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1.0 INTRODUCTION

1.1 Background

Extended, randomly time varying radar targets, clutter, and
communication channels have been considered in the past [1-4]. An
important additional variable for such problems is considered here, namely,
random polarization modulation [5]. Sea echo, for example, exhibits
random, Doppler-dependent polarization effects [6].

The design of radar or communications systems for randomly time
varying targets or channels has typically been accomplished by using one
of two approaches: (i) a likelihood ratio test {4] or (ii) implementation
of a receiver with maximum signal-to-interference ratio (SIR) [7-11}. Both
of these approaches often use a scattering function description of the
target, clutter, and channel.

SIR maximization is typically more straightforward, does not depend
on a Guassianity assumption, and gives usable results. Maximization of
SIR, however, does not necessarily result in an optimum receiver, i.e.,
an implementation of a likelihood ratio test. For the special case of a
known signal in colored noise, both SIR maximization and a iikelihood
ratio test yield the same result (a whiten and match filtar), but this
correspondence does not always hold.

For Gaussian data, a likelihood ratio test for random, extended
targete can be implemented if the scattering functions of target and clutter
are known, since the covariance functions of the echoes are then also
known [12,13]. There are, however, no straightforward signal design
techniques associated with the likelihcod ratio test, and it is difficuit
to define such a test in the polarimetric case [5].




The SIR maximization technique would be especially attractive if:
(i) it could be modified in such a way as to implement a Bayes optimum
(likelihood ratio) receiver, (ii) the performance of such a receiver could
be predicted, and (iii) SIR maximization could be applied to the design
of polarization-sensitive radar and communication systems. This report
shows that all three goals are attainable, and gives specific examples.

The basic problem is illustrated in Figure 1-1, along with some
of the notation used in the sequel. The problem is to obtain a suitable
representation of doubly spread target and clutter (a polarimetric
scattering function), and to use this representation to obtain optimum
vertically and horizontally polarized signal and filter functions ul(t),
uz(t). fl(t) and fz(t). It is also desirable to generalize the receiver
in Figure 1-1 to implement a likellhood ratio test and to predict the
performance of such a test.

1.2 Overview

Section 2 analyzes the relation between maximization of signal-to-
interference ratio and a likelthood ratio test for discrimination of zero mean
random signals in two channels., Section 3 establishes the dependence of
SIR on polarimetric scattering functions. The connection between
scattering functions and a tapped delay line scattering model with
randomly time varying tap weights is also given in Section 3. The tap
_ weights describe energy coupling from one polarization channel to another.
Section- 4 introduces physical insight and specific mathematical models into
the polarimetric scattering function formulation by considering planar
point targets and randomly tilted dipoles with a restricted maximum tit
relative to vertical. Section 5 gives some mathematical details necessary
for implementation of a computer program for polarimetric SIR optimization.
Sections 5.3 and 5.4 can be skipped if the reader is not interested in
such details. Sections 6 and 7 describe the application of the computer




program to some specific examples. Analysis of the SIR expression for
detecting a distribution of planar reflectors in a background of randomly
oriented dipoles (distributed planar target in chaff) yields a new
polarimetric chaff cancellation method. This method is obtained in
Section 7.6. A disparity between the SIR maximization criterion and the
power of a likelihood ratio test appears in the context of a receiver with
multiple orthogonal filters, which converts the maximum SIR processor to
a Bayes optimum processor. This disparity between SIR and power
measures is analyzed in Section 7.7. A review of the results is given
in Section 8.0.
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2.0 SIR MAXIMIZATION AND OPTIMUM HYPOTHESIS TESTS

The following analysis demonstrates that orthogonal filters which
maximize SIR can also be used for simultaneous diagonalization of both
signal and interference covariance matrices. The filter responses are
independent random variables under either hypothesis, and the log
likelihood statistic is easily obtained. Receiver performance is also easily
obtained in closed form. These results are important because SIR
maximization yields a "best" signal as well as an appropriate set of
orthogonal filters. A direct likelihood ratio approach is based on echo
covariance matrices which can only be evaluated after the signal has
been specified.

2.1 Signal-to-Interference Ratio (SIR) Maximization and
an_Eigenfunction Equation ‘

The signal to interference ratio is

[ -
E {I f r*{x) f£(x) dx{z signal

»

SIR =
(2-1)

E %l f r*(x) f£({x) dxlz!inte:fenncel

& |

where r*(x) is the conjugate-transpose of the 2 x 1 data column vector.
This data vector is composed of a vertically polarized component, r!(x).
and a horizontally polarized component, :’z(x). Thus
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r*(x) = [ri(x) r;(x)l

where r’i‘(x) is the conjugate of the complex scalar time function r,(x).
Similarly, f(x) represents a 2 x 1 column vector representing the time
function f,(x) that is to be correlated with the vertically polarized data,
and another function fz(x) that is to be correlated with horizontally
polarized data. These fuactions are illustrated in Figure 1-1.

Using the identity

©
E {If r*(x) £(x) dx]z}
-

> ] @
= ff £v(x) E(g(x) 5'(}')} £(y) dxdy
-l =X
@ [
- _[f £ (x) € (x,y) f£(y) dxdy (2-2)
wld o
we have
w o

| f £o0x) G (x.y) fly) dydx
T wlo
« o«

SIR =
ff £0(x) E: {x,y) fly) dydx
-l e
where Co(x.y) is the signal covariance matrix. The interference
covariance matrix is
Sixey) = Colxay) + (N /2) L 6lx - ) (2-9)




where C. is the 2 x 2 clutter covariance matrix and Nol 2 is the noise
power spectral density.

To maximize SIR, one can maximize the numerator of (2-3) with a
constraint on the denominator. If the denominator is constrained to equal
one, an equivalent problem to maximizing (2-3) is to maximize the functional

o8 = [l g Gun £ ayax

- Xn[ffg*(x) o (x,y) £(y) dydx]
= ffg*(x) [(___Zs(x,y) - A, ¢ (x,y)] £(y) dydx

(2-5)
where unlabelled integration limits are (-», ») and >‘D is any positive
constant. Another constraint is to make the filter energy equal to
unity, i.e.,

Egy(f) =f§*(x) £(x) dx =51 . (2-6)

The energy constraint is not included explicitly in (2-3) because SIR is
invariant when f(x) is multiplied by a nonzero scalar constant. Such

a constraint, however, can easily be incorporated in a computer optimization
algorithm, If Egy(f) is specified as in (2-6), then the problem is to
maximize

fg*(x) g(x) dx (2-7)




when (2-6) holds and when
g {x) =f[gs(x,y) - )‘D Sy E(y) dy . (2-8)

By the Schwarz inequality, (2-7) is maximized when f(x) is
square-integrable as in (2-6) and when

g{x) =k £(x) , (2-9)

i.e., when g(x) is proportional to f(x). Substituting (2-8) into (2-9),
we have

f[gs(x,y) - XD CI(x,y) £(y) dy = k £(x) . (2-10)

Equation (2-10) will be satisfied if f(y) is an eigenfunction of both
Cs(x,y) and G (x,y), l.e., if

f&.‘(x,y) £ly) dy = Ag £(x) (2-11)
and

fE:‘*'Y’ £y) dy = A, £ (2-12)

A more general solution of (2-10) can be obtained if

fss(x,y) Ely) dy = x5 £(x) + bix) (2-13)
and

fgx(x.y) £ly) dy = A £(x) + d(x) (2-14)




where b(x) and d(x) are such that b(x) - A d(x) is zero for any positive
constant, Ap. But b(x) equals Ap d(x) for any Ap only if b(x) = d(x) =0,
and we are back to (2-11) and (2-12).

Combining (2-11) and (2-12) yields

fgs(x,y) £ ay = O fortay £y ay . (219

To obtain further insight into (2-15), we can define an Inverse kernel as
follows, If g;l(x.y) is the inverse kernel of C (x,y) then

-1 . — . . ’
fgx (x,2) gI(z.y) dz = I &{x - y) . (2-18)
Applying this definition to (2-15), we have
-1 ’ '
ffgI {x,2) _gs(z,y) £(y) dyaz = (As./)\x) flx) | (2-17)
The solution f(x) to the SIR maximization problem is then an eigenfunction of
Clx,y) = fg;l(x.z) Cglzry) dz (2-18)

with eigenvalue AS/ )‘I’ The significance of this eigenvalue emerges when
(2-11) and (2-12) are substituted intoc (2-3):

ksfg'(x) S(x) dx A

b §
SIR = o . . (2-19)
AI £e(x) £(x) dx I';

The energy-constrained filter that maximizes SIR is thus the eigen-
function of C(x,y) in (2-18) with largest possible eigenvalue, This
relation does not impiy that one can easily obtain the best {(x) from an
eigenfunction equation, however, since C(x,¥) is undefined until the
best signal, u(x), is specified. The SIR maximization approach allcws one

¥

ey

Al e ek A S
PRl » -l

. >




to obtain both uix) and f(x). To obtain the best signal with an eigen-
function formulation, different signals must be tried, the corresponding
covariance matrices C(x,y) must be calculated, and the covariance matrix
with largest principal eigenvalue must be identified.

If the unit energy filter function f 1(X) that maximizes SIR is the
piincipai eigenfunction of C(x,y) in (2-18), then can the other eigenfunctions
of C(x,y) also be obtained by SIR maximization? Consider another filter
function, f 2{x), with the following properties:

() f4(x) is orthogonal to f,(x), i.e.,

fg;(x) £,00 dx =0 (2-20)
(1)  f,/x) has urit energy as in (2-6), and
Gif,  f,(x) maximizes SIR.

From the analysis in (2-5)-(2-13), £,(x) is an eigenfunction of C(x,y) in
(2-18), if such on eigenfunction satisfies (2-20). In fact, all the eigenvectors
of a covariance metrix with distinct eigenvalues are orthogonal (14], and
(2-20) is satisfied.

All the eigenvectbrs of C(x,y) can thus Ye obtained by SIR
‘maximization, provided that each new filtar function is constrained to be
orthegonel to those found previcasly. If the maximum possible SIR is
obtained for each fliter function, then {2-17) implies tha® the nth computed
eigenfunction will have the nth' largest eigenvalue, as in principal component
analysis (15]. .

Maximization of SIR under ortho jonality constraints as in (2-20) is

- particulsrly straig’ht’forwhrdif the simplex method [16] is used. If the
initial simplex is constrained to a subspace of R", then the solution will

10




be constrained to the same subspace. The starting points for SIR
maximization will correspond to functions that are orthogonal to previously
determined filters if Gram-Schmidt orthogonalization is used. After
constraining the starting points (i.e., the vertices of the initial simplex)
to be orthogonal to previously determined filters, the simplex algorithm
can be run without further modification.

2.2 Significance of the Relation between SIR Maximization and
igenfunction Analysis

By maximizing signal-to-interference ratio, one can obtain the
eigenfunctions and eigenvalues of C(x,y) in (2-18). The eigenfunctions
are found in two contexts in the literature. First, they are the best set
of linear discriminants for discriminating between two zero-mean Gaussian
processes [17,18,19]. Second, they can be used for simultaneous
diagonalization of both signal and interference covariance matrices [20].
If the data are projected along the N eigenvectors of C(x,y) in (2-18),
the resulting projections will be uncorrelated, with variances {xSn}§=1
for the signal process and {Aln };’__,1 for the interference process.

This observation follows from the fact that each eigenfunction must

satisfy both (2-11) and (2-12). Another proof is given in [20].

Simultaneous diagonalization ylelds a likelthood ratio formulation
involving simple operations on the outputs of the filters that maximize SIR.
Under hypothesis Hl the output of the nth filter is

~ 2 -
A EI R TR A SRR W (2-21)

the sum of the variances of the uncorrelated echo and interference processes,
Under Ho. only the interference is present and

ez [%n ) = A, - (2-22)

11




Because of simultaneous diagonalization and Gaussianity, the filter outputs
are independent under both H, (signal + interference) and H 0 (interference
alone).

The likelihood ratio is then

N
Aty = K ALE ) (2-23)
- n=1

where T is the vector of N filter responses, 51, 92, con s ;N‘ Since fn
is complex, we have [21,22,23]

-1 A 42
) (mAg, + A )] exp[-lznl /gy * Ap))
A(rn) = (2-24)

-1 A2
(w XIn) exp[-|r“| /XIn}

The log-likeithood ratio for the n'h filter output is

A‘z

A
8
n_In |rn‘

A,/
f-(r“) = -¢n(l » “Sn/)‘rn” + [r—-;-x;;] . (2-25)

sSa

The log-likelihood ratio can be written strictly in terms of SIR
if the filter outputs are whitened before being passed through a likelihood
ratio test. To whiten the interference, the nm filter output is multiplied
by 1;;/23

A S (2-26)

12




For the whitened filter outputs, we have

$

2 - (2-27)
Eflr“l lao , n=1,2, ..., N

i
—

and

| I

2 .
E l[rn‘ lﬂl‘

(]

()‘sn/)‘In) + 1

1}

1 +SIRn ] nnlo on-:N . (2'28)

As a consequence of whitening, (2-25) can be written
1l + SIRn

SIR 2
(r ) = -Ln(l + SIR ) + |~ | |r | . (2-29)
n n n

From (2-23), the log-likelihood ratio of the whitened filter responses,
r, is

N SIR_ 2 _“
L(c)= Z T SR |rn| - 2 In(l + SIR) . (2-30)
n=l n nel

Equation (2-30) is the usual form for a quadratic discriminant,
Given this form, where the expected values of !rn\z depend upon n, an
exact, closed form expression for system performance can be found, and
this expression can be written in terms of {SIR } ... the signal-to-
interference ratios at the outputs of the N orthogonal filters obtained
from an SIR muximization algorithm.

By finding a set of orthogonal fliters for SIR maximization, we

have obtained the major part of an optimum detector configuration. The
complete optimum detector is constructed by computing a weighted sum

13




of magnitude-squared (square-envelope detected) filter outputs,
as in (2-30). The resulting detector configuration is illustrated in Figure 2-1,

2.3 Detection Performance

In order to conform to the notation in Van Trees [14], let
SIR g An (2-31)
and

-1/2 A -
Xln r, = rn (2-32)

as in (2-28). 1In this case

2 -
E {Irnl \Hl} = A+l (2-33)

and

E(lrnlzlﬂo}-l, Boal, 2, cens N . (2730

Each square-envelope detected filter output Irnl2 is the sum of the
squares of two uncorrelated Gaussian random variables, X, ® Re{rn} and
Yy = Im(rn} . The power is assumed to be split equally between these
two variables, so that they have equal probability distributions

-1/2 1
- 2 - 2 2 9-3%
p(x“) (Zﬂon ) exp[ X /(20n ) ( )

o

-1/2 4
2) axp [—ynz/(zonz) (2-36)

e

pty) = (210,
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where

(xn + 1)/2 when H1 is true (2-37)
1/2 when Ho is true . (2-38)

It follows that [21]

2 2 2
p(lrnl ) = pix 4y )

2 -1 2 2
= (20 %) " expl-lr [“/(20 31 . (2-39)
The corresponding characteristic function is
(1 - 30+ Dwl™"  when H, is true (2-40)

2
C.F. of lrnl -

1

(1 - jw)” when H, is true . (2-41)

The data dependent part of the log-likelihood ratio is
N

A
vy = 3 ot e 12 (2-42)
nel "

In order to evaluate detection performance, we want to find the probability
distribution of (1),
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N A
n 2 -
p(L) +— nl [c.r. of 1 lrnl ] (2-43)

where the double arrow indicates a Fourier transform relation.

