
-D-A189 356 CRIS (COMMON APSE (RDM (TRADE NAME) PROORRIMMING SUPPORT I/1~ENVIRONMENT) INTE..(U) INSTITUTE FOR DEFENSE ANALYSES
ARLEXANDRIA YR J F KRAMER ET AL. 14 AUG 87 IDA-P-2834

UNC.RSSIFIED IDA/HQ-97-32610 MD9U3-84-C- S3 F/612/5 Llimhh hhh

3.61

- 150 14-m

LI.8

$11L25 .4

~ iII!I%

Alt;rLL AJiUNCLAS:'SIF IED COPY2 32 of 251 c00083

".

AD-A189 350
IDA PAPER P-2034

CATS READER'S GUIDE FOR DoD-STD-1838

John F. Kramer
Patricia Oberndorf John Long
Clyde Roby R. Max Robinson
Jeff Clouse John Chludzinski

August 1987

Prepared for0
Ada* Joint Program Office D)T IC

Approved for Public rckoaa81
SDistribution .-Unlimitod ~~ E

,Ile P

a INSTiTUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

*Ada is a registered trademark of the U.S. Government, Ada Joint Program Office. Seutes b

UNCLASSIFIED IDA Log No. NOD 87-32518 ... ,

DEFINITONS
GAPM p beS biOMul bame 10 iPW INe i of No f &Lum

NII uo so ONd ammlmollam moraf Iedl umdidp Mia A polimm.
They smmli l immul II mowa polsm which Ia) have a dked aul ddcisins
ulmha MaOm Ppma or (b) adiru hums of alIfeag Is Fit Ezmm f
bank, of Cumsauw oe powM, or to) ad*uamam Sow" no w h iaveI I uumumi
Iapilumu. IDA Ruuduif m rsulm by odadu pomals of qpu - is m mur lbigij

me mob of spuusalymhs MWMl ipma Io pbue d a bus, ad beaoMM pmols %um
met Palm m imuiuwud Wbumes *A "e mdI masim abar to hm .oeaud
NbMlusP pi In p~udsaft* ul

Memohmdum Report.
MA Muououadu Rmpmrim amgued fo go ummelmmm d ft spaiemime d aile

mmmi mbebimldaue I 11l dweads. bma d maimI luaidu lablma"upe
adMlbelto imb mallabl. polkela" and relm se lls of alpm or d e~n
p"p and paid awmsle hwI lumollu *A Is am mile mmul amd onma
volsarle bmuksona reid Nieru mollmgu, m kdumaid drededevlwimpdn -
Nome d so lei bulglol. Realm of gmm~adm Ropulm Is mimi to Sin ~mos
aid blowili mus.

The ammaieMNWA ,k u nnmasemy by kdIm nil Idnm mmmammd is spuuu
se sbi deallomime bymeh pumei. Ass Mapill.

It a ap ill Wae dmandm mm mmdmtd mimi mmmba MIA 90 C O31 for
me OIdMpeha d 00191m0. IIS pm&imaof.fN hIDA damMINmiW demalimale IM deiue-
mina by In Dspubeud d Omm, aM ubudi VIS IMmmlub be ONNNuu IS Iae. me
mili posillso d Su spay.I[Tisa pp kms beass ralWA by MA b smm 0 N musoi blO aldmada Neig m d
ugeaall. ad NOmi amyeltt ItMem dm m t mNISII m mSM IOm go m

LAIs

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE /

Ia REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified None

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
% Public release/unlimited disitribution

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

P-2034

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Institute for Defense Analyses IDA

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22311

Ra NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) %

Ada Joint Program Office (AJPO) MDA 903 84 C 0031 1,

Se ADDRESS (City, State, and Zip Code) 10. SOURCE OF FUNDING NUMBERS

1211 Fern St., Room C-107 PROGRAM PROJEUT TASK UNIT
Arlington, VA 22202 ELEMENT NO. NO. NO. ACCESSION NO.
Arlington, T-D5-305 WORK

11 TITLE (Include Security Classification)

CAIS Reader's Guide for DoD-STD-1838 (U)
12 PERSONAL AUTHOR(S)

J. Kramer, P. Oberndorf, I. Long, C. Roby, R. Robinson, J. Clouse, J. Chludzinski
3a TYPE OF REPORT 13 TIME COVERED 14 DATE OF REPORT (Year, Month, Day) IS PAGE COUNT

Final FROM TO 1987 August 14 54

6 SUPPLEMENTARY NOTATION

17 COSATI CODES 1il SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

____L___ ROU___ s__________ Ada Programming Language; Common Ada Programming Support Environment (APSE)
Interface Set (CAIS); DoD-STD-1838; Software Environments; Software Tools; Soft- v,.
ware Development; Kernel APSE (Kapse); Minimal APSE (MAPSE).

19 ABSTRACT (Continue on revers If neceary end identify by block number)

The CAIS Reader's Guide for DoD-STD-1838 has been produced to aid readers in understanding DoD-STD-1838, the Military'
Standard Common Ada Programming Support Environment (APSE) Interface Set (CAIS). DoD-STD-1838 defines a set of
interfaces which allows software tools resident in an APSE access to common operating system services and facilities. APSE %
tools are Ada programs, each of which is used for a specific software development task. These tools need facilities to communi-
cate with their environment, including other tools in that environment, which the Ada language does not provide. The CAIS can
thus be regarded as providing extended interfaces between an external environment and a host system.

P

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

EUNCLASSIFIED/UNLIMITEDa3 SAME AS RPT. C3 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code 22c OFFICE SYMBOL

Dr. John F. Kramer, IDA (703) 824-5504 -

DD FORM 1473, 84 MAR SECURITY CLASSIFICATION OF TIllS PAGE"53 APR edition may be used until exhausted
All other editions are obsolete

% ".

.'r .0
11- '

IDA PAPER P-2034

CAIS READER'S GUIDE FOR [DoD-STD-1838

John F. Kramer
Patricia Oberndorf John Long
Clyde Roby R. Max Robinson CD

Jeff Clouse John Chludzinski

Pp

.

August 1987

6J Codes

o arowl

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-D5-305

CAIS READER'S GUIDE FOR DOD.STD-1838

Preamble

The CAIS Reader's Guide for DOD-STD-1838 has been produced to aid readers in
understanding DOD-STD-1838, the Military Standard Common Adal Programming Support
Environment (APSE) Interface Set (CAIS). It is neither the intent nor purpose of this guide
to provide a comprehensive presentation of the CAIS. Instead, the purpose is to give an
overview of the model defined in the CAIS document. DOD-STD-1838 contains the
sections Scope, Referenced Documents, Definitions, General Requirements, Detailed
Requirements and Notes. The CAIS node model and security model are discussed in the
General Requirements section. Within the Detailed Requirements section, various topics are
described, including node management, processes, and input and output. Chapter I of this
guide provides an introduction to the CAIS. The CAIS node model and security model are
discussed in Chapter 2. In Chapter 3, General Node Management, CAIS node management
operations are discussed. Chapter 4 provides further explanation of CAIS processes. Finally,
Input and Output provided by the CATS are discussed in Chapter 5. Having read the CAIS
Reader's Guide for DOD-STD-1838, one should have a sufficient understanding of the CAIS
to begin reading the DOD-STD-1838 CAIS document.

.,*5,

ike

% %

,~ -,

..

tAda is a registered tradem ark of the United States Government, Ada Joint Progr Office. V

2Military Standard Common Ada Programming Support Environment (APSE) Interface Set (CAIS), United

States Department of Defense, DOD-STD-1838. 9 October 1986.

V j1- W

CAdS READER'S GUIDE FOR DOD-STD.1838

p
p

~0

4.
4.

I

0

0
S.

.5

S..

.5.

ii
0

.5%

Y~rZ.r4Cr~ V 5r ~ Jt V.C.!K.P~ .~ V V., .~ Qt - ~ A 4 t V.$,/.Y.%~J. . .5Af.$./.A~/,f./%~\'\~k 5 ~ .

