THE ROLE OF ENDORPHINS IN THE PATHOPHYSIOLOGY
OF HEMORRHAGIC AND ENDOTOXIC SHOCK IN
THE SUBHUMAN PRIMATE

Annual and Final Report

Nelson J. Gurll, M.S.
David G. Reynolds, Ph.D.
Thomas Vargish, M.D.
Carl V. Gisolfi, Ph.D.

March 15, 1985

Supported by

U.S. Army Medical Research and Development Command
Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-80-C-0094
DAMD17-81-C-1177

The University of Iowa
College of Medicine
Iowa City, Iowa 52242

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an
official Department of the Army position unless so designated
by other authorized documents
The Role of Endorphins in the Pathophysiology of Hemorrhagic and Endotoxic Shock in the Subhuman Primate

Nelson J. Gurll, M.D.; David G. Reynolds, Ph.D.; Thomas Vargish, M.D.; Carl V. Gisolfi, Ph.D.

Annual and Final
FROM 8/0/81 TO 8/5/83
1985 March 15
65

In order to investigate the pathophysiological role of endogenous morphine-like substances (endorphins) in shock, we studied cynomolgus monkeys and dogs subjected to hemorrhagic or endotoxic shock. Blockade of opiate receptors with naloxone improved cardiovascular function and survival in both species and both models but requires correction of acidosis and hypothermia. Shock is associated with elevations in plasma levels of endorphins. Using different sites of injection, and various anatomical and pharmacological ablations, we have shown that naloxone's beneficial effects in hemorrhagic shock are due to potentiation of the effect of released catecholamines on cardiac opiate receptors. The myocardial depression found in shock is due to an endorphin-mediated attenuation of catecholamine activity on the heart. We believe this is mediated by interaction with cardiac receptors and is expressed via G-protein activation of adenylate cyclase and cyclic-AMP. This hypothesis needs to be tested by biochemical determination of these substances, and our observations need to be extended to endotoxic shock. Nevertheless, naloxone and other users...
antiendorphin substances may be important in the treatment of shock by reversing one of the important pathophysiological mechanisms of cardiovascular depression.
SUMMARY

In order to investigate the pathophysiological role of endogenous morphine-like substances (endorphins for short) in shock, we studied cynomolgus monkeys and dogs subjected to hemorrhagic or endotoxic shock. Blockade of opiate receptors with naloxone improved cardiovascular function (mean arterial pressure, cardiac output, and myocardial contractility) in both species and both models but required correction of acidosis and hypothermia. Shock is associated with elevations in plasma levels of endorphin and β-lipotropin. Using different sites of injection and various pharmacological and anatomical ablations, we have shown that naloxone's beneficial effects in hemorrhagic shock are due to potentiation of the effect of released catecholamines on cardiac opiate receptors. The myocardial depression found in shock is due to an endorphin-induced attenuation of adenylate cyclase and cyclic-AMP. This hypothesis needs to be tested by biochemical determination of these substances, and our observations need to be extended to endotoxic shock. Nevertheless, naloxone and other antierorphin substances may be important in the treatment of shock by reversing one of the important pathophysiological mechanisms of cardiovascular depression.
SUMMARY

In order to investigate the pathophysiological role of endogenous morphine-like substances (endorphins for short) in shock, we studied cynomolgus monkeys and dogs subjected to hemorrhagic or endotoxic shock. Blockade of opiate receptors with naloxone improved cardiovascular function (mean arterial pressure, cardiac output, and myocardial contractility) in both species and both models but requires correction of acidosis and hypothermia. Shock is associated with elevations in plasma levels of \(\beta \)-endorphin and \(\beta \)-lipotropin. Using different sites of injection and various pharmacological and anatomical ablations, we have shown that naloxone's beneficial effects in hemorrhagic shock are due to potentiation of the effect of released catecholamines on cardiac opiate receptors. The myocardial depression found in shock is due to an endorphin-induced attenuation of catecholamine effects on the heart. We believe this is mediated by interaction with cardiac receptors and is expressed via G-protein activation of adenylate cyclase and cyclic-AMP. This hypothesis needs to be tested by biochemical determination of these substances, and our observations need to be extended to endotoxic shock. Nevertheless, naloxone and other antiendorphin substances may be important in the treatment of shock by reversing one of the important pathophysiological mechanisms of cardiovascular depression.
FOREWORD

In conducting the research described in this report, the investigators adhered to the "Guide for the Care and Use of Laboratory Animals", prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (DHEW Publication No. (NIH) 78-23, revised 1978).
TABLE OF CONTENTS

Summary... 3
Foreword.. 4
Body of Report.. 7
 a) Problem and Background... 7
 b) Approach... 8
 c) Results: Endotoxemia in Monkeys.............................. 9
 d) Results: Hemorrhage in Monkeys............................... 9
 e) Results: Central Nervous System Injections................. 10
 f) Results: Corticosteroid-Naloxone Interactions............. 10
 g) Results: Adrenalectomy... 11
 h) Results: Autonomic Nervous System Involvement......... 12
 i) Results: Blood Flow... 13
 j) Results: Naltrexone, Nalbuphine and TRH................... 14
 k) Results: Importance of Timing.................................. 14
 l) Results: Other Studies on Mechanisms and Site of Action 15
 m) Discussion.. 16
 n) Conclusions... 19
 o) Recommendations.. 19

Illustrations and Tables.. 20

| Table I: Plasma -endorphin (-EP) and b-lipotropin (-LPH) |
| in monkey endotoxemia ... 20 |
| Table II: Plasma -endorphin (-EP) and -lipotropin (-LPH) |
| in monkey hemorrhage shock.. 20 |
| Table III: Whole blood histamine in monkey hemorrhagic shock |
| Table IV: Effects of intracerebral infusion of naloxone 21 |
| Table V: Effect of surgical and pharmacological autonomic intervention ... 22 |
| Table VI: Effect of adrenal denervation and ganglionic blockade with chlorisondamine .. 22 |
| Table VII: Regional blood flow distribution during hemorrhage hypotension in the dog ... 23 |

