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" This research attempted to show that an Air Force unit can be modeled as
an industry with its "output"‘delermined through a production function. A
second-order polynomial was used as the production function in this
research. A resource-alfocation simulation was used to generate the data for
analysis. Only two input factors were analyzed--support Kits and
maintenance crews. In this way, these two inputs could be compared to the
microeconomic factors of production--capital and labor.

Basic Response Surface Methodology (RSM) techniques were used to
estimate the second-order polynomial. Experimental designs in the form of
central composite designs (CCD) were used to determine the input factor
combinations. A complete statistical analysis of the pure linear model and
the second-order model, complete with statistical tests and ANOVA, was
performed. Basic microeconomic definitions of first- and second-order
conditions were discussed and the conditions for least-cost combinations of
the inputs for the second-order polynomial were derived. —

A canonical analysis was done on the output data in order to plot the
response contours of maximum yield. Also, a cost constraint was imposed on
this production function and a multiple response surface with maximum
yield and minimum cost contours overlapped within the experimental region
was plotted to show the relationship of maximum yield to minimum cost.

The results of the canonical analysis of the response model indicated that
a production function can be maximized subject to a minimum cost

constraint through the use of a multiple response system. The path from
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. maximum yield to minimum cost, and the trade-offs involved, were

discussed. Also, the problems associated with Jsing simulated data to
estimate production functions were outlined. Finally! some benefits of using

a second-order polynomial as a production function in comparison with the

'.l.l l.f -

commonly used Cobb-Douglas and Constant Elasticity of Substitution (CES)

production functions were discussed.
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USING SECOND-ORDER POLYNOMIALS

AS PRODUCTION FUNCTIONS

General Issue

Often the following question is asked to Air Force decision makers:

If your unit is given a budget increase of
x dollars per year, where should this money
be allocated in order to achieve the maximum
increase in overall effectiveness [or the system?

This question often arises and, in cases where the system is extremely
large and complex, no immediate answer is apparent. This problem is
compounded even more due to the fact that the Air Force bases many of its
important cost decisions on results obtained from computer resource-
allocation simulations instead of results from real-world observations. Now,
more than ever, simulations are used by decision makers because: (1) In
simulations, much more control can be imposed over the experimental
conditions than in the real world. "What if" questions can be asked of the
computer simulation model where little or no data currently exists.

(2) Much of the underlying randomness can be controlled by computer
simulations by simply controlling the pseudorandom numbers that drive the
stochastic events which occur in the computer simulation model Variance-

reduction techniques can be employed Lo yield estimators having greater
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statistical precision. Thus, there is no need for complete randomness of the
experimental conditions or simulation run order to guard against the
introduction of biases and variation in the system. (3) Simulations may
account for many detailed aspects of the actual system and therefore
simulation models may easily handle exceptionally large numbers of input
variables. (4) Problems caused by missing data and outliers do not cause
problems in simulation studies. Since the computer simulation is a closed
system, outliers cati not occur. Also, with appropriate time allotment and
funding, missing output data is rarely seen (37:250-251).

All of the information needed to answer the above question is contained
in a simple production function from microeconomic theory. A production
function expresses the relationship between the maximum quantity of
output and the inputs required to produce it and also the relationship
between the inputs themselves. A common production function used in
industry is the Cobb-Douglas (CD) production function:

Q = AKALB (1)
where A is a positive constant and 4 and 3 are positive fractions (11:373).
Major features of this production function are: (1) It is homogeneous of
degree (a+B). (2) If (a+B)=1, it is linear homogeneous. (3) Its isoquants are
negatively sloped throughout and convex downward. (4) If (a:B)=1, the
function exhibits constant returns to scale (11:374).

Consider the function, Qq= AKALB, Taking natural logarithms of both

sides:
inQg=In(A)+aln(K)+BIn(L) (2)
And then the total differential:
dK/dL = -(dF/dL)/(dF/dk)- -(B/L)/(a/K)=-BK/aL (3)
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Therefore, -BK/4aL < 0.

Then, the second total differential:

d2K/dL2- d/dL(-BK/aL)=(-B/2)d/dL(K/L)=(-B/a)(1/L2)(L(dK/dL)-K) > 0.

The signs of these derivatives indicate the isoquants to be downward sloping
and conver.

Assume, a+B=1. Therefore, -1-4. Rewriting Qp= AKAL1-2 and taking
second partial differentials with respect to K and L yields the marginal
products:

dQ/dK - AKA-111-2 - Aaka-11-(a-1) < Aa(k/L)3-! (4)
dQ/dL - AK#(1-3)L-4 - A(1-2)(K/L)A (5)

Thus, economic meaning can be assigned to the values of the exponents, a

and B, in the linear Cobb-Douglas production model. Since each input is to be

paid by the amount of its marginal product, the relative share to capital will
be:

(K/Q)(dQ/dK)-IKAa(K/L)a-1)/[AKALB]- a (6)
And labor’'s share will be:
(L/Q)dQ/dK)-IL A(1-2)(K/L)4)/|AKALB]- 1-3 = B (7)

Therefore, a and B are the relative shares of the total product of capital and
labor. This indicates the need for a and f3 to be positive fractions and the
result a+3 = 1 conlirms exhuastion of this rule (11:374-375).

Another popular production function is the Constant Elasticity of
Substitution (CES) production function. This production function is of the
form that the elasticity of substitution may take on any constant value other
than one. The CES function:

Q= AlaK-P + (1-d)L-p]-1/p (8)
where: (A>0;0cd cl; p>-1).
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K and L represent two factors of production and A,d,p are three parameters
(11:382). A is known as the elficiency parameter and takes on the same role
as A in the Cobb-Douglas function: it declares the general state of technology.
The parameter 9 is the distribution parameter and, like alpha in the Cobb-
Douglas function, determines relative factor shares in the product. The
parameter p is the substitution parameter that determines the value of the
constant elasticity of substitution (11:382).

Like the CD-function, the CES function is homogeneous of degree one and
thus displays constant returns to scale. The elasticity of substitution equals
(marginal function)/(average function)=(1/1+p). Therefore, the elasticity of
substitution, s, is a constant whose magnitude depends on the value of the
parameter p:

-l<pc0:s5>1
p=0:s-1
O<peoo:sc].
Thus the Cobb-Douglas function is a special case of the CES function when p
is equal to zero (11:382).

In contrast to these two production functions is a group of variable
elasticity of substitution (VES) production functions in which the elasticity of
substitution parameter, s, may take on a range of different values depending
on the input combinations. Second-order polynomials are a common
example of some VES production functions.

VES production functions have a substitution parameter which varies
linearly with the capital-labor ratio around an intercept term of unity
(33:64). The VES gives a linear view of the economic process in contrast to

the log linear view given by the CES function (33:68). Most economic studies
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assume a specified numerical value for the elasticity of substitution

parameter, 5. The Cobb-Douglass (CD), for instance, assumes s equals unity

while most strictly linear production functions assume zero or infinity. In .
theory, this parameter may take on any value between zero and infinity. F
! The elasticity of substitution parameter can be a variable depending on A
the input/output combinations. Thus, an assumption of a constant elasticity .

E of substitutions may lead to a specification bias (33:63). Revankar (1971)
: gave a specific CD generalization as to the choice of s: :
$= 1+ B(K/L) (9) :
where 3 is a parameter. This equation states that s varies linearly with the
capital-labor ratio. A function that exhibits this behavior is known as a VES f
production function. It can simply be shown that when 3-0, s=1 and the VES .

degenerates to a CD. Therefore, the null hypothesis that 3-0 is of great

importance (33:64) ,
The biggest difference between the VES and the CES is the linear :
relationship among the economic variables in the VES while the CES gives ’ o .
log-linear relationships. The elasticity of substitution, s, for a VES function 1
J is: .
s=s(KL)=1-1(p- 1)/(1 - dp)IK/L] (10) -3
Thus, B-[(p - 1)/(1 - dp)]. So, it can be shown, that s varies with the capital- .
labor ratio around the intercept term of unity. One must also assume that s -
is greater than zero in the experimental range of (K,L) (33:65).
Another important difference between the VES and the CES is the CES .
requires the elasticity of substitution be the same at all points of the B
‘ isoquant map regardless of the level of output. The VES requires only that i
.
> »
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the elasticity of substitution be the same along a ray in the isoquant map.
The parameter may vary along an individual isoquant (33:67).
With all of this economic theory available, relating some Air Force output

to a production function and an underlying cost constrainl poses an

interesting issue. The general issue at hand here is to treat some Air Force

unit as some type of industry. Through the use of a computer simulation >
:: model, the “industry’'s” production function can be built. Then, finally, the ;
' production function can be optimized subject to some budget constraint. ‘
_ This last point is simply the microeconomic theory of the least-cost ’
E combinations of inputs. This is what is commonly referred to as simple [irst-
i order conditions (39:1). The problem is formulated as minimizing a cost
; function: C = aPy + bPp subject to some output constraint: Q(a,b) = Qg. The
objective fuction will then be: :
1= aPy + bPp +pl Qp - Qlab)) (11) h
To satisfy the [irst-order conditions for minimizing C, the input levels ;
, must satisfy the following simultaneous equations:
la=Pa-1M0z=0 (12) A
Ip = Pp - pp - 0 (13) .
Z”=()U-Q(a,b)=0 (14)
The first two equations imply the condition: X
. Pa/Qa = Pp/0p = 1 (15) x
' This implies that at the least-cost combination of inputs, the input price- ‘
marginal product ratio, must be the same for each input. Therefore, the 3

Lagrange multiplier, p, can be said to equal the marginal cost of production.

6
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The second-order condition readily follows (39:4). To insure minimum
cost alter the first-order condition is met, the production process must have
a negative bordered llessian, ie.

B | 0 -Qq -Qp |
Hl = 1-Qa -1Qza -MOQgpl
| -Qb ~1Qab -MQbbl
K - 1Qaa0b? - 20ab0a0b *+ QbpQa?) <0 (16)
Since the marginal cost (p) is always positive, the expression in parentheses

must be negative (39:6-13).

HHuS]

The first assumption that is made here is that the marginal utility is
positive (9, and Qp > 0). However, diminishing marginal utility
(Qaa and Qpp, < 0) alone will not ensure the expression in parentheses is
negative. Each term must be noted separately.
Looking closer at the expression in parentheses, Qpp Will exist only if
E there is an interaction term (ie. xyx3) in the production function equation. If
- there is not an interaction term then the entire middle term will be zero.
» This will force the expression (Q,30p2 + Qpp0a2) to be negative. Since the
’ squared terms are always positive, both Qg4 and Qpp must be negative for
z the second-order conditions to be met.
N If an interaction term does exist, it has the possibility of being either
: positive or negative. This term describes how increases in x; affect the
marginal utility of 15. In general, it is not possible to predict the sign of this _
v interaction term (30:93). If it is positive, th middle term is negative and if
.;'-. Qaa and/or Qpp, are positive, 120,450,051 must be greater than
;Z 1022002 *+ Opp Va2l to ensure that second order conditions are satisfied. If the
::. interaction term is negative, then Quq and Qpp must be negative and
v
;
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102a0b2 + Qub Va2l must be greater than 12Qap0,Ql.

Now this process can be evaluated in terms of the efasticity of
substitution parameter, s. When the input price ratio (P3/Pp) rises, the
optimal input ratio of b/a will also rise because input b (now relatively
cheaper than a) will tend to be substituted for input a. The elasticity of

substitution can measure the extent of this substitution (11:381-382).
s = (% change in b/a)/(% change in P/Pp)

-ldib/a)/(b/a)l/[d(P4/ P )/ (Pa/Pp))
=|d(b/a)/d(P3/Pyp)1/1(b/a)/(Pa/Pp)l (17)
The value of s can be anywhere between zero and infinity. The larger the

value of s, the greater the substitutability between a and b. For the Cobb-
Douglas function, (b/a)-(B/a)(P4/Py,). Thus, d(b/a)/d(P4/Py)=6/4 and

(b/a)/(Pa/Pp)-B/4. Substitution into the elasticity equation yields s=1.

Therefore, the Cobb-Douglas equation is characterized by a constant
unitary elasticity of substitution. This result does not rely on the fact that
a+f3~1. Thus, the elasticity of substitution of the production function will be
unity even if a+8 does not equal 1 (11:375).

This least-cost combination can be constructed for a second-order
polynomial as a production function (assuming no interaction term) in the
following manner:

Assume the production function of interest is:

Y = bg+ byxy+ baxy + byyx 2 + byoxy2 (18)
A few assumptions must be made. (1) vy, the output, can be treated as a
response function. (2) the parameters, b;’s, can be estimated by the method
of least squares. (3) conditions of cost-minimization and output-

maximization can be met. Therefore,
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f1=by+2by x> 0and (] = 2byy (19)

fo=by+ 2byrxp> 0 and {7 = 2by) (29)
The resulting second-order conditions derived in Eq (16) must be met in
order for a least-cost combination of inputs to result. Eqs (19) and (20) are

the result of a closed-form solution only in the absence of an interaction

term, [j. As mentioned earlier, il [} is absent, then [{{ and {7 must be
negative in order for the entire expression to be negative. If [, is not equal
to zero, then the sign of the middle term must be taken into account. If f;;
is positive, then the entire middle term will be negative since f and [, must
always be positive. Thus, since [} and {7, are negative, the entire
expression in Eq (16) will be negative and cost minimization will be possible.
But, if {7 is negative, the entire middle term will be positive, and so the
relative magnitude of the middle term with respect to the two negative end
terms must be calculated to ensure that cost minimization is possible.
However, there is not a closed form solution, using this method, for finding
the cost minimization conditions with a interaction term present in the
second order polynomial production function.
The augmented objective function can be written as a cost function:
Min C = Pyx + Paxp (21)
subject to an output constraint as a production function:
y = [(X1.X2) = by + byxy+ baxy « byyx 2 + bypxy? (22)
Then using the method of Lagrange multipliers,
Z=Pixy+ Paxy+ ply-(bg+ byxy+ baxa + byyxj2 + barxa2)] (23)
where 1 is the Lagrange multiplier and in this case can be used as the

marginal cost.

