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Abstract. Let (B,||¢]]) be a complete separable Banach space and let

X = X(B) be the vector space of all random variables defined on a
probability space (f1,Q,P) and taking values in B. It is known that
metrics on ¥ of convolution type enjoy a variety of interesting
properties. In this article it is shown that convolution metrics may
also by used to obtain rates of convergence in CLT's involving a stable
limit law. The rates are expressed in terms of a variety of uniform
metrics on X and include the total variation metric and the uniform
metrics between density and characteristic functions. The results
represent both an improvement and an extension of existing results.

Weak convergence properties of convolution metrics are also explored.
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;): §0. Introduction
&
g: In this article we shall be concerned with various convolution
K pseudo-metrics on P(Rk), or more generally P(B), B a Banach space,
o
@ where P(B) denotes the collection of all Borel probability measures on
L
%: B. By convolution pseudo-metrics on P(Rk) we mean distances of the
L
form
ﬂ
> k
> _ d_(P,Q): = sup Ig(x—y)(dP—dQ)(y) P,Q € P(RM),
g k
? xeR
l
’ : . 1,k k k
'§ where g 1is a kernel belonging to L (RV)[] CO(R ) and where CO(R ) is
b . . . Ko
! the collection of bounded continuous functions on R vanishing at
y infinity. Every such kernel generates an associated distance dg on
[ k A
l
P(R™). When the set {t: g(t) = 0} has empty interior, dg is actually
Ko
)
y A
a metric (here g denotes the Fourier transform of g); we refer the
f reader to Theorem A below for more on this.
'; We recall that these convolution pseudo-metrics enjoy a variety of
’: properties and that they are actually quite useful from a statistical
- point of view. For example, as the following shows, one may
2 characterize those convolution pseudo-metrics metrizing weak
convergence and one can also obtain a CLT for dg(Pn,P), where here
f and henceforth Pn denotes the nth empirical probability measure
N for P.
. 1,k k
N Theorem A [Yukich (1985)] Let g ¢ L'(R)[) CO(R ). The following
)
b are equivalent statements for the pseudo-metric dg:
. . : k
ﬁ (i) dg metrizes the topology of weak convergence in P(R"),
" A
$ (ii) the set {t :g(t) = 0} has empty interior, and
{

(iii) dg (P,Q) =0 if P # Q.
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) . 1,k k .
4 Theorem B [Yukich (1985)] Let g ¢ L' (R") [) CO(R ) be a decreasing
)
function of ||’|| . Then for all P ¢ P(R®) we have
n
;
. (0.1) al’24 (P ,P) 2, sup, GP(g(x—.)),l, A
s g x€R )
‘I
where GP is a mean zero Gaussian process indexed by the translates
: of g. .
% Of course, by drawing on the results of Dudley and Philipp (1983), 2
] N
' one could easily deduce a bounded LIL result from (0.1), but we will .
not pursue this here. Likewisze, from the theory of the function !
indexed empirical process, one can also obtain refined exponential f:
bounds for nl/2 dg(Pn,P). Also, the above results can be easiliy -
extended to the group setting; see Yukich (1987).
-
“~
Keeping in mind that we are free to choose from among a variety :
-
of kernels g, it is sometimes relatively easy to calculate dg(P,Q). ~
. From a statistical viewpoint, this is important. For example, if P
is a uniform probability measure then dg(Pn,P) may be easily 5
.
evaluated if g 1is the bilateral exponential kernel. For more on X
this, see Yukich (1987). In this context we should mention thkat other
well known metrics, e.g. the Prokhorov and dual bounded Lipschitz b
metrics, are relatively difficult to calculate and moreover, do not -
always satisfy the general CLT result (0.1); see the recent results of o
Giné and Zinn (1987). :

This article, which may be regarded as an extension of previous
work surrounding convolution metrics, shows that certain modified
convolution metrics are useful in another context: they are extremely

. appropriate for providing rates of convergence (with respect to a

variety of metrics) in the general CLT. In fact, some of our results

will hold in the Banach space setting. We will also examine the close
relationship between convolution metrics and the Kantorovich -
Wasserstein distance. Thus, convolution metrics enjoy a variety of

useful properties, making their possible statistical use seem
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especially attractive.

Let us be more precise about the contents of this article. Let
(B,]].l]) be a complete separable Banach space equipped with the usual
Borel sets B and let X :=X(B) be the vector space of all random
variable defined on a probability space ({1,G,P) and taking values in B.
We will choose to work with metrics on the space X instead of the
space P(B). We will show that certain convolution metrics on %X may
be used to provide improved rates of convergence of normalized sums to a
stable limit law. The rates of convergence, which hold uniformly in n,
are expressed in terms of a variety of uniform metrics on X. In the
Banach space setting the convergence rates hold with respect to the
total variation metric and represent both an improvement and an
extension of existing results. Even in the classical Euclidean space
setting our approach provides improved rates of convergence and it also
allows a determination of convergence rates with respect to uniform

metrics between density and characteristic functions.

§1. Definitions, notation and terminology

A mapping u4: ¥ x ¥ 2 [0,0] 1is called an ideal probability

metric of order r € R if for any random variables Xl' X2, ZeX

and any non-zero constant ¢ the following two properties are
satisfied [cf. Zolotarev(1976)]:
(i) Regularity: #(X1+Z, X2+Z) < u(Xl,XZ), and

(ii) Homogeneity of order r:

r
pleX ,eX,) = lel w(X X))

When u is a simple metric, i.e., its values are determined by the
marginal distributions of the random variables being compared, then it
is assumed in addition that the random variable Z 1is independent of

Xl and X2 in condition (i). All metrics u 1in this articie are

simple.

