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Abstract. Let (B,I.II) be a complete separable Banach space and let

= X(B) be the vector space of all random variables defined on a

probability space (11,0,P) and taking values in B. It is known that

metrics on 3 of convolution type enjoy a variety of interesting

properties. In this article it is shown that convolution metrics may

also by used to obtain rates of convergence in CLT's involving a stable

limit law. The rates are expressed in terms of a variety of uniform

metrics on X and include the total variation metric and the uniform

metrics between density and characteristic functions. The results

represent both an improvement and an extension of existing results.

Weak convergence properties of convolution metrics are also explored.

AMS 1980 Subject Classifications

Primary: 60F05, 60G50, 60B10 Secondary: 60B12, 60E07

Key words and phrases: ideal probability metrics, convolution metrics,

rate of convergence, stable random variables.
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§0. Introduction

In this article we shall be concerned with various convolution

pseudo-metrics on F(R k), or more generally F(B), B a Banach space,

where P(B) denotes the collection of all Borel probability measures on

B. By convolution pseudo-metrics on p(k) we mean distances of the

form

dg(PQ): = suPkl S g(x-y)(dP-dQ)(y) P,Q e P(Rk),

xe

where g is a kernel belonging to Ll(R ) C(mk ) and where C (Rk ) is

the collection of bounded continuous functions on Ik vanishing at

infinity. Every such kernel generates an associated distance d on* g

k f :A
FOR ). When the set {t: g(t) = 0) has empty interior, d is actually

g

a metric (here g denotes the Fourier transform of g); we refer the

reader to Theorem A below for more on this.

We recall that these convolution pseudo-metrics enjoy a variety of

properties and that they are actually quite useful from a statistical

point of view. For example, as the following shows, one may

characterize those convolution pseudo-metrics metrizing weak

convergence and one can also obtain a CLT for d (P ,P), where here

th
and henceforth P denotes the n empirical probability measure

for P.

Theorem A [Yukich (1985)] Let g e L (Rk )n Co( k). The following

are equivalent statements for the pseudo-metric d :g

(i) d metrizes the topology of weak convergence in F( k),
g

A

(ii) the set {t :g(t) = 01 has empty interior, and

(iii) d (P,Q) 0 if P Q.
g
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Theorem B [Yukich (1985)] Let g c L 1R k n co (R k ) be a decreasing

function of ' Then for all P c (Uk ) we have

(0.1) n 1 2 d supk Gp(g(x-.)),,

where G is a mean zero Gaussian process indexed by the translates

of g.

Of course, by drawing on the results of Dudley and Philipp (1983),

one could easily deduce a bounded LIL result from (0.1), but we will

not pursue this here. Likewise, from the theory of the function

indexed empirical process, one can also obtain refined exponential

1/2bounds for n d (P ,P). Also, the above results can be easiliy

extended to the group setting; see Yukich (1987).

Keeping in mind that we are free to choose from among a variety
of kernels g, it is sometimes relatively easy to calculate d (P,Q).

From a statistical viewpoint, this is important. For example, if P

is a uniform probability measure then d (P ,P) may be easilyg n

evaluated if g is the bilateral exponential kernel. For more on

this, see Yukich (1987). In this context we should mention that other

well known metrics, e.g. the Prokhorov and dual bounded Lipschitz

metrics, are relatively difficult to calculate and moreover, do not

always satisfy the general CLT result (0.1); see the recent results of

Gins and Zinn (1987).

This article, which may be regarded as an extension of previous

work surrounding convolution metrics, shows that certain modified

convolution metrics are useful in another context: they are extremely

appropriate for providing rates of convergence (with respect to a

variety of metrics) in the general CLT. In fact, some of our results

will hold in the Banach space setting. We will also examine the close

relationship between convolution metrics and the Kantorovich -

Wasserstein distance. Thus, convolution metrics enjoy a variety of

useful properties, making their possible statistical use seem

?.-



-5-

especially attractive.

Let us be more precise about the contents of this article. Let

(B,I.I1) be a complete separable Banach space equipped with the usual

Borel sets B and let T :=3(B) be the vector space of all random

variable defined on a probability space (11,Q,P) and taking values in B.

We will choose to work with metrics on the space I instead of the

space F(B). We will show that certain convolution metrics on X may

be used to provide improved rates of convergence of normalized sums to a

stable limit law. The rates of convergence, which hold uniformly in n,

are expressed in terms of a variety of uniform metrics on 3. In the

Banach space setting the convergence rates hold with respect to the

total variation metric and represent both an improvement and an

extension of existing results. Even in the classical Euclidean space

setting our approach provides improved rates of convergence and it also

allows a determination of convergence rates with respect to uniform

metrics between density and characteristic functions.

