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INTRODUCTION

Giles [10] has described the current character of research

in fuzzy reacsoning as follows:

"A prominent feature of most of the work in fuz:z

reasoning is its ad hoc nature. e lf fuzzy
reasoning were simply a mathematical theory there
would be no herm in adogpting this approach:
.« « HOwever, fuzzy reasoning 1ics essentislly &
practical subject. Its functieon is to assist the
decision-maker in a real world situation, and for
this purpocse the practical meaning of the corcepts

involved is of vital importance" (Giles [10], pp. 263).

Fuzzy set theory would benefit from becoming a behavioral
science, having its assumptions validated, and havirg its results
verified by empirical findings (Kochen [19]). Unfortunately, not
too many researchers in this field have adopted this philosophy.
Except for a few major experimental works (Hersh et. al. [13,f43;
Oden [23,24,25,261; Wallsten et al. [31,32,33]; Rapoport et al.
[2223; Zimmer [36]: Kochen [191:; Zysno [37]), most other woriks
center around axiomatic treatment of the subject. As noted by
Zeleny [353], it happens many times that as the axiomatic
precision of a theory increases, it becomes less significant and
relevant in its impact on the practice of human decision making
and judgment.

This paper addresses this problem in the area of linguicstic
approximation—- specifically, we focus on the question of
selécting an appropriate index for measuring the similaraty
between fuzzy subsets. Several methods have been suggested for
the process of linguistic approximation (Bonissone [2]; Eshragh
and Mamdani [9]; Wenstop [34]1). Each of them suggested a

different measure of similarity, and each suffere from the same
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ad hoc nature as most of the other work in this field. There is
no serious attempt to validate the techniques through behavioral
experiments. Some authors have mentioned that their technigues
work very well, but did not provide the appropriate data to
support their claim. For example, Bonissone [2] in his pattern
recognition approach to lTinguistic approximation writes "This new
distance reflects very well the semantic distance among fuz:zy
sete... This distance has been applied in the implementation and
has provided very good results,"” but no results are reported, and
it is not clear what criterion are used to make such a statement.
Similerly, no serioucs attempte have been made by Wenstop [34] to
validate details of his semantic model. Neither do Eshragh and
Mamdani [9] behaviorally validate their approach, although they
claim that "... thé results cobtained from LAMS® are quite
encouraging and also concsidering the number of previous attempts
and difficulties involved, one can say that *LAMS’ hacs proved

wor kable,"” but again no supporting data were supplied. More
importantly, no attempt has been made to compare the performances
of the various different indexes of distance that could be used
in these applications.

Overall, the lack of behavioral validation for any
similarity index is disturbing because of (i) the crucial role
(translation) that this index plays in any implementation of
fuzz2y reasoning theory and, (ii) the relative ease by which any
proposed index may be validated. Regarding the second point, any
successful distance measure should be able to account for and
predict a subject’s similarity judgment between fuzzy concepts,

based on his separate membership functions of each concept.

o

'y

BT P ST,

B REEARAR @ S

v s v
. »




The notion of similarity plays a fundamental role in

theories of knowledge and behavior, and was dealt with broadly in

the psychology literature (Gregson [12]). Overall, the

- -~ .

theoretical analysis of similarity relations has been dominated

). by the geometric model. The geometric models represent objects

as points in some coordinate space such that the obeserved

U dissimilarity between objects corresponds to the metric distance

7 between the respective peoints.

. The similarity indexes used in the lirnguistic approximation

\ techniquees adopted this approach. Ponissone [2]1 located each

\ concept initially in four dimencsional space, where the dimensicons

are : FPower, Entropy, First moment, and Skewness of the

¥ membership function, and defined the distance between two

concepts az the regular weighted Euclidean distance between the ,A

pointe reprecenting these concepts. Wencstop [T4] located the

concepte in a two dimensional space. The two dimensions are :

! location (center of gravity) and imprecision (fuzzy scalar

' cardinality) of the membership function. The distance between
any two concepts in this space is the regular Euclidean distance.