Zolotarev (1976) showed the existence of an ideal metric of a given
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order r > 0 and he defined the ideal metric

(m)

(1.1 ¢ (X.X,) = sup{[ECEX)D-F(X)| = [ )=t () |<llx-1/),

+

where m ¢ N (m)

o' Fréchet derivative of f for m >0 and f

and B € (0,1] satisfy m+8 =71 and f
(0)

denotes the

(x) = f(x). He also
obtained an upper bound for Sk k € N+, in terms of the so-called

difference pseudomoment Ko where for r > 0

k£ (X, Xy) = sup{|E(f(X))-f(X))] - L£(x)-f () <=l -yliyl Tt

If B =R, ||x]|={x], then

-1
(1.2) k_(X,,X,)) := rl |x|""*|F, -F,|dx, r >0,
r 172 o X1 X2

and where Fx denotes the distribution function for X.

In this article we introduce and study two ideal metrics of
convolution type on the space %. In addition to their ideality and
convolution structure, these metrics have the following useful and

special properties:

(P1) they have upper bounds which can be explicitly
calculated in terms of the so-called difference
pseudomoments, and
(P2) they have a weaker uniform structure than most other
ideal metrics and thus yield better rates of convergence.
These ideal metrics will be used to provide improved convergence rates
for convergence to an a-stable random variable in the Banach space
setting. Moreover, the rates will hold with respect to a variety of

uniform metrics on X.

R e T P T Tt L AP S S T iy
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A More precisely, letting X,Xl,Xz,... denote 1i.i.d. random
X

o variables and Ya denote an a-stable random variable we use ideal ¢

metrics to describe the rate of convergence

X, +...+X

1 n D 3
(1.3) nl/a Ya

L 4

with respect to the following uniform metrics on X,

Distance in variation metric:

(1.4) a(Xl,X2)

sup |P{X. €A} - P{X eA}| , X ,X, ¢ %(B),
AeB 1 2 1’72

sup{IEf(Xl)-Ef(X2)|: f:BoR is measurable

and V x, y € B |t(x)-f(y)|<I(x,y) where
I(x,y)=1 if x#y and O otherwise},

Total variation metric:

(1.5) Var(Xl,Xz) = ll(Xl,Xz) = sup{IEf(Xl) - Ef(X2)|: f:BR is

measurable and |[|fl| := sup [f(x)] < 1} )
x€eB F
- ’
= 20(X;,X,) , X, X, € %(B) . 5
In %(R") we have Var(X ,X,) := f[d(F -F, ). "
1'%2 X, T X, &
o
o
Uniform metric between densities (pX denotes the density for .
k 3
X e Z(RY)): \
(1.6) Z(XI,XZ) = ess)s(up|pX (x) - py (x)] .
1 2 .
Uniform metric between characteristic functions: :j
@
o e e L A e R e
AR N O T 1;:f\“\' O T A A e T o L S oy RSTIRLRGIVINY "o



(1.7) x(X,,X,) := stp lvxl(t) - ¢x2(t)l ,

where Px denotes the characteristic function of X. The metric Y

is topologically weaker than Var, which is itself topologically weaker
than £ by Scheffé’s Theorem; see Billingsley (1968), p. 224.

The convergence rates with respect to ¢ will hold in the Banach
space setting, thereby extending and generalizing results of Zolotarev
(1976,1977), Senatov (1980) and Paulauskas (1973,1976) who consider

uniform rates in terms of Sy and K. as well as stronger metrics.

Even in the special case B = R, our results improve upon those

of Senatov (1930) and Paulauskas (1973,1976), primarily because of the
special property (P2). Our results with respect to the x and ¢
metrics, which seem to be the first of their kind, will follow from the
easy applicability of the methods used for the Var metric. We note
that not only does our method enjoy wide applicability to a variety of
situations, but it is also remarkably simple.

Following this brief introductory remark, let us describe the
contents of this article. This section concludes with notational
remarks and section two discusses ideal convolution metrics and their
properties, especially (Pl1) and (P2).

In section three we use an ideal convolution metric to obtain the
rate of convergence in (1.3) in terms of the metric Var in the Banach
space setting. Sections four and five illustrate the wide
applicability of our method and describe rates in terms of the uniform
metrics x and £, respectively, Here, the unifying theme is that
ideal metrics, especially those of convolution type, provide improved
convergence rates in (1.3) with respect to various uniform metrics,
e.g., Var, x, or Z.

Section six shows that the new ideal convolution metrics
metrize the convergence in distribution of random variables and

section seven contains concluding remarks.

Notation and Terminology

For each Xl, X, € X we write X + X to mean the sum of

2 1 2
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and Px ,

independent random variables with laws Px
1 2

any X € %, Px denotes the density of X if it exists.

respectively.

For

We reserve the

letter Ya (or Y) to denote a strictly stable symmetrical random
variable with parameter a € (0,2], i.e., Ya D —Ya and for any n =

’ ’ g 1/2 ’ ’ [ A .
1,2,..., Xl + ...+ Xn = n Ya, where Xl, X2, .. Xn are i.i.d.
random variables with the same distribution as Ya' If Ya € $(R) we

assume that Ya has characteristic function

PY(t) = exp(—]tla}, t eR .
For any f : B - R, HfHL ‘= sup f(xi:;( ) denotes the

X2y
Lipschitz norm of f, [|f|| ~the essential supremum of f, and when

B = Rk, ufup denotes the LP norm.

We will use the following metrics on %.