Taking derivatives:




- - -

dZ/dx( = py- iy~ 0 and dxp/dpy = p2 - plz2 = 0 (24)
dZ/dp = -p(bg + byxy + baxy + b1 2 + baxa2) = 0 (25)

B = py/fy ~ py/(by+ 2by(xy) =pa/fz = pa/(bz + 2b2x7) (26)

and setting the marginal costs equal to each other:
pi/(by + 2byyxy) = pa/(bz + 2bzox3) (27)

T e

Thus, the input price ratio is:
p1/p2 = (by + 2by x{)/(by + 2b22x7) (28)
where py = by + 2jaby1X and pp = by + 2jabyrx2 and where
Zubyyxy = py - Mbyand 2pubayx; = p2 - Pby.
So, xy= (py/2pbyy) - (by/2byy) and x3- (pa/2pbyy) - (bp/2byp) Where the

demand equations for maximizing the utility of the inputs are:

11" = 11(p1.p2.ybi’s) (29)
2 12" = x2(p1.p2.y:by’s) (30)
p* = uipy.p2ybi's) (31)

These demand equations show that the optimal choice of an input is not only
a function of its own price but also the prices of the other input, given a
constant output, and the parameters of the model (30:131).

Substituting back into the original production function, Eq (19):

y = bg+ byxy+ baxz » byyxj? + bypxz?
= bg+ bl(py/2pbyy) - (by/2by)]+ bal(pa/2pby;) - (ba/2b32)] +
bysl(py/2mbyy) - (by/2by )12 + byallpa/2Mbyp) - (ba/2bg2) 2 (32) SR

Carrying out all the arithmetic, a positive real root is possible if and only

if:

4by1ba2y + by2by; + baZbyy < 0 or (33)
4byiba2y < -1by2by; + ba2byylor (34)
y < -[(by2bp; + ba2by)/(4byyb22)] (35)
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Cost minimization is possible if the negative bordered Hessian [H| is
A greaterthan zero or (1/12)(f11122 - 2012f 2 + f22012) < 0.

It was shown that:fy = by + 2byyxy> 0 and [y = 2by
fa = by + 2b22xp> 0 and fz7 = 2byp . Using the above function, f{5 = 0, so:

- ll‘l.l.

(2byy)(by + 2bpx2)2 + (2b2)(by + 2by1x1)2 < 0. Since the squared terms are

always positive, cost minimization will be possible if:
(by+ 2byyx()2/(by + 2bx2)2 < - (bp/byy) (36)

ALY MM

Again, it is important to mention that then second-order polynomial
production function used in this example does not contain an interaction
term, xyx2. If such an interaction term does exist, then the aforementioned
" method of Lagrange multipliers can be applied in a search for the least-cost

: combination of inputs, however the solutions will be different.

Specific Problem Statement

In this research, a production function will be treated as a response
surface and basic response surface methodology (RSM) techniques will be
used to derive a second-order polynomial production function from
simulated data.

X This polynomial will be of great help to the analyst because it will free
- him of the constraints and complications encountered when working with
either the Cobb-Douglas or CES production functions. The basic problem boils

down to predicting future responses from an existing response (production)

function.

The constraints on the Cobb-Douglas function hamper its use. Although
. this function is lincar in its logarithmic form and simple least-squares
: regression can be used to estimate its parameters, the elasticity of

substitution is unity for any input factor combination and for any capital

Culy




intensity (b/a). This function is therefore incapable of representing a change

in the ecase of substitution of labor for capital (10:42).

Although the CES production function is an extension of the Cobb-Douglas
function, some complications with the CES limit its use. The major problem is
that it is difficult to generalize the function for more than two input factors.
Also, the CES function assumes the elasticity of substitution between capital
and labor does not vary with respect to the input factors. Finally, and
probably most importantly, the CES function is difficult to fit to data since its
parameters are nonlinear. Therefore, a nonlinear least-squares iterative
computer program involving initial guesses as to the values of the
parameters is required for parameter estimation (10:62).

The most common and easily interpretted form of a response function is a
straight line relationship. However, most data, whether from simulation, lab
experimentation, or real-life observation, do not follow straight lines but
rather, curves. There are two methods for the study of a curvilinear
relationship. One is a transfor mation of the variables (both dependent and
independent) so the resulting relationhip between the variables is linear.
The other is to work directly with the curvilinear relationship. The end
result of the two methods is usually the same. However. it is usually easier
for one to think in terms of a curved response than in terms of some type of
lograithmic transformation (24:816).

Some benefits and problems associated with using polynomials as
response functions can now be discussed. The most commonly used
response function is a polynomial of degree p. The simple straight line is
when p-1. Asides f[rom this, the most common is the quadratic function
(p-2)(24.816).
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Quadratics are popular because they only involve addition of an extra

term to the straight line relationship making them the simplest curvilinear
relationship. Also, from high school calculus, quadratics have a simple
optimum a x = -By/2B;. The common method of least-squares can estimate
the parameters of this function easily. Polynomials make easy
generalizations to multidimensional relationships between a response y and
several x-variables. This allows for increased [lexibility because of the
powers allowed in the x-variables and because the quadratic polynomial is
not symmetric (24:817).

Some disadvantages associated with polynomials are that extrapolation is
virtually impossible outside the range of the constrained x-values. This
sometimes results in impossible values of y predicted with only a small
degree of extrapolation outside the range of the x-values. Also, linear
polynomials are symmetric about the optimum value. Finally, asymptotic

forms of relationships cannot be formed by quadratics (24:817).
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Revicw of the Literature

"

Topic,

It 1s the purpose of this literature search to review the published [indings
in the licld of nonlincar production functions and response surface
methodology (RSM) techniques. This review will be limited to the two most ;
common functions--the Cobb-Douglas and the Constant Elasticity of
Substitution (CES) production functions and the class of second-order ' ‘

polynomials as response functions.

Background.

As mentioned earlier, a production function expresses the relationship
between the maximum quantity of output and the inputs required to
: produce it and also the relationship between the inputs themselves. In ’
analysis, a production function can be treated as a response surface. Decision ’
making is constrained by the technology embedded in the response surface.
In the first part of this review, two commonly used nonlinear functions, the
Cobb-Douglas and the CES production functions, will be analyzed as response
surfaces. All production functions embody technological constraints that are
imposed on the decision making process. But the decisions are not imposed
on the way in which outputs relate to inputs. There are four characteristics
of the production function which are extremely useful [or analysis:
technological efficiency, economies of scale, the degree of intensity of one
input of a technology, and the ease with which one input is substituted for
another (10).

Technological efficiency refers only to the relationship between inputs

and outputs. For a given set of inpults, the elficiency along with other
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factors, determine the resulting output. It is simply a scalar transfor mation
of inputs into outputs.

Economies of scale are defined as: for a given proportional increase in all
inputs, when output is increased by a larger proportion then the process
exhibits increasing returns (or economies of scale). If output is increased by
the same proportion then the process exhibits constant returns. And il
output is increased by a smaller proportion then the process exhibits
decreasing returns (or diseconomies of scale) (10:13).

The degree of intensity is defined as the quantity of one input relative to
the quantity of another input used in the production process. The concern
here is with the technological requirements of the production process, not
the levels of relative input supplies.

The ease with which one input is substituted for another is delined as the
elasticity of substitution. In the two functions analyzed here, the Cobb-
Douglas function is characterized by an elasticity of substitution strictly
equal to one while the CES function can have any constant elasticity value.
Due to the strict equality of the Cubb -Douglas’ elasticity of substitution, this
function is incapable of representing a change in the fourth characteristic of
production functions--ease of substitution. Ilence, an extension to this
simple nonlinear function is the CES. However, it was described earlier how
the CES production function is not always the casiest function to employ.

The second part of this review will be a discussion of the literature
dealing with response surface methodology (RSM). RSM theory will be the

basis for the building of the production function used in this research.
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Justilication,

Because of the extensive use of simulations in anpalysis, many decisions
are based on results obtained from a system simulation model. In a resource
allocation simulation, an optimal mix of inputs is found to produce a desired
level of output. Validation of this simulation would be an attempt to
demonstrate that the simulation behaves like the actual system. The most
compelling objection to simulation arises here: the difficulty of distinguishing
good results from bad ones (36:101). This problem could develop into a
major concern--expensive experimentation with a poor simulation and

allocation of resources based on the resulits.

Scope.

In this literature review, the current articles on parameter estimation,
elasticity of substitution, efficiency, and economies of scale are reviewed in
an effort to show the complicated issues involved when dealing with
nonlinear production functions. Then, through the review of the RSM
literature, the advantages of using second-order polynomials as response
(production) functions in the place of a Cobb-Douglas or CES production

function will be apparent.

Nonlinear Production Funclions.

The first step in the use of any production function in the input-output
process is the estimation of its parameters. The functions that will be
discussed in the [irst hall of this literature review are nonlinear in nature.
While the Cobb-Douglas function is linear in its parameters, the CES function

is nonlinear in its parameters. In the last several years increasing

.
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acceptance to the fact that nonlinear models and nonlinear estimation

problems can be handled, if not quite as routinely as linear problems, at

Y ¥ LR J

least in a reasonably effective manner has led to many interesting situations.

Bodkin and Klein (1967) used two approaches to estimating the nonlincar

PRI

parameters: direct (single equation) estimates of the two principle variants

.l"?

of an aggregate production function and estimates obtained from a two
equation system. They note that production functions and associated

marginal productivity are essentially nonlinear relationships and used

T
2@ 5

computer programs to cut through these nonlinearities to obtain direct

estimates of the parameters. When estimating the Cobb-Douglas production

e

function, the two procedures yield very similar results. However the CES

production function comparison yields different results. Due to large

,'f{/’n‘. *p

negative intercorrelation between the residuals, the two-step procedure

yields different results from those based upon simultaneous equations

o e

(2:38). They conclude that with either formulation of the error terms
(additive or multiplicative), the CES is a strongly nonlinear function of the
parameters which cannot be made linear by a logarithmic or other simple
transformation. The natural procedure in this case would seem to use
nonlinear methods of estimation (2:33).

Eisenpress and Greenstad (1966) developed a computer package that
handles nonlinear estimation procedures by solving each equation in a
nonlincar system by ordinary least squares and then to use these results as

the initial approximations to the full infor mation solution. One drawback to

R, SO

their procedure is if nonlinear least squares estimation procedures are
applied to such an equation, and the results used in the second stage, it is

assumed that the errors are additive (15:860). This is a poor assumption
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BOTRANN, RRR

17

ey, e R S N I SN RN T ST N S RPN A RS B e R C Selele e
v e._z\_.',f. A NN T NN T LY N N F T A A s



N

| | since in at least one test computation, the two stage estimates turned out to :
| be poorer than the ordinary least squares estimates (15:861). ::‘
A dilferent approach to estimating the Cobb-Douglas function was ;-:
introduced by Goldberger (1968). His main focus is that when the Cobb- f.
Douglas form is used, the standard specification and approach to estimation : |
shift attention from the mean to the median as a measure of central :
tendency (17:464). He shows how minimum variance unbiased estimators of \
paramelers of either the mean or median may be obtained. Since taking ;
logarithms gives a linear regression relationship with a different intercept, 5
which measure of central tendency to be used should be explicit (17:467).
Kumar and Gapinski (1974) used the nonlinear least squares regression ,'
technigue to try and handle the econometric characteristics of the CES
estimators. Simulated data resulted in smooth response surfaces but these ,
results are considered dubious due to a high degree of multicollinearity that .
may occur in actual practice (20:563). When actual data was run several ..
different variances of the estimates were found. The variances could be so ;S
large as to suggest a stochastic series or small enough to be virtually ;
deterministic. Their results show little bias in the parameter estimates,
except for the elasticity of substitution, regardless of whether the true
response surface has additive or multiplicative errors (20:564). The ;
elasticity of substitution, on the other hand, was estimated very imprecisely
(20:564). One cause of this imprecision was how the regression program
operates near the optimum. However, the study is very uselul in showing - .
that nonlinear least squares estimation is an important tool in estimating the E
parameters of the CES production function. Nonlinear least squares appears :
.
18 .
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to be an important tool for providing accurate estimates except for the
elasticity of substitution (20:567).

The driving force in most of the literature concerning nonlinear
estimation of the CES function is Kmenta (1967). He found using a
simultaneous equation technique that when constant returns to scale is
specified the elasticity of substitution can be estimated from the marginal
productivity condition by regressing the value of production per one input
on the parameter estimate of another (both measured in logarithms)
(19:180). However, if the CES function is generalized to permit nonconstant
returns to scale, the method is no longer feasible. He found that when dala
is available exhibiting nonconstant returns to scale, the CES function is
clearly preferable over the restrictive Cobb-Douglas function (19:186).

One subject that is of much debate is the value that the elasticity of
substitution takes on in a simulated production function.

In his article, Thursby (1980) compares a new parameter estimation
technique to three known procedures. Adopting the Kmenta approximation
methods he found reliable estimators for each of the parameters except the
elasticity of substitution. The difficulty is that the expected value of the
estimator does not exist under certain conditions and, when it does, the
variance may be extremely large (38:295). Kumar and Gapinski (1974)
reported that while most of the parameters were estimated with small bias
and variance, estimates of the elasticity of substitution were completely
unreliable (38:296).

Corbo (1977) states the problem is one of assumptions of either profit

maximization and constant returns to scale or cost minimization. Thus, it is

impossible to know if the parameter that one is estimating is the elasticity of
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substitution or some other parameter resulting from untested assumptions

V (12:1466). Using Kmentas' approach, he found reliable estimates of the
: returns Lo scale parameter but not reliable estimates of the elasticity of :
substitution (12:1466). He concludes that when one wished to choose among )

different production models, it is not proper to use the kmenta

approximation to test whether the production function is indeed a CES

(12:1467). 2

P

Berndt (1976) also commented on the "substantial disagreement over the

s value of the elasticity of substitution (1:69).” He found the discrepency

occurring over differences in data. Studies based on cross-sectional data
gave estimates close to unity while time series studies reported lower
estimates (1:59). Regression based on the marginal product of one input
produced lower estimates than regressions based on the marginal product of
another input. Berndt concludes that estimates of the elasticity of
substitution are extremely sensitive to differences in measurement and data
construction (1:59).

Maddala and Kadane (1967) hypothesized that a misspecification of the
elasticity of substitution could result in biases in the estimates of returns to
scale. The question was asked: "Suppose that the true production function is
the CES function with constant returns to scale but elasticity of substitution
signilicantly different from unity. We estimate, however, the Cobb-Douglas
production function instead. Do we observe increasing, constant, or
decrcasing returns to scale (22:420)?" Their major conclusion is that
misspecification of the elasticity of substitution can result in a substantial

bias in the estimates of returns to scale (22:420). Again, Kmenta's procedure

was used to estimate both parameters simultaneously. This procedure was

P AL & 4 S




not found to give reliable estimates of the elasticity of substitution although
reliable estimates of the returns to scale parameter were [ound. Their study
concludes with saying that il one is studying economic growth, then returns
to scale is the important parameter and the kmenta approximation to the CES
function teven if it does not give a reliable estimate of the elasticity of
substitution) is preferable to using the Cobb -Douglas production function
(22:420).