I The same geometrical distance philosophy was adopted by Eshragh

A and Mamdani [2) and by Kacprzyk [16].

' Most conclusions regarding the appropriate distance metric
havé been based on studies using judgment of similarity between
stimuli which can be located a-priori along (objectively)
distinguishable dimensions (such as colors, tones, etc.). The

question of integral vs. separable dimensions is crucial.

.
.

Separable dimensions remain subjectively distinct when in

-
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combination. By contrast, integral dimensions combine into a
subjectively nondecomposable whole. There is an extensive
literature supporting the idea that the Euclidean metric may be
appropriate for describing psychological distance relationships
among integral-dimensions stimuli, while something more along the
lines of the city-block metric is appropriate for sepsrable-

dimensions stimuli (Attneave [11]).

As noted by Tversky [301, both dimensional and metric
assumptions are open to questions. 1t has been argued that
dimensional representations are appropriate for certeain stimuli
{those with a-priori objective dimensions), but for others, such
as faces, countries, and personality, a list of qualitative
features is appropriate. Hence the assessment of cimilarity may
be better described as a comparison of features rather than as a
computation of metric distance between points. Furthermore,
various studies demonstrated problems with the metric assumption.
Tversky [30] showed that similarity may not be a symmetric
relation (violating the symmetry axiom of a metric), and also
suggested that all stimuli may not be equally similar to
themselves (violating the minimality axiom). Therefore,
similarity may be better modeled by a function which is not
conceptually a geometric distance (e.q. a set-theoretic function
insiead). |

The plan for the rest of this paper is as follows: We first
review the various distance indexes suggested in the literature,
in the general case, and as adapted to fuzzy sets. Second, our

experimental design will be presented. Finally we wi1ll discuss




the results and the implications of the results to the process of

linguistic approximation.

Geometric Distance Models.

A particular class of distance functions that has been

| investigated by psychologists is known as the Minkowski r—metric.

This metric is a one-parameter class of distance functions

defined as follows:

n
d_ (,.y)-n: l:-:i—yilrlll/r, rz1
1

\

Euclidean metric is the special case of r=2. The other

stimuli x and y is determined by the difference between
the value Ixi—yil is greatest. That is:
d (y,y)-mawly <Y l.

i

[201).
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where x and y are two pointse in an n-dimensional space with
components (xi,yi) i=1,2,...4n. Let us consider some special

cases that are of particular interest. Clearly, the familiar
special cases of interest are r=1 and r=w. The case of r={
known as the "city bloeck"” model. As r approaches w, Eq. (1)

approaches the "dominance metric" in which the distance between

coordinates along only one dimension-that dimension for which

Each of the three distance 4uncti6ns, r=1,2, and o, are

used in psychological theory (Hull [15]; Restle [29]; Lashley
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Generalizing the geometric distance models to fuiﬁy subsets.

Let E be a set and let A and B be two fuzzy subsets of E.

Define the following famnily of distance measures between A and B:

r

: r i/r
= s - s > =
d_(A,B) (i,'“A("i) wp G /m) rz1, (1.2)
or, 1¥f E=RR
o r 1/r
= W) — s ) 2) > =
dr(A,B) (i,l”A(") JJ.B(,.,'I d:) rz1, (1.3)
and dm(A,B)=supluA(x)—uB(H)I. (1.4)

X

The cases r=1 and 2 were studied by Kaufman [(171. Kacprzyk [16]

'j .
proposed the distance measure (dq)‘, and du was proposed by

S

Nowalowska [221. Our empirical evaluation will consider dl' do.

Py
r

(dz)‘, and d_.
Hausdorf+f metric.
The Hausdortf metric is a generalization of the distance
between two points in a metric space to two compact nonempty
subsets of the space.

If U and V are such compact nonempty sets

of real numbers, then the Hausdorff distance is defined by:

-~

2)

q(U,V)=max{ sup inf dz(u,v), sup inf d2(u,v)}
veV uelU uel veV

where d2 is as defined in Eq. (1).

