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ABSTRACT

TTT==> A tutorial is presented encompassing both biological and mathematical aspects of

associative memory for pattern processing. A systems viewpoint is adopted whereby
biological associative memory is viewed as a system of adaptive filters, with the free
parameters of the filter corresponding to the strengths of the biological neural connections.
Certainly such viewpoint is not intended to accurately depict the true mechanisms
underlying the extraordinary capabilities of biological associative memory — fast pattern
recognition and apparently infinite memory capacity. For such mechanisms will unlikely be
discovered in the absence of tools allowing the observance of collective behavior over
systems of neurons. However, the viewpoint does serve to integrate both mathematics and
biology on a general level.

Of most significance is perhaps the systematic treatment of mathematical associative
memory. In the adaptive filter framework, associative memory is described and compared
to traditional statistical techniques. Also, new insight into the generalization capability of
associative memory is expressed. Conditions are presented to ensure both correct memory
recall and significant generalization. . .1(”0,(1 5- ,».(;1 eal proiess 1]
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ASSOCIATIVE MEMORY &‘ B
. . . At
Biological and Mathematical Aspects AT
o
x '.'\:':
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.‘*&JQ .
1. INTRODUCTION m{c; A
;?.-"z* :
The recent interest in associative memory can perhaps be attributed to the increasing ;‘i"‘ \
awareness of the extraordinary, yet subtle, capabilities of biological associative memory. o .
With only ﬁnitcsnumber of components and degrees of freedom (l()ll - 1012 neurons M &E
with average 10” connections per neuron) humans can store and recall seemingly infinite ?‘,W
memories. In contrast, classical computer systems utilizing address memory can only store oW "._:'.'.',t
memories which increase linearly with the number of components. Moreover, correct g-“\."\.'
computer memory recall requires exact address specification. Yet the biological memory L:ﬁ" "
'. ) b
implements recall by association. That is, a stored memory pattern can be recalled by mere :f{-".:f )
association with an incomplete excitation pattern (key.) Thus by association, inexact ﬁiﬁ
information often results in correct memory recall, and thereby constitutes a robust memory
recall mechanism. y '.:
!
. R | I
Further astonishing is the physical realization of biological associative memory with &N
slow and apparently inaccurate components. For example, the biological signal channels &q- e
(axons) are several orders of magnitude slower and more passive that the analogous :';\'-::
computer circuitry. l%peciﬁcally the resistance of one meter of nerve fiber is approximately tl‘."&:
the resistance of 10 miles of 22 gauge copper wire. And at a snail's pace (100 m/sec) \::\'_'é.;

the signals are propagated through the axon, compared to the blazing speed of light —

achieved by electrical signaling in computers. Yet the time required to recall a stored “\::'_:3'.&
memory (or equivalently recognize a pattern) by association is only approximately 100 ::ﬂ"'f-
¢

l‘
redd
0

msec for biological memory, while the conventional digital computer (with nanosecond
processors capable of performing tens of millions of instructions per second) requires
minutes to perform the same task.

R o
I"f":":‘.l
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<

&x
2
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5

‘?‘,‘.

So how does biological memory, characterized by seemingly infinite memory
capacity and quick recollection emerge from slow, noisy, and imprecise biomass circuitry?
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Such question has driven research activity for decades. And even today, the question

remains largely unanswered.

However physiological experiments have revealed fundamental differences between
biological and computer memory, which are likely to contribute to the vast processing gap.
Perhaps the most apparent contrast is that biological memory, in addition to being
associative, is distributive. That is, the memory function and hence pattern recognition is
spatially distributed over numerous neurons, rather than confined to a single location as in
computer memory. This distributed phenomenon is believed to be responsible for the
inherent fault-tolerance properties, in which memory often remains intact after minor
damage. Furthermore the distribution of the processing over numerous neurons provides a
parallel processing capability, thought to underly the quick system response times achieved

with relatively slow circuitry.