CAIS READER'S GUIDE FOR DOD-STD-1838

Contents
1. INTRODUCTION ... 1

1. istory tthe CAIS ... 1
1.2 The Need for a CAIS ... 3
1.3 Future of the CAIS .. 7

2. THE CAIS NODE MODEL ... 9
2.1 Example Scenario ... 9
2.2 Nodes ... 11
2.3 Relationships and Relations ... 13
2.4 Attributes .. 16
2.5 Security and Access Control Provisions ... 18
2.6 CAIS Operations .. 18

3. GENERAL NODE MANAGEMENT 21
3.1 Node Operations .. 21
3.2 Attribute Operations .. 22
3.3 Discretionary Access Operations .. 22

4. CAIS PROCESS NODES ... 25
4.1 Process Initiation .. 2S
4.2 Process Suspension or Resumption ... 28
4.3 Process Termination or Abortion .. 29
4.4 Process Relationships .. 29
4.5 Process Attributes ... 31

5. CAIS INPUT AND OUTPUT .. 33
5.1 Secoadary Storage .. 33
5.2 Queues .. 33
5.3 Devices T... . Drives. .. 37

5.3.1 Magnetic Tape Drives... 37
53.2 Terminals 37

5.4 Sequential, Direct, and Text Input and Output 39

6 REFERENCES .. 41

WW

%:-.

ft °%

," ,'--% .'.'.- -. .-. .- -,-.-. - -., -.... '..0

CAIS READER'S GUIDE FOR DOD-STD-1838

Figures
FIGURE 1. APSE Model ... 2
FIGURE 2. Purpose of CAIS 5
FIGURE 3. A Common Tool on Different CAIS Implementations 6
FIGURE 4. Node Model Schema 10
FIGURE S. Node Model Example 12
FIGURE 6. Seven Predefined Relations 15
FIGURE 7. Some Predefined Attributes 19
FIGURE 8. Copying a Subtree of Nodes 23
FIGURE 9. A Process is an Ada Program 26
FIGURE 10. Process States ... 27
FIGURE 11. Input and Output Predefined Relations 30
FIGURE 12. Solo Queues .. 34
FIGURE 13. Solo Queue as a Pipe 35
FIGURE 14. Copy Queues .. 36
FIGURE 15. Mimic Queues 38

iv

Ii

- . - . - . .
*J. - ~ '.

N.v

CAIS READER'S GUIDE FOR DOD-STD-1838

Tables
TABLE 1. Predefined Relations.................................. 16
TABLE 11. Predeflned Attributes 17

% 4

CAIS READER'S GUIDE FOR DOD-STD-1838

1. INTRODUCTION

1.1 History of the CAIS

The High Order Language Working Group (HOLWG), formed by the Department of
Defense (DoD), recognized early in the Ada program that, while the Ada language itself did
not require a special development and maintenance environment, the life-cycle maintenance
of mission critical computer systems did.

It was felt that an integrated software environment containing a set of good tools would
encourage acceptance of the language, thereby magnifying the benefits of the language
standardization effort. [SWAV]

Central to the development environment for the Ada language is the concept of a
Programming Support Environment. A Programming Support Environment involves a
collection of software tools that aid a developer or life cycle maintainer in his programming
tasks during coding, testing and debugging. These tools traditionally include compilers,
editors, debuggers, configuration control aids, linkers and text formatters.

An Ada Programming Support Environment (APSE) is an environment for the development
of mission critical software systems written in the Ada language. Because of the volume of
Ada software that the DoD intends to procure, APSEs must be available at several
installations and on many different types of hardware.

The purpose of an APSE is to support the development and maintenance of Ada applications
software throughout its life cycle, with particular emphasis on software for embedded computer
applications. (STONEMAN]

The requirements document for an APSE, "STONEMAN" [STONEMAN], goes further
than being just a requirements document, for it also specifies an architecture for an APSE. In
this architecture, a layering is defined which is generally portrayed as two layers surrounding
a central core as shown in Figure 1.

The core is referred to as a Kernel APSE (KAPSE). The KAPSE represents operating system
services commonly available to tools and applications programs. Thus, the KAPSE provides
a common set of capabilities regardless of what the host may be. Such capabilities include
general operating system services such as file management services and process and device
control services. While each host is expected to have different implementations and similar
or identical capabilities, the interfaces and their functionality provided in a KAPSE,
according to [STONEMAN], must be identical from one host to another. The Common
APSE Interface Set (CAIS) [1838] addresses the concerns expressed in [STONEMAN] for a
common set of interfaces at this level (see Figure 1).

The next layer, the Minimal APSE (MAPSE), consists of software tools which minimally
support software development, such as compilers, editors and linkers. According to
[STONEMAN], these tools are to be written in the Ada language and are to be transportable,
at the source level, to other APSEs. To achieve transportability, MAPSE tools are required to
use the common interfaces in the KAPSE.

1o
S4

;, '',-.":-':::€t.";,': ,, ?r':.:.., %"--',¢,,-: t :-:..:, - .Z_.-'.-' ,.:,,-:-:.-. -.. :,.- ..:-.:. -.. ,.,,,,.,- .-- ,.-..-.

CAIS READER'S GUIDE FOR DOD-STD-1838

Command , KAPSE
Language Functions Deuge
Interpreter

Configuration Lne

CAIS

FIGURE 1. APSE Model

2

CAIS READER'S GUIDE FOR DOD-STD-1838

The top layer, the APSE, is to provide project unique tools and services. As such, the APSE
may be viewed as a comprehensive set of tools for integrated life cycle development of
software.

1.2 The Need for a CAIS

When DoD started procuring tools for the Ada program, it did not restrict itself to procuring
individual tools. Rather, the DoD embarked upon the procurement of APSEs. Two
procurements were started: one by the Army, called the Ada Language System (ALS), and
the other by the Air Force, called the Ada Integrated Environment (AIE). Unfortunately, the
interfaces provided from the KAPSE to the MAPSE were different in these two APSEs.
Because of divergent approaches at the KAPSE interface level by the ALS and AlE
contractors, a team was formed (by tri-services agreement [APSE]) to define more specific
KAPSE interface requirements. This team is the KAPSE Interface Team (KIT) and is
chaired by the Naval Ocean Systems Center (NOSC), a Navy laboratory. Added to the KIT
was the KAPSE Interface Team from Industry and Academia (KITIA). The KIT/KITIA
periodically issues reports on their progress, but their most significant product appeared in
June 1987 with the public presentation of DOD-STD-1838, the Military Standard Common
Ada Programming Support Environment (APSE) Interface Set (CAIS) [1838].

The KIT/KITIA had examined the differences in the ALS KAPSE and the AIE KAPSE and
concluded that a mere host encapsulation would be insufficient to achieve the objectives of
portability and interoperabiity. In addition, a common process composition and data
interrelation model was needed. The two KAPSEs were sufficiently different that a common
KAPSE subset definition would not achieve the objectives at all. Furthermore, the common
interfaces of the two KAPSEs could not completely encapsulate the host. Some of the needed
functionality is inherently host-dependent and therefore is very difficult to provide in a
common form across all conceivable hosts. Thus, the KIT/KITIA developed the CAIS based
on these principles but without being constrained to map directly onto the KAPSE designs of
either the ALS or the AIE.

One interpretation of the CAIS in relation to the KAPSE interface layer is that the CAIS
provides an interface layer above the level of the KAPSE due to the addition of the data
interrelation model which traditionally has been a part of individual tools rather than of the
common underpinnings of these tools. It thereby replaces large portions of the KAPSE from
the tool-writer's point of view. More primitive KAPSE-like interfaces could still be valuable
to enhance portability of the CAIS implementations themselves or of tools that access host-
dependent facilities.

An extensive review of the proposed Military Standard CAIS [CAIS85] was made by the
government, DoD, industry and industry groups, and academia as well as individuals. During
the formal military standardization process, nearly 600 comments were submitted against this
document. As a result, the proposed Military Standard CAIS was voted unanimously by the *

CAIS Standardization Working Group to become a military standard on 9 October 1986.
DOD-STD-1838 [1838] was delivered to the Ada Joint Program Office on 16 June 1987.

The CAIS document [1838] defines a set of interfaces which allows software tools resident
in an APSE access to common operating system services and facilities. APSE tools are Ada
programs, each of which is used for a specific software development task. These tools need

3

CAIS READER'S GUIDE FOR DOD-STD-1838

facilities to communicate with their environment, including other tools in that environment,
which the Ada language does not provide. The CAIS can thus be regarded as providing
extended interfaces between an external environment and a host system. This intent of the
CAIS is illustrated in Figure 2.

The interfaces in [1838] are in the form of a set of Ada package specifications. The
capabilities specified are those which are commonly encountered in operating systems. These
include operating systems such as MS-DOS 3 , UNIX 4, VMS 5 and VM/CMS 6, which are in
widespread use in industry and which are used as software development environments. Thus,
the CAIS includes facilities for process initiation and control and file and device
management.

The CAIS is not intended to provide an exhaustive set of all operating system facilities
available today. Rather it is the goal of the CAIS to provide those facilities which have been
found most useful in most operating systems and which have an impact on moving tool sets
or project databases between APSEs.

