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ABSTRACT

A theoretical study is made of the interaction between the fracture toughening effects of

crack-bridging ductile particles and phase-transforming particles embedded in a brittle matrix. It is

found that in certain parametric ranges the interaction can be synergistic, with an increase in

toughness produced that is greater than the sum of the increases that would be provided separately

by the two types of reinforcement. Quantitative results are provided for the toughening in terms of

the individual toughening effects and coupling parameters that depend on the properties of the

uncoupled systems.

INTRODUCTION

The fracture toughness of ceramic materials can be increased through reinforcement by

appropriately chosen ductile metal particles. A fairly general theoretical analysis of such particulate

toughening in brittle-matrix composites, based on the assumption that the dominant mechanism is

that of crack bridging, has been given by Budiansky, Amazigo, and Evans (1987). A different

micromechanical toughening technique involves the incorporation of phase-transformable ceramic

particles (notably ZrO2) into the brittle matrix. The associated transformation toughening

phenomenon, discovered by Garvie, Hannink, and Pascoe (1975), has been studied theoretically

(McMeeking and Evans, 1982; Budiansky, Hutchinson, and Lambropoulos, 1983) on the

presumption that the toughening is due to the crack-closing effects of dilatant phase

transformations in the wakes of advancing cracks. It has been suggested (Evans, 1987) that
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ductile bridging particles and transforming particles might interact synergistically when they are

both present, producing an increase in toughness greater than the sum of the effects they would

provide separately. 2 The outcome of an elementary analysis by Budiansky (1986) indicated that

the toughening ratio X = K/Km (where K is the enhanced toughness and Km is the toughness of

the matrix) could sometimes be approximately equal to the product of the individual toughening

ratios due to ductile particulates and transforming particles.

In this paper a theoretical study is made of the interacting effects of dilatant transforming

particles and very ductile reinforcing particulates. The analysis will reveal conditions for the

validity of the simple product rule for the toughening ratio, and will also provide quantitative

results for the toughening ratio when these conditions are not met.

PARTICULATE TOUGHENING

The study by Budiansky, Amazigo, and Evans (1987) (denoted by BAE henceforth)

contains the following result for the crack-bridging effect (Fig. 1) of ideally-plastic particles that
S

obey the relation between particle stress up and crack-face displacement v shown in Fig. 2. With

Kp defined as the increased toughness in the presence of particles, the modified toughening ratio

Kp
Ap == KmX/ (-(I) c,

is given by
2c ESvf 1/2

Ap= 1+ KL-c m )1 (2)

where c is the volume concentration of particles, and, as shown in Fig. 2, S is the particle strength,

and vf is the displacement at fracture. The Young's modulus E and Poisson's ratio v of the

composite are assumed here, for simplicity, to be the same as those of the matrix material. This

last simplification was not made in BAE, but is needed now to avoid undue complication later

when transforming particles are introduced into the composite.

0
2 Synergistic effects have e idently been observed (Becher and Tiegs, 1997) in ceramic composites toughened by a
combination of whiskers and transforming particles.
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HT 2 0 (5)

[(1+v). .]

as shown in Fig. 5. The results of Figs. 4 and 5 combine to provide the alternative representation

HT = f(co) (6)

(1+v) _K

plotted in Fig. 6. As shown in BHL, the toughening is related to the zone size by

XT = [1+2czg(c°)]1/2 (7)

or, equivalently,

XT =[1-2cof(o)] - 1/2  (8)

Finally, we note that the toughening ratio can be expressed in terms of yet another zone-

height parameter defined by
HT 

(9= 
2)g(o)

EctOPJ

For sufficiently small values of co, the increase in toughness AK = KT-Km,, is given by

[~ HTt T ],.
AK= V jg(0) (10)

where

g(O) = (4,r')-' (l1)

COMBINED TOUGHENING EFFECTS

The results for particulate and transformation toughening are deficient in various ways. A

few available measurements for particulate toughening versus bridge length (BAE) are consistent

with Eq.(3) only if questionably high values of particle strength S are presumed. Transformation-

toughening data collected by Evans and Cannon(1986) show that the increase in toughness appears

to be proportional to 'HT, but the experimental values of AK are substantially greater than those
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predicted by Eq.(10). Current thinking (Evans,1987) points to the likelihood that shear stress may

play a role at least as important as mean stress in triggering the phase transformation. We

nevertheless pursue the theoretical analysis of the interaction of particulate and transformation

toughening on the basis of the present models, with the hope that final results will be useful when

they are interpreted in terms of experimental input values of Ap and XT.

