated into the design process. Nevertheless.

the prototype processor was fully verified at the switch level and shown to be function-

ally correct. The microcode incorporated into the prototype proce,,sor was designed to

directly test the hardware and did not require translation from a 1101..

7 %-%
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6.3.2 PFA Controller. Concurrent with the design of the prototype processor,

Lt. Hauser developed the Prime Factor Algorithm (PFA) controller for the Winograd

Fourier Transform (WFT) project at AFIT Hau87]. The PFA controller architecture is
* .- .%%

responsible for controlling the three WFT processors and their associated memories, as . - - "

well as interfacing to the host processor. The system specifications require that the chip
~. * .. ,° °° ..

operate at 20 MHz. The PFA controller is primarily responsible for monitoring status of

the WFT system hardware and responding to any discrepancies in their operation. It ,'.,."; ."

requires integer operations on 16-bit numbers. -.

The PFA was designed using the rapid prototyping methodology. Like the proto- " %.%

type processor, the PFA controller effort was unable to employ VHDL in the design pro-

cess. The PFA controller design benefited from the availability of the ASP macrocell

library. As a result, even though the complexity of the PFA controller is similar to that

of the prototype ASP, the design time for the PFA controller was reduced to two

months. The PFA controller implementation was also verified at the switch level using

Esim. The verification process for this chip was easier, since most of the macrocells used -.

had already been verified in the prototype ASP. %..

The available ASP library cells were adequate for the majority of the PFA

controller's processing needs. The major exception was the PFA controller's register ".

array. The ASP library provides a general-purpose register array which communicates

with a host processor via the I/O registers. The PFA controller, however, operates under

direct control from the host processor and the host processor requires the capability of

directly reading or writing to several of the PFA controller registers. Lt. Hauser there- p-,... --

fore was required to design a custom interface to the register set, which allowed direct r,.s. "

host control over the registers. This custom design added two weeks to the design and

J ,. .



implementation of the PFA controller.

The microcode developed for the PFA controller was implemented directly from

flowcharts of the controller algorithm, without the use of an intermediate HOL descrip-

tion. Switch-level simulation of the chip revealed several microcoding errors, which

would have been discovered earlier had VHDL been available to the design effort. The

microword format of the PFA controller was improved over the prototype ASP micro-

word, resulting in more readable microcode. Additionally, Lt. Hauser was able to use , ?

more meaningful mnemonics which combined several microword fields into one, resulting

in even more readability. Much understanding of the microcode definition process was

gained from the development of the PFA controller microcode. r• 1
5.3.3 Kalman Filter Processor. The Kalman Filter processor is one of several .

processors will be needed for the Space Surveillance effort at AFIT. As part of his thesis

research, Captain Shand has modelled the Space Surveillance system using Network 2.5,

ADAS, and VHDL. The rapid prototyping methodology was applied to the problem of .-

designing the processor which performs Kalman filtering (an algorithm to perform target

tracking). Initially, Captain Shand modelled the Kalman Filter processor using ADAS,

and then developed a VHDL behavioral description of the Kalman algorithm. Analysis -:'

of the VHDL description revealed that the algorithm required 32-bit floating point opera-

tions. Floating point addition and multiplication were frequent, but floating point divi-

' -. . . .-

sion was also used widely within the inner loop of the algorithm. Further analysis *.**.*-

showed, however, that the divisor in the inner loop divisions was always the same. ,

Therefore, the divisor and its inverse (1/z) could be calculated outside the iterative struc- ...-

ture. The algorithm could then merely multiply by the inverse during inner loop opera- %

tions. The inversion operation was seldom needed and could be performed using a

117 7 :.*1
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convergence algorithm without seed (i.e. no hardware support). Kalman filtering also %

requires the square root operation to be performed once during the algorithm. It was

also be provided by a software convergence algorithm.

Once the algorithm was analyzed, the hardware could be specified. The standard

ASP library macrocells (floating point adder and multiplier) were sufficient to provide all

required arithmetic support. From the hardware specification, the microword and micro-

code format were defined. Finally, the VHDL behavioral description of the Kalman

filtering algorithm was translated into microcode. , ,

The application of the rapid prototyping methodology to the Kalman Filter proces- % ,

sor was performed as a demonstration during the AFIT Association of Graduates Sympo-

sium in October 1987. Prior to the symposium, Captain Shand had completed the

VHDL behavioral description of the Kalman algorithm. In a three day period during the

symposium, the rapid prototyping methodology was applied to this application to obtain

a hardware specification of the Kalman Filter processor and the required microcode to

allow the processor to perform Kalman filtering. The ability to rapidly design a custom

application specific processor from a VHDL description of the required algorithm was well

demonstrated.

6.4 Conclusion

This chapter has described the rapid prototyping methodology developed to apply

the general-purpose ASP architecture to a specific application. The methodology relies

heavily upon the use of VHlDL as a modelling and simulation tool. Extension of the

AFIT VIIDL environment will greatly facilitate the development of application specific

processors. The rapid prototyping methodology has been successfully appnied to three
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different custom processors, two of which have been fully implemented for fabrication.

The first prototype processor required approximately three months, but this time was _. __

reduced to two months for design of the PFA controller. The Kalman processor demons-

tration required only three days to define the processor architecture. As experience was "d,%_I?

gained in developing custom ASP architectures, the design time for these processors con-

tinued to decrease. These successful applications of the methodology demonstrate that

the capability now exists to design most custom processor architectures in less than three %

months. 0

.. % %. .

% % % ,%
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CHAPTER 7 -'

Conclusions/Recommendations ,_V,

7.1 Conclusions

Numerous research programs within the Department of Defense require application

specific processors to perform computation and provide control. High-performance VLSI ,- -
%

solutions are seldom being applied to these applications, however, due to the prohibitive

time required for the design and verification of custom VLSI architectures. This effort N,

presents a solution to this problem.

This thesis has described the hardware and software methods required for the rapid

prototyping of application specific processors (ASPs). The methodology is based upon .

0
the design of a general-purpose processor architecture that can be modified via microcode

to solve specific applications. The ASP architecture can be easily adapted to meet various I

types of applications. The control section can be used in most applications without e .A

modification. The XROM is automatically laid out. Each of the macrocells in the data-

path is designed using a bit-splice approach, so that the width of the datapath is easily . '. ., .-

modified. The busses within the datapath are laid out in a regular structure, so that % %

macrocells fit together easily. This allows the easy addition or removal of macrocells to fit

any application.

A prototype processor, which contains the majority of the ASP hardware with the

exception of the floating point macrocells, has been impler.ented and fabricated. An

%

IEEE standard floating point multiplier was implemented, fabricated, and tested. The

XROM Optimizer CAD tool was modified and extended to layout XROMs in the Magic

120 
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format. The Stove program was developed to facilitate the verification process and to J-

close the design loop, allowing VHDL simulation of the implemented circuit. A metho-

dology was described for translating a high-order language description of the application

algorithm into microcode, which can be assembled by the microcode assembler, optim-

ized, and finally implemented in the XROM.