The CAIS must be seen as the common portion of a set of host-encapsulating interfaces.
There is good reason, and in some cases even a necessity, for a CAIS implementation to
provide interfaces that are not part of the CAIS, but nevertheless integrate with the CAIS
model. Whether or not these additional interfaces extend the CATS to be the equivalent of a
complete operating system depends upon the implementation. An implementation piggy-
backed onto or integrated with an existing host operating system is unlikely to replicate many
host-dependent interfaces that do not interact with the CATS model and are available by
calling the host operating system directly.

The objective of the CATS is to provide a common set of interfaces in APSEs and thus I

promote the transportability of tools and the ability to move development project databases
between systems that support the CATS. Figure 3 depicts such a common tool with a
common set of interfaces for two different tailored CATS implementations. A common set of
interfaces is necessary because APSEs are expected to be hosted on a variety of machines
and operating systems. Large systems are often developed by several organizations and often
maintained during the remainder of their life cycle by someone other than the developer.
Because tools in APSEs regularly require facilities of the host system (e.g., the directory
structure or the naming conventions of the host's file management system), those tools and
the project database generated by them become host dependent. Since such facilities are not
within the scope of the Ada language, the absence of a standard such as the CATS will make
it difficult to achieve true transportability and to move the project database.

3MS-DOS is a registered trademark of Microsoft, Inc.
4UNIX is a registered trademark of AT&T.

5VMS is a registered trademark of Digital Equipment Corporation.

6VM/CMS is a registered trademark of International Business Machines, Inc.

4

V. 4V

CAIS READER'S GUIDE FOR DOD-STD- 1838

.%.fo

ALS AIE OteAPSEs :

J.5

'S%

55

-~'. -~ ' ~ ~ U~V wV VwI WV -KWXPwxFUxxT PIMP-" Pm AJi7Vu-WIvw wr.TR.rljiTI'w V

CAIS READER'S GUIDE FOR DOD-STD- 1838

TAILORED

IMPLEMENTATION

COMONINTRCESMO

1%T

N0

KAPSE

~.NCOMMON INTERFACE

~ d.COMMON
.~ -~T

CAIS READER'S GUIDE FOR DOD.STD- 1838

1.3 Future of the CAIS 4

It is desirable that the CAIS be used in all DoD-sanctioned APSEs. Towards this purpose, the %
CAIS document has been submitted for and has become a military standard, DOD-
STD-1838.

At the same time, the KIT/KITIA has also developed a requirements document [RAC86] for
the evolution of the CAIS. While the contents of the requirements document reflect closely J^%
the operations provided in DOD-STD-1838, differences exist between the two documents. A
contractor has been chosen by a competitive process to further refine and develop the CAIS.
The objective is to arrive at a DOD-STD-1838A by early 1989.

J5,

Since the CAIS has been adopted as a military standard, a common approach to the 4..
foundations of APSEs exists, thus encouraging and promoting transportability of software
tools and project databases. Another major benefit is the ability to establish a larger tool . --

marketplace because of the larger number of APSEs in which a tool can be installed. It is -I
expected that software development productivity using the CAIS-based APSEs will also
increase due to the ability to share good tools more widely, thus further enhancing the
software productivity goal addressed by the creation of the Ada language.

.%-

There remain many problems of interoperability and transportability which the evolution of
the CAIS must address or for which other standards might be proposed. In particular is the
desire to provide inter-tool data standards so that tool builders could insert an individual
component of a tool set into someone else's tool set. DOD-STD-1838 is a good starting basis
for such improvements because it has been widely reviewed and includes numerous
improvements over other environment interfaces such as UNIX while not being too advanced
to prevent a reasonable number of implementations for wide use. .

Several implementations of the CAIS have been and continue to be developed. Gould, Inc.
finished the most complete implementation of [CAIS85] in early 1986 and is in the process
of updating this implementation to (1838]; this should be completed in late 1987. TRW's
implementation of (1838] will be complete in 1988; TRW already has completed a partial
prototype implementation of [CAIS85]. Dr. Timothy Lindquist, currently at Arizona State
University, has developed an Operational Definition of [CAIS85] and is currently in the
process of updating it for [1838]. Although the MITRE Corporation has not developed a
complete implementation of [CAIS85], they have been instrumental in developing partial
prototype implementations which address feasibility issues. The first partial prototype -

implementation by MITRE addressed the implementability and rehostability of [CAIS851
from a Sun7 UNIX system to a VAX 8 VMS system [RCAIS]. This prototype
implementation was then extended by MITRE to address issues concerning a heterogeneous
distributed system [DCAIS].

7Sun is a registered trademark of Sun Microsystems, Inc.

$VAX is a registered trademark of Digital Equipment Corporation.

7

* St ,

CAIS READER'S GUIDE FOR DOD-STD-1838

-S

I'
$

/

p
a,

.5,

8 'U
'V

p.

-- 1
V >tCtctr'.OC ~~:*~~Wa, 5. ~

%%% * V -

CAIS READER'S GUIDE FOR DOD-STD- 1838

2. THE CAIS NODE MODEL

The CAIS provides for the administration of the life cycle development and maintenance of
embedded computer systems. Typically in an APSE, a number of users employ a variety of
software tools to produce files of design, source and object code and other project
information. Interfaces for the use of files, processes and directory spaces are given. Since it
is desirable that tools be transportable among APSEs, common interfaces must be provided
between the tools and the host system. In order to arrive at a coherent set of interfaces, the
CAIS has been designed around an abstract model to support the life cycle development and
maintenance of applications software which support embedded computer systems. This
model is the CAIS node model.

The CAIS node model consists of entities (e.g., files, devices, directories) and associations
between these entities. The model is depicted as a directed graph of nodes (nodes of the
graph) and relationships (arcs of the graph). The nodes represent entities and can have
contents and attributes. The relationships specify unidirectional associations from one node 'A.

to another and can also have attributes. Attributes provide information about the node or
relationship with which they are connected. Figure 4 shows the node model in the form of a
schema. The node model is described in Section 4.3 of [1838].

2.1 Example Scenario

A user, Jones, is a member of a software engineering project of a large aerospace company
and is responsible for developing a subprogram that works with radar information as part of a
landing system. Within this company, the project that Jones belongs to is known as the
Tracker project. Jones has previously organized his work within the CAIS database. In
particular, he has organized several program units together for the Tracker project; one of
these areas is for the landing system subproject and it contains the radar subprogram.

When any user logs on to this company's CAIS-based APSE, a command language V_
interpreter (CLI) is started on behalf of that user. The code for the CLI and other user tools
are organized together within the CAIS database. In addition, within the tools area of the
CAIS database, several tools have been collected together that deal especially with the
subproject that Jones is working on in the Tracker project of this company. One of the tools
located here is a simulator.

On this particular day, Jones has logged in to a terminal (a CRT), the CLI has been started
and some CU commands from a file have been performed automatically. From the CLI,
Jones starts a simulation job in the background and then begins to edit an Ada subprogram "
source file. Figure 5 is a depiction of the node model from the perspective of user Jones.
Today, the primary focus of user Jones is with the Tracker project. Thus, the editing tool that
Jones is using reflects this (via the arrow labeled "currentnode" in Figure 6).

9
Z"9 ..-

CAIS READER'S GUiDE FOR DOD-STD-1838

II

NOE
REAIOSI

COTET

FIUR 4 NdeMoelSceA

Ta

FIUR 4. Nod Model Schema

* -V A'~ CA. 4 f

CAIS READER'S GUIDE FOR DOD-STD-1838

2.2 Nodes

The CAIS node model specifies three kinds of nodes: process, file and structural. The
contents of process nodes represent the execution of Ada programs. File nodes represent Ada
external files, such as data files, source code files or logical stores of information such as
terminals. Structural nodes typically represent user collections of files, such as user
directories.

The CAIS node model defines the concept of a system-level node, which represents the root
of the graph spanned by the relationships between nodes. There is only one of these nodes.
The CAIS does not provide facilities for operations on the system-level node. Figure 5 is a
node model example showing process, file and structural nodes with the system-level node 9.

Nodes connected to the system-level node are called top-level nodes. In Figure 5, structural
nodes identified by JONES and TOOLS are top-level user nodes. Top-level user nodes
cannot be created or deleted with CAIS facilities. Such nodes represent the directories of
users, which may be individuals, projects, services or other organizational entities that
require access to APSE tools and files.

Devices in a programming environment, such as terminals and tape drives, are represented as
file nodes associated with the system-level node. These file nodes are referred to as device
nodes. Device nodes cannot be created or deleted with CAIS operations. The file node
identified by CRT in Figure 5 is a device node.

Facilities are not provided in the CAIS to create and delete device nodes and top-level user
nodes as explained above. Additional facilities must be provided by an implementation to
support top-level nodes because these facilities are different on every system and thus it
would be difficult to define a way that would be common across these diverse systems.