In trying to come to grasp with misspecifications involving the estimation
of production elasticities, Meeusen and van den Broeck (1977) specified a
model for a production function based on errors due to inefficiency.,
statistical errors due to randomness, and to specification and measurement
errors. They state that the alorementioned least-squares estimation
techniques systematically underestimate the values for production efficiency
(25:436). The reason for this is that the least -squares estimation ignores
statistical error. Their parameter estimates and constant returns to scale are
consistent with previous Cobb-Douglas estimates however no sensitivity
analysis was done to ensure this elficiency parameter holds over a wide

range ol the response surface (25:443).

21
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Response Surface Methodology.

The beginning of the study of response surface methodology, commonly
referred to as RSM, began in the 1951 with a critical paper written by G.EP
Box and K.B. Wilson. Box and Wilson (1951) used experimental designs to
find a point on a response surface which maximizes output or yield. The
advantage to their method was that the experimental design chosen uses the
smallest number of observations possible. They compare full and [ractional

factorial designs on the basis of precision and bias and introduce the concept

of central composite designs (CCD) for the first time. This paper layed the

foundation for the sequential movement, through experimental designs, from
a first order model to a second- or higher-order model. A CCD has the
advantage that it estimates all the derivatives up to the second order with
equal precision (7:16). The method of steepest ascent to search for a near-
stationary region around the optimum point of the response surface was
formed (7:23). The dominant assumption in this paper was that responses
can be estimated by a polynomial by simply varying the levels of the input
variables in the experimental design. These different experimental designs
are compared in terms of the variance -covariance matrices of their
parameter estimates (7:25).

The Box and Wilson paper spawned a series of related and expanded
works throughout the 1950's. These papers were the building blocks of the
entire RSM technique that is used today. Box and Hunter (1957) introduced
the concept of rotatability for a response surface design. Rotatability refers
the variance function of the response surface being spherical. This is
important since the variance of a predicted response will depend only on the

distance of the prediction point from the center of the design and not on its
direction (6:204).




Combining this thought with the initial concept of the CCD, Box and
Behnken (1960) showed that the minimum-varianced estimator of the model
is that with a spherical variance function --a rotatable design (8:456). They
also showed that for a design to be rotatable, it must be orthogonal. They
then proved that each factor in the design must be varied at only three
levels to approximate a polynomial response surface (8:459). Before this
paper, most thought that to approximate a polynomial response [unction,
each factor had to be varied at five levels. Box and Behnken's paper resulted
in reducing the amount of experimental runs needed to approximate the
response (8:460-463). The first to show this was DeBaun (1959). He showed
completely rotatable central composite designs requiring each factor be
varicd at five levels and then proved it was possible to construct a second-
order design where only three levels of each factor are required (13:4).
Although the variance of a design with five x-levels will always be less than
a design with three x-levels, DeBaun showed that a three-level design can be
an efllficient enough estimate of the response surface. This is advantageous
since, in some experimental designs, it would be very difficult to vary the
factors at [ive levels. Three levels (-1,0,+1) make it much more "convenient”
for the experimenter and still produce sufficient response surfaces.

Most of the early work in RSM was focused mainly on factorial designs to
maximize a response in a given region of interest. The [irst to do work in the
area uf describing the shape of the response surface were Box and Draper
(1959). Their work covered designs from exploring response surfaces to
specilic designs for estimating parameters and then a methodology to
distinguish between the two types of response surface models (4:624).

Mead (1975) asked two common questions: (1) How does one choose

which modef gives the best fit? and (2) If one has [it soine model to
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different sets of data how does the investigation proceed to prove which
models are dilferent (24.821)? Draper and Smith (1966) showed that both
of these questions can be answered with linear models because their
corresponding sampling distributions are known. In most situations, model
comparison becomes difficult since the term "best-fit" is ill-defined and the
analysis required to provide a comparison is not available (24:821). Draper
and Smith first defined the technique for linear models: (1) The inclusion or
exclusion of terms can be tested using extra sum of squares. (2) For models
with equal numbers of parameters, a simple comparison of the residual sum

of squares can be made. (3) When the purpose of fitting a model is to

predict future responses, Mallows (197 3) developed the Cp criterion:

Cp = (Residual SS/s2)-(N-2p) (37)
to choose the variables to be included in the final model (24:821). This is a
modification of the extra sum of squares technique but allows for the
number of parameters to be fitted (23:664). These three techniques will be
used in this research when the final model determination is to be made.

An important point in RSM that is often overlooked is the source of error
in the experimental design. Box and Wilson (1951) were the first to describe
the two sources of error in experimental designs--experimental error and
bias error. They showed that when an experimental design is being
considered, both variance of the predicted response function and the
difference between the two response functions should be considered (7:34).
A method for the choice of the design was first described by Box and Hunter
(1957). They suggested that the estimated function should approximate the
true function as closely as possible within the experimental region. Also, the
design should be a check for the accuracy of the estimated response function.

The design should not contain a large number of experimental points.
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Finally, it must be possible to easily extend the response function to a higher

order with minimal effort (6:197). Box and Draper (1959) then extended

this work to show that the optimal design is where both the variance and .
bias error is the same. The experimenter can then ignore the variance error '
and simply design the experiment to minimize bias (4:473). )
Often, experimental error is not sulficiently large enough to require the
precision that is supplied by a complete factorial design. Also, higher order . -
interactions can often times be ignored. Fractional factorial designs can be ’
used in these situations. The main use of [ractional factorials is to reduce the
dimension of the experiment by examining the marginal response surfaces .
independent of certain effects. Box and Wilson (1951) showed that if the '
experimenter has some prior knowledge concerning the shape of the
response surface in the experimental region then only one experiment is
needed at each design point. But, if there is little knowledge, a cruder model >
may be used to simply get a rough picture of the response surface. This may
be important when the experimenter is more interested in how the response
behaves upon movement away from the optimum conditions than in an
actual response function to approximate the experimental region. Thus it is
the shape of the response surface and not an exact polynomial from the
central composite design that may be of interest to the experimenter (7:309).
To aid in this dilemma, Box (1954) introduced the process of canonical
analysis and showed the method of interpretting the signs of the coeflicients '
in the new coordinate system (3:35). The main reason for a canonical
analysis would be to gain information on the nature of the response surface.
Also, it can be easily and quickly determined if a true maximum, true :

minimum, or a saddle point results at the stationary point in the



e %t tar *ae al0al *al ®al al Yat *at 'at st ‘ol al Val af Yol tal Naf ‘al Yal 2t tall Ul tan L8 48000 g 0 att ! 08,0000 0 00" ! S0 000 ™S N S OO OO IO i

experimental region (3:36). Canonical analysis will be a main feature in the

analysis done for this research.

Rescarch Objectives

[t will be the purpose of this research to model a typical Air Force unit as
an industry and build its production function from computer simulated data.
Experimental design and response surlace techniques will be used to build a
v second-order polynomial as the response surface to be used as the ‘

production function.
This research will then show the convenient use of RSM techniques to

' show if the “industry” is maximizing its output within some cost constraint.
Response surface contours, obtained through a canonical analysis of the
system, will be used for demonstrating this output maximization-cost

. minimization process only if all of the criteria for cost minimization are

. satishied

W

o

_, Finally, this research will show both the advantages and disadvantages of
5 using second order polynomials as production functions. Also, the benefits

of using these variable elasticity of substitution (VES) functions will be

discussed in refation to the Cobb-Dougias and CES production functions.

ervicw

The remainder of this thesis consists of three chapters. Chapter 1] gives a
verbal description of the methodology, both statistical and micro- economical,
; used in developing the multiple response suifaces to be analyzed. f
. Chapter 111 analyzes the findings ol the response surface least squares

[it. In addition, the steps involved in developing the canonical analysis and . -
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the output maximization and the cost-minimization response contours are
discussed.

The final chapter, Chapter 1V, presents the contour plots for the
maximum output and the minimum cost response surfaces and also the
multiple response contour plot. Conclusions reached during this research

and recommendations for further research are also discussed.
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1. Thesis Methodology

This research effort will combine the statistical methods of least-squares
regression, experimental design, and response surface methodology with the
microeconomic properties of output maximization and cost minimization in
the form of production functions. Both of these will be outlined in the
following methodology.

Response Surface Methodology, usually referred to as RSM, is a statistical
and mathematical method in which a system product is influenced by a
number of input variables. Now the system product will be termed the
response variable. This is also commonly known as the dependent variable
in a mathemalical equation. All of the input variables can be termed the
independent variables. The response variable is usually some type of
measure of cost or yield and the the way in which the inputs vary will
determine the magnitude of this response (27:445).

In this research elfort, a typical Air Force simulation will be analyzed.
Since most Air Force decisions are based on resulls obtained through a
simulation model, analysts often stake their reputation on these results. The
typical scenario discussed here will be a simple input-output simulation in
which a response will be affected by the combinations of the different input
variables. Although most analysts will simply try to optimize the response
with its associated inputs a second question can be asked. Is this
combination of inputs the least-cost combination that will maximize the
response? In other words, is the Air Force maximizing its "production” while
also minimizing its costs? The word production is used in the sense that the
Air Force can be treated as a production firm or industry. The Air Force

produces an output and while this product is not sold in the competitive
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E__ market, the Air Force must be concerned, as are all non-profit organizations,
5 with producing its product at minimum cost.

.' : This research will be an attempt to use RSM techniques to build an Air

-rE: Force production function and then through these same techniques devise a

method of representing the maximum yield and minimum costs con-bination -

A of inputs simultaneously. This method will be a valuable tool for analysts

t: who are tasked to decide on the optimal input mix that will maximize a

-2 response with cost considerations taken into account. Also, the benelits and
" hazards of using a second-degree polynomial as a production [unction will be
discussed.

i:-_ Background

’ Before one can begin a discussion of response surface techniques, a

: review of least squares regression and experimental design is in order. Both

oo of these techniques are used heavily in any RSM research.

E The basic problem is that a response, y, is a function of n independent

1 variables. The actual form of this response is unknown but for the purpose

'.'::2 of this research it will be assumed to be approximated by a low order

,-\ (second degree) polynomial (28:61). For the case of two independent

o variables, the response could be approximated by the model:

N y =bg+byxy + baxy + byyxy2 + bpoxp2 + byyxyxa+ € (38)

\ where the b;'s are the parameter estimates, y is the response variable, and e

2 is the random error in the model. The x;'s should be both quantitative and

E‘; continuous. It will be assumed that the errors are independent with zero

:'3 mean and constant variance (28:62). As a useful notation the linear model

g will be written in matrix form:

y-XBee (39)

LI}

-
SR N N
-

PN AN



The least squares procedure will be useful in estimating the paramelters in
the vector B. This is commonly referred to as linear regression. The
researcher will know the values of the X matrix since it is a function of the
selected x levels and the y vector will be a column of responses. The
responses, y;'s, can be obtained from any experimental procedure. In this
research effort, the y;'s are obtained from repeated computer simulation
runs at certain combinations of the x;'s set up in a convenient experimental
design which will be discussed laler. Then the least squares method for
estimating B will be one which minimizes the sum of squares of the errors or
the deviations the estimated values take [rom the observed responses. A

minimum value for L can be obtained from:

L=Z¢l-¢e (40)
Now L can be written as:
L = {y - XB)ly -XB) (41)
The right hand side can be expanded as:
L-yy-(XB)y-yXB+ (XB)XB (42)
-yy-BXy-yXB+BXXB (43)
-yy-2BXy+BXXB (44)

Now the trick is to find B which minimizes L. This can be found by partial
differentiation of L with respect to B.

dL/dB = -2X'y + 2(X'X)B (45)
Setting this partial differential equal to zero results in the normal equations
in the estimation of B

(XX)B =Xy (46)

Now solving for B results in the solution to the normal equations assuming
that (X'X) ! exists (ie. the matrix is nonsingular):

B-(XX)IXy {(47)

30

P LA QL L C L 0L

L]

“x




. . , T
N . nat B  hat , e At Y v Al avy,
PO WO W P W P P a X n et Sat ) LAa0 Sab Sulk Nl a et it P Al e A S -

These are called the normal equations in the estimation of B (28:68-69).

The general linear model can easily expanded from a first order model to
a higher degree polynomial. In this research, a special characteristic ol RSM
in which the levels of the x variables are chosen evenly spaced will yield a
special class known as orthogonal polynomials. These polynomials give some
simplification to the computations and their desirable properties will be

discussed later.

Factorial Experiments and Experimental Designs

In this research, factorial experiments will play a major factor in the
estimation of the response polynomial. Factorial experiments are used when
a researcher is interested in finding how a response, y, is influenced by
certain combinations of inputs. A well-designed experiment can save the
researcher both time and money. The combination of factor levels is

combined in a design matrix, D:
| X111 X21 - Xkl |
D=1x12 %9 .. 221
| Xgn %20 - Xkn |

where the uth row, [ X1, , X2y, ..., Xgy | represents one experimental run of
the simulation (28:108).

The simplest factorial experiment for determining first-order effects
(simple linear model) is the 2k factorial design. This is k factors each at two
levels. The two levels can be denoted as low and high and a convenient -1
and +1 convention can be used as notation of low and high lactor levels,

respectively, This corresponds to the transformation:

xi-2(E; - X;))/d; (48)
31
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where the E; is the actual reading, X; is the mean value between the low and

high factor level, and d; is the spacing between the low and high factor level

(28:108). ‘
When #1 coding of the variables is used , the design columns are called
orthogonal if the sums of their cross-products are zero. Also, two columns
are orthogonal if their factor levels are balanced. Orthogonality is a i’
desirable design property because: (1) the design matrix can conveniently
display the levels in the experiment and (2) estimates of the main effects of .
the orthogonal factors are independent. Therefore, if one of the orthogonal \
factors has an effect, it cannot cause the other to appear to have an effect .
; (37:254). .
Using an orthogonal design to estimate a polynomial response surface N
helps to eliminate some underlying difficulties inherent in this type i ._
estimation. Because an orthogonal design is used, the regression coeilicients
are uncorrelated, or: -
cov Ib;l = s2(X'X)! (49)

This results in the covariance between any two coefficients being zero. .
Designs of this nature result in X'X being diagonal and thus, the coefficients 3
of the model are uncorrelated (28:45-46). If X'X is not diagonal, then the .
model must be rewritten in the form: R
f,’bg*blxl*bzX2+b“(X12-X12') + ba(x22 - x52%) + baxyxy  (50) ;
where f, is the same dependent variable as y and x;2" and x,2° are the mean :
values of xy2 and x,2, respectively (28:50). .
However, in this research a second-degree polynomial needs to be -
estimated. Although the simple 2k design was useful in the preliminary _
stages of the experiment, a new factorial design must be introduced when .

the regression model is best estimated by a second order relationship (first -

32
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and second order terms are included in the model). This new design will be
the 3k factorial design in which k factors are varied at three levels. A

similar transfor mation must be made to the input variables to give -1, 0, +1

values (o the input combinations. The point (0,..,0) is known as the center of

o
o

the design. Therefore, the 3k design also [alls into the class of orthogonal

designs. Une obvious disadvantage of the 3k design is that for a many factor

CNESR RS

experiment, the number of design points can become unmanageable very
quickly (ie. 4 factors = 81 design points). Also, full and fractional factorial
b, designs are not very elfective at estimating higher-order effects. This is
because the number of experiments necessary is normally very much higher
than the number of elfects to be estimated. Also, these effects will be
estimated with low precision. Usually, however, these elfects are assumed to
be negligible (28:126).

