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WITH APPLICATIONS IN RELIABILITY

by

Jee Soo Kim, Frank Proschan, and Jayaram Sethuraman

ABSTRACT

This is an invited paper to appear in the special issue of Communications in Statistics :

Theory and Methods devoted to “Order Statistics and Applications”

developments in stochastic comparisons of order statistics.
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§ 1. INTRODUCTION AND SUMMARY.

&y

;E An impressive array of papers has been devoted to inequalities and stochastic ordering of

K lilear combinations and partial sums of order statistics and comparison of their expectations.

}: In this paper weaff‘surveyj recent advances in stochastic comparisons of order statistics along with

: reliability applications.

N

P +- Section 2 presents inequalities for linear combinations of order statistics from restricted fam-

Es -ilies_orl—)ta.ined by Barlow and Proschan (19663.).) Comparisons of linear combinations of order

:§ statistics from distributions F and G are obtained fo:,“C;’ 1F convex and for G~LF starshaped.

N These results yield conscrvative upper and lower tolera,nce limits. For G exponential and F IFR

;0: or IFRA, -we_present stochastic comparxs;.ﬂs ,for {he ;tota.l time on test”, used in life testing.

:33 We introduce the notions of majorization and Schur function. Because majorization leads to

3 many inequalities, these notions will be exploited extensively in the ensuing sections.

v . . . . ,

) ‘ +Section 3 presents stochastic comparisons of order statistics from underlying heterogeneous

; distributions. Given two sets of mdependent components (possibly unlike), majorization condi-

by tions are given by Pledger and Proschan (1971) which insure that any k-out-of-n system con-

": structed from components in the first set will have reliability at least as great as that of a

J’ corresponding system constructed from components in the second set. Since the ordered failure
times of the components represent order statistics from heterogeneous distributions, the order

; ., statistics from one set of underlymg distributions {Fl, . ,F;} can be compared stochastically

'; with those from another set {F 1‘, F*}

N We present additional comparisons involving spacings between order statistics. In some of the

E comparisons, the underlying heterogeneous distributions are compared with a single underlying

S homogeneous distribution, while in others, they are compared with another set of distributions

3 less het:rogeneous in the sense of majorization. These results of Pledger-Proschan can be used

‘ to approximate the reliability of certain types of systems of unlike components by computing the

:3 reliability of corresponding systems of like components.

tj The main theme of Section 4 is a result of Proschan and Sethuraman (1976). They stochas-

._ tically compare whole vectors of order statistics, assuming Fy,---, F,(F},---, F,) have propor-
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tional hazard functions with Aq,---,A,(A},- -+, A;.) as the constants of proportionality. Pledger

and Proschan (1971) stochastically compare X (r) and X (*,) separately for each r; these results can

be obtained as special cases of the Proschan-Sethuraman (1976) results.

Finally, an extension of stochastic comparison of random vectors to stochastic comparison of

random processes is presented.

Throughout we use the term increasing (decreasing) for nondecreasing (nonincreasing).

2. INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS.

Stochastic comparisons are made for linear combinations of order statistics from F and G

when F is convex with respect to G (i.e., G™'F(z) is a convex function on the support of F,

assumed an interval) and when F is starshaped with respect to G (i.e., G™!F(z) is a starshaped

function). The concept of F being convex with respect to G was introduced in van Zwet (1964)
and the concept of F being starshaped with respect to G is discussed in Barlow and Proschan

(1981).

We adopt the following notation and assumption. Let X(Y) have distribution F(G). We
assume that F(0) = 0 = G(0), and that F and G are continuous. We assume also that the

support of F is an interval, possibly infinite, and that G is strictly increasing on its support. We

use Fforl— Fand G for1 - G.

A positive function h is starshaped on [0,5), 0 < b < o0, if h(z)/z is increasing for z in {0, 5),

or equivalently, if h(az) < ah(z) for0< a<1,0<z <b.

A failure rate r(t) at time t is defined as r(t) = f(t)/F(t) when density f(t) exists and F(t) >

0. We say F has an increasing failure rate (IFR) if r(t) is increasing in ¢t and F has a decreasing

failure rate (DFR) if r(t) is decreasing in ¢.

A rar Jom variable X is said to be stochastically smaller than a random variable Y (denoted

by X <* Y)if (P(X >t) < P(Y > t) for every real number t. We say X is stochastically

equal to Y(X ="t Y) if P(z > t) = P(Y > t) for each real t. We stochastically compare linear
combinations of order statistics X(;) < --- < X(,,) from F and Y{;) < --- < Y{,) from G when

G~'F is starshaped as well as when G~ ! F is convex on the support of F.

2
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First we consider pairs of distributions F and G such that G~ F is starshaped on the support

of F. Barlow and Proschan (1966a) proved the following two lemmas which are fundamental tools

in obtaining stochastic inequalities. We shall find it convenient to define A; = Za,-, where the
=7
a; represent real numbers.

