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ABSTRACT

' A tutorial is presented encompassing both biological and mathematical aspects of

associative memory for pattern processing. A systems viewpoint is adopted whereby

biological associative memory is viewed as a system of adaptive filters, with the free

parameters of the filter corresponding to the strengths of the biological neural connections.

Certainly such viewpoint is not intended to accurately depict the true mechanisms

underlying the extraordinary capabilities of biological associative memory - fast pattern

recognition and apparently infinite memory capacity. For such mechanisms will unlikely be

discovered in the absence of tools allowing the observance of collective behavior over

systems of neurons. However, the viewpoint does serve to integrate both mathematics and

biology on a general level.

Of most significance is perhaps the systematic treatment of mathematical associative

memory. In the adaptive filter framework, associative memory is described and compared

to traditional statistical techniques. Also, new insight into the generalization capability of

associative memory is expressed. Conditions are presented to ensure both correct memory

recall and significant generalization. ,fo. -
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ASSOCIATIVE MEMORY

Biological and Mathematical Aspects

1. INTRODUCTION

The recent interest in associative memory can perhaps be attributed to the increasing

awareness of the extraordinary, yet subtle, capabilities of biological associative memory. -

11 12
With only finite number of components and degrees of freedom (10 - 10 neurons

with average 10 connections per neuron) humans can store and recall seemingly infinite
memories. In contrast, classical computer systems utilizing address memory can only store

memories which increase linearly with the number of components. Moreover, correct

computer memory recall requires exact address specification. Yet the biological memory

implements recall by association. That is, a stored memory pattern can be recalled by mere

association with an incomplete excitation pattern (key.) Thus by association, inexact
information often results in correct memory recall, and thereby constitutes a robust memory

recall mechanism.

Further astonishing is the physical realization of biological associative memory with

slow and apparently inaccurate components. For example, the biological signal channels t.
(axons) are several orders of magnitude slower and more passive that the analogous

computer circuitry. Specifically the resistance of one meter of nerve fiber is approximately10 .. .,..:.
the resistance of 10 miles of 22 gauge copper wire. And at a snail's pace (100 m/sec)
the signals are propagated through the axon, compared to the blazing speed of light

achieved by electrical signaling in computers. Yet the time required to recall a stored
memory (or equivalently recognize a pattern) by association is only approximately 100 l.

msec for biological memory, while the conventional digital computer (with nanosecond

processors capable of performing tens of millions of instructions per second) requires S

minutes to perform the same task.

So how does biological memory, characterized by seemingly infinite memory

capacity and quick recollection emerge from slow, noisy, and imprecise biomass circuitry? 0

.0.' ,
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Such question has driven research activity for decades. And even today, the question

remains largely unanswered.

However physiological experiments have revealed fundamental differences between

biological and computer memory, which are likely to contribute to the vast processing gap.

Perhaps the most apparent contrast is that biological memory, in addition to being

associative, is distributive. That is, the memory function and hence pattern recognition is

spatially distributed over numerous neurons, rather than confined to a single location as in

computer memory. This distributed phenomenon is believed to be responsible for the

inherent fault-tolerance properties, in which memory often remains intact after minor

damage. Furthermore the distribution of the processing over numerous neurons provides a

parallel processing capability, thought to underly the quick system response times achieved

with relatively slow circuitry.

Consequently, in building robust pattern recognition systems with increased

memory capacity, distributed associative memories patterned after biological neural

networks are subject of much investigation. The purpose of this chapter is to provide a

tutorial encompassing both biological and mathematical aspects of associative memory.

The nature is systematic and follows the work of Kohonen [1]. First, a brief section on

biological associative memory is included to provide a perspective on neural circuitry "".1'

involved in memory; certainly not an explanation of the true mechanisms underlying human

memory. Next associative memory is defined mathematically with various models

presented and characterized. Then criteria are defined for assisting in the evaluation of such

models. Concluding, possible future research activity is mentioned regarding the

development of systems much more characteristic of their biological counterparts.

S.. -. '.
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2. BIOLOGICAL ASSOCIATIVE MEMORY

Although many theories of biological memory exist, scientists continue to seek a

true understanding of the mechanisms which underlie the extraordinary capabilities of e

human associative memory. Here a systems viewpoint of biological memory is adopted,

due in part to the physiological evidence and admittedly, the author's engineering

background.

As with any large system, overall or collective behavior arises from the various

functional components; and to understand the collective system behavior, the components
ust first be somewhat understood. Therefore, the discussion begins with describing the

functional components of biological memory. These functional components are viewed as

adaptive filters, whose adaptive elements are represented biologically by synapses (variable %

connections between brain cells (neurons)). Then, the physical organization of biological

memory is discussed within such context.

