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ABUSTRACTI

This research attempted to show that an Air Force unit can be modeled as

an industry with its "output" determined through a production function. A

second-order polynomial was used as the production function in this

research. A resource-allocation simulation was used to generate the data for S
analysis. Only two input factors were analyzed--support kits and

maintenance crews. In this way, these two inputs could be compared to the

microeconomic factors of production- -capital and labor.

Basic Response Surface Methodology (RSM) techniques were used to

estimate the second-order polynomial. Experimental designs in the form of

central composite designs (CCD) were used to determine the input factor

combinations. A complete statistical analysis of the pure linear model and

the second-order model, complete with statistical tests and ANOVA, was
p

performed. Basic microeconomic definitions of first- and second-order

conditions were discussed and the conditions for least-cost combinations of

the inputs for the second-order polynomial were derived.

A canonical analysis was done on the output data in order to plot the

response contours of maximum yield. Also, a cost constraint was imposed on

this production function and a multiple response surface with maximum

yield and minimum cost contours overlapped within the experimental region

was plotted to show the relationship of maximum yield to minimum cost.

The results of the canonical analysis of the response model indicated that

a production function can be maximized subject to a minimum cost

constraint through the use of a multiple response system. The path from

viii
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maximum yield to minimum cost, and the trade-offs involved, were

discussed. Also, the problems associated with ising simulated data to

estimate production functions were outlined. Finally. some benefits of using

a second-order polynomial as a production function in comparison with the

commonly used Cobb-Douglas and Constant Elasticity of Substitution (CES)

production functions were discussed.
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USING SECOND-ORDER POLYNOMIALS

AS PRODUCTION FUNCTIONS

1. Introduction

General Issue

Often the following question is asked to Air Force decision makers:

If your unit is given a budiget increase of
x dollars per year, where should this money

he allocated in order to achieve the maximum
increase in overall effectiveness for the system?

This question often arises and, in cases where the system is extremely

large and complex, no imlmediate answer is apparent. This problem is

compounded even more due to the fact that the Air Force bases many of its

important co.st decisions on results obtained from computer resource-

allocation simulations instead of results from real-world observations. Now,

more than ever, simulations are used by decision makers because: H1) In

SimuLllition1S, Much more control can be imposed over the experimental

conditions than in the real world. "What if" questions can be asked of thle

computer simulation model where little or no data currently exists.

(2) Much ol' thle underlying randomness can be controlled by computer

simulations by simply controlling the Pseudorandom numbers that drive the

stochastic events which occur in the computer simulation miodel. Variance-

reduction techniques can be employed to yield estimiatoi s having greater



statistical precision. Thus, there is no need for complete randomness of the

experimental conditions or simulation run order to guard against the

introduction of biases and variation in the system. (3) Simulations may

account for many detailed aspects of the actual system and therefore ._

simulation models may easily handle exceptionally large numbers of input

variables. (4) Problems caused by missing data and outliers do not cause -

problems in simulation studies. Since the computer simulation is a closed

system, outliers car, not occur. Also, with appropriate time allotment and

funding, missing output data is rarely seen (37:250-25 1).

All of the information needed to answer the above question is contained

in a simple production function from microeconomic theory. A production

function expresses the relationship between the maximum quantity of

output and the inputs required to produce it and also the relationship

between the inputs themselves. A common production function used in

industry is the Cobb-Douglas (CD) production function:

Q = AKLO (1)

where A is a positive constant and i and 0 are positive fractions (11:373).

Major features of this production function are: (1) It is homogeneous of

degree (A I). (2) If (A+B)=l, it is linear homogeneous. (3) Its isoquants are

negatively sloped throughout and convex downward. (4) If (A+)-1, the

function exhibits constant returns to scale (11:374).

Consider the function, QO= AKaLO. Taking natural logarithms of both

sides:

In Qo - In (A)+ l In (K) + 3 In (L) (2)

And then the total differential:

dK/dL = -(dFdL)/(dF/dk)= -(B/L)/(A/K)=-iK/AL (3)

2
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Therefore, -3K/AL < 0.

Then, the second total differential:

d2 K/dL 2 = d/dL(-3K/L)=(- 1I )d/dL(K/L)-(-3/)(IlL 2 )(L(dK/dL)-K) ) 0.

The signs of these derivatives indicate the isoquants to be downward sloping

and convex.

Assume, i6 -. Therefore, fl--. Rewriting QO AKaLI -A and taking

second partial differentials with respect to K and L yields the marginal

products:

dQ/dK - AAKa-ILI-i - AAOK-IL-(a-l) - A(K/L) -  (4)

dQ/dL - AKa(I-)L-a - A(I- i)(K/L)a (5)

Thus, economic meaning can be assigned to the values of the exponents, A

and (, in the linear Cobb-Douglas production model. Since each input is to be

paid by the amount of its marginal product, the relative share to capital will

be:

(K/Q)(dQ/dK)=IKAi(K/L)A- I IIAKaL6,I- A (6)

And labor's share will be:

(L/Q)(dQ/dK)-IL A(l-i)(K/L)a]JIAKaLj] I- - 0 (7)

Therefore, A and 0 are the relative shares of the total product of capital and

labor. This indicates the need for A and 3 to be positive fractions and the

result 4,13 - I confirms exhuastion of this rule ( 1:374-375).

Another popular production function is the Constant Elasticity of

Substitution (CES) production function. This production function is of the

form that the elasticity of substitution may take on any constant value other

than one. The CES function:

Q = AIOK-P + (I -6)L-P]I/P (8)

where:(A>0;0<a<1;p>-l).

3 I
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K and L represent two factors of production and A,O,p are three parameters

11:382). A is known as the efficiency parameter and takes on the same role

as A in the Cobb-Douglas function: it declares the general state of technology.

The parameter 6 is the distribution parameter and, like alpha in the Cobb-

Douglas function, determines relative factor shares in the product. The

parameter p is the substitution parameter that determines the value of the

constant elasticity of substitution (11:382).

Like the CD-function, the CES function is homogeneous of degree one and

thus displays constant returns to scale. The elasticity of substitution equals

(marginal function)/(average function)H I/I+p). Therefore, the elasticity of

substitution, s, is a constant whose magnitude depends on the value of the
0

parameter p:

-1 < p 0 s >1I

p0<:os= I

0 < p ( 00 :s< 1.
Thus the Cobb-Douglas function is a special case of the CES function when p

is equal to zero ( 1:382).

In contrast to these two production functions is a group of variable

elasticity of substitution (VES) production functions in which the elasticity of

substitution parameter, s, may take on a range of different values depending

on the input combinations. Second-order polynomials are a common

example of some VES production functions.

VES production functions have a substitution parameter which varies

linearly with the capital-labor ratio around an intercept term of unity

(33:641). The VES gives a linear view of the economic process in contrast to

the log -linear view given by the CES function (33:68). Most economic studies

4 .
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assume a specified numerical value for the elasticity of substitution

parameter, s. The Cobb-Douglass (CD), for instance, assumes s equals unity

while most strictly linear production functions assume zero or infinity. In ,

theory, this parameter may take on any value between zero and infinity.

The elasticity of substitution parameter can be a variable depending on

the input/output combinations. Thus, an assumption of a constant elasticity 3

of substitutions may lead to a specification bias (33:63). Revankar (1971)

gave a specific CD generalization as to the choice of s:

s - I + B(K/L) (9) 3

where 0 is a parameter. This equation states that s varies linearly with the

capital-labor ratio. A function that exhibits this behavior is known as a VES

production function. It can simply be shown that when (3-0, s- I and the VES

degenerates to a CD. Therefore, the null hypothesis that 0=0 is of great

importance (33:64)

The biggest difference between the VES and the CES is the linear

relationship among the economic variables in the VES while the CES gives "

log-linear relationships. The elasticity of substitution, s, for a VES function

is:

s = s(K,L) - I -I(p - I)/(I - Dp)I[K/LI (10)

Thus, 0=- 1(p - 1 )/(1 - Op)]. So, it can be shown, that s varies with the capital-
p

labor ratio around the intercept term of unity. One must also assume that s

is greater than zero in the experimental range of (K,L) (33:65).

Another important difference between the VES and the CES is the CES

requires the elasticity of substitution be the same at all points of the

isoquant map regardless of the level of output. The VES requires only that

I
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the elasticity of substitution be the same along a ray in the isoquant map.

The parameter may vary along an individual isoquant (33:67).

With all of this economic theory available, relating sonic Air Force output

to a production function and an underlying cost constraint poses an

interesting issue. The general issue at hand here is to treat some Air Force

unit as some type of industry. Through the use of a computer simulation

model, the "industry's" production function can be built. Then, finally, the

produclion function can be optimized subject to some budget constraint.

This last point is simply the microeconomic theory of the least-cost

combinations of inputs. This is what is commonly referred to as simple first-

order conditions (39:1). The problem is formulated as minimizing a cost

function: C = aPa + bPb subject to some output constraint: Q(a,b) = QO. The

objective fuction will then be:

Z= aPa + bPb +ji ,)0 - Q(a,b)] 11)

To satisfy the first-order conditions for minimizing C, the input levels

must satisfy the following simultaneous equations:

Za =Pa - JIQa = 0 (12)

Zb =Pb - .)b 0 (13)

Z ,= Q0 ) -Q(a,b) 0 (14)

The first two equations imply the condition:

Pa/Qa - Ph/Qb A' (15)

This implies that at the least-cost combination of inputs, the input price-

marginal product ratio, must be the same for each input. Therefore, the

Lagrange multiplier, p, can be said to equal the marginal cost of production.

6



-- .. . . .

The second-order condition readily follows (39:4). To insure minimum

cost after the first-order condition is met, the production process must have

a negative bordered Hessian, ie.

1 0 -Qa -QbI
IHI 1 -Qa -JQaa -JQabl

I -Qb -Qab -iQbb

= I(QaaQb2 - 2QabQaQb + QbbQa 2 ) < 0 (16)

Since the marginal cost (ji) is always positive, the expression in parentheses

must be negative (39:6-13).

The first assumption that is made here is that the marginal utility is

positive (Qa and Qb > 0). However, diminishing marginal utility

(Qaa and Qbb < 0) alone will not ensure the expression in parentheses is

negative. Each term must be noted separately.

Looking closer at the expression in parentheses, Qab will exist only if

there is an interaction term (ie. x1x2 ) in the production function equation. If

there is not an interaction term then the entire middle term will be zero.

This will force the expression (QaaQb 2 + QbbQa2) to be negative. Since the

squared terms are always positive, both Qaa and Qbb must be negative for

the second-order conditions to be met.

If an interaction term does exist, it has the possibility of being either

positive or negative. This term describes how increases in x, affect the

marginal utility of 12. In general, it is not possible to predict the sign of this

interaction term (30:93). If it is positive, th middle term is negative and if

Qaa and/or Qbb are positive, 12QabQaQbl must be greater than

IQaaQb 2 QbbQa2 to ensure that second order conditions are satisfied. If the

interaction term is negative, then Qa and Qbb must be negative and

7



lQaaQb 2 + QbbQa 2I must be greater than 12QabQaQbl.

Now this process can be evaluated in terms of the elasticity of

sub.ztitution parameter, s. When the input price ratio (Pa/Pb) rises, the

optimal input ratio of b/a will also rise because input b (now relatively

cheaper than a) will tend to be substituted for input a. The elasticity of

substitution can measure the extent of this substitution ( 1:381-382).

s - (% change in b/a)/(% change in Pa/Pb)
-ld(b /a)/(b /a)l/ld( Pa/Pb )/(Pa/Pb )I

-Id(b/a)/d(Pa/Pb )I/I(b/a)/(Pa/Pb)I (17)

The value of s can be anywhere between zero and infinity. The larger the

value of s, the greater the substitutability between a and b. For the Cobb-

Douglas function, (b/a)(fl/i)(Pa/Pb). Thus, d(b/a)/d(Pa/Pb)=3/A and

(b/a)/(Pa/Pb)-f3/i. Substitution into the elasticity equation yields s=1.

Therefore, the Cobb-Douglas equation is characterized by a constant

unitary elasticity of substitution. This result does not rely on the fact that

,1-I. 'Thus, the elasticity of substitution of the production function will be

unity even if i+63 does not equal I (11:375).

This least-cost combination can be constructed for a second-order

polynomial as a production function (assuming no interaction term) in the

following manner:

Assume the production function of interest is:

y - bo + bIx I + b2X2 + blx1 2 +b2 x (18)

A few assumptions must be made. ( I ) y, the output, can be treated as a

response function. (2) the parameters, bi's, can be estimated by the method

of least squares. (3) conditions of cost- mini mization and output-

maximization can be met. Therefore,

4,A
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f1 bl + 2bllxl > 0 and f1 l= 2bil (19)

2= b2 
+ 2b22x2 > 0 and f22 = 2b22  (20)

The resulting second-order conditions derived in Eq (1 6) must be met in

order for a least-cost combination of inputs to result. Eqs (19) and (20) are

the result of a closed-form solution only in the absence of an interaction

term, 112. As mentioned earlier, if f12 is absent, then fll and f2 2 just be

negative in order for the entire expression to be negative. If f 12 is not equal

to zero, then the sign of the middle term must be taken into account. If f 12

is positive, then the entire middle term will be negative since f1 and f2 must

always be positive. Thus, since flI and f22 are negative, the entire

expressi()n in Eq (16) will be negative and cost minimization will be possible.

But, if 112 is negative, the entire middle term will be positive, and so the

relative magnitude of the middle term with respect to the two negative end

terms must be calculated to ensure that cost minimization is possible.

However, there is not a closed form solution, using this method, for finding

the cost minimization conditions with a interaction term present in the

second ()rder polynomial production function.

The augmented objective function can he written as a cost function:

MinC= P1x1 + P2 x2  (21)

subject to an Output constraint as a production function:
y - f(xx 2) - bU 4 blx I 4 b2x2 b11x1

2 + b22xZ2  (22)

Then ulsing the method of Lagrange multipliers,

Z - PiXl + P2x2 + lily-(bo + b1x1 b2x2 + bI 1 X1
2 + b22 x2

2 )1 (23)

where 1i is the Lagrange multiplier and in this case can he used as the

marginal cost.

