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BIAS REDUCTION WHEN THERE IS NO UNBIASED ESTIMATE

by

Hani Doss and Jayaram Sethuraman

Florida State University

ABSTRACT

Let € be a parameter for which there is no unbiased estimator. This note show that for an

arbitrary sequence of estimators T(k), if the biases of T(k) tend to 0 then their variances must

tend to oo.
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1. INTRODUCTION.

Let X = (X,...,X,,,) have distribution Po, where the unknown parameter varies in 0.

Suppose that we need to estimate a real valued function 0(0) of the parameter. Let 4 = t(X)

be a biased estimator of 4. There exist several procedures for reducing the bias of 43: jackknifing,

bootstrapping (see Efron (1982)), and other procedures based on expansions of Eo(¢)(see Cox

and Hinkley (1974, Section 8.4)). These procedures may not eliminate the bias completely, and

one often hears the following suggestion. Let 4(') be obtained from € by one of these bias-

reduction procedures. If (1) is still biased, repeat the bias-reduction procedure and obtain

(2) (3) etc. until a desired amount of reduction in bias is obtained or the bias is removed

completely. Such "higher-order bias corrections" are described for instance in the review paper of

Miller (1974) in connection with the jackknife. There are examples where no unbiased estimator

of 4 exists but there exists a sequence of estimators %, €(1), 4(2),.. whose biases converge to zero

(see Section 2).

The purpose of this note is to show (Theorem 1) that when no unbiased estimator of 0 exists,

then reducing the bias to zero necessarily forces the variance of the estimators to tend to oo.

This theorem therefore gives qualitative support to the widely held view that bias reduction is

by itself not a desirable property, but becomes desirable only if it can be demonstrated that it is

accompanied by a reduction in mean squared error.

2. MAIN RESULT AND REMARKS.

Let (X, S) be a measurable space and (Po,O £ 0) be a family of probability measures on

( , S). Let 4 be a real valued function defined on 0. The bias of an estimator T T(X) is

defined by /OT(O) = Eo(T(X)) - 0(0), assuming that Eo(T(X)) exists.

THEOREM 1. Suppose that

(Al) Po, < Po, for all 01,02 in 0,

(A2) f(P44' )2d P < oo for all 01,02 in 0,

and that {T1k,)' is a sequence of estimators for which

(1) /rTA(0) -- 0 for all 0 in E.

If there does not exist an unbiased estimator of 4 then

(2) Varo(T)--oo ask co, for all 0 cO.
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Proof: Suppose that (2) is not true. Then there exists a Bo in O and a subsequence {k*1 of {k}

such that Varo0 (Tk.) is bounded. Now, consider the usual Hilbert space Ho = L2 (., S, Po,) of

all functions that are square-integrable with respect to Poo. Notice that {Tk. } is a norm-bounded

set in Hoo. From the sequential weak-compactness of norm-bounded sets, there exists a T in Hoo

and a subsequence {k**} of {k*} such that Tk.. -- T weakly in H0 0 along the subsequence {k'"},

i.e.

f Tk.. f dPoo -f J TfdPoo for every function f in 1 o,.

In particular, setting f = dPo/dPoo, we get

Eo(Tk..) -+ Eo(T),I

along the subsequence {k**}, for all 0 in (. From (1), it now follows that Eo(T) = 0(0), that is T

is unbiased for 0, which contradicts one of our assumptions. Hence (2) holds and the proof is com-

plete. I

There are many examples of situations to which this theorem applies. One class can be

obtained from the idea of the following example. Consider the family of Poisson distributions

with parameter A with A > 0. It is well known that there exists no unbiased estimator of 1/A,

and that all polynomials in A are unbiasedly estimable. From (a slight modification of) the

Stone-Weirstrass theorem, there exists a sequence of polynomials in A which converge to 1/A for

each A. Thus there exists a sequence of estimators which are unbiased for these polynomials

in A, and whose biases in estimating 1/A converge to zero. A simple calculation shows that
f "")dP),\ = et') - A +A

f ,t ) )dP = exp(A2 - 2A1 + A /A2). Thus Theorem 1 applies to this case and the variances

of these estimators must tend to o.

It may appear that Theorem 1 does not apply to estimates based on the jackknife, since the

"delete-one" jackknife can be formed only a finite number of times. However, a situation with an

infinite sequence of estimators based on the jackknife arises in the following example, based on an

idea of Gaver and Iloel (1970). Suppose that the data consists of a Poisson process {N (t); t ( [0, 1]}

with rate A. In connection with the biased maximum likelihood estimator € e - N(l) of c- ,

Gaver and Hoel suggest splitting the interval 10, 1] into n nonoverlapping intervals each of length

1/n, and letting N be the number of events in the ith interval. These are independent and

identically distributed and one can therefore form the delete-one jackknife as usual. This yields,

for each n, an estimate 0(,,) and they show that as n -- oo k, converges to an estimate €(1)
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which depends on the Poisson process only through the sufficient statistic N(1). This procedure

can be repeated indefinitely in principle, giving a sequence of estimators { (k)} P

A
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