D-ﬁi.; 35‘ CMSV(COHHON APSE (ADA (TRADE NAME) PROGRAMMING SUPPORT
ENVIRONMENT) INTE.. (U> INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIR YA J F KRAMER ET AL. 14 AUG 87 IDA-P-2034

14

UNCLASSIFIED IDA/HA-87-32618 MDA9@3-84-C-9031 F/G 12/3

.uu.m...,.,....Cnu&...h\.m%nmc...«..o.uk&a.ﬂcnru.ﬂwJNWJ.uﬁi.,.....n.nm.a..ﬁ..uv.t

-

-

- - o
.

.

*y

-

AL

O o L Lt T LY et el Lay e

‘a

o

3

AR N R AL

ERE

M EEEFE
: W_Emmu.ﬁ__ut@

=

1y
B

122
1.8

U
|

R LN]

JlL
I

b *.0

S e

"k tad o

+

IR RN

AdgTad,”
By

(1N
R

LR pia e

R
e

I

14

125

———
 ——
.

-

- g
>
<4

. '}:,
B tuta
L7 N

N Y U R R A A A S A L A NN R) A NERANUYY Ap 3o %8 'l ath'a¥) w0 2¥a atdtath b aVATLOR 02 20t B20 02 £2% SY G0t €2 @ N 210 $2t 02

Blic riLe_Cus UNCLASSIFIED P

x

—

&%

¢.,.q
oy -'.'155"
fﬂ_r‘nl\v'vﬁ‘t'

AD-A189 350

o
2 28
]

IDA PAPER P-2034

o
TR

L R

5 N
A
AP

«

CAIS READER’S GUIDE FOR DoD-STD-1838

?.,?'.,:‘

<

FIAN R
A
L&A Pl ol 4 f

John F. Kramer
Patricia Oberndorf John Long
Clyde Roby R. Max Robinson
Jeff Clouse John Chludzinski

AR

v r vy v
[MNAN
ot

- \P| Sy
BN P
A . -.—'-".;l.:_'. 5

AR
PR MO
s

(Y
~

August 1987

"
IR
4".‘ v

B4

VN

e A N VY
l.{'l'l‘ll‘

wor e -
a
]..).." S

Prepared for
Ada* Joint Program Office

-
O

A

:'_\)':-'
| S o

DETRFTTION STATEAIT K, %

Approved for public release| -

- Distribution .Unlimited w71 . E ‘:.:.::'

N S
NS,
< e
A,
l DA INSTITUTE FOR DEFENSE ANALYSES
- 1801 N. Beauregard Street, Alexandria, Virginia 22311 ey
. R
LR

' 33

*Ada is a registered trademark of the U.S. Government, Ada Joint Program Office. Series B N
°
UNGCLASSIFIED 1A Log No. HQ 87-32618 A<}
Y 7% 1S Wyl R R S T T S N S S T T S -~ - - :.:..‘:-.
A T L R S A e e o e TR e L e e S e 2L e

DEFINITIONS
DA publishes e ioliowing decuments o repert the resmits of s werk.

Reports

Reperts are the mest autheritative snd mest carvfally considersd products IDA publishes.
They normaily embedy resuits of majer prejects which (a) kave a direct boaring on decisions
silesting majer programe, or (b) address issuss of significant concorn 1o the Executive
Bronch, ihe Congress and/er the publis, or (s) address issues thet have significant sconemic
Impiications. DA Reperts are reviewed by cutside paneis of sxports 1o ensure their high
quality and relovance ie the preblems studiod, and they are reieased by the President of IDA.

Papers

Papers nermally address relatively resiricted tochnical or palicy issves. They communicate
the results of special anaiyses, interim reperts or phases of 8 task, a4 hec or quisk reaction
work. Papers are reviewed 10 onsure that they meet siandards timilar 1o these sxpected of
reforsed papers in professionsi journals.

Memorandum Reports

DA Memerandum Reports are used for the convenioncs of the spensers or the anelysts te
recerd subetantive werk done in quick reaction siudios and majer intoractive lochnical support
aciivities; ts meke avaiishis preiiminary and tontative resuits of anslyses or of werking
oroup and panel activities; io ferward inlermation thet (s sssentiolly wnenelyzed snd wnevai-
u8i0¢; or 1o make 2 reserd of conlerences, mestings, or driefings, or of data develeped in
the course of an Investigation. Review of Memersadum Roeperts Is sulied to their content
and intonded use.

The resuits of DA werk ars aise conveyed by briofings and inlormel memeranda 1o sponsers
aad sthers designeled by the sponcers, when apprepriste.

The werk repertad in this desuoment was conducted snder contract MOA 983 84 C 9831 fer
the Oepariment of Defonse. The publisation of this DA decument doss net indicate anderse-
mont by the Department of Delonsa, ner shauld he contonts be construed 2 reflecting the
oificial position of that ageney.

This paper has hoon reviewsd by IDA 1o sssure hat i meels high standards of thersuphness,
ehjectivity, and sound anaiytical methodeiogy and that the sonclusions stem frem the
mothodelogy.

Public rolesse/unlimited distribution; unciassified.

» \':.'5".'.55.‘\.!.

-\'-‘u‘-.,’-‘-*d.’~‘v S L U I DO S T T T L O "L N PR L L S
LA \Iﬁfﬁprﬂl%!*f g " '5“5'*\'$’v’- SN

)

‘\.

o

2EL
2,

-
"
13

¥ v

[3

<l
YR ALS

4
DAY

‘{‘.r' L4

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

AD-pHI15T 35

12 REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a SECURITY CLASSIFICATION AUTHORITY

A

3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

Public release/unlimited disitribution

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
P-2034

§ MONITORING ORGANIZATION REPORT NUMBER(S)

Institute for Defense Analyses DA

6a NAME OF PERFORMING ORGANIZATION [6b OFFICE SYMBOL

7a NAME OF MONITORING ORGANIZATION

6c ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22311

75 ADDRESS (City, State, and Zip Code)

m
ORGANIZATION

8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(if spplicable)

MDA 903 84 C 0031

8¢ ADDRESS (City, ‘State, and Zip Code)

10. SOURCE OF FUNDING NUMBERS

1211 Fern St., Room C-107 ELEMENT No. [NO. Nok ACCESSION NO.
Arlington, VA 22202 N'I(:DS-SSOS
11 TITLE (Include Security Classification)
CAIS Reader’s Guide for DoD-STD-1838 (U)
12 PERSONAL AUTHOR(S)
I. Kramer, P. Oberndorf, J. Long, C. Roby, R. Robinson, J. Clouse, J. Chludzinski
lg_"r_ypm_m 14 mr, Monlh,;ﬁy) § PAGE COUNT
Final FROM 10 I 1987 August 14 r 54

r6 SUPPLEMENTARY NOTATION

17 COSATI CODES

Ada Programming

FB SUBJECT TERMS (Continue on reverse if necessary and identifly by block number)
Language; Common Ada Programming Support Environment (APSE)
GROUP L_SUR:GROUP] Interface Set (CAIS); DoD-STD-1838; Software Environments; Software Tools; Soft-
ware Development; Kernel APSE (Kapse); Minimal APSE (MAPSE).

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The CAIS Reader’s Guide for DoD-STD-1838 has been produced to aid readers in understanding DoD-STD-1838, the Military
Standard Common Ada Programming Support Environment (APSE) Interface Set (CAIS). DoD-STD-1838 defines a set of
interfaces which allows software tools resident in an APSE access to common operating system services and facilities. APSE
tools are Ada programs, each of which is used for a specific software development task. These tools need facilities to communi-
cate with their environment, including other tools ia that environment, which the Ada language does not provide. The CAIS can
thus be regarded as providing extended interfaces between an external environment and a host system.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
B UNCLASSIFIED/UNLIMITED] SAME AS RPT.E] DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL
Dr. John F. Kramer, IDA

226 TELEPHONE (Inciude Area Code{22c OFFICE SYMBOL
(703) 824-5504

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

LIPS IO Y e SR T DL R I D T) '----.‘\‘\‘13‘14'- "\‘I""&‘\-"‘.I\\.Q'\-.-‘-\\h\~‘-~\-."\-"-5
A AR AT G RGN O (LR R O CRRN Y - J‘-' Vo NN e T Ty -2 R A R A O R OO s

]

_
SRR
LY

e
LRI T

2P

L R AR R o
' I'.{&,\;.‘_\, .,

';.5-‘5 'I.'f LAY

J
a

PR ARSNR
s A ',f"fl.n’r.fl.

P2 ol ok o]
4 !’l
PO

&

2

?-

NN X~

e’

: ..' . n."‘, .

0
5

P
o5 % o
PARAL RS

o

o
g]
M,

IDA PAPER P-2034

CAIS READER’S GUIDE FOR IDoD-STD-1838

John F. Kramer
Patricia Oberndorf John Long
Clyde Roby R. Max Robinson
Jeff Clouse John Chludzinski

August 1987

o410ty Qodes

PRIt ;1:1:1/01"

s.rrial

)

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-D5-305

_(e et P e AT, __v."_v T RIATIA DR TAT Y \ BNCRT A TR T .{“‘ '* A DA Ty
v ‘ N » : ’ ; A . ; 2

CAIS READER 'S GUIDE FOR DOD-STD-1838

Preamble

The CAIS Reader's Guide for DOD-STD-1838 has been produced to aid readers in
understanding DOD-STD-1838, the Military Standard Common Ada! Programming Support
Environment (APSE) Interface Set (CAIS)2. It is neither the intent nor purpose of this guide
to provide a comprehensive presentation of the CAIS. Instead, the purpose is to give an
overview of the model defined in the CAIS document. DOD-STD-1838 contains the
sections Scope, Referenced Documents, Definitions, General Requirements, Detailed
Requirements and Notes. The CAIS node model and security model are discussed in the
General Requirements section. Within the Detailed Requirements section, various topics are
described, including node management, processes, and input and output. Chapter 1 of this
guide provides an introduction to the CAIS. The CAIS node model and security model are
discussed in Chapter 2. In Chapter 3, General Node Management, CAIS node management
operations are discussed. Chapter 4 provides further explanation of CAIS processes. Finally,
Input and Output provided by the CAIS are discussed in Chapter 5. Having read the CAIS
Reader’s Guide for DOD-STD-1838, one should have a sufficient understanding of the CAIS
to begin reading the DOD-STD-1838 CAIS document.

1Ada is a registered trademark of the United States Government, Ada Joint Program Office.

2Mititary Standard Common Ada Programming Support Environment (APSE) Interface Set (CAIS), United
States Department of Defense, DOD-STD-1838, 9 October 1986.

5 4 %
ot LA

PRV IR A w2 B of N WL
LR ' i v P S
f{{il‘/f '..I Irl‘J.N‘l’

-
-’

£ 4

B,

d

l"l A '-s' g

LSS
PR

&

P4
5 % %

AP S e
s

l'jﬂ ?
2@ 0

Vo Ve o pid VR AVA ') I TR A TN R PR A AN TR AR RO XY ‘.0'a. b8 4 '8 i' ve gt ate fia 4% Rie f52 1% A'e 40 8% 0% AR ke h'a 4% 1Va 8% AV 0 ' A

CAIS READER'S GUIDE FOR DOD-STD-1838

LC e e e r e)

x v v

R P R A,

N e RN, N)

R o

R W o

yr.