The analysis in Appendix A provides results for the combined modified toughening ratio

K
A K(12)

in terms of Ap, XT, and a coupling parameter

(1+v)cS 9= c (13)

that governs the interaction between particulate and transformation toughening when they occur

simultaneously during steady crack growth (Fig. 7). Representative numerical results are shown

in Figs. 8-10 for A versus XT, for Ap = 2,3,4, respectively. The individual curves in each figure

are for selected values of the coupling parameter in the range [0,-o].

The limiting results for p=oo and 0 are of special interest. As explained in Appendix B,

we have

A = AvpXr  for p-40 (14)

and

A =[ A2 + X2 _1]11 2  for P -4 0 (15)

Thus the previously anticipated product rule X = XPXT for the combined toughening ratio holds in

the first limiting case. In this limit, as well as for sufficiently large finite values of p, transforming

and bridging particles interact synergistically, producing a larger increase in toughness than the

sum of the increases that would occur separately. On the other hand, for p approaching zero, the

combined increase can be substantially less than cumulative.

Unfortunately, in view of the uncertainties mentioned concerning the bases for the analysis.

an appropriate choice for the coupling parameter p is not easily made. However, the results of the
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analysis can be recast in terms of an alternative coupling parameter that is much more illuminating.

In terms of the zone height HT for pure transformation toughening, and the bridge length Lp for

pure particulate toughening, the new coupling parameter is defined as

HT(1-c) (16)
= Lp

The counterparts to Figs. 8-10 are shown in Figs. 11-13, with curves showing A for various

values of i. An appropriate choice for 11 can now be made on the basis of observations of the

separate toughening phenomena, bypassing the need to estimate dubious parameters in the

underlying theory.

It is striking that quite small values of il suffice to provide results close to those for

TI = p = oc, for which the synergistic product rule applies. This is a happy result, because it means

that synergism is not precluded despite the fact that transformation-toughening zone heights tend to

be smaller than particulate bridge lengths.

At fracture, the actual transformation-zone size H and bridge length L (Fig. 7) are generally

different from their uncoupled values HT and Lp. It turns out (Appendix C) that H satisfies

2_ 2
H A- AP

HT(I-c) -2 (17)

Hence, for given values of Ap and XT, the quantity H/[HT(l-c)] is an increasing function of the

coupling parameter, with (see Eqs.(14,15))

H =1H for 1 = 0
HT(1-c)

2=AP for'q=**

Fig. 14 illustrates how H/[HT(l-c)] varies with I for the case Ap=2 and %.T= 3 .

A simple general formula for L/Lp is not available, but numerical results for IJLp vs. T1,

again for Ap= 2, XT= 3, are shown in Fig. 15. It is shown in Appendix C that L/Lp increases

from

.0
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r2 + 2 _1/2 _T

-Lp Ap -1

at r =0 to L/Lp = 1 for il -- ,.

The essence of the interactive process is the increase in transformation-zone height at

fracture that is produced by the presence of bridging particles. At maximum synergism, for which

the product rule applies, the zone height is amplified by the factor P.

CONCLUDING REMARKS

The possibility of synergism between particulate and transformation toughening has been

demonstrated on the basis of simple models for the individual toughening processes and their

interaction. The essential requirement for synergistic interaction is that in the uncoupled situations

the transformation zone size not be too small relative to the particulate bridging length. However,

this requirement is not severe; ratios of zone height to bridge length of 1/10, or even less, ma

suffice to provide synergistic effects.