When a user enters an APSE implemented using the CAIS, a process node is created which
forms the root of a tree of process nodes for that user. This node is referred to as a root
process node. A root process node may represent, for instance, a command language
interpreter. Nodes identified by CLI and SIMULATOR are root process nodes in Figure 5. A
job is the tree of process nodes with the root process node as its root. Two jobs are shown in
Figure 5: one consisting of the nodes identified by CLI and EDIT, and another consisting
solely of the node identified by SIMULATOR. A user may have more than one job executing
at any given time.

Within the node model, each process has a corresponding file node, known as a program
node, whose contents is the executable image for that process. Each program node is the
target of a secondary relationship of the predefined relation EXECUTABLEMAGE
emanating from the process node (see Sections 2.3 and 4.4 of this guide). In Figure 5, for
example, the nodes identified by CLI_CODE, EDIT_CODE, and SIMULATORCODE are
the program nodes for the process nodes identified by CLI, EDIT and SIMULATOR,
respectively (the secondary relationships of the EXECUTABLE IMAGE relation are not
shown in this figure).

9Note that in thi figure as well as other figures in this guide which show poions of the node model. not all
relatio ips are shown; only those relationships that are currently under discusion arc depicted.

511

• .- e , .3 . , .,f~ ,,_.'- .T'. , - ;.- ., . '.' '.','-',.-.-.-'-'-- - -' .-..' .',',.','.--' ;.--" .

CAIS READER'S GUIDE FOR DOD-STD- 1838

SYSTEM LEVEL NODE

U N GROUP (PROJECT)

DEVICE (CRT) USER (TOOLS)

JONES CRTOOLS

OB(SIMULATOR) DOT(TRACKER) DOT(CLI)
DOT (LOGIN SCRIPT)SIUAO

DOT (TRACKER) JO(LDOT (EDIT)

SCRTTRACKER CODE

DOT (EDIT)

DOT(LANDINGSYSTEM) DOT (SIMULATOR)

DOT (TEMP FILE)

WITH UNIT(RADAR)I

FILE

FILE NODES
PRIMARY RELATIONSHIPS

CSTRUCTURAL NODES

SPROCESS NODES LEGEND

FIGURE 5. Node Model Example

12

CAIS READER'S GUIDE FOR DOD-STD-1838

2.3 Relationships and Relations

Nodes within an APSE are usually interrelated. Nodes within the node model are connected
by unidirectional arcs called relationships. A relation is a set of relationships having the same
name. A relationship is an instance of a relation, much like a set element is an instance of a
set. Relationships are identified by their relation name together with a string called a
relationship key. Relationships having the same relation name and emanating from the same
node are differentiated by the use of relationship keys.

For example, in Figure 5, the nodes identified by CLI_CODE and EDIT_CODE are targets
of relationships of the relation DOT. Since there is more than one relationship with the same
relation name emanating from the node identified by TOOLS, the relationships must be
differentiated by the use of relationship keys. In this example, the relationship keys are CLI
and EDIT, respectively.

The CAIS provides two distinct categories of relationships: primary relationships and
secondary relationships. When a node is created, a primary relationship is created between
some existing node and the created node. The existing node is known as the parent of the
created node. Accordingly, the created node is referred to as a child of the existing node.
Each node is the target of exactly one primary relationship. Graph interconnections
representing primary relationships are such that the graph forms a tree. The tree structure
may be changed through the creation, deletion and renaming of primary relationships, but it
always remains a tree. Secondary relationships are used to establish additional associations
between nodes. Emanating from each child is a secondary relationship of the predefined
relation PARENT that identified the child's parent. In Figure 5, for example, the node
identified by JONES is the parent of the nodes identified by LOGIN-SCRIPT and
TRACKER; similarly, the nodes identified by LOGINSCRIPT and TRACKER are children
of the node identified by JONES.

The primary relationship to a node may be deleted, rendering the node unobtainable. If the
primary relationship to a node has been deleted, the node may actually still exist in the
implementation, but it cannot be accessed. Such nodes are not referred to as deleted nodes
because the implementation controls when the node is physically deleted (e.g., expunged
from storage). An operation is also provided to delete all of the primary relationships within
a subtree, thus rendering all nodes in the subtree unobtainable. The concept of an
unobtainable node is further explained in Section 3.1, Node Operations, of this guide.

Since objects in an environment often have many associations, the CAIS node model _
provides for nodes to be connected through secondary relationships. The structure formed by
the secondary relationships is a directed graph. Secondary relationships to a node remain in
existence even after the node is made unobtainable. These relationships remain in existence
because it is possible that attributes of these relationships may still contain important
information about the node. To eliminate these relationships, they must be specifically
deleted. However, any attempt to access an unobtainable node (one whose primary
relationship has been deleted) through the secondary relationship will result in an exception
being raised.

The primary relationship to a node may be renamed. This operation deletes the primary
relationship to the node and establishes a new primary relationship to that node from another
specified node. The secondary relationship of the predefined relation PARENT to the

13

(UW"

CAIS READER'S GUIDE FOR DOD-STD-1838

original parent is deleted and a new secondary relationship of the predefined relation
PARENT is created to the new parent. All secondary relationships to the renamed node
remain.

Nodes are accessed by establishing a path from a reference or current node; this is called
navigation. Nodes may be accessed by specifying a path through the node model using
primary and secondary relationships. Each path has a pathname which consists c. the
concatenation of the relation names and relationship keys used to move from the first node in
the path to the last node in the path. Pathnames can be constructed of both primary and
secondary relationships. 'USER(TOOLS)'DOT(TRACKER)'DOT(SIMULATOR) is an
example of a pathname of the node identified by SIMULATORCODE from Figure 5, where
USER and DOT are predefined relations that will be explained later. An alternate method of
referring to a node is through a node handle, which is discussed in Section 3.1, Node
Operations, in this guide.

The CAIS defines a number of predefined relations in the node model. User defined relations
can also be established. Seven of the predefined relations are: PARENT, USER, DEVICE,
JOB, CURRENTJOB, CURRENTNODE and CURRENTUSER. Figure 6 depicts a
portion of the node model example from Figure 5 with relationships of some of these
relations shown (all relationships for all relations are not shown in Figure 6). Secondary
relationships of the PARENT relation emanate from each child to its parent. There are
predefined relations USER and DEVICE which may be used for both primary and secondary
relationships. Primary relationships of the relation USER emanate from the system-level
node and identify, user top-level nodes; secondary relationships of the relation USER
emanate from process nodes and also identify user top-level nodes. Primary relationships of
the relation DEVICE emanate from the system-level node and identify device nodes;
secondary relationships of the relation DEVICE emanate from process nodes and also
identify device nodes. Each root process node is identified by a primary relationship of the
JOB relation from its parent. Additionally, each process node has secondary relationships of
the CURRENTJOB, CURRENTNODE and CURRENTUSER relations emanating from
it. These relationships are typically used as a context for the interpretation of pathnames. A
relationship of the relation CURRENTJOB always identifies the root process node of the
subtree containing the process. A relationship of the relation CURRENTNODE is typically
used to identify the node that is the object of that process's actions; it defines part of the
current environment for pathname interpretation. A relationship of the relation CURRENT-
USER identifies the top-level user node for that process.

DOT is the default relation used when none is otherwise specified. In pathname syntax,
'DOT can be abbreviated to ".". The relationship key is then used to differentiate between
other nodes sharing the DOT relation with the parent (i.e., from the previous pathname
example, 'USER(TOOLS).TRACKER.SIMULATOR is the abbreviation). Relationships of
the DOT relation must always have a relationship key.

Table I is a list of the predefined relations. For more information on relations, see Section 4.3
and Appendix A of [1838].

14

",.e Id ~ 5 5~' ' 5 *~~. .

CAIS READER'S GUIDE FOR DOD-STD-1838

SYSTEM LEVEL NODE

S-

USER (JONES) DEVICE (CRT)

JOB(LI) ser(ones

DOT (TRACKER)

device (crt)

DOT (LANDINGSYSTEM) cretjb.N

paren

E Z FILE NODES 'I

PRIMARY RELATIONSHIPSG D STRUCTURAL NODES / secondary relationships

GPROCESS NODES LEGEND

FIGURE 6. Seven Predefined Relations

151
"Z %

CAIS READER'S GUIDE FOR DOD-STD-1838

TABLE I. Predefined Relations

Predefined Relation Relationship Source Node Target Node
Type

ACCESS secondary any group

ADOPTEDROLE secondary process group

CURRENT-JOB secondary process root process

CURRENTNODE secondary process any

CURRENT-USER secondary process top-level user

DEFAULTROLE secondary top-level user group

DEVICE primary system-level device
secondary process top-level device

DOT primary or any any
secondary

EXECUTABLEIMAGE secondary process file

GROUP secondary process top-level group
primary system-level top-level group

JOB primary top-level user root process

MIMICFILE secondary mimic queue coupled file

PARENT secondary any any

POTENTIALNMEMBER secondary group group

USER primary system-level top-level user
secondary process top-level user

When "any" is indicated in this table, it is understood to mean "any node except the
system-level node".