§1. Definitions, notation and terminology

A mapping p: X x E -* [O,o] is called an ideal probability

metric of order r e IR if for any random variables X1 , X2, Z E

and any non-zero constant c the following two properties are

satisfied [cf. Zolotarev(1976)]:

(i) Regularity: u(X +Z, X2+Z) ! A(X1X2), and

(ii) Homogeneity of order r:

14(cXIcX2) =1clr (XlX2

When p is a simple metric, i.e., its values are determined by the

marginal distributions of the random variables being compared, then it

is assumed in addition that the random variable Z is independent of

X1 and X2  in condition (i). All metrics ; in this article are

simple.

Zolotarev (1976) showed the existence of an ideal metric of a given

4% %"
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order r > 0 and he defined the ideal metric

(1.1) r(X1,X2) = sup{IE(f(X1 )-f(X 2)1 : If(m)(x)-f(m) (y)I!Ilx-yllP},

where m e I+ and 3 e (0,11 satisfy m+, = r and f(m) denotes the

Mth Frechet derivative of f for m > 0 and f(O)(x) = f(x). He also

obtained an upper bound for k' k e N+, in terms of the so-called

difference pseudomoment xk' where for r > 0

rr(X 1 ,X2 ):= sup{JE(f(X1 )-f(X2))I • f(x)-f(y)1II1 llxllr-l-y lyllr-1 ll).

If B = IR, IIxI=ixl, then

(1.2) /Cr (X1,X2) rJ IxI r-1IF -FXldx, r > 0,
_ 1 2

and where FX  denotes the distribution function for X.

In this article we introduce and study two ideal metrics of

convolution type on the space E. In addition to their ideality and

convolution structure, these metrics have the following useful and

special properties:

(P1) they have upper bounds which can be explicitly

calculated in terms of the so-called difference

pseudomoments, and

(P2) they have a weaker uniform structure than most other

ideal metrics and thus yield better rates of convergence.

These ideal metrics will be used to provide improved convergence rates

for convergence to an a-stable random variable in the Banach space

setting. Moreover, the rates will hold with respect to a variety of

uniform metrics on 1.

"~~~ ~~~~~~~~~~~~~~~~~ ". ., "" .,.'"" .' '...' .'' , -",.'..' "' -. '."..'""..-'' " . . ." ., ." " " '.".". ' .-. •" '.".".,"
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More precisely, letting X,X~ 2P .. denote i.i.d. random

variables and Y adenote an a-stable random variable we use ideal

metrics to describe the rate of convergence

(1.3) x 1+...+x n bn
(1.3)1/a "a

with respect to the following uniform metrics on 3E.

Distance in variation metric:I 14 (1  2  =sup I{ 1 A {~Al ] X =s Ef(X 1 -Ef(X 2 )1: f:B4IR is measurable

and V x, y e B It(x)-f(y)j:5I(x,y) where

](x,y>1l if x ;,A y and 0 otherwise),

Total variation metric:

(1.5) Var(X1 ,X 2  1= 1 (x1,X& 2 sup(IEf(X I Ef( 1 f:B-*!R is

*measurable and lifI110 := sup jf(x)I 1)
* xEB

-2o(XlX) 2 X1 ,X 2 c B)

In V( n) we have Var(X1 ,X) :=,ld(FX- Fx )j

Uniform metric between densities (pX denotes the density for

X E3(IR k)

(1.6) M'(X X): esssuPpp (x p Wx x)
1' 21 2

Uniform metric between characteristic functions:

%S



(1.7) X(X1,X2) sup k°  (t) - x2(t),
t 1 2

where denotes the characteristic function of X. The metric X
XF

is topologically weaker than Var, which is itself topologically weaker

than .1 by Scheffe's Theorem; see Billingsley (1968), p. 224.

The convergence rates with respect to a will hold in the Banach

space setting, thereby extending and generalizing results of Zolotarev

(1976,1977), Senatov (1980) and Paulauskas (1973,1976) who consider

uniform rates in terms of r and I.r as well as stronger metrics.

Even in the special case B = IR, our results improve upon those

of Senatov (1900) and Paulauskas (1973,1976), primarily because of the

special property (P2). Our results with respect to the X and 1

metrics, which seem to be the first of their kind, will follow from the

easy applicability of the methods used for the Var metric. We note

that not only does our method enjoy wide applicability to a variety of

situations, but it is also remarkably simple.

Following this brief introductory remark, let us describe the

contents of this article. This section concludes with notational

remarks and section two discusses ideal convolution metrics and their

properties, especially (P1) and (P2).

In section three we use an ideal convolution metric to obtain the

rate of convergence in (1.3) in terms of the metric Var in the Banach

space setting. Sections four and five illustrate the wide

applicability of our method and describe rates in terms of the uniform

metrics X and 2, respectively, Here, the unifying theme is that

ideal metrics, especially those of convolution type, provide improved

convergence rates in (1.3) with respect to various uniform metrics,

e.g., Var, x, or 1.

Section six shows that the new ideal convolution metrics

metrize the convergence in distribution of random variables and

section seven contains concluding remarks.