Consequently, in building robust pattern recognition systems with increased
memory capacity, distributed associative memories patterned after biological neural
networks are subject of much investigation. The purpose of this chapter is to provide a
tutorial encompassing both biological and mathematical aspects of associative memory.
The nature is systematic and follows the work of Kohonen [1]. First, a brief section on
biological associative memory is included to provide a perspective on neural circuitry
involved in memory; certainly not an explanation of the true mechanisms underlying human
memory. Next associative memory is defined mathematically with various models
presented and characterized. Then criteria are defined for assisting in the evaluation of such
models. Concluding, possible future research activity is mentioned regarding the
development of systems much more characteristic of their biological counterparts.
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2. BIOLOGICAL ASSOCIATIVE MEMORY S0
Although many theories of biological memory exist, scientists continue to seek a &'f?'{;
true understanding of the mechanisms which underlie the extraordinary capabilities of "-\{.':;
human associative memory. Here a systems viewpoint of biological memory is adopted, ! *-'.C: v
due in part to the physiological evidence and admittedly, the author's engineering
background. : N E.Q
: “'u'."'i'
E As with any large system, overall or collective behavior arises from the various ) ".;“
l functional components; and to understand the collective system behavior, the components ),
must first be somewhat understood. Therefore, the discussion begins with describing the s
functional components of biological memory. These functional components are viewed as :;ﬂ';s
adaptive filters, whose adaptive elements are represented biologically by synapses (variable ti:::
! connections between brain cells (neurons)). Then, the physical organization of biological p‘ A'_'P
E memory is discussed within such context. \:\:’_E
; R
2.1 System Viewpoint of Biological Memory ’c"w
, - ";:.‘?
N
Increasing evidence suggests the extreme complexity of the brain is not due to :’% "
randomness, but instead, arises from highly ordered design [2] ; a design which couples S .‘-‘,
many distinct neural regions, each being tuned for specific stimuli processing. These b
distinct neural regions include the visual cortex for vision and the somatosensory cortex for 3?
: tactile sensing. Within such regions there exists smaller subregions, again for specific :E‘
;; function. In all, the brain can be considered as being composed of thousands of distinct :Z::'\ '."
! specialized regions, each containing thousands of subregions. Consequently these V-
g subregions, composed of 10 to 1000 neurons, may be interpreted as the functional building '-c':
blocks or components of the overall system. :}::-i},
. M
. R ‘
Certainly through experimentation, biological memory has been established as a )
collective phenomenon, distributed over many such neural regions. This is confirmed by i:.:\,
experiments where lesions are made in different brain localities, and observing the resulting S:‘\-: :
impairment being a function of the severity of the lesion, and not so much the location '::_' A
[3,4). Thus biological memory is a system, composed of numerous neural regions which '
[ act collectively to yield an associative memory with extraordinary capabilities. E
s \J‘.
)
2
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Subsequently, these neural regions comprising memory can be considered as
adaptive filters, whose adaptive elements give rise to the distinct properties characteristic of
each region (see Fig. 1.). And the role of biological memory, or analogously the system of
adaptive filters, is to create an internal model to represent sensory environmental history.

Fig. 1. Simple system of adaptive filters.

Since a sensory event consists of thousands of activation patterns from possibly
many sensors, a good deal of preprocessing is presumed to facilitate the storage of
apparently infinite events. The preprocessing in turn yields higher level information or
features. The features comprising this feature set or map are then believed to be encoded
through association. Thus instead of memorizing the explicit feature patterns, rather the
associations between the features are preserved, likely by the neural synapses. Therefore if
an input key representing only a portion of the feature set is presented to the system,
through association the complete memory event is recalled [1]. Now given the analogy of
biological memory with a system of adaptive filters for extracting and associating key
features, the adaptive filter is discussed within the biological context.

PO TERTN VRN \ ga) fat

!;":i
[
"J:‘

o
(LY,

VAN,

Y
L
h)




P v gt e tph gt ab gt a¥ gl v g¥ o a b g, aV. gl pb, Aty aho Ao AN gV, 800 9%, 44 £ 4 ‘p 109 $78 05,89 49 8'0.8' 0.0 B0 p 0 8.8 gk fa0 g0 4.0 ), TYTwUwt g "..'vly.

i ]
s

. t
o
2.2 Adaptive Filter Paradigm Wi,
R
The adaptive filter representing a subregion of neurons is shown in Fig. 2. The : SR
amount of neurons represented by each filter coincides with the amount of neurons ,"','.::3:‘,5
necessary to comprise a neural subregion with observable collective behavior, and hence .:',;:‘:. ‘,ﬁ
likely to be a functional entity. The inputs and outputs are multidimensional signals derived ::::::":‘,:',:
from action potentials of nearby neurons. Most of the signal information is conveyed by "
the frequency of the impulse train (# impulses/sec) [5] and the location of the filter in which "\-&:_?.
the signal terminates. Almost no information is contained in the amplitude of the impulses, E;."Ef.:
for the amplitude is fairly constant throughout many animal species. The signal origination DN

and destination is of extreme importance in semantic interpretation. This is demonstrated
by realizing that the same elecirical impulse train directed to the visual cortex and the
auditory cortex produces profoundly different meaning.
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Fig. 2. Adaptive filter with transfer function F .
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The filter itself is represented mathematically by a transfer function F relating the
outputs to the inputs. The function can be dependent upon the inputs, outputs, and the
adaptive filter elements. The nature of the adaptive filter, and hence the neural network, is
the subject of the Mathematical Associative Memory section. As with any adaptive filter,
the specification of the adaptive elements or parameters gives rise to the filter's identity.
Correspondingly, the next subsection investigates the biological equivalents to the adaptive

SR AT A
A
s
‘il
A

i R
LA RN

o

P
yor

-

R
A7
"\

] _\

clements, the synapses.

fVV

Y
“
.

”

W
gt 3
-
- 2

%0
'.n’ < ;;

AR
%
[/

Yo

77"
- 11
t 4

‘:‘

[ ]
Y
‘E}‘n'-
l"'f ¥

¥
2
“a




2.3 Adaptive Filter Elements - The Synapses

| Many neurobiologists believe the unique character of individual human beings,
| including disposition, learning, and memory resides in the geometry and specific strengths
(weights) of the neural interconnections or synapses [6]. The modification of these
synapses is belicved to be of primary importance both in learning and associative memory,
and the.ir strengths are viewed as the adaptive elements of the filters (see Fig. 3.)