Lemma 2.1. h(za;x,-) < 3, aih(z;) for all starshaped h on [0,b) and all0 < z;--- <z, < b
=1

for which 0 < Za.,-:c,- < bifand only if there exists k(1 < k < n)suchthat0 < 4; <--- < A < 1,
=1

and when k < n,Apy; =---= A, =0.

Lemma 2.2. h(Za,-x,—) > Za,-h(zl) for all starshaped h on [0,b) and all0 < z;--- <z, < b

=1 =1
n

for which 0 < Za,-z,- < b if and only if there exists k(1 < k < n) such that 4; > --. > A, >

=1
1; Agy1 =---= A, = 0. If F is starshaped with respect to G, then by Lemma 2.1
G'1F<Za,-X(, ) Za.,G LF(X) =* Za,Y( 5-
=1 =1

This will be formally stated as follows.

Theorem 2.1. (Barlow and Proschan, 1966a). Let G~!F be starshaped on the support of F,
F(0) = 0 = G(0). If there exists k(1 < k < n) such that 0 < 4; < --- < A < 1, and when
k<n,Agy; =--+=A, =0, then

n

F(Z‘R&;)) <* G(}:a,-Y(‘-,). (2.1)
From Lemma 2.2 one may obtam the reverse mequahty of (2.1). By assumptxon the support of

F is an interval, say [0,5]. If Ea.X(,) > b, then F(Za..X(, =1> G(Za,-Y(,-)). Considering

=1 =1
outcomes for which Xa; X(;) < b Lemma 2.2 leads to

n

G—1F<ZG;X(;)) ZG;G IF X(z) ZQ,Y(,)

i=1

The above discussion is summarized in the following theorem due to Barlow and Proschan.

Theorem 2.2. Let G~'F be starshaped on the support of F and F(0) = 0 = G(0). Let a; > 0

fort=1,2,---,n and a,, > 1. Then

F(Z a;X(,-)) >t G(Z_: a,-Y(,-,). (2.2)
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Similar inequalities can be obtained for pairs of distributions F and G such that G~! F is convex on
the support of F. This is a strengthening of the starshapedness hypothesis. Barlow and Proschan
d (1966a) present detailed discussions of the following theorems, which assume F is convex with

X respect to G.

Theorem 2.3. Let G~ F be convex on the support of F, F(0) = 0= G(0), and 0 < A; < 1 for
" t=1,2,---,n. Then

4 F<f: a,X(‘)) <t G (é a,.Y(,.)). (2.3)

| i=1
' Theorem 2.4. Let G~'F be convex on the support of F, F(0) = 0 = G(0), and for some
' k(0<k<n),A; >1fori=1,---,kand A; <Ofort=k+1,---,n. Then
: n n
' F(Z a,-X(,-)> >t G(Z a;}”(,-)>. (2.4)
i=1 i=1
n
'i From the simple identity E:a.,-:rl Za, , one may verify (2.3) and (2.4) are equivalent
- i=i i=1
" : to . .
; F [Z a:(Xp) — x(,-_l,)] < (2")G [Z a (Y - Y(f—l))}-
i=1 i=1

‘:, An important problem in statistical reliability theory and life testing is to obtain tolerance limits
E. as a function of sample data. The above inequalities can be used to construct conservative lower
" or upper tolerance limits for IFR and IFRA distributions. Confidence limits for DFR and DFRA
P distributions can also be obtained using the same techniques. See Barlow and Proschan (1966b).
Let G(t) = 1 —e~%,t > 0. Then G~!F starshaped on the support of F is equivalent to F
N having an increasing failure rate average (IFRA). We now discuss results concerning “total time
A on test” when successive observations are taken from an IRFA (DFRA) distribution.
.
. If n items are put on life test and the test terminated at the time of the rt* failure (Type -

IT censored sampling), then T,,, = zn:(n ~1+41)(X(5) — X(i-1)) represents the total time on test.

This statistic has been extensively is?tlldied and applied in the case of the exponential distribution
by Epstein and Sobel (1953) and Epstein (1960a,b). The best estimate of the mean 6 in the

exponential case is §(z) = T,,/r.

Now let F be IFRA (DFRA), F(0) =0, and E(X) = §. Then Barlow and Proschan (1966a)

\ show that the total time on test divided by the sample mean associated with F is stochastically

4
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larger (smaller) than that associated with the exponential distribution, i.e.,