In the case of real intervals A and B, the Hausdorff metric

6
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is described by:
q(A,B)=max{la1—b1l,Iaz—bzl} (2.1)

where A=[al,aq] and B=[b1,b?3.

Generalizing the Hausdorff metric to fuzzy subsets.
Let FIR) be the set of all fuzzy subsetes of the real line.
‘ There is no unique metric in F (R ?> which extends the Hausdorf<f
distance. Ralescu and Ralescu [271 proposed the

following generalizations:

1

(A Bi={ q(A + By ) do (2.2)
o=l
¢
q, (A, B)=sup q(A B ). (2.3)
o2l

; where Au is the c-level-set of the fuz:zy set A.
] We propose the Hausdor++f distance between the intervals with the

highest membership grade:

q*(A,B)=q(A B

1.0°B1.0'- 2.4)

1§ A and B are real intervals then

qQ, (A, B)=q_(A,B)=q, (R, B)=q(A,B).

; . Goetschel and Voxman [11] suggested a different
generalization of the Hausdorff metric. Let A and B be two fuz:zy
numbers (for the exact definition of fuzzy numbers in this
context, which is slightly different from the usual definition,

see BGoetschel and Voxman [11]) and let suppA=la,.b.l and

A'TA

7
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suppB=[aB,bB] and let a=min{aA,aB} and b=max{bA,bB}, and set
A'={(x,y)la$x$b, 0<y$uA(x)}
and

X
B ={(x,y) lasx b, OiyiuB(x)}

Then their distance is:

Q(A,B)=qm*,9*>. (2.5)

Dissemblance index.
Faufman and Gupta [18] start with distance between

intervals. Let A=[a1,aql and B=[b1,b?] be two real intervals

contained in [81’3“] and define:

A(A,B)=(lal—b1|+la2—b21)/2(82-61). (3.1)
Generalizing the dissemblance index to fuzzy subsets.
Now let A and B be two fuzzy numbers in RR. For each level
o, we can consider A(Au’Ba)’ where 81 and 82 are given by any
convenient values which surround Aa and Ba for all wcelO,11].
aufman and Gupta [18]1 now define
!

AI(A,B)=iwA(Au,Ba)da. (3.2)

As obvious analogies to Q. and Qys we add

Am(A,B)=supA(Au,B“) (3.3)
o
A‘(A,B)=A(A1.0,Bl_0). (3.4)
8
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Set Theoretic Approach. ‘

In his well-known paper "Features of similarity," Tversky )
[30] described similarity as a feature—-matching process. The

similarity between objects is expressed as a linear combination of )
the measure of their common and distinct features. Let

{ a={a,b,cy...,> be the domain of objects under study. Assume that
each object in A is represented by a set of features or
attributes, and let A, B, C denote the set of features ascociated 3

with objects a,b,c respectively. 1In this setting, Tversky [30] )

derived ariomaticelly the following family of similarity

functiones:
s (a,b)=ef (ANB) ~af (A-B) -4 f (B—A) )
for some ©,q,820.
This model deoes not define a single similarity scale, but
rather a family of scales characterized by different values of
the parameterse @,0, and £, and by the function +.
1f a=8=1 and &=0 then -s(a,b)=f(A-B)+f(B-A), which is the
discinmilarity between sets proposed by Restle [(2%1].
Another matching function of interest is the ratio model:
f (ANB)

e(a,b)= x, £20, f
f (ANB) +af (A-B) +§f (B-A)

whe}e similarity is normalized so that s lies between O and 1.
Assuming that f is feature-additive (i.e. f(AUB)=f (A)+f(B) for
AnB=¢), then the above model generalizes several set-theoretic
models of similarity proposed in the literature. 1¥ x=$=1,

s{(a,b) reduces to f(ANB)/f (AUB) (Gregson [121). If a=§=% then

S o e asw = s L o dloiale ™ b

~,w ~
o
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s(a,b)=2f (ANB) / (f (A)+f (B)) (Eisler and Ekman [7)). If «=1 and