Notation and Terminology

For each X1, X2 E 3 we write X + X2  to mean the sum of

........................................................................ .- . ° • •-
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independent random variables with laws P and P2, respectively. For

any X e E, pX denotes the density of X if it exists. We reserve the

letter Y a(or Y) to denote a strictly stable symmetrical random ,

variable with parameter a c (0,2], i.e., Y P -Y and for any n

'flh1/2 ' '1,2,.., . = n Y , where XI, X2  ... X are i.i.d.. . .+ n a'

random variables with the same distribution as Y If Y C E(IR) we

assume that Y has characteristic function
ap

(t)= exp(-Itla}, t e IR

For any f B -. Rlfil := s f(x)-f( denotes the
L xL y x-y 1

Lipschitz norm of f, lifIIo the essential supremum of f, and when

kV
B = IRk, Ilflp denotes the Lp  norm.

We will use the following metrics on 3.

Kolmogorov metric:

(1.8) P(X1,X2) : sup IFX (x) Fx (x)l , X 2 E -

xCR 1 2

Weighted X metric:

(1.9) Xr (X, X2) := sup ti ri °X(t)- ox(t)l
t eIR1 2

Lp  version of "

1'2 : : I~( m+1)
(1.10) (X X sup(IE(f(Xl)-f(X2 )I f lqil , q , 1

m = 0,1,2,... .

* .]

,'..%..% %J,,%_,'., ,,,,,, ,,, .,% ,%,,.- % . ,% . ',.. .,.,. . . ..%... ..... .•......-......,
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x kw the (.-t)md(F (t)-F (l
(If m p (XI 2 'X2) t hene-Cc M FXXX1  x2(2

Generalized Kantorovich-Wasserstein metric:

(1.11) WP(X ,X ) sup{IlJ f dFx + fg dFx : lifilI + Ilfll, < co

Ilgll + IlgllL < o and f(x) + g(y) : Ilx-yll p  v x,y f B) , p 1.

§2. Ideal convolution metrics and their properties

Let 0 e (IZk) and define for every r > 0 the convolution metric

(2.1) p94(0 1, X2) = sup lhIr j(X1+hX, X2+hO) XX 2 e V(Rk
heR

Thus, each random variable 0 generates a metric pur' r > 0. When

0 c (B) we will also consider convolution metrics of the form [cf.

Rachev and Ignatov (1984)1:

Oj r(X1,x2 := sup lh rI(X1+hO,X2+hO) X11x2 ' 2(.
hEIR

Lemmas 2.1 and 2.2 below show that uOr and vOr are ideal of order

r-1 and r, respectively. In general, ,r and /Or are actually

only pseudo-metrics (cf. Theorem A), but this distinction is not of

importance in what follows and so we omit it.

When 0 is an a-stable random variable we will write ua,r and

Var (or simply pr and v r when it is understood) in place of

uO,r and UO,r" Also, if 9 has a density g, then the metric p8 ,r

represents a generalization of the convolution metric

." , " "" ' "."", .- " :'. .". '. ' '- .," .- '..-..-.,' .. ',,'-.'-.°-.'.. ". '..'..' ,."-. .*.,' .'..' '-.'. '. , '- ' " "._,. .. °,'.

" ., ,'- . ,,' .,. , , . '., .'.',: . ./.' . ".,'~ '.S. . . . . .-. ' . -..- ?... .... , ° , ° . .



d (X1,X2) 1(X+hO,X 2+hO)

described in the introduction.

One of the central themes of this article is that every ideal

metric on I can be used to provide convergence rates in (1.3) in

terms of some uniform metric (e.g. Var, X or e) corresponding to the

proposed ideal metric.

For example, we show that Ar can be used to describe the

convergence rate in (1.3) with respect to the uniform metric Var.

The method for the ideal metric jr is strikingly simple and yet

general enough to handle other ideal metrics of non-convolution type:

for example, the ideal metric Xr describes the rate of convergence in

(1.3) with respect to the uniform metric X; also r and V r, when

taken together, describe the convergence rate in terms of the uniform

metric I. There are few published results concerning convergence

rates in terms of t and X; as for the latter metric, Banys (1976)

has found convergence rates which do not hold uniformly over R, but

only over intervals increasing with the n, the sample size.

We note that Zolotarev (1976,1977) and Senatov (1980) use the

metric r to develop the convergence rate in (1.3) with a = 2 in

terms of Var and p. Even in this special case our results are

sharper and more refined. Zolotarev and Rachev (1984) and Omey and

Rachev (1987) use the ideal weighted Kolmogorov metric

rS

Pr(XiX 2) := sup xr IFx (X-Fx2(x)I, r > 1
xfIR 1 2

to obtain the rate of convergence for the normalized maxima

-1 (xn).
n max( i ,...,Ix n  .,,

where P(U<x) = exp{-x-1 ) x > 0

"
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The remainder of this section describes the special properties of

the ideal convolution (or smoothing) metrics 110, and v'~r We

first verify ideality.