If the characteristic function of (r [2 is ¢ n(®@), then the C.F.
of afr [ is ¢ (aw). It follows that

-1

(1 - 3 kn w) when Hlis true (2-44)
C.F. of Ln_ [c |2
Mt kn+l rn =
xn -1
[1 -3 W w] when Ho is true (2-45)
and
[ N -1
To- 3 w given H, (2-46)
ne=}
?l (1 - 3 A w1°1 given H (2-47)
\ n=l R 0
where
A;‘ - kn/(kn + 1) . (2-48)

The products in (2-46) and (2-47) can be represented as sums
by using a Heaviside expansion, which is extensively exploited in network
theory [25). For N distinct values of An,
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N a,
Il - 3 = -
n=1 “ ? x“ © . 1 -34
i=l
where
1 -3 Xi w
ai = N
T (L -3 A w
n=}l n
w = -j/ki
N
- T (1 -A/x0"t
n" i
n=l
n#i
Substituting (2-49) into (2-46) ylelds
N @© 1
L n e
P(IH]_) aifl-jkiw
im] -
N
- 2 “1“1) exp(-l/ki)
i=)
N

p(LlHy) = D (al/A]) expl-£/A})

i=]

18

e-jwl dm

(2-49)

(2-50)

(2-51)

(2-52)




where

t 1 -l
(L - kn/ki)

n
n

1]
(]
h G 11

1
i

(2-53)

Probabilities of detection and false alarm can now be computed for

any threshold setting, y. The detection probability is

-4

Pp =f p(llﬂl) de

Y

N [+
- Z a f exp(=(L/X)] d(&/),)
iml Y

N

1=])

and the false alarm probability is

)

Py -f p(llHo) ds
Y

N

- Z: aj expl-Y(A +11/A ]
i=]

19

(2-54)

(2-55)




where

N -1
a, = ngl (1 - Xn/ki) ' (2-56)
ngi

-

N A/ 4D -1
a - {4 1l - R (2'57)
a=l ST Y

npi

and

Xi = SIR, ¢ (2-58)

the signal-to-interference ratio at the output of the ith filter {i(x).
Simflar results are found in (24).

Equations (2-54)-(2-58) constitute a closed form expression for the
performance of a detector for Gauasian signals in Gaussian noise, for the
case in which the signal covariance matrix has unegual diagonal elements.
If some of the diagonal elements are equal, a generalized version of the
technique in (2-50) can be used {25]. The expression depends upon the
eigenvalues of the matrix C(x,y) in (2-18). The eigenvalues are the same
as the signal-to-interference ratios at the outputs of a set of orthogonal
filters, if the filters are designed to maximize these ratios.

2.4 Summary of Section 2

Maximization of signal-to-interference -atio for signal-filter design
is generally used &8s a way to obtain usable. albeit suboptimum, resuits.
A straightforward extension of the SIR algorithm, however, yields not
only a "best" signal-filter pair, but a set of additional orthogonal filters.
The resultii.i filter set is apparently the same as one would obtain with
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linear discriminant analysis or with a Karhunen-Loéve transformation of
whitened data. The similarity to linear (Kuilback) discriminants is not
surprising when one considers that the functional Q(f) in (2-5) is very
similar to the Kullback divergerce {18,19]

I = E[SL(}‘_TQ)[HI] . E[Q(gTD\HO] (2-59)

Where g(grf_ ) is the log-likelihood ratic when the quantity !_'_Tg_ is taken
as data.

The maximum SIR filter set, which also implements a simultaneous
diagonalization of signai and interference covariance matrices, can be used
for optimum (quadratic discriminant) detection. It is only necessary to
form a weighted sum of the squared envelopes of the filter outputs. The
performance of the resulting detector can be written as an exact, closed
form expression that depends upon the signal-to-interference ratios at
the filter outputs.

3.0 A POLAR'METRIC SCATTERING FUNCTION

3.1 Dependence of SIR on Target and Clutter Scattering Functions

From (2-1), SIR depends upon the expecied magnitude-squared
filter output

-0

Ell-/ f*(2) r(x) dx |

2 ®
= E%IE f f;(::) ry(x) dx |2§ (3-1)

i=1
where fl(x) is the filter that processes the output of the vertically

polarized antenna rl(x), and fz(x) is the filter for the horizontally
polarized antenna output, rz(x)‘
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The received vertically and horizontally polarized echoes, rl(x) and rz(x),
are related to the transmitted signal components u,(x) and u,(x) by [5]

2 ®
ri(x) =Z f gij (x - v/2, D uj(x -t) dr (3-2)
j:]_ -

where gij (t,7) is the impulse respcnse of a time varying random filter at
tine T when the impulse is applied #t time zero. In terms of distributed
radar reflectors, gij (t - /2, 1) is the reflectivity of a scattering element
with delay 1, measured at the time of reflection t - 1/2. The subscripts
of gij (t,t);i=1, 2; =1, 2, imply that there are actually four time
varying weigiits in a tapped delay line model of the filter at delay 1, i.e.,
a 2 x 2 scattering matrix that depends upon time t and delay . These
weights describe .he backscatter with polarization i for an incident signal
component with polarization j.

Substituting (3-2) into (3-1) yields

E {1/; £2(x) r(x) dx 12$

? = 2 =
= E 2[2/ f;(x)zf gﬁ(x-'clz.'() uj(x-t)dz' cl:r.i2
w

i=1"- j=l -
2 2 2 '
=3 3 EZ/]]]f (x) £ () uylx - 1) uply - 1)
i=1 j=1 m=1n=l
E {gﬁ (x - t/2, 1) gt;n(y - 1'/2, 1'){ dx dy dt dtv' (3-3)
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The Fourier transform in time of the time-varying tap weight at delay 1
can be used to assess the Doppler spread induced by the time variation.

In order to express the receiver output in terms of Doppler spread, one
can use the definitions

v T o -
- v ey AR o K T A A

!; bﬁ(¢» 1) Ef gij(t - 1/2, t) exp(-j2mdt) dt (3-4)
! - o
. or

bytx - T2, 1) = / byy($, T) exp(iZnex) d¢ . (3-5)

-

The integral in (3-4) is performed on a sample function of the time-varying
tap weight gij(t - 1/2, t). The expected product of two such sample
functions is

E lgn(x -x/2, 1) g;'m(y - 1/2, r')}

= /f E%bnw.r)b;nw.t');

explj2u (¢x - ¢'y)] dode’ (3-6)

This equation can be simplified by assuming that tap weights at different
delays are statistically uncorrelated and that the temporal variation of the
weights is wide-sense stationary, so that the expression in (3-6) is a
function only of the difference (x - t/2) - (y - t'/2). This wide-sense
stationary, uncorrelated scatterer (WSSUS) assumption implies that
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E Ibij(cb,r) b;n(d)',T')}
= E ibﬁ(rb.r) b;m(cb.r)i 8¢ - ¢ &Ct - 1) (3-7)
and
E lgﬁ(x -1/2, 1) g;m (y - ©/2, ™)

= f E {bﬁw,r) b;n(«b.r)% expl(j2ne (x - y)]

-0

de¢ §(t-1tY) . (3-8)

In (3-8) the expectation is a function of specific ¢ and t values:
' _ ' |
E {bﬁ(mr) bmnw.t)} = E ;bii bun | ¢, ‘pb(mr) (3-9)

where p, (9, 7) is the probability that the specified range and Doppler
values will actually occur.
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Substituting (3-9) into (3-8) and (3-8) into (3-3) yields

E’ £4(x) r(x) dx lzf=zz:ézz:zz /f

i=

e
8

[
W
—
8
i
—
3
i
=
4
e
]
8

8

[ fi"'(x) u]-(x - 1) exp(j2n¢x) dx]

|

{ i nlt r% P, (6,7) dédr

8

P~

£, (V) u;(y' - 1) exp (-j2ndy) dY]

2 2 2 2
TTET S S0 15, w0

i=1 j=1 m=1 n=1Y¢
u (1,¢) d1d¢ (3-10)
mn
where
uL(T.M ES fk(t) u{(t - 1) exp (-§2ndt) dt (3-11)

-

is the narrowband cross-ambiguity function of the reference function fk(t)
and the signal ug(t) and

!

o ] -
Sijmn(¢ot) g E {bn bmn ‘ ¢01} Pb(@-‘t) (3-12)

is a polarimetric version of the target scattering function.
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3.2 Comparison with Less General Problem Formulations

Fundamental results are embodied in (3-10)-(3-12). Eq. (3-10) shows
the dependence of SIR on the scattering function of target or clutter and
upon signal-filter design as manifested by various cross-ambiguity functions.
Eq. (3-12) defines the scattering function in terms of expected values of
products of Fourier transformed tap weight variations, as defined in (3-4).

Ifi=j=m=n =1, then S1111(¢: T) is the power spectrum of
the time variation of the tap weight at delay t, for the vertically
polarized channel. If only the termi =j=m =n = 1 {s considered in
(3-10), then we obtain the usual expression for SIR for the non-polarimetric
case [11]. Polarimetric processing introduces fifteen additional terms into
the SIR expression, and significant improvements in SIR should occur
if there are any polarization-sensitive differences between target and
clutter.

Another very general aspect of the problem formulation is the
inclusion of Doppler spread in cross polarization terms, e.g., i # j and/or
m # nin (3-10). These cases account for twelve of the sixteen terms in
(3-10), i.e., all the terms except for i, j, m, n equal to (1111), (2222),
(1122), and (2211), Even if the nu..ver of cross polarization terms is
effectively halved by the realistic assumption that by, = b;i , there are still
six Doppler sensitive cross polarization terms which may be different for
target and clutter. If any of these terms is different for target and
clutter, the SIR maximization technique will exploit it. The most obvious
cross polarization ~term is E {Ibmw v 1) |2} , the power spectrum of the
time variation of b,,(t,t). Cross-spectral terms such as E (bm(@.t)
b;2(°'” } may also be important.

It is difficult to visualize specific advantages of the general
formulation, to conceptualize problems, and to obtain physical insight
into the solutions. In order to facilitate this process, it is helpful to
use a dipole model of the tap weights gij(t »1). This model is discussed
in the next section.
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4.0 DIPOLE MODELS FOR ELEMENTARY SCATTERERS

4.1 Single Dipoles

Instead of the usual collection of point scatterers, ‘ve assume that
we have a collection of dipoles or thin wires. iet uy and u, ba the vertical
and horizontal components of the transmitted signal, and let 1[. and iC e the
along-length and cross-length currents induced on the dipole by the signal.
For an ideal dipole, we assume that the cross-length current is negligible.
For a dipole that is tilted 6 radians from vertical, it follows that

- -
iL cos 6 sin 6 W uln1
« . (4-1)
iC 0 0 u,
- L -l -
When the dipole re-radiates energy, the vertical and horizontal
components of the echo, Ty and g, are given by
) cos 9§ -sin 0 iL
-3
r, sin 8 cos © ic
p 2 - -
cos cos 6 sin @ uy
=g ' (4-2)
cos O sin 8 sin2 e u,
o o

where o is the radar reflectivity of the dipole.

is !‘2.
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4.2  Collections of Dipoles

Point scatterers can also be replaced by collections of dipoles,
Suppose, for example, that each uncorrelated scatterer is a pair of dipoles
that are separated slightly in range. The scattering matrix for each
uncorrelated scatterer is then

cos 61 cos 61 sin 61
S = °1

cos B, sin 8 sin2 8

L 1 1 1 i

pe 2 -
cos_ 6 cos 9, sin 6

2 2 2 2
-jam(LAR,
*+ g, e c , (4-3)

cos 6, sin @ sin‘2 0

L 2 2 2 o

where the-first dipole is oriented 6, degrees from vertical, the second
dipole is oriented 6, degrees from vertical, and the two dipoles are
separated by AR meters. In Eq. (4-3), f is the signal frequency and
¢ is speed of light.

In the case of a vertical dipole in front of a horizontal dipole with
AR equal to a quarter wavelength and 0y = 0y, We have

S =0, + o 7 = o . (4-4)
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The scattering matrix in (4-4) induces a polarization reversal of a circularly
polarized wave with vertical component u; = A cos (2rft) and horizontal
component u, = A sin (2nft). '

If a distributed reflector is modeled as a collection of single dipoles
as in (4-2), then no frequency dependent phase shift is introduced into
the echo, since the WSSUS assumption eliminates interaction between
different scatterers. To obtain frequency dependent phase shifts, a
distributed reflector must be constructed from elementary reflectors that
are themselves collections of dipoles, as in (4-3). This observation could
lead to a useful discriminant if the target size is known, i.e., if AR is

specified in (4-3), and if clutter scatterers can be modelled as in (4-2).

More specific target models can be obtained by considering specific
structures known to exist on particular targets, and modeling these
structures in terms of measured scattering matrices or as combinations of
dipoles and planar point targets. Planar point targets are discussed in
the next subsection.

4.3 Planar Point Target Models

Another type of elementary scatterer is the usual planar point
target or perfect mirror. Since the currents induced on such a reflector
are parallel to the applied field, there are no polarization shifts. The
scattering matrix is ol, where L is the identity matrix; b,, =b,, = ¢
and by, = by, = 0. Thus,

E(az) ffi=jandm=n
E {bﬁb;m |4, 1} = (4-5)
0 otherwise .
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As in Eq. (4-3), one can combine a dipole and a planar point
target to model various physical effects. If a planar point target with
reflectivity o is placed a quarter wavelength behind a vertical dipole
with reflectivity 20, then

3 ]
1 0 1 0
$ =20 +aq o7
0 0 0 1
1 0
=0 (4-6)
0 -1

which is the same as the scattering matrix for circular polarization reversal
in (4-4).

A horizontal dipole and a ground plane with variable distance AR(t)
between dipole and ground yield

0 0 1 0

2AR(t)
8 =0, + 0, e'jz"f[ c ]

. (4-7)

The scattering matrix model in (4-7) could be a useful representation of a
low-flying cruise missile against a background of ground clutter, if both
missile and clutter are within the same resolution cell [26].

4.4 Polarimetric Scattering Functions for Dipole Scatterers

Equation (4-2) indicates that a dipole scatterer can be represented
by its reflectivity ¢ and its tilt 6 relative to vertical. If both of these
quantities are dependent upon Doppler and range, then the polarimetric
scattering function in (3-12) is
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w
ei;'
L
o
!(

',;:
¥
St

- ¢ 4 =
A g

Si].mnw.t) = E lbii [o(cb.r), 6(¢,1)}

. I
bmn[0(¢»f)p e(‘b»'r)] |¢'T ‘ pb(¢’1)

‘1\’/2 o0 I
I / / byy(9,0) by, (6,83 p(0,6]¢, 1) dcde$

=-1/2 c=0
PR . (4-8)
From (4-2),
bu(c,e) = 0 0082 8 (4-9)
,9(0,8) = by, (0,6) = 0 cos 6 sin 8 (4-10)
byy(0,6) = osin®s . (4-11)

Assuming that c and 6 are statistically independent random variables,
we have

pCa,6 | ¢,7) =pla | ¢,1) pC8 | ¢.1) (4-12)

and Sﬁmnw.t) is proportional to

E? |4, 1) = f o plo [6,7) do . (4-13)
0

A second simplifying assumption is that p(6 | ¢,1) is uniformly and
symmetrically distributed between *a(é,v). In this case,
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) a(d, 1)
Sijmn{® T =E(” | ¢,1) pple, 1) f byy(8) by, (8) de
~0(4, 1)

20L(Cb. T)

1 {3a . sin(4a)
i [T' + sin(2a) + _8—] ,

1 [3a sin(4a)
T&—[T - sin(2a) + —8-——] .

=EG? | 6,1 py(6,1) (4-14)
.5%. [a-ﬂl‘éﬂ]. ifitjand m#n

orifi=jfm=n
0,ifi=jand m # n or if
i#jand m=n

where a = a(¢,T). The expressions on the right hand side of (4-14) ure
obtained by integrating bij from (4-9)-(4-11) over d from 6 = -ato 8 = a,

Each tap weight in a tapped deley line mndel of an extended target
is envisioned as a moving dipole. In many physical situations, one would
expect the Doppler spread induced by dipole rotation to be correlated with
the amount of rotation, in which case a(¢,t) will increase monotonically
with ¢. In any case, the dipole model allows one to conceptualize the
difference between polarimetric extended target models and non-polarimetric
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models. We have also obtained a specific expression for the polarimetric
scattering function Sijmn(cb.'r). Such a specific expression is very useful
for synthesis and analysis of SIR optimization programs.

5.0 IMPLEMENTATION OF A COMPUTER PROGRAM FOR
POLARIMETRIC SIR OPTIMIZATION

In order to set up a computer program for SIR maximization, it is
useful to express the signal-to-interference ratio in a form that can be
easily evaluated by a computer with user-supplied target and clutter data.
To find the best signal and filter functions with a computer, it is necessary
to parameterize these functions in terms of (say) time samples or frequency
domain samples (Fourier coefficients). The optimization problem is formulated
by expressing SIR in terms of these parameters.

5.1  Signal and Filter Parameters

The vertical component of the transmitted signal is u,(t) and the
horizontal component is uz(t). Each component is represented as a
weighted sum of complex orthunormal basis functions {8, (t): k =0, 1, ..., K}.