=0, s{(a,b)=f (ANB)/f (A} (Bush and Mosteller [31). Typically the

f function is taken to be the cardinality function. ~
. » . .
Generalizing the set theoretic approach to fuzzy subsets. oy
Several authors have proposed similarity indexes for fuczzy :1

sets which can be viewed a2s generalizations of the classical set i
theoretic similarity functions (Duboie and Frade [S1). These "o
generalizations rely heavily upon the definitions of cardinality -
~

<
and difference in fuzzy cet theory. Definitione of the :.
cardinality of fuzzy subsets have been proposed by several ;
autheore. A systematic investigation of this notion was perfocrmec f'
by Dubeoie and Frade [&1. For generalizing the set—-theoretic :1
»

approach to a similarity index betwsen fuzzy subsetes, the scalar :
cardinality measure will be adopted in the sequel. The scalar o
cardinality f(power) of a fuzzy subset A of U is defined as: :i
.h
=
}
A= uA(u), (De Luca and Termini, [4]). °

uel ‘

A

When Support(A) is not finite, we define the power of A to be t
‘o3 ®

lAl=f uA(x)dx. "

-o t
Define the following operations between fuzzy subsets: 3‘
(a) VWxeX, uA.B(x)=IuA(x)—uB(x)l. e
AeB is the fuzzy subset of elements that belong more to A ;
than to B, or conversely. §

(b) W¥xeX, uADB(x)=max[min(uA(x),l—uB(x)),min(l—uA(x),uB(x))J.

AOB is the fuzzy subset of elements that approximately belong
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A
[y .
= ¢
to A and not to B, or conversely. "
The following indexes have been proposed in the literature ™,
Al
(Dubois and Frade [3]) as dissimilarity measures between fuz:zy :
1 Y
subsets: N
\]
SI(A,B)=1—IAHBI/IAUBI (4.1) :
. Y,
is anzalogous to Gregson’®s [12] proposal for classical sets; )
0
S.(A,B)=1ADOBI 4.2) .
is analogous toc Restle®s [29] proposal for clascsical cets. Bt
Also K
-
!
c Y=g (> =) g
HZ(A,B) du? HAGB(") (4.2) %
W E X :\.
and finally a disconsistency index ("degree of separation", Enta i
-~
[8l)
X
S
(= 4 =1—-c . )] o~
h4\A,B) 1 _u? uAnB(")' (4.4) X
weX N
kS
Ay
-
o
Fd
;
A pattern recognition approach (RBonissone [21]). vy
”
b
In thi= approach, the efficiency of the linguistic ‘.
approximation process is of major importance. The procecss is :f
o
composed of two stages. In the first stage, the set of possible
labels is narrowed down by using a crude measure of distance that A
(hopefully) performs well on fuzzy sets that are far apart from :
each other. The idea is to represent éach fuzzy set by a limited ¥,
number of features so that the distance computation is ;
simplified. Bonissone [2] chose four features: (i) the power of
the set (area under the curve), (ii) a measure of the fuzz-iness of

11
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the set (non-probabilistic entropy) defined by De Luca and
Termini [43 as
to
Entropy(A:=J S(uA(x))dx
2]
where S{({y)=-yln(y) - (1-yilLn(l-y),
(i1i) The first moment (center of gravity of the membercship
function) defined by
+w
FMO(RY=(J :-;'uA(,\:)d:{) / Fower (A),
]
and finally (iv) Skewness defined as
*

Skew(A)=f (1

i 2}

A(x)—FMD(A))EuA(x)d:-:.