[JRXRARRA |

.

e N .) - - - - - - - . - » - " - - - - - » - - " - - - - -
rJ ™ ’ P Lo R LT SR NE S TN
!«‘ ’~I~(] - '.' () B \ ~¢-. -.I ‘ 0 - o - " -~ >N » N .‘ > > \{\ L) N ~ .“ \ hy .‘

3

Conat et 0a® et Ap tRY (gt aWa gt bp araova dg Mg ua i gin o ¥
\, + \ » R AR AN AN RN UV T T YT § () 1a® 2" 4, XY r X3

CAIS READER'S GUIDE FOR DOD-STD-1838

Contents

®es 0000000

1. INTRODUCTION .

1.1 History of the CAIS
1.2 The Need for a CAILS..........
1.3 Future of the CAIS

2. THE CAIS NODE MODEL .

2.1 Example Scenarioo00000
22Nodes ...ovovvnnnnicnnnnrans
2.3Rehhonshnpsandkelaﬁons....... cevesseesenes cesesseseesrsttsasarrens N &)
24AtribULesniiiiiiiiiiiinannaas ceceecanse creeenaan terescsasaans ceteerecanes 16
2.5 Security and Access Control Provisions ceserrennsee cevean ceseesrooanes seereseeranees 18
2.6 CAIS Operations Ceteteteteerecnnecenneans treeceresnectennnne Cetsereens vees 18

3. GENERAL NODE MANAGEMENT

3.1 Node Operations vesseeane ereenae Ceeeniencetssrrsannns Cevessssreens .21
3.2 Attribute Operationscc0e00vi00evsenncees ceeses ceesseenans Ceerssesesaaan 22
3.3 Discretionary Access Operations veseassisecanes 22

4. CAISPROCESS NODESc0venvnn

4.1 Process Initiationocoveevenniececnnnnnans cecreviancans seesaresssesassssanes 28
4.2 Process Suspension or Resumption ceneens feeeeeeteeetaeitannttetesttatssannreranens 28
4.3 Process Termination or Abortionccvvveeevene tesceccesennssns tesserassacsas 29
4.4 Process Relationships Ceereceeeesnetatsroasatacnanatonnnns Ceeeeeraenenan 29
A S Process AIibDULESiiiiiiioroeiieeescacsessoessencsacasssssansecssssssasnes k) |

5. CAIS INPUT AND OUTPUT ...

5.1 Secondary StOrageccioie0rvecnencncranae treesecas cessasanss cesssresesanas 33
5.2 Queues
SIDEVICES t.cvvvinrrrie-ntrsassacrsasscnns ceceanen Geeesssisanaanascarone veeesaneas
$.3.1 Magnetic Tape Drives 7
S§32Terminalscooc000v000rseencen ceresenans tereetesacenusernanaans KA 1)
5.4 Sequential, Direct, and Text lnput and Output Ceesesetriettnsetanceraronas 39

6. REFERENCES..................

sesace R EREFE R RN R NN R 000 00s00tecescsesrsan e veeesevesssvss .
© 0 00 ¢ 06080000 NEROPIILLLELOBOLIBIBEEOEOEEOEOEPLOEBSIOTSY

9 08 000 PP L0 EIRIES0EICRICEORILOENRCOEIRISIONGORIOEOIEOETERTSE e 9

et es et st esestIe

® 000 e e 0 OLLsO0L VLIS OEIOEIEONETDIEOTDN

ese0ra0esronsses st

06 905 8 5000606060080 P08 LNt sIOLNORLILITEITLE

f

o

ffl“.

.....

,

s

Ly

'I.'. Ly

AR ._,-\:_-.'{\' S e e e T e T TN T

-

.....
o

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 18.

Bt el ath A ‘Lathae hattat 0 2 4.8'0.80.0'8 0'8.2%0.0%4 8 L s 6. 8"

CAIS READER’S GUIDE FOR DOD-STD-1838

Figures
APSEModeloiiiiiiiirniernniorasesanornnennanss 2
Purpose of CAIS iiivriiieiiiiiiiiiiiieeiinninennnens]
A Common Tool on Different CAIS Implementations 6
Node Model Schemaciciiiiirieriicnieenecnennaes 10
Node Model Exampleccoveviriennnninrinncnennnns 12
Seven Predefined Relationscoevvieviiiiiennnn, 15
Some Predefined Attributescco0iiiiiiiiiiiinan, 19
Copying a Subtreeof Nodescoiiiiinenneennn., 23
AProcessisan AdaProgramcoiiieiiienecneennn, 26
Process Statescccvevteereericrnrcssracrresoranenas 27
Input and Output Predefined Relations 30
SoloQueuescciiiiiiiiriicritiettittettrattesanans 34
SoloQueueasaPipecoiiiiiiiiiiiittiiiienienann, 35
Copy QUEUES oiiiiiieinreeressaesastnscsosctsacsonasns 36

MimicQueues.......cocoviiviennencnes Cheetecenerereaans 38

T S T T T PR T U TS T AT T R T R R T A O Y R R OUR TR N U UW U U U U UV O OV UV O U ORT UV O O U TR R Nal taf el rak b AQ.;l
e
P CAIS READER'S GUIDE FOR DOD-STD-1838 e
;I:."l

Tables ﬁ

b TABLE L Predefined Relationsccoveeveesseesonrcassacaasnas 16 ..32
TABLE 1. Predefined Attributescoveveeeesecvsseosessassasess 17 ..

AN NS
D

3

ot

o af N L T

{ L

’. '-‘.- -
'!.'»_&"3.

5 &

""'S?T‘. r

NN
A

b
Ll)

oy Ay
'y

TEEF
F sl a2 ol @ G

2L

o

it
n (]
o)
A

4t)

g U t'y 859 ¥ e 0 gt g8 gt @aF 0.8 4.0 000 0,8 ¢ 0 0.8 2.6 1k ¢ 49 g 0 4.8 0.8 g gt oot b U AN U 7O U T A PO R T O O O X I O A O S O X)

CAIS READER’S GUIDE FOR DOD-STD-1838

1. INTRODUCTION

1.1 History of the CAIS

The High Order Language Working Group (HOLWG), formed by the Department of
Defense (DoD), recognized early in the Ada program that, while the Ada language itself did
not require a special development and maintenance environment, the life-cycle maintenance
of mission critical computer systems did.

It was felt that an integrated software environment coutaining a set of good tools would
encourage acceptance of the language, thereby magnifying the benefits of the language
standardization effort. [SWAYV]

Central to the development environment for the Ada language is the concept of a
Programming Support Environment. A Programming Support Environment involves a
collection of software tools that aid a developer or life cycle maintainer in his programming
tasks during coding, testing and debugging. These tools traditionally include compilers,
editors, debuggers, configuration control aids, linkers and text formatters.

An Ada Programming Support Environment (APSE) is an environment for the development
of mission critical software systems written in the Ada language. Because of the volume of
Ada software that the DoD intends to procure, APSEs must be available at several
installations and on many different types of hardware.

The purpose of an APSE is to support the development and maintenance of Ada applications
software throuighout its life cycle, with particular emphasis on software for embedded computer
applications. [STONEMAN]

The requirements document for an APSE, ‘‘STONEMAN’' [STONEMAN], goes further
than being just a requirements document, for it also specifies an architecture for an APSE. In
this architecture, a layering is defined which is generally portrayed as two layers surrounding
a central core as shown in Figure 1.

The core is referred 1o as a Kernel APSE (KAPSE). The KAPSE represents operating system
services commonly available to tools and applications programs. Thus, the KAPSE provides
a common set of capabilities regardless of what the host may be. Such capabilities include
general operating system services such as file management services and process and device
control services. While each host is expected to have different implementations and similar
or identical capabilities, the interfaces and their functionality provided in a KAPSE,
according to [STONEMAN], must be identical from one host to another. The Common
APSE Inierface Set (CAIS) (1838] addresses the concems expressed in {[STONEMAN] for a
common set of interfaces at this level (see Figure 1).

The next layer, the Minimal APSE (MAPSE), consists of software tools which minimaily
support software development, such as compilers, editors and linkers. According to
(STONEMAN], these tools are to be written in the Ada language and are to be transportable,
at the source level, to other APSEs. To achieve transportability, MAPSE tools are required to
use the common interfaces in the KAPSE.

5 %S A

“y *."v

22 -

TY ey

NN

L SRR A

CA A

N Y
PN

1 \ 4 g L U * AP \4 \ '} . \J 4 \J . Ya &Y v A\l A\ Yo ¢!

CAIS READER'S GUIDE FOR DOD-STD-1838

\\ be gY \‘l‘t‘\)) -‘ v

Compiler

bomiand S/ KAPSE

Language // Functions
Interpreter /;

\\ Debugger

/] Linker

Configuration \
Loader

Manager

[other tools]

CAIS

FIGURE L APSE Model

'Y ¥

1Y)

(Y

LacA oA RTA oT8 o ¥R V]

r CAIS READER'S GUIDE FOR DOD-STD-1838

The top layer, the APSE, is to provide project unique tools and services. As such, the APSE
may be viewed as a comprehensive set of tools for integrated life cycle development of

P software.
1.2 The Need for a CAIS
When DoD started procuring tools for the Ada program, it did not restrict itself to procuring
h individual tools. Rather, the DoD embarked upon the procurement of APSEs. Two
procurements were started: one by the Army, called the Ada Language System (ALS), and

the other by the Air Force, called the Ada Integrated Environment (AIE). Unfortunately, the
interfaces provided from the KAPSE to the MAPSE were different in these two APSEs.
Because of divergent approaches at the KAPSE interface level by the ALS and AIE
contractors, a team was formed (by tri-services agreement [APSE]) to define more specific
L/ KAPSE interface requirements. This team is the KAPSE Interface Team (KIT) and is

chaired by the Naval Ocean Systems Center (NOSC), a Navy laboratory. Added to the KIT
was the KAPSE Interface Team from Industry and Academia (KITIA). The KIT/KITIA
periodically issues reports on their progress, but their most significant product appeared in
June 1987 with the public presentation of DOD-STD-1838, the Military Standard Common
Ada Programming Support Environment (APSE) Interface Set (CAIS) [1838].

The KIT/KITIA had examined the differences in the ALS KAPSE and the AIE KAPSE and
concluded that a mere host encapsulation would be insufficient to achieve the objectives of
portability and interoperability. In addition, a common process composition and data
interrelation model was needed. The two KAPSEs were sufficiently different that a common
KAPSE subset definition would not achieve the objectives at all. Furthermore, the common
interfaces of the two KAPSEs could not completely encapsulate the host. Some of the needed
functionality is inherently host-dependent and therefore is very difficult to provide in a
common form across all conceivable hosts. Thus, the KIT/KITIA developed the CAIS based
on these principles but without being constrained to map directly onto the KAPSE designs of

either the ALS or the AIE. N
One interpretation of the CAIS in relation to the KAPSE interface layer is that the CAIS ;-.
provides an interface layer above the level of the KAPSE due to the addition of the data ;‘;
interrelation model which traditionally has been a part of individual tools rather than of the -~
common underpinnings of these tools. It thereby replaces large portions of the KAPSE from 759
the tool-writer’s point of view. More primitive KAPSE-like interfaces could still be valuable N
to enhance portability of the CAIS implementations themselves or of tools that access host- ®

dependent facilities.