The vertical and horizontal signal components are thus

K
ui(() & k% uik ek(‘) » i = 1o€o
(5-1)

K
= x?;:l; lug | expliu,) g =12,

where |uik| is the magnitude of the kth expansion coefficient U and
Uik is the corresponding phase parameter.
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Similarly, the filter components are written

K K
() = kg) fe (D) = kgl) Ifik[ exp(jv,) 8, (1) (5-2)

i=1,2

The basis functions of particular interest are either sinusoids
80 = T % exp(janke/T), (5-3)

or sin(t)/t functions from sampling theory

172

ek(t) =B sinc{nB{t - k/B]} . (5-4)

In (5-3), T is the signal or filter duration. In (5-4), B is the system
bandwidth. Fourier series representations using the components in (5-3)
are desirable if the receiver already incorporates DFT operations, as in
coherent pulse Doppler or synthetic aperture radars. Sine functions are
desirable {f the radar uses a coded waveform and the receiver can
implement a matched filter for such a waveform in the time domain,

5.2 General Expressions for Expected Filter Output Power in
Response to larget. Clutter, or Noise

The expected filter output power in response to the target echo is
given by (3-10) in terms of cross ambiguity functions and a polarimetric
scattering function. The ambiguity functions are defined in (3-11), and
the scattering function is given in (3-12) and (4-8). Similar expressions
apply to the filter output power in response to the clutter echo, except
that (3-12) becomes
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b (c) =
sijfm (6,7) = Elc, cr lo.1!p (6,7) (5-5)

where o3 and Cn are elements of the clutter polarization scattering
matrix.

5 The expected filter output power in response to noise n(t) is

K E{] [£*(t)n(t) dt|? = (N,/2) fg*(t)f_(t) dt

2
= (Ny/2) ; Xeg (0,00 . (5-6)
i=l] {i

' o 5.3 Expressions in Terms of Expansion Coefficients and
Basis Functions

Mot This section contains mathematical details that can be ignored
SO without the loss of much understanding. If the reader is not interested
o in such de*ails, he can turn to Section 5.4.

: 5.3.1 Ambiguity Functions

A For orthonormal basis {unctions as in Cqs. (§-1) and (5-2), we have

N K K K T

S R ] -jangt

! Xy (16) = 3 % uf, f ot - 18, (1) e 14 ar
0

‘.‘: i7j k=0 £=0 (5-7)

o For sinusoidal (Fourier) basis functions as in (5-3), we have
o T
. . ‘6_,4 »* . -jZTnbt -
0
R Jarkt/T
i T m(i~k - q;T)[e

R o (ZTRTT) = 187] o (et
BERITAMLN) '

‘j 2“@T - 1]

(5-8)
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and for sine(t) basis functions we have (using Parseval's Theocrem)

Xg g (1.9)

00 x -,2 t
[ et - noym 1 g
27k -®

B/2
~ -t Drrfer W Ay
/ (6, () MY 5,(f + o) df

'B/2
B/2
- [ G+ 0 850 M ar (5-9)
“B/2

where ?k(f) is the Fourier transform of ek(t). i.e.,

B2 exp(-j2nik/B) , -Bi2< f <BI2
8, () = (5-10)

0 + otherwise .
It follows that, for sinc basis functions,

e-jZﬂf‘.(wB)

Xg g (1.¢) = sinc{n(k-2 «+ B9} . ; {5«11)

L'k

Expressions for the ambiguity functions in (3-11) are thus as
follows. For sinusoids on a time interval (0,T),

* jetkt /T
fil e

u
- -j"'ﬂ‘ ik i
xfiuj('f.ﬂ = e sinc(n¢T) E% DR T (5-12)
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and for sinc basis functions with frequency domain support on [-B/2, B/2],

U,

Xy = 5 2 ulfy, e 0B gincin(-g 4 B)] (5-13)
i k g *H

5.3.2 Expected Filter Output Power in Response to Time-Varying,
Distributed Target or Clutter

Substitution of x fu (1,¢) from (5-12) or (5-13) into (3-10) yields
i

expressions for the expected filter output power. These expressions contain
the integral

[

* *
f/ Xfiuj('t,(b) Xfmun(T.(b) F.Z[bij bmn]'r,m Py (T:¢) dT d¢.
) (5-14)

Further analysis of this integral is possible if it is assumed that p(1,¢)
can be represented by a two dimensional histogram, i.e., p(1,4) is
constant over histogram intervals of size A1, 4¢. The integral in (5-14)
is then a sum (over the indices r and s8) of simpler integrals of the form

o +AW2Z 1 _+AT/2
»
lTro¢sl xfu (Tn¢) Xfmun(TOQ) dr d° .

&
pb(fr.%)E[b b &
¢S~A¢/2 Tr-A‘t/Z

ij "mn

(5-15)

The double integral in (5-15) can be evaluated by using (5-12)
for sinusoidal basis functions or (5-13) for sinc functions. For sinusoids,




¢» +Ad /2 T +A1 /2

f / (.. @)Y (t,9)dT d¢
m n

¢ -A¢/2 T -At/2

= L uE Ul L LR L) 00D,,T8) L (5416)
kolopvq
where
¢>S+A¢>/2
I = f (¢(T) st[c (mbT() 7T dé
T + (k-4 T + !
(9] ¢ p-q)! (5-17)
¢>S-A¢/2
and
Tr+Ar/2
IZ = / e"'jZ'ﬂ'(k“p)T/T dar . (5-18)
tr-Ar/Z

The integrals in (5-17) and (5-18) are evaluated in Appendix A.

For sinc functions, we have the same form as in (5-18) except that

Trm /2

I, = / sinc[ ntk-2 + B1)] sinc[{n(p-q + BT)]dT | (5-19)
T.-8t/2




-' and

¢S+A¢/2

st ~i2m( 4-
B Iz = f Q2B gy (5-20)
¢S-A¢/2

A The integrals in (5-19) and (5-20) are also evaluated in Appendix A.

o From (3-10), the expected filter output power in response to the
target echo rn(t) is

s E(] ff (Deg(tat %)

"'4' * ok

B Zpb“ o) Bl [t.e0 D i hpfng
0 i,juo,n k,2p.q

» ‘r'ﬂ Il(k,ﬂ,.p.q,'{r,¢s)lz(kpg:p.q.'cri¢s) . (5'21)

o) A similar expression yields the clutter response, provided that

» L
Elcienn |7,00,] is used instead of Elby;dyn |t dg]s and py(1,,0,) is
) replaced by pc(tr.%).

,"‘;\‘; From (5-6) and (5-7), the expected filter output power in response
)
i to noise is

" . 2 . L X 2 .
I stlf *wnwal?y = v/ 3 ML (5-22)

v i=l k=0
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g ) 5.4 Signal-to-Interference Ratio Optimization

Using Eqs. (5-21) and (5-22), the signal-to-interference ratio can
o be written

“ (2R} 2
: SIR = E{ltarget response|”} . (5-23)

E{|clutter response | 2

} + E{|noise response [2}

E where
] E{|target response[ b= Z PRt 9,) Z: E(bq mn [T, ')
:t r,s i,j,m,n
;'&
};2
i
g Z ]kfxl wpfmg 1100 P @G0T LRaaiT00)) 0 (5-20)
) k.ﬁ.p.q
K E{|clutter response[ } -Z P(Tr0) Z E‘.(c:ij n [t‘ 9
f s i,jm,n
&
: Z w e u £ T (ke 24peqsT 000 (K, 2,pogaT,0) (5728
* ik'ie “np mq 4% '1PeQy pt Pg/tal i 1PeQy v ¥g '
" k.2,p.q
N 2 .
N E {|noise responsel b= (Ny/2) :1 r lf‘kl . (5-26)

The optimization problem is to find the signal and filter parameters
{Iuml. Wi [ty o vies 1= 1, 2 k=0, ..., K} such that SIR is maximized.

,:: From the above equations, it is straightforward to obtain the

- derivatives of SIR with respect to each unknown coefficient, and a gradient-
. search type of optimization program can be used to maximize SIR. In

N Section 2, however, it was shown that a likelihood ratio test is not

-
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generally implemented with a single linear filter; a sequence of orthogonal
filters must be used. Each filter in this sequence should maximize SIR

for the signal specified by the first signal-filter pair, and each filter
function should be orthogonal to the previously determined {ilter functions.

Such a sequence of orthogonal filters can generally bz obtained by
adding constraints to the SIR expression via Lagrange multipliers [19,27].
An easier technique, however, is to exploit a property of the simplex
method for maximizing a function (16]. The starting or trial solutions
in the simplex algorithm define a subspace containing the¢ "optimum"
solution found by the algorithm. To constrain the search to functions
that are orthogonal to a set of previous solutions, th: initial points
(simplex vertices) can deliberately be made orthogonal to the pre{rious
solutions, and no further modifications of the algorithm are necessary.

A disadvantage of the simplex technique as it presently exists in the
literature is that it functions without gradient information. Such informa-
tior: is available fcr SIR and would presumably jspeed up the search for a
maximum if it were used. A summary of the discussion in (18] about the
simplex method is given below.

A simplex is the convex hull of n+l points in R®: A triangle in
Rz. a tetrahedron in Ra, etc. If we wan.t"'to maxiumize a function of n
variables, we evaluate the function at each of n+1 vertices which specify
an initial simnplex. For one of these points, xh,.. the function f(x) is
largest, and for another point, xg‘. ‘it is smallest. The object at each
step is to replace x", the vertex of the currént simplex with the lowest

function value, by a new and befter point.

A tentative direciion for tha new point is obtained by drawing a
line from xg' through the mean of all the other points, computed by
excluding x*. The ‘resulting point is computed from the "reflection"

operation
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xT =%+ akx- xH

' (5-27)

where o is a positive constant (a value of 1 is recommended) and

f
b
iz—%)' X, s X ®X . (5-28)

3

If f(xh) < f(x7), i.e., the reflection step has generated a new maximum,
then we take an "expansion" step in the same direction by computing

X =x+yx -, (5-29)

where vy > 1 is a given constant (a value of 2 is recommended). If
£(x®) > £(xF), then x° replaces x*. If, however, f(x®) < £(x¥), then
the expansion step failed and xg‘ is replaced by x* to form a new simplex.
If the reflection step results in a new point that no longer has ihe
smallest function value but is also not the largest value, then xZ is
replaced by x* without implementing an expansion step.

Another possibility is that the original reflection step fails in the
sense that the point x* still has the lowest function value, i.e.,

(x) < min {f(x) o x, = x¥) . | (5-30)
i

In this case, x® would just be a new version of the least desirable point.
If (5-30) is true, then a "contraction" step is used:

Q‘I

x® = x + B(x

-x (5-31)




i where 0 < § < 1 is the contraction coefficient (a value of 8 = 1/2 is
£
& recommended) and x* is identical with either x* or %, depending upon
=y which point yields the largest function value, i.e.,
o
P
i AN 2y ikt
R f(x") = max {{(x"), £&(x)} . (5-32)
) AN c , . N :
. ,-‘%;_‘ X~ =x", then x~ establishes a new vertex in the dm?ctmn opposite
j’:“f‘ to x*, as we see by comparing (5-27) and (5-31). If xi = x¥, then
g we proceed in the direction of x* - X from the point X, but our step
' size is 0 < B < 1 rather than y > 1 as in (5-29).
£
gg‘l t
§E§{ 1f £(x%) < £(x*'), then we still need to find a new vertex that is
Rt
L -_.ff: not the least desirable point, i.e., we still have not reversed the inequality
1) (5-30). In this case, all the original simplex vertices are moved toward
Bl
f%g the point with the largest function value, i.e, the whole simplex is
: %,E?g concentrated near the best point. The new simplex vertices are:
Bt
v“{{-
R
=% +o (N -x) ., 120, cin . (5-39)
N i i 2 i
i
.i;‘('iﬁ'
Lf-;‘; A suggested termination criterion is based on the observation that
“3‘-' as a result of (5-33), all the vertices of the simplex near a maximum will
‘;&:;; move close together and close to x. Thus, if
* i,:atl
e
AT
oy LT (ax) - £ (5-34)
‘e n+l - i
';':;:l i-'o
i
R is sufficiently small, then the algorithm should terminate.
i
'!" An important property of the simplex method is its dependence
RN
‘::I:s. upon the initlal vertices chosen for the first simplex. For example, if
i
ZZ:::: these vertices do not completely span R", then the solution will be found




L K ¢
) '?2’ in a subspace of R, Although this property may be viewed as an
e annoyance, it is, in fact, very useful for finding solutions that are

, orthogonal to a given function, e.g., a previously determined filter

2:“ function. The importance of this observation has been pointed out with
N respect to filters for maximizing SIR and the optimum (likelihood ratio
N test) receiver structure.

5.5 Iterative Optimization of Signal and Filter Vectors

c* In order to find the best signal-filter pair for SIR optimization,
"'; it is nearly always necessary to iteratively improve one set of parameters
. %‘i with the others held fixed. We have four functions to optimize: The
;E‘ vertically polarized signal u l(t) , the horizontally polarized signal u2(t),
. ."ff_f the vertically polarized filter function fl(t), and the horizontally polarized
_ g filter function fz(t). Each of these functions has been represented in
.fgf terms of two parameter sets: the magnitudes of the expansion coefficients
_j_:: {Iulk[’ qukl' lflkl, |f2k[; k=0,1, ..., K} and the corresponding

el phase parameters {u x' Mok’ ik Ve k=0,1, ..., K}. There are
thus eight vectors, each with K + 1 terms, that specify the signal and

I iy filter:
i
a’:
Cé
(E‘t
:%: The vertical and horizontal signal component magnitudes, | u,| and | u,][,

i are linked by an energy constraint:

{
0 Signal Energy = 2, 2, |u,/“=1 . (5-35)
. i=1 k=0

‘ The coefficients |u,| and | uy | are scaled in order to satisfy (5-35) before
4 they are used to evaluate SIR at each stage of the simplex algorithm. The
b gearch for an optimum signal is thus constrained to the space of unit

Y energy functions,

-
e - - f
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The link between |u, | and |u,| in (5-35) implies that a
straightforward optimization technique should find all the signal magnitude
coefficients (vertical and horizontal) with other coefficients (filter
magnitude, signal phase, and filter phase) held fixed. The same is true
of the filter magnitude coefficients if one uses the constraint
2 K
Filter Energy = i-zl kz‘o lfiklz =1 ' (5-36)

It can be argued that a constraint on filter energy is unnecessary because
SIR is insensitive to multiplication of f£(t) by a nonzero scalar constant.

For ease in interpreting the results as well as for faster convergence,
however, (5-36) has been implemented as well as (5-35). The resulting
simplex algorithm automatically energy normalizes all signal or filter magnitude
coefficients before evaluating SIR, and the method iteratively optimizes

signal magnitude, filter magnitude, signal phase, and filter phase with

all other components held fixed.

6.0 TESTING THE SIR MAXIMIZATION ALGORITHM: A SIMPLE EXAMPLE

This section describes a simple test of a computer optimization
program for maximizaticn of signal-to-interference ratio (SIR). The test
demonstrates the basic input/output parameters of the program. The
results are reasonable from an analytical viewpoint, indicating that the
algorithm is working properly.

The test is incomplete in two important respects which will be
addressed further on in the report. First, there is no polarization-
dependent random Doppler or frequency spread difference between target
and clutter (or, alternatively, no Doppler-dependent polarization effects).
Second, only the first SIR filter is found, whereas we have shown that
additional filters can be used to implement a Bayes optimum detector
(likelihood ratio test) for discriminating signal from interference.




' .:-,:;‘- 6.1  Description of the Simple Test Problem

o The polarimetric scattering function for dipoles that are uniformly
ol distributed in vertical tilt between *a(¢, 1) is given by (4-14).