Boniscsone [2] defines the distance between two fuzzy sets as the
weighted euclidean distance between the vectors (Fower (A},
Entropy (A), FMO(A), Skew(A)) and (Power (B), Entropy(B), FMO(B),
Skew(B)). In what follows we will denote this distance by VI(A,B)
(using equal weights). After narrowing down the set of possible
labels, the second stage starts, in which a modified
Bhattacharyya distance is computed. This distance should
discriminate well between sets that are close to each other. The

Bhattacharyya distance is defined as:

+03 -
R(A,B)=[1-f (n 'A(x) ‘u B(x))l/‘d.lll‘ (S)

o

where the membership functions have been normalized, i.e.:

X -
u A(x)—uA(x) / Power (A)

and similarly for “B'
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Wenstop [34] adopted a similar approach. He represented

each fuz:zy set as the Z2-vector: (Fower (A), FMO(A)). The distance
between two fuzzy sets is defined to be the regqgular euclidezn
distance between the two corresponding vectors. We will derncte

this distance by V_,(A,B).

Correlation Index.

Murthy, Fal, and Majumder [21] defined a correlation-lilke
index that reflecte the similarity in behavior cf two fuz:zy cetes.
The measure i1s actually a standardized sguared euclidean disterce
between two fuzzy sets acs defined by d2'

Let
X =J (2u (x)—l)zdx

A A

and define

CGRR(A,B)=1—(4/XA+XB)-(d ). (6)

)

In what follows we will use the index po(A,B)=1-CORK(A,B).

METHOD

Subjects: 15 native speakers of English were recruited by placing
notices in graduate students’ mailboxes in the business school
and. the departments of anthropology, economics, history,
psychology, and sociology at the University of North Carolina at
Chapel Hill. We assumed that they would represent a population
of people who think seriously about communicating "“degrees of
uncertainty,"” and who generally do so with non-numerical phrases.

The general nature of the study was described and subjects were

RN A N o LG ~. T
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promised $25 for three secsions of approximately an hour and a

half each.

General procedure: Subjects were run for a practice session and
then two data sessions. The experiment was controlled by an 1EM
PC with the stimuli presented on a color monitor and responses
made using a joystick. During the data sessions, subjects workec
through 4 types of trials: (1) linguistic probability sceling
triale, (2) Triale in which subjecte integrated two probab:lity
terms connected by AND, (I) Similar trials using the connector
OR, anc (4) Similarity Judgment trials. This paper is concerred
only with tasks (1) and (4). For more details about the other
two tasks see Wallsten et. al. [331].

{1) Linguistic probability scaling trials.

The ctjective of these trials 1= to ectabtlicech the subject’

I

membership functiocn for various linguistic probability phrace=s.
Recently, Wallster et. al. [J1] have developed a method for
empirically establishing the membership functions of fuzzy
concepts, based on conjoint measurement and utilizing a graded
pair-comparison technique. Rapoport, Wallsten, and Cox (28]
further established that the methods of direct magnitude
estimation and graded pair-comparison yield similar membership
functions. In this study we have adopted the direct magnitude
estimation technique. On such a trial a red and white radially

divided spinner appeared on the screen, as shown in Fig. 1.
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Instructions for this task said in part:

Imagine that you cannot see the spirnner, but you
have to predict whenever it will land on white on the
next random spin. A friend of vyours can see the
spinner, although not too well because it is rotating at
a moderate rate. Your friend is going to give you his
or her best opinion about the chances of the spinner
landing on white, However, this person does not tell
you a probability... Rather, the person may use any of &
large number of nonnumerical probability phrases... We
are irnterested in your interpretation of the probability
phrases acs they apply to the spinner conte:xt. Assume
that vyour friend tells you that it is doubtful that the
spinner will land on white. This gives you some basis
for judging the probability of that event. Now,
consider the spinner on the screen. How close is that
spinner®s probability cf landing on the white to the
judgment you had formed upon hearing that it is doubtful
that the spinner will land on white?

The subject then moved the cursor on a line to indicate how
close the particular displayed spinner came to the opinion that

he or che had formed on the basis of the phrase doubtful. The

cursor could be moved from not at all close (low membership) to

absolutely close (high membership).
Six phrases were employed, three representing lower
probabilities and three representing higher probabilities:

doubtful, slight chance. improbable, litely, good chance. and

fairly certain. In the direct estimation task, each phrase was
presented with 11 spinner probabilities: 0.02, 0.12, 0.21, 0.31,
0.40, 0.50, 0.60, 0.6%, 0.79, 0.88, and 0.98.