The methodology for rapid prototyping of application specific processors has been

successfully applied to three different applications. These test cases have demonstrated

that the rapid prototyping methodology can produce a custom processor implementation

in less than three months. The design time for future ASPs using this methodology has

thus been dramatically reduced. Using the rapid prototyping methodology, design

becomes more a problem of specifying an algorithm than a problem of designing --

hardware. Transforming ideas into implementations has become a much simpler process..-..-:.

Rapid prototyping of ASPs can reap rewards within education and throughout the 0

%
DoD. Ideas, which have in the past required several years to realize, can now be imple-

mented and tested within a single thesis cycle. Rapid prototyping can have a large

impact within the DoD toward the insertion of VLSI/VHSIC hardware into new projects.

The feasibility of an ASP architecture can be demonstrated quickly, so that project

managers will be more inclined toward a VLSI/VHSIC approach, rather than accepting

the degraded performance of the off-the-shelf approach. .

7.2 Recommendations -

7.2.1 ASP Library. A major portion of this effort has been the establishment

of an ASP cell library. For rapid prototyping to be possible in the future, this cell

library must be maintained. Numerous difficulties were encountered during this effort in
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attempting to use existing AFIT library cells, due to the lack of maintenance and docu-

mentation. Procedures must be established for modifying or adding to the ASP library.
0

Most importantly, an individual should be designated to the library manager, responsible
• ,., _% _% %

for its proper maintenance.

7.2.2 Microcode Development Tools. The scope of this thesis did not include

the production of any software tools for microcode development. Development of these :-:-:..

tools would significantly enhance the rapid prototyping methodology. The microcode

assembler developed by Lt. Hauser [Hau87] is an very useful tool, but can be further

enhanced to increase flexibility, "user friendliness", and error detection. An automated

tool for translating a HOL description of the algorithm directly into a format compatible 0

with the assembler would dramatically reduce the time required for microcode develop- ,- .

ment. %. %

One lesson learned during the microcode development for the prototype ASP was .

that the ordering of fields within the microword and the mnemonics used within each .

field had a large impact on the readability of the microcode. In order to make the micro- -

code easy to understand and debug, the mapping of the ASP hardware onto the micro-
S,,w'. %,.

code assembler needs further study. By standardizing the ordering of the microcode

fields and using meaningful mnemonics, the microcode would be much more understand-

able to someone not intimately familiar with the particular architecture.

7.2.3 VHDL Interface to ASPs. There is considerable interest in interfacing coo...,

VHDL with other VLSI software tools and methodologies. In Chapter 6, the usefulness of \* -

VHDL in the rapid prototyping methodology was described. VHDL is useful throughout ...

the design cycle, from initial simulation of the application's behavioral description
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through simulation of the implemented circuit. The development of automated tools to -- ,.,.-.

further interface V-EDL to the design process would be an extremely fruitful area of %---,--'"

research. An automated tool could take the VHDL behavioral description and generate ,. : _ .

the required ASP microcode. This interface could be take even further by developing 3a % :

silicon compiler which converts VHDL descriptions into completed Magic layouts. This

compiler would be responsible for determining which macrocells from the ASP cell library '''.:' :

-'A.
% 
A%.%.*

are required, automatically placing these cells, and finally performing the necessary signal" :''.''"

routing between macrocel]s. CAD tools already developed at the University of California ,.%',,.

at Berkeley can provide the placement and routing aspects of the compiler The VLSI

designer could use VHDL to describe both the hardware and software of the applicationf

and then simulate the performance of the described design. Following successful VHDL.-"-,--'_' ,.,,

simulation, the architecture could then be automatically generated from the VrDL

description. The ability to generate layout from a high-level description of the circuit

would allow the computer architect with little VLSI design experience to quickly take an

idea from initial concept through implementation in silicon This ability to design a cir-

cuit at the highest possible level of abstraction allows creative individuals to stay creative

rather than becoming mired in implementation details.pet.o.h cmier.h VS

7.2.4 Test Vector Generation. " """'

The use of fault simulation during the development of test vectors needs to be ".-'".'-

further emphasized at AFIT. Often, the designer merely chooses several general cases to.,.,.:%%.

test the hardware, perhaps attempting to set up some particular situation within the cir-

cult. Although the circuit may be fully simulated using these vectors, the functional '

correctness of the design has not actually been verified. %g r from the.F.
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The fault simulator can determine the actual fault coverage of proposed test set. a.s

well as identify portions of the circuit which are not being thoroughly simulated, 'sing

an iterative process of improving the test set and then determining the resultant fault ,", ,

coverage, the designer can develop test vectors which better evaluate the functionality, of ,,. h

the circuit. If total (100%) fault coverage is required, the circuit may require

modification to add further testability. "'

••. -. -,. -.

7.2.5 Computer Resources. For rapid prototyping to be effective, computer - -- ' "

resources must be readily available. Due to their efficiency as VLSI workstations, the ? 0
....'4. -,.,•%,% %

Sun workstations should continue to be dedicated to VLSI design. One or more Suns. .,.

with memory and disk upgrades, should be purchased for dedicated VLSI use. It is

important that VLSI designers do not have to compete with other applications (such as

Interleaf or ADAS) for usage of the dedicated VLSI SUN workstations. Perhaps more

importantly, computer resources must be readily available for the "number crunching" .,r_,.1 "

associated with circuit extraction and simulation. Severe delays were experienced in the
.. %

ASP development due to the loading on computer resources. To rapidly implement and
%

verify an ASP architecture, the usage of VLSI-dedicated computer resources (i.E. the
- .. . *. 4

ELXSI) needs to be limited to VLSI applications so that computation-intensive opera- . , %

tions can be completed as rapidly as possible.

7.2.0 Prototyping Experts. One consideration involved with the rapid proto-
". 4. ,.o.:'.

typing methodology is the expertise required for its efficient use. A designer who is well % .

familiar with the ASP macrocell library would be able to generate a custom ASP design

more rapidly 'han one with little familiarity. This implies that a full-time designer will , !

be more effective than, perhaps, a thesis student who will use the methodology only once.
V- •~
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A reasonable conclusion to draw is that a central location, responsible for prototypin

ASP for DoD agencies, would be more effective using this methodology than a de-

centralized approach. Gathering VLSI design expertise to form a VTSI VHSIC "center of'

excellence" would provide the continuity and synergy to create an optimal environment

for the rapid prototyping of application specific processors.0
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APPENDIX A

Floating Point Multiplier

A.1 Introduction -

This appendix describes the design, implementation, and verification of an IEEE %

Standard floating point multiplier. The design approach for the multiplier was to

attempt to maximize the speed of the multiply, if necessary at the sacrifice of area,

power, and ease of design. The design of the floating point multiplier was initiated as a

class project for EE695, VLSI Design. This initial design laid the foundation for the

design and implementation completed by this author and Captain Keith Jones. The

design of the floating point multiplier logically breaks up into the hardware required for

sign, exponent, mantissa, and special case computation.

