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September 1987
Abstract

We present BridgeTalk, a new approach to visual languages for novice
programmers. The design of BridgeTalk is based on data about how novices learn to
program. Bridg~Talk allows novices to program with programming plans — frame-like
objects that capture essential program components like “keep a running total” and
“iterate down a data structure ”. Novices are focused on the interactions between plans,
not on the implementation details for a particular plan. Beginning with plans as a
basis for a novice programming language, we were forced to develop a programming
formalism that can deal with multiple levels of detail, merged plan implementations,
and interrelationships between plans. The actual visual presentation for the language
is based on six “design, implement, test with students, and redesign” cycles.

’ To Appear in Visual Languages and Visual Programming edited by Shi-Kuo Chang,
Plenum Publishing Company, 1988.
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e “But if we look at what a programmer would say about a program to a
Yy colleague who wanted to work on it or use it, very little of the description
appears anywhere in the code.”

_.‘.‘.I

p Winograd [1979]
% v

i 1. Introduction

! ) There is a wealth of evidence that experienced programmers use a large set of
0 programming plans: standard templates and structures for accomplishing typical
o programming tasks [Bonar and Soloway, 1985; Soloway and Ehrlich, 1984; Spohrer,
:, 1985; Waters, 1985]. Example plans include “running total” and “iterate through a

data structure looking for a distinguished value”. Our objective is to take advantage of
plans to provide novice programmers with an environment for learning to program.
. This environment begins with a high-level, plan based language, but permits and
th encourages the ultimate use of a standard language like Pascal. For several reasons
the plan language has been designed as a visual language. This paper reports our
initial efforts at formalizing and generalizing this plan language.

L In learning a programming language, novices have two fundamental difficulties,
¥ . .
W both of which are addressed in our plan language:

Relating experience with informal plans to programming: Empirical evidence
[Bonar and Soloway, 1985; Kahney and Eisenstadt, 1982] suggests that novice
programmers bring a vocabulary of programming-like plans from everyday
experience with procedural specifications of activities expressed in natural
¥ language. These plans come from experience with step-by-step instructions like
"check all the student scores and give me an average" or "see that hallway, if any

E doors are open close them." These informal plans, however, are often extremely
! difficult for novices to reconcile with the much more formal plans used in
'_ standard programming languages. Note, for example, that both example
L phrases involve an iteration without any specific mention of a repeated action.

>, Translating formal plans into programming constructs: Even if a student
- recognizes particular formal plans, they are likely to have difficulty translating
B plans into programming code. A running total, for example, is implemented in
5‘ Pascal with four statements, dispersed throughout a program: a variable
P declaration, an initialization above a loop, an update inside that loop, and a use
: below the loop. Spohrer et al. [1985] have shown that plan-to-code translation
:. errors account for many student errors.

In responding to these problems, we have developed four objectives for our visual
plan-based programming language for novices:
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(1) Allow users to "connect” to their informal (primitive) plans. Unless novices
can recognize how their own understanding of plans fits into the

programming environment ‘they are being faced with, they will find it
impossible to formulate correct solutions.

¥ e W N_B_8_& y

(2) Support novice programmers in learning a "vocabulary” of programming
plans. Eventually, the user would begin to think in terms of the a
programming plans themselves, not the informal plans. Not only is there a

ratalog of plans, but students are able to create their own plans. 'S
(3) Support novice programmers in learning how to implement plans with a ' .
standard programming language. The ultimate goal is that the user will 3
learn enough to be able to program in a standard programming language Ly
such as Pascal. C‘_
(4) Support the use of plan-like composition of programs. Plans can be seen as ;:v
the essence of good program comments. To the extent that a program uses a ‘
vocabulary of plans, the program will be easy to read and understand. >
These goals create an environment that supports a new, higher level programming ﬁ
language, as suggested by Winograd [1979]. Though our intention is to teach a ;Z:
standard language, e.g. Pascal, not all users need continue on to this additional level of Y
complexity. Those students that do not learn Pascal are limited to using the provided 2
plans. The more a student learns about translating plans into code, the more directly N
they can express their intentions. N
i 3
2. Programming Languages for Novices i
The approach presented here grew from our concern with the conceptual distance
between the syntax and semantics of programming languages like Pascal and the >
purpose and goals realized by that code. We felt that the programming task, as \_‘ 4
typically presented, confronts students with an enormous gap between goals and code. '-
The BridgeTalk visual language presented here is intended to "bridge" this gap. N
To illustrate the gap between goals and code in Pascal, consider the goal of
"keeping a count" as implemented in Pascal: -
® Above the loop — A programmer must declare a counter variable and initialize it
to zero using an assignment statement. \,
® Inside the loop — The counter must be incremented, again using an assignment \'
statement with a peculiarly non-algebraic construction:
Count := Count + 1. 3
o
F.\. A3
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Bonar and Liffick 3

Although an elementary concept, this is a very weird construction when viewed
from outside the domain of programming. It requires a particular model of how
computer memory is implemented in terms of extracting a value from a memory
cell, incrementing the value, and storing the result back in the same cell.
(Burstein [1986] discusses the assignment construct in detail.)

@ Below the loop — The counter value must actually be used below the loop.

In summary, the simple goal of "keeping a count” has been spread throughout the
program and buried in general purpose constructs. The design of these constructs is
more closely related to the architecture of a register-based computer than to any
problem actually being solved in the code.

Languages like Pascal are rooted in a programming model that is not closely
related to the purpose and goals of the programmer using the language. Research into
how novices learn programming confirms that the semantics of typical programming
languages are not closely related to the way a typical novice understands a program
[(Bonar 1987]. Success with programming seems to be tied to a novice's ability to
recognize general goals in the description of a task, and to translate those goals into
actual program code (see, for example, Eisenstadt et al. [1981], Mayer [1979], or
Soloway and Ehrlich [1984].) Our approach, embedded in the design of the BridgeTalk
visual language, allows students to explicitly represent their goals and describe how
those goals interrelate.

2.1 Programming Plans: How Novices Learn to Program

Most programming texts teach students almost nothing about standard
programming practices between the statement level and the fair' vague "structured
design” level. That there are standard concepts and techniques for implementing
common tasks is rarely mentioned. Typical tasks like "keeping a running total,”
"iterating down a list,” and "searching a binary tree" are usually only covered
implicitly through examples. (See Bonar and Weil [1986) for a collection of such
concepts and techniques for introductory Pascal programmers.) We call these
"standard concepts and techniques" programmung plans, after the usage introduced by
the Programmer's Apprentice Project [Rich and Shrobe, 1976; Waters, 1981].

In the last few paragraphs, we discussed the difficulties novice programmers have
mapping task goals into code. Programming plans provide a representation of the goals
of their task, a set of tools for translating those goals into actual code. BridgeTalk is
intended to provide students with a way to program by manipulating plans.

Programming textbooks typically introduce a programming language by
discussing the syntax and semantics of each statement type. Unfortunately, this
approach exacerbates a common novice tendency to adopt a syntactic matching strategy
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for problem solving. For example, physics students will often attempt to solve
elementary mechanics problems by matching knowns and unknowns against standard
formulae [Chi et al., 1981]. Their problem solving degenerates into a syntax-directed
search with no understanding of the quantities being manipulated. Experts, in
contrast, analyze a problem in terms of standard intermediate concepts and techniques
from past experience. In physics, for example, these concepts and techniques include
"component vectors", free body diagrams, and conservation of energy.

Programming novices exhibit syntactic strategies similar to those of the physics
novices. In our video protocols of novice programmers [Bonar, 1985] we see novices
working linearly through a program, choosing each statement based on syntactic
features of the problem text or program code. Programming plans are exactly the
concepts students need to step above the syntactic approach. Students can work on
programming problems using standard approaches as encoded in plans.

A language that allows students to use programming plans has other advantages.
Because the plans are high level, they allow the student to directly address
interrelationships, in particular plan merging. Plan merging is necessary because
programming plans typically have several facets that end up as dispersed lines of code.
We saw this earlier with the counter plan example. When the counter increment must
be placed inside of a loop body after the loop test, we are merging a facet of the counter
plan with a facet of the loop plan. Errors in this plan merging process form a critical
area of novice difficulty [Spohrer et al. [1985]. With an explicit plan representation,
students can work directly with plans and plan interactions, without confusion about
exactly how the merged plans will be turned into code.

2.2 Why Current Programming Languages are Unsuitable for Novices

The goals and constructs of standard programming languages are inconsistent
with the needs of novice programmers. This can best be seen by examining the
aesthetics used to judge standard programming languages: economy of expression,
distrust of defaults and implicit behavior, emphasis on abstraction and abstraction
tools, and efficiency on standard computer architectures. Here, we take up each point
in detail.

2.2.1 Economy of Expression

Given similar functionality, programming languages with fewer constructs are
almost always considered better then those with more. Pascal is considered an
excellent programming language design because it managed to add substantial new
functionality — user defined types — and embody a new approach — structured
programming — in a language with substantially fewer constructs than its predecessor
ALGOL 60. The history of LISP has been driven by language researchers looking for
one abstract construct that can be used to efficiently implement a host of more
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specialized constructs. Finally, one of the most common criticisms of the language Ada
is its large size and firm opposition to "subsets".

Economy of expression makes sense when considering the implementation of a
programming language, but seems to interfere with an important part of learning
programming. As discussed above, a wealth of evidence now exists that expert
programmers use a large collection of programming plans — standard templates and
structures for accomplishing typieal programming tasks. Experienced programmers
effortlessly implement hundreds or even thousands of such plans [Waters, 1985] in
programming languages with relatively few — on the order of 50 — constructs.