Kolmogorov metric:

(1.8) p(X),X,) := sup |Fy (x)—FX2(x)| . X;.X, € Z(R)

xeR 1

Weighted x metric:

(1.9) X, (X,,X,) := sup |t|”|gox1(t)-px2(t)| ,

teR

L? version of gm:

, (m+1)
(1.10) ¢ (X).%)) := sup({ |EC(£(X)-f{X,) | : |If m* (ISR
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(I1f (X,,X.,)<@ then ¢_ (X, ,X,) = HI. iiZﬁlEd(F (t)-F, ()]
‘m,p %1 %2 m,p "1'720 TN X Xo 7

m!

Generalized Kantorovich-Wasserstein metric:

(1.11) Wo(X, ,Xp) i= sup(| [t ary e dFX2| el + el < o

llelly + llell, < ® and £(x) + g(y) < |Ix-y|I® v x,y ¢ B} , p>1.

§2. Ideal convolution metrics and their properties

Let 6 ¢ E(Rk) and define for every r > 0 the convolution metric

- 3 k
(2.1) “0,r(x1'xz) (= i?ﬁ |h| £(X,+h8 X +h8) X X, € Z(R").

Thus, each random variable @ generates a metric bg oo T > 0. When

9 ¢ X(B) we will also consider convolution metrics of the form [cf.
Rachev and Ignatov (1984)1]:

o r
ua'r(xl,xz) c= ;:§ |h] £, (X, +h8 X, +h8) X X, € £(B).

Lemmas 2.1 and 2.2 below show that Bg . and vg . are ideal of order

r-1 and r, respectively. In general, Bg . and vg . are actually

only pseudo-metrics (cf. Theorem A), but this distinction is not of

importance in what follows and so we omit it.

When # is an a-stable random variable we will write By y and
Yo (or simply b and v when it is understood) in place of
By . and Vg o Also, if & has a density g, then the metric By .

represents a generalization of the convolution metric

R
at

)
RN
A P
R L S |
A AR .Y



dg(xl’x2) 1= l(X1+h0,X2+h0)

described in the introduction.

One of the central themes of this article is that every ideal
metric on X can be used to provide convergence rates in (1.3) in
terms of some uniform metric (e.g. Var, x or £) corresponding to the
proposed ideal metric.

For example, we show that g can be used to describe the

convergence rate in (1.3) with respect to the uniform metric Var.

The method for the ideal metric B is strikingly simple and yet

general enough to handle other ideal metrics of non-convolution type:

for example, the ideal metric X, describes the rate of convergence in
(1.3) with respect to the uniform metric x; also # and v, when

taken together, describe the convergence rate in terms of the uniform
metric £. There are few published results concerning convergence
rates in terms of £ and x; as for the latter metric, Banys (1976)
has found convergence rates which do not hold uniformly over R, but
only over intervals increasing with the n, the sample size.

We note that Zolotarev (1976,1977) and Senatov (1980) use the

metric gr to develop the convergence rate in (1.3) with a = 2 in

terms of Var and p. Even in this special case our results are
sharper and more refined. Zolotarev and Rachev (1984) and Omey and
Rachev (1987) use the ideal weighted Kolmogorov metric

p_(X,,X.) := sup [xlr |F, (x)-F, (x)] , r>1
r 172 xR Xl X2

to obtain the rate of convergence for the normalized maxima

n—lmax(Xl,...,Xn) -—2——9U ,

where P{U<x} = exp{—x—l}, x>0

.- < e
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The remainder of this section describes the special properties of ﬁi

. . : . Ry

the ideal convolution {or smoothing) metrics “H,r and Vﬁ,r' We Ny

first verify ideality. .
R

\'l’

l.'

Lemma 2.1. For all # ¢ ¥ and r > 0, By . is an ideal metric of ::
) y

order r-1. A

-, ;

w

Proof. If Z does not depend upon Xl and X2 then :;

]

‘e

‘'

Z(X1+Z,X2+Z) < Z(Xl,Xz) , [

3

and hence po’r(X1+Z,X2+Z) < ”O,r(xl'x2)‘ Additionally, for any ¢ # 0 Eg
sy (eX,,cX) = sup |h|"£(cX,+h8,cX, +h6) -

i

] = sup ]ch]rt(cX1+ch0,cX2+ch0) g

heR R

- _ r-1 =
= el Hg (X1 Xy) :

Q.E.D. K.

The proof of the next lemma is analogous to the one above. :;:
Lemma 2.2. For all 8 ¢ ¥ and r >0 Ve . is an ideal metric of ’
order r. ]
We now turn to special property (P1) and show that both By | ;

and ve . are bounded above by the difference pseudomoment whenever @ i‘
has a density which is smooth enough. =
Lemma 2.3. Let k ¢ N* and suppose that X, Y € X(R) satisfy Ex) - b

EYJ, j =1,...,k=2. Then for every 8 ¢ X¥(R) with a density g which

o, ., . s et m et et N ANt e e e T e e e e S
Sty RSN '-';'-:' '*-,,-'-j.‘-' '-,,‘-:"::'- AR A T T
" AR, LSRN AT AN o (wj-."\.! "E-\"-.‘""s"-.' DAY -."'-."w."i RSNt O
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is k-1 times differentiable,

(k-1)
(2.3) X,,X,) e T
where || o ”w := ess sup (o)
xeR

Proof. In view of the inequality [Zolotarev (1979)]

1
(2.4) gk_l(xl,x2) < ?;j;;? nk_l(Xl,Xz),

it suffices to show that

(2.5) #o 1 (X1 X%5) < ¢ (X),X).
But
( h|* sup L fm Xy
by (X X)) = sup |h|¥ sup -1 | g EX)d(F, (y)-F (y))‘
8,k 7172 heR xeR |h| Y h X Xy