Figure 1: Primate Endotoxin Shock.................................. 24
Figure 2: Primate Endotoxin Shock.................................. 24
Figure 3: Primate Hemorrhagic Shock................................ 25
Figure 4: Primate Hemorrhagic Shock................................ 25
Figure 5: Primate Hemorrhagic Shock................................ 26
Figure 6: Primate Hemorrhagic Shock................................ 26
Figure 7: Primate Hemorrhagic Shock................................ 26
Figure 8: Primate Hemorrhagic Shock................................ 27
Figure 9: Primate Hemorrhagic Shock................................ 27
Figure 10: Primate Hemorrhagic Shock............................... 28
Figure 11: Primate Hemorrhagic Shock............................... 29
Figure 12: .. 30
Figure 13a: ... 30
Figure 13b: ... 30
Figure 14: .. 31
BODY OF REPORT

a) Problem and Background

Shock due to hemorrhage, trauma, and sepsis remains an important threat to the health and welfare of the soldier in war. Even during peacetime, septic and hypovolemic shock are frequent and important causes of morbidity and mortality in the civilian and military populations. These shock states do not always respond to appropriate therapies suggesting the involvement of other pathophysiological mechanisms and hence other treatment options. The exigencies of the battlefield situation and the availability of rapid evacuation make the use of simple, rapid, on-the-scene anti-shock therapies highly desirable.

Endogenous morphine-like substances (endorphins) are elevated in the plasma in response to stress (1). Endogenous and exogenous opiates depress the cardiovascular system when given intravenously or into the central nervous system (2). The possible involvement of endorphins in the pathophysiology of shock was initially evaluated by Holaday and Faden using rodent models of hemorrhagic and endotoxic shock. Opiate receptor blockade with naloxone improved mean arterial pressure and pulse pressure in rats after hypovolemic hemorrhage (3) or the injection of endotoxin to induce shock (4). This was associated with increased survival in hemorrhage but not in endotoxemia. Subsequently, we showed increased mean arterial pressure, cardiac output and myocardial contractility in canine hemorrhagic (5) and endotoxic shock (6). We also demonstrated improved survival; naloxone converted a 100% lethal hemorrhagic model to 100% survival and an 80% lethal endotoxic shock model to 80% survival.
These results were then extended to humans by others and reported as letters to the editor (7) or uncontrolled, non-randomized trials (8,9). A very recent randomized trial showed no benefit to the use of naloxone in human septic shock (10), but the doses of naloxone used were quite low compared to those found to be effective in rodents, dogs (3-6) and monkeys (vide infra). We chose, instead, to study the doses required, the efficacy, and any side effects of naloxone in a subhuman primate, the cynomolgus monkey. Primates are closer to man than other species studied, and their responses would be better to study before extensive human use. Once we established effectiveness and dosages, we investigated mechanisms using dogs because of the number of animals required.

b) Approach

Cynomolgus monkeys or dogs were lightly anesthetized and instrumented to measure mean arterial pressure (MAP), cardiac output (CO), heart rate (HR), pulmonary arterial pressures, and myocardial contractility (LV dp/dt max). Shock was induced by the intravenous injection of E. coli endotoxin or by bleeding into a reservoir to achieve and maintain MAP at 45 mmHg. The animals were treated i.v. with either naloxone 2 mg/kg bolus plus 2 mg/kg/hr infusion for 4 hours or 0.9% NaCl in equivalent volumes when MAP reached 75 mmHg in endotoxemia or after 1 hr of hemorrhage (MAP 45 mmHg). Shed blood was reinfused 1 hr later in the hemorrhage model. These experiments (or slight modifications thereof) were also done after pharmacological or surgical ablation of various components of the neurohumoral responses to shock. Naloxone was also given directly into the central nervous system or the coronary artery to sort out central nervous system from peripheral
cardiac actions. Stereoisomers of naloxone, other opiate receptor antagonists like naltrexone and nalbuphine, and other anti-endorphin substances (namely TRH) were also used.

c) Results: Endotoxemia in monkeys (n=12)

Naloxone significantly increased MAP by 25-30 mmHg over saline treated controls (p<.02 by analysis of variance, ANOVA, Figure 1). Left ventricular contractility was higher in naloxone treated monkeys (3.6 x 10^3 mmHg/sec) than in controls (2.4 x 10^3 mmHg/sec, p<.01 by ANOVA). Naloxone improved LV dp/dt max by 800 mmHg/sec compared to no change with saline (p<.02 by ANOVA, Figure 2). There were no differences between naloxone and saline treatment in CO, stroke volume, HP, peripheral vascular resistance, temperature or metabolic measurements. All of the naloxone-treated animals were alive at 48 hours but only 1/6 saline treated controls (p<.05 by Fisher's exact test). Plasma levels of e-endorphin and its precursor b-lipotropin rose 4-5-fold and were not affected by treatment (Table 1).

d) Results: Hemorrhage in monkeys (n=22)

In the first group of 10 monkeys we could not find a difference in cardiovascular responses between naloxone and saline treatment (Figures 3 and 4). We noted that the naloxone treated animals were acidotic (Figure 5) and colder (Figure 6) than saline-treated animals before treatment. Furthermore, analysis of the MAP responses (as a pressure time product) showed that these responses were affected by temperature and acid-base balance. Acidosis attenuated the pressure x time product in response to naloxone (Figure 7); cold attenuated the plasma e-endorphin response to stress (Figure 8) and the pressure x time product in response to naloxone (Figure 9).
When acidosis and hypothermia were treated or prevented, the monkeys responded to naloxone (n=6) with significant increases in MAP (Figure 10) and LV dp/dt max (Figure 11) compared to no response to saline (n=6). This response increased survival with 5/6 naloxone-treated monkeys alive at 24 hr versus 2/6 saline-treated controls (p<.05). The one naloxone-treated monkey that did not survive at 24 hrs had an iatrogenic death due to a left ventricular catheter-induced myocardial injury. Plasma β-endorphin and β-lipotropin rose 4-5-fold (Table II) and were uninfluenced by treatment. Whole blood histamine levels were unaffected by shock (Table III).