Taking derivatives:



dZ/dx - p1- Pf I 0and dx2 /dpZ - P2 -PfZ0 (24)

dZ/dj~I - -i(b + b1 1 +b2 12 +b 11112 +b22122) -0 (25)

J1 - pj/f 1 - p1/(b1 + 2b11x1) '-P2/f2 - P2/(b2 + 2b22x2) (26)

and setting the marginal costs equal to each other:Il( + 2bI Ix 1) -P2/(b2 + 2b22x2) (27)
Thus, (fie input price ratio is:

Pl'P2 - (b I 2bI Ix 1)/(b2 + 2b22X2) (28)

where pi - jib, + 2jib11 x1 and P2 = jib2 .+ 2jib22x2 and where

2jilix -p, - jib1 and 2jib 22x2 -P2 - 10b2.

So, x1  (pl/2jibjj) - (b1/2b 11 ) and xV (p2/2plb 22 ) - (b2/2b 22) where the

demand equations for maximizing the utility of the inputs are:

xI Xj(Pj,P 2 .y;bi's) (29)

12= X2(Pl,P2,y~bi's) (30)

P* jI(P 1 ,P2,Y;bi's) (31)

These demand equations show that the optimal choice of an input is not only

a function of its own price but also the prices of the other input, given a

constant output, and the parameters of the model (30:13 1)

Substituting back into the original production function, Eq ( 19):

y - bo + bjx I + b212 +b I 11 + b2212
2

o b, bjl(pj/2jibj1 ) - (b1/2b1 1)]+ b21(P2/2 jIb22) - (b2/2b22)l +

bjjl(pj/2 jIbj1 ) - (b1/2b11 )j2 +b221( P2/2 jib22) - (b2/2b22)12 (32)

Carrying out all the arithmetic, a positive real root is possible if and only

if:

*4b 11b22Y + bj2b22 +b2
2b11 ( 0 or (33)

4b11b22Y< -1b12b22 + b22bj11 or (34)

y -I(b, 2b22 +b22b11)/(4b11 b22)I (35)

-R 10



Cost minimization is possible it the negative bordered Hessian IHI is

greaterthan zero or (l/f 2
2 )(fllf 2

2 - 21 112f12 + f22f1
2 ) < 0.

It was shown that: fI - bl + 2bllxl > 0 and f11 = 2bit,

f= b2 + 2b22x 2 > 0 and f22 = 2b 22 . Using the above function, f12 = 0, so:

(2b 11)(b2 + 2b 22 12 )2 + (2b2 2 )(bI + 2blx 1 )2 < 0. Since the squared terms are

always positive, cost minimization will be possible if:

(b I + 2bIlx 1)2/(b2 + 2b 22x2)2 < - (b22 /b 1 ) (36)

Again, it is important to mention that then second-order polynomial

production function used in this example does not contain an interaction

term, xtx 2. If such an interaction term does exist, then the aforementioned

method of Lagrange multipliers can be applied in a search for the least-cost

combination of inputs, however the solutions will be different.

Specilfic Problem Statement

In this research, a production function will be treated as a response

surface and basic response surface methodology (RSM) techniques will be

used to derive a second-order polynomial production function from

simulated data.

"his polynomial will be of great help to the analyst because it will free

him of the constraints and complications encountered when working with

either the Cobb-Douglas or CES production functions. The basic problem boils

down to predicting future responses from an existing response (production)

function.

The constraints on the Cobb-Douglas function hamper its use. Although

this function is linear in its logarithmic for m and simple least-squares

regression can be used to estimate its parameters, the elasticity of

substitution is unity for any input factor combination and for any capital

€oI
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intensity (bla). This function is therefore incapable of representing a change

in the ease of substitution of labor for capital (10:42).

Although the CES production function is an extension of the Cobb-Douglas

function, some complications with the CES limit its use. The major problem is

that it is difficult to generalize the function for more than two input factors.

Also, the CES function assumes the elasticity of substitution between capital

and labor does not vary with respect to the input factors. Finally, and

probably most importantly, the CES function is difficult to fit to data since its

parameters are nonlinear. Therefore, a nonlinear least-squares iterative

computer program involving initial guesses as to the values of the

parameters is required for parameter estimation (10:62).

The most common and easily interpretted form of a response function is a

straight line relationship. However, most data, whether from simulation, lab

experimentation, or real-life observation, do not follow straight lines but

rather, curves. There are two methods for the study of a curvilinear

relationship. One is a transformation of the variables (both dependent and

independent) so the resulting relationhip between the variables is linear.

The other is to work directly with the curvilinear relationship. The end

result of tie two methods is usually the same. However, it is usually easier

for one to think in terms of a curved response than in terms of some type of

lograithmic transformation (24:816).

Some benefits and problems associated with using polynomials as

response functions can now be discussed. The most commonly used

response function is a polynomial of degree p. The simple straight line is

when p- I. Asides from this, the most common is the quadratic function

(p-2) (2:816).

12
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Quadratics are popular because they only involve addition of an extra

term to the straight line relationship making them the simplest curvilinear

relationship. Also, from high school calculus, quadratics have a simple

optimum a x = -B1/21 2. The common method of least-squares can estimate

the parameters of this function easily. Polynomials make easy

generalizations to multidimensional relationships between a response y and

several x-variables. This allows for increased flexibility because of the

powers allowed in the x-variables and because the quadratic polynomial is

not symmetric (24:817).

Some disadvantages associated with polynomials are that extrapolation is

virtually impossible outside the range of the constrained x-values. This

sometimes results in impossible values of y predicted with only a small

degree of extrapolation outside the range of the x-values. Also, linear

polynomials are symmetric about the optimum value. Finally, asymptotic

forms of relationships cannot be formed by quadratics (24:8 17).
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Review of _th Literature

Topic,

It is the purpose of this literature search to review the published findings

in the hIeld of nonlinear production functions and response surface

methodology (RSM) techniques. This review will be limited to the two most

common functions--the Cobb-Douglas and the Constant Elasticity of

Substitution (CES) production functions and the class of second-order

polynofmials as response functions.

Backgrou.nd.

As mentioned earlier, a production function expresses the relationship

between the maximum quantity of output and the inputs required to

produce it and also the relationship between the inputs themselves. In

analysis, a production function can be treated as a response surface. Decision

making is constrained by the technology embedded in the response surface.

In the first part of this review, two commonly used nonlinear functions, the

Cobb l)ouglas and the CES production functions, will be analyzed as response

surfaces. All production functions embody technological constraints that are

imposed on the decision making process. But the decisions are not imposed

on the way in which outputs relate to inputs. There are four characteristics

of the production function which are extremely useful for analysis:

technological efficiency, economies of scale, the degree of intensity of one

input o0 a technology, and the ease with which one input is substituted for

another H 0).

Technological efficiency refers only to the relationship between inputs

and outputs. For a given set of inputs, the elficiency along with other

14
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factors, determine the resulting output. It is simply a scalar transformation

of inputs into outputs.

Economies of scale are defined as: for a given proportional increase in all

inputs, when output is increased by a larger proportion then the process

exhibits increasing returns (or economies of scale). If output is increased by

the same proportion then the process exhibits constant returns. And if

output is increased by a smaller proportion then the process exhibits

decreasing returns (or diseconomies of scale) ( 0:13).

The degree of intensity is defined as the quantity of one input relative to

the quantity of another input used in the production process. The concern

here is with the technological requirements of the production process, not

the levels of relative input supplies.

The ease with which one input is substituted for another is defined as the

elasticity of substitution. In the two functions analyzed here, the Cobb-

Douglas I unction is characterized by an elasticity of substitution strictly

equal to one while the CES function can have any constant elasticity value.

Due to the strict equality of the Cobb -)ouglas' elasticity of substitution, this

function is incapable of representing a change in the fourth characteristic of

production functions--ease of substitution. Hence, an extension to this

simple nonlinear function is the CES. However, it was described earlier how

the C'FiS production function is not always the easiest function to employ.

The second part of this review will be a discussion of the literature

dealing with response surface methodology (RSM). RSM theory will be the

basis for the building of the production f unction used in this research.

15
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Justailicatioun_

Because of the extensive use of simulations in analysis, many decisions

are based on results obtained from a system simulation model. In a resource

allocation simulation, an optimal mix of inputs is found to produce a desired

level of output. Validation of this simulation would be an attempt to

demonstrate that the simulation behaves like the actual system. The most

compelling objection to simulation arises here: the difficulty of distinguishing

good results from bad ones (36:101). This problem could develop into a

major concern--expensive experimentation with a poor simulation and

allocation of resources based on the results.
S

Scope.

In this literature review, the current articles on parameter estimation,

elasticity of substitution, efficiency, and economies of scale are reviewed in

an effort to show the complicated issues involved when dealing with

nonlinear production functions. Then, through the review of the RSM

literature, the advantages of using second-order polynomials as response

(production) functions in the place of a Cobb-Douglas or CES production

function will be apparent.

Nonlinear Production Functions.

The first step in the use of any production function in the input-output

process is the estimation of its parameters. The functions that will be

discussed in the first half of this literature review are nonlinear in nature.

While the Cobb-Douglas function is linear in its parameters, the CBS function

is nonlinear in its parameters. In the last several years increasing

16



acceptance to the fact that nonlinear models and nonlinear estimation

problems can be handled, if not quite as routinely as linear problems, at
0

least in a reasonably effective manner has led to many interesting situations.

B~odkin and klein (1967) used two approaches to estimating the nonlinear

parameters: direct (single equation) estimates of the two principle variants

of an aggregate production function and estimates obtained from a two

equation system. They note that production functions and associated

marginal productivity are essentially nonlinear relationships and used

computer programs to cut through these nonlinearities to obtain direct

estimates of the parameters. When estimating the Cobb-Douglas production

function, the two procedures yield very similar results. However the CES

production function comparison yields different results. Due to large

negative intercorrelation between the residuals, the two-step procedure

yields different results from those based upon simultaneous equations

(2:38). They conclude that with either formulation of the error terms

(additive or multiplicative), the CES is a strongly nonlinear function of the

parameters which cannot be made linear by a logarithmic or other simple

transformation. The natural procedure in this case would seem to use

nonlinear methods of estimation (2:33).

liiscnpress and Greenstad (1966) developed a computer package that

handles nonlinear estimation procedures by solving each equation in a

nonlinear system by ordinary least squares and then to use these results as

the initial approximations to the full information solution. One drawback to

their procedure is if nonlinear least squares estimation procedures are

applied to such an equation, and the results used in the second stage, it is

assumed that the errors are additive (15:860). This is a poor assumption

17
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since in at least one test computation, the two stage estimates turned out to
.%

be poorer than the ordinary least squares estimates (15:861). %
0

A different approach to estimating the Cobb-Douglas function was

introduced by Goldberger (1968). His main focus is that when the Cobb-

Douglas form is used, the standard specification and approach to estimation

shift attention from the mean to the median as a measure of central

tendency (17:464). lie shows how minimum variance unbiased estimators of

parameters of either the mean or median may be obtained. Since taking

logarithms gives a linear regression relationship with a different intercept,

which measure of central tendency to be used should be explicit (17:467).

Kumar and Gapinski (1974) used the nonlinear least squares regression

technique to try and handle the econometric characteristics of the CES

estimators. Simulated data resulted in smooth response surfaces but these

results are considered dubious due to a high degree of multicollinearity that

may occur in actual practice (20:563). When actual data was run several

different variances of the estimates were found. The variances could be so

large as to suggest a stochastic series or small enough to be virtually

deterministic. Their results show little bias in the parameter estimates,

except for the elasticity of substitution, regardless of whether the true

response surface has additive or multiplicative errors (20:564). The

elasticity of substitution, on the other hand, was estimated very imprecisely

(20:564). One cause of this imprecision was how the regression program

operates near the optimum. However, the study is very useful in showing

that nonlinear least squares estimation is an important tool in estimating the

parameters of the CES production function. Nonlinear least squares appears

18



to be an important tool for providing accurate estimates except for the

elasticity of substitution (20:567).

The driving force in most of the literature concerning nonlinear

estimation of the CES function is Kmenta (1967). fe found using a

simultan)eous equation technique that when constant returns to scale is

specified the elasticity of substitution can be estimated from the marginal

productivity condition by regressing the value of production per one input

on the parameter estimate of another (both measured in logarithms)

(19:180). However, if the CES function is generalized to permit nonconstant

returns to scale, the method is no longer feasible. He found that when data

is available exhibiting nonconstant returns to scale, the CES function is S

clearly preferable over the restrictive Cobb-Douglas function (19:186).

One subject that is of much debate is the value that the elasticity of

substitution takes on in a simulated production function.

In his article, Thursby (1980) compares a new parameter estimation

technique to three known procedures. Adopting the Kmenta approximation

methods he found reliable estimators for each of the parameters except the

elasticity of substitution. The difficulty is that the expected value of the

estimator does not exist under certain conditions and, when it does, the

variance may be extremely large (38:295). Kumar and Gapinski (1974)

reported that while most of the parameters were estimated with small bias

and variance, estimates of the elasticity of substitution were completely

unreliable (38:296).

Corbo (1977) states the problem is one of assumptions of either profit

maximization and constant returns to scale or cost minimization. Thus, it is

impossible to know if the parameter that one is estimating is the elasticity of
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substitution or some other parameter resulting from untested assumptions

(12:1166). Using Kmentas' approach, he f ound reliable estimates of the

returns to scale parameter but not reliable estimates of the elasticity of

substitution (12:1466). lie concludes that when one wished to choose among

different production models, it is not proper to use the Kmenta

approximation to test whether the production function is indeed a CES

(12:1467).

Ierndt (1 976) also commented on the "substantial disagreement over the

value )f the elasticity of substitution (1 :69)." lie found the discrepency

occurring over differences in data. Studies based on cross-sectional data

gave estimates close to unity while time series studies reported lower

estimates (1:59). Regression based on the marginal product of one input

produced lower estimates than regressions based on the marginal product of

another inIpu~t. Berndt concludes that estimates of the elasticity of

substitution are extremely sensitive to differences in measurement and data

construction ( 1:59).