Novice programmers, on the other hand, have major difficulties implementing
plans with programming language constructs. Evidence from our own work [Bonar and
Soloway, 1985; Bonar et al.,, 1986] suggests that novice programmers bring a
vocabulary of programming-like plans from experience with procedural specification in
natural language. The translation of these natural language plansinto the the narrow,
low level constructs provided by a programming language is a critical and often
insurmountable problem.

Acquiring the new plans that are essential to mastering programming is certainly
difficult. This difficulty is compounded because novices not only need to acquire the
plans, but they also need to learn how to translate the plans into a programming
language. Because the natural language plans are rooted in real world day-to-day
procedurai specifications, it is very tough for a novice to translate them into a sparce
and formal set of programming language constructs.

To illustrate the general problem, consider the following excerpt from an interview
with an introductory Pascal student. She was writing a program that reads, sums, and
counts inside a loop. She had written the following lines (line numbers are given for
reference):

(1) repeat

(2) Read (New);

(3) Sum := Sum + New;
ey Count := Count + 1
(5) until Count > 100

The first author asked this student if line (3) was a "different kind of statements" than
line (4). To our surprise, she stated that even though these statements "look alike,"
they were quite dissimilar. She went on to explain that line (3) "has something to do
with something you are gonna ... take out of the loop with you.” On the other hand, she
explained, line (4) "keeps the loop under control." We contend the student has a deep
understanding of the programming issues involved, even though she may have a weak
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understanding of the specific Pascal constructs. While she has a firm grasp on the plans
to be accomplished, she has a much weaker grasp on the language design constraint
that would cause statements with such different purposes to have such a similar look.

We conclude that the emphasis on economy of expression in most modern
programming languages is misplaced in designing languages for novice programmers.
By looking for ever more abstracted ways to express similar procedural behavior,
modern languages have excised most clues of goal and purpose that are essential to
novice understanding of a program. The student discussed above would have much
preferred a language with two constructs, "counter update” and "running total update",
to Pascal which subsumes these (and many other) plans in the assignment statement.
For this reason, BridgeTalk is a richer language than standard languages like Pascal.
The richness in BridgeTalk expresses a catalog of standard plans.

2.2.2 Distrust of Defaults and Implicit Behavior

Another trend in the development of programming languages has been the
systematic removal of defaults and implicit behavior. Whereas early languages such as
FORTRAN and BASIC assumed properties and initial values for variables — for
instance, based on the first letter of the variable's name — such assumptions are rare in
modern languages. The trend to deemphasize default and implicit behavior is
consistent with the trend toward economy of expression. Typically, defaults and
implicit behavior add more complexity to a language. For example, a programming
language designer would argue against a default value mechanism when standard
assignment statements-at the top of a program can accomplish the same end. Even
where defaults reduce the number of tokens needed in a program — implicit typing of
variables, for example — the defaults complicate a formal description of how the
program runs.

As with economy of expression, the lack of defaults and implicit behavior makes
standard programming languages much more difficult for novice programmers. While
it is no extra work for an expert programmer to know to explicitly specify that a counter
is to be incremented by one, it is a confusing burden to a novice. As expert
programmers, we all can remember (or conjure up) a few circumstances where a
problem is best solved by incrementing a counter by other than one. Even though such
circumstances are exceedingly rare, we force every novice to explicitly specify this, as if
a counter were commonly implemented in some other way.

Consider another example. Plans like "iterate down a list" are typically
implemented with constructs that begin by testing for a condition that indicates we
have finished the entire list. Readers with programming experience will need to
consider for a moment to realize that this is very peculiar. First of all, it makes little
sense to put an ending test at the beginning of the construct, before we've talked about

-
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what the construct is to do. Second, it is strange that the list structure itself does not
"know" where its end is, recognize the end, and take some appropriate default action to
stop the iteration. Such examples of missing defaults are pervasive. We give novice
programmers considerable extra work by forcing them to translate common plans into
much lower level programming language constructs.

. 2.2.3 Emphasize Abstraction and Abstraction Tools.

Modern programming languages emphasize tools for abstraction. Current
programming language design and development focuses on developing language
constructs that capture and summarize structure and function for later use. For
example, older languages provide control structures while more modern languages
provide tools for interprocess communication, with the original control structures
available as special cases. As another example, older languages focus on memory
management while newer languages focus on data structuring and reuse of
components.

As we have discussed above, non-programmers do not need tools for more abstract
expression of programming plans; they need more direct ways to express the actual
plans. The formal power of highly abstract constructs is in contrast to the pragmatic
familiarity of programming plans. From the point of view of a procedural mechanism,
an assignment statement is an abstraction that simplifies and subsumes a host of
specific "changes to a variable,” including, in particular, incrementing a counter.
However, by stripping out the real world pragmatics that underlie programming plans,
such abstractions make much of the programming process implicit and unavailable to
novice programmers.

2.2.4 Efficiency on Standard Computer Architectures

A crucial constraint in most modern programming languages is that the language
run efficiently on standard computer architectures. Pascal, for example, in its
implementation of sets and rigid specification of ordering among program components,
was intentionally tailored for efficiency of implementation. The designer of Pascal set
the development of "implementations . . . which are both reliable and efficient on
presently available computers"” [Wirth, 1971] as his second of two principal aims for the
language. While such an aim is obvious in a language for professional programmers, it
is questionable in a language for novice programmers.

Many programming constructs are quite confusing to a novice programmer. For
example, the assignment statement has peculiar semantics when seen from a
perspective other than one that understands the basic working of registers and
synchronous busses. In our daily experience it is rare that copying is simpler to specify
than movement, as it is with assignment. Furthermore, in our daily experience we
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rarely encounter values that are easier to destroy than to displace, again as it is with
assignment.

2.3 How Can Visual Languages Help Novices

There are two basic reasons to turn to a visual language in a programming
language for novices. First, a visual language provides the flexibility and
expressiveness needed for a novice language to express a large vocabulary of
programming plans. In our experience, a linear textual version of a plan-based
programming language is quite unwieldy. Second, from a point of view of novice
cognitive capability, a visual language is less likely to tax a novice's working memory. '
We discuss each of these points in detail.

2.3.1 Visual Languages for Expressing Plans

In BridgeTalk the emphasis is on identifying the formal plan components and
expressing their interrelationships. As discussed above, correct expression of plan
interrelationships has been shown to be critically difficult for novices, particularly
where those interrelationships result in the merging of several plans into one sequence
of code [Spohrer and Soloway, 1985]. BridgeTalk provides an environment where
students can focus on plan interrelationships. f

The various BridgeTalk constructs are implemented as icons that can be picked up,
manipulated, placed, and connected together. The critical constraint that dictated this
approach was the need for a language that allowed atomic plans with multiple
connections of different types. The essentially linear nature of textual languages
makes it very difficult to express interconnections. Furthermore, since plans represent
rich, high-level programming objects, it is sensible to depict them as icons that suggest g
their function. In fact, the current iconic representation was suggested by the confusion 3
of students using earlier textual versions. (See section 4 where we discuss the
formative evaluation of BridgeTalk.) Although the plans of BridgeTalk are not ‘
completely general, they do allow a student to focus on the pragmatic knowledge that »
stands above particular programming language implementations of that knowledge.

2.3.2 Visual Languages and Novice Cognition ;

Anderson [1985] has documented novice programmer errors which arise from
overloading the student's working memory. The difference between novices and
experts, they found, was the ability of experts to organize and structure their
knowledge within working memory. Other work (cited earlier) points to plans as the
kinds of structures used by experts. By providing plan icons and a way to interconnect

those plans, we give students a structure to use in organizing their understanding and
problem solving.
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2.4 Design Goals For BridgeTalk
There are four objectives for BridgeTalk:
(1) Allow users to "connect"” to their informal (primitive) plans.

(2) Support novice programmers in learning a "vocabulary" of programming
plans. : .

(3) Support novice programmers in learning how to implement plans with a
standard programming language.

(4) Support the use of plan-like composition of programs.
We take up each of these goals separately.
2.4.1 Connecting to Informal Plans by

Unless novices can recognize how their own understanding of plans fits into the
programming environment they face, they will find it impossible to formulate correct
solutions. Novice programmers have a large vocabulary of informal plans based on
experience with step-by-step procedures in everyday life. We want BridgeTalk to
connect to and build on this understanding. A subset of the plan icons in BridgeTalk
must connect to the collection of naive plans brought in by programming novices.

This goal yields several benefits. First, there is the obvious benefit that students
have at least some familiarity with the system, even before their first use.
Furthermore, the informal plans brought in by a novice are typically a simplified form
of plans that are central for experienced programmers. Finally, a simplified novice
plan forms a good starting place for understanding the related set of richer, more >
formally specified expert plans. L

Note that we are not arguing that a novices' collection of naive plans is sufficient
for sophisticated programming. Instead, we are recognizing the importance of giving a
beginner an anchor point in a new domain. We are very clear that experienced
programmers have a much richer set of programming plans than a novice. We are also ®
clear that the plans of an expert programmer are more fully articulated and elaborated
than the plans of a novice. Nonetheless, we see great value in supporting the growth of
a novice from primitive plans that are already known.