A As a simple test case, let the target dipoles be nearly vertical
(-1° < a £ 1°) and let the clutter dipoles be oriented randomly

el (-90° < a < 90°). In this case, if E(oz|¢,-r) = 1, the target scattering
- function is

[}
=

L]
=

1
[

Pp(,T) i i =]

W si‘;’mnw.r)

Ly 0 otherwise

n

(6-1)

N and the polarimetric scattering function of the clutter is

e ((3/8) p(¢,1) U i=j=m=n=1or2
L1

<t o (1/8) pc(¢.'t) if i#=j and m=n

B Sijmn(®+ ™) = 9

2 W or if i=j» m=n

> ) \ 0 otherwise (6-2)

' :.l h where pb(¢,t) is the distribution of the target in Doppler and range, and
_ pc(¢.t) is the corresponding clutter distribution. In order to accentuate
\ 0 discrimination on the basis of polarization, it will be assumed that pb(¢.r)
ey equals p c(@.r). This assumption eliminates features that are generally used ;
:fff“ for non-polarimetric SIR maximization. L




g 6.2  Analytical Investigation of the Simple Test Case

oy The signal-to-interference ratio is

SIR = E[ [filter responsejzkarget echo alone)
E[ |fitr. resp. |2|c1utter] + E( |fltr. resp. |2|noise] ‘

(6-3)

| Substituting (6-1) into (3-10)

[

R E{|fitr. resp. |*|target} = ff p, (6,0 [x, , (no)%aras . (6-4)
. -® 171

o Substituting (6-2) into (3-10)

E{|[fltr. resp. lzlclutter} =% {Pc(d’.r) I(td) drdd (6-95)

e where

W £ =3 2, 3 )
7_'&;!:, (t,¢) 8 lxtlul(T'¢)l + § !xfzuz(t’q’)l

1 2,1 2
3 +3 !xfluz(t.wl +3 lezul(t.d’)l

: 1
+5 02 Re(x;lul(r.w Ky, (033




1 * N
+ 3 {2 Re[xfluz(r,¢.) Xf u (1,8)]}

271
= [Ixf1“1|2 + lezuzlzl
¥ % [{Xflul * szuzlz + !xfluz ¥ xfzullzl ' (8-6)
Finally, the noise response is
N

Q
- {x (0,0) + ¥ (0,0))
2 flt'1 fzfz

H

E[ |fitr. resp. Izlnoise]

[}}3

NOIZ . (6-7)

In the computer algorithm, N is set equal to 0.02 in order to allow the
SIR to be dominated by clutter. The filter energy in (6-7) is constrained
to be unity, as is the signal energy (the sum of the squares of the
vertical and horizontal signal components).

Even with all our simplifications, it is stili difficult to analytically
obtain a signal-filter pair to maximize SIR. It is possible, however, to
suggest two different solutions on the basis of physical and mathematical
insight.

From a physical viewpoint, we observe that the target dipoles are
nearly vertical, while the clutter dipoles are uniformly distributed in
orientation. From this viewpoint, we would expect all signal and filter
energy to be concentrated in the vertical direction, while the horizontal
components should have zero energy. Our physical-insight solution is
then
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Uy(t) = fz(t) =0 (6-8)
which implies that

ff Po(0 O IE G (1.0 |%dt do

A
SIR =
3/8 ffpc(¢,r)le“lal(r,¢)| drd¢ + .01
v g2 (6-9)
if
Pp(®,1) = p, (o, 1) . (6-10)

From u mathematical viewpoint, a possible solution is obtained by
noting that the clutter response in (6-5) is minimized if f,(t), f,(1),
uy(t) and u,(t) are chosen so as to minimize the right hand side of (6-6).
To make the cxpected clutter response small, let

Xe o = . X » 6-11
fiuy foug ( )
and
X R ' ' (6-12)
Lyl Loy

such that the two last terms in (6-8) are both minimized. In order for
(6-11) and (6-12) to hold simultaneously, we can let
ﬁl(t) = - ﬁz(t) , (6-13)

-~

fl(t) = fz(t) . (6-14)

AN i J
.h“h"l “h‘ﬁi Satth, ity i‘ "\v' i‘.‘u {" it “" M .‘i“’l' ‘l!r‘b. ﬂ"i-



ot A simple sign reversal or 180° phase shift is thus a tentative solution. In
this case,

: .
s Jf ppe 0l o (o] drao
) SIR = i 11

o 1 fp Nr e ~ (2 .o (2 ‘
iJf poto g g 1"+ Ixg g ") 4o du+ .01

(6-15)

LN where (6-13) and (6-14) imply that

2 2
Xe )= Ixs T (ue)|® . (6-16)
i flul f2u2

L Substituting (6-16) into (6-15), we have

11
X

- éi;‘ SIR (6-17)

s

where pb(¢.r) = pc(¢.r) as in (6-10).

N Physical insight and the form of the clutter response in (6-5)
'_)‘ and (6-6) have suggested two possible solutions to the SIR maximization
o problem. The {irst solution yields the larger SIR, but this solution is
i only expected to be optimum when the target dipoles are vertical and all the
. ot clutter dipoles are horizontal. In the given problem, clutter dipole
0 orientations are not all horizontal, but are uniformly distributed with
g respect to tilt angle.
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£
o 6.3  Computer Solution for the Test Case

T & A computer solution for the test case has been generated with the

RO algorithm described in Section 5. From Eq. (3-12) the target scattering
A function is

L b Iy *

o where

B /2 ®

i E{b, b |6,1} = [ b.(0,6) b (0,8)
e i “mn 6="-n/2 o=0 ¥ mn

P, (0:8{¢,7) dade . (6-19)

ﬁg‘q Expression (6-19) is the description of the target that is employed in the
TN SIR maximization algorithm. In addition to (6-19), one must also specify

® the distribution Pp(¢.7) as in (6-18). Similar expressions are used for
il the clutter.

N The input to the computer program was thus I-:{bij b;mlmt} as

J- given by (4-14) for the target, with a = n/180° radians. For the clutter,
N E{cij c;mla. 1} was also given by (4-14), but with a = n/2. The
o ! distributions pb(d:.'t) and pc(cb.r) were both uniform on the t,¢ plane,
o _ia\-i;ii? extending from -T to T in range and from -4n/T to 4n/T in Doppler,

i o where T is the duration of the signal.

-fm The iterations that were performed by the computer are described
'ﬁsf?sl‘,f; and documented in Appendix B. Two runs were made. In the first run,
. the magnitudes of signal and filter Fourier coefficients were adjusted

A first, with the phases held fixed. The phases were then adjusted with
N magnitudes held fixed, etc. In the second run, the phases were adjusted
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first. The results are in terms of the Fourier coefficients of the signal
and filter functions, i.e., the parameters ‘{ luikl, lfikl Mg Vid 1T 1,2;
k =0, ..., 4} in the expansions (5-1) and (5-2). For the first run,

the vertically polarized signal and filter components of the solution are

uy, = 0.317 &7 £, = 0.307 &0

uy, = 0.411 " £, = 0.516 ¢

uy, = 0.599 &l £, = 0.555 & (6-20)
ugy = 0.359 &l £)q = 0.353 &

uy, = 0.281 &" f,,=0.1a1 80

and the horizontally polarized components are

- jo - jo
Ugg = 0.143 e f20 =0.119 ¢
_ §0 - i0
: u,, = 0.139 ¢ £, = 0.333 e
)
k!
® $ 0 (6'21)
: u,, = 0.293 o’ £,y = 0.191 el
o - ]0 - 10
,f u23 = 0.138 e f23 =0.128 e
Al
N
) 0 _ jo
4 Ugy = 0.141 e f24 =0.097 ¢ .
{
'|
Yy
1
-
Y
:Y
;1
’i
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The resulting SIR is 2.697, which is better than either S/I\R in (6-9) or
SIR in (6-17). The solution, however, seems to be a compromise between
Eq. (6-8) and Egs. (6-13) and (6-14). The horizontally polarized signal
and filter functions in (6-21) have less energy than the vertically polarized
functions in (6-20), but the horizontal energy has not been driven to

zero as in (6-8). The vertical signal has been multiplied by exp(jr) = -1
as in (6-13), but (6-11) is obviously violated.

The second run, which starts by optimzing coefficient phases rather
than magnitudes, yields somewhat different coefficient values (see Appendix B).
Nevertheless, the same multiplication of ul(t) by -1 and a similar imbalance
of energy in favor of the vertical components is again observed, and the
SIR is 2.680.

7.0 DETECTION OF AN EXTENDED TARGET IN SEA CLUTTER
In this section, the SIR maximization algorithm is applied to a more

challenging problem with some practical significance. The goal is to apply
the method to a problem that involves Doppler dependent polarization

modulation. Such a problem arises naturally in the context of radar sea
echo. The dipole modelling concept in Section 4 is especially useful in
this context.

Sea clutter can be said to possess Doppler dependent radar
reflectivity and polarization properties. Doppler spread. however, is not
really the independent variable: radar reflectivity and polarization both
depend upon wind speed, and so does Doppler spread.

According to M. Skolnik's Radar Handbook, p. 26-14: "In calm
seas with little wind, the echo obtained with horizonta! polarization is
considerably less than that with vertical polarization. The echo with
horizontal polarization increases with increasing wind speed faster than
the increase with vertical polarization, so that with rough-sea conditions
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el ath ath o h nth 20 o' atheld s A% 8V a0 d a9k 0. &M 0%

there is less difference in the magnitude of the echo from horizontal or
vertical polarization.” (6]

According to p. 26-30 of [6], some measurements indicate that the
spectral width of sea echo is approximately proportional to wind speed.
Quantities that vary with wind speed might then be said to vary with
Doppler-induced frequency spread. If the sea is modelled by a collection
of dipoles, then the orientations and cross sections of these dipoles are
correlated with wind speed, but we can say that "polarization and cross
section is Doppler dependent"” if Doppler spread (¢), rather than wind
speed, is viewed as the independent variable.

A calm sea can be represented with dipoles that are randomly
distributed over a small interval in vertical angle (6);

-a(¢) < 6 < a(d) (7-1)

where 6 is the dipole tilt measured from vertical and a(¢) is the maximum
excursion from vertical. As wind speed increases, 6 increases to as much
as

-m/2 <8 <nl2 (7-2)

yielding random polarization for high wind speed. The dipole cross section
(or the density of dipole reflectors) also increases with wind speed and thus
with Doppler spread (¢).

A boat or ship can be modelled as a collection of randomly oriented
dipoles or as planar reflectors (specular point targets). These dipoles or '
specular glints can be assumed to be uniformly distributed over a range
interval that is small relative to the clutter extent.

Translational motion of the target causes its mean Doppler frequency
to be displaced from the clutter mean, while pitching and rolling cause the
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.‘n‘}:;ft target echo to exhibit some Doppler spread about the mean. The radar
e cross sections of the dipoles or specular glints comprising the target are
o independent of wind speed and thus of ¢.

Tk It will be of interest to determine the effect of the dipole model vs.
; the planar reflector target model upon receiver design and performance.
.y - If a significant difference exists, then it should be possible to discriminate
o a target composed of planar reflectors from a chaff cloud composed of

'.'fq‘_ﬁ;; randomly oriented dipoles. For planar point scatterers, the scattering

' matrix is ol where L is the identity matrix; b, = by, = 0 while b,, =b,, = 0.
Mo It follows that, for planar point targets,

nihy E(ad) if i =j and m=n

Lo * -

. E_(bij b luel = (7-3)
e A

U 0 otherwise

“ WA, 7.1 Target and Clutter Descriptions

oy The models used here portray the qualitative description of sea
’ ) clutter in (6] with the simplest possible functions: Uniform probability
' ,jl'ﬁ;f distributions and linear dependence on Doppler spread.

h 7.1.1 Random Dipole Tarjret

A For the random dipole target, we use (4-14) with
e al6,1) Eoay= W2 o, L7-4)
o which means that target dipoles are uniformly distributed at all possivle

et angles, and
R Elol 6.7} = 10/3 (1-5)
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which corresponds to a uniform distribution of dipole reflectivity o
between zero and i0 dB.

The distribution of the target on the range-Doppler plane completes
the target scattering function description in (4-14). Let

Py(6.7) =[3§ rect (%ﬁ)] [-2% rect (T'Tﬁ)] , (7-6)

where

rect(x) = (-7

0 , otherwise .

The target scatterer distribution has a Doppler spread of 2n/T on either
side of a mean Doppler frequency. The mean Doppler shift is equal to
2n/T, corresponding to translational motion. The signal duratbn is T,

so that 2n/T denotes a Doppler resolution cell or bin width, The delay
spread of the target is 2T/5 seconds, or two range resolution cells. A
range resolution cell for a single frequency component T seconds long is

AT seconds. Five frequency components yleld five times the bandwidth, and
the range resolution cell is thus approximately T/5 seconds. A top view of
pbw.'r). looking down on the range-Doppler plane, is shown in Figure 7-1.
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& (DOPPLER SPREAD)

4n/T +
P % //////////4
-1/5 0 /5 — (RANGE SPREAD)

Figure 7-1. Range-Doppler distribution of target scatterers

7.1.2 Specular Glint Target

A collection of specular (planar target) glints is specified by
I~3{bij b;m [t,¢} in (7-3) and by pb(-t,¢s). It can be assumed that E(cg)
equals 10/3 as in (7-5) and that pb(r,d)) is the same as in (7-6) and
Figure 1.

7.1.,3 Sea Clutter at Low Wind Speed (Calm Sea)

Let the maximum tilt of the clutter dipoles be given by a linear
function of Doppler magnitude:

o 10m  80n ) n-8
%(0) = 155 * 180 TEWTY) (7-8)

The average clutter dipole cross section is defined as
E'02|¢}=1[1+9 ] (7-9)
e 3 8n '

which is another linear function of Doppler magnitude. The sea's polarization
spread and reflectivity are thus assumed to be linearly dependent upon
Doppler spread, which is itself monotone increasing with wind speed. If

the true variation of maximum dipole tilt a, with wind speed W is a, = gw),
snd if Doppler spread is related to wind speed by |¢] = h(W), then our
simple model assumes that g{h '([¢ )] is linear.
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Plots of ac(q;) and E{cczldb} are shown in Figures 7-2 and 7-3. For a
calm sea, these plots are only relevant for [¢| < Zn/T, since it is assumed that

P(d,1) = E}r—\'rect (Tn%’l‘) 231' rect (%) , (7-10)

i.e., a calm sea has no Doppler spread beyond |¢| = 2n/T. The area of
the 1, plane covered by pc(d),r) is shown in Figure 7-4.

The assumption that p c(ct:,'r) is uniformly distributed on (-T,T)
in the delay (1) direction is equivalent to an assumption of uniformly dis-
tributed clutter for all ranges. This equivalence follows from the fact that
the ambiguity function is nonzero only over a delay interval between -T and
T when the target is hypothesized to be at delay zero.
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—pd (DOPPLER SPREAD)
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Figure 7-2. Assumed variation of clutter dipole cross section with
maximum clutter Doppler spread
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- 7.1.4 Ses Clutter at High Wind Speed (Rough Sea)

For a distriouted dipole model of sea clutter, it has been assumed

e that the maximum tilt of any dipole is a,(¢), and that the tilt is uniformly
R
‘§§ distributed between - c(¢w) and a c(‘b)‘ To be consistent with the
tff observations in [6], the maximum tilt should increase monotonically with ¢
" until, at maximum wind speed and Doppler spread, o c(d’m ax) equals /2.
:f: At maximum wind speed, vertically and horizontally polarized dipoles are
:E equally likely, and there is no preferred polarization for minimizing
R sea echo.
!
:: A simple linear dependence of a.(¢) on |¢| can accomplish the
R
:EE above objectives. This deperidence is the same as in (7-8), provided
N that
u ]
’lgi 0ay | = 8T/T - (7-11)
,‘:‘ The resulting maximum tilt as a function of ¢ is shown in Figure 7-3,
2
;ig‘ The experimentally observed increase in sea clutter cross section
—f:{ with increasing wind speed or Doppler is modelled as in (7-9). For
R : .
. Doppler shifts limited as in (7-11), the expected clutter cross section
o varies between 0.33 and 3.33, as shown in Figure 7-2.
A:,
N
_::J The assumed distribution of sea clutter in delay and Doppler for
a rough sea is:
e
n (¢,1) = L rect | =2 1 rect (= (7-12)
0 Pole: 16w gn/T)| | 2T T/
10
4
)
’ so that the maximum Doppler spread is given by (7-11). The area covered
% by this distribution is shown in Figure 7-5.
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Figure 7-5. Assumed delay-Doppler distribution of sea clutter for
high wind speed (rough sea)
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7.2 Computer Experiments

The SIR maximization program has been applied to signal-filter
design for the situations given in Table 1. In most cases, only one
filter has been associated with the optimum signal. [t was shown in Section 2,
however, that multiple orthogonal filters should be obtained in order to
implement a Bayes optimum detector as well as one with maximum signal to
interference ratio. The additional filters are easy to find by always using
the signal that yields largest SIR with the first filter, i.e., the signal
associated with the "best" signal-filter pair. Additional fliter functions,
orthogonal to the ones found previously, are then determined such that
SIR is maximized with the given signal. Since a simplex algorithm is used,
orthogonalization is accomplished by using initial "guesses" or simplex
vertices that are all orthogonal to previous solutions. The soclution from
such an initial simplex is in the subspace defined by the "guesses," and is
thus orthogonal to previously derived filter functions for SIR maximization.
Multiple orthogonal filters were found for two cases: the specular glint
(planar) distributed target in rough sea clutter and the same target type
in uniformly distributed dipoles (chaff). The iatter problem is described
in Section 7.5. The last line of Table ! refers to a polarimetric inter-
ference canceller to be discussed in Section 7.6. This device computes
the weighted difference between the outnuts of a signal detactor with
maximum SIR and a clutter detector with minimum SIR.
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Target Model

Random dipole

Random dipole

Specular glint

Specular glint

Specular glint

Specular glint

Specular glint

Specular glint

TABLE 1

COMPUTER EXPERIMENTS

Clutter Model

Calm sea

Rough sea

Calm ses

Rough sea

Rough sea

Random dipole
(chaff)

Random dipole
(chaff)

Random dipole
(chaff)

Receiver Configuration

One filter (H and V components)

One filter (H and V components)

One filter (H and V components)

One filter (H and V components)

Many orthogonal filters

One Filter (H and V components)

Many orthogonal filters

Polarimetric interference
canceller




7.3 Results for the Riandom Dipole Target Model in Calm and
Rough feas

If the target is a collection of randomly oriented dipoles and the
clutter is composed of nearly vertical dipoles, the problem is very similar
to the simple one that was analyzed in Section 6. The solution for sea
clutter would then be a system with energy concentrated in the horizontal
signal and filter channels, with one signal component phase shifted by 180°,

In the sea clutter problem, a difference in range-Doppler clutter
distributi"ns has been introduced. The target has a measurable average
Doppler displacement relative to the clutter, and the range extent of the
target is restricted. These two changes should ideally result in signals
with large time-bandwidth product. If the best strategy is to exploit only
Doppler resolution. however, then the signal energy will become concentrated
at a single Doppler component, and the filter energy will do the same.