Lemma 2.1. For all 0 c T and r > 0, por is an ideal metric of%

order r-1. 1

Proof. If Z does not depend upon X and X then

1( +Z X 2+Z) < VX(X 2

and hence 0,(iZX+) " rX 1 X> Additionally, for any c 0

p(cXlcX) sup Jhjlc .+hO cX +hO)
AO,r 2 hEIR 1 2

=sup jch jrj(cX I+chO,cX 2+chO)

j clrl1,,r(XIsX2)

Q.E.D.

The proof of the next lemma is analogous to the one above.

Lemma 2.2. For all Ge 3E and r > 0 vr is an ideal metric of

order r.

We now turn to special property (P1) and show that both AO,r

and VO r are bounded above by the difference pseudomoment whenever0

has a density which is smooth enough.

Lemma 2.3. Let k c N+4 and suppose that X, Y c X(R) satisfy EXJ '

EYj, j =1,.. .,k-2. Then for every 0 X (I) with a density g which

'P~~ -N.j

*4 *...Vf /* .*%v* . . -*I
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i s k-1ime differentiale,

(k-i)
11g 1i00

(2.3) ~ ~~(Xlx) (k-i)!

where OD ess sup().

Proof. In view of the inequality [Zolotarev (1979)]

1
(2.4) k (xi, 2 x icki(Xix 2

(k-i)!

it suffices to show that

(2.5) ek(XiX&

But

AOek (XiX 2) hdsu Ik sup L~ h Y()d(FX (y-F x 2(y))
hEIR xEIR IhI -

sup hi sup (dy.1

hMR x EIR - 1 2

=sup jhi k-2 sup g g(i) ('Z)dF (-1)(y)-F(-i) (Y)
hc]R xe1R -rm 1 2

=supihisup J XY-( y- YA!
hEiR xdic h: ~ h hkX 1  ~x 2  Y)

PA..
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whe re

(2.6) FW(k+l)() - (- dFt) 

x J-W (k-i)! d~x

Therefore, by (1.10) and k-I = k-2,1' we have

(k-i) ( (2-k) (2-k)
AO jj1 ) 5Ig 1l1 j IF x(y) F Fx(Y)Idy

1 X2

(k- 1) iI k(XVX
Q.E.D.

Analogously, Lemmas 2.5 and 2.6 below show that vs,k is bounded

by the difference pseudomoments.

Under similar hypotheses we may also show that the smoothing

metrics 'O,k and VO, k  are weaker than k,p. This, together with

inequality (2.5), helps illustrate property (P2). -

Lemma 2.4. For every 0 e (R) with a density g which is m times

differentiable and for all X1 , X2 f (R)

P9 ,r(XlX 2) _ C(m,p,g) p(Xm1,X2 ,

where r = m + 1 g+

- , m clN , andP

(2.7) C(m,p,g) :- = g(m) , -p + -= I .

Lemma 2.5. Under the hypotheses of Lemma 2.4 we have

(2.8) V (XlX2 < C(M'p'g) lp(XIX2) ," ..

%"

°"6,

, ', ' ;' :) ',','- , --=, ., .-. ,-,,., -.,=. ,.. .. -. :.-.,. .- -. ..-.- ,,...... , -: ...-.-...-0
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1 N+"1
where r = m - 1 +- , m e I+ and C(m,p,g) is as in (2.7).

p

Lemma 2.6. [cf. Theorem 2 of Maejima and Rachev (1987)]. Let m E N+

and suppose E(x-X 3 ) 0 0 j o,1,...,m-1. Then for p c [1,m)
12

tl/P(Xl1X 2) m"

(2.9) m'p(X 1,X2 ) -< (I

p1r(r) K XVx2 r m p m,2......

The proofs of the above three lemmas follow from straightforward

modifications of the techniques used in Ignatov and Rachev (1983),

Maejima and Rachev (1987) and Zolotarev (1979). The details are left

to the reader.

§3. Rates of convergence in the total variation metric

In this section we develop rates of convergence with respect to

the Var metric.

Throughout we suppose that X, X1,X2 . denotes a sequence of

i.i.d. random variables in E(B), where B is a separable Banach

space. Y e E(B) denotes a strictly a-stable random variable. The

ideal convolution metric v := U (i.e., e = Y) will play a centralr a,r

role.

Our main theorem is

Theorem 3.1. Let Y be an a-stable random variable. Let

1 1
r = s + - > a for some integer s and p E [1,00 , a = 2 /.

P / - 2r// a ,

and A"= 2(2r/a1 + 3ra) If X 4 V(B) satisfies

% %
1. le1. 1-% .. .% ..

%-.%
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(3.1) r 0  7 (X,Y) max(Var(X,Y),z'a~ (X,Y)) !5 a,

then V n > 1

..

x+.. +x1-ra -na 1-r/a
Var ~ Y) !5 A(a)r n < 2- n .1 /a 0

Remarks

Mi A result of this type was proved by Senatov (1980) for the special

kcase B = IR , s =3, and a = 2 via the metric. We will

follow Senatov's method with some refinements.