An extensive review of the proposed Military Standard CAIS [CAIS85] was made by the
government, DoD, industry and industry groups, and academia as well as individuals. During
the formal military standardization process, nearly 600 comments were submitted against this
document. As a result, the proposed Military Standard CAIS was voted unanimously by the
CAIS Standardization Working Group to become a military standard on 9 October 1986.
DOD-STD-1838 [1838] was delivered to the Ada Joint Program Office on 16 June 1987.

The CAIS document [1838] defines a set of interfaces which allows software tools resident
in an APSE access to common operating system services and facilities. APSE tools are Ada
programs, each of which is used for a specific software development task. These tools need

CAIS READER'S GUIDE FOR DOD-STD-1838

facilities to communicate with their environment, including other tools in that environment,
which the Ada language does not provide. The CAIS can thus be regarded as providing
extended interfaces between an extemal environment and a host system. This intent of the
CAIS is illustrated in Figure 2. .

The interfaces in [1838] are in the form of a set of Ada package specifications. The
capabilities specified are those which are commonly encountered in operating systems. These
include operating systems such as MS-DOS3, UNIX¢, VMSS and VM/CMSS, which are in
widespread use in industry and which are used as software development environments. Thus,
the CAIS includes facilities for process initiation and control and file and device
management.

The CAIS is not intended to provide an exhaustive set of all operating system facilities
available today. Rather it is the goal of the CAIS to provide those facilities which have been
found most useful in most operating systems and which have an impact on moving tool sets
or project databases between APSEs.

i The CAIS must be seen as the common portion of a set of host-encapsulating interfaces.
There is good reason, and in some cases even a necessity, for a CAIS implementation to
provide interfaces that are not part of the CAIS, but nevertheless integrate with the CAIS
model. Whether or not these additional interfaces extend the CAIS to be the equivalent of a
. complete operating system depends upon the implementation. An implementation piggy-
h backed onto or integrated with an existing host operating system is unlikely to replicate many
) host-dependent interfaces that do not interact with the CAIS model and are available by

' calling the host operating system directly.

& The objective of the CAIS is to provide a common set of interfaces in APSEs and thus
promote the transportability of tools and the ability to move development project databases
5 between systems that support the CAIS. Figure 3 depicts such a common tool with a
common set of interfaces for two different tailored CAIS implementations. A common set of
interfaces is necessary because APSEs are expected to be hosted on a variety of machines
and operating systems. Large systems are often developed by several organizations and often
. maintained during the remainder of their life cycle by someone other than the developer.
Because tools in APSEs regularly require facilities of the host system (e.g., the directory
[structure or the naming conventions of the host’s file management system), those tools and
o the project database generated by them become host dependent. Since such facilities are not
within the scope of the Ada language, the absence of a standard such as the CAIS will make
it difficult to achieve true transportability and to move the project database.

[R v]

4 4
o
- 3MS-DOS is a registered trademark of Microsoft, Inc.
4UNIX is a registered trademark of AT&T.
SVMS is a registered trademark of Digital Equipment Corporation. P
I SVMJ/CMS is a registered trademark of Intemational Business Machines, Inc.
b
‘ 4

\
D e A T S T LN TN RS T Y A et NI D IONE RV P
NN Ld f P A A .-_?)“ ' J‘ D NS LAl d‘_-‘ 4'_ I.'_ /e -Nl‘l"’\"’-"._' \"a-'-" u_':-_ln.".g" '-.-"." N'v- ._’.\n’\fﬁf\f- f‘.(. N

CAIS READER'S GUIDE FOR DOD-STD-1838

FIGURE 2. Purpose of CAIS

=

Ll g
)

e Y}
"n'

-

&

oy

Py

. ‘-
o
-

-I
~
-~
>
A

» ®
RN

F)
r
Z

- L] - .I < o 'l .. N - - ‘-. ‘. "l -
O A SO S DAL VT

]

h PV A
P A A NS

. 4 4
IR

°)

Yy

S

ANy

“ et %a .ia’ Ma' Ba' &a P N
lb'n.".'\llll;ll\-»‘L.l'..b‘~|“.'4_“‘“ A28 846 2.8% A2 hle BUs L abo gt att

CAIS READER'S GUIDE FOR DOD-STD-1838

[P

A R

8 TAILORED
; IMPLEMENTATION

COMMON

-
> -

COMMON INTERFACES

COMMON

TAILORED
‘ IMPLEMENTATION

, FIGURE3. A Common Tool on Different CAIS Implementations

B DGR I, Y N Y S AL L
L™, A A NN
. oy, 0v.o.. VRATRINW,

-.,."‘- N‘.'*
Lo N Ny

'\-'.\

L I O I PR I I T L R ~
e A AN AN N AN AN AN CRTAENT TN

CAIS READER'S GUIDE FOR DOD-STD-1838

1.3 Future of the CAIS

It is desirable that the CAIS be used in all DoD-sanctioned APSEs. Towards this purpose, the
CAIS document has been submitted for and has become a military standard, DOD-
STD-1838.

At the same time, the KIT/KITIA has also developed a requirements document [RAC86] for
the evolution of the CAIS. While the contents of the requirements document reflect closely
the operations provided in DOD-STD-1838, differences exist between the two documents. A
contractor has been chosen by a competitive process to further refine and develop the CAIS.
The objective is to arrive at a DOD-STD-1838A by early 1989.

Since the CAIS has been adopted as a military standard, a common approach to the
foundations of APSEs exists, thus encouraging and promoting transportability of software
tools and project databases. Another major benefit is the ability to establish a larger tool
marketplace because of the larger number of APSEs in which a tool can be installed. It is
expected that software development productivity using the CAIS-based APSEs will also
increase due to the ability to share good tools more widely, thus further enhancing the
software productivity goal addressed by the creation of the Ada language.

There remain many problems of interoperability and transportability which the evolution of
the CAIS must address or for which other standards might be proposed. In particular is the
desire to provide inter-tool data standards so that tool builders could insert an individual
component of a tool set into someone else’s tool set. DOD-STD-1838 is a good starting basis
for such improvements because it has been widely reviewed and includes numerous
improvements over other environment interfaces such as UNIX while not being too advanced
to prevent a reasonable number of implementations for wide use.

Several implementations of the CAIS have been and continue to be developed. Gould, Inc.
finished the most complete implementation of [CAIS85] in early 1986 and is in the process
of updating this implementation to [1838]; this should be completed in late 1987. TRW's
implementation of [1838] will be complete in 1988; TRW already has completed a partial
prototype implementation of [CAIS8S5). Dr. Timothy Lindquist, currently at Arizona State
University, has developed an Operational Definition of [CAIS8S] and is currently in the
process of updating it for [1838). Although the MITRE Corporation has not developed a
complete implementation of [CAIS85], they have been instrumental in developing partial
prototype implementations which address feasibility issues. The first partial prototype
implementation by MITRE addressed the implementability and rehostability of [CAIS8S5]
from a Sun’ UNIX system to a VAX3 VMS system (RCAIS]. This prototype
implementation was then extended by MITRE to address issues concerning a heterogeneous
distributed system [DCAIS].

7Sun is a registered trademark of Sun Microsystems, Inc.

$VAX is a registered trademark of Digital Equipment Corporation.

et
4'"4‘ AN

. . - o«
- . « (Y
NIRRT s, P V)

A M OS I NSOANAAE R IS LR

el INNANN
TANY YL
XY '.'Q.s‘-.‘:-.s'r'

..';f
Y L s

s
~
27

F

oot
AR
AP]

T
el
o

CAIS READER'S GUIDE FOR DOD-STD-1838)

)

S v

B S 5 e S B WY

-

et)

oo
[I

i

{Ra \\'\'\“Vi, - ' _ .
.r,.' f.r.r.-r\\.r,\'r .r.r..#.rq-\.r_ -vr,..-.r'v,‘\\-\.r. ,_._._

%~y e

2

2 g8 a8 N R R8s g% 8 ® Bt et 2% et et aVh a5 %0 AR a'd &'R a'B 50 a2t *at tab ~al.caf 'aSs ada' A e A%a @a A

CAIS READER’S GUIDE FOR DOD-STD-1838

2. THE CAIS NODE MODEL

a3
\
'y
The CAIS provides for the administration of the life cycle development and maintenance of 8
embedded computer systems. Typically in an APSE, a number of users employ a variety of :..:
software tools to produce files of design, source and object code and other project Ao
information. Interfaces for the use of files, processes and directory spaces are given. Since it '&
is desirable that tools be transportable among APSEs, common interfaces must be provided N
between the tools and the host system. In order to arrive at a coherent set of interfaces, the :
CAIS has been designed around an abstract model to support the life cycle development and \
maintenance of applications software which support embedded computer systems. This MY
model is the CAIS node model. ‘;_}1‘,
N
The CAIS node model consists of entities (e.g., files, devices, directories) and associations -
between these entities. The model is depicted as a directed graph of nodes (nodes of the ~
graph) and relationships (arcs of the graph). The nodes represent entities and can have oy
contents and attributes. The relationships specify unidirectional associations from one node _':
to another and can also have attributes. Attributes provide information about the node or :
relationship with which they are connected. Figure 4 shows the node model in the form of a e
schema. The node model is described in Section 4.3 of [1838]. -
)
ot
2.1 Example Scenario N
h%e)
A user, Jones, is a member of a software engineering project of a large acrospace company ;)‘
and is responsible for developing a subprogram that works with radar information as part of a ;
landing system. Within this company, the project that Jones belongs to is known as the 3
Tracker project. Jones has previously organized his work within the CAIS database. In :'.f
particular, he has organized several program units together for the Tracker project; one of)
these areas is for the landing system subproject and it contains the radar subprogram. :::)
? .
When any user logs on to this company’s CAIS-based APSE, a command language &
interpreter (CLI) is started on behalf of that user. The code for the CLI and other user tools o
are organized together within the CAIS database. In addition, within the tools area of the N
CAIS database, several tools have been collected together that deal especially with the S
subproject that Jones is working on in the Tracker project of this company. One of the tools N
located here is a simulator. '.
On this particular day, Jones has logged in to a terminal (a CRT), the CLI has been started \: 4
and some CLI commands from a file have been performed automatically. From the CLI, Y
Jones starts a simulation job in the background and then begins to edit an Ada subprogram 3
source file. Figure S is a depiction of the node model from the perspective of user Jones. et
Today, the primary focus of user Jones is with the Tracker project. Thus, the editing tool that
Jones is using reflects this (via the arrow labeled ‘‘current_node’’ in Figure 6). '_:.'
a9
3
n
®
-
9 o
]
LA :-.-_}-.',.' e T e e S LT e N AT T MRy A \{\

e gt . a - ‘. . . ‘2.a' 4 et Chath &t ‘3 e 0 ‘e &t . Y f . o
., 2 . "Lt 2") a' « . . 'y st e VY “bon'h n 8dhan’ A

P CAIS READER'S GUIDE FOR DOD-STD- 1838
'0
9
! <
B
:
1}
!
1Y L 4
3
!
¥ HAS_A WITH
Y NODE RELATIONSHIP
y CONTENTS x <
) T
i T
: R
2 I .
o A B i
4 T U
: T b
, R E
: I S
- B — ‘
: U
- T
o’ E
’ S
- [4
1
i L 4
Ce
3
é FIGURE4. Node Model Schema
" o
- | 10
[4

L I e T s N e T T SN -, . e e e et R
N e P e e o R T e e T A St e e T A N A Y Y N

(PR LA AT LTS T

“ gt

AR AN R RN U NN U U R U RV U T T U R N WU WO WU U T T R R O O R O I S Oy T Or YWy X

CAIS READER'S GUIDE FOR DOD-STD-1838

2.2 Nodes

The CAIS node model specifies three kinds of nodes: process, file and structural. The
contents of process nodes represent the execution of Ada programs. File nodes represent Ada
external files, such as data files, source code files or logical stores of information such as
terminals. Structural nodes typically represent user collections of files, such as user
directories.