In summary, a reasonable solution wouid involve horizontally
polarized signal and filter functions. with signal or filter phase shifted by
180° and with energy concenirated at one frequency to exploit Doppler
displacement between target and clutter.

A similar solution has been obtained by the SIR maximization
algorithm. For a calm sea, the vertically polarized signal Fourier components
4
(uw. ull"”‘“l‘l} and vertically polarized filter components (f,., fll""’fm}
are reiatively small:

Upg © 0.003 expijm f?ﬂ = 0.009 exp(j0)

Uiy = 0.037 expfm) fu = 0.002 exp(jo)

uyy = 0.007 exp(ir) fxz = (.003 exp(j0) (7-14)
Uyq = 0.015 exp(j) f13 = 0.005 exp(j0)

Upy = 0.005 exp(jm) flé = 0.003 exp(jo) .




The horizontally polarized signal and filter components for a calm sea are

Uyq = 0.222 exp(j0) fo0 = 0.454 exp(j0)
U,y = 0.602 exp(j0) le = 0,755 exp(j0)
Uy, = 0.630 exp(j0) £y, = 0.489 exp(j0) (7-15)
Ugq = 0.407 exp(j0) f23 = 0.056 exp(j0)
Uo, = 0.152 exp(j0) f24 = 0.0C3 exp(j0)

and the resulting signal-to-interference ratio for a celm sea is
SIR = 51.54 . (7-18)

In Eq. (7-15), there appears to be a mismatch between signal and
filter, such that the filter pass band is approximately a frequency shifted
vercion of the transmitted signal spectrum. The shift is approximately one
frequency component cdownward. From Fig. 7-1, the average target Doppler
shift is exactly one frequency resolution cell, 2n/T. A positive ¢-value
in Fig. 7-1 corresponds to a target with range increasing with time, which
means that the echo is shifted downward in frequency by an average
Doppler displacement corresponding to one frequency component. A filter
matched to the expected echo will then have a transfer function that is a
downward-shifted version of the signal spectrum, as observed in (7-15).
The simplex SIR maximization algorithm used three iterations for adjustment
of each set of coefficients (signal phase, filter phase, signal magnitude,

k3 1
Tadh

§
)

bt o g
P

e
e

filter magnitude). The total run time for computer design of the
polarimetric radar was about six hours, but the program used disk
storage for many computed variables, Subsequent examples were computed
using large RAM arrays, and run time was reduced to approximately

two hours.

For a rough sea, slightly more energy is relegated to the vertically

polarized signal and filter components, as one would expect from Figure 7-3.
For the calm sea case, part of the target Doppler spread is outside the
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Doppler band of the clutter, as shown by Figures 7-1 and 7-4. For the
rough sea, the target Doppler spread is wholly immersed in the clutter,

as shown by Figures 7-1 and 7-5. This difference, along with larger
average clutter reflectivity, leads to a smaller maximum SIR for rough seas.

The vertically polarized signal and filter components for the
rough sea model, as obtained by the SIR optimization algorithm, are:

Uyg = 0.019 exp(im f10 = 0.011 exp(j0)
Uy = 0.122 exp(im f11 = 0.010 exp(jO)
uy, = 0.061 exp(jm) f15 = 0.044 exp(j0) (7-17)
Ujg = 0.017 exp(im f13 = 0.002 exp(j0)
ug, = 0.021 exp(jm f14 = 0.005 exp(j0)

The horizontally polarized signal and filter components for a rough sea are:

Upq = 0-203 exp(j0) foq = 0.422 exp(j0)
Ucy = 0.758 exp(i0) le = 0,809 exp(j0)
Upy = 0.598 exp(j0) £y = 0.406 exp(j0) (7-18)
Ugg = 0.076 exp(i0) f23 = (0,002 exp(j0)
Ugy = 0.030 exp(j0) t‘24 = 0.003 exp(j0)

The above signal and filter functions yield a siznal-to-interference
ratio for the rough sea clutter model of

SIR = 26.83 . (7-19)
As one would expect, this SIR i{s considerably less than for a calm sea.
The signal and filter functions for SIR maximization for a random
dipole target in sea clutter combine Doppler resolution with accentuation

of horizontally polarized energy. As in the simple test case in Section 6,
the vertical signal components are all multiplied by minus one or exp(jn).
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P This result is not generally exploited by sea surface search radars, and

) the design may yield improved performance in rough seas.
o
o 7.4  Results for the Range-Distributed Planar Target (Specu'ar Glint)
" Model in Calm and Rough Seas
R A 7
e
Q The specular glint target model is similar to the classical
Lh
7 :,fg non-polarimetric concept of a distributed target composed of randomly
":}'{2: spaced "highlights" or points of high reflectivity that behave as perfect
R mirrors (planar reflectors). These highlights are assumed to have the
.. same cross section as the corresponding dipoles in the distributed dipole
;f:{:: target model, i.e., E[oz] is the same in (7-3) end (4-14).
AN
e :;ig The same values of E[02] in (7-3) and (4-14), however, seem to
h make the planar target more detectable. For example, if the target dipoles
'I At
§§§§i are randomly tilted such that o equals /2 in (4-14), we have
ENNA
an
»',in
3 3/8 fi=j=m=n=1lor?2
12N
1 S,y (1) ! =B0® p(¢, 1 1/8 ifi#jand m # n
»{%&} fjmn ' rendomly f1={¢m=n
?“ﬁd, tilted i or - m =
AR dipoles 0 otherwise
) (7-20)
";;si;
‘;i!::% as in (6-2), while from (7-3),
R ‘i‘sﬁ
NI
a-fgﬁt'. 1 fi=j=m=n=1lor?
v ot
RS S (6,7 =B pe) {1 Hfi=j#tm=n
i jun' >
s planar 0 otherwise .
e points (7-21)
If most signal and filter energy is horizontally polarized, then the
XN
s;‘if:ﬂj dominant term in the polarimetric scattering function is Szzzz(tb.r), which
L]
::;i‘ ; is 8/3 times larger for the planar target model than for uniformly




distributed dipoles.

Despite the difference between planar targets and randomly tilted
dipoles in (7-20), a non-random dipole orientation is consistent with (7-21).
For a vertically oriented dipole with a<<l, (4-14) yields

1l fi=j=m=n=1
Sijmn (% ©) = E(® p(h 1) (7-22)

vert 0 otherwise
dipole

which is commensurate with the planar point target in (7-21). A randomly
oriented dipole has smaller effective cross section than the same dipole
with known orientation. The planar point target cross section has been
chosen to be equal to that of a dipole with known orientation, while SIR
depends upon the effective cross section of a randomly oriented dipole.

The above observations imply that the effective radar cross section
of a target can be reduced by more than 3 dB if different reflecting
surfaces have different polarizations or effective dipole tilts, If all
reflecting surfaces have the same, known polarization, then the equivalent
specular glint model must use a higher glint cross section in order to
repregent the target.

For a calm sea, the SIR maximization algorithm with a distributed
planar target model yields vertical signal and filter coefficients

Ut 0.010 exp (j0) fmr- 0.007 exp (j0)
Uy, 0.019 exp (j0) fu= 0.001 exp (j0)
uy,= 0.002 exp (jo) £,,= 0.005 exp (j0)
Uy 4" 0.001 exp (j0) f13= 0.004 exp (j0)
U4 0.014 exp (j0) f“: 0.003 exp (j0)
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and horizontal coefficients

Ugo® 0.229 exp (j0) f,,= 0.400 exp (j0)

20
u,,= 0.530 exp (j0) f21= 0.779 exp (j0)
Uyy= 0.606 exp (j0) f22= 0.481 exp (jO) (7-29)
Uyq= 0.426 exp (j0) f23= 0.041 exp {j0)
u,,= 0.223 exp (j0) f24= 0.001 exp (jO)

The best SIR for the planar glint distributed target mode!l in calm seas
is found to be

SIR = 137.87 (7-25)

When the planar glint target model is used with our model for a
rough sea, we obtain vertical coefficients

uyq = 0.028 exp(im) o = 0.006 exp(j0)
Uyy = 3.004 exp(jr) fll = 0.008 exp(j0)
uyg = 0.002 exp(jm f12 = (0,004 exp(j0) (7-26)
Uya = 0.004 exp(jm f13 = 0.003 exp(j0)
uyq = 0.009 exp(jm) fu = 0.025 exp(j0)

and horizontal coefficients

Ugg = 0.212 exp(j0) fm = 0.340 exp(j0)

Ugy = 0.780 exp(jo) ("21 = 0,856 exp(j0)

Upg = 0.578 exp(j0) fyq @ 0.388 exp(j0) (7-27)
Ugq = 0.105 exp(i0) fza = 0,001 exp(j0) -

Ugq = 0.017 exp(j0) faq = 0.000 exp(j0)

The corresponding SIR for a target with distributed planar (point target)
reflectors in a rough sea is ' '

SIR = 75.43 . : (7-28)
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From our interpretation of (7-20) - (7-22), we expect that the SIR
for the planar glint target model will be 8/3 or 2.67 larger than the
corresponding SIR for the distributed, randomly oriented dipole target
model. Indeed, for calm seas, the signal-to-interference ratio in (7-25)
is 2.68 times larger than the one in (7-18), and SIR in (7-28) is 2.81 times
larger than SIR in (7-19).

7.5  Results for Distributed Planar Reflectors in a Background of
Randomly Orlented Dipoles

An interesting problem i{s to discriminate between the two target
types: planar reflectors and randomly oriented dipoles. In this case,
E(cz) for the planar targets is set equal to 3/8 in order to compensate
for the disparity between (7-20) and (7-21). The range-Doppler
distribution of both targets is the same, and is shown in Figure 7-1. The
only difference between the two models is that

1/8 f1i4jandm#n

= 7-

sijmn( ¢ 1) p(é. 1) (7-29)

randomly orifi={#m=n

tilted

dipoles
while

3/8 fi=§{#m=n )

sumn(ﬁu 1) | = p(d, 1) (7-30)

planar 0 ifi¢#jandm#n]),.

points

The SIR maximization algorithm must thus rely upon differences
are larger for the planar point tairget model, and the last four terms
are larger for the randomly tilted dipoles.
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The SIR maximization algorithm for the target discrimination
problem yields vertical signal and filter coefficients

Uy = 0.316 exp(j0) f10 = 0.316 exp(j0)
uyy = 0.316 exp(j0) fll = 0,316 exp(j0)
uyy = 0.316 exp(j0) f12 = 0.316 exp(jo) (7-31)
u;yg = 0.316 exp(j0) f13 = 0.316 exp(j0)
Uy = 0.316 exp(j0) f14 = 0.316 exp(j0)

and horizontal coefficients

Ugg = 0.316 exp(j0) f20 = 0.316 exp(jo)
U,y = 0.316 exp(j0) t'21 = 0.316 exp(j0)
Uy, = 0.316 exp(j0) £,, = 0.316 exp(j0) (7-32)
ugq = 0.316 exp(j0) f23 = 0,318 exp(i0)

ugy = 0.316 exp(j0) f“ = 0.316 exp(j0)
The corresponding signal-to-interference ratio is
SIR = 0.973 . (7-33)

The above results can be explained by substituting the polarimetric
scattering functions Sﬂmn(a.ﬂ for target or clutter into (3-10). For
distributed planar reflectors, substitution of (7-21) into (3-10) yields

E(|target response| %} = %//IXflul +)(f2uz|2 p(r.¢) drt dd
(7-34)

n

T mm— T T T ———



and for distributed randomly oriented dipoles

E{|clutter responselz} = lj]@[ I |2 + x ‘21
8 flu1 t‘zu2

2 2
+ ey, X, |04 +X }
t‘lu1 f2u2 |Xflu t’zull

2
p(t,d) dt d¢ ‘ | (7-35)
as in (6-5).

From (7-31) and (7-32), the SIR maximization algorithm has found
a solution of the form

uy(t) = up(t) = £,(8) = £,(t) = uCt) . (1-36)

Substitution of (7-36) into both (7-34) and (7-35) yields

312 ff1x 4y (1. 1% pCr0) dr a9

SIR = M-
312 ffIx (0 0)1% p(r.0) dr dr + Ny/2

(7-37)

=,
as in (7-33).

It can be shown from (7-34) and (7-35) that the same SIR value
is obtained if all signal and fiiter energy is concentrated in one
polarization channel (either horizontal or vertical). This result seems to
imply that polarimetric radar is not superior to non-polarimetric radar with
respect to detection of planar target distributions in chaff composed of
randomly oriented dipoles, despite the differences between (7-29) and
(7-30). It will be demonstrated, however, that polarimetric radar is
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superior if a clutter cancellation method is used. The use of many ortho-
gonal filters, as in Section 2, has also been investigated.

The interference cancellation concept is discussed in the next

section, and the use of multiple orthogonal filters is discussed in
Section 7.7.

7.6 A Polarimetric Interference Canceller

The poor detecticn performance implied by (7-33) and (7-37) can
be greatly improved by augmenting the receiver with a second one, in
parallel with the first, which estimates the interference response of the

first receiver. The estimated interference is then subtracted out or
cancelled.,

In order to estimate interference in the possible presence of a
target echo, the interference estimator should have relatively smail response
to the target. Such a processor will have small SIR. Alternativeiy, it
should have large SIR for the inverse problem where target and ciutter
are interchanged and the target echo is viewed as interference.

For planar reflector vs. random dipole discrimination, the inverse
problem. i.e., detecting an array of randomly tilted dipoles while minimizing
receiver recponse to specular glints, yields much larger SIR than the
original problem., This large SIR difference for the original and inverse
problems is the key to successful clutter cencellstion.

The interference cancellation concept is illustrated in Pigure 7-6/
Filter #2 for interference estimation should ideally be able to observe the
interference in the absence of signal. In other words, the interference-to-
signal ratio should be maximized by filter #2, or the output signal-to-
interference ratio,
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SIRZ = 32/12 (7-38)

should be minimized. Alternatively, the SIR for the inverse problem,
with clutter and target interchanged. should be maximized by filter #2.