r r

Z(n -1+ 1)(X(,-) - X(;_l))/r)-( >t (_<_'t) Z(n -1+ 1)(Y(,-) - Y(,-_l))/r}_’. :‘

i=1 i=1

In the case of the exponential distribution, the normalized spacings (n — 1 + 1)(Y{s) — Y(i-1)) are
independent and identically distributed for 1+ = 1,...,n and n > 1. Thus one might expect that .
the spacings would exhibit certain montonicity properties for distribution F such that G™!F is
convex. Barlow and Proschan (1966a) show that if F is IFR (DFR) with F(0) = 0, then (n —17 + y
1)(X(;) — X(i-1)) is stochastically increasing (decreasing) in n > ¢ for fixed 1. We can establish '
as a corollary that if F is IFR(DFR), then the spacing (n — 1 +1)(X(;) — X(i-1)) is stochastically
decreasing (increasing) in i = 1,2,---,n for fixed n. For example, (n —1)(X2) — X(1)) <** nX(y), '
where X o) = 0. See Barlow, Marshall, and Proschan (1969) for further discussion of inequalities N
involving starshaped and convex functions. Chan, Proschan and Sethuraman (1983) consider an
ordering different from the van Zwet convex ordering. They say that F is more convex than G, in
symbols F >°¢ G, if FG~!(t) is a convex function on (0,1). When F and G have density functions
f and g, respectively, they show that F >¢ G if and only if ﬁf} is an increasing function of z,
thus relating the concept of increasing likelihood ratios to convex ordering.

An extremely powerful and useful concept for deriving a great variety of inequalities is the

concept of majorization.

k k
Definition 2.1. Let a; < ag---a,,b; > by > ---bn,Zaj > Ebf for k =1,2,---,n -1, and

=1 j=1 ‘:

n .

2 i=185 = Zb,-. Then a = (a,,---,a,) is said to majorize b = (b;,---,b,), written @ >™ b. N
J=1 ®

Definition 2.2. Let ¢(a) > ¢(8) whenever @ >™ b. Then ¢ is called a Schur function. ‘
(

&

Theorem 2.4. (Schur (1923), Ostrowski (1952)). Let ¢(z) be a differentiable, real-valued function ‘
of n real variables. Then ¢ is a Schur function if and only if (z; — IJ')(%)T — %‘%) > 0 for all z }
and all 1 # ;. f
For a systematic treatment of the theory of majorization and its applications in mathematics -

and statistics, see Marshall and Olkin (1979). The concept of majorization has been extended to

elements of L,(0,1) in Ryff (1963) and the Schur-Ostroswski theorem for Schur functionals has i
>

been obtained in Chan, Proschan and Sethuraman (1987). ,
[ ]
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Marshall, Olkin and Proschan (1967) determine conditions on (al,ag, -++,a,) and

{b1,b2,- -+ b,) for the monotonicity of the ratio of means; g(r Za’ / Zb’ 1/r, We next show

=1
that one application of this monotonicity yields a stochastic comparlson between a function of

order statistics from an IFRA distribution and the same function of order statistics from the

exponential distribution. For notational simplicity, we write ( 73%‘:-;) = (E‘EL,, ey 5l )

We know that £z log z is a Schur function. Thus to show g(r) is increasing in r, or equivalently,
dlogg(r)/dr > 0, it is sufficient that (%) >™ (33%), where o; = af and f; = b (for r > 0) and

where o; = aj,_;,, and B; =b],_,,, (forr <0),i=1,2,---,n.

Marshall et al. (1967) obtain the following theorem.

Theorem 2.5. If a; > 0,-+-,a, > 0,8, > -+ > f, >0, <... < Bn  then (&) >™ (-B—)

'ay — — ap’? Tal = p3¥¢]
Using Theorems 2.4 and 2.5, Marshall et al. (1967) prove the monotonicity of g(r). We will see

how these results are used in making stochastic comparisons involving the order statistics from

distributions F and G, where F is starshaped with respect to G.

An important example in which the conditions of Theorem 2.5 are satisfied is obtained by
choosing oy = ¢#(0;), where ¢ is a nonnegative starshaped function. We note that a nonnegative
starshaped function ¢ must be increasing and must satisfy ¢(0) = 0. Such functions are discussed
by Bruckner and Ostrow (1962). Assume that §; > --- > 8, > 0; it follows that a, = ¢(8,) >

- > a, = ¢(fBy) > 0. Thus by Theorem 2.5,

() = (k) =" () 23)

Let X(;) > -+ > X, be order statistics from F. Then from (2.5) we have for any starshaped

function ¢ > 0 that
(X(ll _)(L‘_) (¢(X(l)) ¢(Xn) )
LX;' X T \Ee(X))' CIé(Xi)

Consequently, if F is starshaped with respect to the distribution G’ and Yl > > Y are order
(e X X s Y, s
statistics from G, then (F3,-+, 52) < (&, &), S‘X /ZX <t ZY/ZY

=1 i=1

fork=1,2,---,n

Theorem 2.4 yields some interesting applications. Choosing the Schur function ¢(¢,,---,t,) =

nZt? — 1, we obtain

Y (X - X)2 /X2 <Y (V- Y)Y (2.6)

6
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.'.: Choosing the Schur function ¢(ty,--,ts) = nZA;t;/Tt;,a0 >+ > an,ty > -+ > t,, we obtain

Kn ZA;X;/X S't ZA,Y,/? (2.7)

An important special case where F is starshaped with respect to G is obtained by choosing

':: G(z) = e~* and F to be IFRA. The statistical applications of (2.6) in the problem of testing the
::: hypothesis that F is exponential versus the alternative that F is IFRA, i.e., log F (z) is concave
v where finite, and applications of (2.7) in testing for outliers when the distribution is known to be
:‘;: IFRA are discussed by Marshall et al (1967).
'3%
4