A.2 IEEE Floating Point Standard .0 N_

The floating point multiplier was designed to conform to the IEEE Standard for S

Binary Floating-Point Arithmetic [IEE851. Figure 46 shows the format of a single-

precision floating point number. The 8-bit exponent can store values from -126 to -127.

The exponent is biased by adding +127 to the actual exponent value, causing the stored

value to always be positive. An exponent of zero is used to indicate a denormalized - .'.v"

number when mantissa is not zero or zero if the mantissa equals zero. An exponent , -A

value of 255 (all l's) is used to indicate not-a-number (NaN) or infinity, depending upon

the mantissa. The 23-bit mantissa is in unsigned integer format, where the stored
*, V". *,P ,. -

mantissa bits makes up the fractional portion of the actual mantissa, in the format: lx.
• N

% '6'.i %'j
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Thus, the floating point multiply requires multiplication of 24-bit mantissas, both of

which have a '1' in the most significant bit. -"

The IEEE Standard requires rounding of the resultant product. Since the multipli-

cation produces a 48-bit product of the mantissas, only the most significant 24 bits are"N

saved. These bits are rounded to the nearest value, unless the bits to be rounded are

exactly between two rounding values. In this case, the product is rounded so that the

LSB of the remaining bits is zero. The Standard also requires that the hardware trap on

certain exception conditions. The multiplier signals underflow, overflow, NaN, and . .-

infinity. For a further description of the requirements for rounding and traps. see --
I,, '.. %.%=%

@-. 
"  

"°- %

Sign Exponent Mantissa

I i823.I ~... '. ?.._

8S
msb Isb msb lsb %

Sign: 0- Positive; 1- Negative

Exponent: Range -126 to +127; biased +127
Stored value 0 to +255

Exponent zero indicates NaN or zero . T

Exponent +255 indicates NaN or infinity ON"N,.N ,%

Mantissa: Unsigned integer; ''S."..-

Stored as fractional portion of mantissa
with understood 1 in front (1.x)

Figure 46. IEEE Format for Floating Point Numbers
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A.3 Sign and Exponent Computation S

Computation of the sign bit for floating point multiplication is trivial. Since the
:, ... _..

sign bit is only negative if the signs of the two inputs are different, the resultant sign bit

is simply the exclusive-or of the two input signs. The computation of the exponent (Fig- Z7

ure 47) is somewhat more involved. When two floating point numbers are multiplied.

their exponents must be added. An 8-hit adder is thus required to add the tc,..

exponents. However, each of the two input exponents is biased by 127, so the desired

exponent would be:

exponentout = exponentA + exponeritB- 127 . ... ,

This equation can be easily implemented by adding the two exponents, with a carry-in of

1. The result is then input into a simple subtractor which subtracts 128 from the result. €

Since the exponent computation is not on the critical path of the multiplier, a sim-

ple carry-propagate adder is used to perform the addition. After the first four bits, the .4 * ,,

carry signal must be buffered since it has passed through a series of t-gates. The 128- •

subtractor is implemented using an inverter and a half-subtractor. For the purpose of .

this discussion, the MSB output of the adder will be called a7 and the carry out of the -. ,

add will be called aS. To subtract 128 from the output of the adder. 1 must be sub-.... .

tracted from a7. The output, e7, is thus the inversion of a7. The next bit, eS, is equal

to a8 if there was no borrow from the previous bit, i.e. if a7 was 1. If there was a bor- r

row, eS is derived from the inversion of aS. The equation for e8 is thus:

e8 = a7 XNOR aS

The borrow out of the subtractor, eg, is high only if a7 and aS are low:

128 ,
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Exponent A Exponent B

*p° , p * d ,. ."_

%

8-Bit Carry Propagate Adder Cvin= I
, % . - o- '

Bit 7 Bits 6-0

Subtract.. :-..-.
*.- .. *

.1*.

-128 %. -'-
%

Bits 9- t

S0-bit Incrementer'
r0

' • --

*% *'*.= _

7 f f5co " - -" .
Output Selector Exception

Denorm Conditions

Exponent Out

Figure 47. Exponent Section of the Floating Point Multiplier
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eg = a7_bar AND a-.bar

Although eS and eg are not actually output from the exponent logic, they are used to

form the underflow and overflow signals. Underflow occurs when the addition of the two

exponents produces a negative number, since exponents are always supposed to be biased IN

positive. If the subtraction of 128 causes a borrow into E9, underflow has occurred.

Similarly, overflow occurs when the addition results in a carry-out into aS which is not

eliminated by the subtract, i.e. a7 and a8 were both '1'. The equations for

underflow/overflow are thus:

underflow = e9

overflow = egbar AND e8 

The 10-bit exponent result must next be incremented again to form the exponent in

the case that the mantissa section signals that renormalization is required. The 10-bt

incrementer is formed from an inverter and 9 half- adders. Renormalization on the

mantissa would require at most a single shift to the right, in which case the incremented

exponent would then provide the proper output. When the renormalization signal

arrives, a multiplexer selects which of the 10-bit exponents is correct. The correct

exponent will then determine which underflow/overflow condition is correct. '

Assuming no exceptions are raised, the selected exponent is gated to the output of

the multiplier. - , .,

A.4 Mantissa Computation %",._

The mantissa computation is the most complex and time-consuming portion of the

multiply. The mantissa multiply is a 2-1 X 21 two's complement integer multip., so it

can serve the dual role as an integer multiplier. The 2.1 bits of the twvo inputs are formed - -
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by the 23 mantissa bits and the "understood" leading-edge '1'. Much of the theory for

the integer multiply was obtained from a thesis written by Peter Reusens at Cornell

[Reu83].

A 24 X 24 multiplier, in its simplest form, is laid out as a 24 X 24 array of adders. ,t/

The critical path timing delay through this 24 X 24 adder array is the 24 vertical addi- --.-
% %, % % J%

tions, followed by the 24-bit carry propagation along the bottom of the array (Figure

48). Although little can be done about the 24-bit carry along the bottom, techniques

have been developed to reduce the effective height of the adder array. The most common '

technique is the application of Booch's modified algorithm. By encoding three bits of the r

multiplier at a time, a 24-bit multiplier must be multiplied by the multiplicand only 12

times. The effect is to reduce the height of the adder array to 12. For a further discus-

sion of Booth's encoding, see [Reu831.

The vertical height of the tree was further reduced by structuring the required addi- 0

tions using a Wallace tree structure [Wa164]. The basis for the Wallace tree is that all of

the partial product bits are presented to the adder array at the same time. Figure 49

shows how the Wallace tree structure is employed. The partial products for a 6 X 6 mul-

tiply are shown. For the column indicated, aO5 and a14 would normally be added F, P

together first, then their sum would be added to a23 (with a carry from previous ''."

column), then with a32, then a-11, and finally this sum would be added to a-50. Using the

Wallace tree approach, a05, all, and a23 are added together. At the same time. bit- ..-...-. ','

a32, a4l, and a50 are also being added. The results of these "level 1" adds are then :i'd

together by a "level 2" adder, along with a carry from previous column The reult is th,-

the vertical delay through the 6-bit multiplier was reduced from five to three. For the' 2, ..21 %

X 24 multiplier, Wallace trees further reduced the height of the adder atrr:ty fr,,n 12 to, 6
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Mantissa A Mantissa B

aO,23 aO,O

al,23 C a1,O 0.-

R

24 X24T
I-. 

N.