SIGNAL PQOWER = S & SIGNAL POWER =
~-pi  FILTER #1 FOR SIR s (f : s
MAXIMIZAT ION FOTERFERENCE - 17 /1905
r(t) 1
—— A INTERFERENCE
I POWER = 0
Sy 1
Ll FILTER #2 FOR SIR X
HINIMIZATION I,
A A
llli2
Figure 7-6. An interference canceller using filters for SIR

maximization and minimization.
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Figure 1-7 shows the polarimetric version ol Figure 7-6. In the figures,
A .

I and I, are estimated or predicted interference leveis at the outputs of
filter #1 and filter #2, respectively.

VERTICAL CHANNEL, r, (t)

. MpRCNE
~% $IR

VERTICAL CHANNEL, rz(t)

Figure 7-7. Polarimetric version of the tnterference canceller
in Figure 7-6,




In order to accentuate the response of the interference canceller
to the desired signal, the system should maximize

. Sally
Spc sy = sy |t s |

(7-39)

which implies that filter #1 should be dcsigned to maximize SIR, while
filter #2 should be designed to minimize it, as already stated.

The expected magnitude-squared target response in (7-34) is zero
for the second filter in Figure 7-7 if

X ¢« (1.¢) = =X (1.9) {7-40)
fg‘)u f;")u

1 2
whei'e

u,(t) = !:-.2(2) = u(t) {7-41)
from (7-36). Eq. (7-40) is satisfied if

(90 = 1P =uy | (1-42)

In this case. the SIR for the inverse problem {target and clutier
interchanged) is

) mﬂlxuu(r.@)!z'p(w.e) dt d¢

(Sm)inverse = No’z (7-43)
For the receiver defined by (7-42),
8,70 (7-44)
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ard from (7-43) and (7-37)

(7-45)

—
(3]

12
of
-—

(o3

The output of filter #2 should be multiplied by approximately three in order

to cancel the interference in Figures 7-6 and 7-7.

The resulting inteference canceller theoretically allows the polari-
metric radar to "look" through chaff. From (7-39) and (7-44), the response
to the target echo or signal is unaffected, while the response to interference

is greatly reduced.
Although the example given above does not exploit Doppler dependent
cross-polarization effects, the general concept can be applied to a variety

of problems.

7.7 Computer Results for Muitiple Orthogonal Filters

The analysis in Section 2 has demonstrated that an SIR maximi-
zation result can be extended to yield a Bayes optimum detector or likeli-
hood retio test implementation by adding urthogonal filters, as in Figure
2-1. It would appear that the nf"L orthogonal filter should increase SIR
as well as yielding a better approximation to a likelihood ratio test. It

will be shown, however, that an SIR increase does not occur, even though
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the ntf filter causes Pp, to increase more than PF for sufficiently high
detection threshold, Y. Although SIR is a useful measure of performance

for system design, it can be mislcading as a detectability measure.

7.7.1 SIR Computation when Multiple Filters .are Used

Equations (2-54) and (2-55) yield the improvement in performance
(PD vs PF) that is expected to occur from the use of multiple orthogonal
filters. Another measure of performance is the signal-to-interference ratio
itself, as measured at the output of the system in Figure 2-1. To compute
this 8IR value, one can exploit the observation that the output of each
orthogonal filter is statistically independent of the output of any other filter.
If the filter outputs are denoted L2TIR PYRRERIR Y and if the n-tl‘- filter

n
output is transformed with a function fn(rn)’ then statistical independence

implies that

N N ‘
R MEENCI } =21 B { f,(r) | . (7-46)
=1 n=

For the receiver in Figure 2-1,

ey 12 SR 7-47
t () =Ln n (7-47)

) + SIR
\In 1 Sn
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where

SIRn = XSn / )‘In . (7-48)

The SIR of the whole filter bank in Figure 2-1 is the output when only
signal is present, divided by the output when only interference is present.
When only signal is present,

E {irnlz | signal}'f ‘s (7-49)

and for interference,

2|, _
E {Irnl l mterference} = A, . (7-50)
It follows that
N
E {outputl signal } = E { X f(r) signal }
n=1
N SIR_2 .
> n (7-51)
n=1
1 + SIRn
and
N
SIR
E {output interference} D) n . (152
n=loy e SIR
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Finally, the signal-to-interference ratio at the output of the system in
Figure 2-1 is

N 2 -1
SIR = [ > SIR_ ] [ )1‘1,' SIR ]

n=l 1+ SIR n=l 1+ SIR
n n

(7-53)

The computer optimization program yields the optimum signal, a
set of optimum orthogonal filters, and the SIR value at the output of
each filter, ;smn; n=1 The SIR values can be used to compute ROC
curves from (2-54) - (2-55), and to compute the overall SIR from (7-53).

Although additional filters as in Figure 2-1 are needed to implement
a likelihood ratio test, (7-53) implies that additional filters do not increase

SIR. It has been shown that
SIR, > SIRy > ... SIRy (7-54)
since the SIR values correspond to solutions of a maximization problem

with n-1 orthogonality constraints. and because SIR is the n—k-‘- largest
eigenvalue of G(x,y) in (2- 18). If SIR_ < SIR, for all n > 1, then (7-53)

becomes
2 N )
e S P siR_\ 2 1+ SIR,
SIR = 1 * SIRy | n=2 |\ SIR, L+SIR_
SIR, 1+ N SIR 1 + SIR, ]
L+ SIR, z SIR, L+ s
< SIR, (7-55)
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since each term in the numerator sum is equal to each term in the
denominator sum, multiplied by (SIRn/SIRl), which is less than unity.

Eq. (7-55) states that SIR for more than one filter is always less than SIR
for a single "best” filter. The use of multiple orthogonal filters as in
Figure 2-1 cannot be justified in terms of SIR improvement. In fact, SIR
decreases, indicating a decrease in the ratio of the mean receiver output
given signal to the mean receiver output given interference.

SIR, however, may not be a good measure of performance. The
usual detectability index, for example, is

2
2 B U | 1y} - E (v | By} )

Var {2(r) l Hyl

5 SR 2
n=1 rrsT' (SIRy - D
= (7-56)

2
2[
n=1 +SI

For N=1, {.e., for a single filter pair g‘”m, a’ equals ¥(SIR, - n?,
which is monotone increasing with SIR, if SIR; > 1. The 4% measure
decreases, however, when additional filters have SIRn < 1, Theoretically,
such additional filters may still improve detectability. The problem is that
ROC performance depends strongly on the tails of the distributions p(Q|Hl)
and p(llHo) in (2-54) and (2-55), while SIR and d2 are not very sensitive
to tail behavior.

The above results imply that although SIR is a useful measure for
system design, it should be used with caution for system evaluation. For
system evaluation, the expressions for Py and PF in (2-54) and (2-55)
should be used. When the n— th filter is added in Fig. 2-1, Py increases by
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APy = a_ exp (-V/SIR ) (7-57)

and PF increases by

AP an' exp [‘Y(SII’(n + 1)/SIRn} (7-58)

an' exp (-Y/SIRn) exp (-Y)

where Y ig the threshold level of the detector. It follows that APD >APF if
a, >a ' exp -Y) (7-59)

-

or if -
Nl LSRR + 1y |2

=1 | SIR,/SIR, 1)J

exp (Y) > a“’/au v =
mi{t- (smi/smn)]
=1 b |

-1

n-1
=sir_ IT (SIR;+ 1)/s1R, . (7-60)
N =1

The addition of the nt—}l filter will improve receiver performance if the
threshold ¥ i{s such that (7-60) is satisfied. From Fig. 2-1, 2(r) is
always 2 0, and a negative threshold value makes no sense. Therefore,
it always pays to add an extra filter if the filter output has a signal-to-
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interference ratio such that the right hand side of (7-60) is greater than
unity. This result follows from expressions for PD and PF, and is not in
agreement with SIR results.

7.7.2 Further Results for a Target Consisting of Distributed Planar
Reflectors in Randomly Oriented Dipole Clutter

_ After finding the signal and filter functions u,(t), u,(t) and fl( 1)(t),
fz(l)(t) in Figure 2-1, the initial simplex is modified to include only filters
that are orthogonal to f (1) (t). The resulting filter function for maximum
SIR is 5(2)(t), where the same signal components ul(t), uz(t) are assumed.
After finding u (1), u,(0, £V, £, D), £, Pvy, and £,P ),
another filter }3)(0 is found, such that f (3)(t) is orthogonal to both
Q(l)(t) and g(Z)(t), The n' filter g(n)(t). has signal-to-noise ratio
SIRn, and SIRn should decrease monotonically with n because of the extra
orthogonality constraints that are included as n increases. Computer results
for a target consisting of a random distribution of planar reflectors and for
clutter consisting of randomly oriented dipoles or chaff (as in Section 7.5)
are given in Table 2.

Substituting the values of {SIR }g=1 into (7-53) yields an output
SIR of 0.820, which is less than the SIR for one filter alone (SIR = 0.973).
As predicted by (7-55), SIR is not improved by using additional orthogonal
filters.
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TABLE 2

COMPUTER RESULTS FOR DISTRIBUTED PLANAR REFLECTOR TARGET MODEL IN
RANDOMLY ORIENTED DIPOLE CLUTTER, USING SIX ORTHOGONAL FILTERS

i !
SIR, and i |
signal/filter | n=i © nw2 [ ne3 nwd =S ns6
coefficients | : ]
1 |
SIR | .rsm | 0952 0351 | 0.807 L 0.608 0.428
Vert. [Ma;mtuda. Magnitude, FMagnitudc. Maganitude, [Magnitude, |[Magnitude,
Signal l Phase . Phase Phase Phase Phase Phase
!
Yo 1316, 0 1 same . same same same same
| ' i
Uy 316, 0 Coas ;a8 1] 1} a
Uy 316,0 i =l ! gel asl n=l sl
' |
uy3 316, 0 i !
um .316. o ‘ ; '
! |
: R j
Horiz, Magnitude, | Magnitude, | Magnitude, IMummdc. Magnitude, [Magnitude,
Signai Phase | Phase © Phase ] Phase Phase Phase
i i
U0 316, 0 ' same ' same ! 1ame same same
Uy !.316.0 ; a | a i o 1 u
| f
sy t.316,0 | nwi ; A=t el 1 nal ns|
! i 1
u 316, 0 | )
23 : i |
usg | 3160 | | { |
1 I
Ven. | Magnitude, | Magnitude, Magnitude, :Magnitude, | Magnitude, vMasmtude.
Filter [ Phase Phase | Phase : Phase " Phase " Phase
1o 16, 0 i .553,0.2038 058,.907 ‘ 186,-2.960 .073.-3.066! 302,-0.182
i i
i 316, 0 071,-2331 | .376,-3.031 ) .088.2.496 @ .356,-0.058  .418,-2.016
fi3 316,0 283,-2.940 | .119,-3.073 2502473 2033702)  652,0.008
f13 316, 0 217,-2.787 | .492,-.008 264,-3.084 | .208,2.768 397,3.082
' |
fiq 316, 0 { .020,-1.026 . .167,.020 .841,-0.029 .248,0.410 ’ 180,-0.1458
l .
Horiz. Magnitude, ' Magnitude, | Maguitude, [Magnitude, 1| Magnitude, |Magnitude,
Filter Phase ‘ Phase Phase Phase Phase Phase
f20 36,0 £.$38,0.013 068,0.133 .233,2.854 192,-0.254|  .131,1.696
fay 316, 0 . 050,-0.595 | .546,-3.125 | .086,-0.222| .355.2.995) .138.2.819
f93 316, 0 i 491,2.868 165,-3.074 | .166,2.361 i 454,083} .117,-0.691
|
f23 36,0 l 159,284 486.0.020 .045,1.354 116,-2.017 040,-1.751
f“ 316, 0 ! 076,-1.229 | .066,3.016 475,-0.628 454,2.618 .259.2.980
t
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7.7.3 Further Results for a Target Consisting of Distributed Planar
Reflectors in Sea Clutter

The use of multiple orthogonal filters has also been investigated for
detection of a distributed target consisting of planar reflectors in rough
sea clutter. The results are given in Table 3. The signal and the first
filter in Table 3 are the same as those given by (7-26) and (7-27), and
SIR1 is the same as in (7-28).

Substituting the values of ‘]Smn { N_i into (7-53) yields the
following overall SIR values as a function of N, the number of filters
used. For a single filter, N=1,

N=1; SIR = SIR1 = 75.43 . ' (7-61)
For two filters,

N=2; SIR = 72.95 . (7-62)
For three filters,

N=3; SIR = 60.08 . (7-63)
For four filters,

N=4; SIR = 48.46 . (7-64)
For five filters,

N=5; SIR = 44.11 . (7-65)

Again, SIR decreases even though better detectability is
theoretically obtained from (7-57) - (7-60) as more filters are added.
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COMPUTER RESULT3 FOR DISTRIBUTED PLANAR REFLECTOR TARGET MODEL IN

TABLE 3

ROUGH SEA CLUTTER, USING FIVE ORTHOGONAL FILTERS

—
. SIR and
; signal/filter | nel n=2 n=} n=4 n=$
© coefficients
:[ San 7543 70.48 13.38 1.85 0.48
' Vert, Magnitude, | Magnitude, | Magnitude, |Magnitude, fMagnitude,
- Signal Phase Phase Phase Phase Phase
|l ujg 0283142 | same ame ame ame
i upy 0043142 | as s u s
RID 002,3.142 | nel o=l nel nel
uy3 004,3.142
U 009,3.142
Horiz. Magnitude, | Magnitude, | Msgnituds, [Magnitude, |Magnituds,
Signat Phase Phase Phase Piiase Phase
Y30 212,0 ame same ame ums
¥ay 180, 0 u Y u u
LPY) 578, 0 ne Gul ns} awl
Uy 105, 0
Uag o11,0
Vert, Magnitude, | Magnitude, | Magnitude, |Magnitude, | Magnitude,
Filter Phase Phase Phase Phase Phase
fi0 006, 0 026,2.8)9 011,).016 34,1 461 078,-2.452
i 0us, 0 035,0.097 010,3.134 .150,0.491 049,2.863
f12 004, 0 026,3.084 | 009,112 | .313,0.762 § .949,0.000
iy 003, 0 028,0.126 | 002,3.076 | .147,2.984 | .049.-0.906
fiq 028, 0 .007,1.226 041,3.129 .401,2.907 132,/0.999
Horiz. Magnitude, | Magnitude, | Magnitude, |Magnitude, | Magnitude,
Filter Phase Phate Phase Phase Phass
f20 340, 0 J791,0010 | .503,-3.138 1 .044,.025 012,123
! a1 856, 0 040,-1.074 1 .515,0.000 .000,0.000 .000,0.000
i f29 388, 0 604,-3.139 | 6933037 | .025,-2.538) .047,-2.989
. Y 00t. 0 063,2987 | 007,299 | .714,-0.086] .237.2.298
! T2 000, 0 009,1.341 001.,0.007 J361,-0.37121  .120.2.006
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8.0 CONCLUSION

Signal-to-interference ratio (SIR) maximization has been used to
obtain an optimum signal-filter pair for a polarimetric radar when targets
and/or clutter exhibit random polarization modulation. The results can
easily be extended to include the design of a likelihood ratio receiver for the
same problem. Considerable insight into the theoretical solutions has been
obtained by implementation and test of 8 computer program to yield the
maximum SIR and Bayesian systems, i.e., the "best" signal and receiver
configurations in each case.

Relatively simple expressions for the polarimetric scsttering function
of randomly oriented dipoles have yielded expressions for SIR in some
simple but important cases, and these expressions have been analyzed in
order to interpret the computational resuits. Some important insights
have been obtained from the SIR expression for distributed planar targets
and randomly oriented dipole clutter, i.e., for the typical "target in
chaff" problem. These insights have resulted in the design of a new
polarimetric clutter canceller (Figure 7-7 and Eqs., (7-368) and (7-42)]
which theoretically allows a polarimetric radar to "see" through chaff.