.%,.- . ,

2.1 System Viewpoint of Biological Memory

.,
Increasing evidence suggests the extreme complexity of the brain is not due to

randomness, but instead, arises from highly ordered design [2] ; a design which couples

many distinct neural regions, each being tuned for specific stimuli processing. These

distinct neural regions include the visual cortex for vision and the somatosensory cortex for ,-.. r.

tactile sensing. Within such regions there exists smaller subregions, again for specific

function. In all, the brain can be considered as being composed of thousands of distinct ,..

specialized regions, each containing thousands of subregions. Consequently these

subregions, composed of 10 to 1000 neurons, may be interpreted as the functional building

blocks or components of the overall system.

Certainly through experimentation, biological memory has been established as a
collective phenomenon, distributed over many such neural regions. This is confirmed by

experiments where lesions are made in different brain localities, and observing the resulting

impairment being a function of the severity of the lesion, and not so much the location

[3,4]. Thus biological memory is a system, composed of numerous neural regions which

act collectively to yield an associative memory with extraordinary capabilities. .,

3
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S
Subsequently, these neural regions comprising memory can be considered as

adaptive filters, whose adaptive elements give rise to the distinct properties characteristic of

each region (see Fig. 1.). And the role of biological memory, or analogously the system of

adaptive filters, is to create an internal model to represent sensory environmental history.

FS

2 3 _ ___ __ ____4

Ak

F 5

Fig. 1. Simple system of adaptive filters.

Since a sensory event consists of thousands of activation patterns from possibly

many sensors, a good deal of preprocessing is presumed to facilitate the storage of

apparently infinite events. The preprocessing in turn yields higher level information or

features. The features comprising this feature set or map are then believed to be encoded

through association. Thus instead of memorizing the explicit feature patterns, rather the .

associations between the features are preserved, likely by the neural synapses. Therefore if

an input key representing only a portion of the feature set is presented to the system,

through association the complete memory event is recalled [1]. Now given the analogy of

biological memory with a system of adaptive filters for extracting and associating key -. ,,

features, the adaptive filter is discussed within the biological context WI,_
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2.2 Adaptive Filter Paradigm

The adaptive filter representing a subregion of neurons is shown in Fig. 2. The 00 .

amount of neurons represented by each filter coincides with the amount of neurons

necessary to comprise a neural subregion with observable collective behavior, and hence

likely to be a functional entity. The inputs and outputs are multidimensional signals derived

from action potentials of nearby neurons. Most of the signal information is conveyed by

the frequency of the impulse train (# impulses/sec) [5] and the location of the filter in which ,- .%

the signal terminates. Almost no information is contained in the amplitude of the impulses,

for the amplitude is fairly constant throughout many animal species. The signal origination

and destination is of extreme importance in semantic interpretation. This is demonstrated S

by realizing that the same elecirical impulse train directed to the visual cortex and the %

auditory cortex produces profoundly different meaning.

SY1

XL P, I Y L "'e"

Fig. 2. Adaptive filter with transfer function F.

The filter itself is represented mathematically by a transfer function F relating the

outputs to the inputs. The function can be dependent upon the inputs, outputs, and the

adaptive filter elements. The nature of the adaptive filter, and hence the neural network, is

the subject of the Mathematical Associative Memory section. As with any adaptive filter, .. ,'

the specification of the adaptive elements or parameters gives rise to the filter's identity.

Correspondingly, the next subsection investigates the biological equivalents to the adaptive

elements, the synapses...-..

5 t %#
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2.3 Adaptive Filter Elements - The Synapses
0

Many neurobiologists believe the unique character of individual human beings,

including disposition, learning, and memory resides in the geometry and specific strengths

(weights) of the neural interconnections or synapses [6]. The modification of these ""'

synapses is believed to be of primary importance both in learning and associative memory,

and their strengths are viewed as the adaptive elements of the filters (see Fig. 3.) , ...

•Sdendrites 
" "-

synapse,".--.. .

axon 
i- -"

• " J-., r. ~ -

presynaptic neuron postsynaptic neuron S

00dendrite ,-,-a"

tasitr0 receptor'-' '

:..,. .

presynaptic postsynaptic
axon signal signal

,.':,S

Fig. 3.a) Ncural connection, b) signal transmission across synaptic channel c) transmitted % .6,

and received signals.
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Typically, modifications in connection geometry, such as sprouting new output

channels (axons), occur at an early stage of development. While in the adult stage, most

interconnection modifications for memory and learning are conducted by varying the 1 0

synaptic strength. This change in synaptic strength alters the transmission of the action

potential from the presynaptic neuron through the transmission channel to the postsynaptic ,F %

neuron. The ransmission channel between the communicating neurons supports chemical

signaling. Specifically, at the arrival of an action potential, molecules of chemical

transmitter from the presynaptic neuron are released into the channel and received by the

receptor molecules residing in the postsynaptic neuron. Much debate arises concerning C

whether the presynaptic or postsynaptic neuron (or both) is physically responsible for the

change in synaptic strength. ,

Nevertheless, the synaptic strengths, analogous to the adaptive filter elements, are

adapted during both learning and memorization. And each synapse with a specific strength

performs a weighting of the respective input signal to the postsynaptic neuron (see Fig.