» 3. STOCHASTIC COMPARISONS OF ORDER STATISTICS FROM HETERCGENEQUS
':' ‘ DISTRIBUTIONS.
; A great body of statistical literature exists for order statistics from a single underlying dis-
& tribution. See for example Sarhan and Greenberg (1962), Pyke (1965, 1970), David (1970, 1986),
o Groeneveld (1982), and references contained therein. The results involving order statistics from
E underlying heterogeneous distributions are far fewer. One motivation for considering underlying
' heterogeneous distributions arises in reliability theory, when one studies k-out-of-n systems. A
B system of n components is called a k-out-of-n system if it functions if and only if at least &
_{ components function. See Barlow and Proschan (1981). Note that the time of failure of a k-
‘:' out-of-n system of independent components with respective life distributions F;, Fy,---, F, cor-

] responds to the (n —k + 1)t order statistic from the set of underlying heterogeneous distributions
:3 {F\,F;,--+,F,}. Sen (1970) proved that the smallest (largest) order statistics of a sample of size n
.:: from heterogeneous populations is stochastically smaller (larger) than the smallest (largest) order
" statistic of a sample of size n from a common population whose distribution is the equally weighted
) mixture of the original distributions Fy, F3,---, F,,. Let X4y < -+ < X, (Y{q) < -+ < Y(p) be
.':{ the order statistics of n independent random variables Xy, X, -+, X,.(Yy, Y2, --,Y;) with dis-
h ) tribution functions Fy, Fy, -+, F,(Gy, G2, - G,,) respectively. A result of Sen (1970) concerning
"7 stochastic relationship. between order statistics is the following.
K-
i Theorem 3.1. Let Gy(z) = --+ = Gu(z) = ﬁiF;(z). Then

i=1

N X1 £ Yiy) and X(n) 2% V).

z-: Additional results are obtained by Pledger and Proschan (1971), wherein they assume that the
N

B, distribution functions in the heterogeneous case have proportional hazard functions. In some of
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their comparisons, the underlying heterogeneous distributions, less heterogeneous in the sense of

majorization. Pledger and Proschan also compare stochastically spacing between order statistics. '

The simplest comparisons of k-out-of-n systems can be made by taking fixed component
reliabilities, py,p2,:-*,pn, rather than time-dependent component reliabilities Fy(t),---, Fa(t).
We denote the system reliability of a k-out-of-n system hg(py,- -, pn) as a function of component

reliabilities py,- - -, pn. For component reliability p; we define the corresponding component hazard

R; by

v

R; = —log p;. (3.1) R

By using notions of majorization and Schur function (see Section 2), Pledger and Proschan (1971) )

obtain the following inequalities.

Theorem 3.2. Let R = (R, -+, R,) be a vector of component hazards which majorizes R* =
(R},---,R}), a second vector of component hazards. Then the corresponding reliabilities for a

k-out-of-n system satisfy

hie(p) > he(p*) fork=1,---,n -1 (3.2) '

and _ b
ha(p) = hn(p*). (3.3) ;

For a fixed vector p of component reliabilities they also prove A ( _;_)) is a Pélya frequency sequence

of order 2(PF,) in the index k, i.e., hz(g) > hx—1(p)hs1(p) for k = 2,---,n — 1. See Karlin
(1968) for discussion of PF.

The results concerning time-dependent models follow immediately by setting p; = F;(t) and »
p! = F?(t). We assume independent observations, one observation from distribution F;(F?),i =
1,2,---,n. The ordered observations are again denoted by X(;) < --- < X(n,(X(‘” << X

From Theorem 3.2 the following can be obtained.

Theorem 3.3. (Pledger and Proschan, 1971). Let (- log F\(¢),---,— log F,,(t)) >™ (- log F} (t),
-+, —log Fy;(t)) for each ¢t > 0. Then X(;, =** X!\, and Xx) >t X{gyfork=2,--\n.

BEATCA L PRt

Note that by interchanging F; and F; and P(X) > t) and P(X(n-k+1) < t), we can derive
the dual of Theorem 3.3: Let (— log Fy(t),---,—log F,(t)) >™ (—log Fy(t),---,—log F(t)) for
each t > 0. Then X, <** X('k, fork=1,---,n-1and X(,,) =** Xiny- 3
: >
n
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If F{(t),+ = 1,---,n, are all equal to the geometric mean of the Fy(t), -, F,(t), then
Xk > Xy for k =1,---,n; in particular, X(y) =9t X(1)- Likewise, if Fi(t)=---=F;(t) =

[HF}(t)]l/" for ¢t > 0, then X4, <st X("k) for k=1,2,---,n; in particular, X(,) =t X(‘n).
i=1

In keeping with (3.1) of hazard in the non time-dependent case, we define the hazard function

R(t) corresponding to survival probability F(t) in the time-dependent case by
R(t) = —log F(t) for t > 0. (3.4)
We say hazards are proportional if hazard R;(t) may be expressed as
R;(t) = MiR(t) for t >0, >0, =1,---,n, (3.5)
where R(t) is a hazard function.