Subjects judged each combination of phrase and probabilaity

numbers twice, once in each session.
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(2) Similarity judgment trials.

Instructions for this task said in part:

«ee«. Two non-numerical probability phrases will be

printed on the screen on each trial. We are interested

in how €imilar, or synonymous, you concsider the two

phrasees to be with respect to describing the probability
of a spirner landing on white.

The subject then moved the cursor on a line to indiceate tow
similar the phrases are. The cursor could be moved from not at

all similer to absolutely eimilar. Each subject judged the

=

similarity tetween all pocscsible pairs (15) (excluding a phracse and
N iteself) twice in each sescsion.

] Membership function evaluation: Eased on previous recearch

} (Wallsten et. al. [31]1; Rapoport et. al. [28B]1) we have concluded
that a cubic polynomial can accurately represent the membership
functions for the si: phrases. Note that a cubic polynomial
resembles the °S* and “II° functions thet have been proposed in

} the literasture in this conte:t (Eshragh and Mamdani [F1). A
cubic polynomial was fit to the 22 points representing each
phracse within a subject, using the least squares technique. Each

function was then normalized to attain the value 1 on the

T T v

interval [0,1]. In defining the membership functions, any value
less than zero was redefined to equal 0, and similarly any value

greater than 1 was redefined to equal 1. These adjustments were

genérally quite minor. Examples of the membersh:p functione for
the six phrases for one subject are shown in Fig. 2. All
membership functions for all subjects were either nondecreasing,

nonincreasing, or single-peaked.
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RESULTS AND DISCUSSION

For each subject and each pair of wordes, all nineteen
distance measures were calculated. (At times it was nececssary to
discretize one axi1s, using a 10U-point grid, in order to
celculate a distance meacure.) To evaluate the performence cof a
particular distance measure, we compare its computed valuee tc
the "true"” distance ratings as given directly by the subject in
the similarity judgment trials. This evaluation is done on two
levele: Fircet we car ash if the distance measure correctly
categorizes a "similar" pair of words by returning a "small"
dictance, and if it correctly categorizes a "dissimilar" pair of
words by returrning a "large" distance. This crude evaluation 1¢,
in practice, independent of the subject-specific "true" distance
rating, becausz the subjects generally agree that the pairs

p1=(doubtful. improbable), p,=(doubtful, slight chance),

p3=(igprobable. elight chance), p4=(4airlx certain, qood chance),

p5=(4airly certain, likely), p6=(likely. qQood chance) are each
composed of two “similar" words; likewise the subjects generally

agree that the pairs ql=(doubtful. fairly certain), q.=(dovbtful,

gqood_chance), q3=(doubtful. likely), q4=(1mprobable, fairly

certain), q5=(1mgrobable. good chance), qb=(1mgrobable, liltely).,

q7=(sltht chance, fairly certain), =(slight chance. qood

g

chance), q9=(511ght chance, lilely) are each composed of two

17




b "dissimilar" words. For this task of dichotomous categorization,

essentially all the distance measures were successful across all

subjects (see Figqure 3, for example). This is testimony to the

*,
: intuitive base upon which each distance definition rests: They
b are decigned to indicate gross differences between membership
' functions, 1f and only if such differencec actually exist. The
; practical implication is simply that i1f linguistic approximation
" or concept-clustering is to be carried out in twc stages, then
i any of these distance measurec may be used for the fircst stage.
.ﬂ RS SRSS S22 2033832008
Insert Figure X abcut here
E EXEKXAXRNEXERT XA KRR RN EKKNE
-
‘ The second level of our evaluation asls whether the dicstance
3 measure reflects the correct degree of similarity within
: "eimilar" pairse of words, and whether the distance measure
reflects the correct degree of dissimilarity within "dissimilar"
3 pairs of words. In answering this more subtle question,
S. 1intersubject variability must be acltnowledged: Each subject w.1l1
have his own membership functions for the words i1n pair pl.
1 These two membership functions are "similar” i1n the gross sense,
3
. but the similarity between them is different than the similarity
between his membership functions for the words 1n pair p). The
; degree of similarity within each pair is given, for that subject,
E by his "true"” distance rating. 14 the distance measure woris