It would be desirable to corroborate these conclusions by repeating the analysis on the basis

of more realistic assumptions concerning ductile-particle constitutive behavior and criteria for phase

tranformation.
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APPENDIX A

INTERACTION ANALYSIS

We contemplate a steadily growing semi-infinite crack (Fig. 7) subjected far from the crack

tip to conventional K-field stresses
K

= fao(O) (U2 2 (0) = 1) (A 1)

corresponding to the standard Muskhelishvili potential

40K = K(A2)

The crack is constrained by bridging particles over a length L, and, as in BHL, uniformly

distributed plane-strain dilatation of magnitude

3= P(~~c (A3)

is assumed to occur in the shaded region A. It can be shown that the elastic field associated with

the smeared-out crack-face tensions cS supplied by the bridging particles is characterized by a

Muskhelishvili potential Op satisfying

+.o(Z) c (A4)
CS IT + l

* and the field due to the transforming particles is described by

___ __ 1/2 1/2 12 -t1/2
Or 4n(l-v 2)L logt(Z + Z0 )(Z' +02 )dY° (A5)

outside the transformed region. The integral is along the curved front boundary C of the

transformed region. Substitution of the total potential

= OK + OP + rr into the jump relation

v (X) = [X)] (A6)

I N
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gives the displacement of the upper crack-face along X < 0, and the mean stress outside A is given

by

y = 4(1+v) Re (A7)

During steady crack growth, the displacement at X = -L remains equal to its failure value

vf, and the transformation criterion rm = a., must be met as Z approaches C from the exterior of A.

Assertion of these two conditions provides the relations

4)(l -v2)KNI'T 4S(I-v 2 L 2(1+v, ,0 T # i-rc
Vf 7E - 37 Im1 1 log .dYO (AS8

and

a 2K(+v) Re 1 2(l+v)cS [ 2Re +Im log__
aM-- 3 I 2EZ 7 2ReVAjInZ ov~-~

-j4 ) Ec R 1 1 1 1
V 9n r"z 01/2 17/2 Z1/2 + -1/2 dY°  (A9)

The I-integral of BIIL, modified to account for the presence of the ductile particles, gives

2(1-v 2) K2 (1-v2 )(1-c) cT
E E + 2cSvf + 2H mCtp (AlO)

and another connection between K and Km that follows directly from a combination of relations in

BAE and BHL is Td

Km I ' K-cS --- -Re (All)
l~~ V n 3(1-v) n r-

With the introduction of the non-dimensional variables w = vlD, z = x+iy = rei = 7/D,

I = L/D, and h H/D in terms of the characteristic distance

D 2(1-+) K (A12)

the governing equations (A8-A 11) become
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wf A4T 01 IP, t 10

3n(9RfIm lo [ y (A13)

(Cx)1/2 1 iz 2 doA R( zzL 2p 2R + Irnlog +

* 7 1 z ( l /2"+z2 1 /2 d0= (AI4)z +3n z

A= + - +-Re16)

where co, A, and p are defined in Eqs. (4), (12), and (13).

For prescribed values of Ap, XT', and p, the solution for A was found as follows. The

value of co is known as a function of XT (Fig. 4), and wf may be found from the relation
8 pwf (A17)

A =-I+ 4 3- 7 +2)R ( 6

given by (A 16) for co =0 (which gives Eq.(2) of the text). The boundary C in the z-plane was

represented by r(e) in the interval (), 12) and the expansion

N

A(4 2i( = b~ ~(Al17)

was assumed. The N+ 3 unknowns b,, (n=l,2,..N), , 1 , and A were found by solving

simultaneously Eq. (A13), (A16), and the assertion of Eq. (A14) at O4=(j0m/N) , j=0,1,2,...N.
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With h = r(4m)sin(om), Eq. (A 15) provided a check on the value of A. Only a few bn's were

needed for adequate accuracy in the preparation of Figs. (8-10).

The alternative coupling parameter 1l (Eq. 16) is given in terms of p by the formula

= 2 , 2-1TI = T.24(A19)

no (Ap-1)2

that follows from Eqs. (3), (5), (7) and (13).