Maddala and Kadane (1967) hypothesized that a misspecification of the

elasticity of substitution could result in biases in the estimates of returns to

scale. The question was asked: "Suppose that the true production function is

the CES function with constant returns to scale but elasticity of substitution

significantly different from unity. We estimate, however, the Cobb-Douglas

production function instead. Do we observe increasing, constant, or

decreasing returns to scale (22:420)?" Their major conclusion is that

misspecilication of the elasticity of substitution can result in a substantial

bias in the estimates of returns to scale (22:420). Again, Kmenta's procedure

was usd to estimate both parameters simultaneously. ihis procedure was
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not found to give reliable estimates of the elasticity of substitution although

reliable estimates of the returns to scale parameter were found. Their study
S

concludes with saying that if one is studying economic growth, then returns

to scale is the important parameter and the Kmenta approximation to the CES

function (even if it does not give a reliable estimate of the elasticity of

substitution) is preferable to using the Cobb Douglas production function

(2242o).

In trying to come to grasp with misspecifications involving the estimation

of production elasticities, Meeusen and van den Broeck ( 1977) specified a

model for a production function based on errors due to inefficiency,

statistical errors due to randomness, and to specification and measurement

errors. They state that the aforementioned least-squares estimation

techniques systematically underestimate the values for production efficiency

(25:436). The reason for this is that the least squares estimation ignores
S

statistical error. Their parameter estimates and constant returns to scale are

consistent with previous Cobb-Douglas estimates however no sensitivity

analysis was done to ensure this efficiency parameter holds over a wide

range of the response surface (25:443).

2
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Response_Su.ac ,_Mehodoogy .

The beginning of the study of response surface methodology, commonly

referred to as RSM, began in the 1951 with a critical paper written by G.E.P

Box and K.B. Wilson. Box and Wilson (1951) used experimental designs to

find a point on a response surface which maximizes output or yield. The

advantage to their method was that the experimental design chosen uses the

smallest number of observations possible. They compare full and fractional

factorial designs on the basis of precision and bias and introduce the concept

of central composite designs (CCD) for the first time. This paper layed the

foundation for the sequential movement, through experimental designs, from

a first order model to a second- or higher-order model. A CCD has the

advantage that it estimates all the derivatives up to the second order with

equal precision (7:16). The method of steepest ascent to search for a near-

stationary region around the optimum point of the response surface was

formed (7:23). The dominant assumption in this paper was that responses

can be estimated by a polynomial by simply varying the levels of the input

variables in the experimental design. These different experimental designs

are compared in terms of the variance -covariance matrices of their

parameter estimates (7:25).

The Box and Wilson paper spawned a series of related and expanded

works throughout the 1950's. These papers were the building blocks of the

entire RSM technique that is used today. Box and Hunter (1957) introduced

* the concept of rotatability for a response surface design. Rotatability refers

the variance function of the response surface being spherical. This is

important since the variance of a predicted response will depend only on the

distance of the prediction point from the center of the design and not on its

direction (6:204).
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Combining this thought with the initial concept of the CCD, Box and

Behnken (1960) showed that the minimum-varianced estimator of the model

is that with a spherical variance function--a rotatable design (8:456). They

also showed that for a design to be rotatable, it must be orthogonal. They

then proved that each factor in the design must be varied at only three

levels to approximate a polynomial response surface (8:459). Before this

paper, most thought that to approximate a polynomial response function,

each factor had to be varied at five levels. Box and Behnken's paper resulted

in reducing the amount of experimental runs needed to approximate the

response (8:460-463). The first to show this was DeBaun (1959). lie showed

completely rotatable central composite designs requiring each factor be

varied at five levels and then proved it was possible to construct a second-

order design where only three levels of each factor are required ( 3:4).

Although the variance of a design with five x-levels will always be less than

a design with three x-levels, DeBaun showed that a three-level design can be

an eflficient enough estimate of the response surface. This is advantageous

since, in some experimental designs, it would be very difficult to vary the

factors at five levels. Three levels (-1,0, I) make it much more "convenient"

for the experimenter and still produce sulficient response surfaces.

Most of the early work in RSM was focused mainly oil factorial designs to

maximize a response in a given region of interest. The first to do work in the

area of describing the shape of the response surface were Box and Draper

(1959). Their work covered designs from exploring response surfaces to

specific designs for estimating parameters and then a methodology to

distinguish between the two types of response surface models (4:624).

Mead (1975) asked two common questions: (I) How does one choose

which model gives the best fit? and (2) If one has fit some model to
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different sets of data how does the investigation proceed to prove which

models are dilferent (24:82 1)? Draper and Smith (1966) showed that both

of these questions can be answered with linear models because their

corresponding sampling distributions are known. In most situations, model

comparison becomes difficult since the term "best-fit" is ill-defined and the

analysis required to provide a comparison is not available (24:821 ). Draper

and Smith first defined the technique for linear models: (1) The inclusion or

exclusion of terms can be tested using extra sum of squares. (2) For models

with equal numbers of parameters, a simple comparison of the residual sum

of squares can be made. (3) When the purpose of fitting a model is to

predict future responses, Mallows (1973) developed the C criterion:

C0= (Residual SS/s 2)-(N-2p) (37)

to choose the variables to be included in the final model (24:821). This is a

modification of the extra sum of squares technique but allows for the

number of parameters to be fitted (23:664). These three techniques will be

used in this research when the final model determination is to be made.

An important point in RSM that is often overlooked is the source of error

in the experimental design. Box and Wilson (1951) were the first to describe

the two sources of error in experimental designs--experimental error and

bias error. They showed that when an experimental design is being

considered, both variance of the predicted response function and the

difference between the two response functions should be considered (7:34).

A method for the choice of the design was first described by Box and Hunter

( 957). They suggested that the estimated function should approximate the

true function as closely as possible within the experimental region. Also, the

design should be a check for the accuracy of the estimated response function.

The design should not contain a large number of experimental points.

24
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Finally, it must be possible to easily extend the response function to a higher

order with minimal effort (6:197). Box and Draper (1959) then extended

this work to show that the optimal design is where both the variance and

bias error is the same. The experimenter can then ignore the variance error

and simply design the experiment to minimize bias (4:473).

Often, experimental error is not sufficiently large enough to require the

precision that is supplied by a complete factorial design. Also, higher order

interactions can often times be ignored. Fractional factorial designs can be

used in these situations. The main use of fractional factorials is to reduce the

dimension of the experiment by examining the marginal response surfaces

independent of certain effects. Box and Wilson (1951) showed that if the

experimenter has some prior knowledge concerning the shape of the

response surface in the experimental region then only one experiment is

needed at each design point. But, if there is little knowledge, a cruder model

may be used to simply get a rough picture of the response surface. This may

be important when the experimenter is more interested in how the response

behaves upon movement away from the optimum conditions than in an

actual response function to approximate the experimental region. Thus it is

the shape of the response surface and not an exact polynomial from the

central composite design that may be of interest to the experimenter (7:309).

To aid in this dilemma, Box (1954) introduced the process of canonical

analysis and showed the method of interpretting the signs of the coefficients

in the new coordinate system (3:35). The main reason for a canonical

analysis would be to gain information on the nature of the response surface.

Also, it can be easily and quickly determined if a true maximum, true

minimum, or a saddle point results at the stationary point in the
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expei imcnlal region (3:36). Canonical analysis will be a main feature in the

analysis done for this research.

Research Objectives

It will be the purpose of this research to model a typical Air Force unit as

an industry and build its production function Irom computer simulated data.

Experimental design and response surface techniques will be used to build a

second order polynomial as the response surface to be used as the

production function.

This research will then show the convenient use of RSM techniques to

show if the industry is maximizing its output within some cost constraint.

Response surface contours, obtained through a canonical analysis of the

system, wll be used for demonstrating this output maximization-cost

minimization process only if all of the criteria for cost minimization are

satisf ied

Finally, this research will show both the advantages and disadvantages of

using second order polynomials as production functions. Also, the benefits

of using these variable elasticity of substitution (VES) functions will be

discussed in relation to the Cobb-touglas and CES production functions.

Overview

The remainder of this thesis consists of three chapters. Chapter I I gives a

verbal description of the methodology, both statistical and micro-economical.

used in developing the multiple response sui faces to be analyzed.

Chapter III analyzes the findings of the response surl ace least squares

fit. In addition, the steps involved in developing the canonical analysis and

2 6~
• . .* * . .2 (' . 4 ,.Ay,-

.4 4 4 4 4/~%



the output maximization and the cost- minimization response contours are

discussed.

The final chapter, Chapter IV, presents the contour plots for the

maximum output and the minimum cost response surfaces and also the

multiple response contour plot. Conclusions reached during this research

and recommendations for further research are also discussed.

27] 22

-o, oO o . . °,- o° o. o-..' .." . o . . -. • O O= , - .o '. - -.- , .,o ,,= , ° . , * r% " ' .- = % o ' ' % % . =% o%



1I. Thcsis Methodol.gy

This research effort will combine the statistical methods of least-squares

regression, experimental design, and response surface methodology with the

microeconomic properties of output maximization and cost minimiZation in "i

the form of production functions. Both of these will be outlined in the

following methodology.

Response Surface Methodology, usually referred to as RSM, is a statistical

and mathematical method in which a system product is influenced by a

number of input variables. Now the system product will be termed the

response variable. This is also commonly known as the dependent variable

in a mathematical equation. All of the input variables can be termed the

independent variables. The response variable is usually some type of

measure of cost or yield and the the way in which the inputs vary will

determine the magnitude of this response (27:445).

In this research effort, a typical Air Force simulation will be analyzed.

Since most Air Force decisions are based on results obtained through a

simulation model, analysts often stake their reputation on these results. The

typical scenario discussed here will be a simple input-output simulation in

which a response will be affected by the combinations of the different input p

variables. Although most analysts will simply try to optimize the response

with its associated inputs a second question can be asked. Is this

combination of inputs the least- cost combination that will maximize the

response? In other words, is the Air Force maximizing its "production" while

also minimizing its costs? The word production is used in the sense that the

Air Force can be treated as a production firm or industry. The Air Force p

produces an output and while this product is not sold in the competitive

28

. . . . . . . . . . . . . . . . .. . . . . ..- 7-. _ -.



market, the Air Force must be concerned, as are all non -profit organizations,
,/

- with producing its product at minimum cost.

This research will be an attempt to use RSM techniques to build an Air

Force production function and then through these same techniques devise a

method of representing the maximum yield and minimum costs con-bination

of inputs simultaneously. This method will be a valuable tool for analysts

who are tasked to decide on the optimal input mix that will maximize a

response with cost considerations taken into account. Also, the benefits and

hazards of using a second-degree polynomial as a production function will be

discussed.

Background

Before one can begin a discussion of response surface techniques, a

review of least squares regression and experimental design is in order. Both

of these techniques are used heavily in any RSM research.

The basic problem is that a response, y, is a function of n independent
variables. The actual form of this response is unknown but for the purpose

of this research it will be assumed to be approximated by a low order

. (second degree) polynomial (28:61). For the case of two independent

variables, the response could be approximated by the model:

y = b0 + blxj + b2 x2 + b11 xl 2 + b22x2
2 + b12x1 x2 e (38)

where the bi's are the parameter estimates, y is the response variable, and e

is the random error in the model. The xi's should be both quantitative and

continuous. It will be assumed that the errors are independent with zero

mean and constant variance (28:62). As a useful notation the linear model

will be written in matrix form:

y = XB + e (39)
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The least squares procedure will be useful in estimating the parameters in

the vector B. This is commonly referred to as linear regression. The

researcher will know the values of the X matrix since it is a function of the

selected x levels and the y vector will be a column of responses. The

responses, yi'S. can be obtained from any experimental procedure. In this

research effort, the Yi'S are obtained from repeated computer simulation

runs at certain combinations of the xi's set up in a convenient experimental

design which will be discussed later. Then the least squares method for

estimating B will be one which minimizes the sum of squares of the errors or

the deviations the estimated valuestake from the observed responses. A

minim um value for L can be obtained from:

L = I ei2 = e'e (4)

Now 1, can be written as:

L = y-XBy XB) (41)

The right hand side can be expanded as:

L y'y - (X3))y - yAXI + (XB)'XB (42)

y'y - BXy - yXB + X'XB (43)

yy - 2BX'y + BXXI3 (44)

Now the trick is to find B which minimizes L. This can be found by partial

differentiation of L with respect to B.

dL/dB = -2X'y 2(XX) (45)

Setting this partial differential equal to zero results in the normal equations

in the estiation of ft,-

(XX)I -X'y (46)

Now solving for I results in the solution to the normal equations assuming

that (XX) exists (ie. the matrix is nonsingular):

B -(XX) X'y (47)
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These are called the normal equations in the estimation of B (28:68-69).

The general linear model can easily expanded from a first order model to '

a higher degree polynomial. In this research, a special characteristic of RSM

in which the levels of the x variables are chosen evenly spaced will yield a

special class known as orthogonal polynomials. These polynomials give some

simplification to the computations and their desirable properties will be

discussed later.

Factorial Experiments _and Experimenta l Desjgns

In this research, factorial experiments will play a major factor in the

estimation of the response polynomial. Factorial experiments are used when

a researcher is interested in finding how a response, y, is influenced by

certain combinations of inputs. A well-designed experiment can save the

researcher both time and money. The combination of factor levels is

combined in a design matrix, D:
Ixllx 21 ...kl I"

D= 1X12 X22 ... Xk2 1

IXln X2n ...Xkn I Sk

where the uth row, [ Xlu, x2u. Xku I represents one experimental run of

the simulation (28:108).

The simplest factorial experiment for determining first-order effects

(simple linear model) is the 2k factorial design. This is k factors each at two

levels. The two levels can be denoted as low and high and a convenient -I

and # I convention can be used as notation of low and high factor levels, S

respectively. This corresponds to the transformation:

xi= 2(Ei - Xi)/d i  (48)
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where the Ei is the actual reading, Xi is the mean value between the low and

high factor level, and di is the spacing between the low and high factor level

(28:108).