N

postsynaptic neuron

presynaptic neuron
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Fig. 3.a) Neural connection, b) signal transmission across synaptic channel c¢) transmitted

and received signals.
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Typically, modifications in connection geometry, such as sprouting new output :E':EJE

channels (axons), occur at an early stage of development. While in the adult stage, most A "'“' .
interconnection modifications for memory and learning are conducted by varying the ‘:'i:.‘f‘ )

synaptic strength. This change in synaptic strength alters the transmission of the action ::J‘: \.;-

potential from the presynaptic neuron through the transmission channel to the postsynaptic ::}'l' - "

neuron. The transmission channel between the communicating neurons supports chemical Ny
) signaling. Specifically, at the arrival of an action potential, molecules of chemical A
transmitter from the presynaptic neuron are released into the channel and received by the I.j_:l;__:a'_;
receptor molecules residing in the postsynaptic neuron. Much debate arises concerning :E"'(:.a

whether the presynaptic or postsynaptic neuron (or both) is physically responsible for the L

change in synaptic strength. (.n.;,-\.' ~)
o

AT

Nevertheless, the synaptic strengths, analogous to the adaptive filter elements, are ::;t:t*

adapted during both learning and memorization. And each synapse with a specific strength ::-\ﬁ:':; v

performs a weighting of the respective input signal to the postsynaptic neuron (see Fig. ? :

3c.) Thus the neuron is often modeled as a device which first performs a weighted

summation over the input signals (where weight w_. designates the synaptic strength from NN
neuron i toneuron Jj ) then passes the result through a threshold function {7] (see Fig. e
4.). Upon specifying a rule for synaptic modification (adaptive filter algorithm) and :,:,‘—.;
- l’
geometry, the simplified biological model becomes complete. :;'E.':::'.:E
b
:~."~-',-(‘
o
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Fig. 4. Simple neuron model.
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A well recognized synaptic modification rule basically states that the synaptic
strength changes in proportion to the correlation of the activity of the presynaptic and
postsynaptic neurons [8]. Mathematically, the rule is expressed

-“;TE {Vjiy<E{>: }

Two types of synapses are distinguished. The excitatory synapse promotes the firing of
the postsynaptic cell ( Wi > 0 ) while the inhibitory synapse reduces the chance of firing

(w.<0)
Jl

The time constants for these biological adaptive elements are surprisingly fast.
Experimental results have shown that brief periods (seconds) of stimulation to neural
regions known to be involved in memory alters the synaptic strength for a substantial
amount of time, thereby supporting the notion of memory being correlated with synaptic
modification. These results imply that only moderate training is needed to produce lasting
synaptic modification to support learning and memory [6,9]. The implication being, as you
read this article your synapses are being modified accordingly (depending upon your
attention level.)

2.4 Biological Memory Organization

As mentioned, the brain is a highly organized system. Signal processing for
memory, as well as other functions, is often conducted in a layered fashion. In some
cases, these layers are distributed in planar arrays, each layer being a neural subregion with
observable collective behavior (thus comprising a functional entity) as illustrated in Fig. 5.
The distinct functionality of the layers is demonstrated by electrophysiological recordings,
whereby neurons in the same layer respond similarly and have similar receptive fields
(areas which influence the activity of a given neuron.) The classical results of Hubel and
Wiesel [10] clearly demonstrates this layered processing phenomenon, specifically from the
retina to the visual cortex. Here the processing progresses from detecting light to detecting
complex geometries.
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Particularly for associative memory, many portions of the brain contribute in the
overall processing. However from lesion experiments, memory is believed to be
decomposable into various stages. Such physiological evidence suggests that for memory
storage, both an encoder and physical storage medium (likely the synapses) are involved

(see Fig. 6.).
0 ¢
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Fig. 5. Layers of neural subregions and corresponding adaptive filter system.
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The encoder is deemed necessary to reduce the redundancy from the overwhelming ?"?ﬂ

number of patterns to be associatively stored. Evidence to support the source encoder ‘-:,,\E

theory is provided through brain surgery, originally in an attempt to correct epileptic :iié

seizures. The corrective surgery involved removing the temporal lobes, which included the [
hippocampus and amygdala. Althougk. the epilepsy was cured, the patient now without a "

hippocampus, was unable to store new information in long term memory. Yet previous

long term memory (stored prior to the surgery) remained intact [11]. Thus theories

describing the hippocampus as a source encoder necessary for long term storage received
credibility.
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In fact some have theorized that the hippocampus may actually be a self-organizing
source encoder which maximizes mutual information between the inputs (ensuring
transformation invertibility) while also minimizing the mutual information between the
output channels (ensuring minimally redundant output signals) [12,13]. Here the
processing is fairly localized and layered, composed of a minimal three layers.

Although the encoding may be fairly localized, the actual storage is much more
distributed. The storage is believed to be distributed amongst the synaptic connections
throughout the cerebral neocortex, which amounts to 70% of the human brain.
Furthermore, the incredible capability of human memory, being vastly superior to any other
animal, is believed due to the substantially larger human cerebrum.