The basic goal of any experimental design is to find the factor level

combination which optimizes a response and also that level which best

NESRA

explains the relationship between the factors and the response.

LN

Response surface methodology uses experimental designs to find the
optimal operating conditions from a set of input factors. These input factor
combinations should produce an optimal response in the system. Brightman
(1978) claimed that the use of response surface methodology in simulation
experiments need to meet only two prerequisites: the measure of

effectiveness be continuous and the input factors be quantitative (16:255).

)
v

Responsc Surface Methodology

Response surface methodology combines the best features of least-

[Nl o A AL )

squares rcgression and experimental design to fit a response surface

equation to a sct of data over the experimental region of interest. In this
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research, a second-order polynomial will be fit as the response surface. The
experimental design needed to [it this second-order model must have at
least three levels of each factor for the model's parameters to be estimated
(27:462).

The most commonly used design for fitting a second-order model is the
central composite design (CCD). This is the design choice for this research.
This design consists of a 2k factorial (coded ¢ 1) augmented with 2k axial
points (¢ alpha) and n center points (27:462). Six center points will be used
for the central composite design in this research. Repeated observations at
the center of the design can be used to estimate the experimental error and
also to check the adequacy of the first-order model. This adequacy can be
checked by comparing the average response at the corner points of the
design with the average response at the center of the design. This difference
will be a measure of the overall curvature of the surface (27:449-450).

Since all the second-order derivatives of this model must be estimated, it
will be necessary to begin with a complete 2k factorial design to fit a [irst-
order model and then add design points to fit a second-order model. These
extra points will be added to form a central composite design with alpha
equal to one. This alpha value will be chosen so the design remains
orthogonal. Therefore, all second-order derivatives may be calculated with

equal precision. This will make the CCD very effective for analysis.

Canonical Analysis
The final goal of fitting the response surface function will be to determine
the nature of the stationary point and the entire response system (28:72).

This is simply a translation of the response function {from the origin to the

stationary point. New variables, w;'s, will be used instead of x;'s to express

e v
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the new system. The w;’s relate to the major ases of the new contour
system.

The relationship between the x;'s and the w;'s is of great importance. If
the stationary point is found to be outside the region of interest, the
relationship between the variables can lead to areas where further

experimentation may be more productive (28:73).

Statistical Tesls

The only major statistical test this research effort will be concerned with
will be a check of whether or not the model is a correct approximation of the
actual system. One procedure often used is a test for lack of fit.

Remember that €; = Yopserved - Yestimated 1S the residual at X;. Calculation
of the residuals yield valuable information about how the estimated model
fails to explain the variation in the response variable Y. This is commonly
referred to as bias error. If the model is correct, then the bias equals zero
and the residuals and residual mean square can be used as an estimale of
the variance, s2, in the model (31:267-271).

If the model is incorrect, however, then the bias does not equal zero and
the reisduals contain both random and systematic errors. These are
commonly referred to as variance and bias error. The residual mean square
can no longer be used as an estimate of the variance in the model.

In the case of simulation experiments, no prior estimate of the variance
exists. In such a case, replications of the Y's and each value of X can be used
to obtain an estimate of the variance. This estimate is known as pure error
because only random variations can cause differences in the results. These

differences will usually provide a reliable estimate of the variance in the
model (14:35).
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Therefore, the residual sum of squares with n, degrees of freedom can be
divided into two components: (1) pure error sum of squares from the
repeated vbservations with ng degrees of freedom and (2) lack-of-fit sum of
squares with np - n, degrees of {reedom. The pure error SS leads to se2 or

mean square due to pure error and estimates the variance in the model. The
lack-of it SS leads to MS; or mean square due to lack of fit. MS; estimates
the variance in the model if the model is correct or the variance plus the bias
if the model is incorrect (14:36).

Then, an F-ratio of MS|/sg2 with 100(1 - alpha)% point of an F-

distribution with (n, - ne) and n, degrees of freedom can be compared. The

usual hypothesis for this test can be simply stated as:

H,: a linear model is adequate
Vs
Ha: a higher order model would better represent the data

If the ratio proves significant then the model appears to be an incorrect
representation of the system. If the ratio is insignificant then the model
appears Lo be a correct representation and both the pure error and the lack-
of-fit mean squares can be used as estimates of the variance in the model
(14:37).

Draper (1981) describes the entire procedure as follows:

1. Fit the model with the analysis of variance table for the regression and
residuals. Do not test the overall regression parameters yet.

2. Define the pure error sum of squares and divide the residuals as
described above.

3. Do an F-test for lack of fit.

4. 1f lack of fit is significant, stop the analysis of the current model and
search for another, more improved model.

...............
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5. I lack of fit is insigniticant, recombine the pure error and lack of -fit
sum of squares into the residual and use this as an estimate of the overall
variance in the model. Now do an F-test on the overall regression
parameters (14:40).

The beauty of response surface methodology comes from the sequential
process of forming a good-fitting second-order polynomial and then finding
that its stationary point results in a point of maximum yield. However, this
beauty quickly fades when it is found that the point of maximum yield is
infeasible due to some cost constraint not considered in the analysis. In
other words, a point of maximum yield will be found in some experimental
region. Usually this experimental region covers the entire [easible region
where the x;'s have some significance. A second response function, using the
same response surface techniques, can be used to show some cost constraint
as a function of cost considerations at each design point imposed on the
original response process. Now the cost constraints can be observed
simultaneously with the yield responses.

Proceeding blindly without consideration of the second response can also
lead to further frustration if the analysis used to find the point of maximum
yield was done without the prior knowledge of the cost constraint (26:189).
To solve this dilemma, response surface methodology adopts itsell well to
multiple response systems. Contour plots of the response surface can show
more than one region where the predicted response is at a satisfactory level.
By combining this information with similar contours from a second response
surface, a movement can be made to a region that approximates the optimal

or close to optimal operating conditions. For experiments with a small

number of factors, three or less, multiple responses can be effective by
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superimposing the contour diagrams of the various response surfaces. Now

' the experimenter can visually determine the “best” operating conditions
| (28:1671.

4
‘ Multiple response surface analysis will be the basis of this research

effort. Hopetully, by superimposing the minimum cost contours onto the
maximum yield contours the actual operating conditions, both in terms of

output and cost, can be visually displayed. [t may very well be that the

NN W W

stationary point for the output and the stationary point for the cost lie

’ within the same critical level. This would be totally optimal--maximum
production and minimum cost. But if the critical levels do not intersect, the
experimenter can see in which direction to move from the stationary point
on the output surface to a region, according to the contour diagrams, where
x the output is "close enough” to a maximum but also the cost of production is

low enough to meet the constraints of the system (21:67-68).

x Characleristics of a Production Funclion

The basic definition of a microeconomic production function is that it

"expresses the relation between a maximum amount of output and the

inputs required to produce it; in doing so it describes the manner in which

[OENTREAL AL

inputs co-operate with each other in varying proportions to produce any
given output (10:26)."

Any function which shows the dependence of output, Y, on two factors of
production, say labor, L, and capital, K, where: Y = f(LLK)} can be termed a
production function. This is because the function relates output to input and

also describes the relationship between the inputs. . -

Lo Al

The first and most basic criterion of any production function is that any

increase in each input should have a positive effect on the output. In

38
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microeconomic terms, the marginal products should be positive. This shows

that the output, y, can be increased by increasing one of the inputs while
holding the other inputs constant. This can be shown by:

dY/dL > 0 and dY/dK > 0 (51)
These inequalities imply that the constant production curves are downward
sloping. Thus, if both inputs have a positive effect on output, to keep output
constant, if the amount of one input is increase, the amount of the other
must simultaneously decrease. Therelore, the slope of the isoquant curve is
negative (30:237).

A second criterion is that the marginal product should decrease when
both inputs increase (30:238). This ensures that the critical point is a true
maximum. For a true maximum to result, the output, y, should be decreasing
for any change in the inputs away from the critical point. This can be shown
by:

d2Y/dL2 < 0 and d2Y/dK2 < 0 (52)

Another microeconomic term, isoquants, must be introduced here. The

isoquants represent the marginal rate of substitution of labor for capital, or:
-(dK/dL) = (dY/dL)/(dY/dK) (53)

Here, the marginal rate of substitution of labor for capital decreases as labor
is substituted for capital. The ratio of the marginal products will decrease
with a rise in labor, given a certain amount of capital or a decrease in the
amount of capital, given an increase in labor. It is often assumed that cost
minimization requires the inputs to exhibit diminishing marginal
productivity but what is actually required is a diminishing marginal rate of
substitution of labor for capital (30:243-246).

The isoquants, when graphically depicted, show the substitutability of

labor for capital at a constant level of output. Any point along the isoquant

39




describes the same output fevel. Thus, they can describe the measure of
ease with which labor can be substituted for capital. This, as mentioned
earlier, is known as the clasticity of substitution.

For the purpose of this research, these two simple principles are all the
microeconomic knowledge necessary for discussing the response surface
used as the "industry” production function. The resultant production

function will be tested and analyzed to see if it meets the above criteria.

Description of the Simulation Model

To represent the methodology discussed in this research, a computer
simulation model of a typical resource-allocation system was needed. Such
simulation models are commonly used throughout the Air Force as an aid to
decision makers when it is either too costly or infeasible to observe the
actual system in real life. The simulation model does not necessarily have to
be complex. The only requirement is that it is as accurate a representation
of the real life system as is possible.

One such simulation model was already available. It is a SLAM 1 (32)
terminating simulation model which attempts to model the requirements
nceded to conduct a mission effective thirty day war. Four input variables,
factors, are used in the model: number of aircraft, number of support kits,
number of maintenance crews, and number of bombs. These four factors
affect the number of sorties that can be flown during this thirty-day war.

The object of this simulation is obvious-- maximize the number of sorties
which can be tHlown during this thirty day war subject to the levels of the
four factors. One large assumption was made which is not always wise for

the analyst to assume - the computer program used to run the simulation
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model has been properly debugged so the model functions as closely to the

system as intended (37:250).

The goal of this simulation will be to use the simulation-generated output
in order to estimale the parameters of the system. The replication method
will be used with the simulation runs to gencrate the output data. This
method has the advantage in that, given random seeds, the simple statistics
are independent and identically distributed. These statistics are then quite
useful for statistical analysis. Also, the replication method is the only
recommended method for analyzing a terminating simulation (16:245).

For the purpose of this research, only two of the four factors will be
varied: support kits and maintenance crews. This will make for a handy
relationship to capital (support kits) and labor (maintenance crews) in the
resultant production function. Thus, a microeconomic analysis can be done
on the function if the appropriate conditions for cost minimization ,described
on pages 6 through 9, are met throughout some region where the marginal
products (f{ and f) are positive. Throughout the simulation runs, the
number of available aircraft will begin at 24 and the number of available
bombs will begin at 288. The initial values of the model variables are quite
important to the output of the system. These starting conditions should
mirror the real-life system as closely as possible. Often times, it is helpful to
use real-life data or a draw from a probability distribution fit to the real-life
data (16:247).

Since this is a trace-driven simulation model (a simulation involving the
use of historical data arriving in a single time series pattern), repeated use of
the model will reduce the variation of the output. Thus by starting the

different simulation runs at the different design points with the same

common random number seeds (common streams), a similar variance
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reduction will also take effect. Also, since alternatives will be tested in this
simulation through the different input combinations, common streams will
play an important role in reducing the variance of the output responses.
Variance reduction techniques simply replace the original sampling
procedure with one with the same expectled value for the parameter
estimates but of smaller variance (16:249).

This can be shown simply by:

Var [X(D) - X@)] - var [X(D] + Var [X)] - 2Cov [X(D,X(2)] (54)
where X(k) is the sample mean for the alternative response k. Common
streams will reduce the variance in the model since the Cov [X(1),X(2)] should
be positive resulting in an overall reduction in the model's variance (32:745).

For terminating simulations, run length is not an issue since the
simulation ends when a specific event occurs. Thus, the desired level of
precision for the experiment cannot be affected by the run length. Sample
size or how many replications of the simulation to run, however, is an
important problem in all simulations which are used to generate output data.
Unfortunately, there is no solid rule for determining how many simulation
runs to make. For the purpose of this research, the problem will be handled
by collecting data and testing to see if it meets a speciflied criterion. If the
test fails, then simply collect more data until the criterion is met (16:253).

The advent of computer simulation makes the process of repeat
observations quite rudimentary. Following the RSM procedure described
previously, the simulation model will be run initially with both factors at

their low and high levels for two cycles with six cycles at the center point.

This requires a total of fourteen runs of the simulation model. These

responses will be statistically tested for lack of-fit of the linear model. If

such a lack-of fit is significant, then only four more design points need to be
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added or a total of eight additional simulation runs to achieve the full set of

e o

data required to properly fit a second-order polynomial.
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I111. Findings and Analysis

The subject of this response surface analysis is a resource allocation
simulation that models the number of aircraft sorties that can be reasonably
expected to be flown during a typical thirty-day war. The actual simulation
code used in this research effort is listed in the Appendix. The overall
objective is to fly the maximum number of sorties possible subject to the
limited number of crews and support Kits available. This is a typical
resource allocation simulation in which the amount of inputs will vary and a
response (y) will be measured; in this case, y represents the number of
sorties flown.