When ±I coding of the variables is used, the design columns are called

orthogonal if the sums of their cross-products are zero. Also, two columns

are orthogonal if their factor levels are balanced. Orthogonality is a

desirable design property because: (1) the design matrix can conveniently

display the levels in the experiment and (2) estimates of the main eflects of

the orthogonal factors are independent. Therefore, if one of the orthogonal

factors has an effect, it cannot cause the other to appear to have an effect

(37:254).

Using an orthogonal design to estimate a polynomial response surface

helps to eliminate some underlying difficulties inherent in this type c,

estimation. Because an orthogonal design is used, the regression coe Iicients

are uncorrelated, or:

cov 1bil - s2(X'X) -I  (49)

This restults in the covariance between any two coefficients being zero.

Designs of this nature result in X'X being diagonal and thus, the coefficients

of the model are uncorrelated (28:45-46). If XX is not diagonal, then the

model must be rewritten in the form:

f, - + bx + b2x2 + bll(xl 2 - x12") + b22 (x2
2 - x2

2 °) - b12x1x2  (50)

where f£ is the same dependent variable as y and x1
2* and x2

2 are the mean

values of x1
2 and X22, respectively (28:50).

However, in this research a second-degree polynomial needs to be

estimated. Although the simple 2k design was useful in the preliminary

stages of the experiment, a new factorial design must be introduced when

the regression model is best estimated by a second order relationship (first
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and second order terms are included in the model). This new design will be

the 3k factorial design in which k factors are varied at three levels. A

similar transformation must be made to tile input variab~les to give - 1, 0, + I

values to thle input combinations. The point (0,...,O) is known as the center of

the design. Therefore, the 3k design also falls into the class of orthogonal

designs. one obvious disadvantage of the 3k design is that for a many factor

experiment, the number of design points can become unmanageable very

quickly (je. I1 factors = 81 design points). Also, full and fractional factorial

designs are not very effective at estimating higher-order effects. This is

because tile number of experiments necessary is normally very much higher

than the number of effects to be estimated. Also, these effects will be

estimated withi low precision. Usually, however, these effects are assumed to

be negligible (28:126).

The basic goal of any experimental design is to find the factor level

combination which optimizes a response and also that level which best

* explains thle relationship between the factors and the response.

Response surface methodology uses experimental designs to find the

optimal operating conditions from a set of input factors, These input factor

combinations should produce an optimal response in the system. Brightman

(1978) claimed that the use of response surface methodology in simulation

experiments need to meet only two prerequisites: the measure of

effectiveness be continuous and the input factors be quantitative (16:255).

Re-sponse Surf ace Mei od-olog y

* Response surface methodology combines the best features of least-

squares regression and experimental design to fit a response surface

equat ion to a set of data over the experimental region of interest. In this
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research, a second-order polynomial will be fit as the response surface. lhe

experimental design needed to fit this second-order model must have at

least three levels of each factor for the model's parameters to be estimated

(27:462).

The most commonly used design for fitting a second-order model is the

central composite design (CCD). This is the design choice for this research.

This design consists of a 2k factorial (coded ± 1) augmented with 2k axial

points (± alpha) and n center points (27:462). Six center points will be used S

for the central composite design in this research, Repeated observations at

the center of the design can be used to estimate the experimental error and

also to check the adequacy of the first-order model. This adequacy can be

checked by comparing the average response at the corner points of the

design with the average response at the center of the design. This difference

will be a measure of the overall curvature of the surface (27:449-450).

Since all the second-order derivatives of this model must be estimated, it

will be necessary to begin with a complete 2k factorial design to fit a first-

order model and then add design points to fit a second-order model. These

extra points will be added to form a central composite design with alpha

equal to one. This alpha value will be chosen so the design remains

orthogonal. Therefore, all second-order derivatives may be calculated with

equal precision. This will make the CCD very effective for analysis.

CanonicalAnalysis

The final goal of fitting the response surface function will be to determine

the nature of the stationary point and the entire response system (28:72).

This is simply a translation of the response function from the origin to the

stationary point. New variables, wi's, will be used instead of xi's to express

3'
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the new system. The wi's relate to the major axes of the new contour

system.

The relationship between the xi's and the wi's is of great importance. If

the stationary point is found to be outside the region of interest, the

relationship between the variables can lead to areas where further

experimentation may be more productive (28:73).

SttisticaLgesUJ

The only major statistical test this research effort will be concerned with

will be a check of whether or not the model is a correct approximation of the

actual system. One procedure often used is a test for lack of fit.

Remember that ei = Yobserved - Yestimated is the residual at Xi.Calculation

of the residuals yield valuable information about how the estimated model

fails to explain the variation in the response variable Y. This is commonly

referred to as bias error. If the model is correct, then the bias equals zero

and the residuals and residual mean square can be used as an estimate of

the variance, s2, in the model (31:267-271 ).

If the model is incorrect, however, then the bias does not equal zero and

the reisduals contain both random and systematic errors. These are

commonly referred to as variance and bias error. The residual mean square

can no longer be used as an estimate of the variance in the model.

In the case of simulation experiments, no prior estimate of the variance

exists. In such a case, replications of the Y's and each value of X can be used

to obtain an estimate of the variance. This estimate is known as pure error

because only random variations can cause differences in the results. These

differences will usually provide a reliable estimate of the variance in the

model (14:35).
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lherefore, the residual sum of squares with nr degrees of freedom can be

divided into two components: (I) pure error sum of squares from the

repeated observations with ne degrees of freedom and (2) lack-of-fit sum of

squares with nr - ne degrees of freedom. The pure error SS leads to Se2 or

mean square due to pure error and estimates the variance in the model. The

lack-of fit SS leads to MSL or mean square due to lack of lit. MSL estimates

the variance in the model if the model is correct or the variance plus the bias

if the model is incorrect (14:36).

Then, an F-ratio of MSL/Se 2 with 100( - alpha)% point of an F-

distribution with (nr - ne) and ne degrees of freedom can be compared. The

usual hypothesis for this test can be simply stated as:

Ii: a linear model is adequate
vs.

Ila: a higher order model would better represent the data

If the ratio proves significant then the model appears to be an incorrect

representation of the system. If the ratio is insignificant then the model

appears to be a correct representation and both the pure error and the lack-

of-fit mean squares can be used as estimates of the variance in the model

(14:37).

Draper (1981 ) describes the entire procedure as follows:

I. Fit the model with the analysis of variance table for the regression and
residuals. Do not test the overall regression parameters yet.

2. Def ine the pure error sum of squares and divide the residuals as
described above.

3. Do an F-test for lack of fit.

4. If lack of fit is significant, stop the analysis of the current model and
search for another, more improved model.
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9. II lack of1 lit is insignilicant, recombine the pure error and !ack ol-fit
sum of squares into the residual and use this as an estimate of the overall
variance in the model. Now do an F-test on the overall regression
parameters (14:40).

Multiple Responses
S

The beauty of response surlace methodology comes from the sequential

process of forming a good-fitting second-order polynomial and then finding

that its stationary point results in a point of maximum yield. However, this

beauty quickly fades when it is found that the point of maximum yield is

infeasible due to some cost constraint not considered in the analysis. In

other words, a point of maximum yield will be found in some experimental

region. Usually this experimental region covers the entire feasible region

where the xis have some significance. A second response function, using the

same response surface techniques, can be used to show some cost constraint
S

as a function of cost considerations at each design point imposed on the

original response process. Now the cost constraints can be observed

simultaneously with the yield responses.

Proceeding blindly without consideration of the second response can also

lead to further frustration if the analysis used to find the point of maximum

yield was done with(0ut the prior knowledge of the cost constraint (26:189).

To solve this dilem ma, response surface methodology adopts itself well to

multiple response systems. Contour plots of the response surface can show

more than one region where the predicted response is at a satisfactory level.

By combining this information with similar contours from a second response

surface, a movement can be made to a region that approximates the optimal

or close to optimal operating conditions. For experiments with a small

number of factors, three or less, multiple responses can he elfective by
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superimposing the contour diagrams of tie various response surfaces. Now

the experimenter can visually determine the "best" operating conditions

(28:1(7 .

Multiple response surface analysis will be the basis of this research

effort. Ilopel ully, by superimposing the minimum cost contours onto the

maximum yield contours the actual operating conditions, both in terms of

output and cost, can be visually displayed. It may very well be that the

stationary point for the output and the stationary point for the cost lie

within the same critical level. This would be totally optimal--maximum

production and minimum cost. But if the critical levels do not intersect, the

experimenter can see in which direction to move from the stationary point

on the output surface to a region, according to the contour diagrams, where

the output is "close enough" to a maximum but also the cost of production is

low enough to meet the constraints of the system (2 1:67-68).

Char acteristic s .of .a Pr-od jction Function

The basic delinition of a microeconomic production function is that it

expresses the relation between a maximum amount of output and the

inputs required to produce it; in doing so it describes the manner in which

inputs co operate with each other in varying proportions to produce any

given output (10:26)."

Any Iunction which shows the dependence of output, Y, on two factors of

production, say labor, L, and capital, K, where: Y = f(L,K) can be termed a

product 1ion I unction. This is because tile function relates output to input and

also describes the relationship between the inputs.

The I irst and most basic criterion ol any production function is that any

increase in each input should have a positive effect on the output. Inl
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microeconomic terms, the marginal products should be positive. This shows

that the output, y, can be increased by increasing one of the inputs while

holding the other inputs constant. This can be shown by:

dY/dL > 0 and dY/dK >0 (31)

These inequalities imply that the constant production curves are downward

sloping. Thus, if both inputs have a positive effect on output, to keep output

constant, if the amount of one input is increase, the amount of the other

must simultaneously decrease. Therefore, the slope of the isoquant curve is

negative (30:237).

A second criterion is that the marginal product should decrease when

both inputs increase (30:238). This ensures that the critical point is a true

maximum. For a true maximum to result, the output, y, should be decreasing

for any change in the inputs away from the critical point. This can be shown

by:

d2 Y/dL2 < 0 and d2Y/dk 2 < 0 (52)

Another microeconomic term, isoquants, must be introduced here. The

isoquants represent the marginal rate of substitution of labor for capital, or:

-(dK/dL) = (dY/dL)/(dY/dK) (53)

Here, the marginal rate of substitution of labor for capital decreases as labor

is substituted for capital. The ratio of the marginal products will decrease

with a rise in labor, given a certain amount of capital or a decrease in the

amount of capital, given an increase in labor. It is often assumed that cost

minimization requires the inputs to exhibit diminishing marginal

productivity but what is actually required is a diminishing marginal rate of

substitution of labor for capital (30:243-246).

The isoquants, when graphically depicted, show the substitutability of

labor for capital at a constant level of output. Any point along the isoquant
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describes the same output level. Thus, they can describe the measure of

ease with which labor can be substituted for capital. This, as mentioned

earlier, is known as the elasticity Of substitution. . -

For the purpose of this research, these two simple principles are all the

micr(,cconomic knowledge necessary lot discussing the response surface

used as the "industry" production l unction. The resultant production

function will be tested and analyzed to see if it meets the above criteria.

Description of the SimulationModel

) represent the methodology discussed in this research, a computer

simulation model of a typical resource-allocation system was needed. Such

simulation models are commonly used throughout the Air Force as an aid to

decision makers when it is either too costly or infeasible to observe tile

actual system in real life. The simulation model does not necessarily have to
0

be complex. 1 he only requirement is that it is as accurate a representation

of the real life system as is possible.

()te such simulation model was already available. It is a SLAM I1(32)

terminating si in ulation model which attempts to model the requirements

needed to condLct a mission effective thirty day war. Four input variables,

lactors, ale used in the model: number of aircraft, number of support kits,

number )f maintenance crews, and number of bombs. I hese four factors

affect the number )f sorties that can be ll)wn during this thirty- day war.

The Object of this simulation is obvious-- maximize the number of sorties

which can be I lomwn during this thirty day war subject to the levels of the

four lactors ,One large assumption was made which is not always wise for

the analyst to assume -the computer program used to run the simulation
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model has been properly debugged so the model functions as closely to the

system as intended (37:250).

Thle goal of this simulation will be to use the simulation- generated output

in order to estimate the parameters of the system. The replication method

will be used with the simulation runs to gencrate the output data. This

method has the advantage in that, given random seeds, the simple statistics

are independent and identically distributed. These statistics are then quite

useful for- statistical analysis. Also, the replication method is tile only

recommended method for analyzing a terminating simulation ( 16:245).

For thle purpose of this research, only two of the four factors will be

varied: support kits and maintenance crews. This will make for a handy

* . relationship to capital (support kits) and labor (maintenance crews) in the

resultant production function. Thus, a microeconomic analysis can be done

on the function if the appropriate conditions for cost minimization ,described

on pages 6 through 9, are met throughout some region where the marginal

products (f I and f2) are positive. Throughout the simulation runs, the

number of available aircraft will begin at 24 and the number of available

bombs will begin at 288. The initial values of the model variables are quite

Z' important to the output of the system. These starting conditions should

mirror the real-life system as closely as possible. Often times, it is helpful to

use real-life data or a draw from a probability distribution fit to the real-life

% data (16:247).

Since this is a trace-driven simulation model (a simulation involvinlg the

use of historical data arriving in a single time series pattern), repeated Use of

the model will reduce the variation of the output. Thus by starting the

different simfulation runs at the different design points with the same

common random nlumber seeds (common streams), a similar variance
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reduction will also take effect. Also, since alternatives will be tested in this

simulation through the different input combinations, common streams will

play an important role in reducing the variance of the output responses.

Variance reduction techniques simply replace the original sampling

procedure with one with the same expected value for the parameter

estimates but of smaller variance ( 6:249).

This can be shown simply by:

Var IX1 ) - X(2)- - Var IX(1) 4 Var JX( 2 )j - 2Cov [X(1),X(2)I (54)

where X(k) is the sample mean for the alternative response k. Common

streams will reduce the variance in the model since the Coy IX(l),X( 2 )] should

be positive resulting in an overall reduction in the model's variance (32:745).
0l

For terminating simulations, run length is not an issue since the

simulation ends when a specific event occurs. Thus, the desired level of

precision for the experiment cannot be affected by the run length. Sample

size or how many replications of the simulation to run, however, is an

important problem in all simulations which are used to generate output data.