A S
Adder Array LA

A
T *

a22 ,23 a22,0

a23,23 a23,0

j 24-Bit Carry Select Adder J
Round-

Carry Select Incrementer A

Renor
Output Selector

Exception
Conditionls

Mantissa Out

Figure 48. Mantissa Section of the Floating Point Mltiplier
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a05 a04 a03 a02 aOl aOO

a15 a14 a13 a12 all alO

a25 a24 a23 a22 a21 a20 '.C'

a35 a34 a33 a32 a31 a30 ,

a45 a44 a43 a42 a41 a40

a55 a54 a53 a52 a51 a50 '

•.-.. ..- ,

Wallace Approach:

First Level Add: Sum1 =a05 + a14 + a23 .
Sum2 =a32 + a41 + a50

Second Level Add: Sum3 = Sumi + Sum2 + carry in

%

Third Level Add: Sum4 = Sum3 + carryin + carryin % ..

Figure 49. The Wallace Tree Approach

-- . . . *

The 24 X 24 multiplier was designed using a combination of the Booth's algorithm . .. .

and the Wallace tree structure. Figure 50 shows the design of the basic adder cell for the " "

adder array. Note that the outputs of the adder have been buffered, due to long routing " -- ...
,, % %N ',_

lines within the array. Special Booth rnultiplexers provided the partial product bits to

the "level 1" adders within the array.

In addition to the basic adder cell, two 2.1-bit carry-select adders were employed

within the adder nrray. These carry-select adders perform the vertical c:Irry-propagation

down through the adder tree an(I the horizontal carry along the bottom of the array.

1.33
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was necessary. The multiplier must, therefore, first determine if renormalization is neces-

sary (a '1' in MSB of product), which in turn determines which bits will actually be ,

rounded. Rounding, if required, can then be accomplished by incrementing the proper ,

24 bits. Since rounding is on the critical path of the multiply, the incrementer was built " 0

as a carry-select incrementer, similar to the carry-select adder. The 23 LSBs of the incre-

ment form the product mantissa, unless exceptions were raised elsewhere in the multi- -'-. ,

plier.

A.5 Special Condition Hardware -. -

The floating point multiplier must detect if certain exception conditions occur. The

exponent section is responsible for detecting underflow/overflow. If underflow is

detected, it is flagged and the product is set to zero. If overflow occurs, the product is

set to infinity. The multiplier must also detect special conditions on the input numbers.

Static NAND/NOR gates are used to detect all zeros or ones in the mantissas or

exponents. If either input is NaN, the result will be NaN. If either is infinity, the result

is infinity. Likewise, a zero input produces a zero result. The multiplier does not support ..r

multiplication of denormalized numbers, but instead raises an exception indicating that -

one of the inputs was a denormalized number. Implementation of these special cases is-

accomplished using multiplexers at the outputs of the exponent and mantissa sections.

which set the outputs to the proper value if a special condition is detected.

A.0 Implementation, Verification, and Fabrication

The floating point multiplier was implemented using the Magic layout tool. Layout

of the exponent section was relatively easy. The subcells required for the mantissa see-

tion were easily developed, but routing of the signals through the \Vallacc tree required a S
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significant investment in time and area. Although the layout of the tree was designed to

minimize the required routing, the nature of the tree required some long routing lines,
*

which impacts the performance of the multiplier.

In order to test the functionality and performance of the multiplier, a test chip con-

taining only the multiplier was implemented. A block diagram of this chip is shown is

Figure 51. Three registers are used to interface the multiplier to the tester. Two of ."":

these registers act as input registers, so that the tester can load the values to be multi- ... '

plied. This is accomplished bu placing the data on the bi-directional data pads and

strobing the LoadA or LoadB input. The result can be read from the third register, by

raising the DriveC input, driving the contents of the result register to the data pads. - ..----

Since the registers are designed as static MSFFs, the loading and reading of registers can

be performed at the tester's convenience. The actual multiplication is initiated by the

Mult signal, which drives the values contained in the input registers to the multiplier. _

The Mult signal also allows the output register to load to results of the multiply. The

output register is latched on the falling edge of Mult. The actual multiply time can be

determined by varying the width of the Mult strobe. The multiply time is the minimum

time that the Mult strobe must be maintained high in order to load the correct value

into the result register.

After implementation, the multiplier chip design was thoroughly verified using all

available tools. The chip was switch-level simulated using Esirn and verified to be func-

tionally correct from "pad to pad". The chip was then submitted to NIOSIS for fabrica-

tion using a 2 micron P-well CMOS process.

*' % .% ***°,
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Figure 51. Floorplan or Floating Point Multiplier Chip
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A.7 Conclusion

The achieved performance of the multiplier was obtained at the expense of a large

investment in time and area. It also resulted in a design with a fairly irregular structure

that does not conform to the 81-pitch datapath of the other ASP hardware. Despite the

reduction in logical height of the adder array due to the Wallace tree approach, the time V

savings in required number of adds was somewhat offset by the longer length of the rout-

ing lines.

If maximum speed is the driving design parameter, then this approach using the

Wallace tree is proper. For applications, however, which do not require optimal speed.

r% %
the standard Booth encoding approach can result in a significant savings in layout time .

@

and complexity. Using the Booth's modified algorithm, the multiplier array would be

much more regular and could be adapted to match the pitch of the ASP datapath.

."? k % .. -
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APPENDIX B %

0

Circuit Extraction to VHDL .

b " . " ,_.I

B.1 Introduction
7'.0

The rapid prototyping methodology depends heavily upon VHDL. The initial

specification of the problem algorithm is accomplished using VHDL. Once the hardware

has been specified and the microcode developed, VHDL is again used to demonstrate that

the design is correct. Once the designer is convinced that his design will accomplish its

purpose, the design must be laid out at the transistor level, hopefully with the aid of

some automated placement and routing tool. Once the layout is complete, the designer

needs to verify that the transistor-level design will perform the same function as the

higher abstraction design. This simulation is usually done with a transistor level simula-

tor, such as Esim.

Simulation at this level, however, requires quite a large investment of both the

%

designer's time and CPU time. It would be much better to run the same test vectors "

developed for the original VHDL simulation on the completed design. This would

effectively close the design loop and result in higher confidence in the completed design.