——| ENCODER —J»{ STORAGE

Fig. 6. Components of memory storage

With regard to the biological mechanisms of associative memory recall, much less
is known and no attempt is made here to postulate a theory .
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3. MATHEMATICAL ASSOCIATIVE MEMORY

Recall the particular system viewpoint of biological memory envisions the memory
process being distributed over numerous regions of neurons, each region in turn composed
of subregions represented by adaptive filters whose elements are adaptively chosen. With
such viewpoint, the adaptive filter is thus seen as the system level building block. And the
purpose of this section is to mathematically describe some of these building blocks.

3.1 Definition

A single adaptive filter for modeling associative memory is shown in Fig. 7. The
input vector i“ € 9{” represents a prototypical key, while the output vector )T' € ERL is
the corresponding memory. Note the input and output vectors of finite dimension can also
represent continuous time processes, since any finite energy signal x (¢) can be expanded
by orthogonal functions yielding

N
x(t)= Z x, D (1)

i=1

1)

The filter is characterized by the transfer function F , dependent upon both the input and
the filter parameters or elements. The filter is designated adaptive if the matrix of elements
remains dependent upon the data, that is

f({f' ii}:: 1) 2)

However for brevity, the notation below is adopted to signify the adaptive filter transfer

function

7=F(5 ({5 7)) )= AR o
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Fig. 7. Adaptive filter with transfer function F .

3.2 Objective

The ideal objective of mathematical associative memory by adaptive filtering is to
construct a transfer function in an adaptive (often recursive or iterative) manner such that

@ F(x)=% i=12.M -perfectrecall  (4)

¢
.l
&r'h{‘\v 5

¥,
.&;

( n =perturbation) - generalization (5)

-

given a set of M arbitrary paired associations NI

{(x—l, )Tl)l(fzv )Tz)x s ’(I_M’ )TM )} . (6)

LT T @
w ""' !

Pictorially, the ideal associative memory with both perfect recall and significant N
generalization capability is depicted in Fig. 8. Perfect recall is shown by thin lines mapping

the values in the input space X to the corresponding correct memories in the output space .
. . iqr . . lSL
Y . The generalization capability represents the amount of perturbation or error tolerated in o
the input key. Thus good generalization implies proper recall when excited by an .-t'f\':-'-';:

erroneous (yet similar) key, as shown with the bold line. Physically the erroneous keys
may represent an incomplete memory item, or a noisy version of the proper key x‘i .
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Fig. 8. Associative memory mapping.

Associative memories can be categorized into two classes. Hetero-associative
. . o . . Y
memories involve associations of dissimilar type. That is, the input and output vectors u;','.‘w"-.

Specifically y'i = J?. in the above formulation. Here the actual input key (x; + n) is :
just a perturbation of the memory Jr" (see Fig. 9.). j;:.‘ o

The appeal of the adaptive filter associative memory is the ability of the filter to Ny
adapt (synonymously learn, self-organize) in an effort to improve performance, whereby '
by the adaption is determined by the data, and hence data driven. Thus the elements of T
specifying the function mapping the input keys to the memories are determined

models.

have entirely different meaning, as in the above formulation. An example of hetero- bf,&;
associative memory is the classification problem where objects X, are to be classified into RO
one of L categories. Here )7‘ =(0,0,..0, 1, 0... 0), conveying object f‘. is categorized s
into class ; . Conversely, auto-associative memories have associations of similar type. (::
.

automatically. In consequence, the function F relating inputs to outputs is leamed by the i
adaptive filter (with an appropriate learning algorithm), and thereby alleviates the laborious Radad
tasks often necessary in extracting explicit relationships, and the requirement of a-priori e
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3.3 Architecture e

NN
Further investigation of the adaptive filter function F requires specifying a :;;::;
nderd

particular class of functions. In turn, a class of possible functions can be defined in terms '4"";?.;

K22

of a given architecture. Correspondingly, the architecture which supports the class of

adaptive filter functions immediately investigated is shown in Fig. 10. Here the adaptive N \ e
filter transfer function is dependent upon the processors (shown by circles), the bias values Q:;:Fti
. . ol
{1 ; }, and the connections with strengths { ¢ jk } (! k= strength (weight) of connection :',':,:
a
from input x;, to processor ;). Thus the adaptive elements are contained in the matrix oA
T = { t ik } , and upon specifying both a rule for the adaption of T , bias values, and the f::__“',;‘_:*
mathematical form of the processors, the filter is completely specified. NN
NN,
, : : , : NN
The analogy of the adaptive filter architecture in Fig. 10 with a region of neurons ; et
becomes apparent if the weighted connections are seen as the synapses of varying strength, L
LY
and the processors consists of summations followed by nonlinear threshold activation E;C;::
AN
functions (refer to Fig. 4.). And to construct many regions of neurons to represent a A
. .\ J.'- "-
system, simply repeat the above principle architecture. gf‘-' x
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Fig. 10. Adaptive Filter Architecture ,: v

3.4 Linear Associative Memory

To provide a sound foundation for further associative memory investigation, the
optimal linear associative memory model is first presented. Often fundamental BB
relationships obtained in the linear case provide insight into the nonlinear cases. And as a NPy
further justification for examining linear models, they typically perform adequately when ;;.‘".“C‘
operating within the bounds discussed. o '