Unfortunlately, there is no solid rule for determining how many simulation

runs to make. For the purpose of this research, the problem will be handled

by collecting data and testing to see if it meets a specified criterion. If the

test fails, then simply collect more data until the criterion is met (16:253).

The advent of computer simulation makes the process of repeat

observations quite rudimentary. Following the RSM procedure described

previously, the simulation model will be run initially with both factors at

their low and high levels for two cycles with six cycles at the center point.

This requires a total of fourteen runs of the simulation model. These

responses will be statistically tested for lack of-fit of the linear model. If

such a lack-of fit is significant, then only four more design points need to be
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added or a total of eight additional simulation runs to achieve the full set of

data required to properly fit a second-order polynomial.

I
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Ill. Findijigi and Analysis

The subject of this response surface analysis is a resource allocation

simulation that models the number of aircraft sorties that can be reasonably

expected to be f lown during a typical thirty-day war. 1 he actual simulation

code used in this research effort is listed in the Appendix. The overall

objective is to fly the maximum number of sorties possible subject to the

limited number of crews and support kits available. This is a typical

resource allocation simulation in which the amount of inputs will vary and a

response (y) will be measured; in this case, y represents the number of

sorties flown.

Since this is a simple two-variable case with xl and 12 representing the

number of aircraft support kits and maintenance crews respectively, a

complete factorial design was formed. In this case it will be a 22 factorial

design with center points. That is, each factor in the simulation is input at its

low arid high levels with the center point being the midpoint between the

low and high level. Since the purpose of this thesis is to describe polynomial

production functions, the first step in any research will be to see if any

curvature in the response function exists. The object at this point is simply

to find ojut if a first-order model can adequately describe the system; that is,

the response y as a function of xl and X2 only with no crossproduct term and

no quadratic effect. An analysis of variance of the simulated data will be the

method used for significance testing and parameter estimation. This could

be easily accomplished since the number of independent variables (2) is

small. If the number of input variables increases, the complete factorial

design procedure becomes increasingly complex. Obviously, in order to
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produce a result that is both reasonable and feasible, some bounds must be

placed on the region of interest. It will be assumed that no more than 10

support kits and 12 maintenance crews can be available at any one time.

Minimum values for support kits and maintenance crews will be set at six

each. Also, even though the numbers are discrete they will be used as

though they :,',-e continuous in this model.

Fpe1ri mentaLVesigjs

Some previous knowledge of the system is always important for the .

simulation model to be accurate and the analysis to be effective. In this

case, previous results show that the response output operates over a region

where the number of support kits, xI , varies between 6 and 10 and when

the number of maintenance crews, x2, varies between 6 and 12. This range

of design points should be large enough to minimize the average variance

over the experimental region. Since the ultimate goal of this research will be

to fit a second-order polynomial, guarding against curvature (ie. minimizing

bias) will not be a concern (28:197-198). This experimental design will then

be one which minimizes variance over the bounds on the region of interest

for the analysis. Ranges were chosen which would be wide enough to enable

detection between differences in the response while not exceeding the

practical limits on the system and also minimizing the variance of the

experiment. Now, the experiment can begin with a simple 22 design in this

region

This design was the natural choice for this analysis for the following

reasons: (I) The factorial design is an efficient method of experimentation.

It can provide quick information on the effects of several variables. (2) The

factorial design provides a measure of interaction between control variables
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if it exists. A system which contains interaction will exhibit curvature in its

response relative to changes in the levels of the independent variables. This -.

would not be detected with one-at-a-time experimentation. (3) Curvature

may also be detected by adding a center point to the design. The diflerence

between the response at the center point and the mean for all the corner _

points is a measure of "lack of fit". Lack of fit refers to the linear model's

inability to accurately represent the data. (4) The factorial design can later

be expanded to provide an estimate of curvature if it exists. Thus, the

experiment can proceed sequentially-Iirst with a relatively simple

experimental design, and later-if necessary-with a more complicated design

(7:5-8).

Phase I of the Epegriment

This region in the 22 design has a low value of 6 for both support kits and

maintenance crews (control variables x, and x2 respectively) and a high

value of 10 for kits and 12 for crews. Throughout the remainder of this

paper, kits may be used as an abbreviation for support kits and crews as an

abbreviation for maintenance crews. The centerpoint is at (8,9). That is

where the number of kits is 8 and the number of crews is 9. This is the

midpoint of the low and high levels for each factor. Two variables, each at

two levels, results in 22 or 4 treatment combinations. The center point

added to the design will result in a total of 5 treatment combinations. Three

runs at the center point and one run at each corner point will be one cycle of

the exl)erimenlt. Two cycles of the simulation will be made at each of these

four design points and the center point--a total of 14 runs. The multiple

runs at the center point will give the analyst an estimate of "lack of fit".
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Common random number seeds will be used throughout this experiment to

reduce the variance. A first-order model can be used to determine whether

or not higher-order terms are needed in the response surface equation and

thus further experimentation. The following figure shows the levels used to

test the adequacy of the first-order model.

(6,12) (10,12)

ba

Crews _

(6,6) Kits

Fig I Design Points for Fitting First-Order Model

a-

An IY 3ioAhvF[ LOrder Model

The experiments were repeated twice to provide an estimate of the

experimental error. The size of the measured effects due to changes in the

- level of the control variables is compared with the experimental error. If

the size of the effect is large relative to the experimental error, it is

recognized that the change in response cannot be attributed to random

chance. The effect is then considered a "real" effect.

.
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The following table lists the design points, their corresponding coded

variables, and the responses that resulted from the simulation runs at each

design point. These data points will be used in fitting the first-order model.

Table I
Data for First-Order Model

Treatment Natural Variables Coded Variables Response

EI E 2  X1  x 2  y

(1) 6 6 -I -1 1097

(I) 6 6 -1 -1 1096

S1@ £ I - 1146

a 1S £ 1 -1 1147

b 6 12 -1 1 109

b 6 12 -1 I 1024

ab 18 12 I 1 1125

8 le 12 I I 969

Yei 0 9 0 8 1147

Y02 a 9 S 8 1096

Y 9 9 S 8 1128
03

Y04 9 9 8 I le

Y 1 9 8 8 1071

The results can also be conveniently displayed in a design table:

Table I

Coded Design Data for ANOVA

(A) KITS
6 10 Yi.

(B) CREWS
1097 1 146

1096 1147 44966

2193 2293

bab
1899 1125
1024 969

12 4216

2122 2094

Y 4315 4367 8782 y
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This type of design with added center points is known as an augmented

22 factorial design (2 8:81 1). It is an efficient method of testing the adequacy

of the simple first-order model for lack-of-fit (presence of cross-product and

pure quadratic terms). The result will be presented in the following table:

Table III

ANOVA of Augmented 2 2Factorial Design

Source d.f. Sum Squares

Total, Uncorr. 14 SSToTU
B 0  1 SO

B 2  1 SS2

Remainder Ii SS
Cross Products 1 SS
Pure Error 9 SS P

where SSTotU =y'y and SSO - y'y/ 14.

The contrasts for the linear coefficients can be summarized as:

Table IV
Treatment Combinations

Treatment

Effect (1) a b ab L

B2  + + L 2

where SS1 - L12/8 -(72)2,8 -648 and SS2 - L22/8 - (-270)2/8 -8842-5.
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Now the parameters can be estimated by simple factorial estimation

procedures (27:264):

bo= 1(l)+ (1)+ a+ a+ b + b ab+ abl/8 = 109943 (55)

bl = I-() -() + a + a -b -b + ab + abl/8 = 9 (56)

b2 = HI ) -0I)- a -a + b + b + ab + ab]/8 = -33.75 (57)

b12 =[()+(1)-a-a-b-b+ab+abl/8=-16 (58)

An unbiased estimate of the error in the model, s2, will be the pure error

(SSPE) plus the error accounted for in the repeat observations. In other

words, the nine error degrees of freedom are a combination of (ncp - 1)

degrees of freedom for the six runs at the center point and four degrees of

freedom for the replications at the design (corner) points (27:449-450).

The repeat observations at the center can be used to calculate an estimate

of pure error as follows (14:34):

SSPE=((1147)2 +(1096) 2 +...+(1138)2)-(1147+1096+...+ 1138)2/6 (59)

MSPE = 4044/5 = 808.8 (60)

A popular check of the straight-line model is obtained by comparing the

average response at the four corner points in the factorial design,

Yl = 1087.75, with the average response at the center point of the design,

Y2 = I 115. If the design represents a curved surface, then Yl -Y2 is a

measure of the surface's overall curvature. If BlII and B22 are the

coefficients of the "pure quadratic" terms x12 and X22, then (yI - Y2) is an

estimate of BII + B2 2 (27:450). Thus, an estimate of the pure quadratic term

is:

BI + B22 =Y1 -Y2  (61)

- 1087.75 -1115

= -27.75

-
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The single-degree-of-freedom sum of squares associated with the contrast

(YI - Y2) is:

SSI)C = Injn2(Yj - y2 )21/(nl + n2) (62)

= 1(8)(6)(-27.75)21/14

= 2545.93

where nl and n2 are the number of points in the factorial portion and the

number of center points in the design, respectively (27:450). Since:

F -SSpc/MS E  (63)

= 2545.93/449.33

= 5.67
which would be compared to F.05,1,9 -5.12, there is a significant indication of

a quadratic effect (27:450).

The single degree of freedom sum of squares for the cross product is

(31:275):

SSCp = SSTotU - SS0 - SSI - SS2 - SSQ - SSPE (64)

16,955710-16,935,598-648--8842.5-4044-2545.93

= 4031.57

Comparing SSCp to s2 gives the following lack-of-fit statistic:

F = SSCp/s2 = 403 1.57/449.33 - 8.97 (65)

which would be compared to F'.05,1,9=5.12. Clearly, interaction is significant.

The following table shows the analysis of variance based of two cycles of the

factorial design.
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Table V

ANOVA for First-Order Model

Source Sum of Squares d.f. Mean Square F-Ratio

Linear Model SSf p 949e.5 2 4745.25 1056

Kits ssA -649 I 648 1.44
Crews ssB-e 8e42.5 1 0842.5 19.63

Lack of Fit 6577.5 2 3299,75 7.32

Crossproduct 360725 1 36e7.25 8.e3

Quadratic 297e25 1 2978.25 6.61

Pure Error SSE - 4e44 9 449.33

B 0 16,935,590 I

Total, Uncorr. 16,M5,71 14

Prediction equation: Y - 1087.75 + 9 1 - 33.751z (66)

where: x1=(#kits-8)/2 and x2 =(#crews-9)/2.

The null hypotheses to be tested can be stated as: the crossproduct and

quadratic terms are equal to zero, signifying no curvature in the response

model. As one can see, there is enough information to reject the null

hypothesis that neither the crossproduct term is equal to zero (F* - 8.03 > F -

5.12) or the pure quadratic term (F° - 6.61 > F - 5.12) is equal to zero. Also,

the lack of fit can be tested with two degrees of freedom: one for the SScp

and one for the SSQ. Comparing this F-value - 8.97 to F.05,2,9 - 4.26, lack of

fit is significant. This supports the above claim, so a move to a higher-order

model is warranted.
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The following matrices are needed for the least-squares regression

techniques involved in fitting the second-order response surface. The design

matrix for this analysis with the added design points is:
Table VI

Design Matrix
X) X 2  X X X2 X 2,

-I -I 1 1

-, -I 1 1 -

I -t -l I

I -*I -l

-l I -l

I I -II

D =I I III

Tal • il

I • e

I 6 w s

* I e S

o I S Se

* -I iS S

* -I 0 e

The X matrix with the extra center points added to test lack o)f fit:

Table VII

X Matrix with Extra Center Points

b e  X I X 2 X X 2 X 2 X 2
2 2

b

=1- =1 11I

1 -l -l III

1 -l -!

1 -l -l

I -I I -1

I -1 1 -I1I

I I I I 1

I I I I I

I I S S

hI I 0 S

Xz I -I I S

-IS I S

I • I S S

I • -I S S

a -I S S

• I S S S

I • S

I • S U

I S

I S S S



And the Y matrix with the results of the simulation runs corresponding to

the levels of the xi's is:
Table VIII

Y Matrix of Responses

1097

1096

1146

1147
I6gB

1024

1125

969

1074

1147

1133

106

1124

1124

1122

1129

1147

1096

1126

ills

1071

1133

To fit a second-degree polynomial response function, each factor must be

varied at three levels. Because of the care that was used in designing the

original 22 factorial experiment, to obtain a complete 32 factorial experiment

requires simulation runs at only four additional design points:

(0, ),(0,l ),(1,0), and (-1,0). This is simply the addition of midpoint levels to

each design point and is shown in the following figure.

Crews (6,9) (9,9) (10,9)

(8,6)

(6,6) Kits (1e,6)

Fig 2 Design Points for Fitting Second-Order Model
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Analysis of_5veond-rIder Model

The new data to be used in fitting the second-order response surface with

the eight new design points is listed in the following table. S

Table IX

Data for Second-Order Model

Natural Variables Coded Variables Response -S
EI E 2  X I  X 2  Y

-I -I 1097
• •- I -l 1696 .

Is • -I 1146

I o I -1 1147

4 12 -1 I 1696 S
& 12 =1 I 1624

to 12 1 I 1125

1 12 1 1 969

* 6 6 -1 1122

* 6 6 -1 1126

9 12 6 I 1124 0
* 12 a I 1124

• 9 -1 6 1133
6 9 -l 6 1666O "

I 9 I 6 1674

is 9 I 0 1147

* 9 S 6 1147

* 9 6 6 112:

* 9 5 6 1116

• 9 6 9 1671

9 0 1 1134

Now the levels of the xi's which maximize the predicted response must ,

be found. This critical point, if it exists, will be the set of x, and X2 such that

the partial derivatives dy/dx, = dy/dx 2 = 0. This point is called the
I

stationary point. This stationary point could be any one of three
possibilities: (I ) a point of maximum response, (2) a point of minimum

response, or (3) a saddle point. The canonical analysis which will be used to
I

analyze the fitted second-order response will also describe the nature of this

stationary point (28.70).