Thus, the need exists for a tool which can extract circuits of a higher level of abstraction-

from the transistor level and then translate this description into VI1I)l+ for simulation. , -

This appendix describes the tool Stove (.SIM to VIDL extractor), which meets the
- % .• -'+

need for circuit extraction to VIIDL. This tool inputs a list of transistors ill tile SI.I ...-

format, extracts the structures which it recognizes, and outputs the higher-abstraction A

zircuit in VHtDL format. The program also serves as a front-end for producing circuit

139 So . . ,
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descriptions in the CHIEFS format to provide fault-tolerance testing of the d,-, :,n

B.2 Software Design •

r .F. - .%

B.2.1 Design Strategy. The design strategy of Stove was to perform circu. ' "

extraction of the transistor file in stages, each stage being a higher level of abstraction.

At each stage or level of abstraction, the components already extracted can be combined

to form components of the next level.

At the lowest level of abstraction, all of the components are transistors. At the next ,. r

stage, which is called the GATE level, the program extracts inverters, transmission gates

(t-gates), and clocked inverters. As the program begins to extract to the third stage, the

LOGIC level, it builds its logic components from inverters, t-gates, clocked inverters, and

any transistors which were not extracted at the gate level. After each stage, an) com-

ponent which is not extracted is redefined as a component of the next level. -

B.2.2 Input Format. The input into the Stove program is a list of transistors ,-.

in the .SIM format. Each line in the input file contains data on one structure, delimited .'. v-,.
by spaces. Note that commas cannot be used as delimiters. The first element in the

.SIM line is an identifier of what type of data is contained in the line. Stove accepts the

following characters as the first element:

p - p-channel transistor ,.' .

e - n-channel transistor ,

d - depletion mode transistor

f - transistor identified as "funny" by Mextra

N- nodes

i -inputs

140
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0 -outputs %

C - capacitance values of the nodes

I-comments , -

If Stove does not find one of these characters at the beginning of the input line, it will N

print an error message. After identifying the first character, Stove will process the input

line based on the type of data it contains. Lines which contain capacitance data and 4.

comments are ignored. 0

If the input line is a transistor, it must contain at least four and no more than eight

elements. The data on the input line must have the following format:

kind gatenode sourcenode drainnode length width Xpos Ypos
.* .% % % ..*-.

The first four elements (kind,gate,source,drain) are required, while the last four are

optional. If they are not present, Stove will assume a default length and width of 2 and

will set the X and Y position to 0. The "kind" field must be a single character, as-'
S- .. .. .,

specified above. The three node fields must be a character string of less than 100 charac- .-

ters, the first 32 of which must be unique. The last four fields can be either integer or

floating point values, but will be rounded to integer values by Stove.

B.2.3 Output Format. Stove provides four different outputs. The first is the

status information which is sent to the standard output device. As Stove inputs the

data, it will report any format errors in the data. As it processes the input data, Stove

.7% ;7 : -
prints its extraction results. Stove initially prints the amount of memory required to

represent the input data, the number of nodes, and the number of each type of transistor

found in the input file. As the program finished extracting a particul:inr pattern, it will
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report the number of those patterns found. When Stove completes extraction of a level

of abstraction, it reports data on the number of transistors it was unable to extract at "

that level. %
% .1.4'%: .

The second output from Stove is a list of the transistors it was unable to extract. % %%

When the program has extracted to its highest level of abstraction, any transistors not

extracted will be output into the file <stove.out>. This transistor data can be very .. .

useful in identifying design errors, since often Stove may have been unable to extract the -e

transistor because of an error during layout. Stove has been successful at discovering ,.,

numerous design errors in AFIT projects. Stove outputs this transistor data in the SIM-

format with 8 fields. %

. . 4."° %'

Stove's third output is the file <stove.logic>. This file contains the structures %

which Stove was able to extract at its highest level of abstraction. This file can be used

as the front end of a tool to extract a CHIEFS description (or some other similar descrip- -

tion) of the circuit. The format of the data output will depend upon the level of abstrac-

tion which Stove currently supports. The current version of Stove extracts to the logic

level. The output format at this level consists of seven fields: 0

kind INI IN2 OUT GATE Xpos Ypos

The "kind" field is a single character which identifies the type of component. The follow-

ing codes are currently being used:

TRANS level
p- p-channel transistor
e - n-channel transistor
d - depletion mode transistor .

f - funny transistor

.*.:., -. -.
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GATE level
v - inverters
t - t-gates
k - clocked inverters S

LOGIC level
a - AND gates
*o- OR gates
* - NAND gates (2-input)
r - NOR gates (2-input)
x- XOR gates

'~ --. '*

y - bad XOR gates
q - MUXs
I- resettable NAND gates
b - bad buffers (an error condition) ,,

g- 3-input NAND gates
h - 3-input NOR gates %%%.-

The next four fields contain the names of nodes connected to structure. INi and
-.-" ..-.

IN2 are the input nodes, OUT is the output node, and GATE is the node which activates
"--" ' '' -

the structure (in case of MUX, the select node). If the nodes are not used, they are set to

Vdd. For example, an AND gate does not have a GATE node, so it is set to Vdd. The -. r e 7

final two fields contain the approximate X and Y position of the structure. These values
% 4e "

reflect the location of one of the transistors which make of the structure.

The final output of the Stove program is the VHDL description itself. The VHDL

description provides an entity declaration of the chip, declaring nodes whose names begin

with "IZ", "OZ", or "BZ" as inputs, outputs, and bi- directional ports of the circuit. This

naming format follows the convention used by several transistor-level VLSI design tools,

such as Cstat. Stove also outputs an architectural description of the extracted circuit.

This is accomplished by examining the data structure to determine what component -

types have been found during extraction. These components are declared in the architec-

tural description. Next, a VIIDI component instantiation is created for each logic-level"-

structure in the Stove data structure. In this manner, a complete VIDLI. description of
~%
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the circuit is created and stored as an output file.
0

B.2.4 Data Structure. Stove was designed to run as quickly as possible.

Since it must operate on VLSI designs which contain hundreds of thousands of transis-
. '* "-a'

tors, the data structure must allow rapid search for transistors which match a given pat-
0

tern. The efficiency of the data structure rather than its size is critical. The data struc- %.

ture used by Stove was derived from the data structure used by Clark Baker of MIT in "

% _ 'q_ 'N.j

designing his STAT program. ...

B.2.4.1 Hash Table. At the transistor level, the data is represented by two
a'.,. d' d

basic structures, NODES and TRANS (transistors). To allow rapid access to the nodes.

the node names are "hashed" into an integer value, which corresponds to a slot in a hash

table array. Each location within the hash table acts as a "hash bucket", which holds all

of the nodes whose name hashed to that location. Each location in the table actually con- ' w- --
I

sists of a pointer to one node in the "bucket", which is the head of a linked list of nodes ','-".',.

contained in the bucket. Each node then contains a pointer to the next node which is

contained in the same bucket. The size of Stove's hash array is 11731 buckets.

B.2.4.2 Nodes. Each node is stored as a record which contains 17 fields.