e) Results: Central nervous system injections

Injection of an enkephalin analogue D-ala2-met5- enkephalinamide (DAME) into the IIIrd ventricle of conscious monkeys produced bradycardia and hypotension (Figure 12) which were dose-dependent and attenuated by naloxone (Figure 13). Microinjection of DAME into stereotactically implanted areas from the diencephalon to the medulla in normotensive unanesthetized monkeys reduced blood pressure and (inconsistently) heart rate. Injection of naloxone into these DAME-sensitive sites when the animals were anesthetized and subjected to hypovolemic shock, however, failed to increase blood pressure by more than 5 mmHg (Table IV).

f) Results: Corticosteroid-naloxone interactions (n=77)

Dexamethasone and methylprednisolone are putatively beneficial in canine hemorrhagic shock (11). However, these steroids at their maximally effective dosages were not as effective as naloxone when given in our canine hemorrhagic shock model. Indeed, dexamethasone or methylprednisolone at maximally effective doses actually decreased the
beneficial effects of naloxone on hemodynamics and survival. This was true whether blood was returned to the animal (Figure 14) or not (Figures 15 and 16). These steroids were slightly beneficial but not nearly so as naloxone. We postulated that large doses of these steroids were preventing endorphin release. Hence, naloxone, having less endorphin to block, would appear to be less effective.

g) Results: Adrenalectomy (n=23)

Since corticosteroids seemed to have an important interaction with naloxone and because the adrenal contains endorphins, we treated dogs with naloxone or saline one week after adrenalectomy when their plasma endorphin levels were quite high (due to loss of negative feedback by corticosteroids on the pituitary release of δ-endorphin). We expected to find enhanced responses to naloxone because of the high plasma endorphin levels. Adrenalectomy, however, completely abolished the MAP and CO responses and markedly attenuated the LV dp/dt max response to naloxone. The full naloxone response could be restored by physiological doses of hydrocortisone 45 minutes before naloxone (Figures 17-19). The adrenal would not appear to be the source of endorphins producing cardiovascular depression in shock. Moreover, naloxone's effectiveness in shock requires an intact adrenal; the factor lost by adrenalectomy appears to be adrenocortical since corticosteroid restore naloxone's effectiveness. Cortisol is required for production (12), stability (13), and receptor binding (14) of catecholamines. Therefore, we thought that there was an endorphin-catecholamine interaction in the peripheral vasculature or the heart which resulted in depression during hemorrhagic shock which was unmasked by naloxone. This idea led to the following series of experiments in dogs.
h) Results: Autonomic nervous system involvement

Naloxone causes a transient decrease in HR and sustained increases in MAP, CO, and LV dp/dt max in canine hemorrhage. The role of the autonomic nervous system was investigated by means of cardiac denervation and pharmacological blockade (n=50). The transient bradycardia was prevented by α-adrenergic receptor blockade or cardiac denervation. The sustained hemodynamic responses were unaffected by cardiac denervation (Figure 20). They were, however, attenuated significantly by either α- or α-adrenergic blockade (phenoxybenzamine or metoprolol, respectively) and potentiated by cholinergic receptor blockade with methylatropine (Figure 21). In these and most subsequent figures, the results are shown as the mean net naloxone effect which is the difference over 30 minutes between the mean response to naloxone and the mean response to saline. Cardiac denervated dogs experienced a tachycardia in response to naloxone which was blocked by α-adrenergic blockade with metoprolol. Naloxone had no effect on plasma catecholamine levels (Table V). The sustained cardiovascular responses to naloxone were the result of a parasympathetic stimulation which modestly attenuated an adrenergic component. The adrenergic stimulation of the heart after naloxone appeared to result from existing adrenergic stimulation and not sympathoadrenal discharge.

We tested the hypothesis that naloxone potentiated the effects of neurally and adrenally released catecholamines (n=60). Catecholamine release was attenuated by a combination of surgical adrenal denervation and pharmacological ganglionic blockade with chlorisondamine (Table VI). Adrenal denervation or chlorisondamine alone attenuated the cardiovascular responses to naloxone in hemorrhage. Denervation and
chlorisondamine in combination completely blocked the mean net naloxone effect which could be completely restored by infusion \(\alpha \) and \(\varepsilon \)-adrenergic agonists at a constant rate prior to naloxone treatment (Figure 22).

We thought that naloxone's potentiation of released catecholamines was primarily on the heart. Naloxone or its inactive stereoisomer were given intravenously (i.v.) or directly into the coronary artery (i.c.) in dogs anesthetized and subjected to hemorrhagic shock. Naloxone 2 mg/kg i.v. or 0.2 mg/kg i.c. significantly improved MAP, CO, and LV dp/dt (Figure 23). Saline or naloxone 0.2 mg/kg i.v. were without beneficial effects. The hemodynamic responses to naloxone i.c. were dose-dependent and stereospecific. We concluded that naloxone's beneficial effects in canine hemorrhagic shock were due to its action at stereospecific cardiac opiate receptors.