" .. =' -) .- -, --',. ..- _ -.- ,-. . .- , ,-. .... . . . .- . . . . . . .. .



A general solution for the stationary point may be easily obtained. The

second order model can conveniently be written in matrix notation:

y = Bo + x'b + x'lx (67)

Here, b is a (k X I ) vector of the first-order regression coefficients and 13 is a

(k X k) symmetric matrix whose diagonal elements are the pure quadratic

coefficients (Bii) and whose off-diagonal elements are one-half the mixed

quadratic coefficients (Bij, i -w j) (28:69). The derivative of y with respect to

the vector x and set equal to zero is:

dy/dx = b4 2Bx - 0 (68)

The solution for x is known as the stationay point, x0:

x0 = -1/2 B-lb (69)

Also, but substituting this back into the original matrix equation, the

predicted response at the stationary point can be found:

Yo= 13O + 1/2 x0 'b (70)

The stationary point can be described further by transforming the fitted

model into a new coordinate system with the stationary point, x0, being the

origin. The axes of this new system are then rotated until they are parallel

to the )rincipal axes of the fitted response surface. The results can be shown

by the fitted model:

Y = Yo + lambdalwl 2 + lambda 2w2
2  (71)

where w, and w2 are the transformed variables and lambda, and lambda 2

are constants (28:73). This is known as the canonical form of the model

where the lambdai are simply the eigenvalues (characteristic roots) of the B

matrix.

Now the characteristics of the response surface can be found from both

the value of the stationary point and the signs and magnitudes of the
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eigenvalues. Assuming that the stationary point is within the experimental

region, if all the eigenvalues are positive, then a point of minimum response

has bc n reached; if all the eigenvalues are negative, then a point of

maximum response has been reached; and if the eigenvalues are of mixed

signs, then a saddle point results. Also, the response surface is steepest in

the w, direction in which the corresponding eigenvalue is the greatest

(28.75).

A second-order response model is fit by the method of least squares to

the coded data to give the following response equation with appropriate t-

ratios in parentheses:

,1121 26 6. 67x I - 22.00x2 - 20 66x 12 - 8 1 6x 2 - 16xIx 2  (72)

0 (74.77) (0.52) (-1.84) (-1.12) (-1.09) (-044)

The analysis of variance table follows.

Table X
ANOVA Table for Second-Order Response Surface

Regression OF Type I SS F-Ratlo Prob

Linear 2 6264333 1 83 0 192

Quadratic 2 3180.981 093 0415
Crossproducts I 2048 000 0 05 0 290

Total Regression 5 11493,314 030 0 2 6

Residual OF Sum Square Mean Square F-Ratio Prob

Lack of Fit 3 4624.140 1541 380 0.682 0476
Pure Error 13 22722.000 1747.846
Total Error 16 27346.140 1709 134

Lack of fit is not significant and regression is significant, however the

poor F-values conclude that although a second-order response function will

adequately approximate the response surface, a better polynomial could

IN
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S
approximate the true surface. A simple look at the response function's high

intercept term causes some concern. This equates with zero kits and zero

crews yielding 1121 sorties, This is not a very likely phenomenon. A new

* least squares regression will have to be done to derive a better response

equation. But first, a preliminary look at an economic interpretation of this

first response equation (production function) may shed some light on the

purpose of this research.

Since this is still an unconstrained function, simple first- and second-

order conditions (Chapter 1) are all that is required to test for a maximum

value over the region of interest. Considering the function:

y - 1(xl,2) = 1121.26 + 6.167xi - 22x 2 - 20.66x1
2 - 8.16x 2

Z -16xlx 2 (73)

The first order conditions for a maximum are shown as:

fl - 6.167 - 41.32xI - 16x2 (74)

or f2 - -22 - 16.32X2 - 16xI (75)

This leads to the second-order partial derivatives:

fI 1- -41.32 (76)

f2 2 = -16.32 (77)
and f12 -16 (78)

Sullicient conditions for a true maximum are that fit and f22 < 0 and that

fIif 22 - f122 ) 0. These conditions are met since both second partial

derivatives are less than zero and (-41.32)(-16.32) - (16)2 is greater than

zero. The above response function can be called a concave function and

contains a true maximum point.

Setting both eqs (74) and (75) equal to zero result in x, = 1.08 and

x2 = -0.2893. Now these results must be entered back into the

translormation eq (6 1) to yield the results: EI . kits - 10 and
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E2 = # ciews - 8. Also, (f 1112
2 - 2f 12f1f2 f22 f1

2 ) < 0 so conditions lor cost

mini i ,li)tion are possible. Therefore, the results to the transformation

above will be a least-cost combination of inputs.

Since the condition where zero inputs will result in some positive output,

a new least squares regression was done on the data however this time an P

intercept term of zero was forced upon the data. This makes empirical sense -

since zero inputs should result in zero outputs if the function is to be used as

a true pro)duction function. The resulting response equation with the

intercept term omitted and appropriate t-ratios in parentheses is:

y - 217.29x, + 62.1 1x2 - 10.62x1
2 - 1.70x 2

2 -4.76xlx 2  (79)
(4945) (1.590) (-3.14) (-0.82) (-2.17)

E I

1 lhe I irst and most important hypothesis to test here is that the intercept

term is indeed equal to zero. This is proven since the t-ratio for this test is

equal to 1.586 with an equivalent p-value of' 0.1312. This results in the null
I

hypothesis not being rejected so the intercept term in the above function can

be asstimcd equal to zero. A second important point is that both the x, and

x2 coefficients be positive. This supports the utility theory that more is

better ()r any increase in the amount of x, or x2 will result in a positive

increase in the output response, y. If either coefficient carried a negative

sign then the [unction could not be a true production function since the

producer would not want any more of that input (even if it were given away

free oN cha ge) since any increase in that input would result in a decrease in

the respo)nse, y (30:93 - 1(0).

Again, this new production unctio(nt can be analyzed for cost

minimization conditions. Both marginal products (f1 and f2
) are positive and

both of the second partial derivatives (f I and f22) are negative. llowever,
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since the crossproduct term is significant and is negative, the second-order

condition must be tested. Again, (fIif2
2 - 2f12f f2 + f 22f1

2 ) < 0 so the

conditions for cost minimization are possible. A range then where the

marginal products are positive and the second-order conditons exist can be

found in order to use this response surface as a production function.

The analysis of variance table for this least-squares regression follows.

Table XI
ANOVA for Second-Order Response Surface

with Test for No-intercept

Source DF Sum Square Mean Square F-Ratio Prob

Model 4 6745.046 1686 261 0,893 0.489
Error 17 32094.409 1887.906
C Total 22 35639.455

Parameter Estimates
Variable OF Estimate Error T-Ratio Prob

Intercept 1 0
X 1 217.29 4394 4945 0001
X 62 11 3906 1590 0 130
X 1 -10.62 338 -3140 0006
X2 2 1 -1.70 2.09 -0.817 0426

XX 2  1 -476 2.19 -2171 0.044

Restrlct* -1 8.38 528 1 586 0131

Intercept term can be set equal to zero

This second equation looks more like a true production function. Both 1I

and xz2 coefficients are positive and much larger than their squared terms.

First- and second-order sufficient conditions for a true maximum since

((W 2 2 ) - f12
2 >0 or (-21.24)(-3.40) - (-4.76)2) >0 are met. Also conditons

for cost minimization exist over a certain region where realistic input values
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can be lound. Again, this is just a simple unconstrained function. Also, a

complexity arises here in the two-variable case in that movements through

the design points are not solely in the xI or X2 direction. The second-order

partial derivatives do not supply enough information on how the slope is

changing through the critical point. Sufficient conditions must also be placed

on the cross-partial derivative (f12 ) to ensure that the response is decreasing

through the critical point. Hence, the second-order partial derivatives must

be sufficiently large to counterbalance any "bad" effects caused by the cross-

partial derivatives. In other words, as the critical point falls in either the x"

or x2 direction any movements in the X1X2 direction can be compensated for

(30:65-66). This is the reason that it is important to test whether or not the

cross-product term in the function is equal to zero.

Thus, the equation:

y = 217.29xI + 62.11x 2 - 10.62x 1
2 - 1.70x22 - 4.76x102 (80)

can be used as the production function for the simulation model.

Cauonical.Analy-sji

Using the results of the original least squares run, a canonical analysis can

now be performed.

b = 16.17 1 B = I -20.66 -8 1 (81)
1-22 I I -8 -8.161

The stationary point is then:

x0- -112 B lb (82)

- -112! -0.078 0.076 116.17 I 1 1.09255 I
I 0.076 -0.198 II -22 I I -2.40998 I
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Thus, the stationary point, xl,0 and x2 ,0, is equal to 1.08255 and -2.40998

respectively. Now these values can easily be converted back into their

natural variables remembering the original transformations:

1.08255 = (El -8)/2 and -2.40998 = (E2-9)/3 (83)

Now the natural variables are: El = 10.1651 or 10 and E2 = 1.77006 or 2.

Remember that although the model uses these variables as continuous to

make any sense of the results, they must be used as though they are

discrete. In other words, the combination of' kits and crews which is the

point of maximum sortie generation is that of 10 kits and 2 crews.

Obviously, in this crude example, to maximize the opportunity in the thirty

day war, the number of kits at hand is much more valuable to the war effort

than the number of crews.

Also, the maximum response at this stationary point, y0 , can be calculated

by substituting back into y0 - B0 + 1/2 x0' b ,resulting in, y0 - 115 1.11 or

1151. Now the response is telling the analyst that the maximum sortie

generation he can expect from the input combination of 10 support kits and

2 maintence crews is 1151.

To further describe the stationary point, the canonical form may be

obtained from the roots of the equation:

B -lambda =0 (84)

The roots are known as the eigenvalues, lambda, and lambda 2 .

1-20.66 - lambda -8 I - 0 (85)
1 -8 -8.16 - lambda I

This now can be simplified to:

lambda 2 + 28.8158 lambda 104.525 - 0 (86)

Using the quadratic formula, the roots of this quadratic are
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lambda1 = -4.25592 and lambda 2 = -24.5599. Therefore, the model's

canonical form may be written as: 0

y - 1151.111 - 4.25592w 1 2 - 24.5599w 2
2  (87)

Since both lambda1 and lambda 2 are negative, it can be concluded that the

stationary point is a point of maximum response (27:453-454).

Since it is impossible to operate this system at the stationary point

because the factor combination of El = 10 and E2 = 2 result in less than the

minimum required number of crews, the decision maker may wish to move

away from the stationary point to a point where E2 is in the region of

interest, but without sacrificing large amounts of sorties. If not, the system

may be run with a combination of 10 kits and 6 crews (the minimum

number of crews) since the number of crews is minor to the number of kits

in producing a maximum of sorties, but this will not be the optimal solution

in terms of cost to be mentioned later. To do this, it is necessary to find the

relationship between the wi's and the xi's. This will relate the canonical

variables back to the design variables. Looking at the response surface

contours of the model, the response surface is less sensitive to sortie loss in

the w1 direction (the smaller of the two eigenvalues). Now, points in the (w1 ,

w2 ) space must be converted to points in the (xl, X2) space.

The relationship between the wi's and the xi's may be described through

a (k X k) orthogonal matrix, M (27:458-460). The columns of M are the

normalized eigenvectors associated with the previously calculated

eigenvalues. The x variables can be related to the w varaibles by the

equation:

w = MIx -XO) (88)

If mi is the ith column of the matrix M, then mi will solve the equation:

",
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(B - lambda I) m i - 0 (89)

Using the previous results:

I -20.6579 + 4.25595 -8 II ml, = 0 (90)

I -8 -8.15789 + 4.2559511 M2 1 I

or:

-16.40195m 11 - 8m21 =0 (91)

-8m - 3.90 194m 21 =0 (92)

The normalized solutions to these simultaneous equations must result in
S

rol 2 + m2 1
2 = I. But, there is no unique solution to this. One preferred

method is to let m21 * = I and solve for mil and then normalize this solution.

With n'21 = I, mll - -0.4877. Normalizing this, divide both mll* and m2l,

by [(ll 1 )2 + (m21*)21/2 - I(-0.4877)2 + (1)211/2 - 1.11259. Now, the

normalized solutions are:

mil = m 11 / 1.11259 = -0.4877/1.11259 - 0.43835 (93)

m22= m22'/1.1 1259 = 1/1.11259 - 0.89880 (94)

This is the first column of the matrix M.

Next, using lambda2 - -24.5599, the above procedure is repeated. The

result is ni12 0.898785 and m22 = 0.438389. This is the second column of

the matrix M.

M - 1-0.43835 0.898785 1 (95)

I 0.89880 0.4383891

and the relationship between the w variables and the x variables can be

found by:

Iwli -1 -01.43835 0.898785 11 xl - 1.08255 1 (96)
Iw21 I 0.89880 0.438389 11 xZ + 2.40998 1

whic+F expands to:
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w I -0.43835 (xI - 1.08255) + 0.898785 (x2 , 2 2(998) (97)

wZ - 0.89880 (xI - 1.08255) 0 0.438389 (x2 - 2 20998) (98)

Now, additional exploration of the response surface can easily be made in

the region of the stationary point by finding points in (wi , w2 ) space to take

the observations and then convert these to (xl , x2 ) space using the above

equations. New simulation runs can easily be made at these new design

points (27:460).

Phase I I I of theExperiment

Just as the high point on the sortie production contour represents a

maximum yield, so does a low point represent a minimum yield. The true

beauty Of this entire methodology lies in this one basic assumption: if one

can predict a region of maximum yield for a production process to operate

within then by transforming the yi's (responses) at the design variables into

some sort of marginal cost response as a function of the combination of

control variables, cost contours of the system can be plotted over the region

Again, simple RSM techniques would apply and if a minimum point does

exist in the region of interest, this would represent an area of production

where cost minimization could occur.