3c.) Thus the neuron is often modeled as a device which first performs a weighted

summation over the input signals (where weight w.. designates the synaptic strength from
neuron i to neuron J ) then passes the result thiough a threshold function [7] (see Fig.

4.). Upon specifying a rule for synaptic modification (adaptive filter algorithm) and . -

geometry, the simplified biological model becomes complete.
% 4,.

x0

Xl 9. ji x

N (threshold)

Fig. 4. Simple neuron model. .
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A well recognized synaptic modification rule basically states that the synaptic

strength changes in proportion to the correlation of the activity of the presynaptic and

postsynaptic neurons [8]. Mathematically, the rule is expressed, 4

d E{wji {IPx }

Two types of synapses are distinguished. The excitatory synapse promotes the firing of

the postsynaptic cell ( wj. > 0 ) while the inhibitory synapse reduces the chance of firing

(w.. <0).
s,

The time constants for these biological adaptive elements are surprisingly fast.

Experimental results have shown that brief periods (seconds) of stimulation to neural

regions known to be involved in memory alters the synaptic strength for a substantial

amount of time, thereby supporting the notion of memory being correlated with synaptic

modification. These results imply that only moderate training is needed to produce lasting

synaptic modification to support learning and memory [6,91. The implication being, as you

read this article your synapses are being modified accordingly (depending upon your

attention level.)

2.4 Biological Memory Organization

As mentioned, the brain is a highly organized system. Signal processing for

memory, as well as other functions, is often conducted in a layered fashion. In some

cases, these layers are distributed in planar arrays, each layer being a neural subregion with
observable collective behavior (thus comprising a functional entity) as illustrated in Fig. 5.

The distinct functionality of the layers is demonstrated by electrophysiological recordings,
whereby neurons in the same layer respond similarly and have similar receptive fields

(areas which influence the activity of a given neuron.) The classical results of Hubel and
Wiesel [10] clearly demonstrates this layered processing phenomenon, specifically from the

retina to the visual cortex. Here the processing progresses from detecting light to detecting <

complex geometries.

8,,.%?



Particularly for associative memory, many portions of the brain contribute in the
overall processing. However from lesion experiments, memory is believed to be S, .

decomposable into various stages. Such physiological evidence suggests that for memory "

storage, both an encoder and physical storage medium (likely the synapses) are involved

(see Fig. 6.).

/ /Jo-

~. • . .

layer I layer 2 layer N S

F1 F2 000 FN ,e.-'

Fig. 5. Layers of neural subregions and corresponding adaptive filter system.

The encoder is deemed necessary to reduce the redundancy from the overwhelming

number of patterns to be associatively stored. Evidence to support the source encoder

theory is provided through brain surgery, originally in an attempt to correct epileptic
seizures. The corrective surgery involved removing the temporal lobes, which included the

hippocampus and amygdala. Although the epilepsy was cured, the patient now without a

hippocampus, was unable to store new information in long term memory. Yet previous

long term memory (stored prior to the surgery) remained intact [II]. Thus theories, IWO

describing the hippocampus as a source encoder necessary for long term storage received i

credibility. ""'3 ."-'
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In fact some have theorized that the hippocampus may actually be a self-organizing

source encoder which maximizes mutual information between the inputs (ensuring

transformation invertibility) while also minimizing the mutual information between the

output channels (ensuring minimally redundant output signals) [12,13]. Here the
processing is fairly localized and layered, composed of a minimal three layers.

Although the encoding may be fairly localized, the actual storage is much more"N,

distributed. The storage is believed to be distributed amongst the synaptic connections.ON

throughout the cerebral neocortex, which amounts to 70% of the human brain.

Furthermore, the incredible capability of human memory, being vastly superior to any other S

animal, is believed due to the substantially larger human cerebrum.

' CODER STORAGE "

Fig. 6. Components of memory storage

With regard to the biological mechanisms of associative memory recall, much less

is known and no attempt is made here to postulate a theory.

.. %. . "
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3. MATHEMATICAL ASSOCIATIVE MEMORY

Recall the particular system viewpoint of biological memory envisions the memory
process being distributed over numerous regions of neurons, each region in turn composed
of subregions represented by adaptive filters whose elements are adaptively chosen. With

such viewpoint, the adaptive filter is thus seen as the system level building block. And the ?T21
purpose of this section is to mathematically describe some of these building blocks.

3.1 Definition
. N.-,

A single adaptive filter for modeling associative memory is shown in Fig. 7. The
input vector j- E 9t represents a prototypical key, while the output vector :Fe 9t is

the corresponding memory. Note the input and output vectors of finite dimension can also
represent continuous time processes, since any finite energy signal x (t) can be expanded

by orthogonal functions yielding

N
X ) ( X0(t)

The filter is characterized by the transfer function F , dependent upon both the input and
the filter parameters or elements. The filter is designated adaptive if the matrix of elements
remains dependent upon the data, that is

, ~r ,:. ,r

= x(2)

However for brevity, the notation below is adopted to signify the adaptive filter transfer
function -.

i = ! (3) "

.4
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X Yi I
-- [2 Yi]

F0

".FF (TI-

Fig. 7. Adaptive filter with transfer function F. 