The concept of proportional hazard functions is a very useful one in reliability theory. Assume
that the heterogeneous distributions have proportional hazards R;(t) = A;R(t) and R}(t) =
ATR(t),t = 1,2,---,n, where R(t) is a hazard function and that A >™ A*. Then one can easily

see that A >™ )\* implies
(—log Fy(t), -+, —log Fu(t)) =™ (—log Fy(t),---,—log Fx(t))

for each t > 0. Therefore, by Theorem 3.3, we have X ;) =** X(‘” and X(x) > X{k),k =2,---n.

We state this result in the following theorem.

Theorem 3.4 (Pledger and Proschan, 1971). Let Fy,---, F,; F},---, F? have proportional hazard
functions with Ay, .-+, A5 AT, - -+ A}, as constants of proportionality. Let A >™ A*. Then X, =**

X{,) and Xy >ot X(‘k),k =2,---,m.

Another interesting stochastic comparison can be obtained when survival probability is log-
arithmically convex in the parameter A. Consider survival probability F(t,A) = G(\t), where G
has DFR and A occurs as a scale factor. It is a well known fact that a DFR survival probability is
log convex (See Barlow and Proschan, 1981, Chapter 3). Some examples of DFR survival prob-
ability are Weilbull and gamma when shape parameters are < 1. Also a mixture of exponential

distributions has DFR; see Barlow and Proschan (1981), Chapter 4.

Theorem 3.5. (Pledger and Proschan, 1971). For t > 0 let (F(t, \;)) be differentiable, monotone,
and log convex in A; > 0,1 =1,2,---,n. If A >™ A*  then X4, >t (<)) (g fork=1,--- n.
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Furthermore, if F(t, A;)(F(t, \;)) is differentiable and log concave in ; > 0, = 1,---,n, and
A 2™ A%, then X(n) > X7,y (X1) <™ X[p))-

The above comparisons for the largest and smallest order statistics also hold for parallel and

series systems.

Next we discuss comparisons of spacings arising from a single set of order statistics as well as
the spacings arising from heterogeneous distributions. We assume the underlying heterogeneous

distributions have proportional hazards Ay R(t),- -+, A\ R(2).

Let Dy = X(1),D2 = X2y = X(1)»***sDn = X(n) — X(n-1) denote the spacings between
order statistics of independent observations, one from each of n heterogeneous distributions. We
may recall that when the observations come from a single underlying exponential distribution F,
then the normalized spacings nD;,(n — 1)Ds,---, D, are independently distributed according to
the same exponential distribution F and are stochastically alike, i.e., nD; =** (n — 1)D, =*

- =** i,. More general results have been obtained by Pledger and Proschan (1971) when the

underlying distributions have concave proportional hazards. They show the normalized spacings

increase stochastically.

Theorem 3.6. Let Fi(t) = e"*®(®) X\; > 0for i = 1,---,n, where R(t) is concave and differen-

tiable. Then nD; <** (n — 1)Dy <*t ... <t D,

Define D},7 = 1,---,n to be the spacing arising from {F,---, F:}, the second set of expo-
nential distributions. Pledger and Proschan (1971) obtain the following comparisons of two sets

of spacings.

Theorem 3.7. Let F;(t) = e~**, and F*(t) = e~ *t, for i = 1,2,---,n, where A is the arithmetic
mean of the Ay,--+,A,. Then D; =*® D} and D; >** D} fori =2,---,n.

Note that the mean X is used for the comparison. A natural question to ask is: Is the same
conclusion possible using a vector A*, where A >™ A*? The conclusion need not hold when

A >™ A*. A counterexample is provided in their paper.

An application of the results of this section to a reliability problem is as follows. A k-out-of-n
system is to be designed from supposedly like units. However, due to random fluctuations in the
units, the individual unit reliabilities actually vary. From a knowledge of the average reliability

of the units, we wish to predict conservatively the reliability of the system of unlike units. The
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» theorems in this section describe conditions under which we may obtain such a conservative
! prediction.
by 4. STOCHASTIC COMPARISONS OF VECTORS OF ORDER STATISTICS.

The results discussed so far present stochastic comparisons between an individual order statis-
tic from heterogeneous populations and the corresponding statistic from a homogeneous popula-

tion.

In this section we review stochastic comparisons of pairs of vectors of order statistics from

heterogeneous populations. This stochastic vector comparison yields as special cases the Pledger-
Porschan theorems described above and additional results stochastically comparing partial or

complete sums of order statistics.

Definition 4.1. A function f defined on R™ is said to be increasing if it is increasing in each

argument.

Definition 4.2. The random vector X = (X;,-+-,X,) is said to be stochastically smaller than

the random vector X* = (X%, --,X}), (denoted by X <°* X*) if f(X) <** f(X") for every

[ 3ol i T ey Wy W

real-valued, Borel measurable, increasing function f defined on R™.