The relations ACCESS, ADOPTED ROLE, DEFAULTROLE, GROUP and
POTENTIAL-MEMBER are not discussed in this guide. These five relations are used in
discretionary access control, which is only briefly mentioned in this guide.

2.4 Attributes

Information about nodes and relationships may be contained in the attributes of the nodes or
the attributes of the relationships. Each attribute has a name and a value; the attribute value
is a list. For example, each CAIS node has a predefined attribute TIMEREATED which
indicates the implementation-defined time of creation for that node.

There are several predefined attributes in the CAIS. Table HI lists the predefined attributes
and describes their applicability and values. More information on attributes can be found in
Section 4.3 and Appendix A of [1838]. Figure 7 shows an example of several predefimed
node attributes and relationship attributes.

16
at

CAIS READER'S GUIDE FOR DOD-STD- 1838

TABLE 11. Predefined Attributes

Predefined Attribute Applicable to Values

ACCESSJV{ETHOD file node SEQUENTIAL, DIRECT,

CURRENTILE..$IZE secondary storage file node value >= 0

CURRENT-QUEUE SIZE nonsynchronous value >= 0
________________queue file node

CURRENTSTATUS process node READY, SUSPENDED,
ABORTED, TERMINATED

DEVICEIND device file node SCROLL_ERMIfNAL,
PAGE...ERMINAL,
FORM - ERMINAL,

________________MAGNETICJTAPE.DRIVE,

FILEKIND file node SECONDARY STORAGE.
QUEUE, DEVICE

GRANT ACCESS relationships access right value%

FHGHESTCLASSIFlCATION file node implementation-deflned

IHRTBEall relationships TRUE, FALSE

IGUIS UTprocess node integer >= 0

LOWEST_CLASSIFICATION file node implementation-defined

_AHN-W poesnd value >= 0

MAXIMUM_FILE_SIZE secondary storage file node value.>= 0

MAXMUMQUEUE..SIZE nonsynchronous; value >= 0
queue file node

NODE KIND all relationships STRUCTURAL, PROCESS,
FILE

OBJECT_.CLASSIFICATION all nodes implementation-defined

OPENNODEJ{HANDLECOUNT process node value >= 0

PARAMETERS process node tool-defined list

PROCESS ..SIZE process node value >= 0

QUEUECIND queue file node SYNCHRONOUS-.SOLO,
NONSYNCHRONOUS-SOLO,
NONSYNCHRONOUSCOPY,
NONSYNCHRONOUSMIMC

RESULTS process node tool-defined

SUBJECTCLASSIFICATION all nodes implementation-de fined

TIMEA1TIBUTEL.WRrrrEN all nodes implementation-de fined time

TIME CONTENTS..WRITTEN file node implementation-defined time

TIME_CREATED all nodes implementation-defined time

TIMEFINISHED process node implementation-defined time1.

TIM~ERELATIONSI{IPWRI1TEN jall nodes implementation-defined time 0

17

CAIS READER'S GUIDE FOR DOD-STD- 1838

TABLE II. Predefined Attributes -- Continued. -.

Predefined Attribute Applicable to Values

TIME_STARTED process node implementation-de fined time

p

J.

Attributes may also be defined by the user. User-defined attributes are used for describing ,p
additional characteristics of nodes and relationships. For example, user-defined attributes
may be useful for describing the number of pages in a document. An attribute NUMBER_
OFPAGES, for example, could be defined for each file node that contains a document to
specify the length, in pages, of that document.

2.5 Security and Access Control Provisions

There are two kinds of access controls defined in the CAIS document: discretionary access
controls and mandatory access controls.

Discretionary access controls limit the authorized access of process nodes to other nodes.
Along with certain relations that determine which nodes a process can act upon, the concept -
of a role, which represents access rights, establishes discretionary access controls. For more
detailed information on access controls, see Section 4.4 of [1838].

Some APSEs may be required to operate in multi-level secure environments. The CAIS
supports mandatory access controls. These controls remain consistent with the security
criteria established in [TCSEC] and define neither a particular security model nor policy.
CAIS mandatory access control provides a labeling mechanism via node attributes. By
classifying nodes, mandatory access controls limit the use of the three operations of reading,
writing, or reading and writing. Such classifications may be hierarchical (e.g., the
conventional government UNCLASSIFIED, CONFIDENTIAL, SECRET and TOP SECRET
hierarchy of classifications), non-hierarchical (e.g., compartmented), or a combination of
both. p

2.6 CAIS Operations

The interfaces specified in the CAIS may be divided into three main groups:

a. General node management operations.
b. Process node operations.
c. Input and Output operations.

These operations are described in the following chapters of this guide. The CAIS also ,
includes a number of utility packages which are not covered in this guide. .',-

a. Section 5.4 of [1838] discusses list management of the CAIS.

b. Section 5.5 of [1838] defines the package CAIS_STANDARD which contains
certain scalar types predefined in the CAIS; this package is provided in order to
make these types reasonably independent of any predefined types in the Ada
language, whose characteristics may vary among compilers.

18

-,,"

.70

CAIS READER'S GUIDE FOR DOD-STD- 1838

(SYSTEM LEVEL NODE J

USER (JONES) DEVICE (CRT)

ACCESSMETHOD- (TEXT)
DOT (RACKR) Kid- (ile)DEVICE_KIN D- (PAGE TERMINAL)

FILEKIND-(DEVICE)
JOB (CLI) HIGHESTCLASSIFICATION- (U)

device (crt) LOWESTCLASSIFICATION-CU)
OBJECT CLASSIFICATION- CU)

DOT (LANDINGSYSTEM) ~h

Kind-(Structural) O(DT in-Poe3

WITHUNIT (RADAR)a

Kind-Cil6) ACHINETIME-(03:1O:35.31)

OBJECTCLASSIFICATION- (U)
OPEN NOEHNLE c6UNT-(8)
PARAMETERiS-C
RESULTS- () d

ACCESS t4ETHOD-(SEQUENTIAL) SUBJECTCLASSIFICATION-CU)
TIME FINISHED-C)

FILE KIND-(SECONDARY STORAGE)TIESAEDC
HIGESTCLASIFCATON STAU)-(

LOWHESTCLASSIFICATION-U)e
OJECT CLASSIFICATION- CU)

FILE NODES Relationship
I I ~., .

Attributes fA
Q ~ STRUCTURAL NODESOPROCESS NODES NODE ATTRIBUTES

$1 PRIMARY RELATIONSHIPS

7LE GEND
secondary relationships

FIGURE 7. Some Predefined Attributes

19

CAIS READER'S GUIDE FOR DOD-STD. 1838

c. Section 5.6 of [1838] defines the package CAISCALENDAR which provides
facilities for accessing a system clock and interpreting its values.

d. Section 5.7 of [1838] defines the package CAISPRAGMATICS. Pragmatics
are constraints imposed by an implementation that are not defined by the
syntax and semantics of the CAIS. The minimum capacities that must be
supported by a system that supports the CAIS are provided in this package.

20

20r

I

,45 ~*~~C /. -II

CAIS READER'S GUIDE FOR DOD-STD- 1838

3. GENERAL NODE MANAGEMENT
%

General node management operations involve node operations, attribute operations and
discretionary access control operations. Node operations include identifying, creating,
duplicating and deleting nodes and managing relationships between nodes. Attribute
operations include creating, deleting and modifying attributes on nodes and relationships.
Discretionary access control operations include setting, deleting and examining access
control information. Node management allows for the management of file, process and
structural nodes in the CAIS node model.

3.1 Node Operations

Once a particular node has been identified by traversing a path, the pathname need not be
re-evaluated. Instead, a node handle may be used. A node handle is a unique identification of
a node and may be used to identify any node in the graph. The use of a node handle avoids
repeatedly specifying long path traversals to a node which is often accessed. This handle can
then serve as a convenient reference for that node. Node management operations frequently
use node handles. To address a node using a node handle, a node handle must first be opened
to that node. The open operation establishes the node handle and associates a node handle
with the specified node. An open node handle is said to track the node it identifies, meaning
that the node handle is guaranteed to refer to the same node, regardless of changes in any
relationships. Sufficient access rights (e.g., to read or write the contents of a node) are
necessary to successfully open a node handle. Moreover, if a node handle is closed, the node
handle no longer refers to the given node.