2.4.2  Developing an Explicit Vocabulary of Programming Plans

Although we begin with a student's informal plans, our ultimate goal is that a
student leaves a programming course with a rich set of highly articulated programming \
plans. Even in a language with no explicit plan structure, e.g. Pascal, successful .
students do leave a course with a rich vocabulary of plans. With BridgeTalk, we
provide a mechanism for this vocabulary to be an explicit part of programming
instruction.
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An explicit vocabulary of plans-provides an opportunity to formally specify
programming curriculum. Although elementary programming courses often discuss
issues of design, abstraction, and structure, this is rarely done with any rigor. We
suggest that the rigor is missing because there is no adequate vocabulary with which to
discuss programming design. Typical programming constructs operate at too low a
level. At the other end of the spectrum, formal approaches to correctness offer little to a
student still attempting to understand the design space of programming.

Essential to the development of a plan vocabulary are techniques for extending and
modifying plans in a systematic way. In BridgeTalk we provide techniques for
extending and specializing a particular plan. Students just beginning with BridgeTalk
can use the plans provided with the system. More experienced students can develop
their own plan vocabulary.

2.43 Implementing Plans With a Standard Programming Language

If a student desires, BridgeTalk should support that student in learning to program
in a standard programming language such as Pascal. In general, this means that the
plan formalism must provide a way to derive a conventional program from any plan
program. BridgeTalk provides a mechanism whereby students can successively "look
inside" a plan, and at each level reveal an implementation closer and closer to typical
programming constructs. This approach takes advantage of the strengths of both plans
and programming constructs. On one hand, the plans abstract away from particular
programming constructs, specifying higher level goals. On the other hand, the
programming constructs are more general purpose than the plans.

The system is layered for interrelated implementation and pedagogical reasons.
By providing various layers, we can take advantage of shared structure between
various plans. For example, the counter plan is a specialization of the running total
plan, and is implemented that way. Pedagogically, it is valuable for students to see the
shared structure inherent in the various plans. By using multiple layers, we need only
show the plan components required to illustrate the commonality, without showing all
the underlying detail. So, for example, the counter plan can be described as a
specialization of the running total plan where the update is always one. Note that most
details of the plan implementations need not be understood to understand their
commonality.

2.44  Supporting Plan-like Composition of Programs

The final design goal is that BridgeTalk support programming by plan
composition. To support this goal each particular plan has a single icon. We feel thisis
crucial if we are to allow a student to focus directly on plan interconnection separate
from other issues. As discussed above, one of the crucial difficulties of a programming
language like Pascal is that simple plans can end up expressed in several dispersed
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lines of code. Our goal for BridgeTalk is a representation that maintains a plan as an
atomic element. :

Even though the plans are atomic, we must be able to distinguish between
components contained within the plan. For example, a looping plan needs to have
separate subcomponents that represent a test, a body, and a modification that can
change the value of the test. :

3. A Visual Language for Novices
3.1 Informal Overview

A key design constraint of the BridgeTalk language is that each particular plan
has a single icon. We feel this is crucial if we are to allow a student to focus directly on
plan interconnection separate from other issues. As discussed above, one of the crucial
difficulties of a programming language such as Pascal is that simple plans can end up
expressed in several dispersed lines of code. Our goal for BridgeTalk is a representation
that maintains a plan as an atomic element.

Consider the following example programming problem, which is used in our
discussion. We call this the Ending Value Averaging Problem. The problem is:

Write a program which repeatedly reads in integers until it reads in the integer
99999. After seeing 99999, it should print out the CORRECT AVERAGE without
counting the final 99999.

The BridgeTalk plan icons used for the Ending Value Averaging Loop plan are shown
in Figures 1 and 2. The general metaphor of the plan language is that of puzzle pieces
being fit together. Plans with similar shapes have similar kinds of roles in a program.
Plans that express a sequence of values in a variable, called "variable plans," are shown
as squares (see Figure 1). Each of these plan icons embodies the entire semantics of a
particular plan.

The Counter plan, for example, keeps and shows a value (the count so far), knows to
initialize itself to zero, and increments its value by a specified amount every time
control flows through it. The Running Total plan similarly keeps and shows a value
(the total so far), knows to initialize itself to zero, and adds the value of another plan
into the total so far (how the connection with the plan that supplies the value is
expressed is discussed below.) The Input plan gets a sequence of values from the user of
the program. Every time control passes through the plan a new value is requested from
the user.

In addition to the variable plans, Figure 1 shows a Compute plan. The Compute
plan uses values supplied by variable plans (the connection to a variable plan is
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A Visual Programming Language for Novices

described below), and an operation selected by the user. The operation is specified by
mouse selection on the operator box and selecting an operator symbol off a pop-up
menu. When control passes through the Compute plan the operation is performed with
the current values of the associated variable plans.

Figure 2 shows a New Value Controlled Loop plan, one of the most complex plan
icons in BridgeTalk. There are four components of the New Value Controlled Loop
plan: -

new value generator — A variable plan to produce a series of values, each of which
is tested to determine when to exit the loop. Typically the new value
generator is an input plan that requests values from the user. It could
also be a random number generator or a traversal of a data structure.

end of loop condition — A test to determine when to exit the loop. Note that this
test is constrained to do a particular kind of test: checking each new
value. Another loop that requires a different sort of test — for
example, to see if the running total has exceeded a particular value —
requires a different plan.

body of loop — A series of plan icons to be executed in the body of the loop.

actions to be performed after loop is complete — A series of plan icons to be
executed when the loop completes.

The key idea with the New Value Controlled Loop plan is to hide all the syntactic and
control flow complexity that a student would need to confront to implement such a loop
in a standard language. (Soloway, et al. [1983] presents detailed data on this
complexity.)

Figure 3 shows a BridgeTalk solution to the Ending Value Averaging problem.
The focus of BridgeTalk is on the connections between the plans. In particular, there
are two kinds of connections that students must master: control flow and data flow.
Control flow expresses the order of execution for the plans. In BridgeTalk control flow
is expressed explicitly by connecting the puzzle-piece tabs together. Plans are executed
in a top-to-bottom order. So, for example, in Figure 3 the Compute Plan is executed
before the Output Plan.

In addition to control flow, students must also express data flow. Specifically,
students must show how values computed in one plan are used in other plans. This is
done with a special plan called a Value plan. Value plans can be placed in holes within
plans that are expecting values from another plan (a Value plan and corresponding hole
are shown in Figure 4.) Value plans are created by selecting the box labeled "Value"
within a plan that can produce a value. Figure 5a shows a Running Total plan whose
value box has just been selected. Such a selection creates a Value plan icon that is
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.attached to the mouse cursor. The data flow connection is established by dragging the

Value plan to the plan that needs the value, and placing it in the appropriate hole.
Figure 5b shows the Value plan from the Running Total plan being placed in a hole of
the Compute plan.

We have made the decision that BridgeTalk expresses control flow in a more direct
way than data flow. Control flow connections have a direct visual expression. If plan A
is executed before plan B, the tab on the top of B's icon fits into the slot on the bottom of
A'sicon. Data flow connections, while specified directly by dragging an object from one
plan to another, leave a much more subtle visual clue. In theory, we could have
designed the plan language to emphasize visual expression of data flow instead of
control flow, or even to emphasize either, depending on a mode selected by the user.
One earlier plan language had a visual representation for both control and data flow
simultaneously, but proved to be too complex and unwieldy for our students. We chose
to favor control flow over data flow in order to best match Pascal, the current "default"
novice programming language.

3.2 Formal Description

This section describes a formal representation for plans that forms the basis for our
visual programming environment to aid novices in learning to program. Our approach
allows several representations of a problem solution. The user is able to navigate from
one representation to another in order to obtain different points of view on the solution.
The problem solution can be modified from any one of these representations, or levels.
The solution is descriptive at the highest level, prescriptive at the lowest. This top level
uses icons to identify specific plans that the user links together appropriately. At the
lowest level is source code for a textual, procedural language, such as Pascal.

3.2.1 Plan Representation

The plan formalism is based on object-oriented programming. For each type of plan
there is a class that specifies the local data and operations of that plan. Instances of a
plan class can then be created, each with their own copy of the local data. The user
organizes these instances into a particular execution order using abuttment,
embedding, and merging.

Each plan is represented with up to four parts:
ParentClass — this section provides a link indicating a hierarchical relationship among

plans for purposes of taxonomy and inheritance. Each plan is a member of

exactly one class. If this section is missing, there is no parent class to the plan.

................................

...................................

-----




14 A Visual Programming Language for Novices

Slots — each plan can have zero or more slots, which provide one of two types of entities
- data or plan links. The data slots are untyped at this stage of the system, and
contain a single value. One slot can be distinguished as the "value" slot for
this plan, meaning that the plan acts like a function and creates a single value
that can be used elsewhere. The plan links provide a method for referring to
other plans for purposes of abuttment and embedding.

Initialization — this optional section contains "executable code" that is performed once
when the plan is first accessed. Whenever a plan is entered, if its initialization
section has not been previously executed, it is fired. As a special condition,
when a loop plan is entered, it fires its initialization section and the
initialization sections of all plans contained in its body.

Execution — this optional section contains "executable code" that is performed

whenever the plan is accessed.

The code given in the Initialization and Execution sections is expressed in a simple
pseudo-code which creates the required control structures. This code can be easily
translated into a standard programming language such as Pascal, given the plan
representations and the pseudo-code. There are sufficient constraints on the
representation to make this a straightforward process. It can be done incrementally,
allowing for user modification of the code. The user will have access to this code,
allowing him/her to examine the way a plan is implemented in a standard
programming language.

Figure 6 gives an example of the above scheme. This example forms a hierarchy of
refinement for the notion of a counter. At the top-most level is a Loop Action plan. The
lack of a ParentClass designation simply means that this plan inherits from no other
class. In addition, there are no Slots, Initialization, or Execution sections associated

with this type of plan. Its purpose in the taxonomy of plans is to indicate that any plan
decended from the Loop Action class must be used within the body of a loop.