It is well known that X <** X* if and only if P(X € B") < P(X"* ¢ B) for every upper open
v subset B of R™. (A set B C R™ is said to be an upper set if a ¢ B and ¢ < b implies b ¢ B.)

Sufficient conditions for the stochastic comparison of two random vectors are given by Shan-
thikumar (1987). His conditions are weaker than those of Veinott (1965), and of Arjas and
Lehtonen (1978).

, Given a vector X = (Xj, -+, Xy), let X(y) <--- < X(,) denote an increasing rearrangement
of the coordinates. We denote the vector (Xy), -, X(,)) by X Proschan and Sethuraman
(1976) investigate stochastic comparisons of various functions of X | = (X(1), -+, X(n)) with

AT N
QFnaF{s"'sF ’

A Y

similar functions X ) = (X("l), e X("n)) under suitable conditions on Fy, Fa, - -

oy

: We state the main theorem. !

Theorem 4.1. (Proschan and Sethuraman, 1976). Let Fy,---, F,; F,---, F,: have proportional
{ hazard functions with Ay, -+, An; A7, -+, A% as the constants of proportionality. Let A >™ A*.

Then X, >t _)g(‘ ). A special case involving exponential distributions can be readily obtained.
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Theorem 4.2. (Proschan and Sethuraman, 1976). Let Y,,---,Y, (Y}, ---Y,) be independent
exponential random variables with parameters Ay,--+, A, (A}, -+, A.), respectively. Let A >™ )*.

Then _Y_( ) Zat X( )

Theorem 4.1 has important applications in reliability and life testing which will be discussed

later. An interesting and useful special case of Theorem 4.1 is given as follows : Since ZX(,, is

rel
an increasing function of X | for each subset I of {1,2,---,n} under the conditions of Theorem

k k
4.1 we have ZX(,.) >t ZX(‘T). Thus ZX(,) >t ZX(‘,,) for r = 1,2,---,k; in particular
r=1

r"fI rel
D Xy 2" ) _XP).
r=1 r=1

Note that Theorem 3.4 is an immediate consequence of Theorem 4.1, since X, is an increas-

r=1

ing function of X ) for r = 1,---,n, and also note that in Theorem 3.4 the order statistics are ]

stochastically compared one at a time.

It can be checked easily from the distribution functions of the X and X™ that if A, > A, >
.-+ > A, and A} > -+ > A%, then

Xl _<_at Sst Xn.

and

Xlt Sat Sst X;

The stochastic ordering above has been achieved by ordering the parameters of the distributions.
n n

One may ask whether A >™ )\* implies ZX,- >t ZX;‘. An affirmative answer is given by
i=k i=k

Proschan and Sethuraman (1976) in the following.

Theorem 4.3 Let Ay > -+ > A (A} > -+ > Ay). Let Xy,---, X,.(X}, -+, X)) be indepen-

dent random variables with proportional hazard functions and with constants of proportionality

Aty oy An (AL, -+, AL), respectively. Let A >™ A*. Then for each k,1 < k < n,
YoXi > > X!
i=k

i=k

Application 4.1. An important application of Theorem 4.1 concerns the robustness of standard

estimators of the failure rate of an exponential distribution when observations are actually from

heterogeneous distributions. Let Y;,---,Y, be i.i.d. exponential random variables with failure

12 !

o W Wy Wy W - o Ll w . - . . -~ e et - . T T e e I S I S
:I‘r;:{\;m T AR A e e e N T e SRR - - e




\J

oty gty ate g’

rate A. Under censored sampling in which observations cease at the rth failure (i.e., Type-II

censoring), the standard estimator (UMVUE) A takes the form
AMY) = ZY()+ (n - 1Y), (4.1)

where Y(;) is the ith order statistic 1 =1,---,n

Suppose now that the observations actually come from different exponential distributions,

with average failure rate A. To be specific, let Y*,---Y,’ be independent exponential random
n

variables with failure rates A}, - A}, respectively, and let A = Z/\f/n Note that A(Y) in (4.1)

=1

is a decreasing function of Y () Thus it follows from Theorem 4.2 that

-~

(1Y) > A(x). (4.2)

The implication of (4.2) is that the estimate A in (4.1) tends to underestimate the average failure
rate in the presence of heterogeneity. Proschan and Sethuraman (1976) note that Theorem 4.2

actually gives a more refined conclusion: The greater the degree of heterogeneity (as reflected by
”

majorization) among A}, --, A} satisfying A = Z/\:/n, the greater the underestimation of A.

i=1
Barlow and Proschan (1967) have listed estimates for A under various sampling schemes.

These estimates are of the form:

number of failures observed

My) = (4.3)

total time on test
It can be seen (See Barlow and Proschan, 1967) that in general the estimate in (4.3) is a decreasing
function of the order statistics. Thus, as in the above case of censored sampling, heterogeneity of
the exponential distributions leads to underestimation of the average failure rate when using the

estimate in (4.3).