The structure of the node model can be altered by the creation of nodes and relationships and
by the deletion of relationships. The operations for creating nodes are provided in the CAIS
by a variety of node and subtree creation procedures. Interfaces for these operations are
discussed in Section 5.1.2 (for general node management) of [1838]. Structural nodes are
created with the interfaces described in Section 5.1.5 of [1838]. Section 5.2.2 of [1838]
describes the interfaces with which process nodes can be created and deleted. The interfaces
described in Section 5.3 of [1838] can be used for the creation and deletion of file nodes (for
input and output).

The primary relationship to a node may be deleted. In many ways, the node itself may be
thought of as having been "deleted", although the CAIS leaves it up to the implementation
whether or not the physical node still exists. A node whose primary relationship to it has
been deleted is said to be unobtainable. Secondary relationships identifying unobtainable
nodes, however, remain until explicitly deleted by relationship deletion operations. Open
node handles to a node that has become unobtainable still refer to that node. Attempts to
access the contents or attributes of an unobtainable node using secondary relationships or
open node handles will result in an exception being raised. An exception will also be raised if
an attempt is made to access a relationship emanating from an unobtainable node. The
attributes of relationships targeting the node may still be examined, though.

File and structural nodes may be copied. All secondary relationships emanating from the
node are also copied. Secondary relationships to the original node are not copied.

21
21. .,.. ,.

.V .. , :.;. . .~.. . ',,. .. -', ,,?. A, , ,2. -. . - ,- ,, .%?.**,.*, ,- . . *, - , . *. , .,-A .. ,,. , ; ,.
'A% **= \, V V .-. - . - - P- 'K - .; - ...--,.- ,=,,== A n ' iu . - l.' .**-- - ."" "" .='- "'-" '' 'M

" ''.

"1W W WRILWWVWV W WV ~V V UV rl,'i?" - .V .1 '." ~ ' V"W' '~ "W'. . "W~ (~ -)' ~ w

CAIS READER'S GUIDE FOR DOD-STD-1838

An entire subtree of file and/or structural nodes may also be copied. Secondary relationships
between two nodes in the subtree, both of which are copied, are also recreated between the
newly copied nodes. Secondary relationships emanating from copied nodes to nodes outside
the subtree are copied, too. However, secondary relationships emanating from nodes outside
the subtree to nodes inside the subtree are unaffected. Figure 8 shows an example of copying
a subtree of nodes.

Renaming a file node or structural node (effectively changing the parent for that node)
deletes the primary relationship to the node and installs a new primary relationship from
another node, thus establishing a new secondary relationship of the PARENT relation to the
renamed node. In Figure 5, for instance, the file node identified by TEMPFILE may be
renamed to have a new parent such as the structural node identified by TRACKER, thus
making a permanent file out of a temporary file. Secondary relationships to the renamed node
remain intact.

Operations are also available in the CAIS to identify all those nodes which emanate from a
node and match a given relation name and relationship key pattern (called a relationship key
descriptor). This may be useful, for instance, for finding all the relationships of a particular
relation emanating from a node or for finding all the primary relationships emanating from a
node. Interfaces for these operations are discussed in Section 5.1.2 of [18381.

3.2 Attribute Operations

Several interfaces exist for the manipulation of node attributes and relationship attributes.
Attributes may be created and deleted. The values of attributes may also be examined and
changed. Predefined attributes, however, may not be altered. The capability is also given to
iterate through attributes of a specified node or relationship. Interfaces for these operations
are discussed in Section 5.1.3 of [1838].

3.3 Discretionary Access Operations

As the number, nature and function of the tools involved in the APSE changes, discretionary

access control may also change in the node model (so that, for example, individual projects
may be protected). The CAIS provides mechanisms for changing discretionary access
controls. Interfaces for these operations are discussed in Section 5.1.4 of [1838].

22

CAIS READER'S GUIDE FOR DOD-STD- 1838

FROM TOBASE%

home dir (SMITH) -

DIR (2) I E (F3

Then, after executing
to-sef(FI)COPYTREE (FROM, TOBASE, "S4-, "DIR")

the node model becomes: %01

USER(MITH)USER (JONES)

FROM TO-BASE

home -dir (SMITRI
DIA.' %

DIA(S) FIL (F3

depennds oruF3I

FIGURE 8. Copying a Subtree of Nodes

23

CAIS READER'S GUIDE FOR DOD-STD-1838

24

4P CAIS READER'S GUIDE FOR DOD-STD-1838

4. CAIS PROCESS NODES
"p

An executing Ada program is a linked set of Ada tasks and Ada subprograms. The Ada
Language Reference Manual [1815A] addresses only the functions available within a single
program. There are requirements in APSEs for programs that are separately compiled and
linked to interact with one another.

Figure 9 depicts the scope of the Ada program interaction. The individual Ada programs
(programs A, B and C) each contain a number of subprograms and tasks which cannot
interact with other executing programs. The scope of the CAIS definition encompasses the
ability of several Ada programs to interact in a software system. In the CAIS, process nodes
are used to represent each executing Ada program. In Figure 9, programs A, B and C could
be represented as CAIS process nodes.

0

The CAIS recognizes that each executing Ada program is obtained from a file node
containing the program's executable image. Several processes may be running
simultaneously from this single executable image. Each process would perform the same
functions as the other, except each would execute in a different context from the others. An
example of such a situation is several APSE users performing compilations simultaneously.
An important restriction on process nodes is that they cannot be copied or renamed (attached
to a new parent).

Section 5.2 of [1838] describes the execution of Ada programs as represented by CAIS
* processes and the facilities provided by the CAIS for initiating and controlling processes.

The major events in the life of a process are:

a. Initiation. %
b. Running, which may include suspension or resumption.
c. Termination or abortion.

Initiation creates a process node and begins running the process. After a process begins to
run, it may be suspended. A suspended process may be caused to resume running. When a
process completes running normally, it is said to terminate. However, a process may instead
be aborted, which permanently stops the process from running. A state table diagram
showing each of these process node states and transitions is given in Figure 10. Since
processes are part of the CAIS node model, process nodes may be identified for the purpose
of obtaining information about the process.

Interfaces that deal with processes are discussed in Section 5.2 of [1838].

4.1 Process Initiation

Initiation creates a process node and begins running the process.

When a user enters an APSE implemented using the CAIS, a process node is created which
forms the root of a tree of process nodes for that user. This node is referred to as a root

25

. ;-;.- --- ---- --.---- .. : - .': "".""."".""," ",.".. -'- -'- -"- , . -C -.- .w

CAIS READER'S GUIDE FOR DOD-STD-1839

Program A
(Scope of Ada LRM)

Program B
(Scope of Ada LRM)

Drga AdCuprga

(Ada suprogram

lntertask
'communicationt Interprocess

A& communication

FIGURE 9. A Process is an Ada Program

26

CAIS READER'S GUIIE FOR DOD-STD- 1838

e4%

lie

.

NONEXISTENT

process initiation

READ RESME-POCES

SUSPENDPROCES

RESUMEPROCESS

SUPEDSUSPENDED POES TERMINATED PROCESS

ABORPRCES

ABORT-PROCESS4 AB RTPOCS

SUSPEND~ ~~~ PRCSS AOTE "PRCS

RESUMEPROCES

FIGUE 10 Proess tate

27'S

CAIS READER'S GUIDE FOR DOD-STD-1838

process node. Nodes identified by CLI and SIMULATOR are root process nodes in Figure
5. A job is the tree of process nodes with the root process node as its root. Two jobs are
shown in Figure 5: one consisting of the nodes identified by CLI and EDIT, and another
consisting solely of the node identified by SIMULATOR. A user may have more than one
job executing at any given time.

All process nodes in a job form a tree. An initiating process is known as the parent process,
while the initiated process is known as the child process. Except for the root process node,
the parent of a process node is always another process node. For any process, a process tree
consists of that process plus all of the processes which are descendants of that process.

A new job is created each time the user enters the APSE. The user may have more than one
job if, for instance, he logs on at more than one terminal at one time. In addition, new jobs
may also be explicitly created by other running processes.

There are three ways in which a process can initiate another process. These methods cause a
process node to be created and a node handle to be opened.

The first method is referred to as invocation. The calling sequence to this interface does not
return control to the task or subprogram of the invoking process until the child process ceases
to run. Note, however, that any parallel tasks of the invoking process can continue to run.

The second method is referred to as spawning. A process can spawn many processes. For
instance, from the CLI process, a user might spawn a simulator process, a compiler process
(both of which do not need interactive inputs) and invoke an editor process. All three of these
processes can be connected directly to the CLI process via primary relationships and run in
parallel. The calling sequence to this interface returns control to the spawning process once
the child process begins to run. The initiating process and the initiated process run in parallel,
and within these processes, their tasks run in parallel.

