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INTRODUCTION

Giles 110) has described the current character of research

in fuzzy reasoning as follows:

"A prominent feature of most of the work in fuzzy
reasoning is its ad hoc nature. ... If fuzzy
reasoning were simply a mathematical theory there
would be no harm in adopting this approach;
... However. fuzzy reasoning is essentially a
practical subject. Its function is to assist the
decision-maker in a real world situation, and for
this purpose the practical meaning of the concepts
involved is of vital importance" (Giles [10), pp. 263).

Fuzzy set theory would benefit from becoming a behavioral

science, having its assumptions validated, and having its results

verified by empirical findings (Kochen [193). Unfortunately, not

too many researchers in this field have adopted this philosophy.

Except fo- a few major experimental works (Hersh et. al. [13,14);

Oden [2324.25,26); Wallsten et al. (31 2,33]; Rapoport et al.

[2e]; Zimmer [36]; Kochen [19): Zysno [37]) most other works

center around axiomatic treatment of the subject. As noted by

Zeleny r35), it happens many times that as the axiomatic

precision of a theory increases, it becomes less significant and

relevant in its impact on the practice of human decision making

and judgment.

This paper addresses this problem in the area of linguistic

approximation- specifically, we focus on the question of

selecting an appropriate index for measuring the similarity

between fuzzy subsets. Several methods have been suggested for

the process of linguistic approximation (Bonissone [2]; Eshragh
0

and Mamdani [9); Wenstop [34]). Each of them suggested a

different measure of similarity, and each suffers from the same
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ad hoc nature as most of the other work in this field. There is

no serious attempt to validate the techniques through behavioral

experiments. Some authors have mentioned that their techniques

work very well, but did not provide the appropriate data to

support their claim. For example, Bonissone [2] in his pattern

recognition approach to linguistic approximation writes "This new

distance reflects very well the semantic distance among fuzzy

sets... This distance has been applied in the implementation and

has provided very good results." but no results are reported, and

it is not clear what criterion are used to make such a statement.

Similarly, no serious attempts have been made by Wenstop [34] to

validate details of his semantic model. Neither do Eshragh and

Mamdani [9) behaviorally validate their approach, although they

claim that "... the results obtained from 'LAM5' are quite

encouraging and also considering the number of previous attempts

and difficulties involved, one can say that 'LAM5' has proved

workable," but again no supporting data were supplied. More

importantly, no attempt has been made to compare the performances

of the various different indexes of distance that could be used

in these applications.

Overall, the lack of behavioral validation for any

similarity index is disturbing because of (i) the crucial role

(translation) that this index plays in any implementation of

fuzzy reasoning theory and, (ii) the reolative ease by which any

proposed index may be validated. Regarding the second point, any

successful distance measure should be able to account for and

predict a subject's similarity judgment between fuzzy concepts,

based on his separate membership functions of each concept.

2
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The notion of similarity plays a fundamental role in

theories of knowledge and behavior, and was dealt with broadly in

the psychology literature (Gregson [12)). Overall, the

theoretical analysis of similarity relations has been dominated

by the geometric model. The geometric models represent objects

as points in some coordinate space such that the observed

dissimilarity between objects corresponds to the metric distance

between the respective points.

The similarity indexes used in the linguistic approximation

techniques adopted this approach. Bonissone E2) located each

concept initially in four dimensional space, where the dimensions

are : Power, Entropy, First moment, and Skewness of the

membership function, and defined the distance between two

concepts as the regular weighted Euclidean distance between the

points representing these concepts. Wenstop [34] located the

concepts in a two dimensional space. The two dimensions are

location (center of gravity) and imprecision (fuzzy scalar

cardinality) of the membership function. The distance between

any two concepts in this space is the regular Euclidean distance.

The same geometrical distance philosophy was adopted by Eshragh

and Mamdani E93 and by Kacprzyk [16).

Most conclusions regarding the appropriate distance metric

have been based on studies using judgment of similarity between

stimuli which can be located a-priori along (objectively)

distinguishable dimensions (such as colors, tones, etc.). The

question of integral vs. separable dimensions is crucial.