well in the context of fuzzy sets, it should yield distances for

pairs pl and pj that "agree"” with the corresponding "true"

distance ratings given by the subject. To quantify the amount of




agreement between a particular distance measure and the "true"
distance we compute the correlation between these two quantitiec,
over all pairs {pi : 15146, for a given subject (see Figure 3).
Thus our criterion for agreement is linear association. Now, the
same considerations apply to the "dissimiler" pairs. Here we
compute the correlation between the particular distance measure
and the "true" distance over all pairs {qi : 1£i£93, for a given
subject. By analyzing the pi’s and qi’s separately, we allow for
the poseibility that a particular distance measure may be quite
accurate in modeling fine variations in similarity (i.e. small
distances), but may be quite inaccurate in modeling fine
variation among pairs that are each composed of two "dissimilar"
words. Furthermore, in practical applications one may only need
to find a distance measure that is sensitive to the degree of
csimilarity in pairs of "similar" words (e.g. in linguistic
approximation). The separate analyses also give a distance
measure the opportunity to be linearly related to "true"

distance with two (locally) different slopes (see Figure 3).

L RS SRR 0000
Insert Figures 4 & S about here
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For each distance measure, 1ts pi—correlatinns for the 15
subjecte are summarized by a line-plot. The 19 line-plots (one
for each mea;ure) appear in Figure 4, Analogous line-plots of
the ql—correlations appear in Figure S. 1t is desirable for a

measure to have high mean and median correlation, to have small
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dispersion among its correlations (i.e. interquartile range), and
to be free of extremely low (i.e. negative) correlations.

Several trends are clear from these displays:
(i) There is a great deal more variability between the
performances of the various distance measures on "dissimilar"
pairs (Fig. 5) than on "similar" pairs {(Fig. 4): the means,

medians, and interquartile ranges are much more homogeneocue in

Figure 4 tharn in Figure 5. (Note that statistical fluctuation
would actually work in the opposite direction: the correlations
for the "dissimilar" pairs are calculated from 9 data points,
while those for “"similar" paire are calculated from &6 data
points.) This immediately suggests that more caution must be
exercised when selecting a distance measure to distinguish
between varying degrees of dissimilarity.
(ii1) On the "dissimilar" pairs (Fig. S), those measurez which

n

-

perform the worst (d_, (d +8 +S.,.5,.0) are measures which

1" 2 -

2 (da) »d
ignore the ordering on the x-axie (the base variable azis).
Convercely, those measurecs which perform the best (qm,q‘,am,A*)
are measures which do account for the distances on the x-axis by
looking at ae-level-sets. This distinction is quite logical: When
measuring the distance between words that are essentially
"dissimilar"” (i.e. have nearly disjoint supports), it is the x-
axis that carries all the information regarding the degree of
dissimilarity between the membership functions. Distance
measures that ignore the x-ordering have the advantage of being
unambiguously defined even for membership functions over abstract

(i.e. unordered) spaces, but such measures have the disadvantage

of being insensitive to varying degrees of dissimilarity (e.g. as
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in pairs qi). In the "similar" pairs (Fig. 4), the membership
functions within a pair (pi) have nearly identical supports.
Hence the x-distance is not critical, and we find both types of
distance measures doing well- those that look at a-level-sets

(notably qt’Am’A ), and those that ignore the ordering on x

X
(notably S,).