Next, the Running Total plan contains three slots, all data slots. The angled
brackets (< >) indicate data that has no pre-specified value. The slot Total has been
prefixed with "value." as an indication that it is the distinguished slot that will be
taken as the value of this plan. Finally, the Initial slot has been given an explicit value
of zero. The asterisk indicates that this is a default value, and can therefore be changed
by the programmer.

''''''''''
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LOOP ACTION PLAN

RUNNING TOTAL PLAN

PARENTCLASS:
LOOP ACTION

SLOTS:
value.TOTAL -- < >
ADDEND -- < >
INITIAL -- O*

» o - -

INITIALIZATION:
TOTAL <--- INITIAL

h EXECUTION:
TOTAL <---TOTAL + ADDEND

: CONSTANT RUNNING TOTAL PLAN

PARENTCLASS:
RUNNING TOTAL

SLOTS:
ADDEND.INCREMENT -- (CONSTANT)

COUNTER PLAN

; CLASS:
) CONSTANT RUNNING TOTAL

' SLOTS:

TOTAL.COUNT -- < >
ADDEND.INCREMENT -- 1*

FIGURE 6
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ENDING VALUE AVERAGING LOOP PLAN

SLOTS:
TOTAL -- (RUNNING TOTAL)
COUNT -- (COUNTER)
LOOP -- (SENTINEL LOOP: BODY <-- [TOTAL,COUNT])
value.AVERAGE -- (AVERAGE: DIVIDEND <--TOTAL; DIVISOR <-- COUNT)
OUTPUT -- (OUTPUT: OUT <-- AVERAGE; MESSAGE <-- "The average is ")

EXECUTION
LOOP <« = = Execute
AVERAGE < = = Execute
OUTPUT < = = Execute

SENTINEL LOOP PLAN

PARENTCLASS:
NEW VALUE CONTROLLED LOOP

SLOTS:

NEWVALUE -- (INPUT: MESSAGE <-- "Enter a new value")
TESTVALUE.SENTINEL -- (CONSTANT)
WHENTOHALT --'="*

NEW VALUE CONTROLLED LOOP PLAN

SLOTS:
NEWVALUE -- < >
TESTVALUE -- < >
WHENTOHALT -- < >
TEST -- (TEST: TESTVALUE1 <-- NEWVALUE; TESTVALUE2 <-- TESTVALUE;
RELATIONALOPERATOR <-- WHENTOHALT)

BODY -- < >
EXECUTION:
Loop
NEWVALUE < = = Execute
TEST < = = Execute

If value.TEST is False then Exit
BODY < = = Execute
Endloop

FIGURE 7, part 1 of 3
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COMPUTE PLAN

SLOTS:
value RESULT -- < >
OPERAND1T -- < >
OPERAND2 -- < > .
OPERATOR -- < >

EXECUTION:
RESULT <-- OPERATOR(OPERAND1,0PE

AVERAGE PLAN

PARENTCLASS:
COMPUTE

SLOTS:
RESULT.AVERAGE -- < >
OPERAND1.DIVIDEND -- < >
OPERAND2.DIVISOR - < >
OPERATOR -- '/

TEST PLAN

PARENTCLASS:
COMPUTE

SLOTS:
OPERAND1.TESTVALUET -- < >
OPERAND2.TESTVALUE2 -- < >
OPERATOR.RELATIONALOPERATOR - < >

INPUT PLAN
SLOTS:
value.IN - < >

MESSAGE -- < >

EXECUTION

FIGURE 7, part 2 of 3
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OUTPUT(MESSAGE) < = = Execute
INPUT(IN) < = = Execute A

OUTPUT PLAN ;’:,

SLOTS: N ,
value.OUT - < > ‘o
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OUTPUT(MESSAGE) < = = Execute
OUTPUT(OUT) < = = Execute R
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The Initialization and Execution sections give typical "code" for how a running total
works. As a member of the Loop Action class, the Running Total plan will naturally be
embedded in a loop of some kind, so there is no need to explicitly specify the loop itself
here.

The Constant Running Total plan is a specialization of the Running Total plan.
The only difference is that the addend is a constant of some sort, so that this plan sums
a single value over and over. The ene slot in this plan shows two additional notations.
First, the slot Addend that was used in the Running Total plan has been renamed to
Increment. This renaming is indicated syntactically by using a concatenation of the
two names. The renaming makes it easier to construct meaningful messages for the
user. Second, this slot has been redefined to include a link to another plan, namely the
Constant plan which asks the user for a value for the constant to be summed.

Finally, the Counter plan shows a further refinement of the Addend.Increment slot
to be a specific value of 1 (default). In addition, the slot Total that was inherited from
some parent class (in this case, from Running Total) has been renamed to Count. The
renaming does not affect the designation of this slot as the "value" slot, however.

3.2.3 Inheritance

Each plan must specify a parent class explicitly, unless there is no parent. This
provides a linkage for the inheritance mechanism.

Slots are inherited from all predecessors, but may be renamed or redefined. Note in
the example given in Figure 6 that the Counter plan has inherited (and renamed) the
Total slot from the Running Total plan, although the intervening plan (Constant
Running Total) does not explicitly reference it. In addition, the Counter plan inherits
Total's designation as the distinguished value of the Running Total plan.

The Initialization and Execution sections can also be inherited. In this case, both
are inherited by successors from the Running Total plan. The renaming and redefining
mechanisms allow us to think of the execution of the Counter plan as

Count <-- Count + 1.

In addition, it allows us in conversation with the user to describe the "1" as an
"increment" rather than as an "addend."

3.2.4 A More Complex Example

Figure 7 shows the representation of the Ending Value Averaging Loop plan and
its components. This plan is used to calculate the average of a running total of values
that are entered by the user.
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16 A Visual Programming Language for Novices

Some additional notation accurs in this example. Note that it is possible to pass
values to linked plans. For instance, in the case of the Average slot, the Average plan is
passed the values of Total and Count with which the Average plan will compute the
average. These values are substituted for the slots Dividend and Divisor, respectively,
in the Average plan. The Output slot sends this average to the Output plan.

The Execution section of the Ending Value Averaging Loop plan shows how slots
can be executed by sending them an Execute message. The meaning of this code is that
the slots identified are to be executed sequentially, forming an abuttment of the plans
contained in the named slots.

Note that the Loop slot contains a reference to the Sentinel Loop plan. This
Sentinel Loop plan is a subclass of the New Value Controlled Loop plan. The Sentinel
Loop plan does not have any executable sections, but does define three new slots that
will be used during execution. In addition, even though the Sentinel Loop plan itself
does not contain a slot called Body, as referenced in the Loop slot of the Ending Value
Averaging Loop plan, it inherits such a slot from its parent class, the New Value
Controlled Loop plan.

The Body slot requires some additional explanation. Generally, a slot being used
as a parameter contains the name of a single value or slot. In the case of Body, however,
several slots (and, therefore, plans) can be abutted to form, for instance, the body of a
loop. The Body slot, then, acts similar to a BEGIN-END block in Pascal. In this
example, the body of the Ending Value Averaging Loop plan is identified as being the
Total slot (and, consequently, the Running Total plan), followed by the Count slot
(linking to the Counter plan. )

Finally, note that the code for performing the actual looping action appears only in
the New Value Controlled Loop plan. The Ending Value Averaging Loop plan and the
Sentinel Loop plan leave this detail to another level so that it can been hidden from the
user to some extent. In this case, this executable code is inherited by the Sentinel Loop
plan, where the values given in its slots (which are references to other plans) are used to
"fill in the blanks" of the code. In this way, a subclass plan can redefine slots that have
been originally defined in its parent plan.

The Body of the loop in the executable code given in the New Value Controlled Loop
plan actually comes from the Ending Value Averaging Loop plan. In this way, the
actual contents of the loop body can be customized to fit the requirements of particular
plans. In this case, it is the Ending Value Averaging Loop plan that should define that
the body of the loop contains Running Total and Counter plans. The Sentinel Loop plan
Is not responsible for this detail, since its only concern should be how to construct a
sentinel-valued loop.
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3.2.5 Meeting the Goals » N

[

The notions of programming plans and informal natural language plans are
fundamental to this system. The "connection” between these two types of plans
obviously must be provided in a natural, easily understood manner in order to be
obvious to a novice. Using plans already is a first step toward providing an intuitive :
environment. It will be the responsibility of the interface to provide the rest of the >
connection that is required. This isone of the main reasons why a visual programming
environment is desireable. The interface would naturally need to include appropriate
icons for the available plans, a graphics editor for creating a program, execution '
displays, etc. The rest of the discussion in this section assumes a suitable interactive I
interface, much like the one currently available in the Bridge programming tutor '
(Bonar et al. 1987].

P L

Initially the novice would use plans at the highest possible level, constructing
programs by selecting from a menu of plan icons and connecting the icons together
using abuttment, embedding, and merging. For instance, he/she might use the Ending
Value Averaging Loop plan with only the understanding that such a plan would
somehow total up a series of numbers and compute their average. This can be seen
simply by looking at the representation for Ending Value Averaging Loop plan given in
Figure 7, for instance, without referring to any of its sub-plans. Exactly how this will
be presented to the user visually is not restricted by the representation given above.
The actual formal representation could be one of the alternate representations ]
available to the user, or could be just the base representation for all others without
being visible itself.