We repeated some of these crucial experiments in monkeys \((n=20)\). Ablation of catecholamine responses by adrenalectomy and chlorisondamine completely prevented the increase in MAP and LV dp/dt max due to naloxone in hemorrhage. The usual response to naloxone was restored by infusion of \(\alpha \)- and \(\varepsilon \)-adrenergic agonists (Figures 24 and 25).

i) Results: Blood flow

Normovolemic \((n=10)\) and hypovolemic \((n=10)\) dogs were given either saline or naloxone. Naloxone had no effect on the regional blood flow distribution as measured by microspheres in normovolemia. In contrast, naloxone significantly increased blood flow to the heart, intestine, liver (arterial) and adrenal glands when given during
hypovolemic shock (Table VII). These results show increased perfusion of
vital organs as a result of improved cardiac action.

j) Results: Naltrexone, nalbuphine, and TRH

We also investigated the use of other agents in shock. The
longer acting opiate receptor antagonist naltrexone also improves
cardiovascular hemodynamics and survival in canine hemorrhagic shock
(Figures 26-29). These results are dose-dependent and support the view
that opiate-receptors and/or endorphins are involved in the
shock-induced cardiovascular depression by satisfying one of the
criteria for opiate involvement (15), namely effectiveness of another
opiate antagonist. Naloxone potentially might increase pain perception
so we investigated the effectiveness of thyrotropin-releasing hormone
(TRH) in primate shock. TRH is a physiological antiendorphin with
effects opposite to those of the endorphins without affecting pain
perception or binding to opiate receptors (16,17). TRH increases MAP
and LV dp/dt max in primate hemorrhagic (Figures 30 and 31) and
endotoxemic shock (Figures 32 and 33). These cardiovascular responses
were associated with increased survival in hemorrhage but not
endotoxemia. The mixed opiate receptor agonist/antagonist nalbuphine
relieves pain and yet reverses the cardiovascular depression in canine
hemorrhagic shock (Figures 26-29). Survival was also improved. These
canine studies were done for a private contractor. However, primate
studies done under our Army Contract showed no improvement in
hemodynamics or survival.

k) Results: Importance of timing

Delay in naloxone treatment (n=9, versus saline controls n=9)
by only 30 min in canine hemorrhage resulted in more modest increases in
MAP (Figure 34), CO (Figure 35), LV dP/dt max (Figure 36) and survival than usual (5). On the other hand, in experiments not covered by this contract, naloxone pre-treatment had some unique effects on endotoxin-induced cardiovascular effects and pathology: it prevented the typical bloody diarrhea, maintained superior mesenteric arterial blood flow and blunted the pulmonary arterial and portal venous hypertensive responses. Survival was also increased to a similar extent (LD₈₀ to LD₂₀) as when naloxone was given 15 min after endotoxin without affecting bloody diarrhea or these cardiovascular parameters (6).

1) Results: Other studies on mechanisms and sites of action

Catheters were placed into the central nervous system of dogs. Naloxone (n=5) perfused intracerebroventricularly at 0.1 mg/kg failed to improve MAP (Figure 38), CO (Figure 39) or LV dP/dt max (Figure 40) compared to artificial CSF (n=5) in canine hemorrhage. In contrast, this same dose and route of administration of naloxone (n=5) increased these cardiovascular parameters (Figures 41-43) significantly compared to artificial CSF (n=5) in canine endotoxic shock. Naloxone (n=5) given intrathecally into the cisterna magna failed to have significant cardiovascular effects compared to CSF alone (n=5) in our canine hemorrhagic shock model (Figures 44-46).

The exogenous opioid morphine depresses cardiac function in a dose-dependent and naloxone reversible way (18). A portion of this cardiovascular depression involved histamine release because it was blocked by antihistamines working at the H₁ and H₂ receptors. There were also some direct cardiac depressant effects independent of histamine release which were identified using cardiopulmonary bypass in dogs to separate cardiac and peripheral vascular effects (19).
Opiates failed to release histamine when injected into the intact rat or following incubation with rat peritoneal mast cells, a rich source of histamine. On the other hand, opiates did increase plasma levels of epinephrine and norepinephrine three- to fivefold which was naloxone-blockable and -reversible (19).

Discussion

Naloxone improves cardiovascular function and survival in canine and primate hemorrhagic and endotoxemic shock. Our results in primate shock indicate its possible usefulness in human shock but at much higher doses than have been previously reported (in letters to the editor) (reviewed in 7) to be beneficial in human septic or cardiogenic shock. In two uncontrolled, nonrandomized trials naloxone was shown to be effective when given to humans in shock (8,9). These two articles differ in the doses of naloxone used with neither one achieving the dosages we have found to be maximally effective in our primate models. The two studies also differed in that steroids were shown to have no effect by Groeger (9) and a detrimental effect on the hemodynamic response to naloxone by Peters (8). The latter observation would be more consistent with our observations. However, some steroid is necessary for the full naloxone response. Hence some of Peters' "adrenocorticotopenic patients" may not have responded because they had had hypophysectomy whereas others in this group merely had received large doses of corticosteroid. Groeger also showed that delay in treatment decreases the effectiveness of naloxone which agrees with our results and those of others (20).

The most recent publication on the human use of naloxone (10) shows no significant cardiovascular effects with doses of naloxone with
which we would not have found an effect in monkeys. These authors also failed to note body temperature and acid-base balance, which we have shown clearly to be important in the naloxone response. After our initial report (21), others have shown that ambient and body temperature are important determinants of the naloxone response in canine endotoxemia (22) and hemorrhagic shock (23) respectively. We would maintain that the ambient temperature effect is mediated by a response in body temperature based upon our results as well as inspection of these authors' results (22).

Our pharmacological and surgical dissection of the naloxone response points to a peripheral cardiac opiate receptor site of cardiovascular depression in canine hemorrhagic shock and its reversal by naloxone. Naloxone appears to potentiate existing adrenergic stimuli at the heart by unmasking endorphin mediated depression. A unifying hypothesis would be an endorphin-catecholamine interaction at the cardiac β-adrenergic receptor and G-proteins. Such an interaction has been demonstrated for morphine and prostaglandins in vivo and in vitro. It is manifested through G-protein activation of adenylate cyclase with biochemical expression through cyclic AMP (Figure 47). Cyclic-AMP then phosphorylates key proteins important to intracellular calcium metabolism and myocardial excitation-relaxation coupling (and ultimately myocardial contractility). These ideas are shown in Figure 48 with known components indicated by asterisks. Such biochemical correlations of physiological interactions are presently being explored in our laboratory. Endorphins elevated in shock attenuate beneficial catecholamine effects and this attenuation is unmasked by naloxone. This supersensitivity to catecholamines may explain some of the side-effects
of naloxone, especially hypertension (24) and arrhythmias (25). Naloxone may also increase catecholamine release in certain situations, and this result should dictate extreme care in its clinical use.