Separable dimensions remain subjectively distinct when in

5,3



combination. By contrast, integral dimensions combine into a

subjectively nondecomposable whole. There is an extensive

literature supporting the idea that the Euclidean metric may be

appropriate for describing psychological distance relationships

among integral-dimensions stimuli. while something more along the

lines of the city-block metric is appropriate for separable-

dimensions stimuli (Attneave [I]).

As noted by Tversky [303. both dimensional and metric

assumptions are open to questions. It has been argued that

dimensional representations are appropriate for certain stimuli

(those with a-priori objective dimensions), but for others, EL-Zh

as faces, countries, and personality, a list of qualitative

features is appropriate. Hence the assessment of similarity nmay

be better described as a comparison of features rather than as a

computation of metric distance between points. Furthermore,

various studies demonstrated problems with the metric assumption.

Tvers:y [30] showed that similarity may not be a symmetric

relation (violating the symmetry axiom of a metric), and also

suggested that all stimuli may not be equally similar to

themselves (violating the minimality axiom). Therefore,

similarity may be better modeled by a function which is not

conceptually a geometric distance (e.g. a set-theoretic function

instead).

The plan for the rest of this paper is as follows: We first

review the various distance indexes suggested in the literature.

in the general case, and as adapted to fuzzy sets. Second, our

experimental design will be presented. Finally we will discuss

4
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the results and the implications of the results to the process of

linguistic approximation.

Geometric Distance Models.

A particular class of distance functions that has been

investigated by psychologists is known as the Minkowski r-rmetric.

This metric is a one-parameter class of distance functions

defined as follows:

r h/r
d (x.y)=[E Ixi-y. Ir] I 

. r >l (1)
r "i "

where x and y are two points in an n-dimensional space with

components (xiYi ) i=1,2,...,n. Let us consider somE special

cases that are of particular interest. Clearly, the familiar

Euclidean metric is the special case of r=2. The other

special cases of interest are r=1 and r=w. The case o+ r=1 is

known as the "city block.' model. As r approaches w, Eq. (1)

approaches the "dominance metric" in which the distance between

stimuli x and y is determined by the difference between

coordinates along only one dimension-that dimension for which

the value Ixi-y. I is greatest. That is:

d (x,y)=max.y i (1.1)

Each of the three distance functions, r=1,2, and w, are

used in psychological theory (Hull [15); Restle [293; Lashley

r203).

5
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Generalizing the geometric distance models to fuzzy subsets.

Let E be a set and let A and B be two fuzzy subsets of E.

Define the following farniily of distance measures between A and B:

rrr /r
d (A, B) =(E IIw G, ) -M x ) I /n) r- 1, (1 .2)r A i B i

or, if E=R

C,.,

.r, r .r
d r(A,B)=(J Im A G. )jB() GI- d.- r,>1, (1.7.)

-C.)

and d .)(A,B)=sup[.uA() -pB(,) I. (1.4)
x

The cases r=1 and 2 were studied by Kaufman [173. kacprzyk [16)

proposed the distance measure (d21,) andd was proposed by

Nowakowska [22). Our empirical evaluation will consider dl, d.,.

(d, ) 2, and d

Hausdorff metric.

The Hausdorff metric is a generalization of the distance

between two points in a metric space to two compact nonempty

subsets of the space. If U and V are such compact nonempty sets

of real numbers, then the Hausdorff distance is defined by:

q(U,V)=max{ sup inf d2 (u,v), sup inf d2 (u,v)} (2)
VeY uEU uEU veV

where d 2 is as defined in Eq. (1).

In the case of real intervals A and B. the Hausdorff metric

6



is described by:

q(A,B)=max-{1a-b l I, 1a 2 -b 2 1} (2.1)

where A=[ala - ] I and B=Eblb,].

Generalizing the Hausdorff metric to fuzzy subsets.

Let F(R) be the set of all fuzzy subsets of the real line.

There is no unique metric in F (R) which ex:tends the Hausdorf-f

distance. Ralescu and Ralescu [27] proposed the

following generalizations:

ql(AB)=f q(A,,B,)da (2.2)

q (A,B)=sup q(A .Bi). (2.3)

where A is the a-level-set of the fuzzy set A.