= sup |h|*sup lf (Fy (n-Fy (g EDL dy‘
heR xeR 'Y~ 71 2

= sup |1'xlk_2 sup ’fm g(l)(zﬁx)dFé-l)(y)-Fé_l)(y)'
heR xeR 'Y - 1 2

= sup|h|sup
heR  xeR

2

[ gD LD ()0 ()
- 1 |
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N
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where -
4
k-1 :
(-k+1) . f" (x=t) )
(2.6) Fx (x) := DT de(t) =
-0 ~
’."
- N
-
Therefore, by (1.10) and oy = gk—2,1' we have :7,
- S,
-~
(k-1) 2-k (2-k) e
ty (XX < lle” Jm IR ) - RER () ]y
’ -0 1 2 T
i (k=1) DA
= lle™™ "y §p-g (%0%5) NS
Q.E.D. o
N
.\'.,}
Analogously, Lemmas 2.5 and 2.6 below show that Yo i 1s bounded f{_
) \'
LA
by the difference pseudomoments. :::
Under similar hypotheses we may also show that the smoothing j'
‘-
metrics and v are weaker tha . This, t th ith s
. “G,k 8.k n gk,p is ogether wi K
inequality (2.5), helps illustrate property (P2). 2;
; "
LS
Lemma 2.4. For every 0 € X(R) with a density g which is m times :;j
differentiable and for all Xl, X2 € Z(R) ;&{
o
poir(xl,xz) < C(m,p,g) §m_1,p(X1,X2) , R
:v-
1 + ™
where r =m + 2’0 e N, and o
Ay
(2.7) Cla,p,g) := Jlg™) , L +L-, .
qQ'pP q 5
Y
.:-.
.".?
Lemma 2.5. Under the hypotheses of Lemma 2.4 we have ;'.
:-"..
(2.8) uo'r(xl,xz) < C(m,p,g) gm-l,p(xl'xz) , Si
RS
@
:_:_:
oA 'I;a:’::‘:r‘?:::;::::r::/:;J:I:' ':.':'-':: :-";:l' -‘.: ............... -;::.: el :-—_::-\ ............................. t ....... o :‘_‘ o '_ RO ‘::-):

! Nt T 3 ~ -
P NP SRR S e e e e e e e e e B
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1 +

where r =m ~ 1 + 2 meN and C(m,p,g) is as in (2.7).

Lemma 2.6. [cf. Theorem 2 of Maejima and Rachev (1987)]. Let m € N'

and suppose E(Xi—X%) =0 j=0,1,...,m-1. Then for p € [1,0)

1/p _
Ky (Xl,Xz) m=20

(2.9) §m,p(xl,x2) < ra 1)
—P = 1 =
I\(r) ICT(XI,X2) r =o + , I = 1,2,...

o

The proofs of the above three lemmas follow from straightforward
modifications of the techniques used in Ignatov and Rachev (1983),
Maejima and Rachev (1987) and Zolotarev (1979). The details are left

to the reader.

§3. Rates of convergence in the total variation metric

In this section we develop rates of convergence with respect to
the Var metric.

Throughout we suppose that X,Xl,X2,... denotes a sequence of

i.i.d. random variables in ¥X(B), where B is a separable Banach
space. Y ¢ %(B) denotes a strictly a-stable random variable. The

ideal convolution metric Vo=, (i.e., 8 = Y) will play a central

role.

Our main theorem is

Theorem 3.1. Let Y be an a-stable random variable. Let

1 . 1

r=s +—>a for some integer s and p € [1,0), a = ,
p r/a

2 A
r/a-1 r’'a L e
and A := 2(2 + 3 Y. If X € ¥(B) satisfies
e AN A A ' B N TR T I A A R O T ST I L P IR AR S ST ST i
Pt Ca o oy I S e M e A R e e S
SRR AN R N A I o R T N R N T T o g Sy T A S T SN A AT oy Iy

e
a4 Y

Tl S N
[ e
o e

/'/-l;'
.—- 9

Ly
a0,

e
Q.l

’
B

« 5

Hov A
P
, « -

v

AR A
L .l ‘l

(]
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Sely)

P
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(3.1) Ty i= rO(X,Y) = max(Var(X,Y),ua r(X,Y)) <a,

then v n>1

X1+...+X

Var ( T7a
n

DY) < AGa)rnl T g gTT/oLT Ve

Remarks

(i) A result of this type was proved by Senatov (1980) for the special
case B = Rk, s =3, and a = 2 via the gr metric. We will

follow Senatov’s method with some refinements.
(ii) Theorem 3.1 is optimal in the sense that the power of n 1is the
smallest possible; i.e., the exponent 1-r/a cannot be

decreased. This follows, for example, from Theorem 3.4.1 of
Ibragimov and Linnik (1971) and the 1inequality p <o = % Var

in X(R).
Before proving Theorem 3.1 we need a few auxiliary results.

Lemma 3.2. For any Xl' X2 € ¥(B) and o >0

~-r
Var(X1+oY,X2+aY) <0 Vr(xl’xz)

Proof. Since Y and (-Y) have the same distribution

T
ur(Xl,Xz) = sup h ¢

(X, +hY, X _+hY)
h>0 1 2

1

and thus

-r r
ll(X1+hY,X2+hY) <h ;:8 h 21(X1+hY,X2+hY)

s . - DS . A L
IR IR IR R A it .‘.,-",.-"'..'.- RS IRE T

VJ';’-.‘ K

XX

x_x
Lo

S
oS

.
‘l 'l ‘l L

.
s
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7

I
@



Q.E.D.