The following direct applications of Theorem 4.1 are discussed by Proschan and Sethuraman

(1976).

Application 4.2. Let X, X5, - bei.i.d random variables having a Weibull distribution with shape

parameter a > 0; i.e.,, P(X| > z) = e 2" ,2>0. Let u = (w1, +,u,) and u* = (uj,---,u;) be
vectors such that (up*,---,u;*) >°* ((u})~*,---,(u;)~*). Then
Zu,X >t Zu X;. (4.4)
i=1
13

v e o e e e A e . NP - ‘
R A T B O T e R T N g G o T T S e e B N A A W A RSN A T

e ate Ato A%’ A, ¥ 8V ata’ate et el ata atatats aly Yatatatutatetats ety ala el t ot AR NI Tt Vel tat b taf Aad et *al et el "2t et ‘al. ala'alatal.t Vg ag el 4



From the Weibull distribution it is easy to see that u; X;,---,u, X, have proportional hazard

functions with constants of proportionality uy*,---,u,, respectively. Thus (4.4) is immediate

from Theorem 4.1.

Application 4.3. Let X, denote the binomial random variable with P(X, =1) = 1-P(X, =0) =

N TN N VK X PP T S e

p. Let Xp,,--+, X5, (Xpy,° -+, Xpz) be mutually independent and let (—logpy,-:-,—logp,) >™
(—logpi,---,—logp:). Then ZX,,.. >st ZXP:.
i=1 i=1

We note that Theorem 3.2 (Pledger and Proschan) concerning the reliability of k-out-of-n

systems and order statistics can be obtained as a consequence of Application 4.3, since hx (p) =

ZX > k).

K The usual definition of stochastic comparison of random vectors has been extended by
Pledger and Proschan (1973) to stochastic comparison of random processes. We call stochas-
- tic process {X(t),t > 0} stochastically larger than stochastic process {Y(t),t > 0} (written
{X(t),t > 0} >t {Y(t),t > O} if (X(t1), -+, X(tn)) >** (Y(t1),---Y(t,)) for every choice of
0<t,<ty <+ <ty,n=1,2,---. This extended comparison permits one to obtain bounds
not just on a few parameters, but simultaneously on an uncountably infinite class of functionals
of the stochastic process. See Pledger and Proschan (1973) for applications to reliability prob-
lems, yielding stochastic comparisons for systems of independently operating machines assuming

exponential failure and exponential repair.

14

', - .r TS 4-.‘/- o '.-;f.;,r“ Y, 'f\'.r.;/' '-f'-r' o0 .r..r‘_f .r'.r: .,_".-_‘\. u' N AN e

.....

AT



- e

TR

REFERENCES.

Arjas, E. and Lehtonen, T. (1978). Approximating many server queues by means of single
server queues. Math. Operat. Res. 3, 205-223.

Barlow, R. E., Marshall, A. W. and Proschan, F. (1969). Some inequalities for starshaped
and convex functions. Pacific J. Math. 29 19-42.

Barlow, R. E. and Proschan, F. (1966a). Inequalities for linear combinations of order statis-
tics from restricted families. Ann. Math. Statist. 37 1574-1592.

Barlow, R. E. and Proschan, F. (1966b). Tolerance and confidence limits for classes of
distributions based on failure rate. Ann. Math. Statist. 37 1593-1601.

Barlow, R. E. and Proschan, F. (1967). Exponential life test procedures when the distribution
has monotone failure rate. J. Amer. Statist. Assoc. 62 548-560.

Barlow, R. E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing:
Probability Models. To Begin With, Silver Spring, MD.

Bruckner, A. M. and Ostrow, E. (1962). Some function classes related to the class of convex
functions. Pacific J. Math. 12 1203-1215.

Chan, W., Proschan, F., and Sethuraman, J. (1987). Schur-Ostrowski theorems for function-
als in L,(0,1). SIAM J. Math. Analysis. 18 566-57C.

Chan, W., Proschan, F., and Sethuraman, J. (1983). Convex-ordering among distributions
with applications to reliability and mathematical statistics. FSU Technical Report No.
M-661.

David, H. A. (1970). Order Statistics. John Wiley and Sons, Inc.

David, H. A. (1986). Inequalities for ordered sums. Ann. Inst. Statist. Math. 38 551-555.

Epstein, B. (1960a). Statistical life test acceptance procedures. Technometrics. 2 435-4486.

Epstein, B. (1960b). Estimation from life test data. Technometric. 2 447-454.

Epstein, B. and Sobel, M. (1953). Life testing. J. Amer. Statist. Assoc. 48 486-502.

Groeneveld, R. A. (1982). Best bounds for order statistics and their expectations in range
and mean units with applications. Comm. Statist. - Theory Meth. 11 1809-1815.

Karlin, S. (1968). Total Positivity. Stanford University Press.

Marshall, A. W. and Olkin, I. (1979). Inequalities: theory of Majorization and Its Applica-
tions. Academic Press.

v et A A "R s " A" m " m "R a TN N et e amg e, e e et e e e Pt P
> "‘\. . Tt "'-N'F'-J'\\"x' LR LA '\.\ -."-.'."\ NI ‘.*- S NN LSRR S, LS \ .