4
(ii1) Among those measures accounting for x-ordering
(ql,qm,q*,AI,AN,A*,D), a, and @ are especially susceptible teo
having extremely poor correlation with "true" similarity ratings.
This occurs for both qi—correlations and pi—correlations. Note
that € 1s conceptually different from the other 6 such measures,
possibly accounting for the difference in performance.
(iv) Measure 82 is arguably the worst both for "similar" pairs
and for "dissimilar" pairs.
(v) Measures 51 and 54 are clearly the best in terms of Q-
correlations, among those measures which igrnore the x-ordering.
Their superiority in the "dissimilar" setting is noteworthy
because, again, x-distance is relevant in this setting.
Furthermore, measure 84 performs reasonably well (among all
measures) in the "similar" setting also.
(vi) QBuite surprisingly, all of the measures with consistently
good performance (84,qw,qt,aw,At) share the following property:
the? concentrate their attention on a single value, rather than
performing some sort of averaging or integration. In the case of
54, attention focuses on the particular x-value where the
membership function of AfB is largest; in qQ, and Aﬂ attention

focuses on the o-level-set where the x—-distance is largest; in Q,

21
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and A‘ attention focuses on the x-distance at the highest
membership grade. Such measures are generally considered uncstable
(and hence suspect) in many mathematical analyses. Yet, here ic
strong empirical evidence that subjects actually behave this way:
reduction of complicated membership functions to a single "slice”
may be the intuitively natural way for human beings to combtine
and procese fuzzy concepts.

(vii) The consistently good performance of Ay and Sy has
significant practical implications. These measures are trivial
to coapute, relative to cther distance measurecs, and they have
substantial intuitive appeal.

(viii) Distance measure R was proposed as a refinement of Vl,
where the latter is used in the first stage of linguistic
approximation and the former is used in the second stage
(Bormiis=z=ocne [21). However, the empirical results show ng
sycstematic evidence of R being superior in the "similar" word
setting (Figure 4) or of Vl being superior in the "dissimilar"

word setting (Figure 3S).

Recommendations.

1f one wants to select a distance measure that performs well
in the long-run on a broad spectrum of subjects, then the
aggregated data of our study may be used as a guide. Measures
84,q‘,Am, and A* consistently distinguished themselves for good
performance. If, on the other hand, the objective is to
accurately model the behavior of a specific individual (e.g. in
the linguistic approximation phase of an expert system program),

then the following problem must be acknowledged: For each
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distance measure, there existed some subject for whom that
distance measure performed quite poorly (note the "minimum”
values on Figures 4 and 5). Therefore, in these applications, it

would be ideal to determine the best distance measure for the

individual of interest. This could be accomplished by carrying
cut an experiment analogous to ours, th on the cspecific
individual, and in the relevant context. It i possibie that the
relative performances of the distance measures could vary from
one context to ancther, even for a fixed individual.

In many caces, the fuzzy concepts are unambiguously defined
over a one—dimensional space (e.g. in our study of probability
words). When this is not the case, then, in ucsing those distance
measures that do account for the ordering on the base-variable
axes, it i1s imperative that the fuzzy concepts be correctly

located in a space of the appropriate dimensionality.
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Plot of distance measure >~ Vs

P; " "*similar’" words in pair.

q; * "dissimilar' words in pair.

FIGURE 3

“true” distance rating, for subject #5.
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FIGQRE 4

Line-plots of p; - correlations for each distance measure. For s particular subject and a particular distance msasure, the correlstion
. is calculated between the "true' distance rating and the distance measure, over all r; (pairs containing "similar” words). Dats in s
single line is aggregated over all 15 subjects: ®m = minimm correlation, N » maximm correlation, —— = interquartile range of

correlations, X = mean correlation, 0 = median correlation.
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FIQURE 5

Line-plots of q; - correlations for each distance measure. For a particulsr subject and s psrticular distance ssasure,

the correlation is calaulated between the “true” distance rating and the distance msasure, over all a& pairs containing

"dissimilar” words). Dets in 8 single line is aggregated over all 15 subjects: m = minimm correlation, N » maximm

correlation, —— e« interquartile rangs of correlations, X = mean correlation, 0 * median correlatiom.
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