Since this is a simple two-variable case with Xy and x; representing the
number of aircralt support kits and maintenance crews respectively, a
complete factorial design was formed. In this case it will be a 22 factorial
design with center points. That is, each factor in the simulation is input at its
low and high levels with the center point being the midpoint between the
low and high level. Since the purpose of this thesis is to describe polynomial
production functioms, the first step in any research will be to see if any
curvature in the response function exists. The object at this point is simply
to find out if a first-order model can adequately describe the system; that is,
the response y as a function of x; and X3 only with no crossproduct term and
no quadratic cffect. An analysis of variance of the simulated data will be the
method used for significance testing and parameter estimation. This could
be easily accomplished since the number of independent variables (2) is

small. If the number of input variables increases, the complete [actorial

design procedure becomes increasingly complex. Obviously, in order to

.......




produce a result that is both reasonable and feasible, some bounds must be
placed on the region of interest. It will be assumed that no more than 10
support kits and 12 maintenance crews can be available at any one time.
Minimum values for support kits and maintenance crews will be set at six
each. Also, even though the numbers are discrete they will be used as

though they v cre continuous in this model.

Experimental Designs

Some previous knowledge of the system is always important for the
simulation model to be accurate and the analysis to be effective. In this

case, previous results show that the response output operates over a region

where the number of support Kits, Xy, varies between 6 and 10 and when

the number of maintenance crews, x, varies between 6 and 12. This range

of design points should be large enough to minimize the average variance
over the experimental region. Since the ultimate goal of this research will be
to fit a second-order polynomial, guarding against curvature (ie. minimizing
bias) will not be a concern (28:197-198). This experimental design will then
be one which minimizes variance over the bounds on the region of interest
for the analysis. Ranges were chosen which would be wide enough to enable
detection between differences in the response while not exceeding the
practical limits on the system and also minimizing the variance of the

experiment. Now, the experiment can begin with a simple 22 design in this

region

This design was the natural choice [or this analysis for the [ollowing

reasons: (1) The factorial design is an efficient method of experimentation.

It can provide quick information on the elfects of several variables. (2) The

factorial design provides a measure of interaction between control variables
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if it exists. A system which contains interaction will exhibit curvature in its
response relative to changes in the levels of the independent variables. This
would not be detected with one-at-a-time experimentation. (3) Curvature
may also be detected by adding a center point to the design. The difference
between the response at the center point and the mean for all the corner
points is a measure of “lack of fit". Lack of fit refers to the linear model's
inability to accurately represent the data. (4) The factorial design can later
be expanded to provide an estimate of curvature if it exists. Thus, the
experiment can proceed sequentially-first with a relatively simple

experimental design, and later-if necessary-with a more complicated design
(7:5-8).

Phase 1 of the Experiment

This region in the 22 design has a low value of 6 for both support kits and
maintenance crews (control variables x; and x; respectively) and a high
value of 10 for kits and 12 for crews. Throughout the remainder of this
paper, Kits may be used as an abbreviation for support Kits and crews as an
abbreviation for maintenance crews. The centerpoint is at (8,9). That is
where the number of kits is 8 and the number of crews is 9. This is the
midpoint of the low and high levels for each factor. Two variables, each at
two levels, results in 22 or 4 treatment combinations. The center poini
added to the design will result in a total of 5 treatment combinations. Three
runs at the center point and one run at each corner point will be one cycle of
the experiment. Two cycles of the simulation will be made at each of these
four design points and the center point--a total of 14 runs. The multiple

runs at the center point will give the analyst an estimate of “lack of [it".
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Common random number seeds will be used throughout this experiment to
reduce the variance. A [irst-order model can be used to determine whether
or not higher-order terms are needed in the response surface equation and

thus [urther experimentation. The following figure shows the levels used to

test the adequacy of the first-order model.

6,12) 18,12)

b ab

1 a

(6.6) (10,6)

Kits

Fig 1 Design Points for Fitting First-Order Model

Analysis of the First-Order Mode]

The experiments were repeated twice to provide an estimate of the
experimental error. The size of the measured eflects due to changes in the
level of the control variables is compared with the experimental error. If
the size of the effect is large relative to the experimental error, it is
recognized that the change in response cannot be attributed to random

chance. The effect is then considered a "real” effect.

.............
............




'-‘ v P a0t a0 N et nah e g® gt At et g™ et et et ag! gt s 200" et Ra®, 0at Bat 000 B o te® St sat 0at " A" i aBa® Sat giavoh' glin’ Jhe an e ghe R0 ne R ghe aVe JSe ovh ghh gop SRl o o

.- The following table lists the design points, their corresponding coded
variables, and the responses that resulted from the simulation runs at each

design point. These data points will be used in fitting the first-order mode|.

N
.
~ Table |
\
A Data for First-Order Model
l Treatment | Natural Veriables Coded Verisbles| Response
- E ] E 2 X 1 X 2 V
{ () 6 6 -1 -1 1097
: \ (¢)) 6 6 -1 -1 1096
N 10 6 1 -1 1146
3 10 6 1 -1 1147
N b 6 12 -1 1 1098
N b 3 12 -1 1 1924
) ab 1@ 12 1 1 1125
. ab 19 12 ! 1 969
A Yoy s 9 ° ] 1147
. Yo, s 9 ° () 1996
y Yos 8 9 e ) 1120
:f Yos e 9 L] (] 110
‘ Yos s ° ° ° 1871
Yoo (] ’ ) . 1130
-
- The results can also be conveniently displayed in a design table:
~
. Teble il
; Coded Design Dala for ANOVA
"~ (A)KITS
: 6 10 Y,
. (B) CREWS m X
> .- 1097 1146
':: 6 109 1147 4486
-, 2193 2293
b *»
1898 1125
g 12 e add 4216
'5. 2122 2094
L
: ¥ 4315 4387 8762 =y
‘ 3}
y
o
.“
> 48
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This type of design with added center points is known as an augmented

22 factorial design (28:81). It is an efficient method of testing the adequacy

of the simple first-order model for lack-of-{it (presence of cross-product and

pure quadratic terms). The result will be presented in the following table:

Table 11!

ANOVA of Augmented 22 Factoria) Design

Source df. Sum Squares
Totel, Uncorr. 14 SSToTU
B 1 SS
(o} 0
B, 1 SS 4
B 2 1 554
Remainder 1 SS cP
Cross Products 1 SS Q
Pure Error 9 SS PE

where SSTotU = y'y and SS¢ = y'y/14.

The contrasts for the linear coefficients can be summarized as:

Table IV
Treatment Combinetions
Treatment
Effect (1) L) b ab L,
B, - + - * Ly
B, - - ¢ * L,

where SS; = L{2/8 = (72)2/8 =648 and SS; = Lp2/8 = (-270)2/8 -8842.5.
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Now the parameters can be estimated by simple factorial estimation
procedures (27:264):

bo=l(1)+«(1)+a+a+b+b+ab+abl/8=1099.43 (55)
by=[-(1)-(1)+a+a-b-b+ab+abl/8=9 (56)
by=[-(1)-(1)-a-a+b+b+ab+ab]/8=-3375 (57)
bip={(1)+(1)-a-a-b-b+ab+abl/8=-16 (58)

An unbiased estimate of the error in the model, s2, will be the pure error

(SSpg) plus the error accounted for in the repeal observations. In other
words, the nine error degrees of freedom are a combination of (ncp - 1)
degrees of freedom for the six runs at the center point and four degrees of
freedom for the replications at the design (corner) points (27:449-450).
The repeat observations at the center can be used to calculate an estimate
of pure error as follows (14:34):
SSpg = ((1147)2+ (1096)2 « ..+ (1138)2) - (1147 +1096 + ..+ 1138)2/6  (59)
MSpg = 4044/5 - 808.8 (60)
A popular check of the straight-line model is obtained by comparing the
average response at the four corner points in the factorial design,
y1 = 1087.75, with the average response at the center point of the design,
y2 = 1115. If the design represents a curved surface, then y{ -y, is a
measure of the surface's overall curvature. If Byy and By; are the
coefficients of the "pure quadratic’ terms x;2 and x,2, then (y - y;) is an
estimate of Byj + Byp (27:450). Thus, an estimate of the pure quadratic term
is:
By ¢+ B22-y1-v2 (61)
- 108775 -1115
=-2775
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The single-degree-of-freedom sum of squares associated with the contrast
(yy - y2)is:
SSpc = Ingna(yy - y2)2l/(ng + ny) (62)
- [(8)(6)(-27.75)2)/ 14
= 2545.93
where ny and ny are the number of points in the factorial portion and the
number of center points in the design, respectively (27:450). Since:
F = SSpe/MSg (63)
= 2545.93/449.33
=5.67
which would be compared to F g5 1 9 = 5.12, there is a significant indication of

a quadratic effect (27:450).

The single degree of freedom sum of squares for the cross product is
(31:275):;

SScp = SSToLU - SSq - 5SSy - SS; - $Sq - SSpE (64)
- 16,955710-16,935,598-648-8842.5-4044-2545.93
- 403157

Comparing SScp to s2 gives the following lack-of -fit statistic:
F = SScp/s? = 4031.57/449.33 - 8.97 (65)
which would be compared to F* g5 { 9=5.12. Clearly, interaction is significant.

The following table shows the analysis of variance based of two cycles of the
factorial design.
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Table V
ANOVA for First-Order Model

Pl ol 2t ]

; Source Sum of Squares df. Mean Square  F-Ratio
v.
: Linear Model SSp=94905 2 474525 ILET3
Kits ssA-sqa t 648 1.44
y Crews SSp = 88425 1 88425 1968
Lack of Fit 65715 2 3288 75 732
N Crossproduct 36087.25 1 3607.25 Be3
L' Quadratic 297025 1 2970.25 6.61
" Pure Error SS¢ = 4044 9 44933
i BO 16,935,598 1
Total, Uncorr, 16,955,710 14
o
o
- Prediction equation: Y = 1087.75 + 91(- 33.751; (66)
: where: 1)=(#kits-8)/2 and x3=(¥crews-9)/2.
: The null hypotheses to be tested can be stated as: the crossproduct and
_43 quadratic terms are equal to zero, signifying no curvature in the response
:'; model. As one can see, there is enough information to reject the null
: hypothesis that neither the crossproduct term is equal to zero (F* = 8.03>F «
S5.12) or the pure quadratic term (F* = 6.61 > F = 5.12) is equal to zero. Also,
- the lack of fit can be tested with two degrees of freedom: one for the SScp
g and one for the SSy. Comparing this F-value = 8.97 10 F g52 9 = 4.26, lack of
i fit is significant. This supports the above claim, so a move to a higher-order
model is warranted. «
“ 52
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Phase 11 of _the Experiment :
The following matrices are needed for the least-squares regression
techniques involved in fitting the second-order response surface. The design ;
matrix for this analysis with the added design points is:
Teble VI >
Design Metrix :
2
Xy X, XX, X X2 ;
-1 -1 1 1 ] N
-1 -1 ] 1 1 .
1 -1 -1 1 1 ’
1 -1 -1 1 1
-1 1 -1 1 1 X
-1 1 -1 1 1 R
1 t 1 1 1 :
D= 1 1 1 1 1 “
1 ] ] 1 ° »
1 ° ® 1 ] -
-1 -] ] 1 ] ‘ - |
-1 [ ] ] 1 e .
[ ] 1 ] [} 1 _
-] 1 ] -] 1 «
e -1 e [ ] 1 )
[ - [ ] ® 1 -
The X matrix with the extra center points added to test lack of [it. .
Teable VII )
X Matrix with Extra Center Points .
2 2
bg X, Xz XX X, X2
-' 1 -1 -1 1 1 1
. 1 -1 -1 1 ' 1 3
3 1 1 -t -1 1 | ™
- 1 1 -1 - ! !
1 A 1 -1 1 ! '
1 - 1 -1 ! ! .
1 1 1 1 1 !
1 t 1 ' ' ! ]
1 1 0 ° 1 ®
1 ’ ] ° 1 e
X = ' -1 ° ° 1 0 )
1 -1 ° ° ! e
1 ° 1 [} e 1
' ) | e 4 ! :
1 ° -1 ° L ! \
1 [} -1 [ ] [ 1 .
' o e ° ° e )
[ [] [} ° L o .
' P - . [ ] L4 .
1 ° ° ® ® .
t . . ° ° o
' ) o ] o .
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And the Y matrix with the results of the simulation runs corresponding to

the levels of the 1;'s is:
Teble Vili

Y Matrix of Responses

1097
1096
1146
1147
1898
1024
1123
969

1874
1147
1133
1086
1124
1124
1122
1120
1147
1096
1128
1ie
187

1138

To fit a second-degree polynomial response function, each factor must be

varied at three levels. Because of the care that was used in designing the

original 22 factorial experiment, to obtain a complete 32 factorial experiment

requires simulation runs at only four additional design points:

(0,1).(0,1),(1,0), and (-1,0). This is simply the addition of midpoint levels to

each design point and is shown in the following [igure.

6,12) (0,12 (10,12)

(8,6)

6,6) (19.,6)

Kits

Fig 2 Design Points for Fitting Second-Order Model
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Analysis of Second -Order Model N
The new data to be used in fitting the second-order response surface with 1
°
the eight new design points is listed in the following table. .
Table IX -
Dals for Second-Order Hodel :
Natursl Variables Coded Variables | Response
E, E, Ky Xy Y
¢ Py -1 -1 1097 )
¢ ¢ -1 -1 1096 :
11 ] [ 3 1 -1 1146 .
1e 6 1 -1 1147 -
6 12 -1 1 1098 ','
[ 3 12 -1 1 1024
10 12 1 1 1123
10 12 1 1 99 :
. € ° -1 1122 .
[ 9 ® ~1 1120
s 12 [ ] 1 1124 .
] 12 [ ] t 1124 :..
[ 9 -1 ] 1133 N
‘ ’ 4 e 1086 :
10 9 1 [ ] 1074 N
T 9 1 0 1147 {
. ’ ™ "] 1147
] 9 [ ] [ ) 1096 .
[ ] 9 [ ] [ ) 1120
] L] ] [} 1119
] 9 [ ] [ ] 167
[ ] 9 [ ] [ ] 1138 :-‘
»
Now the levels of the x;'s which maximize the predicted response must :
be found. This critical point, if it exists, will be the set of 1; and 17 such that
the partial derivatives dy/dx; - dy/dx; = 0. This point is called the )
»
stationary point. This stationary point could be any one of three N
possibilities: (1) a point of maximum response, (2) a point of minimum .
response, or (3) a saddle point. The canonical analysis which will be used 1o -.
analyze the fitted second-order response will also describe the nature of this .
stationary point (28:70), A
’
>
’
:
55 ’
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A general solution for the stationary point may be easily obtained. The
second-order model can convenjently be written in matrix notation:
y =By + x'b + x'Bx (67)
Here, b is a (k X 1) vector of the first-order regression coefficients and B is a

(k X k) symmetric matrix whose diagonal elements are the pure quadratic

coefficients (B;;) and whose off-diagonal elements are one-half the mixed
quadratic coefficients (Bj;, i = j) (28:69). The derivative of y with respect to

the vector x and set equal to zero is:

dy/dx =b + 2Bx = 0 (68) )
The solution [or x is known as the stationay point, xq:

y 19 =-1/2B1b (69)
? Also, but substituting this back into the original matrix equation, the
predicted response at the stationary point can be found:
: vo =DBg+ 1/2 x¢b (70)
. The stationary point can be described further by transforming the {itted
‘ model into a new coordinate system with the stationary point, xy, being the
s origin. The axes of this new system are then rotated until they are parallel
: to the principal axes of the fitted response surface. The results can be shown
: by the fitted model:

Yy = yp + lambdayw 2 + lambdazw,2 (71)
: where wy and wj are the transformed variables and lambda; and lambda;
i are constants (28:73). This is known as the canonical form of the model
A where the lambda; are simply the eigenvalues (characteristic roots) of the B
matrix.