Endotoxic shock appears to involve different naloxone-sensitive mechanisms than hemorrhagic shock. Endotoxemia results in a depression in central sympathetic nerve activity as measured in splanchnic nerves. Naloxone reverses this depression and enhances activity in the splanchnic nerves (26). Central nervous system injection of naloxone has been shown to improve cardiovascular parameters which are then lost in hypophysectomized rats subjected to endotoxemia (27) or hemorrhage (28). However, adrenal atrophy may have resulted due to hypophysectomy and prevented the naloxone response. Others have shown that intracerebroventricular perfusion of naloxone prevents endotoxin-induced decreases in cardiovascular function (29).

We have shown that intracerebroventricular perfusion of naloxone fails to increase MAP, CO, or LV dp/dt max in canine hemorrhagic shock but does improve these cardiovascular parameters in endotoxemic shock. Intrathecally administered naloxone similarly fails to improve cardiovascular function in canine hemorrhage. These results in toto would be consistent with different sites for naloxone's effectiveness in hemorrhage and endotoxemia, peripheral cardiac in the former and central nervous system in the latter. By analogy, these sites are also where endorphins depress cardiovascular function in these respective shock paradigms. We need to investigate endotoxemic shock pharmacologically and surgically like we did hemorrhagic shock to exclude possible overlap in mechanisms.
Naloxone appears to be a safe and beneficial agent in the treatment of shock. Other agents like naltrexone, nalbuphine and TRH are available and seem to be effective. Their theoretical advantages have not clearly been established.

Conclusions

1. Naloxone improves mean arterial pressure, cardiac output, myocardial contractility, and survival in canine and primate endotoxic and hemorrhagic shock.

2. The site of cardiovascular depression by opiates and its reversal by naloxone appears to be at stereospecific opiate receptors on the heart in hemorrhage. Naloxone potentiates the effects of existent catecholamine activity on the heart by blocking endorphin attenuation of the adrenergic effect.

3. Naltrexone, nalbuphine and TRH are also effective anti-endorphin substances in shock.

Recommendations

1. Continue to pursue controlled randomized clinical trials of naloxone in human shock.

2. Investigate the biochemical correlations predicted by our hypothesis, i.e., adenylate cyclase and cyclic-AMP activity in the heart subject to catecholamines and opiates in various combinations.

3. Investigation of mechanisms of cardiovascular depression by opiates in endotoxemic shock by direct intracoronary injection of naloxone and by adrenalectomy and ganglionic blockade followed by infusion of 3- and 5-adrenergic agonists.
Table I: Plasma α-endorphin (α-EP) and β-lipotropin (β-LPH) in monke/ endotoxemia as measured by radioimmunoassay (values in pg/ml)

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline</th>
<th>Treatment=T</th>
<th>T+30 min</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-EP</td>
<td>Saline</td>
<td>201±99</td>
<td>521±118</td>
<td>781±142</td>
</tr>
<tr>
<td></td>
<td>Naloxone</td>
<td>170±93</td>
<td>605±118</td>
<td>936±203</td>
</tr>
<tr>
<td>β-LPH</td>
<td>Saline</td>
<td>28±28</td>
<td>373±166</td>
<td>844±293</td>
</tr>
<tr>
<td></td>
<td>Naloxone</td>
<td>131±131</td>
<td>685±292</td>
<td>972±428</td>
</tr>
</tbody>
</table>

Table II: Plasma α-endorphin (α-EP) and β-lipotropin (β-LPH) in monkey hemorrhage shock as measured by radioimmunoassay (values in pg/ml)

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline</th>
<th>0</th>
<th>60</th>
<th>90</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-EP</td>
<td>Saline</td>
<td>382±125</td>
<td>1072±187</td>
<td>1171±265</td>
<td>1269±122</td>
</tr>
<tr>
<td></td>
<td>Naloxone</td>
<td>230±64</td>
<td>661±47</td>
<td>895±142</td>
<td>988±164</td>
</tr>
<tr>
<td>β-LPH</td>
<td>Saline</td>
<td>396±164</td>
<td>1374±364</td>
<td>674±168</td>
<td>1936±498</td>
</tr>
<tr>
<td></td>
<td>Naloxone</td>
<td>108±42</td>
<td>617±133</td>
<td>798±246</td>
<td>2216±1193</td>
</tr>
</tbody>
</table>
Table III: Whole blood histamine in monkey hemorrhagic shock as measured by radioenzymatic assay (results in ng/ml)

<table>
<thead>
<tr>
<th>Group</th>
<th>-60</th>
<th>0</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>13±2</td>
<td>17±2</td>
<td>15±5</td>
<td>16±3</td>
<td>25±6</td>
<td>33±6</td>
</tr>
</tbody>
</table>

Normal literature value 19±9

Table IV: Effects of intracerebral infusion of naloxone (nal) into multiple opioid-sensitive sites on mean arterial pressure (MAP) during primate hemorrhagic shock