Among these fields are NODE pointers to the next node in the bucket and pointers to -" "

linked lists of structures to which this node connects. Each node has three TRANS,.'-

pointers, which point to linked lists of transistors. The "glink" pointer pointers to a list

of transistors whose gate is connected to this node. Similarly, the "slink" and "(link"

pointers point to lists of transistors whose source and drain are connctd to this node--

This data structure allows rapid searching of the data. For example, if Stove is exNtrart-

ing a t- gate, it looks for an ep transistor pair which share Co(r11n ,n, so r-e and I raii '-, ,

% -

A. •

• - . . - . . " , , 'o.. " .'% ' -%-%-% °.. % ° o - . ..- - ° - .- %-%". • - • - . -, -.-*.-" ° °



- % %'V

nodes. To determine if a particular node is an input or output of a t-gate, Stove merely %

searches the source and drain lists of the node, which are normally quite short. '.

%
In the same way that it maintains TRANS pointers, each node maintains pointers % -%

to GATE and LOGIC level structures, allowing easy search of these structures as Stove %

extracts higher levels of components.

A final pointer maintained by a node is the "inverts" pointer, which points to a

linked list of nodes which are the logical inverse of the node. For example, when Stove - - "

finds an inverter, it identifies the input and output nodes as "inverts" of each other.
. -.P _'

Thus, when Stove later needs to know if two nodes are the logical inverse of each other, .

as it would when extracting t-gates (whose gates must be the inverse of each other), it

merely has to search the node's "inverts" list.

B.2.4.3 Transistors. Transistors are stored by Stove as a record containing %-

13 fields. The transistor record maintains NODE pointers to its gate, source, and drain " "

nodes. It has TRANS pointers which connect the linked list of transistors which are .%

headed by a node's "glink", "slink", or "dlink" pointers. A transistor record also contains Jr,

a pointer called "team", which will be used to link the transistor into a list of transistors

which compose a higher level structure. The transistor record also maintains data on its

kind, size, position, and what higher level structure it is a component of.

- .-. - -..-._

B.2.4.4 Gate and Logic Structure. Stove also maintains separate structures

for the GATE and LOGIC levels of abstraction. Since these structures are quite similar -'

to the transistor record, they will not be described in detail, Each of these strilctures

maintains a pointer to the lower level components which it is constructed from. These
.- ... a'

pointers point to the "teain" list previously mentioned.

I,1-
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B.2.5 Algorithm. The algorithm used by Stove is straight-forward, composed --B.2.5

of the following steps: %

1) Loading the data. The input file is read a line at a time. If the line defines an

node, input, or output, a new node is created and initialized. If the line defines a new % %

transistor, the transistor is created and initialized. Each of the nodes which connect

to the transistor must be created if they do not already exist. These nodes must also

be linked to the transistor through the node's glink, slink, or dlink pointers Thus,

the data structure is created as each transistor is read in.

2) Extract all desired structures from the transistor level. Inverters, t- gates, and

clocked inverters are extracted and defined at the gate level. "

1%

3) Re-define all unextracted transistors as gate level structures. x',,".,

4) Repeat Steps 2 and 3, extracting to the logic level. These steps can repeated

numerous times, each time extracting to a higher level of abstraction. At each level,-. '

all lower level data structures are preserved and pointers to these lower level struc-

tures are created. Thus, an XOR gate has pointers to the t-gates it was derived .-

from, and those t-gates have pointers to the transistors that they were made from.

This strategy allows for both horizontal and vertical growth of the program. .As

new patterns are defined, they can be added into the existing structure, expanding it hor-
. - *' * =-

izontally. For example, if a new method of building inverters becomes commn, the pat-"

tern for this new structure can be added into the program during gate level extraction.

The program can grow vertically by extracting to higher abstractions .tove currently

only extracts to the logic level, but the data structure at this level is develcWed s- hat it •
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would be easy to begin extraction to the next level.

B.3 Nofeed and Fixrom 0

Two variants of Stove were developed to support switch-level simulation. The %

simulation tool currently used at many universities, Esim, is unable to accurately model

certain transistor structures. In particular, it does not properly account for the sizing of

the transistors within the circuit. In order to correct this problem, two programs were

developed as extensions to Stove. Since Stove already identifies logic structures, it is a

simple problem to locate structures which Esim handles improperly and to convert them

into a logically equivalent form which Esim can accurately simulate.

The first program, called Nofeed, serves to correct a problem in modelling fully 0

static master-slave flop-flops (MSFFs). Esim can, however, model dynamic flip-flops.

which do not have a feedback loop containing a tristate inverter. Nofeed, therefore,

locates static MSFFs within the transistor description (.SINI file) and converts them into

dynamic flip-flops by eliminating the transistors which form the feedback loop (Figure

52). This is accomplished by marking the transistors to be eliminated. All unmarked

transistors are then output into the data file specified by the user. This output results in.

a SIM file exactly like the input data file, but without the transistors which created feed-

back in the MSFFs.

The second program, Fixrom, modifies two portions of the XRON1 circuitry to make '. %*-%

it compatible with Esim. Figure 53 shows the modification made to the SINI description %

of the XROM storage cell. As discussed in Chapter -1. if two transistors are present in

the XROM which are gated by the same wordline and share a common drain, the bit hne - ,-.-(..- .-

will be pulled to slightly less than 2.5 volts. Esim does not realize thait the senseaImp

1.17
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BA Conclusions

Although Stove is an ongoing project, testing results have shown that Stove is suc- %

cessful at extracting the vast majority of transistors from an average file designed using

CMOS pass logic. The data structures and extraction techniques are satisfactory for

extracting a higher level circuit description which can be used to generate VItDL or 0

CHIEFS code.

In addition to Stove's capability for circuit extraction, it demonstrated an unex- "

pected capability of error detection within the design. Since Stove extracts by pattern , V

matching to structures which are regularly used in CMOS design, the transistors which it

cannot extract are either seldom-used patterns which Stove fails to search for, or an error
O

in the design. Stove can be also used to search for patterns which are not desired. For

example, the AFIT VLSI program at one time had a bad XOR cell which had been r . ."

integrated into several of the designs. By searching for that pattern, Stove would be able

to flag any occurrence and then output its location so that the error could be eliminated.,'/'.

Stove's error detection capability may be as nearly important as its extraction capability

Indeed, this area may become the focus of the future development of Stove. 

Stove has demonstrated the feasibility of circuit extraction from a transistor li!t It

is useful as a VLSI design to in discovering layout errors. Most importantly, Stove serves

to close the VLSI design loop by providing extraction capability to VHIDL. The inple- .-

•'. .' - :.-:
mented design can now be simulated in the same high-level language in which it wa.

specified, resulting in high reliability for the fabricated circuit.