Creating a new job is the third method of initiating a process. Creating a new job allows a
user to create other root process nodes without logging on. This can be used to begin the

execution of batch (background) processes. These processes run in parallel with other root
process nodes and can themselves initiate other processes. Control is returned to the
initiating process after the new job is created.

4.2 Process Suspension or Resumption

A running process may be suspended either by itself or by another process using CAIS
operations, causing the process to stop running until another process causes it to resume
running. A suspended process will continue running when it is the object of a resume
operation. A process may be suspended (or resumed) even though its parent process is not
suspended (or resumed).

28
I

..- ~..
.-. w .. 1

CAIS READER'S GUIDE FOR DOD-STD-1838

4.3 Process Termination or Abortion

A process terminates when the Ada program it represents stops running normally. When a ,-..
process is terminated, all of the processes in its process tree that are not terminated are
aborted.

Any input and output files and node handles that are open are closed when a process
terminates.

A process stops running when it is aborted. No further actions by the aborted process may
occur. An aborted process may not later resume running. When a process is aborted, all of
the processes in its process tree are likewise aborted. Thus, if a root process node is aborted,
all of the other processes in the job are likewise aborted. In Figure 5, for example, if the
process identified by CLI is aborted, the process identified by EDIT is also aborted. '
Similarly, if a process node is deleted while the process is running, the process is aborted. A
process may be aborted even though its parent process is not aborted. .

When a process terminates or aborts, the process node continues to exist until explicitly ',

deleted, retaining useful attributes about the results and status of the execution.

4.4 Process Relationships

When a process node is created, a standard input file node, standard output file node and
standard error messages file node are assigned as default files for input, output and error
output for the process. These file nodes are identified by secondary relationships of the
relations STANDARD_INPUT, STANDARD-OUTPUT and STANDARDERROR,
respectively, at the beginning of a program's execution and remain as long as the program is
executing. ,p"."

Examples of these relationships are shown in Figure 11. The node identified by CLI, when
created, had all three of these relations identifying a device node, the node identified by
CRT. The file node identified by LOG-FILE later became the target of the relationship of the
predefined relation STANDARDERROR. When the process node identified by EDIT was
created, all three of the relationships identified the node identified by CRT. A relationship of
the relation STANDARD ERROR was later targeted to the node identified by LOG FILE
and a relationship of the relation STANDARDINPUT was targeted to the node identified by
DATAFILE. The node identified by SIMULATOR still has the three original relationships; -

all of them emanate from the node identified by SIMULATOR and are targeted to the node
identified by CRT.

Secondary relationships of the predefined relations CURRENT JOB, CURRENT NODE,
CURRENTUSER, DEVICE and USER are also created when a process node is created.
These were explained in Section 2.3 starting on page 14 (these relationships are not shown in -
Figure 11). In addition, a secondary relationship of the predefined relation EXECUTABLE-
IMAGE is created to point to the program node for the process (this is only shown for the
node identified by EDIT).

-.;4

29 :,

IS

CAIS READER'S GUIDE FOR DOD-STD-1838

SYSTEM LEVEL NODE)

UE(OE)DEVICE (CRT) USER (TOOLS)

DOT (TRACKER) IDOT EDIT)
DOT(OG-FLE)standtrd-output

DOT (LANDINGSYSTEM)s dr-rosadr nu

FILE~L stnsdinu xc ta da outaut

QI) ~stCandeSeonayreatorhp

(Th PROCLES NODES LGN

FIG CUREL NtaO utpu P e ndar relatiip

30

1 rCAIS READER'S GUIDE FOR DOD-STD-1838

4.5 Process Attributes

Each process node has several predefined attributes. Figure 7 shows an example with severalof these attributes.

One of the attributes of the process node, CURRENTSTATUS, is used to determine
whether the process is running, terminated, or aborted. This attribute may be checked at any
time to determine the state of the process. This may be useful when it is necessary to know
whether a process has been aborted or whether it is still running, but blocked.

Other information pertaining to a process can be obtained via attributes. IOUNITCOUNT
is the number of input and output operations that a process has performed and OPEN_
NODEHANDLE COUNT is the number of node handles currently open by the process.
PROCESS SIZE indicates the current size of a process, i.e., the amount of memory it is
currently using. The attributes TIME_STARTED and TIMEFINISHED indicate the time
that a process started and finished, respectively.

Each process node has a predefined attribute PARAMETERS which is a list of parameters
given to the process by another process, e.g., a command line interpreter, when it was
initiated.

Each process node has a predefined attribute RESULTS which is used to store a list of the
results of the process. At any time when a process is running, it may store results in this list.
The results of that process may be obtained by another process at any time while the original
process is running or after the original process has ceased to run as long as the process node
still exists.

31•

.12%

31• ,

CAIlS READER'S GUIDE FOR DOD-STD-1838

r

'I,

.%

32'

'. '- .. -- \ .- . -- -., , .:, ,..,-.. . ..- ,- .- . .-., .,., -. ,. .,. _.0,

, } ,-. , ' ,- - , :' ' ,r', r, .. , r , ,, n. ,. , €., 4i. , ,.... ' .,.. . .: , ".", . . . " " ""S

CAIS READER'S GUIDE FOR DOD-STD-1838

5. CAIS INPUT AND OUTPUT

CAIS input and output operations incorporate input and output of the Ada language and also
provide some new input and output capabilities.

CAIS input and output operations are used to transfer data to and from CAIS file nodes.
There are three kinds of file nodes: secondary storage, queue and device. Secondary storage
file nodes.represent files such as disk files. Queue file nodes represent temporary stores of
information typically used in operating systems for interprocess communication. The CAIS
predefines four kinds of device file nodes: magnetic tape drives and scroll, page and form
terminals. Magnetic tape drive file nodes represent magnetic tape drives. A terminal file node
represents an interactive terminal. These file nodes are explained in more detail in the
following sections of this guide. Section 5.3 of [1838] discusses the interfaces applicable to
CAIS input and output.

5.1 Secondary Storage

A secondary storage file in the CAIS represents files such as disk files. The predefined node
attributes CURRENTFILESIZE and MAXIMUMFILESIZE indicate the current and
maximum sizes, respectively, of the secondary storage file.

5.2 Queues

Queues are files of information stored in a first-in first-out order and are primarily used for
interprocess communication. Interfaces for queues are described in Section 5.3.7 of [1838].
Three categories of queues are used by the CAIS: solo queues, copy queues, and mimic
queues.

Solo queues are the simplest form of a queue, allowing one or more processes to write to a
queue while one or more processes read from the queue. Each item of information in the
queue may only be read once. Processes typically send information to one another through
solo queues. Figure 12 depicts a typical solo queue, where the process nodes identified by
WRITER I and WRITER2 are writing to the queue, and the process nodes identified by
READER 1, READER2 and READER3 are reading from the queue.

Figure 13 shows an example of how a solo queue can be used as a pipe between two r".e
processes. The process identified by PROCESS generates some unsorted output that is
written to the solo queue identified by PIPE so that the process identified by SORT may read
it. This process sorts the information it reads from the solo queue and sends it to the device
node identified by CRT.

A copy queue is initialized with a copy of the contents from another file at the time of queue
creation. An example of a copy queue is shown in Figure 14. This type of queue is useful for ,.. 1

allowing one process to partially read a file and another process to read the rest of the file, as
in batch processing. Copy queues are also useful for treating a secondary storage file node as
a queue without disturbing the contents of the file.

33

- - , . t It i - rl r " " " " ' " x "f"Y" " # " ""'€ . ,' -""- "" "". . ' ' - ' 0

CAIS READER'S GUIDE FOR DOD-STD.1838

process node
process node

WRI TER2
WRITER 1

node contents
LEGEND

node information~flow

queue information 4
flow

solo queue
file node

READEFi READE2 process node

process node process node

FIGURE 12. Solo Queues

3

34 ,

U ~ - - I ~ R~W~ ~ W W W~ W W' W W-E, W W%~ W I g 1u w~w~ j W J W ., %r Uvv w vv% wiu - w. Ir . , %

CAIS READER'S GUIDE FOR DOD-STD- 183 8

SYSTEM LEVEL
NODE

p~

USER(JONES) DEVICE (CRT)

CRT

JOB (PROCESS) standard_input0

DOTPIPE)stnad utt

standardr output

PIPE DOT (SORT)

standard-in ut

SORT

L~j FILE NODES
PRIMARY RELATIONSHIPS

ID STRUCTURAL NODES / secondary relationships

CD1(D PROCESS NODES LEGEND

FIGURE 13. Solo Queue as a Pipe

35 '

ruwuwu,. = - .-. rv"vl-wjl~r q~ v r-r r.r?'v , RV~*' WIT4 Vx7. v

CAIS READER'S GUIDE FOR DOD-STD-1838

node contents

FILE 1
ile node

_______________copy queue ile node

LEGEND.

information QUEUE CREATION
0 flow

U ~~The original cp uu
FILE file does not cp uu

get changed.