We propose the Hausdorff distance between the intervals with the

highest membership grade:

q* (A, B) =q(A1 . C),B . C) (2.4)

If A and B are real intervals then

q (A, B) =q (A,B) =q(AB) =q (A,B).

Goetschel and Voxman [111 suggested a different

generalization of the Hausdorff metric. Let A and B be two fuzzy

numbers (4or the exact definition of fuzzy numbers in this

context, which is slightly different from the usual definition,

see Goetschel and Voxman 11]) and let suppA=[aAbA ] and

7



suppB=[a Bb B I and let a=min(aA aBI and b=max{bA,b B) and set

A ={(x.y) Aa b, O-y <1A(x:)

and

B U=(xy) Ia<x< b, O)<y<I B(x))

Then their distance is:

Q(A,B)=q(A , ). (2.5)

Dissemblance index.

Kaufman and Gupta E1B] start with distance between

intervals. Let A=[al,a2 ] and B=Ebl.b2 j be two real intervals

contained in [1 1R2] and define:

A(A,B)=(lal-b 1 1 + l 2 - b 2 1 ) / 2 ( 2 - 1 )  (3.1)

Generalizing the dissemblance index to fuzzy subsets.

Now let A and B be two fuzzy numbers in R. For each level

a, we can consider A(A ,B ). where 1 and G2 are given by any

convenient values which surround A and B for all ac[0,1].

Kaufman and Gupta [18] now define

1I (AB) = J A(A ,Bo )da. (3.2)

As obvious analogies to q and %, we add

a B)s(AB)=uAp ,B) (3.)

65 CB)= ( 1 .  'B1. ) " (3.4)

%.



Set Theoretic Approach.

In his well-known paper "Features of similarity," Tversky

[30) described similarity as a feature-matching process. The

similarity between objects is expressed as a linear combination of

the measure of their common and distinct features. Let

={abc,... ,) be the domain of objects under study. AssUme that

each object in 6 is represented by a set of features or

attributes, and let A, B, C denote the set of features associated

with objects ab,c respectively. In this setting, Tversky [30]

derived a-iomatically the following family of similarity

functions:

s(a.,b)=@>f (AAB)-af (A-B)- f (B-A)

for some OM,8>O.-

This model does not define a single similarity scale, but

rather a family of scales characterized by different values of

the parameters ., f and R, and by the function f.

If a=0=1 and 0=0 then -s(a,b)=f(A-B)+f(B-A), which is the

dissimilarity between sets proposed by Restle (29].

Another matching function of interest is the ratio model:

f (AfIB)
s (a, b) = M, 80,

f (AflB) +af (A-B) +8f (B-A)

where similarity is normalized so that s lies between 0 and 1.

Assuming that f is feature-additive (i.e. f(AUB)=f (A)+f(B) for

AnIB=), then the above model generalizes several set-theoretic

models of similarity proposed in the literature. If M=0=1,

s(a,b) reduces to f(AlB)/f(AULB) (Gregson [12]). If u=8=% then

9



s(a.,b)=2f(A/B)/(f(A)+f(B)) (Eisler and Ekman [7]). If a=1 and

0=0, s(ab)=f(A/lB)/f(A) (Bush and Mosteller [3]). Typically the

f function is taken to be the cardinality function.

Generalizing the set theoretic approach to fuzzy subsets.

Several authors have proposed similarity indexes for fuzzy

sets which can be viewed as generalizations of the classical set

theoretic similarity functions (Dubois and Prade [5)). These

generalizations rely heavily upon the definitions of cardinality

and difference in fuzzy set theory. Definitions of the

cardinality of fuzzy subsets have been proposed by several

authors. A systematic investigation of this notion was performed

by Dubois and Prade [6]. For generalizing the set-theoretic

approach to a similarity index between fuzzy subsets, the scaiar

cardinality measure will be adopted in the sequel. The scalar

cardinality (power) of a fuzzy subset A of U is defined as:

IA1=E jiA(U), (De Luca and Termini, [4]). 0
ueU

When Support(A) is not finite. we define the power of A to be

IAI=f m A(x)dx.