Lemma 3.2 closely resembles Lemma 1 of Senatov (1980) for the

metric Sy The next result resembles Lemma 2 of Senatov (1980) proved

for B = Rk. We note that estimates of this sort have been used by
Sazonov (1972) and Sazonov and Ul’yanov (1979).

Lemma 3.3. For any Xl, X,, U, Ve £(B) the following inequality

21
holds:

Var(X1+U,X2+U) < Var(Xl,Xz)Var(U,V) + Var(X1+V,X2+V)

Proof. By the definition (1.5) and the triangle inequality

Var (X, +U,Xo+U) sup{IEf(X1+U) - Ef(Xp+0) | Hf”msl}

sup{[fo(u)(Px1+U-PX2+U) dul : Hwasl}

IA

sup{lf ?(x)(PX =Py Jdx|: [[f]|l <1} +
B 2

1
Var (X1+U,X2+V),

+

where
T(x) :=fo<u)<PU-pv)<du-x) - fo<u+x>(pU-pv>dg,

and where Px denotes the law of the random variable X. Since

lIfll, < 1 then

17l

sup 'f f(u+x) (P, ~P.)du
xe¢B B u-v

IA

Afsf(u)(Pt—Pv)du
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< Var(U,V) , by (1.5),
and thus sup{lf f(x)(P, -P, )dx| : ||f][ <1} 1is bounded by
X, X ©
B 1 2
< sup { f g(x)(P, -P_ )dx| : |lgf|. < Var(U,V)}
B X, X ®
1 2
= Var(Xl,Xz) Var(U,V).
Q.E.D.
We now prove Theorem 3.1; throughout, Yl,Y2,... denote i.i.d.
copies of Y.
Proof. We proceed by induction; for n = 1 the assertion of the
theorem is trivial. For n = 2, the assertion follows from the
inequality
X.+X X +X Y. +Y
1 72 1 72 1 2
Var ( ,Y) = Var( , )
2lla 2l/a 2l/a
- )
= Var(X1+X2,Y1+Y2,
< 2Var(X1,Y1)
< Ala)r 21—r/a
0
since A(a) > 2r/a. A similar calculation holds for n = 3. Suppose

now that the estimate

X1+,,,+X.
1/a
J

1-t/a

(3.2) Var( oJ

,Y) < A(a)r

holds for all j < n. To complete the induction we only need to show
that (3.2) holds for j = n.

Thus, assuming (3.2) we have by (3.1)
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X1+...+X. r/a .
(3.3) Var(——7—L ,¥) < Aa)a = 2 :
. .
'-'
4
: n *
For any integer n >4 and m = [EJ’ where [*] denotes integer part, <
\
the triangle inequality gives L
x1+ .+Xn
V := Var( T7a ,Y) -
X.+...+X Y.+ +Y -«-
= Var( 1 n 1 n)
l/a ’ l/a -~
n
‘.‘
X,+...+X X _+...+X Y, +...+Y X +...+X N
< Var( L L m+1 n L LU m+1 n) o0
1/a l/a ! l/a l/a
n n e
x
.'g‘
Y. + +Y X +X Y. + +Y Y + +Y
+ Var( 1 o, m+1 1 m . m+1 n,
l/a l/a ! l/a nl/a ‘
Hence, by Lemma 3.3 =~
.\:
(3.4) Vel 41,4+ 1,
where . :
X
Loy (X1+. . .+Xm Y1+‘ . .+Ym) var(Xqu +Xn Ym+1* ’\n \
1 T ANYTa 1/a /a [ a Y
n ':v
. o
[ . (X1+ +Xm Ym+l+ .+Yn Y1+ +Y_n Y'n*l* L L ;_..
g = VAT l/a * l/a ' l/a 1l a ‘ -
n n n n
A
¢
Lozt
T
A
._:.1
A
q

Y
’

1
=
R
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17" 'm m+l """ "n 1 """ "'m m+l T n)
l/a l/a ! l/a 1/a )
n n n

We first estimate I,. By (3.3) and (3.2)

—
IA

2_r/aA(a)rO(n—m)1_r/a

1 l1-r/a
(3.5) 5 A(a)ron .

IA

In order to estimate 12 and 13 we will use Lemma 3.2 and the

relation

(3.6)

. Thus, by (3.6), Lemma 3.2, and the fact that v, is ideal of order r

we deduce

X1+ +Xm n-m l/a Yl+ +Ym nem 1/a
12 = Var( 17 ( P ) Y, 7o * ( - ) Y)
)
-r/a X +. .. +X Y. +. .. +Y
(a=my oy, (L v m)
n r l/a ! l/a
n
]
X Y
r/a 1 1
2wy 55 17

(3.7) < 2 nt T XY
r 1’1
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Analogously, we estimate 13 by
X, + +X l/a Y. +. .. +Y l/a
1 n-m m 1 n-m m
13 Var ( nl/a + (n) Y, T7a + (H) Y)
. (E)-r/a , (X1+ '+xn—m Y1+ +Yn—m)
n l/a ’ l/a
r/a _1-r/a
(3.8) < 3 n ur(Xl,Yl)
Taking (3.4), (3.5), (3.7) and (3.8) into account we obtain
< (L Ala) + 2r/a—l . 3r/a)T nl—r/a
2 0
< A(a)ronl—r/a ,
since A(a)/2 = 27/l , gr/e
Q.E.D.

§4. Rates of convergence in the y metriec

In this section we develop rates of convergence in (1.3) with
respect to the x metric; our purpose here is to show that the methods
of proof for Theorem 3.1 can be easily extended to deduce analogous

results with respect to x. The metric X, will play a role analogous
to that played by v, in Section 3.
Throughout, X'XI’XZ"" denotes a sequence of 1.i.d. copies of

an a-stable random variable.