Now the characteristics of the response surface can be [ound from both
the value of the stationary point and the signs and magnitudes of the
56
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eigenvalues. Assuming that the stationary point is within the experimental
region, if all the eigenvalues are positive, then a point of minimum response
has been reached; if all the eigenvalues are negative, then a point of
maximum response has been reached; and if the eigenvalues are ol mixed
signs, then a saddle point results. Also. the response surface is steepest in
the w; direction in which the corresponding eigenvalue is the greatest
(28:75).

A second-order response model is [it by the method of least squares to
the coded data to give the following response equation with appropriate t-
ratios in parentheses:

y = 112126 + 6.167x; - 22.00%, - 20 66x;2 - 8 16x,2 - [6x1%y  (72)
(7477) (052) (-1.84) (-1.12) (-1.09) (-044)

The analvsis of variance table follows:

Tabie X
ANOVA Table for Second-Order Response Surface

Regression OF Type 1 SS F-Ratio Prob
Linear 2 6264333 183 01¢2
Quadratic 2 3180981 093 0415
Crossproducts 1 2048 000 005 0290
Total Regression S 11493314 0.30 0.296
Residual DF  Sum Square Mean Squere F-Retio Prob
Leck of Fit 3 4624140 1541 380 0882 0476
Pure Error 13 22722000 1747 846

Totel Error 16 27346.140 1709 134

Lack of fit is not significant and regression is signtficant, however the

poor F-values conclude that although a second-order response function will

adequately approximate the response surface, a better polynomial could
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approximate the true surface. A simple look at the response function's high
intercept term causes some concern. This equates with zero kits and zero
crews yielding 1121 sorties. This is not a very likely phenomenon. A new
least-squares regression will have to be done to derive a better response
equation. But {irst, a preliminary look at an economic interpretation of this
first response equation (production function) may shed some light on the
purpose of this research.

Since this is still an unconstrained function, simple first- and second-
order conditions (Chapter 1) are all that is required to test for a maximum

value over the region of interest. Considering the function:
y = 1(xg.x2) = 1121.26 + 6.167x) - 22x3 - 20.66%,% - 8.16x2 -16x1x; (73)

The first order conditions for a maximum are shown as;

fj ~6.167 - 41.32x - 16x; (74)
orf =--22-16.32x3 - 16x (75)

This leads to the second-order partial derivatives:

f11~-41.32 (76)
f2p=-16.32 (77) : o
and {3 = -16 (78)

Sulficient conditions for a true maximum are that f; and f25< 0 and that
f11f22 - 1122 > 0. These conditions are met since both second partial
derivatives are less than zero and (-41.32)(-16.32) - (16)2 is greater than

zero. The above response function can be called a concave {unction and
contains a true maximum point.
Setting both eqs (74) and (75) equal to zero resuit in xy = 1.08 and

x2 = -0.2893. Now these results must be entered back into the

transtormation eq (61) to yield the results: E; = # kits = 10 and




Ey = 7 ciews - 8. Also, ([{1122 - 2f2f1f2 + [5042) < 0 so conditions for cost

minimization are possible. Therefore, the results to the transformation
above will be a least-cost combination of inputs.

Since the condition where zero inputs will result in some positive output,
a new least squares regression was done on the data however this time an
intercept term of zero was forced upon the data. This makes empirical sense
since zero puts should result in zero outputs if the function is to be used as
a true production function. The resulting response equation with the

intercept term omitted and appropriate t-ratios in parentheses is:

y = 217.29x; + 62.11%p - 10.62x42 - 1.70%2 - 4.76%%; (79)
(4.945)  (1590) (-3.14) (-082) (-2.17)

1he first and most important hypothesis to test here is that the intercept
term is indeed equal to zero. This is proven since the t-ratio for this test is
equal to 1.586 with an equivalent p-value of 0.1312. This results in the null
hypothesis not being rejected so the intercept term in the above function can
be assumed equal to zero. A second important point is that both the x; and
x7 coellicients be positive. This supports the utility theory that more is
better or any increase in the amount of x; or xp will result in a positive
increase in the output response, y. If either coelficient carried a negative
sign then the function could not be a true production function since the
producer would not want any more of that input (even if it were given away
free ol charge) since any increase in that input would resull in a decrease in
the response, y (30:93-100).

Again, this new production function can be analyzed [or cost
minimization conditions. Both marginal products (f; and [7) are positive and

both of the sccond partial derivatives ([ and [;7) are negative. However,




since the crossproduct term is significant and is negative, the second-order

condition must be tested. Again, (f1f22 - 2;of1f + F22012) < 0 so the

conditions for cost minimization are possible. A range then where the

marginal products are positive and the second-order conditons exist can be

found in order to use this response surface as a production function. >

The analysis of variance table for this least-squares regression follows.

Table X| R
ANOVA for Second-Order Response Surface r
with Test for No-Intercept

Source DF  Sum Square Meen Square F-Ratio Prob

HModel 4 6745.046 1686 261 0893 0.489
Error 17 32094.409 1887.906
C Total 22 38839.455

Parameter Estimates
Vaeriable DF Estlimate Error T-Retio Prob
] 0 . . _ J
| 21729 43 94 4945 000! .
1 6211 3906 1590 0130
1
1
1

Intercept

? -10.62 338 -3.140 0006
2 -1.70 209 -0817 0426
X, -476 219 -2.171 0044

Restrict®* -1 8.38 528 1586 0.131

R

* Intercept term coan be set equa! to zero

This second equation looks more like a true production function. Both 1
and x coefficients are positive and much larger than their squared terms.

First- and second-order sufficient conditions for a true maximum since
(11 (f22) - £122 50 or {(-21.24)(-3.40) - (-4.76)2) >0 are met. Also conditons . -

for cost minimization exist over a certain region where realistic input values 4
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can be found. Again, this is just a simple unconstrained function. Also, a
complexity arises here in the two-variable case in that movements through
the design points are not solely in the x{ or x; direction. The second-order
partial derivatives do not supply enough information on how the slope is
changing through the critical point. Sufficient conditions must also be placed
on the cruss-partial derivative (f|2) to ensure that the response is decreasing
through the critical point. Hence, the second-order partial derivatives must

be sulficiently large to counterbalance any "bad” effects caused by the cross-

partial derivatives. In other words, as the critical point falls in either the x
or xp direction any movements in the xyx, direction can be compensated for
(30:65-66). This is the reason that it is important to test whether or not the
cross-product term in the function is equal to zero.

Thus, the equation:
Y =217.29x1 + 62.11x5 - 10.62x12 - 1.70x5% - 4.76x1x3

can be used as the production function for the simulation model.

Canonical Analysis
Using the results of the original least squares run, a canonical analysis can

now be performed.

b=16.17] B=1-2066 -81
|-22 | | -8 -8.16

The stationary point is then:

xg=-1/2B1b

=-1/21-0.078 007611617 =1 1.08255 |
| 0076 -0.19811-22 | 1-2.40998|




Thus, the stationary point, X1 g and X3 o, is equal to 1.08255 and -2.40998

respectively. Now these values can easily be converted back into their
natural variables remembering the original transfor mations:

1.08255 = (E| -8)/2 and -2.40998 = (E-9)/3 (83)
Now the natural variables are: Ey = 10.1651 or 10 and E; = 1.77006 or 2.
Remember that although the model uses these variables as continuous to
make any sense of the results, they must be used as though they are
discrete. In other words, the combination of kits and crews which is the
point of maximum sortie generation is that of 10 kits and 2 crews.
Obviously, in this crude example, to maximize the opportunity in the thirty
day war, the number of kits at hand is much more valuable to the war effort

than the number of crews.

Also, the maximum response at this stationary point, yg, can be calculated
by substituting back into yg = Bg+ 1/2 x¢' b resulting in, yg = 1151.11 or
1151. Now the response is telling the analyst that the maximum sortie
generation he can expect from the input combination of 10 support kits and
2 maintence crews is 1151.

To further describe the stationary point, the canonical form may be

obtained {rom the roots of the equation:

B-lambdal|=0 (84)
The roots are known as the eigenvalues, lambda and lambda;.
| -20.66 - lambda -8 |=0 (85)
l -8 -8.16 - lambda |

This now can be simplified to:
lambdaZ + 28.8158 lambda + 104.525 - 0 (86)

Using the quadratic formula, the roots of this quadratic are
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lambday - -4.25592 and lambda; = -24.5599. Therefore, the model's

canonical form may be writlen as: .
y = 1151111 - 4.25592w¢2 - 24.5599 w32 (87) A
Since both lambda; and lambda; are negative, it can be concluded that the ?-
stationary point is a point of maximum response (27:453-454).
Since it is impossible to operate this system at the stationary point A
because the factor combination of E{ = 10 and E; = 2 result in less than the
minimum required number of crews, the decision maker may wish to move
away from the stationary point to a point where E; is in the region of i
interest, but without sacrificing large amounts of sorties. If not, the system ,
may be run with a combination of 10 kits and 6 crews (the minimum -
number of crews) since the number of crews is minor to the number of kits
in producing a maximum of sorties, but this will not be the optimal solution .
in terms of cost to be mentioned later. To do this, it is necessary to find the .
relationship between the w;'s and the x;'s. This will relate the canonical E
variables back to the design variables. Looking at the response surface E
contours of the model, the response surface is less sensitive to sortie loss in ;
the wy direction (the smaller of the two eigenvalues). Now, points in the (wy,
w») space must be converted to points in the (xy, x) space. N
The relationship between the w;'s and the x;'s may be described through .

a (k X k) orthogonal matrix, M (27:458-460). The columns of M are the :
normalized eigenvectors associated with the previously calculated ‘
eigenvalues. The x variables can be related to the w varaibles by the o
equation:
w =M xg) (88) ;

If m;is the ith column of the matrix M. then m; will sulve the equation: 6
63 o
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(B - lambda 1) m; = 0 (89)
Using the previous results:
1-20.6579 + 4.25595 -8 llml=0 (90)
| -8 -8.15789 + 4255951 | myy |
or:
-16.40195my| - 8my =0 (91)
f -8myy - 3.90194my =0 (92)

The normalized solulions to these simultaneous equations must result in
myq2 + my 2 = 1. But, there is no unigue solution to this. One preferred
method is to let mpy” = 1 and solve for my{ and then normalize this solution.
With mz,* = 1, m;" = -0.4877. Normalizing this, divide both m;" and mz;" L
by [(my;”)2+ (mp;")2]1/2 = [(-0.4877)2 + (1)2])1/2 = 1.11259. Now, the
normalized solutions are:

myy=myy"/ 111259 = -0.4877/1.11259 = 0.43835 (93)
mpy = my /1.11259 = 1/1.11259 = 0.89880 (94)
This is the first column of the matrix M.

Next, using lambda; = -24.5599, the above procedure is repeated. The
result is myp - 0.8987895 and my; = 0.438389. This is the second column of
the matrix M.

M-1-043835 0.898785| (95)
| 0.89880 0.438389|
and the relationship between the w variables and the x variables can be

found by:

lwil-1-0.43835 0.89878511x; - 1.08255]1 (96)
lwzl | 0.89880 0.438389 |1xy+2.40998 |

which expands to:
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: wy - -0.43835 (x - 1.08255) + 0.898785 (x + 2 20998)  (97)
3
- wp - 0.89880 (xq - 1.08255) + 0.438389 (x, + 2 20998) (98)

Now, additionalt exploration of the response surface can easily be made in

the region of the stationary point by finding points in (w . wa) space to take

PR Tl S v )
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the observations and then convert these to (x1 , x3) space using the above

equations. New simulation runs can easily be made at these new design

points (27:460).

Phase 111 of the Experiment
Just as the high point on the sortie production contour represents a

maximum yield, so does a low point represent 2 minimum yield. The true

.“‘.. Pl a4 -‘.t)‘..".«

» v
»

beauty of this entire methodology lies in this one basic assumption: if one
can predict a region of maximum yield for a production process to operate
within then by transforming the y;'s (responses) at the design variables into
some sort of marginal cost response as a function of the combination of
control variables, cost contours of the system can be plotted over the region
] Again, simple RSM techniques would apply and if a minimum point does
exist in the region of interest, this would represent an area of production
where cost minimization could occur.

Now a multiple response function has heen developed. On one contour
plot lics the region of maximum output and on the second, the region of
minimum cost. By simply overlaying the cost contours onto the output
contours, many mteresting and useful pieces of information can be studied
(28167 16R) By inspection, the direction in which the producer would have
to move to improve both output and costs of production could be seen

simultancously. If the cost and output contours intersect, then the producer
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is operating at economically optimal conditions (minimum cost and
maximum production). If they do not intersect, the direction of movement is
readily at hand. Now, the potential risk of altering the input combination in
an attempt to reduce costs is limited. The impact of an addition or reduction

of one uni. of input to the cost of production is readily apparent.

Design of_the Cost System

By simply giving some cost to each of the inputs and combining these
costs throughout the experimental region to give some output cost function
would only result in a response surface that is a rising plane. This is because
the lowest cost combination would be in the lower left corner of the region
and the highest cost combination would be in the upper right corner.
Obviously, this would not be helpful to [inding a minimum cost contour.