<table>
<thead>
<tr>
<th>Animal</th>
<th>Total nal in 60', nm</th>
<th>MAP (mmHg)</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Post-hem</td>
<td>Max Δ</td>
</tr>
<tr>
<td>1</td>
<td>0.587</td>
<td>96</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>0.176</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>1.121</td>
<td>108</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>0.856</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>1.835</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>0.920</td>
<td>50</td>
<td>45</td>
</tr>
</tbody>
</table>
Table IV: Effect of surgical and pharmacological autonomic intervention on plasma catecholamines in canine hemorrhagic shock as measured by radioenzymatic assay (baseline values in pg/ml, rest in mcg/ml)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Time</th>
<th>Treatment</th>
<th>Epinephrine</th>
<th>Norepinephrine</th>
<th>Dopamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical</td>
<td>Baseline</td>
<td>Saline</td>
<td>68±35</td>
<td>234±41</td>
<td>114±48</td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>Naloxone</td>
<td>18.9±3.4</td>
<td>6.5±0.9</td>
<td>1.6±0.3</td>
</tr>
<tr>
<td></td>
<td>+30 min</td>
<td>Saline</td>
<td>26.5±10.7</td>
<td>8.0±0.7</td>
<td>2.2±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naloxone</td>
<td>15.8±2.6</td>
<td>7.9±2.4</td>
<td>1.8±0.4</td>
</tr>
</tbody>
</table>

Pharmacological

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Time</th>
<th>Treatment</th>
<th>Epinephrine</th>
<th>Norepinephrine</th>
<th>Dopamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Saline</td>
<td>58±8</td>
<td>213±134</td>
<td>57±50</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>Metoprolol</td>
<td>19.3±3.7</td>
<td>8.6±2.8</td>
<td>1.4±0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phenoxy-benzamine</td>
<td>21.1±7.0</td>
<td>5.2±1.3</td>
<td>1.0±0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>9.4±1.5</td>
<td>4.2±0.5</td>
<td>1.0±0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methylatropine</td>
<td>14.1±3.5</td>
<td>9.7±4.2</td>
<td>1.1±0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.6±3.7</td>
<td>2.9±0.3</td>
<td>0.2±0.7</td>
<td></td>
</tr>
</tbody>
</table>

Table VI: Effect of adrenal denervation (AD) and ganglionic blockade with chlorisondamine (CHL) on plasma catecholamines in canine hemorrhagic shock (baseline values in pg/ml, rest in mcg/ml; also as % of sham AD post-hemorrhage in parentheses)

<table>
<thead>
<tr>
<th>Group</th>
<th>Epinephrine</th>
<th>Norepinephrine</th>
<th>Dopamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham AD baseline</td>
<td>274±236</td>
<td>180±48</td>
<td>45±29</td>
</tr>
<tr>
<td>Post-hemorrhage</td>
<td>18.8±3.8</td>
<td>4.2±0.6</td>
<td>0.8±0.1</td>
</tr>
<tr>
<td>(100%)</td>
<td></td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
<tr>
<td>AD</td>
<td>2.3±0.2</td>
<td>1.2±0.2</td>
<td>0.15±0.03</td>
</tr>
<tr>
<td>(12%)</td>
<td></td>
<td>(30%)</td>
<td>(18%)</td>
</tr>
<tr>
<td>CHL</td>
<td>2.1±0.9</td>
<td>0.9±0.2</td>
<td>0.14±0.02</td>
</tr>
<tr>
<td>(11%)</td>
<td></td>
<td>(22%)</td>
<td>(19%)</td>
</tr>
<tr>
<td>AD+CHL</td>
<td>0.14±0.06</td>
<td>0.49±0.06</td>
<td>0.04±0.02</td>
</tr>
<tr>
<td>(1%)</td>
<td></td>
<td>(12%)</td>
<td>(4%)</td>
</tr>
</tbody>
</table>
Table VII: Regional blood flow distribution (ml/min/100 gm) during hemorrhage hypotension in the dog

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Shock</th>
<th>Change after Treatment with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saline</td>
</tr>
<tr>
<td>Heart</td>
<td>169±14</td>
<td>128±19</td>
<td>24±25</td>
</tr>
<tr>
<td>Adrenal</td>
<td>356±41</td>
<td>196±28</td>
<td>-24±55</td>
</tr>
<tr>
<td>Intestine</td>
<td>117±21</td>
<td>29±5</td>
<td>-13±7</td>
</tr>
<tr>
<td>Liver</td>
<td>33±13</td>
<td>16±3</td>
<td>-5±6</td>
</tr>
<tr>
<td>Kidney</td>
<td>865±66</td>
<td>135±18</td>
<td>-2±53</td>
</tr>
<tr>
<td>Brain</td>
<td>81±8</td>
<td>64±8</td>
<td>-7±7</td>
</tr>
</tbody>
</table>
Figure 1
PRIMATE ENDOTOXIN SHOCK

Figure 2
PRIMATE ENDOTOXIN SHOCK
Figure 3

PRIMATE HEMORRHAGIC SHOCK

ACIDOTIC, COLD

- - - TREATED 2 mg/kg naloxone
△--△ CONTROL 0.9 % NaCl

TIME, min

Figure 4

PRIMATE HEMORRHAGIC SHOCK

LV dP/dt max, mmHg·10³/sec

ACIDOTIC, COLD

- - - TREATED 2 mg/kg naloxone
△--△ CONTROL 0.9 % NaCl

TIME, min
PRIMATE HEMORRHAGIC SHOCK

ACIDOTIC, COLD

- TREATED 2 mg/kg naloxone
- CONTROL 0.9% NaCl

Figure 5

TIME, min

-30 0 60 120 180 240 300

Figure 6
Figure 7
PRIMATE HEMORRHAGIC SHOCK

AREA SCORE = 1774 (pH - 7.0) - 19
r = 0.98, p < 0.01

F(1,3) = 20.07
p < 0.05 BY ANOVA

ACIDOTIC, COLD

Figure 8
PRIMATE HEMORRHAGIC SHOCK

PLASMA β-END, pg/ml

β-END = 334(T - 37.0) + 597
r = 0.67, p < 0.05

ACIDOTIC, COLD

T, °C

36.5 37 38 39
PRIMATE HEMORRHAGIC SHOCK

\[\text{AREA SCORE} = 648(T-37)-180 \]
\[r = 0.75 \]