B AN

A curious student, however, would probably want to know more about the plans
identified in the slots of the Ending Value Averaging Loop plan. In such a case, the
user could ask the system to navigate the hierarchy so that he/she could view, for -~
instance, the Sentinel Loop plan. In this way the user can study the taxonomy of the
plans, and learn something about plan construction,

Further interest might lead the user to examine the code that implements the
Sentinel Loop plan (as inherited from the New Value Controlled Loop plan). This can
be derived from the representation given in Figure 7. Exactly what form this will take
is yet to be determined. Possibilities include diplaying the pseudo-code shown in Figure
7, as well as an implementation in a standard language such as Pascal. In addition, itis
possible to aliow the user to modify this code directly, rather than relying entirely on
the iconic representations of the plans. This lets the user -- as his her skill grows - to
define his/her own plans. Selective execution of code is also possible with the system.

-

This all helps the user to understand programming plans and their peculiar
vocabulary.
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18 A Visual Programming Language for Novices

The navigation described above takes place in two distinctly different ways. In
moving from the Ending Value Averaging Loop plan to viewing the Sentinel Loop plan,
the user is scanning the details of the plan itself and its various component parts.
Figure 8 shows a graphical representation of the Ending Value Averaging Loop plan
and its components, as developed from the plan description of Figure 7 with all
inheritences resolved. This figure has fairly standard connotations of hierarchy of the
plans involved. It also contains some indication of plan construction -- the
multi-branched lines indicate abuttment of plans, as in the case of the Loop, Average,
and Output slots of the Ending Value Averaging Loop plan, and the Running Total and
Counter plans (via the Total and Count slots, respectively) contained in the Body of the
Sentinel Loop. This figure shows the plans involved with the Ending Value Averaging
Loop mechanism at their highest level, which is essentially descriptive.

A second way that the plans might be navigated, changing to a different point of
view, is through the Class hierarchy. This was somewhat implied by viewing the code
implementing the Sentinel Loop plan above, inherited from the New Value Controlled
Loop plan. Figure 9 shows a more specific example. Counter is shown to be a sub-class
of the Constant Running Total plan, which in turn is a sub-class of the Running Total
plan, which is a Loop Action plan. The slots of the Running Total plan are inherited by
the lower levels. In this case, the Initial slot is inherited without modification by lower
levels.

The Constant Running Total plan is shown redefining and renaming the Addend
slot from its predecessor. The Counter plan also redefines this slot further. The
Counter plan also renames the Total slot from above.

Navigating this hierarchy is considerably different than in the previous case
shown in Figure 8. When moving from the Counter plan to the Constant Running Total
plan, to the Running Total plan, we are moving from more specific levels to more
general ones. [t is more specific to say that we are counting, with an increment of 1,
than to keep a running total of some unspecified addend.

This hierarchy can be considered as orthogonal to the one shown in Figure 8. [t
represents additional detail that the user can explore for a deeper understanding of
programming. Traversing these levels also lets users explore the plan taxonomy on
another level. In this way the user gains a more sophisticated point of view of the
programming environment.

3.3 Implementation

A detailed discussion of the implementation of the plan language discussed above
is beyond the scope of this article. The current prototype is implemented in LOOPS an
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object-oriented extension to Interlisp-D on Xerox llxx workstations. BridgeTalk is
embedded within the Bridge intelligent tutoring system for teaching Pascal {Bonar, et
al. 1987). The visual language is developed in Chips, a tool for building direct
manipulation interfaces developed at the University of Pittsburgh's Learning Research
and Development Center [Corbett and Cunningham, 1987]. Chips was particularly
valuable in allowing the rapid development of prototype visual interfaces for testing
with students.

BridgeTalk is the result of an indepth cycle of research, design, testing with
students, and evaluation. As is documented in detail in the next section, BridgeTalk
has been through six distinct generations of that cycle. The first two generations each
took six person-months of program development time, along with one person-month
each of empirical testing. The last four generations were each developed in less than
three person-weeks, using the Chips interface design tool. Each of these last four
generations also took about a person-month of empirical testing.

4. Formative Evaluation and Design History

BridgeTalk has not been systematically tested against a standard programming
language like Pascal in a classroom situation, though such a test is planned.
BridgeTalk is the result, however, of a long process of formative evaluation and
development. BridgeTalk has been extensively tested with students through a number
of different versions. In this section we summarize the design history of BridgeTalk
over the course of 6 generations.

4.1 Generation 1

Figure 10 shows an Ending Value Averaging solution in the original version of
BridgeTalk. The student uses a mouse to "pick up"” and place each element in its proper
place in the developing program.

There were two main objectives in this initial version of BridgeTalk. First, the
student was to gain a better understanding of the flow of control implied by the various
plans, and the interrelationships of the various plans. In the case of the loop construct,
an icon was supplied that was meant to show graphicaily what the looping entailed.
Two other icons, for input and output, were also supplied in an attempt to illustrate
their function.

The second objective was to begin to show a separation of the various roles each
plan may have. For instance, in the language of Figure 10 the user is taced with the
need to identify where the initialization of a variable should oceur. In the case of the
Counter Variable plan, note the initialization and increment roles in sepuarate locations

in the figure.
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This version of BridgeTalk was deemed unsatisfactory for several reasons. First,
the user was required to develop an entirely new vocabulary in terms of the specific
plan phrases given. The phrases used were somewhat cryptic, making identification of
the proper plan difficult.

A second problem was with the icons. Aside from their crudity, they were not
particularly indicative of the function represented. The use of icons was also limited to
only three constructs, input, output, and looping. In addition, those icons served no
dynamic function, but were only somewhat abstract graphics used to highlight the
particular plans. The main reason these specific three plans were chosen for graphical
representations is that they seemed easily represented. It simply was not clear how to
represent the other plans neatly using this sort of graphics.

A third problem was that this new representation of a problem solution was still
static. This meant that the user still had to imagine how this solution actually would
work. The static nature of the solution representations required too much computing
skill from the user.

4.2 Generation 2

Version 2 of BridgeTalk was more data oriented. More complete descriptions of the
various roles of each plan were given. Figure 11 shows a selections of plans from this
second version. Plans are represented by boxes containing slots to be filled. Each slot
represents a role, represented as a tile, of some other plan. This helped make each plan
more self-explanatory. The underlying notion was that a plan could be more
systematically treated as a frame with slots. The control structures became frames,
and data were slots.

Figure 12 shows how a solution to the Ending Value Averaging problem was
formed. Either an entire plan or just its slots could be used in the final solution. In this
example, the Control Loop with Sentinel plan is used in its entirety. Its open slots are
filled with tiles from other plans. In the case of the Count How Many plan, only its tiles
are used, not the entire box identifying the plan.

0 1_-.1- v 4 2

While this approach does indeed make the data objects being manipulated more
identifiable, and does give more explicit help to the user in terms of explaining the
plans, there are still many problems. To begin with, the layout employed implies a
fairly loose interpretation of plans by the user. In some cases, the entire plan's box is
used. In others, only the tiles are used. In addition, sometimes these tiles are used to
fill in slots of other plans, while at other times they are simply placed individually in
the figure, with no direct connection to any other object in the figure. How does a novice
interpret these differences of use?
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This approach also was too textual, giving up any advantage that might be gained
from a more graphical representation. While the use of graphics in the previous version
of was not particularly innovative, there at least was some suggestion of the dynamic
flow of control.

Finally, this version did not account for the prospect of nested plans. How might
the Compute the Result plan be placed inside the Control Loop with Sentinel plan, for
instance? -

4.3 Generation 3

The next version added more suggestive shape to the representation. In addition, it
attempted to deal with the nesting issue. Figure 13 shows a loop with other plans
following it. Preceding the loop plan are representations of initialization roles for two
different variable plans. The basic representation is still, however, based on the notion
of frames and slots.

Although this version adds some graphics, as in the original version the graphics
are not particularly intuitive. In addition, they are still static. Up to this point in the
development, however, it was not clear that an executable version of this phase was
desireable. After lengthy consideration, it was decided to approach the phase with an
iconic language that was executable.

4.4 Generation 4

This is the first entirely graphical representation of BridgeTalk. Each plan is
represented by its own graphical object. The focus of this representation was on the
merging and coordination of the plans, for instance as in the case of the actions to be
performed as the body of a loop. In addition, this version was executable, allowing the
user to see the flow of control as well as changes in data.

Figure 14 shows an object representing a generalized Loop plan and a Compute
plan. In this case, the Loop plan currently contains a Counter plan and a Running
Total plan. The Loop Test is on a slide mechanism, and the user must position the test
with respect to other actions to be taken inside the loop. The Increment by and Update
by roles of the plans embedded in the loop are also on slides. The position of the
Initialize role of each of these plans is designed to indicate that they occur before the
loop begins.

The Value roles hold the current value of each of the plans. The boxes containing
these values are given unique shading to make them distinguishable throughout the
program being created, as in the value implied by the Input plan given in the Loop plan.
These values can be copied to other locations in the program.

In Figure 15 you can see how these mechanisms work in a typical example. In this
example, the test condition of the loop has been positioned to occur before the Update
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and Increment portions of the plans embedded in the loop. Also note that the value
generated by the Input plan is the same value used by the Running Total plan in its
Update by role (the shading of the two boxes is the same). Also, the Value role of the
Running Total is used in the Compute plan, along with the Value from the Counter
plan to produce the final Output of the program.

Note that an explicit flow control line has been attached between the Loop plan and
the Compute plan, and between the Compute plan and the Output plan. Also, thereisa
flow line on the side of the Loop plan. These lines are animated as the program is
executed to indicate the order of execution. In the example shown in Figure 15, three
numbers were entered, producing a total of 120. The average was computed as 40.