At e et A0 hia hla Kda Atath fat hhaa0a et  ahavattalatabad, AT R R T T R . ] X Canh Sat " Ll i At " AR dud e 0®! W

Marshall, A. W., Olkin, I. and Proschan, F. (1967). Monotonicity of ratios of means and
other applications of majorization. Inequalities. Ed. O. Shisha, Academic Press Inc.

177-190.
» Ostrowski, A. (1952). Sur quelques applications des fonctions convexes et concaves au sens
" de I. Schur. J. Math. Pures Appl. 31 253-292.

Pledger, G. and Proschan, F. (1971). Comparisons of order statistics and of spacings from
c heterogeneous distributions. In Optimizing Methods in statistics. (J. S. Rustagi, Ed.)
Academic Press, New York.

y Pledger, G. and Proschan, F. (1973). Stochastic comparisons of random processes, with
. applications in reliability. J. Appl. Prob. 10 572-585.

Proschan, F. and Sethuraman, J. (1976). Stochastic comparisons of order statistics from
heterogeneous populations, with applications in reliability. J. Mult. Anal. 6 608-616.

Pyke, R. (1965). Spacings. J. R. Statist. Soc. B 27 395-436. Discussion: 437-449.

Pyke, R. (1970). Spacings revisited, Technical Report No. 25, Department of Mathematics,
University of Washington.

S Ryff, J. V. (1963). On the representation of doubly stochastic operators. Pacific J. Math.
13 1379-1386.

‘ Sarhan, A. E. and Greenberg, B. G. (Eds.) (1962). Contributions to Order Statistics. John
5 Wiley and Sons, Inc.

: Schur, 1. (1923). Uber ein Klasse von Mittelbildungen mit Anwendungen auf die Determi-
nantentheorie. Sitzber. Berl. Math. Ges. 22 9-20.

: Sen, P. K. (1970). A note on order statistics for heterogeneous distributions. Ann. Math.
« Statist. 41 2137-2139.

Shanthikumar, J. G. (1987). On stochastic comparison of random vectors. J. Appl. Prob.

; 24 123-136.

. Veinott, A. F. (1965). Optimal policy in a dynamic, single product, nonstationary inventory
b model with several demand classes. Operat. Res. 13 761-778.

. Van Zwet, W. R. (1964). Convez Transformations of Random Variables. Mathematisch
: Centrum.

o

X 16

- et A Te Wt et at e mT At atet Lt e sy g D P T TR S R S
o a e S R T e D L e Al e RO POARRUAR DR v



UNCLASSIFIED

. v SECURITY CLASSIFICATION OF THIS PAGE (When DJILEnIrvch
: READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
o 1. REPORT NUMBER Aﬂo 23699.76-MA |2 GOVT ACCESSION NOJ 3 RECIPIENT S CATALOG NUMBER
: N/A N/A
b 4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

i i ey chnical Report
Stochastic Comparisons of Order Statistics, Technic P

with Applications in Reliability 6. PERFORMING 0G. REPORT NUMBER
v FSU Technical Report M-773
) 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
h Jee Soo Kim, Frank Proschan and Jayaram DAALO3-86-K-0094
Sethuraman

8. PERFORMING ORGAN|IZATION NAME AND ADDRESS 10. ::gil:A:OERLKt::SrTT.NPURMoévEEgST, T ASK
N Florida State University
, Department of Statistics
; Tallahassee, FL 32306-3033

1. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORTY DATE

November, 1987
13. NUMBER OF PAGES

f U.S. Army Research Office

Post Office Box 12211 18
Research Triangle Park, NC 27709 1S, SECURITY CLASS. (of this reporr)
-
3 UNCLASSIFIED
1%e. DECLASSIFICATION DOWNGRADING
. SCHEDULE
16. DISTRIBUTION STATEMENT (of this Regort)
) for public release; distribution unlimited
~
17. DISTRIBUTION STATEMENT (of the sbstracl entezec iv. Block 20, il different trom Report)
N/A
18. SUPPLEMENTARY NOTES
»
189. KEY WORDS (Continue on reverse side if necessary and identily by block number)
Stochastic comnarison, order statistics, reliability, life testing, majori-
) zation, Schur function, heterogenecus distributions, k-out-of-n system,
’ proportional hazard functions.
0 20. ABSTRACT (Continue on reverse side il necessary end identily by block number)

This is an invited paper to appear in the special issue of Communications in

Statistics: Theory and Methods devoted to "Order Statistics and Applicationsy

This paper reviews recent developments in stochastic comparisons of order
statistics.

FORM
EDITION OF 1 NOV 6515 OBSOLETE
DD 1 saws M73 common = oot UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When [lare Entered)

€, g v
.".-".r\r

BRI AT AT AT R I e R e R R e A U " e T o € LR A N T L I
B R A A A I A s ey A A I



- e PO .