Define the following operations between fuzzy subsets:

(a) V x X. (X)=I A(X)-MB(x) I

A*B is the fuzzy subset of elements that belong more to A

than to B, or conversely.

(b) Vx eX, IA B(x)=max[min(.uA(X),l-,uB()),minll-mA(X):$AB(X))].
~AiB A B A B

AOB is the fuzzy subset of elements that approximately belong

10
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to A and not to B, or conversely. h

The following indexes have been proposed in the literature

(Dubois and Prade [5)) as dissimilarity measures between fu-zy

subsets:

S1 (A,B)=1-IAlBI/IA UB I  (4.1)

is analogous to Gregson's [12) proposal for classical sets;

S 2 (A,B)=IAOBI (4.2)

is analogous to Restle's [29] proposal for classical sets.

A!so

(A,B) =SP () (4.Z)
X 

A

and finally a disconsistency index ("degree of separation". Enta

[8])

S 4 ( A B ) = l - s u p w A1B). (4.4)

V.f X

A pattern recognition approach (Bonissone [2]).

In this approach, the efficiency of the linguistic

approximation process is of major importance. The process is

composed of two stages. In the first stage, the set of possible

labels is narrowed down by using a crude measure of distance that

(hopefully) performs well on fuzzy sets that are far apart from

each other. The idea is to represent each fuzzy set by a limited

number of features so that the distance computation is

simplified. Bonissone [2] chose four features: (i) the power of

the set (area under the curve), (ii) a measure of the fuzziness of

-. *1* '



the set (non-probabilistic entropy) defined by De Luca and

Termini [4) as

Entropy(A)=f S('uA 0.))dx<

where S(y)=-yLn(y) - (1-y)Ln(1-y).

(iii) The first moment (center of gravity of the membership

function) defined by

* FMO(A)=(j xj.,.()dx) / Fower(A).
*A"

and finally (iv) Skewness defined as

Skevw(A)=f 01 (x)-FMO(A)) ) x x

Bonissone E2) defines the distance between two fuzzy sets as the

weighted euclidean distance between the vectors (Fower(A).

Entropy(A). FMO(A), Skew(A)) and (Power(B), Entropy(B), FMO(B),

SIk.ew(B)). In what follows we will denote this distance by V I(A,B)

* (using equal weights). After narrowing down the set of possible

labels, the second stage starts, in which a modified

Bhattacharyya distance is computed. This distance should

discriminate well between sets that are close to each other. The

Bhattacharyya distance is defined as:

+00

where the membership functions have been normalized, i.e.:

'UA A(x)=A(x) / Power (A)

and similarly for M 9.

12



Wenstop (34] adopted a similar approach. He represented

each fuzzy set as the 2-vector: (Power(A), FMO(A)). The distance

between two fuzzy sets is defined to be the regular euclideen

distance between the two corresponding vectors. We will denote

this distance by V,,(A,B).

Correlation Index.

Murthy, Pal, and Majumder [213 defined a correlation-like

indeK that reflects the similarity in behavior of two fuzzy sets.

The measure is actually a standardized squared euclidean distance

between two fuzzy sets as defined b; d,.

Let

XA= J (2A (x)-1) dx

and define

CORR(A,B)=1-(4/X +X )•(d,). (6)
A B 2i

In what follows we will use the index o(A,B)=1-CORR(A,B).

METHOD

Subjects: 15 native speakers of English were recruited by placing

notices in graduate students' mailboxes in the business school

and.the departments of anthropology, economics, history,

psychology, and sociology at the University of North Carolina at

Chapel Hill. We assumed that they would represent a population

of people who think seriously about communicating "degrees of

uncertainty," and who generally do so with non-numerical phrases.

The general nature of the study was described and subjects were

13
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promised $25 for three sessions of approximately an hour and a

half each.