While this version has the virtue of the suggestiveress of its icons, and it is
dynamic in nature, there is still at least one major problem that it creates, namely the
inconsistent semantics of its graphical constructs. For instance, control flow is shown
in three different ways: as flow lines; as a top to bottom precedence (e.g. the fact that the
Initialize roles of variable plans are executed before the loop because they appear on top
of their respective plans, and the Loop Test occurring before the Update and Increment
in the loop's body); and a left to right ordering (as evident in the loop body mechanism).

Another problem arises with the slide mechanisms used in some of the plans. What
does the slide mean with regard to the Running Total and Counter plans? It may be
somewhat clear as to why the slide in the Loop plan is necessary, but the only reason it
is present in the other plans seems to be so that the Loop Test can be properly
positioned. In addition, what happens if the Loop Test and the Update and'or
Increment are positioned at the same level?

4.5 Generation 5

Part of the problems encountered by the version in generation 4 seemed to stem
from the lack of an analogy for the figures used. There was no intuitive component that
allowed users to recognize the meaning of the objects or their characteristics. In
addition, as noted above, there was inconsistency in the flow of control.

Figure 16 shows a redesign of the graphical objects used to represent plans. The
design was influenced by the Transformer type of toys, with pieces being keyed to fit
particular places in other pieces. The flow of control was implied to be strictly left to
right and top to bottom.

The design shown in Figure 16 turned out to be too "busy." Figure 17 shows a
refinement of the graphics in order to make the objects a bit simpler. Figure 18 shows
how some of these objects would fit together.
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There were still some mechanical problems with this design, making the
attachment of some of the objects difficult. In addition, it turned out that the left-right,
top-bottom control flow was insufficient.

4.6 Generation 6

The current version of the visual language is shown in Figure 19. This design was
influenced by jig-saw puzzle pieces. The mechanics of this version work out better than
the previous version. In addition, control flow is more explicit, following the keyed tabs
on each object top-down. Data objects are rectangular shapes with tabs on their left and
right sides. Originally, these data objects were placed over a recepticle that contained a
"velco" substance for sticking them to. This was later changed to being simply holes
that were filled with the data objects.

Figure 20 shows a solution to an averaging problem. During the running of the
visual solution, data flow is explicitly provided by having the values actually move
from one location to another. For instance, in this example, when a value is entered as
an input, the value would automatically be carried by a moving box to the New Value
location in the New Value Controlled Loop plan, and on down to the Update location in
the Running Total plan. Likewise, the Value from the Running Total plan and from the
Counter plan would be carried to the appropriate locations in the Compute plan. The
Value in the Compute plan would be carried down to the Output plan.

There are still problems to be overcome in this current version of the visual
language. For instance, the issue of nesting plans has still not been fully addressed. In
addition, there is still some concern that the shapes of the plans are not adequate in
their ability to evoke understanding by the user.

Despite the difficulties with the current version, what is clear at this point is that
the use of a visual language is effective.

5. Future Steps

There are several issues still to be resolved with BridgeTalk. These issues fall into
the general areas of visual appearence, implementation, and usage. We take up each
topic separately.

The most problematic issue with the visual appearence of BridgeTalk s the
difficulty of expressing nesting. In particular, the current version cun visually express
only one level of nesting, and that one level with onlv a tixed number of contained
elements. The problem is that there must be only a small finite amount of space to put
a contained element if the parent icon is visually containing them. Inevitablv, we will
need to go to some sort of grow shrink scheme for the contained elements. We have

...........
......
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resisted this because it is inherently disturbing and confusing unless the grow/shrink
transistion is smooth and obviously reversable. Most visual languages address this
problem by using small icon elements that expand to windows. This solution is
unacceptable due to our experience suggesting the importance of icon shapes
suggesting the icon usage.

The BridgeTalk implementation is still incomplete. In particular, we still have not
completed the browsers that allow a user to navigate the structures showing plan
inheritance and implementation, as pictured in Figures 8 and 9. We will have a

challenge in distinguishing this representation from the specific plan icons used at the
surface level. On the otherhand, we feel these structures are a crucial tool for teaching
students to understand the management of abstraction.

The final area of future work suggested by this work is the most complex: how is
this tool and approach best used? In our attempt to tease apart the expression of
intentions to a computer, we have become increasingly suspicious of the glib discussion
of "top-down design” found in most programming textbooks. In particular, the design of
BridgeTalk shows that programming design involves many different mappings,
including: informal to formal, declarative to procedural, goals to plans and processes,
natural language to Pascal, linear structure to tree structure, and weakly constrained
to strongly constrained. We believe that programming texts do their students a
disservice by presenting a design model that at best ignores the differences between
novices and experts, and at worst is completly unrelated to actual programming
practice.

6. Conclusions

We have reported on BridgeTalk, a new approach to visual languages for novice
programmers. BridgeTalk is based on actual data about how novices learn to program.
It allows novices to program with programming plans, and focuses novices on the
interactions between plans, not on the implementation details for a particular plan.
Beginning with plans as a basis for a novice programming language, we were forced to
develop a programming formalism that could deal with multiple levels of detail,
merged plan implementations, and interrelationships between plans. Finallyv. we used
six “design, implement, test, and redesign” cycles to develop a specific visual
representation for the language.

A key contribution of this work is the systematic support for a plan-like view of
programming. We feel that such support is essential if programminyg languages are to
allow a programmer, novice or expert, to work with programming constructs that
reflect actual world semantics. Unfortunately, “high level programming language™ has
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:
7 come to mean more abstract data structures and more formal semantics. We advocate,
p and have demonstrated the feasability of, “high level languages” that reflect the
semantics of real-world objects.
4
‘S Consistant with a language that makes a richer connection to the semantics of
N real-world objects, our language provides novices with a pathway from experience in
¢ the real-world, to real-world plans, to standard programming language constructs.
Current software systems force a-user to either use the system as is, or become a
hy programmer. BridgeTalk illustrates an approach that provides a smoother transition
,"\_ with many intermediate steps along the way. That is, programming strictly with plans
vy simplifies programming by allowing users to draw on their knowledge of real-world
situations, but limits users to those plans provided in the system. Because the internals
. of the plans can be examined, modified, and specialized, users can extend the power of
- their system beyond the predefined plans.
'ii One of the most important lessons of this work is the criticality of empiricial work
o in the design of visual languages. Without the extensive empirical work documented in
2 this report, our language would be much poorer. Furthermore, the language would
- more than likely be unsuitable for use with novices. There is no reason to believe that
> languages designed based on purely formal and intuitive arguments will be usable.
5 Until a suitable theory of visual interface design emerges, we feel that computer
- scientists must submit their visual languages to the test of real users under realistic
- circumstances. Not only will this produce happier languages, we believe, but also
" better science.
L
2
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Dr. Phillip L. Ackerman
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Dr. Beth Adelson

Department of Computer Science
Tufts University

Medford, MA 02155

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 7823%
AFQSR,

Life Sciences Directorate
Bolling Air Force Base
Washington, OC 20332

Technical Director,

Army Human Engineering Lab
Aberdeen Proving Ground
MD 21005

Or. Robert Ahlers

Code N711

Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. Ed Aiken
Navy Personnel R&D Center
San Diego., CA 92152-6800

Dr. John Allen
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Or. James Anderson

Brown University

Gaenter for Neural Science
Providence, RI 02912

Or. John R. Anderson
Department of Psychology
Carnegie-Mellan University
Pittsburgh, PA 15213

- - . -

.‘-‘-""\'-\
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Or. Nancy S. Anderson
Department of Psychology
University of Maryland
College Park, MD 20742

Technical Director. ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Alan Baddeley
Medical Research Counct!
Applied Psychology un-t
15 Chaucer Road
Cambridge (B2 2EF
ENGLAND

Dr. Patricra Baggett
University of Colorado
Department of Psychology

Box 345
Boulder, CO 80309
Or. Eva L. Baker

UCLA Center for the Study
of Evaluation

145 Moore Hall

University of Calrfornia

Los Angeles, CA 90024

Or. Meryl S. Baker
Navy Personnel R&D Center

San Diego., CA 92152-6800
prof. dott. Bruno G. Bara
Unita di ricerca d»

ntelligenza artificrale
Univwersita dy Milano
20122 Mrlano - via F.
ITALY

Sforza 23

Dr. William M. Bart
Universaty of Minnesota

Dept. of Educ. Psychology
330 Burton Hall

178 Pillsbyry Or.. S.E.
Minneapolis, MN 55455

Dr. Jackson Beatty
Department of Psychology
University of California
Los Angeles. CA 90024
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Or. John Black
Teachers College
Columbia University
525 West 121st Street
New York, NY 10027

Dr. Jeff Bonar

Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Or. Gordon H. Bower
Department of Psychology
Stanford University
Stanford, CA 94306

Or. Robert Breaux

Code N-095R

Naval Training Systems Center
Orlando, FL 32813

Commanding Officer
CAPT Lorin W. Brown
NROTC Unit
"I1inois Institute of Technology
3300 S. Federal Street
Chicago, IL 60616-3793

Dr. John S. Brown

XEROX Palo Alto Research
Caenter

3333 Coyote Road

Palo Alto, CA 94304

Maj. Hugh Burns
AFHRL/IDE
Lowry AFB, CO 80230-5000

Or. Jaime Carbonell
Carnegie-Mellon University
Oepartment of Psychology
Pittsburgh, PA 15213

Dr. Pat Carpenter
,LLarnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

.

.