' . , * e* .
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APPENDIX C

ASP Microcode Word

Bits 0-2 NAF(3) - Next Address Field
0: Continue ( Increment)
1: Return
2: Call
3: BranchW
4: Conditional Datapath Load
5: Conditional Return V
6: Conditional Call
7: Conditional Branch

Bit 3 BRO(1) - Branch On - polarity of branch condition

0: positive logic **d

1: negative logic

Bits 4-8 C\MS(5) - Conditional Mlux Select - selects one of 32
branch conditions

0: true (unconditional branch)
1: zero
2: negative I,

3: overflow
4: carry
5: skip A.
6: inpval
7: outrec
8-31: not defined

Bits 9-20 Literal Field(12) - Serves as branch address field and
literal for datapath insert ion.

Bits 21-24 DriveA Field(4) - Selects register which will drive -

the A Bus

1-15: Registers 1-1.5

Bits 25-28 DriveB Field(.I) - Selects register whicit will drive1
the B Bus

0: NOP
1-15: Registers 1-15

Bits 29-32 o dC ild.) -S ecs register wkhich will load fr.n
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the C Bus
0: NOR '

1-15: Registers 1-15
0

Bit 33 AddDrive.-(l) - Drives Address Register onto A Bus
0: NOR
1: Drive

Bit 34 AddLoadC(1) - Loads Address Register from C Bus
0: NOP 77j
1: Load

Bit 35 DataDriveA(1) - Drives Data Register onto A bus ''

0: NOP
1: Drive

Bit 36 DataLoadC(1) - Loads Data Register from C Bus
0: NOP
1: Load

Bit 37 DataLoadPads(l) - Loads Data Register from Data '.

Pads
0: NOP % *

1: Load P

Bits 38-42 ShAm(5) - Shift Amount for Barrel Shifter
0: NOR
1-23: Circular shift 1-23 positions to left

Bit 43 Litlns(1) - Insert 12-bit literal into LSBs of datapath
0: NOR 0
1: Insert literal

Bit 44 LitO(1) - Set 12 NISBs to 0
0: NOR
1: Pull bits to GND

0

Na%.

-0
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Bits 45-48 ALU(4) - ALU function select
0: NOP 'v
1: Complement A - C :=A'

2:0C A and B
3: C A xor B
4:0= A or B We

5:0 C A (move)
6: Set carry flag
7: Reset carry flag%
8:0= A + 1
9: 0C: A - 1
10: C := A -4- B +cy
11: C := A +B
12: not defined
13:0 A -B0
14: C :=A - B - borrow .,.

15: Compare A,B ( C Bus not affected)

Bit 49 DataReq(1) - Request for input data
0: NOP
1: Data Request

Bit 50 DataValid(l) - Output data is valid at pads
0: NOP
1: Data Valid A

Bit 51 Not Defined(1)

% .% -
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APPENDIX D

Translation Table for Microcode Assembler p V

NAF 000
Ret 001
Call 010

LoadCond 100
RetCond 101
CallCond 110
.JmpCond 111 - - -

BRO 0
not 1 . .

CMS 00000
true 00000
zero 00001

•.~. .-., ,...-'
neg 00010
over 00011 ,. .-
cy 00100
skip 00101 .PPI
inpval 00110
outrec 00111

Literal 000000000000

Reg 0000
RO 0000 :. :-:
Ri 0001
R2 0010
R3 0011 •
R4 0100
R5 0101
R6 0110
R7 0111
R8 1000
R9 1001 We
RIO 1010 RI0 l~l '-- " ... .
Rll 1011 . , ,
R12 1100

R13 1101 , ,
RI4 1110 0
R115 1111
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Add~rve-A 0~

AddDriA 0

AddLoadO 00
AddLdC 1

DataDriveA 0 -

DataDrA 1

DataLoad 0 0
DataLdO 1

Dat&LoadP ads 0
DataLd Pads I

ShAm 00000 bs

shifti 00001
shift2 00010
shift3 00011
shift4 00100 *ft

shift5 00101
Adoft 00110
shift7 00111
shift8 01000
shiftg 01001
shiftI0 01010S
shiftil 01011
shift12 01100
shiftl3 01101 '
shiftl4 01110
shift15 01111
shiftl6 10000 '~~

shift17 10001%%
shiftl8 10010
shiftl9 10011
shift20 10100
shift2l 10101 -

shift22 1011

shift23 10110

LitInsert 0
Litlns 1

LiteraiZero 0
LitZero I
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ALU 0000
inv 0001 ~~
and 0010
xor 0011
or 0100 ****

maY 0101

resetcy 01
incr 1000

decr 1001
adc 1010
add 1011
sub 1101 r
sbb 1110
comp 11

DataRequest 0
DataReq 1

DataValid 0
DataVal 1I~.

NatDefined 0

%
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APPENDIX E

ASP Prototype Microcode ..

begin: flop; the first section of microcode tests
flop; the functionality of the datapath
flop; in case microcode sequencer is not

working properly, only sequential
instructions are executed at this point

DataReq;
DataLdPads; load test data from datapads
DataVal;,
RO RO RI DataDrA mov; put data in RI
Ri 10 110 DataLdC mov; test ability to put back into datareg
DataVal; output value
Ri RO Ri incr; test ALU incr function and busses
R1 RO 110 DataLdC mov;
Ri RO Ri incr Data%'al;
RI RO RI incr;
Ri RO 111 DataLdC incr;
RI RO RI1 DataLdC decr DataVal; test decr function
RI RO RO Dat.aLdC mov DataVal; test rnov
Ri RO R11 inv DataVal; test complement
RI 110 112 DataLdC mov DataReq; save data in R2
DataLdPads; get new data
RO RO R3 DataDr.A mov DataReq;1 put in R3
DataLdPads; get more data *

RO 110 R4 DataDrA mov: and put in R-1S
113 114 RO DataLdC and; test and function
R3 R-1 10 DataLdG or DataVal; test or
R3 R-1 10 DataLdC xor DataVal;' test xor
R3 R4 110 DataLdC add DataVal; test add
R3 R-1 RO DataldC sub DataVal; test sub
113 R-1 10 DataLdC comp DataVal;1 test compa.re
resetcv DataVal;
113 R4 RO DataldC adc: test adlc %%, c v - 0

R 3 RI4 RO DataLdC sbb; Da ta ala ; test slbb w v-
setcy DataVal;
R3 RI RO DataLdC adc; test adc w cvr-I

setcy DataVal;
113 R-1 10 I)ataLdC sbb;- test adc w 'cvz --
R3 110 RO DataLdC shifti DataVal; test shift register
11311 110 DatabdC shiftS5 DataVal;
R3 10 110 DataLdC shiftiS DataVal;
113 110 110 DataLdC shift23 DataVal;'
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DataVal;
the next section of code is the same P%%
as the previous, except that a literal
field from XRONI inserts data. this 0
allows testing if 1 0 path is faulty