A method was designed based on the incremental cost of each input
combination in the following manner (21:67). Each sortie flown was given an
arbitrary cost of $1000 dollars. So each response y was multiplied by 1000.
Now the total cost of the input combination (ie. P{*6 kits + P,*6 crews = Cost
of the Inputs) was divided by this new response constant to give a new
response variable which would be the incremental cost of adding the
additional kits and/or crews to produce that number of sorties. The

resulting data table was then formed:
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Table XII
- Data for Cost-Minimizetion Model
Natural Variahles Coded Variables| Response
b E, E, Xy X, sy
6 -1 -t ©.0000109
6 6 -1 - 00000109
e 6 ' -1 00000139
1o é ! -1 ©.8000139

- 6 12 -1 1 ® 0P202163

’ 3 12 -1 1 © PARA1 7S

- 10 12 1 1 0 0000195

i 10 12 { ! 90000227

.. 8 6 ] -1 9 0000125

- 8 [3 ] -1 2 2000123

N s 12 ° 1 8 0008177

A 8 12 e 1 0 eee.1 77

R 6 9 -1 ] 9 200132
® 6 9 -1 e @ pece13e
10 9 1 e 0 0000177
19 9 1 ] © 090166
8 9 [} ) @ 0000148
8 9 L L 8 0002153
f ] 9 [ (] 0 2300150
8 9 ] 8 o POPDISS
N 8 9 -] [} 2 200159
. [ ] ] ] ] 9 0000149
‘ The same response surface procedure as before was used on this data set.

o The key to this methodology is that no new experimentation is involved. A

. regression analysis was performed on the cost data and a new prediction

<

® equation was formed. Lack of fit was insignificant. Now the canonical

L analysis was performed around the stationary point (xy g = 1.599,

G- 120 = -10.361) resulting in two positive eigenvalues of (4.328, 9.436). Thus,
a point of minimum cost does exist in the experimental region. These are
used to generate new cost contours. They are similar in appearance to the

4 output contours generated previously. These cost contours can be plotted

o

’

;
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and then compared to the output contours to see if the region of maximum
output intersects with the region of minimum cost.

The point of minimum cost can be compared to the point of maximum
output. This dual output-cost response leads to many useful pieces of
information. If the region of maximum output intersects with the region of
minimum cost than the "industry” is operating at economically optimal
conditions. [f these regions do not intersect, however, then the direction in
which the “industry” must move to reduce its cost is readily apparent. This
would obviously result in some reduction in output, but now the decision
maker can visually observe the impact of output reduction caused by a
reduction in costs (21:68).

A scrious restriction must be placed on the application of this method.
The prices of the kits and crews that result in a total cost constraint may be
infeasible for the actual operation. One must be sure that the number of kits
and crews that the response surface optimizes can be attained for a certain
budget constraint. A region exists where certain prices of the inputs wilf not

permit cost minimization to occur.

Alternative Mcthod
A simple budget constraint mentioned in Chapter | can be imposed on the
maximum Yyield response system through a simple cost constraint:
C=Prxy+ Paxp (991
where P and P, are the prices of the Kits and crews, respectively, and C is
the resultig total cost of the inputs. Plotting a response surface of this

function is an easy task since the responses are simply the sum of the input
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factors at each design point multiplied by their price. The resulting response

surface will be a rising plane of costs from the lowesl combination

(Py*6 kits + P"6 crews) to the largest combination
. (P10 Kits + Po* 12 crews).

These budget constraints can then be imposed on the response surface of
__ the maximum yield and a feasible region where the system would opcrate
. can easily be seen. Each response contour can be treated as a level of
constant output and the response contours treated as isoquants. The system
will only operate where the isoquants were concave toward the origin.
These isoquants will show the required combination of inputs that will
produce the given level of output.

The slope of the isoquant will show the marginal rate of technical

x substitution (RTS) or how one input may be traded for another while holding . -
the output constant. This rate of technical substitution will be equal to the
ratios of the marginal products. This ratio will give the isoquants their
negative slopes since both the marginal products and the rate of technical
substitution must be positive, the negative of the RTS will be the slope of the
isoquant. Finally, the isoquants will exhibit diminishing rates of technical

substitution. This simply implies that the more crews that are used the

harder it would be to substitute crews for Kits for a given level of output
(30:243 246).




1V. Conclusions and Recommendations

Restrictions on the Polynomial Response Function
In order to use a second-order polynomial as a production function,
several restrictions on the function must be made so that it behaves as a
production function an can be used in an economic analysis. Take any
generic second-order polynomial:
y =bg+ byxy + baxy + byix12 + byaxa? + byoxyxy {100)

to be used as a production function. The production process can be simply

55955

shown in the following figure where Y is the output of the production

; process and is a function of X, the combination of the two inputs used to .
2 produce Y.

) v

a
Y
max
X
¥ #*
¢ X

Fig. 3 Plot of Output Process

The point a is the point of maximum output, Y., that is produced at the

combination of the X's at x°. Obviously, the production process would like to
be operated at the combination 1° to maximize its output. This point may

only be reached if the budget constraint imposed on the system is large 1
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enough to allow for the x™ combination of inputs. The second order
polynomial can reveal by simple inspection whether the production process
is operating in a region where it is reasonable to expect a maximum output.
The coefficients of the linear terms, x; and x;, must be positive. The reason
for this ts that the positive sign indicates that they contribute positively to
the output production. The experimenter then must take great care to
ensure that the experiment is run in the region to the lelt of point a. Normal
compeltitive industries would not even operate in the region to the right of
point a (negative coelficients of xy and x,). Here it is obvious that any
increase in the amount of input would result in a decrease in the amount of
output. No competitive firm would add any amount of input in this region
even il the input were free.

However, a non-profit organization like the Air Force could operate in this
region since it 1s not in the business of maximizing profits. So when a non-
profit organization is modeled as a competitive, profit-maximizing firm, care
must be taken to ensure that the modeling is done in the region to the left of
point a to ensure that the resulting polynomial can be used as a production
function.

This same care must be taken when computer simulations, as in this
rescarch, are used to model the input output process. The experimenter
must ensure that the experimental region covers the area where the
marginal products are positive. This will ensure that the modeling is being
done in the feasible region to the left of point a. It was shown in this
research that simulation models can clearly lead the experimenter into a
region where the marginal products are negative,

Another important restriction is that the second order condition:

fif22 - 1120 (1on
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must be met in order that the function be concave and allow for an output
maximization. The law of diminishing returns restricts the second- partial
derivatives, {1 and fp,, be negative. A relative maximum is an important
point only for a second-order polynomial production function. A Cobb-
Douglas or a CES production function never pass through a relative maximum
point. Only for a polynomial production function does there exist an exact
combination of inputs which will maximize the output process, if the
imposed budget constraint allows that input combination to be attained.
Now the important point of testing for the existence of the cross-product
term is echoed once again. If the cross-product term in the second-order
response function can be proved insignificant and eliminated from the
function, then the second-order condition will always be met since {1, will
equal zero. If, however, the cross- product term cannot be eliminated [rom
the function, then the second-order condition must be tested to ensure that
the second order polynomial does indeed behave as a production function

and cost minimization is possible.

Analysis of Yicld and_Cost_Responses

Now that the entire analysis needed for this research effort is complete,
it is time to analyze the yield response function graphically. This can be
accomplished by plotting the contours. Each contour represents a response
level for a given amount of the inputs x| and x;. Referring back to the
canonical analysis done in Chapter 3, the eigenvalues not only determined
that the response surface yielded a maximum response but also could be
used to determine the shape of the contour surface. If both eigenvalues

were cqual then the response surface would be concentric circles around the

critical point. However, in this instance, the second eigenvalue 1s much
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larger than the first. Therefore, the response surface will be elongated in the

w1 direction. This corresponds to a greater loss in response in the wp

direction or visually falling more quickly down the hill away from the

critical point in the w; direction. The response surface is plotted in the

following [igure.

Fig. 4 Contour Plot of Maximum Yield

The response surface is tilted in the northeast direction due to the values of
the eigenvectors found in the canonical analysis. The center point (critical
point) of the response surface corresponds to a yield level of 1151 sorties.
The number of kits and crews needed to produce this sortie output can be
directly taken from the x| and x3 values on the axes.

The cost responses are plotted on a separate graph in the same manner.

This response surface reveals the minimum cost contours developed [rom
different input combinations of xy and x,. This time, the center point

(critical point) represents the minimum cost combination of x; and x;.

Obviously, moving away from the center point or up the hill will result in

increasing costs. Moving in the w direction will increase the cost of the
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.
system more quickly than movement in the wj direction. This increase in
costs in the wj direct;on also corresponds to increasing input combinations of .
kits and crews. This revelation is intuitively obvious. The cost response :
surface is plotted in the following figure.

s

X,
1 i

)

.

X,

Fig.5 Contour Plot of Minimum Cost :

o

Analysis of Multiple Response System E

The entire purpose of this research effort was to show that by :
representing a production process with a second-order polynomial response ;
surface techniques could be used to analyze the production process. After
estimating the function, plotting the resulting response function is an )
excellent way to show if a maximum output response is attainable in the o
region of interest. Also, the tradeoff between the input factors can be
shown. Now if the production process is unconstrained to cost considerations
then the single contour plot of the maximum yield region is the end to the ;
study. But very few, if any, production processes do not consider costs and \
try to minimize them. "

This constrained optimization problem can be very easily solved .

mathematically using Lagrange multipliers to find the least-cost
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combinations of inputs. However, if the second-order polynomial function
contains an interaction term this technique does not have a closed-form
solution. Also, the least-cost combination of the inputs is found.

But often times, management wishes to look at the present operational
process and see if it can reduce costs. This is where response surface
methodology can be employed successfully. RSM can enable the analyst to
graphically plot the production process. Not only can the input combination
to yield the maximum response be shown, but also the reduction in output
that results when tradeoffs in the input combinations are made. N

The constrained optimization problem can be handled easily as a multiple
response surface problem regardless of whether or not there is an
interaction term in the production (response) function. By plotting both the
output contours and the cost contours on the same graph, the constrained
optimization problem can be shown visually. This is shown in the following

figure.

Fig 6 Contours of Yield & Cost Responses
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The square on the graph represents the feasible region of interest--(6 le.
kits le. 10), (6 le. crews le. 12)-- used in this research effort. Point a is the
point of maximum output and point b is the point of minimum cost. If the
two regions around points a and b intersected, then the production process
would be totally optimal--output maximization and cost minimization.
Obviously, this process is not totally optimal. However, a feasible alternative
may be reached. The locus of points along the path from a to b will take the
production process to areas of less cosl. The points along this path are the
points where the slopes of the cost and yield contours are equal. Now the
decision maker can see the reduction in yield (moving from one yield
contour down to the next) as the move is made {rom point a to a region of
lower cost. Point ¢ would be the level of output that would minimize costs
for this particular production process since that levels of response intersects
the region of cost minimization. Although point d is located on the same
yield contour (remember each contour represents the same output level) the
producer would never want to operate at this level because the same output
level could be achieved at point ¢ with less amounts of inputs.

Remember the serious limitations on this type of multiple response
analysis outlined in Chapter 111. The alternative method discussed in the

previous chapter will be discussed in the following section.

Analysis of the Alternative Method
The following figure illustrates how the maximum ouiput response
contours can be analyzed to show the region where the production process

must be operated. The diagonal lines leading to the point of maximum

output describe the feasible region for production. The response contours

represent the increasing levels of ouput, up to the point of maximum outpul.
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Each response contour represents a constant output level. In this way, the

response contours may be thought of as the isoquants of the production

process.
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Fig 7 lsoqusnt Map of Sortie Production

This feasible region is where the isoquants are negatively sloped
(diminishing rate of technical substitution) and concave toward the origin.
This is the only region where production would be possible. Also, the values
of both inputs must be positive. Now the different combinations of the two
inputs along the individual isoquants can be observed which produce each
constant fevel of output. The marginal rate of technical substitution (RTS) or
the rate at which x; can be substituted for x; while holding output constant
along an individual isoquant can be seen (30:244). This can be shown by the
following:

RTS (xp for x1) = - dxy/dxzlg (102)
The value of this RTS depends on the point on the isoquant where the slope

is being measured.
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A difference between the second order polynomials and the Cobb -
Douglas or the CES production functions can now be shown. Neither the
Cobb Douglas nor the CES functions pass through a relative maximum.
Therelore, there are no boundary limitations on their respective isoquants.
A polynomial production function, however, does pass through a maximum
point and so the isoquants are limited up to that maximum point. For each
contour of constant production, the number of possible input combinations
will decrease until there is one single combination which will produce a
“true” maximum output. This maximum output may be obtained only if the

budget constraint imposed on the system allows the process to be operated

there.

Conclusions

Based on the results of this research effort, it was shown that response
surface methodology techniques can be used in constructing a second-order
polynomial as a production function. Sufficient conditions for output
maximization were outlined to ensure that the polynomial behaves as a
production function.

Secondly, using the same response surface techniques, a cost constraint
could be imposed on the system. Combining a plot of the cost contours with
the yield contours showed how trade-of(s can be made in the input
combinations to move 1o a region of lower costs. The exact path from the
point of maximum yield to the point of minimum cost was constructed. The
restrictions on this method were outlined and an alternative method was
discussed.

Thirdly, only two factors (support kits and maintenance crews) were used

as inputs to resemble capital (kits) and labor (crews) that are normally
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analyzed as the two major factors of production in economics. Through this
research, the greater flexibility of using a variable elasticity of substitution
function like a second-order polynomial was shown. Comparing this
{lexibility to the constraints imposed by the Cobb-Dvuglas and CES
production functions hopelully will encourage the use ol response surface
techniques to develop second-order polynomials which can be used to model
production processes.

Finaliy, the problems of using computer simulations to model input-
output processes were shown. If non-profit organizations, like the Air Force.
wish to model themselves as producers, then they must understand the

limitations to their model's production functions as outlined in this research.

Recommendations

There are three areas where further research may be suggested. The
first is to find an Air Force simulation model that is currently used to
allocate resources and see if, by using the techniques described in this
rescarch, that system adheres to modeling as a production function. It has
been shown in this research that response surface techniques can easily be
adopted to the estimation of polynomials as production functions. An
interesting area of research would be to see if a current system is operating
under the optimal conditions described in this research.