The CAIS node model defines the concept of a system-level node, which represents the root
of the graph spanned by the relationships between nodes. There is only one of these nodes.
The CAIS does not provide facilities for operations on the system-level node. Figure 5 is a
node model example showing process, file and structural nodes with the system-level node?.

Nodes connected to the system-level node are called top-level nodes. In Figure 5, structural
nodes identified by JONES and TOOLS are top-level user nodes. Top-level user nodes
cannot be created or deleted with CAIS facilities. Such nodes represent the directories of
users, which may be individuals, projects, services or other organizational entities that
require access to APSE tools and files.

Devices in a programming environment, such as terminals and tape drives, are represented as
file nodes associated with the system-level node. These file nodes are referred to as device
nodes. Device nodes cannot be created or deleted with CAIS operations. The file node
identified by CRT in Figure § is a device node.

Facilities are not provided in the CAIS to create and delete device nodes and top-level user
nodes as explained above. Additional facilities must be provided by an implementation to
support top-level nodes because these facilities are different on every system and thus it
would be difficult to define a way that would be common across these diverse systems.

When a user enters an APSE implemented using the CAIS, a process node is created which
forms the root of a tree of process nodes for that user. This node is referred to as a root
process node. A root process node may represent, for instance, a command language
interpreter. Nodes identified by CLI and SIMULATOR are root process nodes in Figure 5. A
job is the tree of process nodes with the root process node as its root. Two jobs are shown in
Figure S: one consisting of the nodes identified by CLI and EDIT, and another consisting
solely of the node identified by SIMULATOR. A user may have more than one job executing
at any given time.

Within the node model, each process has a corresponding file node, known as a program
node, whose contents is the executable image for that process. Each program node is the
target of a secondary relationship of the predefined relation EXECUTABLE_IMAGE
emanating from the process node (see Sections 2.3 and 4.4 of this guide). In Figure 5, for
example, the nodes identified by CLI_CODE, EDIT_CODE, and SIMULATOR_CODE are
the program nodes for the process nodes identified by CLI, EDIT and SIMULATOR,
respectively (the secondary relationships of the EXECUTABLE_IMAGE relation are not
shown in this figure).

9Note that in this figure as well as other figures in this guide which show portions of the node model, not all
relationships are shown; only those relationships that are currently under discussion are depicted.

11

LI LI B R G - - e S e e i
NN Ao N s o A e S LIS LS O TN A A A A R T
Eal X nX . “ NaNa s oA, . S (A 2 4 Y iy v N o Sy T

R A
<, y"'.ss\'.

AR AN
O

e
e

EANRIERT A L2
PR A

L

.
.
4'.

T - o O

LN B R 5 . ~a¥ a8 ~ N LY
. [P) OV () v|~!|l!l’ilill'\\'|'QC'|"Q'O"“' IO N VN

CAIS READER'S GUIDE FOR DOD-STD-1838

SYSTEM LEVEL NODE

USER (JONES) [
GROUP (PROJECT)
DEVICE (CRT) USER (TOOLS)
“—
OB (SIMULATOR) DOT (TRACKER) DOT (CLI)
DOT (LOGIN SCRIPT)
SIMULATOR
DOT (TRACKER) DOT (EDIT)

JOB (CLI) v
LOGIN | EDIT | cr1 |
SCRIPT CODE CODE

DOT(EDIT)

DOT (LANDING_SYSTEM) DOT(Si;:LATOR)
SIMULATOR_
CODE

DOT (TEMP_FILE)
WITH_UNIT(RADAR)

TEMP _
FILE

FILE NODES

{ PRIMARY RELATIONSHIPS

STRUCTURAL NODES

PROCESS NODES LEGEND

s vom v e

FIGURE §. Node Model Example

12

e PRI P S T e R T I - -
A A A G R AR A A TR AN LT TR, B NN AN TN N AT T
A A £ X400 3 K . i L ,

.

o)

J

a!

\\.’
e

s

CAIS READER’S GUIDE FOR DOD-STD-1838

2.3 Relationships and Relations

Nodes within an APSE are usually interrelated. Nodes within the node model are connected
by unidirectional arcs called relationships. A relation is a set of relationships having the same
name. A relationship is an instance of a relation, much like a set element is an instance of a
set. Relationships are identified by their relation name together with a string called a
relationship key. Relationships having the same relation name and emanating from the same
node are differentiated by the use of relationship keys.

For example, in Figure 5, the nodes identified by CLI_CODE and EDIT_CODE are targets
of relationships of the relation DOT. Since there is more than one relationship with the same
relation name emanating from the node identified by TOOLS, the relationships must be
differentiated by the use of relationship keys. In this example, the relationship keys are CLI
and EDIT, respectively.

The CAIS provides two distinct categories of relationships: primary relationships and
secondary relationships. When a node is created, a primary relationship is created between
some existing node and the created node. The existing node is known as the parent of the
created node. Accordingly, the created node is referred to as a child of the existing node.
Each node is the target of exactly one primary relationship. Graph interconnections
representing primary relationships are such that the graph forms a tree. The tree structure
may be changed through the creation, deletion and renaming of primary relationships, but it
always remains a tree. Secondary relationships are used to establish additional associations
between nodes. Emanating from each child is a secondary relationship of the predefined
relation PARENT that identified the child’s parent. In Figure 5, for example, the node
identified by JONES is the parent of the nodes identified by LOGIN_SCRIPT and
TRACKER,; similarly, the nodes identified by LOGIN_SCRIPT and TRACKER are children
of the node identified by JONES.

The primary relationship to a node may be deleted, rendering the node unobtainable. If the
primary relationship to a node has been deleted, the node may actually still exist in the
implementation, but it cannot be accessed. Such nodes are not referred to as deleted nodes
because the implementation controls when the node is physically deleted (e.g., expunged
from storage). An operation is also provided to delete all of the primary relationships within
a subtree, thus rendering all nodes in the subtree unobtainable. The concept of an
unobtainable node is further explained in Section 3.1, Node Operations, of this guide.

Since objects in an environment often have many associations, the CAIS node model
provides for nodes to be connected through secondary relationships. The structure formed by
the secondary relationships is a directed graph. Secondary relationships to a node remain in
existence even after the node is made unobtainable. These relationships remain in existence
because it is possible that attributes of these relationships may still contain important
information about the node. To eliminate these relationships, they must be specifically
deleted. However, any attempt to access an unobtainable node (one whose primary
relationship has been deleted) through the secondary relationship will result in an exception
being raised.

The primary relationship to a node may be renamed. This operation deletes the primary

relationship to the node and establishes a new primary relationship to that node from another
specified node. The secondary relationship of the predefined relation PARENT to the

13

>
5
-

.
»
<
A
“
)
a,

AR ARAY

v

Pl

LERX KX R . - . - - 0 « WY g
" ! 4 TS W Aa Bt 0.0 0a0 500 8" 4% ¢ M 2'¢.8°0.0% 22 2% 1% "2, ‘ol gl Vaf, A ¢ad 04 8 8.4 ¥ [y ‘La's N yw

v CAIS READER'S GUIDE FOR DOD-STD-1838

0

" original parent is deleted and a new secondary relationship of the predefined relation
)l, PARENT is created to the new parent. All secondary relationships to the renamed node
N remain.

)

Nodes are accessed by establishing a path from a reference or current node; this is called
e navigation. Nodes may be accessed by specifying a path through the node model using
‘ primary and secondary relationships. Each path has a pathname which consists ¢ the
Y concatenation of the relation names and relationship keys used to move from the first node in
the path to the last node in the path. Pathnames can be constructed of both primary and
seccondary relationships. 'USER(TOOLS)'DOT(TRACKER)'DOT(SIMULATOR) is an
P, example of a pathname of the node identified by SIMULATOR _CODE from Figure 5, where
" USER and DOT are predefined relations that will be explained later. An altemate method of
) referring to a node is through a node handle, which is discussed in Section 3.1, Node
Operations, in this guide.

!
. The CAIS defines a number of predefined relations in the node model. User defined relations
) j can also be established. Seven of the predefined relations are: PARENT, USER, DEVICE,
N JOB, CURRENT_JOB, CURRENT_NODE and CURRENT_USER. Figure 6 depicts a
4 portion of the node model example from Figure § with relationships of some of these
o relations shown (all relationships for all relations are not shown in Figure 6). Secondary
relationships of the PARENT relation emanate from each child to its parent. There are
] predefined relations USER and DEVICE which may be used for both primary and secondary
& relationships. Primary relationships of the relation USER emanate from the system-level
N node and identify. user top-level nodes; secondary relationships of the relation USER
~ emanate from process nodes and also identify user top-level nodes. Primary relationships of
-~ the relation DEVICE emanate from the system-level node and identify device nodes;

secondary relationships of the relation DEVICE emanate from process nodes and also
N identify device nodes. Each root process node is identified by a primary relationship of the
. JOB relation from its parent. Additionally, each process node has secondary relationships of
‘3 the CURRENT_JOB, CURRENT_NODE and CURRENT_USER relations emanating from
N it. These relationships are typically used as a context for the interpretation of pathnames. A
relationship of the relation CURRENT_JOB always identifies the root process node of the

> subtree containing the process. A relationship of the relation CURRENT_NODE is typically
- used to identify the node that is the object of that process’s actions; it defines part of the
N current environment for pathname interpretation. A relationship of the relation CURRENT _
: USER identifies the top-level user node for that process.
3 DOT is the default relation used when none is otherwise specified. In pathname syntax, *
. 'DOT can be abbreviated to ‘*.”’. The relationship key is then used to differentiate between
a3 other nodes sharing the DOT relation with the parent (i.e., from the previous pathname
': example, "USER(TOOLS). TRACKER.SIMULATOR s the abbreviation). Relationships of
e the DOT relation must always have a relationship key.
- Table I is a list of the predefined relations. For more information on relations, see Section 4.3 .1
N and Appendix A of [1838].
‘\
N
Y
°
X 14
@ |

o A P o .
N AT M AT AT AR

L et Sty

CAIS READER'S GUIDE FOR DOD-STD-1838

SYSTEM LEVEL NODE

/

USER (JONES) DEVICE (CRT)

JOB (CLI) uger (jones)

DOT (TRACKER)

device(crt)
current_user

device (crt)

current _user
DOT(EDIT)
current__job

DOT (LANDING_SYSTEM)
current_node

WITH_UNIT (RADAR)
paren
|
FILE NODES .
{ PRIMARY RELATIONSHIPS
STRUCTURAL NODES ’(/ secondary relationships

PROCESS NODES | | LEGEND

FIGURE 6. Seven Predefined Relations

15

WpP ,P eV A p o P um p AR m- -
(IO P LS LA, Pl P R T N TR AT AT T, m e - . .
B R S A e A e A s A S S i O N G U LN G Pu

A

PP o 4F of 1
ST

P c";. %,‘

Tyt ,'.- "v
Sy 8 g,

52.;’(* .