Our main theorem is

Theorem 4.1. Let Y be an a-stable random variable in X(R).

ST N L SN SN NN N L L N
\*J\\'\.. __\.. STNTA

R Ata N

B O T T N N O A A N e R N NN
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(4.1)

Saforaltad taf Al tal Pog tag taliid tag tap v o, 0 TR AR 4 Sag iat tal cad dall tat tal et el *
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r>a, b := 1 ,and B := max(3r/a,2C (zr/a—1+3r/a)) where
r/aB r
2
r r/a
= (=) . If X € ¥(R) satisfies
ae

T o= rr(X,Y) = max{x(X,Y),xr(X,Y)} <b,

then for all n >1

(4.2)

X +...+4X
1 n l-r/a _ ,-r/a_l-1/a
X(—_;T7E__~ ,Y) < Br n = 2 n :

Remarks

(i)

(4.3)

(ii)

(iii)

In comparing conditions (3.1) and (4.1) it is useful to note
that the metric x 1is topologically weaker than Var, i.e.,

Var(Xn,Y) > 0 implies x(Xn,Y) - 0 but not conversely. Also,

it is easy to show that if r=m+ 8, m=0,1,..., 8¢ (0,1)
then
-8 it
X, < Cﬂ gr where Cﬂ 1= stp|t (1-e ) |;
ifr=m, m=1,2,... then X, < gr

Actually, one may show that for r ¢ N* the metric X, has a

convolution type structure. In fact, with a slight abuse of

notation,

xr(FX ,Fx ) = x(F

*p_,F, *p ),
1 9 X1 T X2 r

whor . pr(t) = th/r! is the density of an unbounded

I{t>0}
positive measure on the half line [0,®).
As in Theorem 3.1, the exponent 1-r/a cannot be reduced; this

follows from Theorem 3.4.1 of Ibragimov and Linnik (1971) and
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the fact that x convergence implies p convergence.
(iv) As noted earlier, Banys (1976) has obtained a result similar to
Theorem 4.1: his result is weaker since it only considers the
sup norm difference between characteristic functions over finite
intervals depending on n. Additionally, his result is

th

expressed in terms of the so-called r absolute pseudomoment

;r(X,Y) e f]xlr’px(x)—py(x) dx

since Xr is topologically weaker than ;r (i.e., x_ <

T

const gr < const ur and xr—convergence does not, in general,

imply ;r—convergence), our estimate (4.2) is clearly more

refined, even over finite intervals.

The proof of Theorem 4.1 is very similar to that of Theorem 3.1
and uses the following auxiliary results, which are completely

analogous to Lemmas 3.2 and 3.3. We leave the details to the reader.

Lemma 4.2. For any XI,X2 € X(R), 0>0, and r > a
-r
x(X1+oY,X2+oY) < Cra Xr(xl’x2) ,
r r/a
where C_ := (=)
r ae

Proof. We have

x(X +oY, X +0Y) := sup lpx (t) - wx (t)lpoY

teR
J'II-'.‘-’_-’ . R
v -' - e ‘u"u’n‘u’.”.’a'x'u”a*u“u”u“.’u'u-A’ e
.r.'n'/lf-fd'-r P Sy L et e e SR e e T e T R e e

et

-
.

ai ]
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N
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-

*
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SR W X/
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s ""‘..l"
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= sup |¢x (t) - vy (t)]exp{-|ot]%)
teR 1 2
-r r -u®
< sup |ot| |¢X (t) - oy (t)|sup u'e
teR 1 2 u>0
= Co "x_(X,Y)
r r ’ ’
r —u”
since Cr = sup u e by a simple computation.
u>0
Q.E.D.

Lemma 4.3. For any Xl’ X2, Z, We X(R) the following inequality

holds:
X(X1+Z,X2+W) < X(XI’XZ) x(Z,W) + x(X1+W,X2+W).

Proof. From the inequality
wa +Z(t)—soX +W(t)! < [@X (t)—@x (t)! Iwz(t)—ww(t)| +
1 2 1 2
+ lgox (t) oy (t)] Isow(t)l
1 2

we obtain the desired result.

Q.E.D.

§5. Rates of convergence in the ¢ metric

In this section we develop convergence rates with respect to the

{-metric and thus we naturally restrict attention to the subset X* of
f(Rk) of random variables with densities. Throughout X,Xl,Xz,...

denotes a sequence of 1i.i.d. random variables in %* and Y=Ya

~ R R L R R R L W SRS o T S T P A S e e LN SN
S L A SN A N AR R A N R O S e e e e W n e ~ [ NN Y A
_\-’ e S .". S e ".:\..‘ S ../-" AT -,:» \'\"_ .‘.*n~ '\'{.\J.‘i A ) g ) ‘l '\'r PN

--------

T W T I YTy
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denotes an a-stable random variable. The ideal convolution metrics

B o= o r and Ve 1T Vg oy (i.e., 8#=Y) will play a central role.

Qur main result is
Theorem 5.1. Let Y be an a-stable random variable in f(Rk). Let

1

2r/aA

r=m+ % > a for some integer m and p e [1,0), a :=

A = 2(2r/a-1+3(r+1)/a) and D := 31/a2r/a. If X € ¥* satisfies

(i) 7(X,Y) := max(£€(X,Y), By r(X,Y)) < a and

(5.1)
.. . i
(ii) TO(X,Y) ;= max(Var(X,Y), ua,r(X,Y)) <i@p <2
then
X1+...+Xn 1=/
(5.2) =7 ,¥) < Aa) 7(X,Y)n Trie
Remarks.