ACIDOTIC, COLD

Figure 9
Figure 10

PRIMATE HEMORRHAGIC SHOCK

MAP, mmHg

TREATED 2 mg/kg naloxone
CONTROL 0.9 % NaCl

Figure 11

PRIMATE HEMORRHAGIC SHOCK

LV dp/dt max, mmHg·10³/sec

TREATED 2 mg/kg naloxone
CONTROL 0.9 % NaCl
Normal Saline
Naloxone (2 mg/kg + INF)
Dexamethasone (75 mg/kg)
Dexamethasone + Naloxone

Figure 1A
Figure 15

UNCOMPENSATED HEMORRHAGIC SHOCK, SURVIVAL

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline</td>
<td>5</td>
</tr>
<tr>
<td>Dexamethasone 75mg/kg</td>
<td>9</td>
</tr>
<tr>
<td>Dexamethasone 75mg/kg + Naloxone 2mg/kg</td>
<td>7</td>
</tr>
<tr>
<td>Methylprednisolone 30mg/kg</td>
<td>5</td>
</tr>
<tr>
<td>Methylprednisolone 30mg/kg + Naloxone 2mg/kg</td>
<td>5</td>
</tr>
<tr>
<td>Naloxone 2mg/kg</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 16
Figure 17
CANINE HEMORRHAGIC SHOCK
Bilateral Adx / C.O.

MAP, mmHg

TIME, min

Cortisol
Treat

C0.1/min

TIME, min

Cortisol
Treat

- 13 -
CANINE HEMORRHAGIC SHOCK
Bacterial Ad./ card.*

(NS CONTROL, n=6
ONALOXONE 2 mg/kg, n=7
NS + CORTISOL, n=5
ONALOXONE 2 mg/kg + CORTISOL, n=5

Figure 19
Figure 24

Figure 25

- 36 -
Figure 26

Figure 27
Figure 28

Figure 29
Figure 30.

TRH IN PRIMATE HEMORRHAGIC SHOCK

MAP, mm Hg

TIME (min)

0 25 50 75 100 125

TRH 2 mg/kg + 2 mg/kg·hr
n = 5

0.9% NaCl, n = 5

Figure 31.

TRH IN PRIMATE HEMORRHAGIC SHOCK

LV dp/dt max, mm Hg·10^{-5}/sec

TIME (min)

0 60 120 180 240 300

0 1 2 3 4

TRH 2 mg/kg + 2 mg/kg·hr
n = 5

0.9% NaCl, n = 5
EFFECT OF TRH IN PRIMATE ENDOTOXIC SHOCK

Figure 32

EFFECT OF TRH IN PRIMATE ENDOTOXIC SHOCK

Figure 33
DELAYED NALOXONE TREATMENT IN HEMORRHAGIC SHOCK

Figure 34

DELAYED NALOXONE TREATMENT IN HEMORRHAGIC SHOCK

Figure 35

-41-
DELAYED NALOXONE TREATMENT IN HEMORRHAGIC SHOCK

Figure 36

Figure 37
INTRACEREBOVENTRICULAR NALOXONE IN CANINE HYPOVOLEMIC SHOCK

![Graph showing MAP and CO changes during hypovolemic shock.](image)

Figure 38

INTRACEREBOVENTRICULAR NALOXONE IN CANINE HYPOVOLEMIC SHOCK

- **MAP, mmHg**
- **CO, L/min**

Legend:
- X NALOXONE 0.1 mg/kg
- • ARTIFICIAL CSF

Perfusion Times:
- Baseline
- 15, 30, 45, 60, 75, 90 min

Notes:
- Decrease in MAP and CO following Naloxone injection.
INTRACEREBROVENTRICULAR NALOXONE IN CANINE HYPOVOLEMIC SHOCK

![Graph showing LV dP/dt_max (mmHg·10^3/sec) over time (min)]

- Baseline
- 0
- 30
- 60
- 90

Time, min

Figure 40
INTRACEREBROVENTRICULAR NALOXONE IN CANINE ENDOTOXEMIC SHOCK

Figure 41

INTRACEREBROVENTRICULAR NALOXONE IN CANINE ENDOTOXEMIC SHOCK

Figure 42
INTRACEREBROVENTRICULAR NALOXONE IN CANINE ENDOTOXEMIC SHOCK

Figure 43

ARTIFICIAL CSF
x NALOXONE 0.1 mg/kg

Time, min

Baseline 0 15 30 45 60 75

IV dp/dt max, mmHg*10^{-3}/sec
INTRATHECAL NALOXONE IN CANINE HYPOVOLEMIC SHOCK

MAP, mmHg

ARTIFICIAL CSF

NALOXONE 0.1 mg/kg

TIME, min

Figure 44

INTRATHECAL NALOXONE IN CANINE HYPOVOLEMIC SHOCK

CO₂ L/min

ARTIFICIAL CSF

NALOXONE 0.1 mg/kg

TIME, min

Figure 45

-47-
INTRATHECAL NALOXONE IN CANINE HYPOVOLEMIC SHOCK

TIME, min
Figure 46
Figure 2

\[H_5 = \text{STIMULATORY HORMONE} \]
\[H_1 = \text{INHIBITORY HORMONE} \]

- \(H_5 \): STIMULATORY HORMONE
 - \(\beta \)-adrenergic agonists
 - Dopamine
 - Prostaglandins
 - Peptide Hormones

- \(H_1 \): INHIBITORY HORMONE
 - Opioids

\[\text{GTP} = \text{GUANOSINE TRIPHOSPHATE} \]
\[\text{ATP} = \text{ADENOSINE TRIPHOSPHATE} \]

\[\text{CAMP} = \text{CYCLIC ADENOSINE MONOPHOSPHATE} \]