The linear architecture is easily obtained by designating the processors in Fig. 10. N
as mere summations. Hence the output component ¥ ij becomes :'-3-\.-\
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or equivalently in vector form
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Yy =F(5)=Tx+d (8)
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Also, the architecture can be drawn to emphasize the linear matrix formulation, termed the

learnmatrix (14,15,16], shown in Fig. 11.
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Next the learning rule (algorithm for adaptive elements T ) is derived to satisfy the
first objective, perfect recall (4). Generalization (5) is discussed in Section 3.5. Both
general and particular solutions are presented, together with conditions to ensure perfect
recall.
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Specifically, the problem addressed is to construct a learning rule (matrix T )such

that
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given a set of M arbitrary paired associations
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(Notice the bias vector d has been removed for simplicity.) Rewriting (9) in matrix form
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or f_ = }7
where X =(xl' X2, Tt xM ) (12)
Y=(}—,.1’)72’"")TM) . (13)

In general (where exact solutions may n‘lot exist) the solution providing the best
recall in the sense of least squares ( (2 Ifz; - 5] ]minimized) is given by

T =YX (14)

_+
where X  is the pseudo-inverse [17].

Exact solutions are obtained in the cases where linear independence occurs.
Specifically three cases are detailed below.

A) Protorype keys { x_‘ } are linearly independent (= M < N ).
Since the keys are linearly independent, X consists of linearly independent

columns, and hence ( 'Y ) exists yielding

-1
x=vGx¥x) (%) (15)

therefore

F=v(x'x) x (16)

and perfect recall is assured (* denotes transpose). Notice also that since the
i‘. € ‘RN are linearly independent at most N memories can be perfectly recalled,
or equivalently, the number of memories must be less than or equal to the
dimension of the key vector (M < N ).
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B) Rows of X are linearly independent (= M > N ). ety
-1

— %
Since the rows are linearly independent, (X X exists yielding e

TX =Y an NI

therefore

Notice upon expansion P

~
fnl
N
-t
<
M
N—
N
...:|
<
*
N———r
f
b

(18)

<
<

x? xx o
Y. "'

the linear formulation of associative memory with linearly independent rows is seen
3 . . A A . 3 .

to be equivalent to linear regression where Vyx and V__ are approximations of the EATNN

theoretical covariance matrices

7 v AT
Ve = E{7X"} 19) N

<
]

g
E{xx 20 S

based upon the observed realizations {(=> > i)} . Also if the theoretical PR

covariance matrices were known, the best linear unbiased estimator (BLUE) for the AN
memory y given thekey X would result .
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Consequently, when the linear associative memory is overloaded (M > N ) and
the rows of X are linearly independent, the memory recalled is best in the sense of
least squared error, and is reminiscent of traditional optimal linear regression and
estimation {18,21) where the number of data pairs {(%;» ¥;) } exceeds the vector

dimensionality.

These linear cases are illustrated in Fig. 12 with M = 6 pairs of single dimensional
(N = 1) associations. For perfect recall, only 1 arbitrary memory can be stored
(xl’ Y1). As shown, the compromise for memory overloading is inexact recall,
represented by the discrepancy (dashed line) between the true memory y; and the linear
mapping F (x',) .

y
y 6 |-
y 5 p—
best linear
Y4 unbiased estimator
)
best approximate
y linear recall
3 (case B)
perfect
linear recall
Yy (case A)
Xy Xq X3 Xy *s %6 x

5. 12. Comparison of linear regression, estimation, and associative memory.

C) Prototype keys {fi}are linearly independent and orthonormal (= M < N).
Suppose the prototype keys are mutually orthogonal unit vectors. Then by
definition
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i i be e (22)
together with the linearly independence assumption yields
- -1
%] ]
— — x—‘ _*
T =Y [—1‘{2' fM]L X
-
L *m ) (23)
—_— _——
=Y =YX

Now this formulation, termed the correlation matrix or outer product technique,
grants insight into how the output memory is retrieved. Suppose the prototype key
x, is introduced. The corresponding memory recalled is then

y=T(%) (24)

(signal + noise)
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Thus perfect recall is ensured provided the prototype keys are orthogonal. Without
orthogonality, crosstalk noise is mixed (24) with the true memory, thereby
contributing to erroneous recall. Orthogonality is often achieved by conventional
Gram-Schmidt orthogonalization. Consequently, the prototype keys associated
with stored memories and the arbitrary input patterns are often preprocessed to
enhance orthogonality.

In consequence, the conditions for both perfect recall and best approximate recall
have been established for linear associative memory. However to satisfy the ideal
objective, both generalization and adaptability must be addressed. Generalization is treated
in the next section, while the matrix of elements constructed by (14,16,18, or 23) is
generally made adaptive according to the recursion

T =T 5T~ T L5 Py 25)

where fk is the new adaptive element matrix formed from the recent matrix utilizing (k-1)
data pairs {(%»7 1)} Formulas for the gain vector for the cases addressed are
contained in [1].