General procedure: Subjects were run for a practice session and

then two data sessions. The experiment was controlled by an IBM

PC with the stimuli presented on a color monitor and responses

made using a joystick. During the data sessions, subjects worl:ec"

through 4 types of trials: (1) linguistic probability scaling

trials, (2) Trials in which subjects integrated two probability

terms connected by AND, (3) Similar trials using the connector

OR, and (4) Similarity judgment trials. This paper is concerne

only with tasl:s (1) and (4). For more details about the other

two tasks see Wallsten et. al. [33).

(1) Linguistic probability scaling trials.

The cbjective of these trials is to establish the sUbject's

membership function for various linguistic probability phrase.

Recently, Wallsten et. al. [31) have developed a method for

empirically establishing the membership functions of fuzzy

concepts, based on conjoint measurement and utilizing a graded

pair-comparison technique. Rapoport. Wallsten, and Co-" (28) •

further established that the methods of direct magnitude

estimation and graded pair-comparison yield similar membership

funCtions. In this study we have adopted the direct magnitude

estimation technique. On such a trial a red and white radially

divided spinner appeared on the screen, as shown in Fig. 1.

0
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Insert Fig. 1 about here

Instructions for this task said in part:

Imagine that you cannot see the spinner, but you
have to predict whenever it will land on white on the
next random spin. A friend of yours can see the
spinner, although not too well because it is rotatina at

a moderate rate. Your friend is going to give you his
or her best opinion about the chances of the spinner
landing on white. However, this person does not tell
you a probability... Rather, the person may use any of a
large number of nonnumerical probability phrases... We
are interested in your interpretation of the probability
phrases as they apply to the spinner context. Assume
that your friend tells you that it is doubtful that the
spinner will land on white. This gives you some basis
for judging the probability of that event. Now,
consider the spinner on the screen. How close is that
spinner's probability of landing on the white to the
judgment you had formed upon hearing that it is doubtful

that the spinner will land on white?

The subject then moved the cursor on a line to indicate how

close the particular displayed spinner came to the opinion that

he or she had formed on the basis of the phrase doubtful. The

cursor could be moved from not at all close (low membership) to

absolutely close (high membership).

Six phrases were employed, three representing lower

probabilities and three representing higher probabilities:

doubtful, slight chance, improbable. litely, good chance, and

fairly certain. In the direct estimation task, each phrase was

presented with 11 spinner probabilities: 0.02, 0.12, 0.21, 0.31,

0.40, 0.50, 0.60, 0.69, 0.79, 0.88, and 0.98.

Subjects judged each combination of phrase and probability

numbers twice, once in each session.

15
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(2) Similarity Judgment trials.

Instructions for this task said in part:

... Two non-numerical probability phrases will be
printed on the screen on each trial. We are interested

in how similar, or synonymous, you consider the two
phrases to be with respect to describinq the probability

of a spinner landinq on white.

The subject then moved the cursor on a line to indicate how

similar the phrases are. The cursor could be moved from not at

all similar to absolutely similar. Each subject judged the

similarity between all possible pairs (15) (excluding a phrase and

itself) twice in each session.

Membership function evaluation: Based on previous research

(Wallsten et. al. (31); Rapoport et. al. [281) we have concluded

that a cubic polynomial can accurately represent the membership

functions for the six phrases. Note that a cubic polynomial

resembles the 'S' and I functions that have been proposed in

the literature in this contex:t (Eshragh and Mamdani [9]). A

cubic polynomial was fit to the 22 points representing each

phrase within a subject, using the least squares technique. Each

function was then normalized to attain the value 1 on the

interval [0,1]. In defining the membership functions, any value

less than zero was redefined to equal 0, and similarly any value

greater than 1 was redefined to equal 1. These adjustments were

generally quite minor. E:amples of the membership functions for

the six phrases for one subject are shown in Fig. 2. All

membership functions for all subjects were either nondecreasing.

nonincreasing, or single-peaked.