3.2 Objective 
-

The ideal objective of mathematical associative memory by adaptive filtering is to

construct a transfer function in an adaptive (often recursive or iterative) manner such that

(i)~~ ~ FZ_ =) i i= ,2. M - perfect recall (4)

(ii) F ( x, + i) = )( ti = perturbation) - generalization (5)

given a set of M arbitrary paired associations 
.

{ ( X1 id) '( i2 Y 2) '  -, }. (6)-- I.,Y 
.%

Pictorially, the ideal associative memory with both perfect recall and significant 0 .-

generalization capability is depicted in Fig. 8. Perfect recall is shown by thin lines mapping

the values in the input space X to the corresponding correct memories in the output space .

r . The generalization capability represents the amount of perturbation or error tolerated in

the input key. Thus good generalization implies proper recall when excited by an..55S',"

erroneous (yet similar) key, as shown with the bold line. Physically the erroneous keys

may represent an incomplete memory item, or a noisy version of the proper key x-.

12
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.:.5

~%-.. .:

Fig. 8. Associative memory mapping. .-

Associative memories can be categorized into two classes. Hetero-associative =w.

memories involve associations of dissimilar type. That is, the input and output vectors ,Iev."

have entirely different meaning, as in the above formulation. An example of hetero- .

associative memory is the classification problem where objects i. are to be classified into '
£

one of L categories. Here j. = (0, 0,.. 0, 1, 0.. 0), conveying object £. is categorized .,.2,.

r %

into class i • Conversely, auto-associative memories have associations of similar type. .,,

Specifically yi = x. in the above formulation. Here the actual input key (i + ff) is .-.-

just a perturbation of the memory i. (see Fig. 9.). ,:,

+

The appeal of the adaptive flter associative memory is the ability of the filter to,,, ,

adapt (synonymously learn, self-organize) in an effort to improve performance, whereby. %

by the adaption is determined by the data, and hence data driven. Thus the elements of/ T_:=

specifying the function mapping the input keys to the memories are determined

automatically. In consequence, the function F relating inputs to outputs is learned by the "-S €

adaptive filter (with an appropriate learning algorithm), and thereby alleviates the laborious %

tasks often necessary in extracting explicit relationships, and the requirement of a-priori '

models.

* q
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00I hetero- ft- face
associative Iv. P

~~V~~associative__iP

Fig. 9. Example of hetero-associative and auto-associative memories

3.3 Architecture

Further investigation of the adaptive filter function F requires specifying a

particular class of functions. In turn, a class of possible functions can be defined in terms

of a given architecture. Correspondingly, the architecture which supports the class of

adaptive filter functions immediately investigated is shown in Fig. 10. Here the adaptive

filter transfer function is dependent upon the processors (shown by circles), the bias values

{ 1. }' and the connections with strengths { tjk t ( j = strength (weight) of connection

from input xik to processor j ). Thus the adaptive elements are contained in the matrix

T= {tjk }, and upon specifying both a rule for the adaption of/T, bias values, and the

mathematical form of the processors, the filter is completely specified.

The analogy of the adaptive filter architecture in Fig. 10 with a region of neurons

becomes apparent if the weighted connections are seen as the synapses of varying strength,

and the processors consists of summations followed by nonlinear threshold activation

functions (refer to Fig. 4.). And to construct many regions of neurons to represent a

system, simply repeat the above principle architecture.

14
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Fig. 10. Adaptive Filter Architecture .-1* '-

3.4 Linear Associative Memory -,-,-.

To provide a sound foundation for further associative memory investigation, the
optimal linear associative memory model is first presented. Often fundamental,...
relationships obtained in the linear case provide insight into the nonlinear cases. And as a'--'-...,
further justification for examining linear models, they typically perform adequately when"- -

operating within the bounds discussed.

pp-

The linear architecture is easily obtained by designating the processors in Fig. 10. .,.'..,

as mere summations. Hence the output component YO1 becomes ... 9.: ..

0S
N0

Yij jkik + jd .,q. ,'
Fig (7)0. ApvFtAc

or equivalently in vector form

,~ .. %-

Also, the architecture can be drawn to emphasize the linear matrix formulation, termed the

Slearnmatrix [14,15,16] shown in Fig. 1..

1
or -equivalently in ve.t..-,.rm

S ... - .

0* (8)~*,
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Fig. 11. The learnmatrix.

Next the learning rule (algorithm for adaptive elements T ) is derived to satisfy the

first objective, perfect recall (4). Generalization (5) is discussed in Section 3.5. Both

general and particular solutions are presented, together with conditions to ensure perfect

recall. ,
.,I %.U.,

Specifically, the problem addressed is to construct a learning rule (matrix T ) such

that .- -.