3.5 Generalization Capability of Linear Associative Memory

Generalization in the context of associative memory is the ability to recall the correct
memory when excited with an incorrect or perturbed input (key). Typical perturbations
may include missing input elements, random noise, or perhaps in vision, variations which
often prohibit correct identification. Mathematically, generalization can be viewed as the
ability to map all perturbations contained in a neighborhood about a prototype key f‘ to
the correct output memory (see Fig. 13). Here ideal generalization corresponds to
maximum input perturbation radius ry (without overlapping neighborhoods) and minimum
output perturbation radius 7,. Now upon specifying a class of perturbations,
generalization capability can then be formulated in terms of the parameters which influence
the growth of these neighborhoods.
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Fig. 13. Function generalization with input neighborhood of perturbation radius r being
mapped within output neighborhood of radius 7, .

Many perturbations arising in the mapping of a prototype key f‘ to the correct
memory )7‘ can be modeled by

F(g(%)) =7 (26)

where g( ) is the perturbation function, and )"“ is the resulting output given the perturbed
input. Ideally, the output )7; would be the correct memory )7‘ . However depending on
the functional form of the perturbation, correct memory recall may be impossible. For an
introductory treatment, only random noise perturbations will be examined of the form

g(x)=x+n . @7

Consequently, the objective of this section is to determine quantitatively the relationships
which influence the generalization capability of linear associative memories. The treatment
begins with conservatively relating the acceptable amount of input noise perturbation (77)

to the minimum distance between the input prototype keys. Next, the output perturbation
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neighborhoods (%) are shown to be dependent upon how close to capacity the memory is v

being operated.

Consider the noise perturbation model (27) where the perturbation 7 is a zero Aty
. 2 . . . . ’
mean random vector of variance 0~ and normalized (in energy) to the dimension N e _‘.N%

3
I
2z
-‘.S'Rf ";s-’.‘r'
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oy ._‘
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The perturbed input is then treated as a prototype key corrupted with additive noise (27).
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Although the noise elements 7, may be symmetrically distributed (for example

rar
P

multivariate Gaussian), the resultant noise vcctzor n tends to lie near the surface of a ’L
sphere with radius . (Specifically P|l" - 6?2 Al < ﬁ’—z (18]). Thus for ’

. . NA -
typical associative memories (where N > 100 ), the perturbations encountered tend to be NN
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concentrated on a spherical surface centered at the prototype key, with radius equivalent to
the noise standard deviation (see Fig. 14..) This apparent concentration of noise, due to

S a

. . . . . . Ld
large dimensional spaces, is encountered in communication theory and termed sphere R
+

LA

hardening [18]. .
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Fig. 14. Sphere hardening at prototype key x .

In a practical setting, the perturbation variance is rarely known. However an upper )
limit can often be specified. Thus if the variance can be bound by Ggm, then the :’
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perturbation is likely to be concentrated on a sphere within radius Omax Consequently the
minimum distance between any two prototype keys must be greater than the maximum
perturbation standard deviation to avoid (with high probability) unresolvable recall errors.

- mi - = /2 -
dxmin—:'n'x‘r; d(xi,xj)> O'max+A—r]

Notice an unresolvable recall error occurs when the perturbed input x‘l + n lies on
another prototype key X , and hence ¥ j is incorrectly recalled (see Fig. 15.). Clearly

(29)

the best representation for the prototype keys { f, } would be one which maximizes the -

separation amongst the keys in the input space, thereby accommodating the largest amount
of random perturbation.

ANK

>d.

Fig. 15. Unresolvable recall error occurring for Omax 7 %min .

The second relation involves the growth of the output perturbation neighborkood as
a function of how close to capacity the memory is being operated. The output perturbation
neighborhood about memory )7‘ is that region mapped into the output space arising from
inputs within the region about x. of radius r, . (Mathematically, the neighborhood is
written Ny_.- = {y': y=F();xe N,—' }). Ideally, the output perturbation
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neighborhoods are desired small as possible, therefore many input keys representing
perturbations of the true key would be mapped very near the correct memory.

To obtain the relationship, consider the general linear associative memory with a
perturbed input as shown.

—» r ——
f:fj+7x' y =T x)

Fig. 16. Perturbation example.

— — -+
Recall the general solution 7 = YX |, hence

-_— ——+—
y = YX x 30)
— —+ .__+_)
=YX (XX x def. of pseudo inverse
et _ —=+ _
= 7X(XX 5, + XX )
- VYV = A
=Y (xj + n)

_ 4 _ —
where # = XX A is the projection of the noise vector 7 onto the space spanned by the
prototype keys {%;}. Now the variance of the norm of the effective noise A is[1)

2 A M —i2
6. = var(I#]) = F-17 | 31)

and thus the noise term is attenuated by \/m on the average when mixing with the
signal that represents perfect recall or the best approximate recall, depending upon the cases
previously stated. Therefore, to combat the deleterious effects of input perturbations
(potentially causing large deviations in the recalled memory pattern from the true memory)
the number of memories stored is to be kept much smaller than the vector dimension
(M < < N) implying operating the memory well under capacity as illustrated in Fig. 17.
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In summary, generalization is dependent upon the parameters which control the size
of the perturbation neighborhoods. Ideally, the input perturbations neighborhoods are
desired large, while the output neighborhoods small. For linear associative memory, the
maximum input perturbation neighborhood is limited by the distance between the prototype
keys. While the output perturbation regions are driven small by operating the memory well
below memory capacity, thereby attenuating the perturbation by the square faw (31).
Several demonstrations of generalization with both random noise and missing fragment
perturbations are contained in [1,19].