=

¢

o
‘
ot

v
.‘
Yo
S
1|

Tatea Ty

NS S8 AN

x 4

W]

.
i

l' I’

' P

Y
*.

RS

Q-.--.')
A

CAIS READER'S GUIDE FOR DOD-STD-1838

TABLE L Predefined Relations
Predefined Relation Relationship Source Node Target Node
Type
ACCESS secondary any group
ADOPTED_ROLE secondary process group
CURRENT_JOB secondary process root process
CURRENT_NODE secondary process any
CURRENT_USER secondary process top-level user 7
DEFAULT_ROLE secondary top-level user group
DEVICE primary system-level device
secondary process top-level device
DOT primary or any any
secondary
EXECUTABLE_IMAGE secondary process file
GROUP secondary process top-level group
primary system-level top-level group
JOB primary top-level user oot process
MIMIC_FILE secondary mimic queue coupled file
PARENT secondary any any
POTENTIAL_MEMBER secondary group group
USER primary system-level top-level user
secondary process top-level user

o e ety N
e N
ALY

When ‘‘any’’ is indicated in this table, it is understood to mean ‘‘any node except the
system-level node’’.

The relations ACCESS, ADOPTED_ROLE, DEFAULT_ROLE, GROUP and
POTENTIAL_MEMBER are not discussed in this guide. These five relations are used in
discretionary access control, which is only briefly mentioned in this guide.

2.4 Attributes

Information about nodes and relationships may be contained in the attributes of the nodes or
the attributes of the relationships. Each attribute has a name and a value; the attribute value
is a list. For example, each CAIS node has a predefined attribute TIME_CREATED which
indicates the implementation-defined time of creation for that node.

There are several predefined attributes in the CAIS. Table II lists the predefined attributes
and describes their applicability and values. More information on attributes can be found in
Section 4.3 and Appendix A of [1838]. Figure 7 shows an example of several predefined
node attributes and relationship attributes.

16

e e e e e N e YN ~ Lt
_r__.‘ e RO SO

| 3

- Bl

\--_--

N
Pty

“o

N R L T et S T TN

v

ol

V]

v!

N RART A RN AN RN NN YWY " &', LY Y 1 \PPLY

(U 3. o4

CAIS READER'S GUIDE FOR DOD-STD- 1838

TABLE I1. Predefined Attributes
Predefined Attribute Applicable to Values
ACCESS_METHOD file node SEQUENTIAL, DIRECT,
TEXT
CURRENT_FILE_SIZE secondary storage file node value >=0
CURRENT_QUEUE_SIZE nonsynchronous value >=0
queue file node
CURRENT_STATUS process node READY, SUSPENDED,

ABORTED, TERMINATED

DEVICE_KIND device file node SCROLL_TERMINAL,
PAGE_TERMINAL,
FORM_TERMINAL,
MAGNETIC_TAPE_DRIVE
FILE_KIND file node SECONDARY_STORAGE,
QUEUE, DEVICE
GRANT ACCESS relationships access right value
HIGHEST_CLASSIFICATION file node implementation-defined
INHERITABLE all relationships TRUE, FALSE
I0_UNIT_COUNT process node integer >= 0
LOWEST_CLASSIFICATION file node implementation-defined
MACHINE_TIME process node value >=0
MAXIMUM_FILE_SIZE secondary storage file node value >= 0
MAXIMUM_QUEUE_SIZE nonsynchronous value >=0
queue file node

NODE_KIND

all relationships

STRUCTURAL, PROCESS,
FILE

TIME_RELATIONSHIP_WRITTEN

OBJECT_CLASSIFICATION all nodes implementation-defined
OPEN_NODE_HANDLE_COUNT | process node value >= 0
PARAMETERS process node tool-defined list
PROCESS_SIZE process node value >=0
QUEUE_KIND queue file node SYNCHRONOUS_SOLO,
NONSYNCHRONOUS_SOLO,
NONSYNCHRONOQUS_COPY,
NONSYNCHRONOUS_MIMIC
RESULTS process node tool-defined
SUBJECT_CLASSIFICATION all nodes implementation-de fined
TIME_ATTRIBUTE_WRITTEN all nodes implementation-defined time
TIME_CONTENTS_WRITTEN file node implementation-defined time
TIME_CREATED all nodes implemeantation-defined time
TIME_FINISHED process node implementation-defined time
all nodes implementation-defined ime

rars

LY
Pt ol ok 4L

Sy

%
)

3

"

[oA o g i o8 LY v
2 PO N 2yt
ks G .

NN
l,'v‘ A, 2 nd 5

-
4

« -y e 4
SRR A
o ."' AN

L

Al bt Tab At AU At b Ut Ll gt g et ar AVt at gt bRt et gl cabe AV 4t aty gig ata g gl Lo ata gate g}

CAIS READER'S GUIDE FOR DOD-STD-1838

TABLE IL Predefined Auributes -- Continued.
Predefined Attribute Applicable to Values
TIME_STARTED process node implementation-defined time _

Attributes may also be defined by the user. User-defined attributes are used for describing

additional characteristics of nodes and relationships. For example, user-defined attributes -
may be useful for describing the number of pages in a document. An attribute NUMBER _

OF_PAGES, for example, could be defined for each file node that contains a document to

specify the length, in pages, of that document.

2.5 Security and Access Control Provisions

There are two kinds of access controls defined in the CAIS document: discretionary access
controls and mandatory access controls.

Discretionary access controls limit the authorized access of process nodes to other nodes.
Along with certain relations that determine which nodes a process can act upon, the concept
of a role, which represents access rights, establishes discretionary access controls. For more
detailed information on access controls, see Section 4.4 of [1838].

Some APSEs may be required to operate in multi-level secure environments. The CAIS
supports mandatory access controls. These controls remain consistent with the security
criteria established in [TCSEC] and define neither a particular security model nor policy.
CAIS mandatory access control provides a labeling mechanism via node attributes. By
classifying nodes, mandatory access controls limit the use of the three operations of reading,
writing, or reading and writing. Such classifications may be hierarchical (e.g., the
conventional government UNCLASSIFIED, CONFIDENTIAL, SECRET and TOP SECRET
hierarchy of classifications), non-hierarchical (e.g., compartmented), or a combination of
both.

2.6 CAIS Operations
The interfaces specified in the CAIS may be divided into three main groups:

a. General node management operations.
b. Process node operations.
c. Input and Output operations.

These operations are described in the following chapters of this guide. The CAIS also
includes a number of utility packages which are not covered in this guide.

a. Section 5.4 of [1838] discusses list management of the CAIS.

b. Section 5.5 of [1838) defines the package CAIS_STANDARD which contains
certain scalar types predefined in the CAIS; this package is provided in order to
make these types reasonably independent of any predefined types in the Ada
language, whose characteristics may vary among compilers.

18

Lo el SRS RN o AR] g M (YN R L T T O T e SO - . .
0 N = NN - e et e e . B AT S L AT I i " .
R CON A IONIIDENI N S AT .(-'q:r T N T A I e T P S L e L

e

EeSll sl

_ﬁ%i‘oﬁ‘lv

°r

R

L
=

-

Ly

“Y . E_8

T

el t'..

. e ° Vet

.{."..' s

7

-“ A .

LR
P ¢

R JRUCRNEAEARNENES

Sada AR A Na Nay tal ey ph vag ay ab Ved Vol Wag Vo vad e YR WO W)

CAIS READER'S GUIDE FOR DOD-STD-1838

SYSTEM LEVEL NODE

/

USER (JONES) DEVICE (CRT)

ACCESS_METHOD= (TEXT)
DEVICE_KIND= (PAGE_TERMINAL}
FILE_KIND= (DEVICE)
HIGHEST_CLASSIFICATION= (U}
LOWEST_CLASSIFICATION=(U)
OBJECT_CLASSIFICATION=(U)

NN
DOT (TRACKER) Kind=(File)
JOB (CLI)

device{crt)

ANy

DOT (LANDING_SYSTEM)

AR

Kind= (St ructural) DOT (EDIT) Kind=(Process)

WITH_UNIT (RADAR)

CURRENT_STATUS= (READY)
IO_UNIT_COUNT=(1_278_356)
MACHINE_TIME=(03:10:35.37)
OBJECT_CLASSIFICATION= (U)
OPEN_NODE_HANDLE_COUNT= (8)
PARAMETERS= ()

RESULTS= ()
SUBJECT_CLASSIFICATION=(U)
TIME_FINISHED=()
TIME_STARTED=()

Kind=(File)

ACCESS_METHOD= (SEQUENTIAL)
FILE_KIND= (SECONDARY_STORAGE)
HIGHEST_CLASSIFICATION=(U)
LOWEST_CLASSIFICATION=(U)
OBJECT_CLASSIFICATION=(U)

R NN NNNNY

FILE NODES NS Relationship
Attributes

STRUCTURAL NODES

PROCESS NODES NODE ATTRIBUTES

AN

PRIMARY RELATIONSHIPS

LEGEND

secondary relationships

N NQIg[=

FIGURE 7. Some Predefined Attributes

P A
B 5 & 4 L

A LS MY
L

A4
I

CPLEELL
RN Y
P

K

.lf.‘
4

NSNS
1‘.{\"". R

Ty
(R A
v o 3o e o P {]

. -"l :nﬂ‘ " ;
. .l

i

VT TR
v‘,

L

J'\J'

A L") ¥ Npb » ~

S Bat B4’ ot 22" fa 02 B2’)a" o' ala’ Va'ata 2% 02 2, o g1h o Vb g0 BVA 2B VAL R0 e BB B0 020 428 Safalat Safe ataiAtsl a¥e’ < ry

CAIS READER'S GUIDE FOR DOD-STD-1838

c. Section 5.6 of [1838] defines the package CAIS_CALENDAR which provides
facilities for accessing a system clock and interpreting its values.

d. Section 5.7 of [1838] defines the package CAIS_PRAGMATICS. Pragmatics
are constraints imposed by an implementation that are not defined by the
syntax and semantics of the CAIS. The minimum capacities that must be
supported by a system that supports the CAIS are provided in this package.

20

T A A AR T TN e e N e T e Lt Lt e S
oy, .