F(;F. =. i =1, 2.. M (9)

given a set of M arbitrary paired associations

I', YO),("T ..... )} M (10)

.*' %** . .Oo

(Notice the bias vector d has been removed for simplicity.) Rewriting (9) in matrix form

(ii' Ti " I TfM) =(4 Y' M) (11) .. •

. . **

1 6 - ""
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or TX =Y

where X=(jFiz'"' "M) (12)

2'""* (13)

In general (where exact solutions may not exist) the solution providing the best

recall in the sense of least squares ( . I - I minimized) is given by

T YX (14)

where X is the pseudo-inverse [17].

Exact solutions are obtained in the cases where linear independence occurs.
Specifically three cases are detailed below. 

.'-,

A) Prototype keys { ) are linearly independent ( M < N ).

Since the keys are linearly independent, Y consists of linearly independent -,.-

columns, and hence ( 5X-) exists yielding •

%* %".-:. -:

ti...-..

therefore

f Y' X X (16)

and perfect recall is assured (* denotes transpose). Notice also that since the

X. e 9 are linearly independent at most N memories can be perfectly recalled,

or equivalently, the number of memories must be less than or equal to the

dimension of the key vector (M 5 N).
1 -7. .,

,, Si% ,'.

%."

%"%S %
.- I-I,..
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B) Rows of X are linearly independent( M > N ).

Since the rows are linearly independent, exists yielding

TX = f (17)
--- J4 -- 4

TXx = Yx

therefore V

Notice upon expansion

£ (18)

M Yi Xi M X i ., '

A A-= yx~x ,Zru:;

the linear formulation of associative memory with linearly independent rows is seen *'i
A A

to be equivalent to linear regression where Vyx and V.. are approximations of the

theoretical covariance matrices

V =E{YX} (19)

2Z.
S=E { "(20)

Y,

based upon the observed realizations {("I' i)1. Also if the theoretical

covariance matrices were known, the best linear unbiased estimator (BLUE) for the
memory y7 given the key X would result

--- I ,1' _
57 = VyxV r x £

(21) ..

18
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Consequently, when the linear associative memory is overloaded (M > N ) and

the rows of f are linearly independent, the memory recalled is best in the sense of

least squared error, and is reminiscent of traditional optimal linear regression and

estimation 18,21) where the number of data pair {( , Y ) } exceeds the vector

dimensionality.

These linear cases are illustrated in Fig. 12 with M = 6 pairs of single dimensional

(N 1) associations. For perfect recall, only I arbitrary memory can be stored
(x,' Y). As shown, the compromise for memory overloading is inexact recall,

represented by the discrepancy (dashed line) between the true memory yi and the linear

mapping F (x )

*Y

y
Y6 --

y 65 y5 --.

unbiased estimator
Y 4 -

:

best approximate
linear recall

y 3 (case 13)

perfect , .
linear recall

Y 1 (case A)

1 2  3  4 x 5 x 6

,. 12. Comparison of linear regression, estimation, and associative memory.

C) Prototype keys { , } are linearly independent and orthonormal ( M -. N).

Suppose the prototype keys are mutually orthogonal unit vectors. Then by

definition

1 9 ,, :

," :~ - ...
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, flix.x =x *. i : . - "1 i%:"
j 1 0 i * j (22)

together with the linearly independence assumption yields V*1

• 2
j x 1 } (23)

fly'

_ _* _- _ • . 5,= YIX; = YX 
.5

Now this formulation, termed the correlation matrix or outer product technique,

grants insight into how the output memory is retrieved. Suppose the prototype key

-, is introduced. The corresponding memory recalled is then-,-
".* -"%

57 = T (Xl) (24)

= ' X2

[Y! Y2"' TM ] 2 ;-l

xM

_, , _ "2"''

-J 1( X I11 2 + E i X )...k- ,

11

•(signal + noise) % 6•,

Y,-

N'z'

LI4 
J-

5$ "

2 0 ,-S -

,1 5. " . , +- t., 3 , . - ." - , 37d 2 , . ..' . :.=.¢ .. . .,' . .x ..S,, . -, -' 
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Thus perfect recall is ensured provided the prototype keys are orthogonal. Without %,,,. h

orthogonality, crosstalk noise is mixed (24) with the true memory, thereby ,
contributing to erroneous recall. Orthogonality is often achieved by conventional

Gram-Schmidt orthogonalization. Consequently, the prototype keys associated
with stored memories and the arbitrary input patterns are often preprocessed to

enhance orthogonality.

In consequence, the conditions for both perfect recall and best approximate recall
have been established for linear associative memory. However to satisfy the ideal

objective, both generalization and adaptability must be addressed. Generalization is treated

in the next section, while the matrix of elements constructed by (14,16,18, or 23) is N N

generally made adaptive according to the recursion '.'