And for general associative memory, generalization typically follows from selecting
a representation where the associated data pairs {(%i» ¥;) } or clusters, are well separated
in their respective spaces and the memory is operated well within the memory capacity.

3.6 Nonlinear Associative Memory

Several limitations accompany the linear associative memories described in the
previous section. Fundamentally since the mapping is linear, input prototype keys {Xi }
which are close together in the domain X must be mapped close together in the range ¥ .
Thus linear associative memories will not suffice where similar prototype keys need be
mapped to dissimilar output memories. Furthermore, the linear memories ignore contextual
information which is believed to be of primary importance in biological memory, enabling
selective recall amongst seemingly infinite memories. Moreover, often burdensome is the
preprocessing requirement (to obtain linearly independent prototype keys) necessary to
achieve perfect recall. Together with the low memory capacity (# memories < vector
dimension) reduced further for good generalization, linear associative memories leave much
to be desired in contrast to biological memory.

In an attempt to counter some of the mentioned limitations, nonlinear associative
memories have been proposed and several are discussed in detail in the following chapters.
For perspective, some of the models are briefly summarized below.

The Hopfield model [20] is an auto-associative memory with feedback, comprised
of a linear model (specifically the outer product technique, case C) followed by a nonlinear
threshold function. Although the iterative process converges, spurious memories often
result [21] and the memory capacity is low [22].

27

X
-
Y|

TR

kA

o~
o

[

atpta el
LYY -'n .\

h %)
i ¢

a
-
!

PRl AU ]
,\,'\ l“;‘ * n.' N
Ny
RN
'

Nl I ey
:’5"\"\
.__s-u.‘*.-
R RN

‘-'l
L2

S

)
b

.

- ¥



'\;\}‘ YAX W
LY H

B,

The Grossberg model [23] creates it's own memories depending upon the degree of

similarity desired by the modeler (vigilance parameter) between the keys and respective ,.:_.;:,-

memories. Since the network is allowed to grow as needed to represent the memories, f-"f-,.:

. . - . “' "‘ ’

comparing the memory capacity of such model to the previous models with fixed :-;'.“,;.:f
N

by

architectures in inappropriate.

The Poggin associative memory model is optimal amongst memories of matrix
polynomial form |24]. Although the memory is nonlinear in the input key vector, the
adaptable parameters determined from the least squares criteria are linear, and thus easily
calculated.

- . s e
In the associative net by Willshaw [25], the memory capacity is increased at the N
expense of restricting the form of the binary input and output vectors. For maximal ;L','j"ﬁ;
information storage, the number of ones in the vector keys and memories are to be !.._‘,.
log 2 N . As a consequence, a sparse connection matrix (approxignatcly half zeros) of :;‘:.:?_:’:Tj
binary switches is formed yielding a memory capacity (M =N ZI"TZ- which exceeds :-?j-ﬁ;-:
R
linear associative memory. In® N A
!\
r\

Nnl
]

&

The perceptron by Rosenblatt [26] is a nonlinear hetero-associative memory which
is rather limited in the class of mappings which can be learned [27]. However by
cascading several layers of the basic architecture or filter (see Fig. 10.), and incorporating
one of several multilayer learning algorithms [28-32], the multilayer perceptron becomes
capable of learning much more complex mappings.

B D R
I l.l.

Overall, the key to devising a good associative memory lies with the expressivity of ';.':
the network architecture. That is, the larger the class of functions the network can realize,
the more arbitrary the data pairs ({x‘. Yi }) can be. For if an associative memory could
be cunstructed capable of mapping arbitrary functions, then any arbitrary set of keys and s
memories could be associated with perfect recall performance. Although no such universal N7 : <

[

Sh T

associative memory has been practically constructed, Kolmogorov has proved existence !v"r‘u'"
iy . el
{33]. And even more striking, the Kolmogorov architecture somewhat resembles a ;‘{::ﬁ;

A

X

biological neural network per description below.

~ ¥y
L
XN

f&}

AP
00

‘.1:3 2
e o ATKD

o e
‘s %Yy

.
ey
W
'-
P

-.-.
".'1. ‘-'J-

. %

28 <

L]
e P I S SRS T T S
B S Y RS R A S S A B RN y j
N AT AP CAT AT AT A O T A AT AT

R R e R R e P I N
: > " s

-------
o




First realize that a sufficient condition for perfect recall performance amongst
arbitrary data pairs is for the associative memery architecture to be capable of realizing
arbitrary functions. (This is easily demonstrated in a single dimension example by
considering the data pairs plotted in Fig. 18. Perfect recall is ensured
(7 = F(*;)V i) provided the architecture can express any function F which
intersects all points.)

R
y »
y : i F&) SR
o B t:."‘
MEMORIES R
Ye b N
2 I P
“ofl
Yy | A
e
Y
»
L L1 1|
x, X, X 3 x, Xg X,
PROTOTYPE KEYS

Fig. 18. Perfect recall attained by an associative memory realizing function F.