16
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Insert Fig. 2 about here

RESULTS AND DISCUSSION

For each subject and each pair of words, all nineteen

distance measures were calculated. (At times it was necessary to

discretize one axis, using a 100-point grid, in order to

calculate a distance measure.) To evaluate the performance o* a

particular distance measure, we compare its computed values tc

the "true' distance ratings as given directly by the subject in

the similarity judgment trials. This evaluation is done on two

levels: First we car asi if the distance measure correctly

categorizes a "similar" pair of words by returning a "small"

distance, and if it correctly categorizes a "dissimilar" pair o4

words by returning a "large" distance. This crude evaluation is,

in practice, independent of the subject-specific "true" distance

rating, because the subjects generally agree that the pairs

Pl (doubtful, improbable), p,,=doubtful, slight chance).

p 3 =(improbable. slight chance), P 4 =(fairly certain, good chance),

p5=(fairly certain. litely), p 6 =(li:ely. good chance) are each

composed of two "similar" words; likewise the subjects generally

agree that the pairs ql=(doubtful. fairly certain), q2 =(doLbtful,

good chance), q3 =(doubtful, lIkely), q 4 =(improbable, fairly

certain), q5=(improbable. Qood chance), q =(mprobable, lilely).

q 7 =(slight chance, fairly certain), q8=(slight chance, good

chance), q 9 =(slight chance, lilely) are each composed of two

17
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"dissimilar" words. For this task of dichotomous categorization.

essentially all the distance measures were successful across all

subjects (see Figure 3, for example). This is testimony to the

intuitive base upon which each distance definition rests: They

are designed to indicate gross differences between membership

functions, if and only if such differences actually exist. The

practical implication is simply that if linguistic approximation

or concept-clustering is to be carried out in two stages, then

any of these distance measures may be used for the first stage.

Insert Figure 3 about here

The second level of our evaluation asts whether the distance

measure reflects the correct degree of similarity within

."similar" pairs of words, and whether the distance measure

reflects the correct deQree of dissimilarity within "dissimilar"

pairs of words. In answering this more subtle question,

intersubject variability must be acinowledged: Each subject w.ll

have his own membership functions for the words in pair pl.

These two membership functions are "similar" in the gross sense,

but the similarity between them is different than the similarity

between his membership functions for the words in pair p.. The

mdegree of similarity within each pair is given, for that subject.

mby his "true" distance rating. If the distance measure woris

well in the context of fuzzy sets, it should yield distances for

pairs p and p that "agree" with the corresponding "true"

distance ratings given by the subject. To quantify the amount of
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agreement between a particular distance measure and the "true"

distance we compute the correlation between these two quantities,

over all pairs (p. : li16, for a given subject (see Figure 3).

Thus our criterion for agreement is linear association. Now, the

same considerations apply to the "dissimilar" pairs. Here we

compute the correlation between the particular distance measure

and the "true" distance over all pairs (qi : 1fi9, for a given

subject. By analyzing the pi's and qi's separately, we allow for

the possibility that a particular distance measure may be quite

accurate in modeling fine variations in similarity (i.e. small

distances), but may be quite inaccurate in modeling fine

variation among pairs that are each composed of two "dissimilar"

words. Furthermore, in practical applications one may only need

to find a distance measure that is sensitive to the degree of

similarity in pairs of "similar" words (e.g. in linguistic

approx imation). The separate analyses also give a distance

measure the opportunity to be linearly related to "true"

distance with two (locally) different slopes (see Figure 3).

Insert Figures 4 & 5 about here

For each distance measure, its pi-correlations for the 15

subjects are summarized by a line-plot. The 19 line-plots (one

for each measure) appear in Figure 4. Analogous line-plots of

the q -correlations appear in Figure 5. It is desirable for a

measure to have high mean and median correlation, to have small
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dispersion among its correlations (i.e. interquartile range), and

to be free of extremely low (i.e. negative) correlations.

Several trends are clear from these displays:

(i) There is a great deal more variability between the

performances of the various distance measures on "dissimilar"

pairs (Fig. 5) than on "similar" pairs (Fig. 4): the means,

medians, and interquartile ranges are much more homogeneous in

Figure 4 than in Figure 5. (Note that statistical fluctuation

would actually wor in the opposite direction: the correlations

for- the "dissimilar" pairs are calculated from 9 data points,

while those for "similar" pairs are calculated from 6 data

points.) This immediately suggests that more caution must be

exercised when selecting a distance measure to distinguish

between varying degrees of dissimilarity.