T= _ y
kT k - I+ k(y k - kl-xk k (25)

whereT is the new adaptive element matrix formed from the recent matrix utilizing (k-I) r d-

data pairs {(P' )}. Formulas for the gain vector for the cases addressed are

contained in [I].

3.5 Generalization Capability of Linear Associative Memory

Generalization in the context of associative memory is the ability to recall the correct

memory when excited with an incorrect or perturbed input (key). Typical perturbations . -

may include missing input elements, random noise, or perhaps in vision, variations which

often prohibit correct identification. Mathematically, generalization can be viewed as the
ability to map all perturbations contained in a neighborhood about a prototype key i. to

the correct output memory (see Fig. 13). Here ideal generalization corresponds to

maximum input perturbation radius r, (without overlapping neighborhoods) and minimum

output perturbation radius ro . Now upon specifying a class of perturbations,

generalization capability can then be formulated in terms of the parameters which influence

the growth of these neighborhoods.

21 *-,_ ,A.
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r, N

Fig. 13. Function generalization with input neighborhood of perturbation radius r1 being --,

mapped within output neighborhood of radius i . ..

Many perturbations arising in the mapping of a prototype key £. to the correct-.

memory 37 can be modeled by . -

Fg() =.y (27) ?'--"

bhe g with oneruatil rulatinh accep stabe outfingput ie perturb (r-,)?

ito daly the ouitancut/wu en the ut tpmeoy Next th Houevut dpeturbaton

t of u oo mor

wFi. 13.Fuenctn generalization waiith nputinebrhoodsofitv pertrbtoris he tremntg
mapped withi coutpuvtvl neirh ofcpadus moun fiptnieprubto r_.

toteMnmu pertratnce betweength in tepput f prototype key ext the o tput orrctn,..'
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neighborhoods (ro ) are shown to be dependent upon how close to capacity the memory is 0 e

being operated.

Consider the noise perturbation model (27) where the perturbation h- is a zero

mean random vector of variance CF and normalized (in energy) to the dimension N '. 'A

n %

12]

n. (28)

Z'

The perturbed input is then treated as a prototype key corrupted with additive noise (27).

Although the noise elements n5 may be symmetrically distributed (for example

multivariate Gaussian), the resultant noise vector W tends to lie near the surface of a(I s:- 2 0
sphere with radius a. (Specifically P ,&) N a 2 [18]). Thus for

2%NA . --
typical associative memories (where N > 100 ), the perturbations encountered tend to be

concentrated on a spherical surface centered at the prototype key, with radius equivalent to .'....

the noise standard deviation (see Fig. 14..) This apparent concentration of noise, due to 0

large dimensional spaces, is encountered in communication theory and termed sphere

hardening [18].

....... ...... :

.° .'1X.
lX

Fig. 14. Sphere hardening at prototype key i. .

In a practical setting, the perturbation variance is rarely known. However an upper
2

limit can often be specified. Thus if the variance can be bound by C'max, then the
l %.
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perturbation is likely to be concentrated on a sphere within radius max. Consequently the -,- 4%

minimum distance between any two prototype keys must be greater than the maximum

perturbation standard deviation to avoid (with high probability) unresolvable recall errors.

d'.mn dfl.,i-.)> %fa a+A r Idx ,m 1 (29)

Notice an unresolvable recall error occurs when the perturbed input X + if lies on
another prototype key x, and hence Y. is incorrectly recalled (see Fig. 15.). Clearly

the best representation for the prototype keys {[: } would be one which maximizes the

separation amongst the keys in the input space, thereby accommodating the largest amount

of random perturbation. %-%

I I

( .
J. o.. p

+p =X- %

Fig. 15. Unresolvable recall error occurrng for °'a m. .,'.

The second relation involves the growth of the output perturbation neighborhood as Si - -

a function of how close to capacity the memory is being operated. The output perturbation

neighborhood about memory is that region mapped into the output space arising from..,-, "

inputs within the region about i. of radius r!. (Mathematically, the neighborhood is .,
written N = {y~ y = F(£i, -£ N }). Ideally, the output perturbation ,

N2 "-X
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neighborhoods are desired small as possible, therefore many input keys representing

perturbations of the true key would be mapped very near the correct memory. A

Sr

To obtain the relationship, consider the general linear associative memory with a

perturbed input as shown. %

x- =x-. +n T 7
JS

Fig. 16. Perturbation example.

Recall the general solution T= YX hence %

(30) '...'.: ;

= Y+def. of pseudo inverse

( + - )+- '

x- + h'

where A = XX+n- is the projection of the noise vector n onto the space spanned by the

prototype keys { }. Now the variance of the norm of the effective noise AA is [1] -"--

'6n E Var(dIA) M Il=1-

and thus the noise term is attenuated by "v/M I N on the average when mixing with the

signal that represents perfect recall or the best approximate recall, depending upon the cases

previously stated. Therefore, to combat the deleterious effects of input perturbations ..