(ii) Theorem 3.1 is optimal in the sense that the power of n is the

smallest possible; i.e., the exponent 1-n/a cannot be

decreased. This follows, for example, from Theorem 3.4.1 of

1
Ibragimov and Linnik (1971) and the inequality p 5 ai Van

in V(1R) .

Before proving Theorem 3.1 we need a few auxiliary results.V

Lemma 3.2. For any X1, X2 E 3(B) and a > 0

Var(X +aY X +Cry) < ornV (X X)
1 '2 r 1' 2

Proof. Since Y and (-Y) have the same distribution

Vr(Xi X) =sup h T I(X 1 +hY,X +hY)
h>0

and thus

It (X +hY X ThY) h- hr sup h r I (X +hY X +hY)
1 '2 h' 1 '2

h>'p

%
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Sh-rvr (X1 ,X2)

Q.E.D.

Lemma 3.2 closely resembles Lemma 1 of Senatov (1980) for the

metric r' The next result resembles Lemma 2 of Senatov (1980) proved

for B = We note that estimates of this sort have been used by

Sazonov (1972) and Sazonov and Ul'yanov (1979).

Lemma 3.3. For any X1 , X2, U, V E T(B) the following inequality

holds:

Var(X l +U,X2+U) : Var(XX 2)Var(UV) + Var(X 1l+V,X 2 +V)

Proof. By the definition (1.5) and the triangle inequality

Var(X1 +U,X2+U) = sup{fEf(X +U) - E(+U): lI.<1}1 21 E( 2+U I lII.

=sup{If f(u)(P -P du{- lfi{ <1}

: sup{IfB7 (x)(P x-Px2)dx _If{j +

+ Var (X +UX +V),

where

f(x) :=Bf(u)(Pu-P )(du-x) = f(u+x)(P-Pv)du,

and where PX denotes the law of the random variable X. Since

1If 1f < 1 then

f = sup f f(u+x)(P -P )du
xcB B UV

< f(u)(P-PV )du



t - - . .. - .%
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< Vari(U,V) ,by (1.5),

and thus sup{ Sf(x)(P x P x )dx Ilfl_<ii) is bounded by

B 1 2

=Var(X~ X2) Var(U,V).

Q.E.D.

We now prove Theorem 3.1; throughout, YVY .denote i.i.d.1' ...

copies of Y.

Proof. We proceed by induction; for n I the assertion of the

theorem is trivial. For n =2, the assertion follows from the

inequality

2 2 1/a 2

-Var(X +sX Y +-Y1 2' 1 2/

< 2Var(X, 1)

< A(a)r 21/0

riosince A(a) > 2 .A similar calculation holds for n =3. Suppose

now that the estimate

_ _ _ ' .1 -r i o
(3.2) Var( - ,Y) A(a)rj

.1/ar

holds for all j < n. To complete the induction we only need to show4

that (3.2) holds for j =n.

Thus, assuming (3.2) we have by (3.1)

N.Y. N.
% % . . %
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.... 2r/
(3.3) Var( -/a 

'Y),A(a)a 2

.1/ae

For any integer n > 4 and m = [I] where [] denotes integer part,

the triangle inequality gives

X +..+X n

V := Var( 1Y)
1/a -

n!

X +...+X Y +...+Y
1~ n I~ nVar( n )i a1/a 1/a
n n 

"

XI+...+X X +...+X YI+...+Y X +...+X
I______ m+-i n 1 m m+Ii n. i< Var( 1 / + 1/ a 1a + a- ll1 all' lli/
n n n n

Yi + . +Y x ...+X Y+..+Y y +Y"" m Xmi-i .
+  n 1 " m Ymi-I +

+ Var( + /aa + 1'a1 / al l' l l1 /
n n n n

Hence, by Lemma 3.3

(3.4) V < I 1 2 + I3

where

Xi+.. +X Y+. .+Y X +.. X Y Y
Var( 1 m I m) Var( mi n , m+ n

1 1/a ' 1/a la m la
n n n n

Xl+ + .+X Y +Y Yi +...+Y Y - Y
1 m m+ - ' n 1m Ym l

1 2 Var( 1/a 1/a ' iIandI
n n n n

• E
°*1o

S--
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Y I+..+Ym xm+1 +.-.+X n  Y I+' .+Y .+1+ +YnV

13 :Var( 1/a + 1/a ' 1/a + 1/an n n n

We first estimate 11. By (3.3) and (3.2)