Now Kolmogorov's theorem states that an arbitrary continuous function of many variables
can be realized by a finite superposition of continuous functions, each dependent upon only
a single variable, accordingly

N + 1 N
F(H= Y G|
RV

Hi (%))
! (32)
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where H,-j are fixed continuous increasing functions and G‘. are continuous functions

dependenton F, . Thus in the vector format

F(%)

F(x)
F L(x ) (33)
each output component y, (dependent upon many elements of x ) is expressed according
to (32), yielding a vector of Kolmogorov representations. The accompanying network
architecture for each output realization y, is shown in Fig. 19a.). Notice the similarity of
the architecture to neural network models, (compare Fig. 4.) whereby the functions H ij

represent nonlinear threshold functions amongst neurons comprising the first layer, and

G‘. being the nonlinear threshold functions for the second layer neurons. However, the
architecture is biologically implausible since all synaptic strengths are of equal magnitude.

Later Lorentz [34] and Sprecher [35] extended the results of Kolmogorov to yield
the architecture shown in Fig. 19b). Notice the use of N connection weights offset the
stringent requirement of N (2N + 1) threshold functions on the first level of neurons.
Apgain the architecture is also biologically unlikely since the same synaptic strengths are
repeated to each of the neurons in second layer.

Following the trend of compromising connection weights for nonlinear threshold
functions, the question remains as to whether an arbitrary continuous function of many
variables can be represented as a finite superposition of single variable functions with the
more biologically realistic architecture of Fig. 19¢c. For if so, this mathematical architecture
would prove invaluable towards understanding the vast capabilities of biological associative
memory, as well as providing principles for constructing associative memories of far

greater capacity.
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3.7 Evaluation of Associative Memories o
g-l;(;(
Due to the vast variability in the network architectures employed in associative :::-::::
memories, developing an evaluation protocol can be difficult. This section briefly ;Z:';tj:.
describes a general set of criteria likely to be instrumental in evaluating various associative :;,‘i:' X
memories for application. ?-;,? A
LAY
The evaluation can be partitioned according to the storage and recall operations. ::’-‘:; :
First for memory storage, the memory capacity is of extreme importance. Such capacity is . ':::';_\
usually expressed as an upper bound on the number of memories which can be reliably !_..:_x-.
recalled. Another storage parameter is the actual efficiency of the memory storage, being j:-ﬁ::'{-_':
expressed as the number of reliable memories stored per architecture size and complexity. 'f.::":: \
Leaming efficiency expressed as the amount of computation (number of iterations) required }:':-\:
to store a benchmark memory set is also likely to be an important storage evaluation "':‘i -
parameter. .;E,»
R,
Secondly in regard to recall evaluation, most important are speed and accuracy. RN
The accuracy can be evaluated by simply determining the sum squared error resulting from %,\_,.;_‘
comparing the true memories to the associative memory outputs under key prototype :Z':-{.::ﬁ
excitation. Recall efficiency or speed entails the amount of time (computation) required to :ﬁ::::;: .
recall a memory given an input key. Finally, the generalization capability can be examined t.':;}':'\,'
by determining the maximum perturbation neighborhood the associative memory can ,’.\,\,\
tolerate under reliable recall. '\\:'.;\
AN
Both simulation and analytical approaches to determining such evaluation criteria :,,
can be employed. Analytical approaches for the linear associative memories as displayed L -
herein are straightforward. However for nonlinear memories, often stochastic approaches
are used taking advantage of large sample properties invoked for networks with large EE
numbers of neurons. Monte Carlo simulations also can provide evaluation parameters and \_\_;‘._
often with much less effort. Especially if benchmark memory sets and examples are L_.,_.’ ~
established, evaluation by simulation may become routine. For illustration, memory E:'\":::j:j
capacity bounds obtained analytically [22], and by simulation [20] are shown in Fig. 20. ::?C-;E:f:
for some associative memories. ,:j'{.
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Finally like any evaluation, the best associative memory is the candidate with the '\-.J: k

L

most favorable evaluation results for those attributes most crucial for the application.

(l {'I LA
Py

Therefore many types of associative memories with distinct favorable attributes are

envisioned to be applied.
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4. CONCLUSION

Clearly the mathematical models of associative memory discussed possess certain
biological memory characteristics, such as pattern recognition by association, distributed
parallel processing, and generalization. Moreover the models, through small scale
applications, seem to substantiate the ever prevailing wisdom acknowledging the suitability
of neural-like architectures for associative memecry pattern recognition and other random
problems where algorithmic solutions do not exist [36]. However these architectures
developed through decades of research remain distant in performance to their biological
counterparts, exhibiting seemingly infinite memory capacity and fast recognition.

Ironically, perhaps the mechanism responsible for the extraordinary capability,
namely distributive parallel processing, may well be the barrier which prohibits man from
truly understanding the origin of capability. For memory, along with other brain functions,
are collective phenomenon, distributed over vast neuronal regions. And in the absence of
techniques which enable investigation of brain function on a collective or systems basis,
principles underlying such extraordinary capabilities may never be uncovered, nor realized.

In conclusion, realizing the vast differences in pattern processing (speech
recognition, image understanding, decision making...) amongst computers and biological
systems, future research is likely to be chartered to discovering collective principles
underlying biological information processing. And in the process, a sufficient
understanding may be gained offering insight towards the development of specialized
neuronal architectures, borrowing from both biological and physical sciences, for assisting
man in learning and problem solving.
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