(potentially causing large deviations in the recalled memory pattern from the true memory) ,* '-

the number of memories stored is to be kept much smaller than the vector dimension

(M < < N) implying operating the memory well under capacity as illustrated in Fig. 17.
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In summary, generalization is dependent upon the parameters which control the size

of the perturbation neighborhoods. Ideally, the input perturbations neighborhoods are

desired large, while the output neighborhoods small. For linear associative memory, the

maximum input perturbation neighborhood is limited by the distance between the prototype

keys. While the output perturbation regions are driven small by operating the memory well

below memory capacity, thereby attenuating the perturbation by the square law (31).

Several demonstrations of generalization with both random noise and missing fragment

perturbations are contained in [1,19].

And for general associative memory, generalization typically follows from selecting

a representation where the associated data pairs {( i' 5 ) } or clusters, are well separated "

in their respective spaces and the memory is operated well within the memory capacity.

3.6 Nonlinear Associative Memory -

Several limitations accompany the linear associative memories described in the

previous section. Fundamentally since the mapping is linear, input prototype keys { X }
which are close together in the domain X must be mapped close together in the range Y

Thus linear associative memories will not suffice where similar prototype keys need be

mapped to dissimilar output memories. Furthermore, the linear memories ignore contextual

information which is believed to be of primary importance in biological memory, enabling '

selective recall amongst seemingly infinite memories. Moreover, often burdensome is the .

preprocessing requirement (to obtain linearly independent prototype keys) necessary to .. .

achieve perfect recall. Together with the low memory capacity (# memories S< vector

dimension) reduced further for good generalization, linear associative memories leave much

to be desired in contrast to biological memory.

In an attempt to counter some of the mentioned limitations, nonlinear associative

memories have been proposed and several are discussed in detail in the following chapters.

For perspective, some of the models are briefly summarized below. .

The Hopfield model [20] is an auto-associative memory with feedback, comprised

of a linear model (specifically the outer product technique, case C) followed by a nonlinear

threshold function. Although the iterative process converges, spurious memories often

result [211 and the memory capacity is low [221.

27
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The Grossberg model [231 creates it's own memories depending upon the degree of

similarity desired by the modeler (vigilance parameter) between the keys and respective I.'-

memories. Since the network is allowed to grow as needed to represent the memories, '. -

comparing the memory capacity of such model to the previous models with fixed

architectures in inappropriate. ".__. -

The Poggin associative memory model is optimal amongst memories of matrix

polynomial form L24]. Although the memory is nonlinear in the input key vector, the

adaptable parameters determined from the least squares criteria are linear, and thus easily

calculated.

In the associative net by Willshaw [251, the memory capacity is increased at the "

expense of restricting the form of the binary input and output vectors. For maximal

information storage, the number of ones in the vector keys and memories are to be .

log 2 N . As a consequence, a sparse connection matrix (approximately half zeros) of
12.-n--2-2

binary switches is formed yielding a memory capacity M= N 2 2 which exceeds

linear associative memory. ' In2 N ,

The perceptron by Rosenblatt [26] is a nonlinear hetero-associative memory which

is rather limited in the class of mappings which can be learned [27]. However by

cascading several layers of the basic architecture or filter (see Fig. 10.), and incorporating -5

one of several multilayer learning algorithms [28-321, the multilayer perceptron becomes

capable of learning much more complex mappings.

Overall, the key to devising a good associative memory lies with the expressivity of

the network architecture. That is, the larger the class of functions the network can realize, '---

the more arbitrary the data pairs ({i 'i }) can be. For if an associative memory could

be constructed capable of mapping arbitrary functions, then any arbitrary set of keys and

memories could be associated with perfect recall performance. Although no such universal ,

associative memory has been practically constructed, Kolmogorov has proved existence

[331. And even more striking, the Kolmogorov architecture somewhat resembles a

biological neural network per description below. IV'

I
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First realize that a sufficient condition for perfect recall performance amongst

arbitrary data pairs is for the associative memory architecture to be capable of realizing

arbitrary functions. (This is easily demonstrated in a single dimension example by

considering the data pairs plotted in Fig. 18. Perfect recall is ensured
y= F (xi ) V i ) provided the architecture can express any function F which

intersects all points.)

F@) .:

MEMORIES

y 4

y 3

yI

x 1  2  x 3 x 4  X5 x6

PROTOTYPE KEYS

Fig. 18. Perfect recall attained by an associative memory realizing function F.