1 2- r/a A(a)ro0(n -
m ) 1- r /a

(3.5) < A(a)r0n

In order to estimate 12 and 13 we will use Lemma 3.2 and the

relation

YI+...+Y
1*. nf(3.6) 1/a 1
n

Thus, by (3.6), Lemma 3.2, and the fact that v is ideal of order r
r

we deduce

X +...+X I/a Y +...+Y I/a
I =Var( m Y I + n Y)
2 1/a n 1/a nn n

-r/a X+...+X Y +...+Y

n r i/ ' 1/a

<2 mD' -)r 1/a ' 1/an

r/a-I1-r
(3.7) < 2 n w(X Y)

r 1' 1
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Analogously, we estimate I by
3

x+ ++x 1/a Y +...+Y1/
I =Var( n- + (i) 1 n-r n )31 /a n /ia n Yn n

-ra X+ +X+...+Ynm

n/a /a
nn

(3.8) < 3r/a -a V(X Y
r V r 1

Taking (3.4), (3.5), (3.7) and (3.8) into account we obtain

I r/a-1 3r/a) 1-r/a
V < (L A(a) + 2  + 3 r n

-2 ) 0n

1-r/a
!5 A(a)T rf0

rna-1 r/or
since A(a)/2= 2 + 3

Q.E.D.

§4. Rates of convergence in the X metric

In this section we develop rates of convergence in (1.3) with

respect to the X metric; our purpose here is to show that the methods

of proof for Theorem 3.1 can be easily extended to deduce analogous

results with respect to X. The metric Xr will play a role analogous

to that played by r in Section 3.r

Throughout, X,Xl,X 2 .. denotes a sequence of i.i.d. copies of

an a-stable random variable.

Our main theorem is

Theorem 4.1. Let Y be an a-stable random variable in T(R).

k" %." "- ." V".- . 2%" ' % N%.%" %% .. ,-..". . -
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1i - - n max a r c-i n/a
Letr a b r/ an B ma ,32C r(2 +3 )) where

r/
C (L If X c V(R) sa t isf ie sr ae

(4.1) Tn r (X,Y) max{X(X,Y),X (X,Y)1 b,

then for all n > 1

(4.2) X( nY) < Br n =-/ 2- n -/
1/a r

n

Remarks

(i) In comparing conditions (3.1) and (4.1) it is useful to note

that the metric X is topologically weaker than Var, i.e.,

Var(X WY) -*0 implies X(X n Y) - 0 but not conversely. Also,

it is easy to show that if r = m + fl, m = 0,1,...,. .3E (0,1)

then

(4.3) Xr C p% where C 13 t 1e 1

if r =m, m= 1,2,.... then X< r

(ii) Actually, one may show that for r c IN+~ the metric Xr has a

convolution type structure. In fact, with a slight abuse of

notation,

Xr (Fx IFx X(F*PrIFX*p)
'22

wb-,p (t) =t~ /n! I is the density of an unbounded
r {t>0}

positive measure on the half line [0,m).

(iii) As in Theorem 3.1, the exponent 1-n/a cannot be reduced; this

follows from Theorem 3.4.1 of Ibragimov and Linnik (1971) and



-23-

the fact that X convergence implies p convergence.

(iv) As noted earlier, Banys (1976) has obtained a result similar to v
Theorem 4.1: his result is weaker since it only considers the

sup norm difference between characteristic functions over finite

intervals depending on n. Additionally, his result is

expressed in terms of the so-called rth  absolute pseudomoment

J.

(X,Y) : X r  (x)-p(x) dx

since Xr is topologically weaker than vr (i.e., Xr_

const < const V and Xr -convergence does not, in general,

imply V -convergence), our estimate (4.2) is clearly more

refined, even over finite intervals.

The proof of Theorem 4.1 is very similar to that of Theorem 3.1

and uses the following auxiliary results, which are completely

analogous to Lemmas 3.2 and 3.3. We leave the details to the reader.

Lemma 4.2. For any X1 ,X2 c ) o, > 0, and r > a

X(X1 +YX 2 +aY) C Cra- r Xr(X 1'X 2)

r/-

where C := (r)
r ae

Proof. We have

X(X 1 +C,X 2 +Oa)= sup P x(t) -X Wx2( ooy(t)

tEIR 1 2

..

.y. *".,°
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=sup I'1 ;-0 (t) (Oexp{-jatl
t C 1 2

< sup IFt I -r(;Xt) - 0 (t)sup u re- U

t1I 2 u>O

=Cr rr x MY)

since C r sup u reu by a simple computation.
r u>O

Q.E.D.

Lemma 4.3. For any X1, X2  Z, W XOR() the following inequality

holds:

X(X +Z,X +W) x(X1 ,X) X(Z,W) + )((X +W ,X +W).

Proof. From the inequality

hox1+Z (t>-Px+W (t)! P Ix 1 (t>P x2(t)j 1 z t)W-P(0)I +

+ 1P (t>S (t)j IPW(t)I
1 2

we obtain the desired result.

Q.E.D.

§5. Rates of convergence in the I metric

In this section we develop convergence rates with respect to the

e-metric and thus we naturally restrict attention to the subset X* of

kO of random variables with densities. Throughout X,X '9,.

denotes a sequence of i.i.d. random variables in 3E and Y=Ya

% % %
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denotes an a-stable random variable. The ideal convolution metrics

'= Ia,r and vr Var (i.e., O=Y) will play a central role.