- \(R \): HORMONE RECEPTOR
 - \(s \): STIMULATORY
 - \(i \): INHIBITORY

- \(G \): GUANINE NUCLEOTIDE-BINDING PROTEIN
 - \(s \): STIMULATORY
 - \(\alpha \): \(\alpha \) SUBUNIT
 - \(i \): INHIBITORY
 - \(\beta \): \(\beta \) SUBUNIT

- \(\Delta \): ADENYLATED CYCLASE

\[(+) \]: STIMULATION
\[(-) \]: INHIBITION
endorphins

\[\beta\text{-adrenergic receptor} \]
\[G\text{-proteins} \]
\[\text{adenylate cyclase} \]

\[\text{cyclic-AMP}^* \]

\[\text{protein kinase} \]

\[\text{calcium regulation} \]

\[\text{contraction-relaxation} \]

\[\text{depressed function}^* \]

Figure 42

- endorphins
- catecholamines
- endotoxin-released mediators
LITERATURE CITED

endorphin and adrenocorticotropin are secreted concomitantly by

Pathophysiology of Endotoxin. Amsterdam: Elsevier Science

3. Faden AI, Holaday JW. Opiate antagonists: a role in the treatment

4. Holaday JW, Faden AI. Naloxone reversal of endotoxin hypotension

Naloxone reversal of hypovolemic shock in dogs. Circ Shock 1980;
7:31-38.

Blockade of opiate receptors with naloxone improves survival and
cardiac performance in canine endotoxic shock. Circ Shock 1980;

7. Gurll NJ. Naloxone in endotoxic shock: experimental models and

8. Peters WP, Friedman PA, Johnson MW, Mitch WE. Pressor effect of

Abstracts

2. N. Gurll and J. Harmon: Blockade of histamine H_1 and H_2 receptors does not prevent increase in cation permeability due to bile salt. Gastroenterology 76:1146, 1979.

intracerebroventricularly on selected cardiovascular responses in

18. N. J. Gurll, D. G. Reynolds, T. Vargish, S. A. Lutz, and E. Ganes:
Primate endotoxemic shock reversed by opiate receptor blockade with

19. S. Anuras, A. Shaw, M. D. Schuffler, S. Shirazi, N. J. Gurll, and
F. A. Mitros: Familial visceral myopathy - a heterogeneous disease.

temperature and acid-base balance determine cardiovascular re-
41:1135, 1982.

21. S. Anuras, F. A. Mitros, A. Shaw, M. D. Schuffler, A. Milano, S.

Ganes: Adrenalectomy abolishes the naloxone effect in hemorrhagic

Vargish: Naloxone in extended uncompensated hemorrhagic shock.

of endorphins in primate hemorrhagic shock. Langenbecks Archiv.

Manuscripts

-59-

10. N. J. Gurll, J. W. Holcroft, P. Numann, D. G. Reynolds, R. S. Rhodes, R. P. Saik, F. T. Thomas, M. O. Tilson, and C. K. Zarins:

11. N. Gurll, J. Harmon, and D. G. Reynolds: Histamine H$_1$ and H$_2$ receptor blockade does not maintain electrochemical gradients across canine gastric mucosa exposed to bile salt. Dig. Dis. Sci. 27:538-544, 1982.

Book Chapters

PERSONNEL SUPPORTED BY THIS CONTRACT

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Support Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson J. Gurill, M.D.</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>David G. Reynolds, Ph.D.</td>
<td></td>
<td>salary</td>
</tr>
<tr>
<td>Thomas Vargish, M.D.</td>
<td></td>
<td>support</td>
</tr>
<tr>
<td>Carl V. Gisolfi, Ph.D.</td>
<td>partial salary</td>
<td></td>
</tr>
<tr>
<td>Robert Lechner, M.D., Ph.D.</td>
<td>(1985)</td>
<td></td>
</tr>
<tr>
<td>Eric M. Sares, B.S.</td>
<td>salary</td>
<td></td>
</tr>
<tr>
<td>Thomas Smith, B.S.</td>
<td>salary</td>
<td></td>
</tr>
<tr>
<td>Richard E. Lind, M.D.</td>
<td>Surgical</td>
<td></td>
</tr>
<tr>
<td>Stephen A. Lutz, M.D.</td>
<td>residents</td>
<td></td>
</tr>
<tr>
<td>Mary Lou Patton, M.D.</td>
<td>working</td>
<td></td>
</tr>
<tr>
<td>Lyle B. Hunt, M.D.</td>
<td>in laboratory</td>
<td></td>
</tr>
<tr>
<td>Brance E. Modin, M.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. D. Owen</td>
<td>Doctoral candidates working in</td>
<td></td>
</tr>
<tr>
<td>K. C. Kregel</td>
<td>Dr. Gisolfi's laboratory</td>
<td></td>
</tr>
<tr>
<td>Joseph Jenkins, M.D.</td>
<td></td>
<td>Worked in our</td>
</tr>
<tr>
<td>Ann Kamhawy</td>
<td></td>
<td>laboratories as</td>
</tr>
<tr>
<td>Tracy Powell</td>
<td></td>
<td>medical students</td>
</tr>
<tr>
<td>Aristotle Dimianos</td>
<td></td>
<td>or undergraduates</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Copies</th>
<th>Recipient</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Commander</td>
<td>Letterman Army Institute of Research (LAIR), Bldg. 1110 ATTN: SGRD-ULZ-RC Presidio of San Francisco, CA 94129-6815</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>US Army Medical Research and Development Command ATTN: SGRD-RMI-S Fort Detrick, Frederick, Maryland 21707-5012</td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Information Center (DTIC) ATTN: DTIC-DDAC Cameron Station Alexandria, VA 22304-6145</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dean</td>
<td>School of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20814-4799</td>
</tr>
<tr>
<td>1</td>
<td>Commandant</td>
<td>Academy of Health Sciences, US Army ATTN: AHS-CDM Fort Sam Houston, Texas 78234-6100</td>
</tr>
</tbody>
</table>