(i) Conditions (i) and (ii) describe the domain of attraction of a

stable Ya random variable:; in fact they guarantee {¢-closeness (of

nl—r/a)

order between Y and the normalized sums

Ak o X))

(5.3) 1 n

(ii) From property (P2) and especially Lemmas 2.3, 2.5 and 2.6 we

know that g4 (X,Y) and v (X,Y), r = m—l«l , m=1,2,... can be
r+l r p
approximated from above by the ;'h difference pseudomoment K. whenever

X and Y share the same first (m-1) moments. Thus conditions (i)

LANN
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and (ii) could be expressed in terms of difference pseudomoments, which
of course amounts to conditions on the tails of X.
(iii)

Theorem 4.5.1 of Ibragimov and Linnik (1971).

That (5.2) is of the right order of magnitude may be seen from

To prove Theorem 5.1 we need a few auxiliary results similar in

spirit to Lemmas 3.2 and 3.3.

Lemma 5.2. Let Xl,X2 € E(Rk). Then

-r
Z(X1+0Y,X2+0Y) <o ur(Xl,Xz)

-r r

_ -r
Proof: Z(X1+0Y,X2+0Y) <o o Z(X1+0Y,X2+0Y) <o ur(Xl,Xz)

Q.E.D.

E 3
Lemma 5.3. For any X,Y,U,V ¢ %X (Rk) the following inequality holds:

(5.4) 2(X+U,Y+U) < £(X,Y)Var(U,V) + £(X+V,Y+V)
Proof: Using the triangle inequality we obtain
£(X+U,Y+U) = sup ]f(p (x-y)-py(x,y))Pr(Uedy) |
k X Y
xeR
< supklj(px(x,y)—pY(x—y)(Pr(Uedy}—Pr(Vedy)I +
xeR
xeR ‘
< £(X,Y)Var(U,V) + £(X+V, Y+V)
V4 :t{f&?l;l;f:f'?.._-.‘_,: -:ﬂ\i' ~’:(‘:: -'/..'.,. v _..",‘;,_:‘::‘:_.‘;.. --,':: -\‘, ;w'; ey - _:: k:"‘\. -

s .‘v "
o

s
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|
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»
W
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Q.E.D.
To prove Theorem 5.1 one only needs to use the method of proof for
Theorem 3.1 combined with the above two auxiliary results. The

complete details are left to the reader.

§6. The ideal smoothing metrics and weak convergence

We conclude our discussion of the ideal metrics B and v,

by showing that they satisfy the same weak convergence properties as do

the Kantorovich~Wasserstein distance Wr and the pseudomoments K.

Theorem 6.1 Let k ¢ N*, 0< a < 2, and X, Ue%([R) with Exi =

I,..., k=2. If k 1is odd then the following are equivalent

it

EV v

as n = :

(i) ua’k(xn,U) -0,

D
(ii) (@) X - U and (b) Elxnlk‘l > Ukt

(ii1) W_, (X ,0) >0,
(iv) Kr-1 (Xn,U) + 0, and

(V) Vo (X0 >0

Before proving this we note that (ii) & (iii) follows immediately
from Theorem 4.1 of Rachev {1984 ¢), Theorem 1 of Rachev (1984 b),

Theorem 2 of Rachev (1984 a) and the identity EXk-1 = E]Xlk_l

odd. Also, (ii)& (iv) follows from Rachev (1982); (iv) = (i) follows
from Lemma 2.3, and (iv) 2 (v) from Lemmas 2.5 and 2.6; thus the only

for k

new result here are the implications (i) 2 (ii) and (v) 3 (ii).

Now (i) = (ii)(a) follows easily from Fourier transform arguments

since the Fourier transform of g never vanishes. Similarly if (v)

R T T T TRV IR S SN s I T T TT R
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e Y Y
oY S L.

bs)
holds then X +Y - U+ Y and thus (ii)(a) follows. To prove e

(i) 2 (ii)(b) we need a lemma.

. Lemma 6.2. Let 0 < a < 2 and consider the associated metric
Booi= B o For all k there is a constant g := f8(a,k) < @ such y

that for all X,U ¢ %(R) RS

(6.1) w(XU) 2 6 ‘fm F 29 ()R P () de| N
-0

Here F(2_k) is as in (2.6). e

Proof of Theorem 6.1. Using equality of the first k-2 moments and

»

applying (6.1) to Xn and U yields N

o
58

(\'

z k-2
. -1 (z-t)
3 (X_ U) H (dF. -dF.)(t)dz
' *, _mf_m (k=2) ! x "

LA L
SN GYNs
PPN A

0
lf (o)dt + fm (o) dt( @
-0 0 N

L AN .'...

A
@ 2,

-{'

(6.2) 1= . I1 + 12 l

v e Tu
’

PR
1)

B
A8

To estimate I1 and 12 we first note that since

4
S

YA
Al

&4 R RIS
AT B

(z-t)K2
IRCE=IL

1}
<
7

k-2 k-2
(dFXn—dFU)(t) = E(z-Xn) - E(z-U)

)

o

e
.
o
Y

’ N

o
. b5
we obtain
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k-2 k-2
(z—t) - _ j'm (Z"t) _
fm (k2):  (dFx ~dFyp)(t) (dFy -dFy)(t)

(6.3) = (—1)1"1f:° (t"Z). (dF, - dFj)(t).