-‘\1-'-'. -
Ll

T T e - - -
COCNSER AR

LCOR Robert Carter
Office of the Chief

of Naval Operations
0P-018
Pentagon )
Washington, DC  20350-2000

Chair, Department of
Psychology

College of Arts and Scrences

Catholic University of
America

Washington, DOC 20064

Or. Michelene Ch
Learning R & D Center
University of Pittsburgh
3939 O0'Hara Street
Pittsburgh, PA 15213

Or. L. J. Chmura

Computer Science and Systems
Code: 7590

Information Technology Division
Naval Research Laboratory
Washington, DC 20375

Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, Tx 78235

Assistant Chief of Staff
for Research, Development,
Test. and Evaluation

Nava! Education and
Training Command (N-5)

NAS Pensacola, FL 32508

Dr. Allan M. Collins

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge., MA 02138

Dr. Stanley Collyer

Office of Naval Technology
Code 222

800 N. Quincy Street
Arlington, VA 22217-5000

Brian Daliman
3400 TTW/TTGXS
Lowry AFB, CO 80230-5000
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Dr. Diane Damos
Arizona State University
Department of Psychology
Tempe, AZ 85287

Or. Denise Dellarosa
Department of Psycholiogy
Yale University

Box 11A, Yale Station
New Haven, CT 06520

Or. R. K. Dismukes

Associate Director for Life Scrences
AFOSR

Bolling AfFB

Washington, DC 20332

Dr. Stephanie Doan

Code 6021

Naval Air Development Center
Warminster, PA 18974-5000

Or. Emanuel Donchin
University of Illino1s
Department of Psychology
Champaign, IL 61820

Defense Technical
Information Center
Cameron Station, 81dg 5
Alexandria, VA 22314

Attn: TC
(12 Copies)

Or. Susan Embretson
University of Kansas
Psychology Department
428 Fraser

Lawrence, KS 66045

Dr. Randy Engle

Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. William Epstein
University of Wisconsin

W. J. Brogden Psychology Bldg.
1202 W. Johnson Street
Madison, WI 53706

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Or. K. Anders Ericsson
Univaersity of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Martha Farah
Oepartment of Psychology
Carnegte-Mellon University
Schenley Park

Prttsburgh. PA t5213

Or Beatrice J Ffarr
Army Research [nstitute
5001 Ersenhower Avenue
Alexandrra, vA 223133

Or Marsnal! J Farr
Farr-Sight Co

2520 Nortn Jernon Street
Ar'ington. A 22227

Dr Pau! Fel*uv :h

Southern [111ng1s Jniversity
Schoo! of Meg ¢ ne

Medical Educat:on Department
P 0. Box 1325

Sor ngfreid. L ©52°C8

Dr Crarg I Ffreiags
ARPA

1400 wilson Blvd.
Arlington. VA 22209

J. D. Fletcher
9931 Corsica Street
Vienna VA 22180

Or. Kenneth 0. Forbus
University of [1tinors
Department of Computer Science
1304 west Springfreld Avenue
Urbana, IL 61801

Dr. John R. Ffrederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge. MA 02138
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Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Dr. Michael Friendly
Psychology Department
York University
Toronto ONT

CANADA  M3J 1P3

Julie A. Gadsden

Information Technology
Appiications Division

Admirality Research Establishment

Portsdown, Portsmouth P06 4AA

UNITED KINGDOM

Dr. Michael Genesereth
Stanford University
Computer Science Department
Stanford, CA 94305

Dr. Oedre Gentner
University of Illinois
‘ODepartment of Psychology
603 E. Daniel St.
Champaign, IL 61820

Or. Lee Giles

AFOSR

Bolling AFB
Washington, OC 20332

Or. Robert Glaser
Learning Research

& Development Center
University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15260

Or. Marvin D. Glock
13 Stone Hall
Cornell University
Ithaca, NY 14853

Or. Sam Glucksberg
Department of Psychology
Princeton University
Princeton, NJ 08540

-.‘. .

Dr. Daniel Gopher

Industrial Engineering
& Management

TECHNION

Haifa 32000

ISRAEL

Dr. Sherrie Gott
AFHRL /MO0J
Brooks AFB, TX 78235

Dr. T. Govindaraj

Georgia Institute of Technology

School of Industrial & Systems
Engineering

Atlanta, GA 30332

DOr. Richard H. Granger
Dapartment of Computer Science
University of California, Irvine
Irvine, CA 92717

Dr. James G. Greeno
University of California
Berkeley, CA 34720

Dr. Henry M. Halff
Halff Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207

Dr. Bruce Hami 11

The Johns Hopkins University
Applied Physics Laboratory
Laurel. MD 20707

Dr. John M. Hammer
Center for Man-Machine
Systems Research
Georgia Institute of Technology
Atlanta, GA 30332

Dr. Ray Hannapel

Scient1fic and Engineering
Personnal and Education

National Scrence foundatyon

Washington, DC 20550

Dr. Harold Hawkins
Office of Naval! Research
Code 1142CS

800 N. Quincy Street
Arlington, VA 22217-5000
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Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University

Stanford, CA 95305

Or. Frederick Hayes-Roth
Teknowledge

525 University Ave.

Palo Alto. CA 94301

Dr. Joan I. Heller
505 Haddon Road
Oakland, CA 94606

Dr. Geoffrey Hinton
Carnegie-Melion University
Computer Science Department
Pittsburgh, PA 15213

Dr. James D. Hollan
MCC,

Human Interface Program
3500 wWest Balcones Center Or.
Austin, TX 78759

Dr. John Holland

University of Michigan
2313 East Engineering
Ann Arbor, MI 48109

Or. Melissa Holland

Army Research Institute for the
Behavioral and Social Sciences

5001 Eisenhower Avenue

Alexandria, VA 22333

Dr. Robert W. Holt
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Ms. Julia S. Hough

Lawrence Erlbaum Associates
6012 Greene Street
Philadelphia, PA 19144

Dr. James Howard

Or. Earl Hunt

Department of Psychology
University of Washington
Seattle, WA 98105

Dr. Ed Hutchinsg
Intelligent Systems Group
Institute for

Cognitive Science (C-015)
ucso
La Jolla, CA 92093

Or. Janet Jackson
Rijksuniversitett Groningen
Biologisch Centrum, Vleugel D
Kerklaan 30, 9751 NN Haren (Gn.)
NETHERLANDS

Dr. R. J. K. Jacob

Computer Science and Systems
Code: 7590

Information Technology Division
Naval Research Laboratory
Washington, DOC 20375

Dr. Zachary Jacobson

Bureau of Management Consulting
365 Laurier Avenue West

Qttawa, Ontario K1A 0S5

CANADA

Pharm.-Chim. en Chef Jean Jacq

Division de Psychologie

Centre de Recherches du
Service de Sante des Armees

108 Boulevard Pinel

69272 Lyon Cedex 03, FRANCE

Or. Robert Jannarone
Degartment of Psychology
University of South Caralina
Columbia, SC 29208

Dr. Claude Janvier

Directeur, CIRADE

Universite’' du Quebec a Montreal
P.C. Box 8888, St. "A"

Montreal, Quebec H3C 3P8
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COL Dennis W, Jarvi
Commander
AFHRL
Brooks AFB, TX 78235-5601
Dr. Robin Jeffries
Hewlett-Packard Laboratories
P.0. Box 10490
Palo Alto, CA 94303-0971
Or. Douglas H. Jones
Thatcher Jones Associates
P.0. Box 8640

10 Trafalgar Court
Lawrenceville, NJ 08648
Or. Marce! Just
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Or. Daniel Kahneman
Department of Psychology
‘University of California
Berkeley, CA 94720

Dr. Milton S. Katz

Army Research Institute
5001 Eisenhawer Avenue
Alexandria, VA 22333

Dr. Steven W. Keele
Department of Psychology
University of Oregon
Eugene, OR 97403

Or. Wendy Kellogg

IBM T, J. Watson Research Ctr.
P.0. Box 218
Yorktown Heights, NY 10598
Dr. David Kieras

University of Michigan
Technical Communication
College of Engineering

1223 €. Engineering Bu1rlding
Ann Arbor, M1 48109

N A A N T S AN NI LS

Or. Walter Kintsch
Department of Psychology
University of Colorado
Campus Box 345

Boulder, CO 80302

Dr. David Klahr -
Carnegie-Mellon University

Department of Psychology

Schenley Park

Pittsburgh, PA 15213

Mr. Al Kleider

Army Research Office

P.0. Box 12211

Research Triangle Park
North Carolina 27708-2211

Dr. Ronald Knoll
B8ell Laboratories
Murray Hill, NJ 07974
Or. Stephen Kosslyn
Harvard University

1236 William James Hall
33 Kirkland St.
Cambridge, MA 02138

Or. Kenneth Kotovsky

Oepartment of Psychology

Community College of
Allegheny County

800 Allegheny Avenue

Prttsburgh, PA 15233

Or. David H. Krantz
2 Washington Square Village
Apt. # 15J
New York, NY 10012
Dr. Patrick Kyllonen
325 Aderhold
Department of Educational

Psychology
University of Georgra -
Athens, GA 30602

Dr. David R. Lambert

Naval Ocean Systems Center
Code 4417

271 Catalina Boulevard

San Diego, CA

92152-6800
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Or. JilY Larkin
Carnegie-Mellon University
Oepartment of Psychology
Pittsburgh, PA 15213

Dr. R. W. Lawler

ARI 6 S 10

5001 Eisenhowar Avenue
Alexandrya. VA 22333-5600

Dr. Alan M. Lesgold
Learning Research and
Development Center
University of Pittsburgh
Pittsburgh, PA 15260

Or. Alan Leshner

Deputy Division Director
Behavioral and Neural Sciences
National Science Foundation
1800 G Street

Washington, DC 20550

Or. Jim Lavin
Oepartment of

Educational Psychology
210 Education Building
1310 South Sixth Street
Champaign., IL 61820-6390

Dr. John Levine

Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Or. Clayton Lawis

University of Colorado
Department of Computer Scirence
Campus Box 430

8aulder, CO 80309

Matt Lewis

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Library,
Naval War College
Newport, RI 02940

Library,
Naval Training Systems
Center

Orlando, FL 32813

Science and Technology Division,
Library of Congress
Washington, DC 20540

Or. Jane Malin

Mail Code SR 111

NASA Johnson Space Center
Houston, TX 77058

Dr. Sandra P. Marshall
Dept. of Psychology

San Diego State University
San Diego. CA 92182

Or. Humberto Maturana
University of Chile
Santiago

CHILE

Or. Richard E. Mayer
Department of Psychology
University of California
Santa Barbara, CA 93106

Dr.-James McBride

Psychological Corporation

c/o0 Harcourt, Brace,
Javanovich Inc.