0
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APPENDIX B

LIMITING VALUES OF TOUGHENING RATIO

For p--* but Ap fixed, we can imagine S--, L-0, with SIL and Svf bounded. It can

be verified that in this limit the potential Op defined by Eq. (A4) vanishes for all Z*0, but as shown

by Eq. (Al 1), the crack-face stresses nevertheless continue to affect the crack-tip stress-intensity

factor Ktip= Km(1-c)lf2. Perform the following thought experiment: in the absence of bridging

particles, apply K, and let the phase transformations occur. The zone height H = HT will be given

by Eq. (6). Now introduce the particles, and note that since the stresses do not change for Z*O,

neither will H; hence Eqs. (A10), (2), and (6) give

K 2(1-v 2) K2m(_V )A (1 -c) 2(0f(co)K2(1 -v 2)

E E + E

It follows, via (8), that A2/(XT) 2 = (Ap) 2, and so X=XP-T.

Next, for the case p-40, we pretend that S-->O, L-+--o, again keeping S']L bounded. In

this limit, the particle potential prescribed by Eq. (A4) becomes indistinguishable from one due to a

K-field (Eq.(A2)). Withholding the ductile particles, apply K. and adjust its value to make K1p-
Em

Km(l-c)112 . By (5), the transformation-zone height will assume the magnitude

12
H=g (l+v)Km (1-c)

Next, introduce the bridging particles, and add an equivalent increment to K to keep H unchanged

The total K will now satisfy the relation

* 2 2 2 2 2 2K 2(Iv 2)  K2(1-v2)Ap(1--c) 2 og(co)K2_(1-v2)(1--c)

E E E

that follows from (A 10), and then (7) gives A2 (Ap) 2 + (XT) 2 -1.

4,;

. . . .. . . . . . . . . . . . . . . . . . . . . . . .4



'''mlnxl oi M VWV~CW

-14-

APPENDIX C

TRANSFORMATION-ZONE HEIGHT AND BRIDGE LENGTH

From Eqs. (5), (7), and the definition (A 12) for D , we have

HT 9n ~TF
= 4(1-c) o (Cl)

Using h = HID in Eq. (A 15), together with Eq. (A 17) gives

H 9nr 2 2(A2A2) (C2)

and combining (Cl) and (C2) provides the result (17).

To calculate L/Lp from the results of the numerical procedure of Appendix A, we write

L L H HT(l-c)

Lp H HT(1-c) Lp

Using Eqs. (16-17) gives the formula

L =,,I AA
Up I 1 (C3)

that was used to prepare Fig. 15.

The limiting values of L/Lp follow from the observation that setting o = 0 in (A16) (or

using (3)) gives

4p.11lp
Ap = 1 + (C4)

Combining this with Eq. (A 16) gives the general result

-2
2co _r(dy

A-1-- Re
= T Lp- (C5)

But now recall the argument in Appendix B for the limiting case p - 0, wherein field stresses

were unaffected by the introduction of particles and the simultaneous increase of K. This implies

that for p --+ 0 the integral in (C5) keeps the same non-dimensional value it would have had in the

case of pure transformation toughening. Hence, for p - 0. and

• .-
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O f dz
X'r= 1+ Re I z

we get

L - -T T 2

Up- AXPY)

which gives (18).

For p -- co, on the other hand, the argument in Appendix B had the transformation zone

unchanged with Kfixed when particles were introduced. Hence, in this case, the integral in (C5)

is A/XT times the value for transformation toughening. Accordingly,

h A^-1 - (Xr-1)

and the limit A= APXT for p -4 - gives LILp = 1.
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Fig. 1 Bridged crack.
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Fig. 2 Particle stress versus crack-face displacement.
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Fig. 4 Transformation toughening: reciprocal of toughening ratio versus toughening parameter,
up to "lock-up".
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Fig. 6 Dependence of transformation zone-height on toughening parameter.
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Fig. 7 Bridged length and transformed zone during steady crack growth.
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Fig. 8 Modified toughening ratio for various values of coupling parameter p = (1+v)cS/o

Ap = 2.

%'



-20-

10

6

K

6

4 p

12 3 45
XTS

Fig. 9 Modified toughening ratio for various values of coupling parameter p 0 (+V)cS/ac:
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Fig. 13 Modified toughening ratio for various values of coupling parameter 71 = HT(1-c)/Lp;
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