Now Kolmogorovs theorem states that an arbitrary continuous function of many variables

can be realized by a finite superposition of continuous functions, each dependent upon only..

a single variable, accordingly

Y 4 -- ( )" (32)
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where H. are fixed continuous increasing functions and Y. are continuous functions

dependent on F1 . Thus in the vector format

F(i)

L1L 1 133
te u F( i ) th -,:

5. *5•.. *5

each output component ur idepa upon many elements of .) is expressed accordingyl ....:.

to (32), yielding a vector of Kolmogorov representations. The accompanying network

architectue for each OUtpUt realization is shown in Fig. 1a.). Notice the similarity of the

the architecture to neural network models, (compare Fig. 4.) whereby the functions Hc strengths are

represent nonlinear threshold functions amongst neurons comprising the first layer, and

G. being the nonlinear threshold functions for the second layer neurons. However, the

architecture is biologically implausible since all synaptic strengths are of equal magnitude. %.-"

Later Lorentz e34] and Sprecher [35] extended the results of Kolmogorov to yield

the architecture shown in Fig. 19b). Notice the use of N connection weights offset the

stringent requirement of N (2N + 1) threshold functions on the first level of neurons. -

% 

Again the architecture is also biologically unlikely since the same synaptic strengths are ." '
d
=
, *'5*'

repeated to each of the neurons in second layer..--"-

Following the trend of compromising connection weights for nonlinear threshold .-..

functions, the question remains as to whether an arbitrary continuous function of many r_, *_ .,,.
variables can be represented as a finite superposition of single variable functions with the ""'.

more biologically realistic architecture of Fig. 19c. For if so, this mathematical architecture .'S.-

300

would prove invaluable towards understanding the vast capabilities of biological associativememory, as well as providing principles for constructing associative memories of far ;i12. .

greater capacity.'."i'. " -
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Fig. 19. a)Kolmogorov, b)Lorentz, c)biological ()representations. 44'
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3.7 Evaluation of Associative Memories p

Due to the vast variability in the network architectures employed in associative

memories, developing an evaluation protocol can be difficult. This section briefly ". -

describes a general set of criteria likely to be instrumental in evaluating various associative

memories for application. ..

The evaluation can be partitioned according to the storage and recall operations.

First for memory storage, the memory capacity is of extreme importance. Such capacity is

usually expressed as an upper bound on the number of memories which can be reliably

recalled. Another storage parameter is the actual efficiency of the memory storage, being -,S.

expressed as the number of reliable memories stored per architecture size and complexity.

Learning efficiency expressed as the amount of computation (number of iterations) required

to store a benchmark memory set is also likely to be an important storage evaluation

parameter.

Secondly in regard to recall evaluation, most important are speed and accuracy.

The accuracy can be evaluated by simply determining the sum squared error resulting from

comparing the true memories to the associative memory outputs under key prototype

excitation. Recall efficiency or speed entails the amount of time (computation) required to

recall a memory given an input key. Finally, the generalization capability can be examined

by determining the maximum perturbation neighborhood the associative memory can

tolerate under reliable recall. %

Both simulation and analytical approaches to determining such evaluation criteria..,.

can be employed. Analytical approaches for the linear associative memories as displayed

herein are straightforward. However for nonlinear memories, often stochastic approaches

are used taking advantage of large sample properties invoked for networks with large

numbers of neurons. Monte Carlo simulations also can provide evaluation parameters and _

often with much less effort. Especially if benchmark memory sets and examples are

established, evaluation by simulation may become routine. For illustration, memory

capacity bounds obtained analytically [22], and by simulation [201 are shown in Fig. 20.

for some associative memories.
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Fig. 20. Memory capacity for some associative memories

Finally like any evaluation, the best associative memory is the candidate with the

most favorable evaluation results for those attributes most crucial for the application.

Therefore many types of associative memories with distinct favorable attributes are -." ,..

envisioned to be applied.

* ..
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4. CONCLUSION

Clearly the mathematical models of associative memory discussed possess certain %

biological memory characteristics, such as pattern recognition by association, distributed

parallel processing, and generalization. Moreover the models, through small scale

applications, seem to substantiate the ever prevailing wisdom acknowledging the suitability

of neural-like architectures for associative memory pattern recognition and other random

problems where algorithmic solutions do not exist [36]. However these architectures

developed through decades of research remain distant in performance to their biological

counterparts, exhibiting seemingly infinite memory capacity and fast recognition.

Ironically, perhaps the mechanism responsible for the extraordinary capability,

namely distributive parallel processing, may well be the barrier which prohibits man from

truly understanding the origin of capability. For memory, along with other brain functions,

are collective phenomenon, distributed over vast neuronal regions. And in the absence of

techniques which enable investigation of brain function on a collective or systems basis,

principles underlying such extraordinary capabilities may never be uncovered, nor realized.

In conclusion, realizing the vast differences in pattern processing (speech

recognition, image understanding, decision making...) amongst computers and biological

systems, future research is likely to be chartered to discovering collective principles

underlying biological information processing. And in the process, a sufficient

understanding may be gained offering insight towards the development of specialized

neuronal architectures, borrowing from both biological and physical sciences, for assisting

man in learning and problem solving.
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framework, associative memory is described and compared to traditional statistical techniques. Also, new insight into

the generalization capability of associative memory is expressed. Conditions are presented to ensure both correct *".-

memory recall and significant generalization.
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