#f01010001 1001 RO RO R6 DataLdC Litlns LitZero mov;
R6 RO R6 shiftl2 Data%'al:
#001001010101 RO RO R7 DataLdC Litlns LitZero mov;
R6 R7 R3 DataLdG or DataVal; combine first word in R3
DataDrA DataLdC incr DataVal; check alu functions
DataDrA DataLdC decr Data~Val;
DataDrA DataLdC inv DataVal;
#010100010101 RO RO R6 Litlns LitZero mov DataVal:
R6 RO R6 shiftl2
#000111000100 RO RO R7 Litins LitZero mov;
R6 R7 R4 DataLdC or combine second data word in R-I
R3 R4 RO DataLdC and DataVal; test alu functions '

R3 R4 RO DataLdC or DataVal;
R3 R4 RO DataLdO xor DataVal;
R3 R4 RO DataLdC add Data%'al;

R3~~~~~~ RW, RODtWCsbDt~
R3 R4 RO DataLdC comp DataVal: -

resetcy DataVal; %
R3 R4 RO Dat aLdC adc;
R3 R4 RO DataLdC sbb DataVal;
setcy DataNal;
R3 R4 RO DataLdC adc;
R3 R4 RO DataLdC sbb DataVal;
R3 RO RO DataLdC shift2 DataVal-; test shifter
R3 RO RO Dat aLdC shiftS DataVal;
R3 RO RO DataLdC shiftIS DataVal;
R3 RO RO DataLdC shift22 Datak'al;

the next section of the microcode
tests the microcode sequencer
functions

imp A DataVal: test unconditional Jump
nop;
nop;
DataReq;

A: Data'Val;
JmpCond skip D; skip allows port ions of code t' he~

circumvented (s, o n e bhid .s:t

wilnot prevent su l) eqtiert tosl -

B: nop;
B: JmpCond not inpval B DataReq: test external pin co(nt r I 4 ii pv:i

Dat aReq
set cy;

C: JmpCond not cy C Datalleq;

15g p
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Dat aReq;,
D: nop;

JmpCond skip E;
flop;
Call F; test simple subroutine call
nop;
CailCond skip F; test conditional subroutine call
flop,
Call G; call test for conditional return
nop;

E: nop;
JmpCond skip H;
flop;
Call 1; test nested subroutines
flop;

H. nop; 1

JmpCond skip NI;
Dat aReq;

N: JmpCond not inpval N;
DataLdPads; load value of instruction vector
LoadCond true DataDrA; vector to requested location
flop;

M: Jmp N;
F: DataReq;

DataReq;
DataReq;
Ret DataReq;
flop;

0: DataReq;
DataReq;
DataReq;
RetCond skip DataReq;
DataReq;
Ret DataReq;
DataReq;-

I: Call J
flop; 0
Ret;
flop;

J: Call 1K;
nop; "-

Ret;I
nop;

K: Call L;
nop;
Ret;

L: fop;
Ret;
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nop;
nop;
flop .,~*

flop;
flop;

cmd0: Call get2 DataReq; instruction to load 2 registers r;I
flop; 4
Jmp N DataReq;oz

get2: DataReq;
Gi: JmpCond not inpval G1 DataReq;

DataLdPads DataReq ;load data
RO RO R1 DataDrA mov put it in Ri
DataReq;

G2: JmpCond not inpval G2 DataReq;
DataLdPads DataReq ;load second data value0
RO RO R2 DataDrA mov ;load it in R2
Ret;
DataReq;

add: Jmp N RI R2 DataLdC add; add instruction
DataVal;

sub: Jmp N R1 R2 DataLdG sub; subtract instruction

and: Jmp N RI R2 DataLdC and; and instruction

or: Data NaR R2 DataLdC or; or instruction
DataVal S

xor: Jmp N RI R2 DataLdC xor; xor instruction *

DataVal;
shift: imp N Ri RO RI DataLdG shifti;I shift instruction

DataVal;
mult: R2 RO R4 mov, multiply instruction

RO RO R3 Litlns LitZero mov R3 0
#000000010111 RO RO R5 Litlns LitZero mov ;R5 =23 (loop count)
#00000000001 RO R4 RO Litins LitZero and ;and to check LSI3
JmpCond zero mi;
R4 RO R4 shift23
R3 RI R3 add; if LSB zero add niUltiphier ~

ml: R3 RO R3 shIf t23; shift temp result
#000000000001 RO RI RO Litlns LitZero and;- **

JmpCond zero m3;
RI RO R4 shIf t23 V

R3 Ri R3 add;,
m3: R5 RO R5 decr;, decr loop count

JmpCond not zero m]; if not 0, continue miult
flop; *-'

R3 RO RO DataldC shift23; shift result right I
Jmp N DataVal; all done; return
DataVal;

*. J- .**
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shRi: R2 RO R2 deer; shift Ri amount in R2 '1,
Jmp~ond not zero shRi Ri RO Ri shifti;
Rl DataLdC mov;
Jmp N DataVal;
DataVal;%

.?.end; N

1 % r

e. 'r

J, re

%-

%~N
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Numerous applications throughout the Department of Defense, industry, and
academia require the design of custom pro6ssor architectures. Design of these proces-
sors, however, is normally a lengthy process-7,This thesis defines a methodology for rapid "
prototyping custom VLSI processor architectures Using this methodology, the design
and implementation of application specific prgc sors can be reduced from several years
to two months. This reduction makes a high-performance VLSI solution feasible for
Department of Defense applications that would otherwise have settled for a lower-
performance alternative. ,'..%,
L I>he rapid prototyping methodology is based upon the specification of a general pur-

pose architecture customized via microcode to solve unique applications. Since processing
requirements will vary, the designer chooses appropriate macrocells from a design library
to provide the best hardware support. A high-level language description of the problem
is then translated into microcode. The microcode is automatically assembled and -,
designed into a ROM (read-only memory), resulting in a processor customized to solve --
the given application. By allowing the designer to quickly convert ideas into implemen- ...
tations, the rapid prototyping methodology frees the designer to be creative rather than
becoming mired in implementation details. %

A general purpose VLSI architecture was designed to support the rapid prototyping :-. ,,
methodology. The control section of the architecture centers on the microcode ROM-
(read-only memory) and a microcode sequencer, which provides proper addressing to the . .
ROM. The datapath section (I/0 path, registers, and arithmetic hardware) uses the con-
trol signals from thec ROM otperform the required processing. The datapath macrocells
were designed in a"bit-slice fashion, allowing easy configuration to different data types
and widths A prototype processor was implemented to test the architecture for func- . -

tion ality, p]- imance, and operating characteristics. Additionally, a parallel floating

point multiplier, applying Booth's modified algorithm in a Wallace tree structure, was
fabricated. To further support the rapid prototyping methodology, several design tools
were developed. These include a program to automatically generate a ROM in the Magic
format and an extraction tool which generates a VIIDL description of a circuit from a
transistor listing, allowing high-level simulation of the circuit and thereby closing the
"design loop."

The rapid prototyping methodology has been successfully applied to three different
applications. These applications demonstrate that a custom application specific processorcan be designed in less than two months using this methodology. This reduced design

time also translates into reduced cost and program "risk." This dramatic decrease in
design time could result in a significant increase in the usage of VLSI/VIISIC solutions to
Department of Defense applications.
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