1250 West 6th Street

San Diego, CA 92101

Dr. James L. McGaugh
Center for the Neurobiology

of Learning and Memory
University of California, [rvine
[rvine, CA 92717

Dr. Gail McKoon
CAS/Psychology
Northwestern University
1859 Sheridan Road
Krasge #2130

Evanston, IL 60201

Or. Joe MclLachlan
Navy Personnel R&D Center
San Dirego, CA 92152-6800
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Dr, James S. McMichael

Navy Personnel Research
and Development Center

Code 05

San Diego, CA 92152

Or. Barbara Means
Human Resources

Research Organization
1100 South Washington
Alexandria, VA 22314

Or. Douglas L. Medin

1 Department of Psychology
University of Illinois
603 E. Daniel Street
Champaign, IL 61820

-

Dr. George A. Miller
Department of Psychology
Green Hall

Princeton University
Princeton, NJ 08540

‘Or. Andrew R. Molnar
Scientific and Engineering
Personnel and Education
National Science Foundation
Washington, DC 20550

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Or. Nancy Morris

Search Technology., Inc.
5550-A Peachtree Parkway
Technology Park/Summit
Norcross, GA 30092

Dr. Randy Mumaw

Program Manager

Training Research Division
HumRRO

1100 S. washington
Alexandria, VA 22314

Or. Allen Munro

Behavioral Technology
Laboratories - USC

1845 S, Elena Ave., 4th Floor

Redondo Beach, CA 90277
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Chair, Department of
Computer Science

U.S. Naval Academy

Annapolis, MO 21402

Chair, Department of
Systems Engineering

U.S. Naval Academy

Annapolis, MD 21402

Technical Director,

Navy Health Research Center
P.Q0. Box 85122
San Diego. CA 92138

Or. Allen Newell
Oepartment of Psychology
Carnegre-Mellon Universaty
Schenley Park

Pittsburgh, PA 15213

Dr. Mary Jo Nissen
University of Minnesota
N218 Ellrott Hall
Minneapolis, MN 55455

Or. A. F. Norcio

Computer Science and Systems
Code: 7590

Information Technology Division
Naval Research Laboratory
Washington, DC 20375

Dr. Donald A. Norman
Institute for Cognitive
Science C-015
University of California, San Diego
La Jolla, Californra 92093

Deputy Technical Director,
NPROC Code 01A
San Diego, CA 92152-6800

Director, Training Laboratory,
NPROC (Code 05)
San Diego, CA 92152-6800

Director, Manpower and Personngl
Laboratory,
NPRDC (Code 06)

San Diego. CA 92152-6800
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Director, Human Factors Office of Naval Research. e
& Organizational Systems Lab, Code 1142PS Y

800 N. Quincy Street A
Arlington, VA 22217-5000 -

NPRDC (Code 07)
. San Diego, CA 92152-6300

Fleet Support Office,
NPROC (Code 301)
San Diego. CA 92152-6800

Library, NPROC
Code P201L
San Diego, CA 92152-6800

Technical Director,
Navy Personnel RZD Center
San Diego. CA 92152-6800

Commanding Officer,

Naval Research Laboratory
Code 2627
Washington, OC 20390

Dr. Harold F. Q'Neil, Jr.

School of Education - WPH 801

Department of Educational
Psychology & Technology

University of Southern California

Los Angeles, CA  90089-0031

Dr. Michael Oberlin

Naval Training Systems Center
Code 711

Orlando, FL 32813-7100

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O0'Hara Street
Pittsburgh, PA 15213

Office of Naval Research,
Code 114281

800 N. Quincy Street

Arlington, VA 22217-5000

Office of Naval Research,
Code 1142

800 N. Quincy St.

Arlington, VA 22217-5000

Office of Naval Research. N

Code 1142CS
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Psychologist,
Qffice of Naval Research
Branch Office, London
Box 39
FPO New York, NY 08510

Special Assistant for Marine
Corps Matters,
ONR Code 00MC

800 N. Quincy St.

Arlington, VA 22217-5000

Psychologist.

Office of Naval Research
Liaison Office, Far East
APQ San Francisco. CA 96503

Dr. Judith Orasanu

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Or. Douglas Pearse
OCIEM

Box 2000
Downsview, Ontario
CANADA

Dr. James W. Pellegrino
University of Californra,
Santa Barbara
Department of Psychology
Santa Barbara, CA 93106

Dr. Virginia E. Pendergrass
Code 711

Naval Training Systems Center
Orlando, FL  32813-7100
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Or. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E. 58th St.

Chicago, IL 60637

Military Assistant for Training and
Parsonnel Technology,
0uUSD (R & E)
Room 3D129, The Pentagon
Washington, DC 20301-3080

Or. Steven Pinker
Department of Psychology
€10-018

M.I.T.

Cambridge, MA 02119

Or. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

‘Dr. Peter Polson

University of Colorado
Department of Psychology
Boulder, CO 80309

Or. Michael I. Posner

Department of Neurology

Washington University
Medical School

St. Louis, MO 63110

Or. Mary C. Potter
Department of Psychology
MIT (E-10-032)
Cambridge, MA 02139

Or. Paul S. Rau

Code U-32

Nava! ‘Surface Weapons Canter
White Oak Laboratory

Silver Spring, MD 20903

Dr. Lynne Reder

Department of Psychology
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Or. James A. Reggia
University of Maryland
School of Medicine
Department of Neurology
22 South Greene Street
Baltimore, MD 21201

Or. Wesley Regran
AFHRL/MOD
Brooks AFB, TX 78235

Or. Fred Reif

Physics Department
University of California
Berkeley, CA 94720

Dr. GiY Ricard

Mail Stop C04-14
Grumman Aerospace Corp.
Bethpage, NY 11714

Or. Linda G. Roberts

Science, Education, and
Transportation Program

Office of Technology Assessment

Congress of the United States

Washington, DC 20510

Dr. Paul R. Rosenbaum
tducational Testing Service
Princeton, NJ 08541

Or. Willram B. Rouse
Search Technology. [nc.
5550-A Peachtree Parkway
Technology Park/Summit
Norcross, GA 30092

Dr. David Rumelhart

Center for Human
Information Processing

Univ. of Ca'ifornra

La Jolla, CA 92093

Dr. Walter Schneirder
Learning R&D Center
University of Prttsburgh
3939 0'Hara Street
Pittsburgh, PA 15260
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Or. Miryam Schustack

Code 51

Navy Personnel R & D Center
San Diego, CA 92152-6800

Or. Marc Sebrechts
Department of Psychology
Wesleyan University
Middletown, CT 06475

Dr. Colleen M. Seifert
Intelligent Systems Group
Institute for

Cognitive Scrence (C-015)
ucsD
La Jolla, CA 92093

Dr. Ben Shneiderman

Dept. of Computer Scirence
University of Maryland
College Park, MD 20742

Dr. Robert S. Sieglaer
Carneg\e~Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Or. Herbert A. Simon
Department of Psychology
Carnegie-Mellion Untversity
Schenley Park

Pittsburgh. PA 15213

LTCOL Robert Simpson
Defense Advanced Research
Projects Administration
1400 Wilson Blvd.
Arlington, VA 22209

Or. H. Wallace Sinaiko
Manpower Research

and Advisory Services
Smithsonian [nstitutron
801 North Prtt Street
Algxandria, VA 22314

Or. Richard £. Snow
Jepartment af Psychology
Stanford University
Stanford. CA 34306

,.r,'f_;.'_'f,.(;f‘rvf, f\"\"\"- o \(.‘I_.-'__J.‘I..f~f\f. Py Ay et

Dr. Richard Sorensen
Navy Personnal R&D Center
San Drego, CA 92152-6800

Or. Kathryn T. Spoehr
Brown University
Department of Psychology
Providence, RI 02912

Or. James J. Staszewski
Research Associate
Carnegre-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Or. Robert Sternberg
Department of Psychology
Yale University

Box 11A, Yale Station
New Haven, CT 06520

Dr. Kurt Steuck
AFHRL/MOD

Brooks Af8

San Antonio TX 78235

Or. Paul J. Sticha

Senior Staff Scieatist
Training Research Divisyon
HumRRO

1100 S. Washington
Alexanagrra, VA 22314

Or. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Or. Kikymi Tatsuoka

CERL

252 Engineertng Research
Laboratory

Urbana, [L 61801

Or. Perry W. Thorndyke

FMC Corporation

Central Engineer:ng Labs
1185 Coleman Avenue, Box 530
Santa Clara, CA 95052
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Champaign, IL 61820
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