LEGEND READERI PEADER

informationE
b. flow

QUEUE OPERATION

FIGURE 14. Copy Queues

36

CAIS READER'S GUIDE FOR DOD-STD-1838 d_

A mimic queue is initialized like a copy queue, i.e., with a copy of the contents of another
file at the time of queue creation. A secondary relationship of the predefied relation
MJMC.FILE points from the mimic queue file node to the file node from which the mimic l
queue is initialized. This file is called the coupled file. If information is written to a mimic
queue, it is also appended to the coupled file. The effect on the mimic queue of modifications
made to its coupled file is not defined by the CAIS. Mimic queues allow multiple processes
to append information to secondary storage files without having to rewrite the files. This
allows a form of logging. Figure 15 illustrates a mimic queue. No

The examples of queues described above are examples of nonsynchronous queues. A
nonsynchronous queue is a queue where several write operations to the queue may occur
before any read operations occur.

The CAIS also defines a synchronous queue; only a solo queue can be a synchronous queue. .,

A synchronous queue is one for which a write operation on the queue is not completed until a
corresponding read operation on the same queue is completed, thus synchronizing the write
operation with the read operation. A synchronous solo queue can be used to synchronize the
operation of two cooperating processes.

5.3 Devices

A device file in the CAIS represents a device. The CAIS predefines magnetic tape drive files
and three kinds of terminal files: scroll, page and form terminals.

5.3.1 Magnetic Tape Drives

Typically, an APSE includes a database of information upon which the tools in the APSE
operate. In order for this database to be used on a different host system, there should be
convenient mechanisms to transfer data files from one system to another. Minimal tape input
and output operations are provided by the CAIS to allow files to be transported from one
CAIS implementation to another. •

ANSI tapes are handled by CAIS input and output. Tapes that are compliant with the ANSI
and ISO standards [ANSI 73a; ANSI 73b; ANSI 76; ANSI 78; ISO 76a; ISO 76b; ISO 84]
can be operated upon by the CAIS interfaces. Interfaces for magnetic tape drive files are ,- "--
described in Section 5.3.11 of [1838].

5.3.2 Terminals

Input and output operations are currently provided by the CAIS for only three kinds of
terminals: scroll terminals, page terminals and form terminals. Scroll terminals, such as
teletypes, use the keyboard as an input device and an output area as an output device and
may input or output only one line at a time. Thus, each line is scrolled through. Interfaces for
scroll terminals are described in Section 5.3.8 of [1838]. A page terminal is a non-intelligent
CRT terminal which displays a "page" of lines at one time. Individual character positions
may be addressed on a page terminal. Interfaces for page terminals are described in Section-,.,
5.3.9 of [1838]. Form terminals are used to display a "form" or menu to the display screen.
After the user has modified the form, the modified form is read by the terminal controller.
Interfaces for form terminals are described in Section 5.3.10 of [18381.

37

ea,,', e,.a. . 'a C .k..'.,-t1,,,. .¢ ., . . r..,',. ~ .- , ,- - . - " 0.

CAIS READER'S GItDE FOR DOD-STD-1838

MIMICFILE node contents

FILE -

coupled

rinode

mimic queue file node

__information QUEUE CETOflow CETO
i .predefined

MIMICFILE
relationship

WRITER

coupreeled fl oe

FIGUR mim. MimceQeue

38e od

CAIS READER'S GUIDE FOR DOD-STD-1838 -

5.4 Sequential, Direct, and Text Input and Output

Sequential, direct and text input and output are all provided by the Ada language (see
Chapter 14 of [1815A]). The CAIS provides much of this same functionality, Interfaces
describing operations for direct, sequential and text input and output are discussed in
Sections 5.3.4, 5.3.5 and 5.3.6, respectively, of [1838].

,

r W.,

wru-wv wv'riwYw'. - - - - u - - - w .. wu wwwu]wu 711 WI WVflUWU~wwrw -.7 a,' art,' r MrN9 N~ N-' ~n Mfl Ni' w',v ~-' "v i-v w_.

CAtS READER'S GUIDE FOR DOD-STD-1838

F
M

-U

I

S

S

V

-p.

40 U

S
-U

* ~: -. - *b'%~*~UIt/.-, ,'* ~ -;:,~~~-c~.:y:7 '~ " U.'. ,e& ZN-%-Y' K- >:c.r 1

CAIS READER'S GUIDE FOR DOD-STD-1838

6. REFERENCES

[1815A] Military Standard Ada Programming Language, United States Department of
Defense, ANSI/MIL-STD-1815A, 22 January 1983.

[18381 Military Standard Common APSE Interface Set (CAIS), United States Department of
Defense, DOD-STD- 1838, 9 October 1986.

[ANSI 73a] American National Standards Institute, Recorded Magnetic Tape for Information
Interchange (800 CPI, NRZI) (ANSI Standard x3.22-1973).

[ANSI 73b] American National Standards Institute, Recorded Magnetic Tape for Information
Interchange (1600 CPI, PE) (ANSI Standard x3.39-1973).

[ANSI 761 American National Standards Institute, Recorded Magnetic Tape for Information
Interchange (6250 CP!, Group-coded Recording) (ANSI Standard x3.54-1976).

[ANSI 78] American National Standards Institute, Magnetic Tape Labels and File Structure
for Information Interchange (ANSI Standard x3.27-1978).

[APSE] Memorandum from the Office of the Under Secretary of Defense for Research and
Engineering, "Ada Programming Support Environment", 15 January 1982.

[CAIS85] Military Standard Common APSE Interface Set, United States Department of
Defense, Proposed MIL-STD-CAIS, 31 January 1985.

[DCAIS] Distributing the Common APSE (Ada Programming Support Environment)
Interface Set (CAIS), MITRE Report MTR-86W00181, The MITRE Corporation, McLean,
Virginia, January 1987.

[ISO 76a1 ISO 1863, Information Processing - 9 track, 12.7 mm (0.5 in) wide magnetic tape -
for information interchange recorded at 32 rpmm (800 cpi).

[ISO 76b] ISO 3788, Information Processing - 9 track, 12.7 mm (0.5 in) wide magnetic tape
for information interchange recorded at 63 rpmm (1600 cpi) phase encoded. 0

[ISO 84] ISO 5652, Information Processing - 9 track, 12.7 mm (0.5 in) wide magnetic tape
for information interchange - Format and recording using group coding at 246 cpmm (6250
cpi).

[RAC86] DoD Requirements and Design Criteria for the Common APSE Interface Set
(CAIS), KIT/KITIA, 4 October 1986.

(RCAIS] Rehosting the Common APSE (Ada Programming Support Environment) Interface
Set (CAIS), MITRE Report MTR-86W00198, The MITRE Corporation, McLean, Virginia,
January 1987.

41

N.

CAIS READER'S GUIDE FOR DOD-STD-1838

[STONEMAN] Requirements for Ada Programming Support Environments,
"STONEMAN", February 1980.

[SWAV] "Ada Status and Outlook", Software for Avionics, AGARD Conference
Proceedings #30, Specialized Printing Services, Looghton, England, January 1983.

[TCSEC] Department of Defense Trusted Computer System Evaluation Criteria, Department

of Defense Computer Security Center, CSC-STD-001 -83, 15 August 1983.

42

N0

: .]V

Distribution List for IDA Paper P-2034

NAME AND ADDRESS NUMBER OF COPIES

Ms. Virginia Castor 50 copies
Director
Ada Joint Program Office (AJPO)
1211 Fern St., Room C-107
Arlington, VA 22202

Other

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

Ms. Patricia Oberndorf 5 copies
Naval Ocean Systems Center (NOSC)
Code 423
San Diego, CA 92152-5000

b'

0.

•'

,-..-. ,.-,,-'.--.-'..'.-',- .-. ,. .. "..','- ,.,a., -'.,' ."x- ,- .o ,_,'.- ,.= .. _. ,. .. " ." .'.. -.. " -.".."-.- " = % .- . . - .-.
• " L: m / €" €" " €" €- - # €' ,r ' , ." " . ." " . ." ." , ." .-

w

tin'.

I\VD I-

I-

I,

f7Lft1Eb
in~dE

/7?? S

'in.

'S
5%

5'

w w w w w w w w w w W W 0

5'.. 5.. 5 '.55.*%5'**. %*.. <S <S