. . T S T T N . - v,

o

L (" IR

Yo oig pdy 9) oV WL WY WUy 1 . N W VU . . ¥ oA
A ¥a gt . T o ™ T W g U 4 alta? y " SR J0a 05 oWE gvg i

CAIS READER'S GUIDE FOR DOD-STD-1838

3. GENERAL NODE MANAGEMENT

General node management operations involve node operations, attribute operations and
discretionary access control operations. Node operations include identifying, creating,
duplicating and deleting nodes and managing relationships between nodes. Attribute
operations include creating, deleting and modifying attributes on nodes and relationships.
Discretionary access control operations include setting, deleting and examining access
control information. Node management allows for the management of file, process and
structural nodes in the CAIS node model.

3.1 Node Operations

Once a particular node has been identified by traversing a path, the pathname need not be
re-evaluated. Instead, a node handle may be used. A node handle is a unique identification of
a node and may be used to identify any node in the graph. The use of a node handle avoids
repeatedly specifying long path traversals to a node which is often accessed. This handle can
then serve as a convenient reference for that node. Node management operations frequently
use node handles. To address a node using a node handle, a node handle must first be opened
to that node. The open operation establishes the node handle and associates a node handle
with the specified node. An open node handle is said to track the node it identifies, meaning
that the node handle is guaranteed to refer to the same node, regardless of changes in any
relationships. Sufficient access rights (e.g., to read or write the contents of a node) are
necessary to successfully open a node handle. Moreover, if a node handle is closed, the node
handle no longer refers to the given node.

The structure of the node model can be altered by the creation of nodes and relationships and
by the deletion of relationships. The operations for creating nodes are provided in the CAIS
by a variety of node and subtree creation procedures. Interfaces for these operations are
discussed in Section 5.1.2 (for general node management) of [1838]. Structural nodes are
created with the interfaces described in Section 5.1.5 of [1838]. Section 5.2.2 of [1838]
describes the interfaces with which process nodes can be created and deleted. The interfaces
described in Section 5.3 of [1838] can be used for the creation and deletion of file nodes (for

input and output).

The primary relationship to a node may be deleted. In many ways, the node itself may be
thought of as having been ‘‘deleted’’, although the CAIS leaves it up to the implementation
whether or not the physical node still exists. A node whose primary relationship to it has
been deleted is said to be unobtainable. Secondary relationships identifying unobtainable
nodes, however, remain until explicitly deleted by relationship deletion operations. Open
node handles to a node that has become unobtainable still refer to that node. Attempts to
access the contents or attributes of an unobtainable node using secondary relationships or
open node handles will result in an exception being raised. An exception will also be raised if
an attempt is made to access a relationship emanating from an unobtainable node. The
attributes of relationships targeting the node may still be examined, though.

File and structural nodes may be copied. All secondary relationships emanating from the
node are also copied. Secondary relationships to the original node are not copied.

21

.

R
\x

-.'

*4

L8
BT

-Jl

e

R

22
T

AT

AR AL
LA
AR A

24

e

o

I{': {l

Y,

-
@

[l

A A RIS
'j’\’\ 4, 055 l'1

i

@222 L0

< 7
. L%
B

k)
L 7,
as

{ IV O oY &

CAIS READER'S GUIDE FOR DOD-STD-1838

An entire subtree of file and/or structural nodes may also be copied. Secondary relationships
between two nodes in the subtree, both of which are copied, are also recreated between the
newly copied nodes. Secondary relationships emanating from copied nodes to nodes outside
the subtree are copied, too. However, secondary relationships emanating from nodes outside
the subtree to nodes inside the subtree are unaffected. Figure 8 shows an example of copying
a subtree of nodes.

Renaming a file node or structural node (effectively changing the parent for that node)
deletes the primary relationship to the node and installs a new primary relationship from
another node, thus establishing a new secondary relationship of the PARENT relation to the
renamed node. In Figure 5, for instance, the file node identified by TEMP_FILE may be
renamed to have a new parent such as the structural node identified by TRACKER, thus
making a permanent file out of a temporary file. Secondary relationships to the renamed node
remain intact.

Operations are also available in the CAIS to identify all those nodes which emanate from a
node and match a given relation name and relationship key pattern (called a relationship key
descriptor). This may be useful, for instance, for finding all the relationships of a particular
relation emanating from a node or for finding all the primary relationships emanating from a
node. Interfaces for these operations are discussed in Section 5.1.2 of (1838].

3.2 Attribute Operations

Several interfaces exist for the manipulation of node attributes and relationship attributes.
Attributes may be created and deleted. The values of attributes may also be examined and
changed. Predefined attributes, however, may not be altered. The capability is also given to
iterate through attributes of a specified node or relationship. Interfaces for these operations
are discussed in Section 5.1.3 of [1838].

3.3 Discretionary Access Operations

As the number, nature and function of the tools involved in the APSE changes, discretionary
access control may also change in the node model (so that, for example, individual projects
may be protected). The CAIS provides mechanisms for changing discretionary access
controls. Interfaces for these operations are discussed in Section 5.1.4 of [1838].

22

N

N

WO

CAIS READER'S GUIDE FOR DOD-STD- 1838

?U"I:\Nr)ver\nrvv\r-)rv
«

SYSTEM LEVEL NODE

USER (SMITH) USER (JONES)

TO_BASE

oxn«ss)/

FROM

\mmsn ILE(F4)

home _dir (SMITH)

DIR(S2) ILE(F])

FILE(F1) 1LE(F2) I

depends on(F3)

{::—' Then, after executing

to_self (F1)

file(MY_FILE)

COPY_TREE (FROM, TO_BASE, "S4", "DIR")

the node model becomes:

SYSTEM LEVEL NODE

USER (SMITH) USER (JONES)

FROM

\ozk«su ILE(F4)

home_dir (SMITH)

DIR(SY) /

DIR(S2) FILE(F3)

FILE(FL) ILE(F2) l

depends oniFlj

| FILE(FY)

to_self(Fl)

file(MY_FILE)

home _dlr(SMITN}

FILE(F3}

.

DIR(S2)

FILE(F2)

to_self(F1)

FIGURE 8. Copying a Subtree of Nodes

TO_BASE

depends _oni(Fd)

B
'l"'ﬁ

e
. ‘- .D
I P R0

*
i

Tt
R N B

-4 - - AR

y {"f r’.':' e

s

LI |
’ y)
SRS
AN

[s
o,

h

X
)

S

23

el
P S
W

g
PR

) AL

CAIS READER'S GUIDE FOR DOD-STD-1838

24

e e S N R AT P S e N e e

o pla 20 V802U AL b tal ‘al el tob LA S0 6.8 i 8 08 et famd 0 8.8"0.a'2.2%A a'h ath at OB ath g\l v lm 208 AR V4 o820 Ba‘ Baf et @l @7 wat A2) al¥ @o¥ ada’

e P]

CAIS READER'S GUIDE FOR DOD-STD-1838

4. CAIS PROCESS NODES

SN NS

S‘ An executing Ada program is a linked set of Ada tasks and Ada subprograms. The Ada
Language Reference Manual [1815A] addresses only the functions available within a single
program. There are requirements in APSEs for programs that are separately compiled and
linked to interact with one another.

S 23

H‘ Figure 9 depicts the scope of the Ada program interaction. The individual Ada programs
(programs A, B and C) each contain a number of subprograms and tasks which cannot
interact with other executing programs. The scope of the CAIS definition encompasses the
ability of several Ada programs to interact in a software system. In the CAIS, process nodes
are used to represent each executing Ada program. In Figure 9, programs A, B and C cculd
® be represented as CAIS process nodes.

Y Ty

Y AR

The CAIS recognizes that each executing Ada program is obtained from a file node
containing the program’s executable image. Several processes may be running
simultaneously from this single executable image. Each process would perform the same
functions as the other, except each would execute in a different context from the others. An
. example of such a situation is several APSE users performing compilations simultaneously.
An important restriction on process nodes is that they cannot be copied or renamed (attached
to a new parent).

£ O v

rd AL

%Y Y Y W
. .

Section 5.2 of [1838] describes the execution of Ada programs as represented by CAIS
e processes and the facilities provided by the CAIS for initiating and controlling processes.

"

J

The major events in the life of a process are:

a. Initiation.
b. Running, which may include suspension or resumption.
& c. Termination or abortion.

LA

Initiation creates a process node and begins running the process. After a process begins to
run, it may be suspended. A suspended process may be caused to resume running. When a
process completes running normally, it is said to terminate. However, a process may instead
be aborted, which permanently stops the process from running. A state table diagram
showing each of these process node states and transitions is given in Figure 10. Since
processes are part of the CAIS node model, process nodes may be identified for the purpose
of obtaining information about the process.

@ Y ANLANAlIG Y

-~

5 e e

‘y e
1)

Interfaces that deal with processes are discussed in Section 5.2 of [1838].

y &

4.1 Process Initiation

Initiation creates a process node and begins running the process.

N When a user enters an APSE implemented using the CAIS, a process node is created which °
forms the root of a tree of process nodes for that user. This node is referred to as a root -

EOICANE P s S e
- Jﬁ__\. .r\ ’*. J_\ _’\

) v

-- .1{.1 -
FAE,

CAIS READER'S GUIDE FOR DOD-STD-1838

Program A
(Scope of Ada LRM)

Program B =
(Scope of Ada LRM)

Program C
(Scope of Ada LRM)

D Ada subprogram ;
- CAIS process 3
‘ (Ada program) »

Intertask
communication

‘ Interprocess
communication

—_—

J

.

W

»

. N (]

FIGURE 9. A Process is an Ada Program 3

26 b

®

7

i,

"Nt % P el e e e L A R S T .t ¢n P T N P L S X
,;;i_;‘&; it *f..f :Q':a_.z\ NN RNty R .n. NN PO e .

T at . ab. al. Al of I||ll\|"\‘I\I.'\Ql§l\l|‘l’

CAIS READER'S GUIDE FOR DOD-STD- 1838

NON_EXISTENT

process initiation

RESUME_PROCESS

SUSPEND_PROCESS

\ RESUME_PROCESS
termination

PROCESS

SUSPEND_

ABORT_ TERMINATED' PROCESS

SUSPEND _ SUSPENDED PROCESS

PROCESS

ABORT_PROCESS ABORT_PROCESS

ABORT_PROCESS

SUSPEND_PROCESS ABORTED

RESUME_PROCESS

FIGURE 10. Process States

27

v 4y
PR

&N
X _:

[
1)

LT 4
R

553

A A
249,

A4 A

-’t'l".'

" .‘."' . .t' ‘2
,A.{s yne

4

o
e/

A
v, -,'\.. "~‘

i
.
M

I
Q'.'

TS5 2NN Y
Pl A)
NGRS

PrAX
NSy
LLL0Q 2

"t‘

&%

g > ¥

CAIS READER'S GUIDE FOR DOD-STD-1838

process node. Nodes identified by CLI and SIMULATOR are root process nodes in Figure

5. A job is the tree of process nodes with the root process node as its root. Two jobs are \
shown in Figure S: one consisting of the nodes identified by CLI and EDIT, and another

consisting solely of the node identified by SIMULATOR. A user may have more than one -
job executing at any given time.