Thus by (6.3) and Fubini’s theorem we get

—
I

k-2
_ k-1 (t-z)
(-1) j: L (AR AR (1) dz
Z n

t k-2
k-1 {(t-2z)
-1) I dz d(F, -F )(t)

(6.4) - fm [l (dF, -dF,)(t)
: =), D x ~4Fy)!

Another application of Fubini’s theorem gives

fo 0 gi ;;, dz (dF, -dF,)(t)
n
k-1
0 (-t)
(6.5) - (dF, -dF,)(t)
I_m(k-l)! Xn U

Combining (6.3), (6.4) and (6.5) gives

(-t)k‘1
(k-1)!
_m

-1
B “k(xn,U) > (dFX —dFU)(t)

n

AR AR Sw s
.. .l....'...\'

o KRS




= Tenr (B U]

which gives the desired implication (i) = (ii)(b).

To prove (v) » (ii)(b) we integrate by parts to obtain

A
Y
v, (X_U) >r }p (x)=-p,, (%) |dx o
k' “n, " J g Xn+Y U+Y ::
( z k-1
= fm 'fm DYk)(x—z) (f Ei_;;, d(Fx (t)-FU(t)) dz|dx
—'Y - -© ' n -
z k-1
> f) oK) (x-2) ax([ HEEHT ARy (0-F(0) d2
. Y (k-1)! X U
-’ - n
o
7
by
Y
- Um jz (=t ()4 rp(k)(x\ dx N
— - ' - L4 [y
o Y (k-1)! Xn Y —© Y ‘
By (6.2) - (6.5) we obtain ;f
~
(k) k .k .
uk(Xn,U) > Jm Py (x) dx E(X -U )I , -
- i
showing (v) 2 (ii)(b) and completing Theorem 6.1. -
Q ED.
It only remains to give the
Proof of Lemma 6.2. Integration by parts yields ;f}

---------------------

------
...............
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k
(X,U) = sup \hl sup \p (X)=pp hy (%)
Pk b eR ver | X+hY U+hY
= sup ]hlk sup )fm th (x z)- FU X- Z)‘
heR x€eR

(6.6) = sup ’h sup ‘Im (2- k) z)—Féz—k)(x—z)pé¥-l)(z)dz
heR xeR

—itz -|ht|®
Now 27 th(z) = e e dt and differentiating
—0

Phy k-1 times gives (setting ; = th):

. a
or|nkp 57 (2 )l:lh“fm (it)k-leitz=|ht] dt’
-0

- k-1 .7 - Qa ~
_ |k -t itz/h-|t| t .
- ‘h J@ (if) e dd)

-

N “‘“’ Gk, itz/h-|t| dti

—©

X a
Since g := fla,k) := 5% f \itlk_le—ltl dt < ® we obtain
_m

NP ARR AR
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S
2
L
lim hkp£$ 1)(z)| - 5% fm lim (1t)k 1 itz h-ltl -3 e
h-a h- .
R,
t.:,'v
Now multiply both sides of (6.6) by 3_1 . Since ?j
N
W)
. o 4
-1 -t - - AN,
jm Itlk e el dt and IIF(z k)(x—z)—F’(.z k)(x—z) dt = ¢, (X,U) are e
X U k-1 S
— 74
both finite, 5‘1uk(x,u) is [
> sup r (P2 (x-2)-FF ™ (x-2) 1im ({8 () 4z Ry
x€R h-o <
-
= sup ‘fm (2- k)(x z2)- ( )(x z) dz ;{’
. xeR .
= sup r F 270 (5)-F 270 (2) 4g ]
X U e
X€eR -0 -
Q.E.D.
§7. Concluding remarks oy
@
The results above show that the "ideal” structure of the -3
convolution metrics b and v may be used to determine optimal Af'
rates of convergence in the general central limit theorem problem. The 5?
. rates are expressed in terms of the uniform metrics Var, y and ¢ -ﬁ
and hold uniformly in n under the sufficient conditions (3.1), (4.1, N
and (5.1), respectively. We have not explored the possible weakening :{:
of these conditions or even their possible necessity. This would be an ;;{
.
interesting line of future research. o
The ideal convolution metrics M and v, are not limited to the e
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context of Theorems 3.1, 4.1 and 5.1, but they can also be successfullyv

emploved to study other questions of interest. For example, we only

mention here that Ur can be used to prove a Berry-Esseen type of

estimate for the Kolmogorov metric p (1.8).

More precisely, if X,XI,XO,... denotes a sequence of 1.i.d

random variables in ¥{(R) and Y ¢ ¥(R) an a-stable random variable

then for all r >a and n>1

(7.1) o Y) <Cv _(X,Y)niTT'e,
a,rTr

Vl/(

r-aj ..
+ C max{p(X,Y),ua,l(X,Y), . (X,Y)In

where C 1is an absolute constant.

Clearly, whenever v (X,Y) <« ® and v (X,Y) < ® we obtain the
a,l 1 a,r

right order estimate in the Berry-Esseen theorem in terms of the metric

Vo ¢ Inequalities of this type have been proved by Paulauskas (1982

who uses the p metric, and by Senatov (1981), who uses o¢ instead of

p and who only considers the normal case a = 2 together with the

§2 1 metric. The estimate (7.1), which proceeds by induction and

which will be detailed in a forthcoming article, represents an

improvement over earlier estimates since the Y r distance is weaker

than the - D distance (r = m—l*%); see e.g. Lemma 2.5,

Thus metrics of the convolution type, especially those with the

"ideal” structure, are extremely appropriate when investigating sums of

independent random variables converging to a stable limit law. We can
only conjecture that there are other ideal convolution metrics, other
than those explored in this article, which may furnish additional

results in related limit theorem problems.
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