The likelihood ratio receiver is obtained by adding a set of
mutually orthogonal filters to the maximum SIR receiver. The filter output
powers ar¢ weighted and summed to implement a Bayes optimum detector
for a Gaussian signal in Gaussian interfevence. A surprising result is
that each additional filter reduces overall SIR, even though detection
probablility PD is increased more than false alarm probability PF for a
high threshold setting. This result follows from the fact that P, and PF
for a high detection threshold are dependent upon the tails of the
distributions describing the receiver output for signal plus interference
and for interference alona. SIR, on the other hand, is the mean value of
the output distribution for signal alone divided by the mean value of the
output distribution for interference alone. SIR is thus not very dependent
upon tail behavior.
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Despite the shortcomings of SIR as a measure of receiver performance,
SIR has proven extremely useful as a criterion for receiver design. In fact,
it is difficult if not impossible to specify an optimum receiver and an associated
optimum radar signal for the polarimetric case by direct soluticn of a likelihood
ratio formulation. A solution of the problem using SIR maximization techniques,
however, has been demonstrated. A computer program specifies the signal
and receiver for maximum SIR and the Bayes optimum signal and receiver,
when the polarimetric scattering functions of target and interference have
been specified. The relation of the polarimetric scattering function to tapped
delay line filter and dipole scattering models has been discussed in Sections

3.1 and 4.4.
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APPENDIX A

EVALUATION OF INTEGRALS FOR COMPUTING SIR WITH
SIGNAL AND FILTER DESCRIBED BY COMPLEX FOURIER SERIES
, AND SINC FUNCTIONS

Al Fourier Series Description

We would like to obtain easily computed expressions for the
integrals Il in Eq. (5-17) and 12 in Eq. (5-18).

The first integral is

o rod/2
: 11 - / ‘2 . sin (m¢T) ¢ | o (A1)
: : T (¢T + k-21(¢T + p-q! ~ :
__¢S’5¢/2 : : I

[H

s - . .
5 : 1 -cos x a6 '
’ 0 TendT + 2n{k~2)]12%8T + 2n{p-gli :

¢S*A¢/3 :
‘ ' (A2)
Xy = 2T (¢ +b¢/2]
= 1 1 ~ cog X . d
T J [Z7(k-2) + x1len(p-q) + x| &% °
xy = 20T[¢ ~04/2]
(A3)

Ccnsider two cases. For Case 1, k-2 = p-q. For Case 2, k- » p-q. For
Case 1, we have

x
' l - cos x
Il = ?‘f . 3 dx ] (A4)
(Hka + x)
*i

A-1




where Hkl = 2m(k-2) = 2n(p-q). Letting y = x + Hkl and using the

fact that Hkl is an integer multiple of 2m, we have
e
1, =L / 1-cosy dy . (A5)
J O 7Y 2
XMy Y

Integration by parts then yields

\ (l-cosxz) (1 - cos x,) \ A ' :
I=.-—-~[‘ - : + Si(x, + H, ) - Si(x, + H )]
. 1T x2+Hkl ..x1+dk2 . 2 | kg 71 klA
(A6)
-~ where
X A
Si(x) = / sinc({y)dy = -8i(-x) , (A7)
0 .

For Case 2 (k-% » p-q), we can use a Heaviside expansion to
thow that

-1 i -1
1 | ) (Hpq Hk?.) . (Hu Hpq)
(x + Hkﬁﬂ"+ﬂpq) X "Hki X 'Hpq

1 1 1
- - . (AB)
Hpq Hkl[x* Mg x¥ Hpq]

-
-




Substituting Eq. (A8) into Eq. (A3), we have

X2 X2
_ 1 1 - cos x _ 1 - cos x
hesmwm =8 f <+ H, 9 [ T 9%
pq ki

x + H
X k2 X
1 1
2"y *tHoq
= ["T(H - Hkl)l'l / locosy ;“ dy - / 1-cosy s d
xl+sz x1+Hp

_ - -1 . . e
= [ﬂ’l‘(Hpq Hkg‘)l [Cm(x2 + Hkl) Cm(x.1 + Hkl) Cm(x2 +H )

+ Cin(x1 + Hpq)l

(A9)
where
X
Cin(x) = / Locos x gy
x
0
g -Ci{x) * in(x) +v . (A10)
and v is Euler's constant. The {unctions Ci(x) and Si{x) can be computed
from properties given on pp. 231-233 of Abramowitz and Stegun's Handbook
of Mathematical Functions, In Eqs. (Ab) and (A9),
Hkl = 2wk - ) (All)
H =2n(p - q) (A12)
pq = °WP - a
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b3
]

1 ZTTT[¢S - A¢/2] »

X, ZﬂTlcbs + Adl2l .

The integral in Eq. (5-18) is

T +AT/2
r

1, - / SRmkep) UT

T=-41/2
r

rr+A 7l2
e-jZn(k~-p) /T

= Jank-py It
rr-A /2

-iH
= Ate

T /T
kpr sinciHy 87/(2T)!

where Hkp = 2n(k-p).

A-4

(A13)

(Al4)

(A15)




A2 Sinc Function Description

We would like to obtain easily computed expressions for the
integrals 11 in Eq. (5-19) and 12 in Eq. (5-20)

The first integral is

o
tr at/2

I1 = / sinc{m(k-% + B1)] sinc{m(p-q + B7))dt
rr-Arlz

'cr+A 7/2

., 1 crl
_ 4 / sm(-z- Hki. :_nB'r) sm[-ii{pq +‘ﬂ3‘t] a
Hki + 21B1 qu + 2n1BT

rr-ATIZ
(Al6)
where H, , and Hpq are defined as in Eqs. (All) and (Al2).
Using the identity
1 1
sin(3 Hki + 1Bv) sin(é- Hpq + uB 1)
=L cosld (M , -~ H_ )l = % cos(2mBr+ L (H , + H_ )|
2 ¢ Tkt Pq 2 2 Tkt Pq
(A17)
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and letting x = 27B1, we have

L=, o (A18)
where
x?
I = cos[% (H, - H )} (1/7B) s })i?i-l )
P Pq ThE pq + X
1 N
(A19)
and
px: cos(x + % (Hka + Hch”
112 = (1/mB) f A I R (A20)
ke Pq
b
In Egs. (Al9) and (A20),
x, = 21B(1, + 872 (A21)
x) = 2mB(x, - Av/2)y (A22)
Consider two cases. For Case 1, Hkﬁ =H ,i.e, k-2 =p-q.

pPq
For Case 2, sz » Hpq' For Case 1, Eq. (Al6) becomes

X2 1

_ 2

[ sin li (sz + ) 4

. 5 D
(Hkl + x)

1

o
—

n
:t;N
[ »~;

A-6




1 [ 1 -~ cos (Hk2+x) o

T B 2
X, (Hkn + X)
X +!-i

_1 1 ~ cos

- L [ _-—-!2 dy . (A23)
*1*Hks

From Eqs. (A5) and (A6),

1

1 [ (1 -~ cos xz) (1 - cos x,)
I.==1- - + + Si(x., + H, ,) - Si(x, +F ) .
|\ * T X, v Hy, %, ¥ A, 2 ¥ Py 1 * By ]
(A24)
For Case 2, we can use the identity in Eq. (A8) to obtain
X
2
. cos[a (Hki )l dx ]
117 2B (H 'Hk H +x H +x
Pq g P
1 1
3 .
. cos.{-g (Hkl Hpq”_ ,ln [Hpq + xl]* ln[nkl +x2] ‘
.nB(Hpq ~ Hki) Hki. + xl HPQ ntz
(A25)

To evaluate 112. we can use the additional identity

+ H )]

)1
cos{X + 3 (Hki pq

= cos(X)cos(z (Hyy + Ho )] = sin(X)sinlg (H, + o)1

A-?7




Substituting Eqs; (A8) and (A26) into Eq. (A20), we have

: 1 X5 X2
- cos{5 (H_, + H )]}
1. = 2 kR Hch cos X dx - f Cos X 4,
i2 1B (H - H R :
: { Pq Kz) A Hkl + X ] Hpq + X
: L 1
X X
el 2 2
- sm[%ﬁikl * Hpq)] sin X gx - f sin X 4.
ﬂB(Hpq - Hkl) 1 Hka + X 4 Hpq + X
(A27)

Letting y = Hkﬂ. + X and using the fact that Hkl equals an integer muidple
of 21, the integrals in Eq. (A27) can be written

X, x,+H
/ ;:105* ’;dx = / .C_‘.’E;_!dy = Cinlx, + H) - Cin(x) + H)
K., %, +H
1
1 (A28)
sin x - sin v _— - .
/ T x 9% / y o 9Y = Silxg ¢ H) - Silx) + H)
xl xl"H ’
(A29)
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It follows that

1
cosly (Hy, *+ H_ )]

I., = - [Cin(x, + H_ ) - Cin(x_  + H
12 TB(H, "~ i) 2 " Pk 1

ke

- Cin(xz + Hpq) + Cin(xl + Hpq)l

sinl% (Hy o, + H )]
“.B(Hpq -~ H, ) [S‘(XZ + sz) - Sl(xl + H

)

ke ki

- Si():2 + Hpq) + Si(:t:1 + Hpq)l . (A30)

Equation (A24) for Case 1, together with Eqs. (A25) and (A30) for
Case 2, yield the desired expressions for the integral I, in Eq. (5-19).

The integral 1, in Eq. (5-20) is

%»M/z ,
L s f G 12na-q)e/B
0,-8¢/2
o0 t00/2
~jH£q¢IB
-3
= -jH, IB
iq
4 ,-80/2
- JH, & /B
= e] 197 4 smc[uiqaw(zan . (A31)
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APPENDIX B

DESCRIPTION OF COMPUTER INPUT /OUTPUT
FOR THE SIMPLEX SIR MAXIMIZATION PROGRAM

) The input to the computer program is given by Elbij b;nlr.c&] '
E[ci]. cmn[r,¢)) » Pp(#.7), and p(¢,7). These quantities determine the
target and clutter polarimeiric scattering functions as in Eq. (3-12), where
the indices i, j, m, n are each equal to one (vertical) or two (horizontal).

The output of the program is divided into a separate section for
each type of parameter to be optimized. In TableBl, the variable parameters
are the magnitudes of the signal frequency components. The table shows
the eleven vertices of the initial simplex. At each vertex, a different set
of signal magnitudes is used. In the examplz, all or nearly all the frequency
components (¥0. ¥1, #2, #3, and #4) have the same magnitudes, but this
need not be true in general. It {s only necessary that the initial simplex
vertices span the space of all desired solutions. Since only signal magnitude
is varied, all other parameters in the table are fixed.

The best magnitudes for the five signal frequency components are
found with all other parameters held fixed. These magnitude values are
entercd at the bottom of Table Bl, under the heading "Final Component
Coefficients for Iteration #1."

The next output section (Table B2) has the heading: "Maximizing
SIR by Varying Filter Magnitude." The variable parameters are now the
magnitudes of the filter components. Since only filter magnitude is varied,
all other parameters in Table B2 are fixed. The Dbest solution from TableB1l
is carried down into Table B2 as the initial vertex (Point #1). This corry-
down procedure is used throughout the program, allowing the algorithm to
“build" on optimized parameters and ensuring that SIR is nondecreasing.




The best filter magnitude parameters are given under the heading, "Final
Component Coefficients for Iteration #1.

The iteration number has not changed becduse an "iteration" is
defined as one cycle through all the different parameter types: signal
magnitude, filter magnitude, signal phase, and filter phase. The last
parameter variation for Iteration #1, "Maximizing SIR by Varying Filter
Phase," is shown in Table B3.

The final coefficients at the bottom of Table B3 comprise the
starting set for Iteration #2, which again adjusts all parameter types in
turn. Table B4 shows the final parameter variation (filter phase) for
Iteration #2. TableB5 shows the same part of iteration #3. When the SIR
improvement between succeeding iterations is less than a small number (C.1
in this case), the optimization program is terminated. The coefficients and
associated SIR at the bottom of Table BS then represent the final result.

The algorithm may be sensitive to initial conditions. One way to
test for such sensitivity is to optimize coefficients in a different order, e.g.,
by starting with signal phase rather than signal magnitude. The first and
last parameter variations obtained by optimizing the phase first are shown
in Tables B6 and B7. The resuits in this case are siightly different, but
the SIP. values are nearly identical (compars Tables BS and B7).
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TABLE BS
MAXIMIZING SIR BY VARYING ONLY FILTER PHASE

Starting Compenent Cesfficionts for [taratien & J
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SesEXP )
J39EXP,
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JL7ExR,
L1971 ¢ L¥]
S9eEXF
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28 L1ExP
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3veExP
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L2

T4
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LT
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ie2

143
2
142
Q
143

memcivccocensFl P concvaanes

Heris Pel.
O ti9€Xr; 0.000
0.3338x#; 0.000
0. 191ExP; O 000
G 129EXP; 0. 000
O Q97€xP,; 0.000

0. 119€1P; O 009
0 333€xP; 0. 000
0 191EXP) O QOO
0 128&xr; 0.000
0.097€XP) 0. 000

O 119€XP) 0. 000
0.373€P; 0. 000
0. 191EXF, 0. 000
0 [49EXP; 0.000
0.097€XP} 0. 000

0. 1196XP; 0. 000
0. 33381#; 0. 000
0. {MEXP) 0.000
¢ 12cEXP; 0.000
0 0976XP; 0.000

0 119Ct; 0 000
0. 323616 0. 000
0 1e1€, 0 000
0. 139€1P; 0.000
0.097%x#; 0.000

0. 119849, 0. 000
0 3324KF; 0.000
0 193800,
0 126818,
0. 00010,
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0. 119€XP
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Ss
r

1, 079

Q. 123810,
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3.336
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Heriz. Pel.
0 142EP| O 030
0 139EAP; 0.C20
0.293ExP; 0.0%0
0. 138EYP; 0.020
0. 141EXP; 0. 020
0 143€xP; 0 030
0. 129€YF; 0.030
0.293ExP; 0.030
0 1J9ExP; ©.000
0. J41E¥P) 0.C00
0. 14381 0 030
0. 13%.XP§ 0.090
0.293EXP) Q.05
0 138€xP; €. 030
0. 141EXP) 0. 000
O 143E¥P, 0.000
0 139q)r,; 0.020
0. 293EXP; 0 00O
0. 1388¥P, 0.030
0. 34107, 0.030
0. 1435X0 ; 0.000
0 139€1P; 0,000
0.293K¥P ) 0. 000
Q 1308xP; 0.000
0 141€%F) 0.000
0. 143CXF; 0,000
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0. 141KKp; 0.007
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TABLE B6
MAXIMIZING SIR BY VARYING ONLY SIGNAL PHASE

Starting Cempenent Caoetficionse for lteratien & | !