The simulation model used in this research was a simple example to show
the methodology to be used if this technique were applied. This leads to the
second area of further research. By using a current operational simulation
model that might possibly involve more than two inputs, further research : -

could be done by applying the output-maximization, cost-minimization

analysis to three or more inputs. Developing the cost-minimization




»
constraints (first- and second-order conditions) for this more complex model 1
would indeed be challenging. Also, it would be interesting to see how the

, response surfaces react to the interaction of more than two factors. ;
' The final recommendation deals with graphing the actual elasticity of
substitution curves for the VES functions developed through the response
surface analysis. If "good” data were available from a system that was ;
modeled using a Cobb-Douglas or a CES function, it would be interesting to
compare the results of those production functions with production functions

built by the response surface approach outlined in this research. Graphing 3
the VES curves and comparing the input trade-offs seen on an elasticity plot

with the trade offs shown on the response surface contours could be {urther

f proof of the benelit of using the techniques described in this research effort.

‘ Also, additional benefits of using second-order polynomials as production

functions could be shown when an actual comparison is made to a system

that is currently modeled using a Cobb-Douglas or a CES production function. . -
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Appendix
' Resource-Allocation Model
'.‘Ff T'his appendix contains the SLAM 11 and FORTRAN code of the resource-
o . . . . . e . . . -
- allocation simufation model used in this reseacch. The first section lists the
I .
‘ SLAM I1 code and the second section lists the FORTRAN code.
- SLAM Code
' LTCFRFLING'S CAPABILITY MODEL MODIFIED TO RUN
EXPERIMENTAL DESIGNS USING AC.FOR. MODIFIED
v BY CAPT J. REVETTA.
- GEN EBELING,CAPABILITY MODEL,1/28/85,22 NN . NN 72:
s LIMITS.9.3 200:
® TIMST.XX(1):
TIMST NNQ(1);
TIMST.NNACT(4);
© TIME UNIT IS ONE HOUR
NETWORK :
_ RESOURCE/1.WRSK(0),1;  SET LEVEL OF SPARES
. RESOURCE/2,CREW(0).2,4; ASSIGN MAINTENANCE CREWS
RESOURCE/ 3 BOMBS(0),5; DEFINE INITIAL ROMB LVL
: GATE/STORM.OPEN 6 MODEL WEATHFR
) GATE/DAY,CLOSED.7: DAYLIGHT FLYING
[)
MODEL SEGMENT | *** *SORTIE GENERATION®***
'll-lilll’MA'N NETWORK!I!{!!!
- MSN  AWAIT(2) (REW: WAIT FOR CREWCHIEF
F- ACT/2RIOGN(L,5.4);  PREFLT
- FREE CREW: RF1.EASE CREWCHIEF
. AWAIT(7) DAY: WAIT FOR DAYLIGHT
= FLY  AWAIT(6)STORM: WAIT FOR GOOI WEATHER
‘ AWAIT(3).BOMBS/6: NEED MUNITIONS
- AVTER.BOMRBS/-6:
¢ FREF. BOMBS/6:
- QUEUF(3): WAIT FOR LOAD CREW
. ACT(4)/3 EXPON(.5): BOMB LOAD
’ GOON:
) ACT...10 FMAIN; GROUND ABORT
. AT, 2,90 LAUNCH AIRCRAFT
; GOON.
COLCT(T) BETWEEN MTB SORTIES,10/5/ 5,
) COLCT(2) INT(1). TURN TIME.20/1/1;
, ACT/4RNORM(2,5,4);SORTIE  FLY MISSION (SORTIE)
~:
~l

»

-
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ASSIGN, ATRIB(1)-TNOW,

GOON.

ACT., 01 ATRIT; ATTRIT ACFT

ACT,, 05 BATL; BATTLE DAMAGE

ACT, 2,94; TURN ACFT

GOON:

AWAIT(2) CREW:; AWAIT CREWCHIEF
ACT/5.RLOGN(.S, 25,4);THRUFLT (POST FLT. EXAMINATION)
FREFE.CREW; RELEASE CREWCHIEF
GOON;

ACT. .30 MAINT; UNSCHED MAINT

ACT. 70:

GOON.1:

ACT. NNGAT(DAY) EQ U.FLY.FLY AGAIN

ACT,, MSN; PREFLIGHT FOR AM MSN

. MODFL SEGMENT 11 ** % ACFT ATTRITION®** *

ATTRIT GOON: LOSE AN ACFT
ACT/6ATIRITS
ASSIGN, XX(1)=xx(1)-1;
TERM;

. MODEL SEGMENT 111 **» 2 UNSCHED MAINT****

FMAIN ALTER BOMRBS/6:

MAINT ASSIGN. XX(1)-Xx(1)-1;
AWAIT(4) CREW: GET A CREWCHIEF

ACTRLOGN(],25). 70 RR,  TROUBLESHOOT
ACT.RLOGN(1,.25),.30;

RETURN MUNITIONS

GOON:
ACT/7 RLOGN(2,.5,4);MINOR RPR MINOR REPAIR
FREF.CREW;
ASSIGN XX(1)=XX(1)+1:
ACT, MSN; (O TO PREFLIGHT

RR AWAIT(]) WRSK; WAIT FOR PART
ACT/9RLOGN(4..5.4);R&R WRSK REMOVE AND REPLACE
FREF, CREW:
ASSIGN XX(1)=XX(1)+1;
ACT,, MSN; GO TO PREFLIGHT
ACT; PART GOES TO SHOP
QUFUE(R): ENTER SHOP REPAIR
ACT(3)/8 EXPON(5) REPAIR PART- NOTE 3 CREWS
I'REF, WRSK;
TERM,

MODEL SEGMENT IV "EY*WEATHER""**

(REATE.UNFRM(18,30),,1; A STORM EVERY 24 HRS (AVG)
CLS (LOSE STORM;

ACT/1 UNFRM(1.5,2.5);STORM STORM LASTS 2 HRS
OPEN STROM;

ACT UNFRM(18,30), CLS;
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5 . MODEL SEGMENT V FEYEMUNITIONS® * " * :

(REATE.UNFRM(18,30); CONVOY ARRIVES DAILY
ASSIGN XX(3)-1;
BRN  GOON,
ACT/1TLRLOGN(2.1):BOMB BUILD BUILDUP AND LINE DELIVERY

ALIER BOMRS/ 44, LOT SIZE '

'y ASSIGN. XX(3)-XX(3)+ 1.

: ACT XX(3)1.T.6,BRN; NOTE.S TRUCKS PER DAY UNLOADED
ACT. '

! TERM;

X . MODEL SEGMENT V1 ****DAY/NIGHT SHIFT****

A (REATE, 12,

' BACK OPEN.DAY: :

v ALTER.CREW/6: DAY SHIFT COMES ON DUTY ‘
ACT12; 12 HRS OF DAYLIGHT

. CLOSE.DAY: NIGHT HAS FALLEN

> ALTER,CREW/-6: NIGHTTIME WORK FORCE

N ACT.12, BACK: |

;. MODEL SEGMENT VII ****BATTLE DAMAGE NETWORK****

- BATL GOON:

[- ASSIGN XX(1)-Xx(1)-1:

ACT/10,UNFRM(22,26),CLSS RPR CL.SS REPAIR 24 HR AVG
GOON: '
. ASSIGN. XX(1)-XX(1)+1;

ACT,, MSN;

FNDNETWORK ;
INIT.0,720): SIMULATE 30 DAYS .
SIMULATE;
24 8 9 288
SEEDS,+ 76071161363 ,+637099800973,+ 20315910979,
+705098259815;
N SIMULATE;
LY 24 8 9 288
SEENS,+ 28A 2606187+ 71077659415,+8269271 3921,
+36687465289;
SIMULATE; !
N 24 8 9 288
- SEEDS,+ 76N71161363,+63709980095,+20315910979,
4 + 705098259815, ,
SIMULATE,
24 8 9 288%
SEEDNS. + 286 360160485 + 71077659415,+8269271 3921,
+ 36187465289,
SIMULATE,
21 8 9 288%

SEEDS,+ 76071161363,163709980095,+ 20315910979,
LTIDUIR2TIR1Y,
SIMULATE,
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21 ] 9 288 »
SEEDS.+ 286 260611185,+71077659415,+ 82692713921, : SR
+ 360h87465289; !
SIMULATE, »
24 8 6 28% .
SEEDS.+ 76071161363 +63709981095,+ 20315910979,
+715098259815;

SIMULAIE, K
21 8 6 288

SEEDS.+ 244 361160485.+ 71077659415,+ 82692713921, 3
+ 36687465289; :
SIMULATE, :
24 8 12 288 '
SEEDS,: 76071161363.+63709980095,+ 20315910979,
+7115098259815; |
SIMULATE; '
21 R 12 288 .
SEEDS. 296 36060485, 71077639415+ 82692713921 :
+360687465289; . :
, SIMULATE;
24 6 9 288
A SEEDS,»76N171161363,+63709980093,+ 20315910979, :
f +705098259815; '
SIMULATE. :
24 6 9 288
SEEDS,» 284360611487 4+ 71077639415,+82692713921 .
+36687465289; |
SIMULATE, ;
24 6 288 ;
SEEDS.« 76071161363,+63709980095,+ 20315910979, ]
+ 7050982598 13; ‘
SIMULATE:
24 6 6 288
SEEDS,+ 236 36061483,+71077659415,+ 82692713921, :
+366874675289; ‘
SIMULATE,
24 f 12 288
SEEDS,» 7607116126 3,463709980093,+ 20315910979, ‘
+705098259815; ‘
SIMULATE,
24 f 12 %%
SEEDS. + 286 360614875 +71077659415,+8269271 3921,
L 36087465289, )
' SIMULAIE, J
24 10 h 288
SEEDS.+ T6071161363.463709980095 + 20315910979,
$ 715098259813,
: SIMULATE,
. 24 In 6 288
SEEDS, + 284 300601485,+71077659415,+826927 13921,
+ 36087465289
s SIMULATE
. 24 10 9 288
SEEDS,+ 7607116136 3,46 3709980095,+ 20315910979,

.......................
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+ 705098259815,
SIMULATE,
24 1N 9 288
SEEDS. 286360610485 +71077659415,+ 82692713921,
+ 36687465289;

A SIMULATE,
N 2410 12 288
3 SEEDS,» 7417116136 3,+63709980093,+ 20315910979,
2 + 7153198239813,
SIMULATE.
: 24 10 12 288
Kl SEEDS.+ 286360160183,+71077659415,+ 82692713921,
d +36087463289;

FIN,

PROGRAM MAIN
DIMENSION NSET(10000)
COMMON/SCOMI/ATRIBCIOO) DD(100).DDL(100) DTNOW. 11 MFA MSTOP .NCLNR
I NCRDR NPRNT NNRUN NNSET NTAPE.SS(100),SSLC100), TNEXT, TNOW XX(100)
o COMMON/UCOM1/IAC.IWRSK .ICREW .IBOMBS

COMMON QSET(10000)

NNSET-10000

NCRDR-3

NIPRNT -6

NTAPE-7
n NPLOT-2
" OPEN(10 STATUS="MEW' FILE="CAP.DAT ,FORM="FORMATTED")
N CALL SLAM
\ STOP
N END

C

N C
- SURROVITINE INTLC

COMMON/SCOMI/ATRIBCIOM) DDC100) DPLOLOG).DTNOW 11.MEA MSTOP .NCINR
I NCRDR.NPRNT NNRUN NNSET NTAPE,SS(100),SSLO100) TNEXT, TNOW XX(100)
k- COMMON UCOMI/1AC.IWRSK.ICREW . IBOMBS .

C READ IN STARTING VALUES FOR EXPERIMENT

DIMENSION A(3)
8 READ (NCRDR,100) IAC,IWRSK 1CREW .IPOMBS
: 100 FORMAT (415)
M XXO1)-1A€ ! SET AIRCRAFT LEVFEL

CALL ALTERCLIWRSK) ! SET LEVEL OF SPARES
'_ CALL ALTER(Z2 JCREW) | NUMBER OF MAINT ICREWS
: CALL ALTER (3,1IBOMBS) | INITIAL BOMB LEVEL
"

DO 101 -1IAC
ACT)-TNOW
CALL FILEM(2,A)

...............................................
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10 CONTINUE
PRINT * IACIWRSK ICREW IBOMBS

RETHRN
END

o

SURROUTINE OTPUT
COMMON/SCOMI/ATRIBCION) DDCIMY) DTNOW, H MTA MSTOP NCLNR

I NCRDR NPRNT NNRUN NNSET NTAPF SS(100),SSLC100) TNEXT, TNOW.XX(100)
COMMON/UCOMI/IACIWRSK 1CREW, IBOMBS

WRITEC10,100) CONUMULY TAC,IWRSK ICREW, IBOMBS
100 FORMAT (" FR 2.1X.1X.415)

RETURN

END
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This rescarch allempled Lo shew that an pAlr Force uvril can
be medeled s @n industry with its "output" determined through a
pioduction function. 2 sccond-crder polynauial was used as the
production function in this rescerch. 2 resource-allccation
simulation was used te generatce the data for analysis. only two
factors were analyzed--cupport kits and maintenancee crews.  Tn this
way , these two inputs conld be canpared toe the wmicroeccnami ©
factors of precduction--capital end labor.

Basic kesponse Surface Methodolagy (RSM) technigues were used
Lo estimate the scecond-order polynanial. FExperimental designs 1n
the forwm of central canposite designs (CCD) were used to dotermine
the input factoer canbinations., [ complete statistical nmalysis of
the pure linear model and the second-crder model, caupletc with
statistical tests und ANOVA, was perf{cocrmed. Basic wlcrocconauic
definitions of first- and second-order conditions werle discussed
and the conditions for least-cost canbinations of the inputs for the
scoeond-order polynonial were derived.

L ocanonical analysis was doene on the output data in order to
plat the responsce contours of woximum yicld,  Also, o cost constaint
was imposed on this production function and a multiple 1esponse
sul face with maxinum yield and miniwmum cost contours over lapped
within the experimental region was plotied to show the relationship
of wmaximum yield to minimum cest,

The results of the canonical analysis of {he r1esponsce wmodel

indicated that a prodhuction function can be maximized subject to a

# minimun cest constraint through the use of a multiple respouse

i systewm,  ‘The path from maximun yield to minimun cost, ond the trade-

of fs involved, were discussed. 2lso, the problems associated with

using simuleted data to estimate production functions were outlined.

IFinally, scme benefits of using a second-order polynadnial & oo pro-
duction function in comparison wilh the cammonly uscd Cobb-Douglas
and Constant Flasticity of Substitution (CES) producticn (unction

werl o discussed.
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