All process nodes in a job form a tree. An initiating process is known as the parent process,
while the initiated process is known as the child process. Except for the root process node,
the parent of a process node is always another process node. For any process, a process tree
consists of that process plus all of the processes which are descendants of that process.

A new job is created each time the user enters the APSE. The user may have more than one
job if, for instance, he logs on at more than one terminal at one time. In addition, new jobs ;
may also be explicitly created by other running processes. ;

There are three ways in which a process can initiate another process. These methods cause a
{ process node to be created and a node handle to be opened.)

The first method is referred to as invocation. The calling sequence to this interface does not
retum control to the task or subprogram of the invoking process until the child process ceases
to run. Note, however, that any parallel tasks of the invoking process can continue to run.

The second method is referred to as spawning. A process can spawn many processes. For
instance, from the CLI process, a user might spawn a simulator process, a compiler process
(both of which do not need interactive inputs) and invoke an editor process. All three of these
processes can be connected directly to the CLI process via primary relationships and run in »
parallel. The calling sequence to this interface retumns control to the spawning process once
the child process begins to run. The initiating process and the initiated process run in parallel,
and within these processes, their tasks run in parallel.)
Creating a new job is the third method of initiating a process. Creating a new job allows a
user to create other root process nodes without logging on. This can be used to begin the ;
execution of batch (background) processes. These processes run in parallel with other root /
process nodes and can themselves initiate other processes. Control is retumed to the J
initiating process after the new job is created. 3

. . [
4.2 Process Suspension or Resumption :
A running process may be suspended either by itself or by another process using CAIS :
operations, causing the process to stop running until another process causes it to resume '
running. A suspended process will continue running when it is the object of a resume
operation. A process may be suspended (or resumed) even though its parent process is not N
suspended (or resumed). ,
]
>
>
»

Yoot av. al. g% g4 4i g?

o gVl o gt s ab o v, qf . aco ab ab et a0 g el g ail ab. ot abo al. ave . @ale At av. AV, Al ad ' 0 0l mat Bt aad aa Bt

CAIS READER'S GUIDE FOR DOD-STD-{838

4.3 Process Termination or Abortion

A process terminates when the Ada program it represents stops running normally. When a
process is terminated, all of the processes in its process tree that are not terminated are
aborted.

Any input and output files and node handles that are open are closed when a process
terminates.

A process stops running when it is aborted. No further actions by the aborted process may
occur. An aborted process may not later resume running. When a process is aborted, all of
the processes in its process tree are likewise aborted. Thus, if a root process node is aborted,
all of the other processes in the job are likewise aborted. In Figure 5, for example, if the
process identified by CLI is aborted, the process identified by EDIT is also aborted.
Similarly, if a process node is deleted while the process is running, the process is aborted. A
process may be aborted even though its parent process is not aborted.

When a process terminates or aborts, the process node continues to exist until explicitly
deleted, retaining useful attributes about the results and status of the execution.

4.4 Process Relationships

When a process node is created, a standard input file node, standard output file node and
standard error messages file node are assigned as default files for input, output and error
output for the process. These file nodes are identified by secondary relationships of the
relations STANDARD_INPUT, STANDARD_OUTPUT and STANDARD_ERROR,
respectively, at the beginning of a program’s execution and remain as long as the program is
exccuting.

Examples of these relationships are shown in Figure 11. The node identified by CLI, when
created, had all three of these relations identifying a device node, the node identified by
CRT. The file node identified by LOG_FILE later became the target of the relationship of the
predefined relation STANDARD_ERROR. When the process node identified by EDIT was
created, all three of the relationships identified the node identified by CRT. A relationship of
the relation STANDARD_ERROR was later targeted to the node identified by LOG_FILE
and a relationship of the relation STANDARD_INPUT was targeted to the node identified by
DATA_FILE. The node identified by SIMULATOR still has the three original relationships;
all of them emanate from the node identified by SIMULATOR and are targeted to the node
identified by CRT.

Secondary relationships of the predefined relations CURRENT_JOB, CURRENT_NODE,
CURRENT_USER, DEVICE and USER are also created when a process node is created.
These were explained in Section 2.3 starting on page 14 (these relationships are not shown in
Figure 11). In addition, a secondary relationship of the predefined relation EXECUTABLE _
IMAGE is created to point to the program node for the process (this is only shown for the
node identified by EDIT).

29

PV Wy

3 * "
NN
o ""f‘_l. AR oy

¥ "

v e

CAIS READER'S GUIDE FOR DOD-STD-1838

SYSTEM

LEVEL NODE

USER (JONES)

JOB (SIMULATOR)

DOT (TRACKER)
DOT (LOG_FILE)

! JOB (CLTI)

LOG_
FILE

»
stqndard erro
DOT(LANDING_SYSTEM) -

standard_error
WITH_UNIT (RADAR)

parent

1
DATA_

DEVICE (CRT)

standard_inaut

USER (TOQLS)

CRT

53

7

hrd_output

DOT;DIT)

- EDIT

CODE ~

'y

standard_input
standff?_output

standard_error

current

standard_output

d EDIT
FILE standard_inpdz-\\\§____,// executable_image

FILE NODES

STRUCTURAL NODES

PROCESS NODES

/ PRIMARY RELATIONSHIPS

’(/ secondary relationships

LEGEND

FIGURE 11. Input and Output Predefined Relations
30
SRS N TS e e "o v " -
P R R R R RS N L e e e PR S . i N e e . e ~
b e A e T Y o NGNS - a,:..:,-\-:.-\.-_ AR

B ¥ _F_ &

'y'.*,)'i.‘llll--

Pyl

S0
o

- "8ad 0l Db hadk Wat S vag saf val a1 ol Stee's ¢ awmt’
4 h 4 i L4 V W LN R Y KRN

CAIS READER'S GUIDE FOR DOD-STD-1838

4.5 Process Attributes

Each process node has several predefined attributes. Figure 7 shows an example with several
of these attributes.

One of the attributes of the process node, CURRENT_STATUS, is used to determine
whether the process is running, terminated, or aborted. This attribute may be checked at any
time to determine the state of the process. This may be useful when it is necessary to know
whether a process has been aborted or whether it is still running, but blocked.

Other information pertaining to a process can be obtained via attributes. JO_UNIT_COUNT
is the number of input and output operations that a process has performed and OPEN_

NODE_HANDLE_COUNT is the number of node handles currently open by the process.
PROCESS_SIZE indicates the current size of a process, i.e., the amount of memory it is
currently using. The attributes TIME_STARTED and TIME__FINISHED indicate the time
that a process started and finished, respectively.

Each process node has a predefined attribute PARAMETERS which is a list of parameters
given to the process by another process, e.g., a command line interpreter, when it was
initiated.

Each process node has a predefined attribute RESULTS which is used to store a list of the
results of the process. At any time when a process is running, it may store results in this list.
The results of that process may be obtained by another process at any time while the original
process is running or after the original process has ceased to run as long as the process node
still exists.

31

I T TN N~ Y N - - ~ [T .
J'(:-all..-ff.r.r.r.-.r.r.(,a '.fi.r..- a.r oy .».-"‘*"""""'---\'
»-?‘ 1" ~in, 'l_ -l' Y w7 L J'_.r_-"\.r__.r .-\.(\f\.\.r .(\

W * PR H R

~ 7
[

o

4

l."l",'
g

1, T X
) .)?: [

‘4 94
PR

.l’

a0l

K2

MTAN RN RN AN RNEN I AN RN AN gl Vo bad Mol ol t.8 Yaf, %l Yol Sal ol et tal Vat Sat taR ot tal tad Yat tab ‘ed tal _Yal "as_'at *al " Cal o at o gt a8 el ave ety ata’als abe Als 8t

CAIS READER'S GUIDE FOR DOD-STD-1838

-,

e v v e s«

~3

S

]

S 5% %

‘et

P

[
3

'a’f"r‘v’t’u.

Ty e Yy Ty . L3

A
IR e

32

R A A A R R R 3 R A A S s A A I T O A O Y R R SO O SO O WO IO WOV R WO O
r als aN . " ' DAL LA bh ad L Al A A

o, W,
.
CAIS READER'S GUIDE FOR DOD-STD-1838 o
S. CAIS INPUT AND OUTPUT 3%
R
o
CAIS input and output operations incorporate input and output of the Ada language and also o
provide some new input and output capabilities. :ﬁ: W
\’\
CAIS input and output operations are used to transfer data to and from CAIS file nodes. ::':,
There are three kinds of file nodes: secondary storage, queue and device. Secondary storage 3

file nodes represent files such as disk files. Queue file nodes represent temporary stores of
information typically used in operating systems for interprocess communication. The CAIS ESSA
predefines four kinds of device file nodes: magnetic tape drives and scroll, page and form ol
terminals. Magnetic tape drive file nodes represent magnetic tape drives. A terminal file node

represents an interactive terminal. These file nodes are explained in more detail in the)
following sections of this guide. Section 5.3 of [1838] discusses the interfaces applicable to S

CAIS input and output. ./
N

Al

5.1 Secondary Storage I:-jfi-j
A secondary storage file in the CAIS represents files such as disk files. The predefined node RN
attributes CURRENT _FILE_SIZE and MAXIMUM_FILE_SIZE indicate the current and [
maximum sizes, respectively, of the secondary storage file. .'-;-"_/_:

5

,‘\-_,‘- 3

5.2 Queues ::::»
C

Queues are files of information stored in a first-in first-out order and are primarily used for ‘)

interprocess communication. Interfaces for queues are described in Section 5.3.7 of [1838]. \,"
Three categories of queues are used by the CAIS: solo queues, copy queues, and mimic e
queues. i
e

Solo queues are the simplest form of a queue, allowing one or more processes to write to a {“'
queue while one or more processes read from the queue. Each item of information in the A
queue may only be read once. Processes typically send information to one another through N
solo queues. Figure 12 depicts a typical solo queue, where the process nodes identified by A

WRITER] and WRITER2 are writing to the queue, and the process nodes identified by oy
READERI, READER2 and READER3 are reading from the queue. NN

®

Figure 13 shows an example of how a solo queue can be used as a pipe between two ::'—(

processes. The process identified by PROCESS generates some unsorted output that is Ity
written to the solo queue identified by PIPE so that the process identified by SORT may read { E
it. This process sorts the information it reads from the solo queue and sends it to the device A
node identified by CRT. £

P

A copy queue is initialized with a copy of the contents from another file at the time of queue :§:::-'

creation. An example of a copy queue is shown in Figure 14. This type of queue is useful for :-:t-;:
allowing one process to partially read a file and another process to read the rest of the file, as NS
in batch processing. Copy queues are also useful for treating a secondary storage file node as QNG

a queue without disturbing the contents of the file. .,

ity

AL

v

33 -:‘_;V’

:

S B

Y

e

L NN

33%,

cN

CAIS READER'S GUIDE FOR DOD-STD-1838

process node
process node
WRITER2
. WRITER1
node contents
node mformatlon “l
i P flow B
queue information v
flow
{
solo queue v
file node ,
READER3
READER1 READER2 process node
process node process node
FIGURE 12. Solo Queues
34
A R A A e R S A e e