Our main result is

kTheorem 5.1. Let Y be an a-stable random variable in 3(I . Let

1 1.
r = m + - > a for some integer m and p e [1,o), a .-

p r/

A 2(2 ra-i+3(r+1)/a) and D 3 11a 2r/a If X e 3* satisfies

i) r(X,Y) max(1(X,Y), p, (X,Y)) < a and

(5.1)

(ii) r0(X,Y) '= max(Var(X,Y), v (XY)) < 1
0a'r AWaDa

then

X+.-+Xa

(5.2) ,y) < A(a) r(X,Y)n
n

Remarks.

i) Conditions (i) and (ii) describe the domain of attraction of a

stable Y random variable; in fact they guarantee 1-closeness (of
a

order n -  ) between Y and the normalized sums

(5.3) n-1(X +..+x)
1 n

(ii) From property (P2) and especially Lemmas 2.3, 2.5 and 2.6 we

know that Mr (X,Y) and v (X,Y), r = m-1+ m = 1,2,... can be
r rp1 r

h
approximated from above by the h difference pseudomoment x r whenever

X and Y share the same first (m-1) moments. Thus conditions (i)
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and (ii) could be expressed in terms of difference pseudomoments, which

of course amounts to conditions on the tails of X.

(iii) That (5.2) is of the right order of magnitude may be seen from

Theorem 4.5.1 of Ibrigimov and Linnik (1971).

To prove Theorem 5.1 we need a few auxiliary results similar in

spirit to Lemmas 3.2 and 3.3.

k
Lemma 5.2. Let X ,X c VIR ).Then

1 1 2 r V

r r-r

Proof: I( +Or, X + ) :Sraeor I Oy X 2+y) a r (X VX)2

Q.E.D.

Lemma 5.3. For any X,Y,U,V c T (R the following inequality holds:

(5.4) Z(X+U,Y+U) < M(,Y)Var(U,V) + I(X+V,Y+V)

Proof.: Using the triangle inequality we obtain

I(X+U,Y+U) =sup k!j (p X(X-Y)-p y(x,y))Pr(Ucdy)f

xeIR

+ su ( XY- xy)rVd~

< (X,Y)Var(U,V) + I(x+V,Y+V).

a . . . .- .

a. .~ *i me.: K A-Ic ~ *% V.\ A .\
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QED.d
Q. E. D."-

To prove Theorem 5.1 one only needs to use the method of proof for

Theorem 3.1 combined with the above two auxiliary results. The

complete details are left to the reader.

§6. The ideal smoothing metrics and weak convergence

We conclude our discussion of the ideal metrics r and vr

by showing that they satisfy the same weak convergence properties as do

the Kantorovich-Wasserstein distance W and the pseudomoments .-
r r

Theorem 6.1 Let k c 0< a < 2, and Xn  U e X(R) with EXj -

n n

EUj Vj =..., k-2. If k is odd then the following are equivalent

as n co:

(i) ;a,k(XnU) - 0,

(ii) (a) X Uad()EIXIk Elu-U and (b) [n k
-* ]U k l

n[ n

(iii) Wk_1 (Xn,U) - 0,

(iv) '-k-1 (Xn'U) 4 0, and

(v) V a,k-(XnU)4 0

Before proving this we note that (ii) = (iii) follows immediately

from Theorem 4.1 of Rachev (1984 c), Theorem I of Rachev (1984 b),

Theorem 2 of Rachev (1984 a) and the identity EX = EJX k-1 for k

odd. Also, (ii)o=* (iv) follows from Rachev (1982); (iv) ' (i) follows

from Lemma 2.3, and (iv) = (v) from Lemmas 2.5 and 2.6; thus the only

new result here are the implications (i) € (ii) and (v) * (ii).

Now (i) => (ii)(a) follows easily from Fourier transform arguments

since the Fourier transform of g never vanishes. Similarly if (v)

:, % :.,:.:. - ... ,*. ' ..... ....... ..... .-............. ..-..-.-.. ,............-...-....... ..- ,....- ., ... .-.
. .

.
. .

.
. .

.
. .

.
. .

.
.- 

.
.

I S. 4
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holds then X + Y -* U + Y and thus (ii)(a) follows. To prove
n

(i) (ii)(b) we need a lemma.

Lemma 6.2. Let 0 < a < 2 and consider the associated metric

A r :=  r,a" For all k there is a constant 3 1(a,k) < c such

that for all X,U e 3(IR)

(6.1) ll(XU) F (z)-F -)(z) dz

(2-k)

Here F(2-k) is as in (2.6).