(ii) On the "dissimilar" pairs (Fig. 5), those measures which

perform the worst d -d d,,d..S,.S,,o) are measures which

ignore the ordering on the x-axis (the base variable axis).

Conversely, those measures which perform the best (q.,q,. ,A)

are measures which do account for the distances on the x-axis by

looling at r-level-sets. This distinction is quite logical: When

measuring the distance between words that are essentially

"dissimilar" (i.e. have nearly disjoint supports), it is the x-

axis that carries all the information regarding the degree of

dissimilarity between the membership fiunctions. Distance

measures that ignore the x-ordering have the advantage of being

unambiguously defined even for membership functions over abstract

(i.e. unordered) spaces, but such measures have the disadvantage

of being insensitive to varying degrees of dissimilarity (e.g. as
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in pairs qi). In the "similar" pairs (Fig. 4), the membership

functions within a pair (pi) have nearly identical supports.

Hence the x-distance is not critical, and we find both types of

distance measures doing well- those that look at w-level-sets

(notably q$ ,6*), and those that ignore the ordering on x

(notably S 4 ).

(iii) Among those measures accounting for x-ordering

ll q, and 0 are especially susceptible to

having ex tremely poor correlation with "true" similarity ratings.

This occurs for both qi-correlations and pi-correlations. Note

that 0 is conceptually different from the other 6 such measures,

possibly accounting for the difference in performance.

(iv) Measure S. is arguably the worst both for "similar" pairs

and for "dissimilar" pairs.

(v) Measures S and S4 are clearly the best in terms of q i-

correlations, among those measures which ignore the x-ordering.

Their superiority in the "dissimilar" setting is noteworthy

because, again, x-distance is relevant in this setting.

Furthermore, measure S4 performs reasonably well (among all

measures) in the "similar" setting also.

(vi) Quite surprisingly, all of the measures with consistently

good performance (S 49 share the following property:

they concentrate their attention on a single value, rather than

performing some sort of averaging or integration. In the case of

S4 , attention focuses on the particular x-value where the

membership function of AAB is largest; in q and A attention

focuses on the u-level-set where the x-distance is largest; in q
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and 4 attention focuses on the x-distance at the highest

membership grade. Such measures are generally considered unstable

(and hence suspect) in many mathematical analyses. Yet, here is
h

strong empirical evidence that subjects actually behave this way:

reduction of complicated membership functions to a single "slice"

may be the intuitively natural way for human beings to combine

and process fuzzy concepts.

(vii) The consistently good performance of q and has

significant practical implications. These measures are trivial

to coM.pute, relative to other distance measures, and they have

SLbstantial intuitive appeal.

(viii) Distance measure R was proposed as a refinement of V ,,

where the latter is used in the first stage of linguistic

approximation and the former is used in the second stage

(Bonissone [23). However, the empirical results show no

systematic evidence of R being superior in the "similar" word

setting (Figure 4) or of V 1 being superior in the "dissimilar"

word setting (Figure 5).

Recommendations.

If one wants to select a distance measure that performs well

in the long-run on a broad spectrum of subjects, then the

aggregated data of our study may be used as a guide. Measures

$4,q$,&w, and A* consistently distinguished themselves for good

performance. If, on the other hand, the objective is to

accurately model the behavior of a specific individual (e.g. in

the linguistic approximation phase of an expert system program),

then the following problem must be acknowledged: For each

S
22

V NW 1 -



distance measure, there existed some subject for whom that

distance measure performed quite poorly (note the "minimum"

values on Figures 4 and 5). Therefore, in these applications, it

would be ideal to determine the best distance measure for the

individual of interest. This could be accomplished by carrying

out an experiment analogous to ours, but on the specific

individjal, and in the relevant context. It is possible that the

relative performances of the distance measures could vary from

one context to another, even for a fixed individual.

In many cases, the fuzzy concepts are unambiguously defined

over a one-dimensional space (e.g. in our study of probability

words). When this is not the case, then, in using those distance

measures that do account for the ordering on the base-variable

axes, it is imperative that the fuzzy concepts be correctly

located in a space of the appropriate dimensionality.

23
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