CAIS READER'S GUIDE FOR DOD-STD-1838

(SYSTEM LEVEL NODE l

P USER (JONES) DEVICE (CRT)
CRT
JOB (PROCESS) standard_input
D PIPE
oT) g standardroutput

’ standard_output

L 3.4

PIPE DOT (SORT)

standard_input

FILE NODES

(PRIMARY RELATIONSHIPS

STRUCTURAL NODES / secondary relationships

PROCESS NODES LEG END

FIGURE 13. Solo Queue as a Pipe

35

R T '.-'."..‘n".‘.' - LI TR e T L . . N LW N WA N LIRS L. R
TR 2 e e N A B W 2 AR P S e e N A N NV NN NS TN T e L
Aal) 4 S a A - N RO

A N N
PR R

&

el

“.',.'-"v‘v

(A

1¢d
e,

s v 2
o

4 L]

LR SR

v
e]

"lir

| s

%

SRR
RN

‘j."‘

'

Ty
]

e
P
« s <

» % %y

[

-
3

T e
L

)
P @ el

€ ¢ v ¢
4L 49"
}-’SI(J

«
k]

2

CAIS READER'S GUIDE FOR DOD-STD-1838

p
{
: npde contents
! N
? FILE *
' o file node
’ -t
‘ copy queue file node
information QUEUE CREATION .
flow ,
1]
é
WRITERT WRITERZ
[J
R
The original copy queue ¥
FILE file does not | 3
get changed. v file node »
/ X READER3 .
e »
LEGEND &EADERJ (READEF&J
information ;
flow \
QUEUE OPERATION 2
FIGURE 14. Copy Queues .
»
36 ;
®

PP TSI i i e PO))
G AL N o A I T T

]
- R R L S T U I R S T SIS P SN SR " . a)
N * .-..,,- P _.r._-r,_.. v ,_.',\.r\.-\. .‘a\ ..‘.r__ .r‘_\ _‘- »r\ o ~\I‘-)

........

CAIS READER’S GUIDE FOR DOD-STD-1838

A mimic queue is initialized like a copy queue, i.c., with a copy of the contents of another
file at the time of queue creation. A secondary relationship of the predefined relation
MIMIC_FILE points from the mimic queue file node to the file node from which the mimic
queue is initialized. This file is called the coupled file. If information is written to a mimic
queue, it is also appended to the coupled file. The effect on the mimic queue of modifications
made to its coupled file is not defined by the CAIS. Mimic queues allow multiple processes
to append information to secondary storage files without having to rewrite the files. This
allows a form of logging. Figure 15 illustrates a mimic queue.

The examples of queues described above are examples of nonsynchronous queues. A
nonsynchronous queue is a queue where several write operations to the queue may occur
before any read operations occur.

The CALIS also defines a synchronous queue; only a solo queue can be a synchronous queue.
A synchronous queue is one for which a write operation on the queue is not completed until a
corresponding read operation on the same queue is completed, thus synchronizing the write
operation with the read operation. A synchronous solo queue can be used to synchronize the
operation of two cooperating processes.

5.3 Devices

A device file in the CAIS represents a device. The CAIS predefines magnetic tape drive files
and three kinds of terminal files: scroll, page and form terminals.

5.3.1 Magnetic Tape Drives

Typically, an APSE includes a database of information upon which the tools in the APSE
operate. In order for this database to be used on a different host system, there should be
convenient mechanisms to transfer data files from one system to another. Minimal tape input
and output operations are provided by the CAIS to allow files to be transported from one
CAIS implementation to another.

ANSI tapes are handled by CAIS input and output. Tapes that are compliant with the ANSI
and ISO standards [ANSI 73a; ANSI 73b; ANSI 76; ANSI 78, ISO 76a; ISO 76b; ISO 84]
can be operated upon by the CAIS interfaces. Interfaces for magnetic tape drive files are
described in Section 5.3.11 of [1838].

5.3.2 Terminals

Input and output operations are currently provided by the CAIS for only three kinds of
terminals: scroll terminals, page terminals and form terminals. Scroll terminals, such as
teletypes, use the keyboard as an input device and an output area as an output device and
may input or output only one line at a time. Thus, each line is scrolled through. Interfaces for
scroll terminals are described in Section 5.3.8 of [1838]. A page terminal is a non-intelligent
CRT terminal which displays a ‘‘page’’ of lines at one time. Individual character positions
may be addressed on a page terminal. Interfaces for page terminals are described in Section
5.3.9 of [1838]. Form terminals are used to display a ‘‘form’’ or menu to the display screen.
After the user has modified the form, the modified form is read by the terminal controlier.
Interfaces for form terminals are described in Section 5.3.10 of {1838].

\,\}\{\ b
AT

e e.m
A A
[N

i

« -
r\ ~
v

e _\ . ~

.S.l.
e

".5.'
A

e

RSN RS
NN L P X y

Bh W\
s e

PN

TN
)“- £y \-'- T, A
. @

i

.:l"

'y

A
l‘:' "' ‘\" v.'. A

.-.)

_.\.-‘:‘. B Sl
f'f >

A AT
. f. Id (' 0

!“.l’ ‘

L4 I
"

o7 8 a¥a ay

CAIS READER'S GUIDE FOR DOD-STD-1838

FILE

MIMIC_FILE

node contents

e

>

coupled
file node

information
flow

predefined
MIMIC_FILE
relationship

New data written to
the mimic queue file

node is

coupled file node.

WRITER1

mimic queue file node

QUEUE CREATION

WRITER2

copied to the

FiLe %

coupled
file node

MIMIC_FILE

mimic queue
file node

LEGEND |

information
flow

predefined

MIMIC_FILE

relationship

[READERf

READER2

READER3

FIGURE 15.

Mimic Queues

QUEUE OPERATION

.......................

LR NN

- -, .
......
........

............
.........

.....

'Y

.)

4.0 68% 8.8 0 el e % 8% % 2 ta abs"s?. o ‘el ¥, 208 00 0,8 0.0 0.0'0.0"00'0. *2.2'% a'd a%h.a%h ath T T R O PO YO PO P U YO "R T ™ v vy

-
- N

CAIS READER'S GUIDE FOR DOD-STD-1838

e

£y

5.4 Sequential, Direct, and Text Input and Qutput

Sequential, direct and text input and output are all provided by the Ada language (see
B Chapter 14 of [1815A]). The CAIS provides much of this same functionality. Interfaces

describing operations for direct, sequential and text input and output are discussed in
Sections 5.3.4, 5.3.5 and 5.3.6, respectively, of [1838].

-5yt P AR A
.. - .~.-

. B

R AR,

w'a
oy Yo 2y

.'S'

Fré#

S g SO,

® .

SN

»

39 A

R L FU TN RN
D et s AN o

LR S}
12

"I\f"f\f\)

CAIS READER'S GUIDE FOR DOD-STD- 1838

40

N e,
. S
NIRRT PN

.-," |"‘l M

CAIS READER'S GUIDE FOR DOD-STD- 1838

6. REFERENCES

(1815A] Military Standard Ada Programming Language, United States Department of
Defense, ANSI/MIL-STD-1815A, 22 January 1983.

(1838] Military Standard Common APSE Interface Set (CAIS), United States Department of
Defense, DOD-STD-1838, 9 October 1986.

[ANSI 73a] American National Standards Institute, Recorded Magnetic Tape for Information
Interchange (800 CPI, NRZI) (ANSI Standard x3.22-1973).

(ANSI 73b} American National Standards Institute, Recorded Magnetic Tape for Information
Interchange (1600 CPI, PE) (ANSI Standard x3.39-1973).

[ANSI 76) American National Standards Institute, Recorded Magnetic Tape for Information
Interchange (6250 CPI, Group-coded Recording) (ANSI Standard x3.54-1976).

[ANSI 78] American National Standards Institute, Magnetic Tape Labels and File Structure
Sor Information Interchange (ANSI Standard x3.27-1978).

[APSE] Memorandum from the Office of the Under Secretary of Defense for Research and
Engineering, ‘‘Ada Programming Support Environment’’, 15 January 1982.

(CAIS8S] Military Standard Common APSE Interface Set, United States Department of
Defense, Proposed MIL-STD-CAIS, 31 January 1985.

(DCAIS] Distributing the Common APSE (Ada Programming Support Environment)
Interface Set (CAIS), MITRE Report MTR-86W00181, The MITRE Corporation, McLean,
Virginia, January 1987.

[ISO 76a] ISO 1863, Information Processing - 9 track, 12.7 mm (0.5 in) wide magnetic tape
for information interchange recorded at 32 rpmm (800 cpi).

[ISO 76b) ISO 3788, Information Processing - 9 track, 12.7 mm (0.5 in) wide magnetic tape
for information interchange recorded at 63 rpmm (1670 cpi) phase encoded.

(ISO 84) ISO 5652, Information Processing - 9 track, 12.7 mm (0.5 in) wide magnetic tape
for information interchange - Format and recording using group coding at 246 cpmm (6250

cpi).

(RACB6] DoD Requirements and Design Criteria for the Common APSE Interface Set
(CAIS), KIT/KITIA, 4 October 1986.

[RCAIS) Rehosting the Common APSE (Ada Programming Support Environment) Interface
Set (CAIS), MITRE Report MTR-86W00198, The MITRE Corporation, McLean, Virginia,

January 1987.

ek .
-

W o
g)

NI]

u
.

>

L5%%Y
A l.l..

Rl

PP AR AR AS
A 3 8

Y

-
2

F ik 3

-
«

- - v A ml
AN Y, ,..fu.rn;;"l:ﬁm. AT ¥

rtr

. A AU N
. .‘..", e

A% | SoLS.

RS

)

P PIIES

N LR

vol ol raq ‘wtoak o ar . NP jath et ha® st Lo v A DA A8 LA ba gta ata g\ A1 ol vl ® A"

CAIS READER'S GUIDE FOR DOD-STD-1838

[STONEMAN] Requirements for Ada Programming Support Environments,
“"STONEMAN"’, February 1980.

[SWAV] ‘““Ada Status and Outlook'’, Sofrware for Avionics, AGARD Conference
Proceedings #30, Specialized Printing Services, Looghton, England, January 1983.

[TCSEC] Department of Defense Trusted Computer System Evaluation Criteria, Department
of Defense Computer Security Center, CSC-STD-001-83, 15 August 1983.

42

!

V!

.

Distribution List for IDA Paper P-2034

NAME AND ADDRESS
Sponsor

Ms. Virginia Castor

Director

Ada Joint Program Office (AJPO)
1211 Fern St., Room C-107
Arlington, VA 22202

Other

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Ms. Patricia Oberndorf

Naval Ocean Systems Center (NOSC)
Code 423

San Diego, CA 92152-5000

NUMBER OF COPIES

50 copies

2 copies

5 copies

oS

Pal el "al "ol el "ot

TURCRI) “ataYal ¢

L "2t “ata’

et alo ate ate)

~aby

8,8,

‘) ".' \J ‘.l W

N R XYV

by

ALA S Y VLY, ATt X MO
P T W DEOVAOEELAA g NI AR '-.w-wr St D .,,.rl.f....... el

--r--v.--u
\u‘\\-\\-