Now a multiple response function has been developed. On one contour

plot lies the region of maximum output and on the second, the region of

mininum cost. By simply overlaying the cost contours onto the output

Co)ltoLti s, many interesting and useul pieces ()I information can be studied

(28:16*7 I 6A) By inspection, the direction in which the producer would have

to move to improve both output and costs of production could be seen

sin mlt arMeously. If the cost and output contours intersect, then the produccr
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is operating at economically optimal conditions (minimum cost and

maximum production). If they do not intersect, the direction of movement is

readily at hand. Now, the potential risk of altering the input combination in

an attempt to reduce costs is limited. The impact of an addition or reduction

of one uni, of input to the cost of production is readily apparent.

Design oftheCosLtSystem.

By simply giving some cost to each of the inputs and combining these

costs throughout the experimental region to give some output cost function

would only result in a response surface that is a rising plane. This is because

the lowest cost combination would be in the lower left corner of the region

and the highest cost combination would be in the upper right corner.

Obviously, this would not be helpful to finding a minimum cost contour.

A method was designed based on the incremental cost of each input

combination in the following manner (2 1:67). Each sortie flown was given an

arbitrary cost of $1000 dollars. So each response y was multiplied by 1000.

Now the total cost of the input combination (ie. P1 6 kits + P2 *6 crews = Cost

of the Inputs) was divided by this new response constant to give a new

response variable which would be the incremental cost of adding the

*- additional kits and/or crews to produce that number of sorties. The

resulting data table was then formed:

I"6
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Table Xll

Data for Cost-Minimizatfon Model

Natural Varimhles Coded Variables Response
E E2  X X2 $ Y

t o -1 - e.808e39

o 6 1 -1 808e 139

IS 6 2 -1 9 000139

6 12 -1 0 S0000175

I 12 I I e0000195

to 12 f O 5.9090227

S 6 S -1 seOO9 125

S 6 e -1 I 000e 125

U 12 e 1 6eese9177

1 12 I 0 17

6 9 -1 0 SeO e 132

6 9 -1 0 Me130

IS 9 I S Oee e177

tI 9 I S0 SOe0166

a 9 a 5 5e 148

9 e S 00e0155

9 9 6 8 05590159

9 9 5 5 9001) 153

5 9 e 0 M 5 159
S 6 S S.00149

The same response surface procedure as before was used on this data set.

The key to this methodology is that no new experimentation is involved. A

regression analysis was performed on the cost data and a new prediction

equation was formed. Lack of fit was insignificant. Now the canonical

analysis was performed around the stationary point (xlo - 1.599,

12,0 - -10.361) resulting in two positive eigenvalues of (14.328, 9.436). Thus,

a point of minimum cost does exist in the experimental region. These are

used to generate new cost contours. They are similar in appearance to the

output contours generated previously. These cost contours can be plotted
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and then compared to the output contours to see if the region of maximum

output intersects with the region of minimum cost.

The point of minimum cost can be compared to the point of maximu in

output. This dual output-cost response leads to many useful pieces of

information. If the region of maximum output intersects with the region of

mininmum cost than the "industry" is operating at economically optimal

conditions. It these regions do not intersect, however, then the direction in

which tie "industry" must move to reduce its cost is readily apparent. This

would obviously result in some reduction in output, but now the decision

maker can visually observe the impact of output reduction caused by a

reduction in costs (2 1:68).

A setf us restriction must he placed on the application of this method.

The pr ices of the kits and crews that result in a total cost constraint may be

infeasible for the actual operation. One must be sure that the number of kits

and crevs that the response surface optimizes can be attained for a certain

budget constraint. A region exists where certain prices of the inputs will not

permit cost minimization to occur.

Altcrnative Method

A simple budget constraint mentioned in Chapter I can be imposed on the

maximum yield response system through a simple cost constraint:

C = PlXl + P2x2  (991

where P1 and P2 are the prices of the kits and crews, respectively, and C is

the resultig total cost of the inputs. Plotting a response surface of this

function is an easy task since the responses are simply the sum of the input

...



factors at each design point multiplied by their price. The resulting response

surface will be a rising plane of costs from the lowest combination

(PI 6 kits + P2 '6 crews) to the largest combination

(P* 1I) kits + P2 * 12 crews).

These budget constraints can then be imposed on the response surface of

the maximum yield and a feasible region where the system would operate

can easily be seen. Each response contour can be treated as a level of

constant output and the response contours treated as isoquants. The system

will only operate where the isoquants were concave toward the origin.

These isoquants will show the required combination of inputs that will

produce the given level of output.

The slope of the isoquant will show the marginal rate of technical

substitution (RTS) or how one input may be traded for another while holding

the output constant. This rate of technical substitution will be equal to the

ratios of the marginal products. This ratio will give the isoquants their

negative slopes since both the marginal products and the rate of technical

substitution must be positive, the negative of the RTS will be the slope of the

isoquant. Finally, the isoquants will exhibit diminishing rates of technical

substilution. This simply implies that the more crews that are used the

harder it would be to substitute crews for kits for a given level of output

(30:213 246).
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Restrictions on Abe oly-noiniai RespoaseFu action

In order to use a second-order polynomial as a production function,

', several restrictions on the function must be made so that it behaves as a

production function an can be used in an economic analysis. Take any

generic second-order polynomial:

y - bo+ bIxI + b2x2 + bIIx1
2 4 b22x2

2 + b12x x2  (100)

to be used as a production function. The production process can be simply

shown in the following figure where Y is the output of the production

process and is a function of X, the combination of the two inputs used to

produce Y.

Y

max

Fig. 3 Plot of Output Process

The point a is the point of maximum output, Ymax, that is produced at the

combination of the X s at xz. Obviously, the production process would like to

be operated at the combination x" to maximize its output This point may

only be reached if the budget constraint imposed on the system is large
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enough to all)w for the x* combination of inputs. [he second order

polynomial can reveal by simple inspection whether the production process

is operating in a region where it is reasonable to expect a maximum output.

The ce l icients of the linear terms, x, and x2 , must be positive. The reason

for this is that the positive sign indicates that they contribute positively to t

the output production. The experimenter then must take great care to

ensure that the experiment is run in the region to the left of point a. Normal

competitive industries would not even operate in the region to the right of

point a (negative coefficients of x1 and x2 ). Here it is obvious that any

increase in the amount of input would result in a decrease in the amount of

output. No competitive firm would add any amount of input in this region 0

even if the input were free.

However, a non-profit organization like the Air Force could operate in this

region since it is not in the business of maximizing profits. So when a non-

profit ()rganization is modeled as a competitive, profit-maximizing firm, care

must he taken to ensure that the modeling is done in the region to the left of

point a to ensure that the resulting polynomial can be used as a production

functi()n.

This same care must be taken when computer simulations, as in this

research, are used to model the input output process. The experimenter

must ensure that the experimental region covers the area where the

marginal products are positive. This will ensure that the modeling is being

done in the feasible region to the left of point a. It was shown in this

reseai ch that simulation models can clearly lead the experimenter into a

region where the marginal products are negative.

Another ini)nprtant restriction is that the sec()nd order c()ndition:

f -f 12
2  1 l( 1
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must be met in order that the function be concave and allow for an output

maximi.ation. The law of diminishing returns restricts the second partial

derivatives, t and f22 , be negative. A relative maximum is an important

point only for a second-order polynomial production function. A Cobb-

Douglas ()r a CEIS production function never pass through a relative maximurn

point. Only for a polynomial production function does there exist an exact

combination of inputs which will maximize the output process, if the

imposed budget constraint allows that input combination to be attained.

Now the important point of testing for the existence of the cross-product

term is echoed once again. If the cross-product term in the second-order

response function can be proved insignificant and eliminated from the

function, then the second-order condition will always be met since f12 will

equal zero. If, however, the cross- product term cannot be eliminated from

the function, then the second-order condition must be tested to ensure that

the second order polynomial does indeed behave as a production function

and cost minimization is possible.

Analysis of Yield andCostResponses

Now that the entire analysis needed for this research effort is complete,

it is time to analyze the yield response function graphically. This can be

accomplished by plotting the contours. Each contour represents a response

level ()r a given amount of the inputs x, and x2 . Referring back to the

canonical analysis done in Chapter 3, the eigenvalues not only determined

that the response surface yielded a maximum response but also could be

used to determine the shape of the contour surface. If both eigenvalues

were equal then the response surface would be concentric circles around the

critical point. However, in this instance, tie second eigenvalue is much
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larger than the first. Therefore, the response surface will be elongated in the

wl direction. This corresponds to a greater loss in response in the w2

direction or visually falling more quickly down the hill away from the

critical point in the w2 direction. The response surface is plotted in the
,e,

following figure.

X 2

X .

or

Fig. 4 Contour Plot of Maximum Yield

The response surface is tilted in the northeast direction due to the values of

the eigenvectors found in the canonical analysis. The center point (critical

point) of the response surface corresponds to a yield level of 1151 sorties.

The number of kits and crews needed to produce this sortie output can be p

directly taken from the xl and x2 values on the axes.

The cost responses are plotted on a separate graph in the same manner.

This response surface reveals the minimum cost contours developed from

different input combinations of xl and x2. This time, the center point

(critical point) represents the minimum cost combination of x, and x2.

Obviously, moving away from the center point or up the hill will result in

increasing costs. Moving in the w1 direction will increase the cost of the
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system more quickly than movement in the w 2 direction. This increase in

costs in the w1 direction also corresponds to increasing input combinations of

kits and crews. This revelation is intuitively obvious. The cost response

surface is plotted in the following figure.

-x2  W 2  1

XSxl

Fig. 5 Contour Plot of Minimum Cost

Analysis of Muijple__Response System

The entire purpose of this research effort was to show that by

representing a production process with a second-order polynomial response

surface techniques could be used to analyze the production process. After

estimating the function, plotting the resulting response function is an

excellent way to show if a maximum output response is attainable in the 0

region of interest. Also, the tradeoff between the input factors can be

shown. Now if the production process is unconstrained to cost considerations

then the single contour plot of the maximum yield region is the end to the •

study. But very few, if any, production processes do not consider costs and .

try to minimize them.

This constrained optimization problem can be very easily solved S

mathematically using Lagrange multipliers to find the least-cost
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combinations of inputs. However, if the second-order polynomial function
contains an interaction term this technique does not have a closed-form

* solution. Also, the least-cost combination of the inputs is found.

But often times, management wishes to look at the present operational

process and see if it can reduce costs. This is where response surface

methodology can be employed successfully. RSM can enable the analyst to

* graphically plot the production process. Not only can the input combination

* to yield the maximum response be shown, but also the reduction in output

* that results when tradeoffs in the input combinations are made.

The constrained optimization problem can be handled easily as a multiple

* response surface problem regardless of whether or not there is an

* interaction term in the production (response) function. By plotting both the

* output contours and the cost contours on the same graph, the constrained

optimization problem can be shown visually. This is shown in the following

- figure.

X 2
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The square on the graph represents the feasible region of interest -(6 le.

kits le. I10), (6 Je. crews le. 12)-- used in this research effort. Point a is the

point of maximum Output and point b is the point of minimum cost. If the

two regions around points a and b intersected, then the production process

would be totally optimal--output maximization and cost minimization.

Obviously, this process is not totally optimal. However, a feasible alternative

may be reached. TVhe locus of points along thle path from a to b will take thle

production process to areas of less cost. The points along this path are the

points where the slopes of the cost and yield contours are equal. Now the

decision maker can see the reduction in yield (moving from one yield

0 contour down to the next) as the move is made from point a to a region of

lower cost. Point c would be the level of output that would minimize costs

-' for this particular production process since that levels of response intersects

the region of cost minimization. Although point d is located on the same

yield contour (remember each contour represents the same output level) thle

producer would never want to operate at this level because the same output

level Could be achieved at point c with less amounts of inputs.

Remember thle serious limitations onl this type of multiple response

analysis outlined in Chapter I111. The alternative method discussed in the

previous chapter will be discussed in thle following section.

Analysis oftheAlternative Method

The following figure illustrates hlow the maximum output response

Contours can be analyzed to show the region where the production process

must he operated. T1he diagonal lines leading to thle point of maximum

output describe the feasible region for production. The tesponse contours

represent the increasing levels of ouput, up to the point of maximum output.
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Each response contour represents a constant output level. In this way, the

response contours may be thought of as the isoquants of the production

process.

x 2

WI

I

Fig 7 IsoQuarit Map of Sortie Product]Lin

This feasible region is where the isoquants are negatively sloped

(diminishing rate of technical substitution) and concave toward the origin.

This is the only region where production would be possible. Also, the values I

of both inputs must be positive. Now the different combinations of the two

inputs along the individual isoquants can be observed which produce each

constant level of output. The marginal rae of technical substiution (R]S) or 0

the rate at which x2 can be substituted for x, while holding output constant

along an individual isoquant can be seen (30:244). This can be shown by the

following: 

RTS (x2 for xI) - - dxI/dx21Q (102)

The value of this RTS depends on the point on the isoquant where the slope

is being measured.
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A dillerence between the second order polynomials and the Cobb-

Douglas o)r the CES production functions can now be shown. Neither the

Cobb Douglas nor the CES functions pass through a relative maximum.

Thereloi e, there are no boundary limitations on their respective isoquants.

A polynomial production function, however, does pass through a maximum

point and so the isoquants are limited up to that maximum point. For each

contour of constant production, the number of possible input combinations

will decrease until there is one single combination which will produce a

"true" maximum output. This maximum output may be obtained only if the

budget constraint imposed on the system allows the process to be operated

there.

Conclusions

Based on the results of this research effort, it was shown that response

surface methodology techniques can be used in constructing a second-order

polynomial as a production function. Sufficient conditions for output

maximization were outlined to ensure that the polynomial behaves as a

production function.

Secondly, using the same response surface techniques, a cost constraint

could be imposed on the system. Combining a plot of the cost contours with 0

the yield contours showed how trade-offs can be made in the input

combinations to move to a region of lower costs. The exact path from the

point oif maximum yield to the point of minimum cost was constructed. The

restrictions on this method were outlined and an alternative method was

discussed.