Proof of Theorem 6.1. Using equality of the first k-2 moments and

applying (6.1) to X and U yields
n

6 (X n,U) > J (k-2)- 2 (dFx -dFU)(t)dz

n

= (.)dt + (.) dt

(6.2) 1J + 1 20

To estimate I and I we first note that since
1 2

.°

k-2
(z-t) dk-2 k-2
(k-2) x -dF )(t) = E(z-X E(Z-U) = 0,

we obtain

~ .....-,
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- t ) ( k -2 ) ! t )u k- 2)

n z (k-2)! n

(6.3) (-1)k-~ (t-z) W dF t).
(k-2! (dFxz n

Thus by (6.3) and Fubini's theorem we get

(-1 k- I - (dF -dF )(t) dz2 (k-2)1 X U
0 z n

= ( 1)k-i (t-z)2 dz d(F -F )(t)
JOJO (k-2) X U

k-iJ0(-t)k-

(6.4) k- (dFx -dFu)(t)
on

Another application of Fubini's theorem gives

- to (z-t)k-2 dz (dFx - dF)(t)

__t (k-2)

rO(tk-i

(6.5) = J (k-i)! (dFx -dFu) (t)
-00 n

Combining (6.3), (6.4) and (6.5) gives

.( -t) k-

n

.1

:.,, .,.,, ,,, .. .. • - - - -1 . . . - ..- . .- .- . : - - -. . - .- • . . . .- ,

m . V
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1 k-i_ k-i
-(k-i)! E(X -U )

which gives the desired implication (i) (ii)(b).

To prove (v) (ii)(b) we integrate by parts to obtain

I/ k(X nU) > p + x- U+Y (~d

z k-1
= (k) fl (z-t)(t- (t dzd

P (x-z) -k-i(! d (Fxd
-- M n

z k-i

P () x-z d (k(-I)! X( Ut- t)d

zM k-i jW(k1,

= " f j (z-t) d (F (t)-F (t )dz p ' (k) K)i
FM JM (k-i)! X n J Y ()d

By (6.2) -(6.5) we obtain

L/(X ,U p)(x) dx E'n( ' U -

showing (v) (ii)(b) and completing Theorem 6.1.

Q E.D.

It only remains to give the

Proof of Lemma 6.2. Integration by parts yields
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k

=sup hi SUP PhY (z)d(F X (x-z)-F u(x-z)l
hcR x(IR U

(6.6) sup l supF (x-z)- XZPh zd

MR xEIR --WUhY zd

Now 27r PhY(Z) e e- eht dt and differentiating

hY k-i times gives (setting t =th):

kw h'p (1) = i it k-1 itz-Iht'd

21rhhk [Z) (it!) e~t~ht l d( 1
h h

r -k-1 itzlh-1t1
= (it) e dIl't

Since27 2 =fl~k =itK 'e- tdt < mo we obtain



ur k(k-i) li h tk i tzilh- I t!od 34

h-m hY 2ir h.=

Now multiply both sides of (6.6) by ~3 .Sincee

k~~ta(2-k) (2-k)k(-1I j jed and (F (x-z)-F (x-z) dtm (h p () d ar
x 1' r Uh

boh Uinte F (kx -zU(-) is

(~(2-k) (2-k)
=SUPJ F X (xz) U (-z) dz

xelR TCO
Q.E.D.

§7. Concluding remarks

The results above show that the "ideal" structure of the

convolution metrics IA and Ll may be used to determine optimal
r r

rates of convergence in the general central limit theorem problem. The

rates are expressed in terms of the uniform metrics Var, X and I

and hold uniformly in n under the sufficient conditions (3.1), (4.11,

and (5.1), respectively. We have not explored the possible weakening

of these conditions or even their possible necessity. This would he ain

interesting line of future research.

The ideal convolution metrics p. and v are not limited to tfie

% . 0
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context of Theorems 3.1, 4.1 and 5.1, but they can also be successfully

emploved to study other questions of interest. For example, we only

mention here that u can be used to prove a Berry-Esseen type of

estimate for the Kolmogorov metric p (1.8).

More precisely, if X,X ,X2, .... denotes a sequence of i.i d

random variables in 3(R) and Y c (R) an a-stable random variable.

then for all r > a and n > 1

XI'+n 1-r/a
(7.1) P( n X1/a -Y) < CV' (X,Y)n +

n

, l XY ,1/(r-a)(XY / a
+ C max{p(X,Y) a, a, r " "

where C is an absolute constant.
Clearly, whenever Vl (X Y) < w and vi (X,Y) < m we obtain the

right order estimate in the Berry-Esseen theorem in terms of the metric

I/a,r" Inequalities of this type have been proved by Paulauskas (1982,

who uses the p metric, and by Senatov (1981), who uses a instead of

p and who only considers the normal case a = 2 together with the

2,1 metric. The estimate (7.1), which proceeds by induction and

which will be detailed in a forthcoming article, represents an

improvement over earlier estimates since the v distance is weakera, r

than the distance (r = m-1+ -1); see e.g. Lemma 2.5.
m,p p

Thus metrics of the convolution type, especially those with the

"ideal" structure, are extremely appropriate when investigating sums oi

independent random variables converging to a stable limit law. We can

only conjecture that there are other ideal convolution metrics, other

than those explored in this article, which may furnish additional

results in related limit theorem problems.
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