Thirdly, only two factors (support kits and maintenance crews) were used

as inputs to resemble capital (kits) and labor (crews) that are normally
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analyzed as the two major factors of production in economics. Through this

research, the greater flexibility of using a variable elasticity of substitution

function like a second-order polynomial was shown. Comparing this

flexibility to the constraints imposed by the Cobb-Douglas and CES

production functions hopefully will encourage the use of response surface

techniques to develop second-order polynomials which can be used to model

production processes.

Finaliy, the problems of using computer simulations to model input-

output processes were shown. If non-profit organizations, like the Air Force,

wish to model themselves as producers, then they must understand the

limitations to their model's production functions as outlined in this research.

Reco m mend ataons

There are three areas where further research may be suggested. The

first is to find an Air Force simulation model that is currently used to

allocate resources and see if, by using the techniques described in this

research, that system adheres to modeling as a production function. It has

been shown in this research that response surface techniques can easily be

adopted to the estimation of polynomials as production functions. An

interesting area of research would be to see if a current system is operating

under the optimal conditions described in this research.

The simulation model used in this research was a simple example to show

the methodolo)gy to be used if this technique were applied. This leads to the

second ai ea of [urtler research. By using a current operational simulation

model that might possibly involve more than two inputs, further research

could be done by applying the output- maximization, cost- minimization

analysis to three or more inputs. Developing the cost minimization
'7
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constraints (first-- and second-order conditions) for this more complex model

would indeed be challenging. Also, it would be interesting to see how the
)

response surfaces react to the interaction of more than two factors.

The final recommendation deals with graphing the actual elasticity of

substitution curves for the VES functions developed through the response
)

surf ace analysis. If "good" data were available from a system that was

modeled using a Cobb-Douglas or a CES function, it would be interesting to

compare the results of those production functions with production functions

built by the response surface approach outlined in this research. Graphing

the VES curves and comparing the input trade-offs seen on an elasticity plot

with the trade ofis shown on the response surface contours could be further

proof of' the benefit of using the techniques described in this research effort.

Also, additional benefits of using second-order polynomials as production

functions could be shown when an actual comparison is made to a system

that is currently modeled using a Cobb-Douglas or a CES production function.
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Appendix

Resource-Allocation Model

This appendix contains the SLAM II and FORTRAN code of the resource--

allocation simulation model used in this research. The first section lists the

SLAM II code and the second section lists the FORTRAN code,

SLAM Code

I,T( 1-FLING'S CAPABILITY MODEL MODIFIED TO RUN
EXPFRIMENTAl, DESIGNS USING AC.FOR. MODIFIED
BY CAPT J. REVETTA.

GEN,EBIEIIN(CAPALII.ITY MODEl., 1/28/85,22,N,N .,N,N,72;

LIMITS.'). .21,10,

TIMST.XX(I );
TIMSTNNQ( I);
TIMST,NNACT(4);

TIME UNIT IS ONE HOUR
NETWORK.

RESOI1R(.E/ ,WRSK(0), ; SET LEVEL O)F SPARES
REiSOIIR(CE/2,(RE.W(O),2,4; ASSIGN MAINTENANCE CREWS
RESOIRCE/3,DOMFS(0),5; DEFINE INITIAL BOMB LVL
(;A I E/STORMOP.N,6; MOI)EI. WEATIIER
GAIE/DAY,CLOSED,7; DAYLIGHT FLYING

MOI)EL SEGMENT I ****SORTIE GENERATION**
• ********MAIN NETWORK*******

MSN AWA I I(2),(.REW; WA It FOR CREIWCIIIEF
A(.T/2,RIOGN(I,.5,4); PRFFIT
FREE (REW; REI,EASE CREWCHIEF

AWAIT(7),I)AY: WAIT FOR DAYLIGHT
FLY AWAIT(6),STORM: WAIT FOR GOOI) WEATHER

AWAIT(5),BIOMBS/6; NEED MUNITIONS
AI,I ER,BOMIIS/-6;"" l-RlIE,flO l Sl6,

(IIEIIE(3) WAIT FOR LOAD CREW
A(.(4)/3,EXPON(.5); BOMB LOAD
6OON;
ACT., 11) FMAIN; GROUND ABORT
A( r, 2,.90; LAUNCH AIRCRAFT

%,"..-60O N,

(ICIT( I ),IEIWEEN,MIB SORlIFS, 10/,5/ 5,
(;-" CT(2 ).INT( I ),TURN TIME,20/1 / 1
ACT/4,RNORM(2,.3,4);SORTIE FLY MISSION (SORTIE)
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GOON

ASSTG,,OATRIB(T ATRIoWF

ACT,, 05,13ATI; BATTLE DAMAGE
A CT, 2..94;- TURN ACFT
G;OON:
AWAIT(2)jCRFW; WI CRFWCfHIEF
A(CT/5,RLOGN(.3,.23,4);TIIRuIFLT (POST FLT EXAMINATION)
FRFE, CREW, RELEASE CREWCIIIEF
GOON;
A(,T-311MAINT; UNSCIIED MAINT
A IT.- .70.
G;OO N, I
A(.L.,NN(GAT(I)AY)EQ.0,FLY,FLY AGAIN
A CT ...MWN PREFLIGHT FOR AM MSN

MDEL1 SEGMENT I I ACFT ATTRITION' 9

ATIRIT GOON; LOSE AN ACFT
ACT /6 A T'IRI TS

* ASIGN,XX( 1 )XX(D 1;
TERM,;

MO1) FL SEGMENT I II UNSCIIED MA INT' 4

FMAIN AlER,BOMlBS/6; RETURN MUN ITIONS
MAINT ASSI(;N,XX( 1 )-XX(l) 1;i

A\VAIT(4),CREW: GET A CREWCIIIEF
A(.1 RI O(N( 1.25 )..0.RR1, 1 ROU13LESIIOOT
ACT,RLOGN(1,25),.30;

* (GOON,
A(.T/7,RLOGN(2.3,4),MINOR RPR MINOR REPAIR
F RFE C REW
ASSI(;N,XX(1)=XX(D- 1:
ACT,.MSN;' GO TO PREFLIGHT

RR AWAIT( I ),WRSK; WAIT FOR PART
A CT/9,RI.OGN(4,.3,4);R&R WRSK REMOVE AND REPLACE

ACT ...MSN; GO TO PREFLIGHT
ACT, PART GOES TO SHOP
QUE(S~): ENTER SHOP REPAIR
ACT(1)/A.EXPON(5),REPAIR PART- NOTE 3 CREWS
F-R[IE,WRSK;
T ERMN,

MODF.LSfEG6MENT IV ' 'WEAThIER* 4

(.REAIEIINFRM(18,30) ...1; A STORM EVERY 24 HRS (AVG)
CLS (.IOSFSTORM.

A C 'T/ 1JINVRM( 1.3,2.5 );STORM STORM LASTS 2 IIRS
OPENSTRONI;
A CT,U NFRM (18, 30 ),,CLS;

A
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- ' MOI)EL SEGMENr v . MUNITIONS ....

(RFAIF,IlNFRM( 18,30); CONVOY ARRIVES DAILY
AS IGN,XX( 3)- I

BRN (O))N,
AC r IR 1 .(ON(2,1 ),ROMB t IID BUILDUP AND LINE DELIVERY
AII ER.RBOMBS/44. LOT SIZE
ASSIGNXX(3)-XX(3), 1;
AC'T,,XX(3) I.T.6,BRN; NOlE S TRUILKS PER DAY UNILOA)EI)

TERM,

MODEL SEGMENT VI ° DAYNIGIIT SIIFT ° °

CREATE,,12;
BACK OPENDAY,

AI, ERCREW/6; DAY SHIFT COMES ON DUTY
ACr,12; 12 llRS OF DAYLIGHT
CIOSEDAY; NIGHT HAS FALLEN
AIi ER,CREW/-6; NIGHTTIME WORK FORCE
ACT,12,,BACK;

MOI)L SEGMENT VII * * BATTLE DAMAGE NETWORK ''''

BATL (;OON
ASSI(;N,XX(I )-XX( )-I
ACT/10,UNFRM(22,26),CLSS RPR CLSS REPAIR 24 ItR AVG
(O)N;

ASSIGNX X(lI)-XX( l) I;

ACT,,,MSN;

ENI)NETWORK;
INIT,O,721); SIMULATE 30 DAYS
SIMULATE;

24 9 9 288
SEEDS,' 7,171161 303,63709980095,4 20315910979,

70150982598 15;
SIMUIA1E;

24 8 9 298
SEEDS,, 2,6 l(i1,fIlI95, 71077659415,+8269271392 1,

'3668746-)2891
SIMULAIE:

24 8 9 28
SEEDS,- 76fl7116136,,63709980095,-20315910979,

,71150982599 15;
SIMULA I,,

24 8 9 288
SEEDS, 2A6 16060(1"05,- 710776'59415,,82692713()2 1,

36687463289,
SIMUL 'A I E.

24 S 9 2,8
SEEDS, #76(7116136 3,- 6370998(1(195,- 20315910979,

SIMUIAIF,
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21 R 9 2R8
SEEDS,. 2 Vi 36064111 55.+ 710776594 15,+ 8269271392 1,

+30()97165289;
SIMUAIAE, 

21 6 25
SEEMS, 7171 13 6 3, 3.- 637099 (095,. 203 1591(1979,

711r51.1982399 13,
SIMULA I E,

21 R 6 2R8
SEEDS.- 2S4 36(161155,.71077659415,+8269271392 1,

-360874632R9;
SINILA I E.

24 R 12 2,8
SEEDS, -7(,Q71161Y 3.. 63709980095,- 20315910979,

+ 711509823,98 15
SIMNIAl E:

21 9 12 288
SEEDS, -2S 3606041)5, - 7107765941' ,-8269271392 1,

-36687465289;
SIMUIAIE,

21 6 288
SEEDS,. 760571161363,. 63709980093,20315910979,.~*705i.95259 153

SIMUIAl F.
21 6 9 25S

SEEDS,. 2R( 3 in o s')5-7107765941),+8269271392 1,
-366,9746529;

SIMUI.A IL.
21 r, 6 2S5

SEEDS, -76(071161363, 63709981093,-20315910979,
4 7050)98239815;

SIMULA I E
24 6 6 298

SEEIS, 2R(,36n64 -5. 71077659415,. 8269271392 1,
,36697465289,

SIMULI.AI E.
21 6, 12 255

SEEDS,-76,171 16136 3,6370998009,-20315910979,
*,7('5(599,2398 13;

SIMUIAI E,
24 (6 12 255

SEEDS,+ 2Vi 3 16015, 71077659415,+8269271392 1
, , 65289,

SIMUIA 11:
21 111 6 25,

SEEDS., 74('71141361..,1,637099,009'.) 20315910979,
-715051A2598915,

SIMULAT.
24 I1 6 2R5

SEEDS,. 2 5Z86i1ii11S, 71077659415,- 8269271392 1,
- 366S7165299,

SIMII,A I l
24 In 9 295

SEEDS,,761171161363,,63709980093,, 20313910979,
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SIMULIA IF.

SEEDS, * 1 61. 7107765115,- 8269271392 1,
-3(,6S746)299;

SIMUI.A I L,
21 10 12 299

SEEDS, -7(il'7I 11613~63,6370099800U914 2113 1 910979,
-7115(982398f 3,

SIMUI.AI 1".
24 10 12 299

SEEDS., 2V360604R5,- 710776594 15, -82692713)2 1,
3668746-5289;

FIN,

FUVl RA4 -Code

PRO(;RA M MA IN
.)I MFNSION NSET( 10000)
COMMON/S( OM I /ATRIB( 10 IJ)(W 10l ,0DL( 100),DTNOWA,IIMFA,MSTOP,NCLNR
I IN( RIR,NPRN 1,NNRIIN.NNSL:T,NrIAPESS( I00),SSL( 100 ),T*NEXT,TrNOWXX( 100)
CON1MON/UC(OM I /IAC,IWRSK .ICREW.IBOMBS
C;OMMON (QSET( 0000)
NNSEI 110000
N CRI)R -3
NFRNT 6
NVA PE -7
NFIA)T-2
OPEN( H ,STA TUS =MEWJ ,FLE='CAP.DAT ,FORM='FORMATTED')
CALL. SLAM
SIOP
END

C

S1IPROIITINE IN ric
CONM~ON/SCOM I/ATRIB( I '10),10 IJJ )DUL 100 ),DTN0W,11I,MI'A MSTOP,NcI .NR
I N( RIRNPRN r,NNRIINNNSETN NTAPrF,SS( 100),SsI,( 100 ),TNEXT,TNOW,XX( 100)
CONMMONX ,I(OM I/ /IAC. IWRSK. .ICREW,IWOMBS

C READ) IN STARTING VALUES FOR EXPERIMENT
DIME"NSION A(5)

READ) (N(,RIR,1110) IAC,IWRSK,ICREWIPOMBS
100 FORMAT (15)

XX( I )-IAC ' SET AIRCRAFT LEVEL
(;AI, AI,1ER( 1,IWRSK) ISET LEVEL OF SPARES
CALL, AI,TfERI2,(.RE:W) 1 NIIimR OF MAINTr ICREWS
CALLI ALIER (3,IBoMIIS) INITIAL BO0MB LEVEL

1)O1 II I A(
A( I )-1NOW

CALL :11,[M(Z85



10 CONJINUE

PRINT 'JAC.IW ICREW1130MB

RVIITRN
ENDI

c
C

SUPROUTINE OTPUT
COMMON /S( MII / AIR I I 1111)P 1)1 1 ,I)TNOWV II,MrA ,MSTOPN (INR

1,N(.RI)RNPRNTNNRIIN,NNSET.,NTAPF S 51 0(l),SSL(I00)TNEXT,TNOWxx( 100)
COMMNON/UC'OM II, IACIWRSK ,I(.REW,IBONII3S

WRITFI 10,.10W) C(N~i~i( I ).IAC,IWRSK,ICREWIBON1BS
100 FO)RMAT 1' ,rs 2.Ix,I x.4i)

RET URN
END1
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