Paint Comp. eecevmvccow=afignglees sccrw oos  asess coceon Filteremncmes - ———— 313
e Fregt vers, Pol. Horsz. Pel. Vers. Pol. Herirz, Pol.
1 O O.J16EXP; 0.000 O J14EXP; 0 020 O.J14SyP; 0 000 O 3I14EXP; 0.000
1 1 O.J14EXP; 0.000 0.315EXP; 0 CO0 0. J1eEXF; 0 000 O Jte&XPy 0 000
1 2 O.J14EXP; O Q00 O J1&EXP) O CI0 O J14EXP, O G000 O J14EiP; O 000
1 3 O.J16EXP; 0.000 0 J1&Eu®; 0 020 O JULLEXP; O Q00 0. J1&ExPy 0.000
b 4 0.J16EXP; 0.000 O J16EXP; 0.030 Q. JI6EXP; 0.000 0.316ExP; 0.000 0. 448
a O O J16EXP; 1.047 0 J1eExP) 0 020 O J146EXF; 0 000 O J14EXP, 0.000
2 1 O J14EXr; 1.047 0 3166173 0.020 0. J14%XP; 0. 020 O J1é%ar; 0. 000
a 2 0 J16€4P; 1.047 0. 316EXP) 0.630 O J14EXP; 0.000 O J16EXP,; 0.000
2 3 0.J14EXP; 1.047 0 J18ExP; 0 CO0 0.314€XP; 0 000 Q. 214EXP, 0.000
a 4 0.3166XP; 1.047 0.316EXP) C. Q00 0. JIAEXP,; 0.G00 O©. J14&XP; 0.000 0.73%
3 0 O0.J14EXP; 2.098 0. J16EYP; 5.020 O J6EXP; 0 000 0. J14EXP; 0,000
3 1 0.314ExP; 2.094 0.3146€xP; & €0 0. J14€XF; O 000 O 2148XP; 0 000
3 2 0.J14€XP) 2.096 0 JI16EXP; U CI0 O JIEEXP; 0.Q000 O0.3148XF) 0. 000
3 3 0.21SEXR) 2.094 O JLLEXP; 0. 000 O. J16EXP; 0.000 0. J16EXP; 0. 000
3 4 0.31682F; 2.09¢ 0.316LYP; 0.020 0.214L2F; 0.000 0.316%3¥P; 0.000 1.132
4 Q@ 0. .316EXF; 2. 142 O.J14ExP; 0.030 0. J14EYP; 0.000 O J14EXP; 0.000
4 1 0.J316EXP; 3.142 0.214KKP ;) 0 000 0.J14€YP; 0. 000 O.218€4P,; 0. 000
4 2 0. 3J1eEXP; I.142 0. 214EXP; 0.030 0. J1AEXP; 0. 000 O. J14EXP,; 0. 000
4 3 0. MaKiP; J.142 0.J148XP; 6. 000 O.J14E¥P; 0.000 0. J16€ar; 0. 000
4 4 0.2168XP) J. 142 0. 314K1P; 0.000 0. JAKXP; 0.000 0. J18KXF) 0.00Q0 §.307
9 0 0.J16EXP) 4. 18% 0. 314ExP) 0. 000 Q. JeEXP; 0.000 0 J16EXP; 0. 000
3 t 0.3165¥8; 4.10% 0.J1481P; 0.030 0.J14€XP) Q 000 O N4aL¥r; 0. 200
-] 2 0.3168XP) A, 189 0 J14EXP) 0.C0 0. JI4EXP; 0.000 O. 11 6EXP,; 0. 000
3 3 0.316K2PF) 4. 189 0 21468XP; 0. 030 0. J14EXP; O 000 0. 2148%F,; 0.000
3 4 0.J16€XF; 4. 18% 0. J16K3P; C. 000 Q. JM4LXP; 0.000 0. J148XP; 0,000 1.132
s 0 Q0 JMeEI; 3.376 0 JI4EWP; 0. 000 0. JaEXP; 0. 000 Q. J16KXP,; 0. 000
[ ] 1 0 NAEEIR) 3236 0.314K2P, 0.090 0. JGEXP; 0. 000 0. 31682XP; 0. 000"
. 2 0.216L1P; 3.206 O J168XP; 0,020 0. 216ZXP) 0. 000 0 Jtefary 0.000
3 3 0.2148XP; 9.2 0. J14EIP) 0.030 O.J16E%F; 0.000 0 4KXP, 0.000
[} 4 Q.2eRNF) 3.236 0 JN6EYPF) 0.000 0. JNI4EXP; 0.000 0 J16KIP, 0.000 0.73%
7 G 0.J18K3F; 0.000 0.31a83P, 1,079 0.314K2%; 0.000 O J14819, 0.000
? 1 0.D14EZ2P; 0.000 O0.318%4P; 1. 079 O.J14K2P; 0.000 O J16KrF) 0 000
14 2 O0.J16KXF; 0.000 0.J168XP; 1. 07¢ C.J16LXP) 0.000 0 2aLxF, 0.000
r 3 0.J4EYF; 0.000 € JN4KIP; .07V 0. J16EXP; 0.000 0 Ji1eL2P; C 00O,
b4 4 0. 2K1P; 0.000 0.2148x0) .07 O, Olﬂl’; 0.000 0. 3168X7, 0.000. 0.763
[ ] 0 O.J1aRX?, 0.000 0.3168xP; 2.197 "o. AeBIF; 0.000 0 JIMLIP; 0. 000
[ ] 1 0. 21eK1F; 0.000 0.316829; 2.137 0.31487P) 0. 000 0.21482F,; 0.000
8 8 0.21a81%; 0.000 *0.31081P; 3. 137 0. 3\“"; 0.000 0.218829, 0. 000’
[ 3 0.31451r; 0.000 0.3168xr; 3.197 0.310E¥F,; 0.000 0. 314828, 0. 000
] 4 02NV, 0.000 0.31481P,; 1.197 0.310E2P; 0 000 0.J14810, 0.000 (.183
e Q 0. MY, 0. 200 0.3148¥F; 2.2% 0.2148X7) 0.000 C. 18812, O 000.
M I 0.314€1%; 0 200 0. 2M4RER; ) 336 O. JNeEYP; 0.000 O 214L1P, 0.000
* 3 0.214€1F; 0.000 O0.D16K1P; 3.226 O, JMNP; G 000 0 48P, 0.000:
v 3 0.316810, 0.C00 0.216858; 3. 334 O. J16EN; 0.000 0. 10820, 0. 000
L 4 OO16B1P; 0.000 0.J14KUP) 3. 836 0. 314849 0.000 0314410, 0.000. I.303
10 0O 0 J16k1P, 0000 O JiekAP) & 14 ©C. NNekrP) 0 000 O J14&sP, 0 000
11:] 1 0%1ekr2) 0000 0 J1484P; ¢ 314 O 210S4P,; 0 000 0 214K, 0 OO
10 2 0 J1a81P, 0000 O 24EEP; & 214 O JIeETE; O 000 O J16kiP,; O 000
10 J C.Jiskrr; 0000 O :uﬂn 4 3348 0 JNeKRP; 0.000 0 Jiakrr, 0 OO0
10 4 0.3iek1r) 0000 O J16Ex™; 4 314 0. J14%2P; 0 000 O J1ad2Pr; 0 000 1.072
i O 0.218820, 0 000 » JieCxP) 3 395 O 2'ef2P; 0 000 O NekP; 0 00
H £ 0 JlaE1P, 0000 0 JiekxP) 3 393 Q Jiagrr; O 000 0 214€2P; 0 000
1 3 0 eEEP) 0 000 O Jieker; 9 393 O JALIP,) 0 000 0 J1alsr) 0 000
it 3 0 dakIr, 0000 O JiIagEP,; 3 393 O J1aE1P; O 000 O N4EIP, O 000
(1] 4 019, 0.000 O J1a8sP; 3.393 O. 21081, 0. 000 O JiakaP,; 0 000 0.739
Pinal Cospsnunt Cosféecrerts fgr fteration & 1
Pesnt Cenp anensesavesiafigag|ees «i vavesa wwiowi ua snsf| | fgPumer ns nanunau SIA
o Frage vert Pel Neei( Pel. vary Pel Hariy  Pel.
O 0 0 J1ak1P; I 142 0 NACIP; 0 030 O Jteklr; O 000 0 JteK1P,; 0 000
Ope t O J1ek1P; 3 142 O JIeEAP; O CI0 O JiafZlr,;, 0 00 O Jiakir, 0 000
ot 2 0N, D162 0 2ak¥E,; 0 820 O JIeLEF; O 000 0 JiektP,; O 000
Ot 3 0 akrP) I 142 0 JINESP, 0 230 O JNeLIF; 0 000 O JedsP; O 000
718 ¢ ODJ1ektr; 3 182 0 J1a8sP; 0 000 O agal; O 000 O ML1P; 0.000 1. NY
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TABLE B7
MAXIMIZING SIR BY VARYING FILTER MAGNITUDE

Starting Companent Cosfficienty ¢sr lteration & J
L

Pain

Poin

(1R
Qst.
Ot
Qoe,
Oet.

Stgnal -
Vers. Pol. Horis. Pel.
Q. JO4EXP; 1. 142 0. 170EXP; O 030
O 41C0EXP; 3. 142 O O94EXP; O CJ0
0. 623EXP; 3. 142 0 296EMF; O 0D0Q
Q. 232ExXP; 3. 142 O O092EXP) O 000
0. 264EXP; 2. 142 0. 137€xP) 0.030
0 J04CXP; 1 142 O 170EXP) O 020
0. 410EXP,; 3. 142 O O%4EX?; O G20
0. 62JEXP; 3. 142 O 294EXP,) O QX0
0.392EXP; J 142 0. QV2EXP; O 000
O 264€xP, J. 142 0. 197€XP; 0. 000
0. JO4EXP; 3 142 0 17CEXP; O 030
0. 410EXP; 3 142 © O094EXP; 0 CO0O
0. 423E4F) 3. 142 O 9GEYP; 0 030
0.392€xP, 3. 143 O QYIERP; O 020
0. 64ExP) 2. 143 0. 137€XP; 0 020
0. J04EXP; 3 3142 O 170EXP; O CQO
O 410EXP; 3. 142 O OWeENP) O 090
0. 62IEXP ) J. 143 O 296EXRP; 0 030
0 J%2ExP; 2. 142 0. 092EXP,) 0.000
0. 264E2P; 2. 142 0. 137€4P; 0. 020
O J04EXP) . 142 O 17 k4P 0,020
0. 410EXP; J 142 O 994€(P; 0. 020
O 42JIEXP; 3 142 0 ANEYP,; O QU0
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ON MULTI-CHANNEL DETECTION OF RANDOM
SIGNALS IN GAUSSIAN NOISE

1. INTRODUCTION.

In the classical books Van Trees (1], 2] has presented the single channel
detection theory when signals are deterministic or have random parameters.
Extension of these works to multi-channels case has received little attention.
An earlier reference is (3] in which Lindsey derived the optimum receiver and
its performance for independent Rician fading multi-channels.

Vannicola (4] introduced a natural extension of the above single channel
model for the two-channel radar detection problems. In his model, Vanni-
cola used the scatter matrix B to describe the characteristics of each channel
and the correlations between two channels. These models are important for
both radar detection and communication problems. Our revisit to Vanni-
cola’s model reveals that, for some of the important detection problems, the
extension of single channel results to multi-channel situations is not straight-
forward and requires additional techniques to yield desired expression for the
optimum receiver.

In this paper, we consider one of the important cases of such multi-
channels problems, i.e., the slowly fluctuating point target model when the
noise is white or colored. Using the maximum likelihood criterion, orthonor-
malizing procedure, and eigen value-eigen vector approach, we have derived
the optimum receiver for the two-channels case. Extension of these results

to more than two channels is straightforward.




2. OPTIMUM RECEIVER FOR SINGLE CHANNEL CASE.

This section contains a brief summary of single-channel detection results.
These results are well known and most conveniently available in Van Trees.
The reason to reproduce some of these results here in that it allows an easy
reference as well as a comparison with multi-channel results derived in the
remaining sections.

For the detection of slowly fluctuating point targets in the presence of

additive white Gaussian noise, Van Trees derived the statistical model as

Ft) = VEOf(t) +0(t) 0<t<T:H, (2.1)

(t) = w(t) 0<t<T:Hg (2.2)

4t

where 7(t) is the complex envelope of the received wave form, b is a zero-mean

complex Gaussian random variable which satisfies
E(]b?) = E(b*) = 203, (2.3)
f (¢} is the complex envelope of the transmitted signal with unit energy, i.e.,
[1rtipee = [ rer e =1, (24)

w(t) is a zero-mean complex Gaussian white noise process which is indepen-

dent of b and satisfies
Elw(t)d*(u)] = Nob(t - u). (2.5)

The optimum receiver is constructed by using the complete orthonormal
(C. 0. N.) set expansion, and by finding the sufficient statistic. It turns out

that this sufficient statistic has the form
T _ .
.= / (47 (0)de. (2.6)
, 0

C-2




The optimum receiver computes | R, | and decides acceptance or rejection of

H, depending upon u
i

|Ry|? 2 2.7
<
Hy

where r* is called the threshoid. This structure of the optimum receiver is

graphically presented in Figure 1 below:

|1l — - Hy
- | 1 1
#t) =@ _—{ | -
f(¢) — Hy

Figure 1. Optimum receiver of Single-Channel Case.

3. OPTIMUM RECEIVER FOR MULTI-CHANNEL MObEL.
WHITE NOISE CASE.

For the multi-channel mode!l derivation of the optimum receiver is
relatively complicated. For simplicity in presentation we consider the two-
channel case first.

The statistical model for two-channel case can be formulated as follows:

() =bf(t) + w(t) 0<t<T : H (3.1)
0gtgT

£(t) = w(t) Ho (3.2)

where the vectors r, [ and w and matrix b can be expressed in terms of their

components as follows:

. - f
o= [0, e - [49].

[wx(t)l P = [bu bu]
wa(t)] ' = bay izl °

C-3
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The vector 7(t) is the convex envelope of the received wave forms, b is the
scatter matrix of the target, z(t) is the convex envelope of the transmitted

signals and its energy equals:

T T T
E= / O] dt = /Q (O)de + / fale)2ee
=E + E, (3.4)

where E, and E, are the integrals of |f1(t)]* and |f2(t)|* and represent
energies in channel ll and 2, respectively. (For amplitude-modulated signals
actual transmitted eneryy equals E/2). The zero-mean vector white noise
process 1(t) is independent of the scatter matrix b and the two components
of the vector @(t) are independent of each other. Moreover, it is assumed
that the two components have equal spectral densities in the two channels,

i.e.,

= Nob(t - u)l. (3.5)

Following the procedure of deriving the optimum receiver for the single-
channel model, we define a vector C. O. N. set {¢ (t)}{2,. Since thisisa

C. O. N. set, the elements Q‘.(t) satisfy

s0= 50

and
T T
[[&6 goe= [ duae=s 59)
0 0
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where t denotes complex conjugate and matrix transpose. In terms of 8.(t)'s

the received vector 7(t) can be written as

k
H(t) = lim ) g, (t) (3.7)
1=1
where
T T
Fi= / iT(t)g; (t)at = / o' (t)E(t)dt (3.8)
0 0

From the assumptions, made earlier, on the process 7(t) it is easily observed
that the coefficients #;'s are zero-mean complex Gaussian random variables,
If we can choose the C. O. N. set such that only k of the coefficients are
dependent on which hypothesis is true and if these k coefficients are statis-
tically independent of the other coefficients, collectively they will give us a
k-dimensional sufficient statistic. The coefficients 7,'s will satisfy the inde-

pendence condition if
E[F.F}lH;] =0 forl=0,1 andforallsis) (3.9)

On Hy the desired condition is satisfed due to the fact that 7;'s depend
oaly on the white noise process. Ou H,, the correlation between #;'s can be

written as:
EfFF B = / / 3K g (wdt du + Noby (310

where

K, (t.v) = ERF(] ()T (3.11)

is the kernel of received signal components. This kernel is known provided

all statistics of the scatter matrix b are known and the transmitted signal




wave form 2(t) are given. From (3.10), 7,'s are uncorrelated if and only if

the functions in the C. O. N. set satisfy the integral equation

// é;t‘(t)K,(t’u)éj(u)dt du = Aibij,

or equivalently

/ K, (t,0)¢ (u)du = Mg (2). (3.12)
This last expression shows that if the eigen functions 5-’(‘)% and eigen val-
ues A;'s can be solved, then the construction of the likelihood ratio test is
straightforward. In other words, the likelihood ratio is given by

A(R) = P [E-;___"IH‘] = lim ey P[}?‘IH’} };l n.
k=0 P(R,|Hq] k—oo I'IL: P[R;|Ho) !?o

(3.13)

The probablility density functions of the complex Gaussian variables as
appears in (3.13) are given by
P(R{H\] = {x(No + A)}~ezp(=|R:l*/(No + \i)) -
-’1
P{Ri|Ho| = {xNo}~'ezp{~|Ri|*/No}.

Substitution of (3.14) in (3.13) and then taking its logarithm and further

simplification results in the following log likelihood ratio test

k K '
IR = lim ML-—lR.P ;’1 (3.15) '
k=00 &t No(No + Ai) ;o '

where 4 = lnn + ¥ In {(No + A)/No} is the decision threshold. If the
number of nonzero A,'s is infinite, then construction of the optimum receiver
according to (3.13) is impractical, and instead we must find its closed form

representation. For the single:channel model it was straightforward to solve
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(3.12) because the function f(u) can be separated from the kernel, i.e., in

the single-channel case
Ki(t,) = BB () f(w)B*] = BB F(6)*(u). (3.16)
Due to this simplification the integral equation (3.12) can be written as
- 8 - T "~
B0 [ 7w = xaio) (3.17)

It follows that a solution of (3.17) is given by ¢,(t) = f(t)/\/& and the
associated eigen value A, =,e¢E(|5|’) = 20fe; = ¢,. Any other function
3;(2),:‘ = 2,3,... which is orthogonal to éx(t) is a solution of (3.17) with
zero eigen value. Thus, in brief, the single-channel case is straightforward
due to aforementioned simplification and the corresponding log likelihood
ratio statistic is
.-
No(No +¢,)
which can also be written as (2.7). - |

|Ry|?

For the multi-channel case, in general, the kernel X(t,u) cannot be writ-
ten in the form of (3.16). Hence we cannot derive the sufficient statistics in
the same way as in the single-channel case. In this paper, we first consider
some special cases which lend themselves to easier solutions. Our next goal
is to show that it is possible to extend the results so obtained to a gen-
eral setting and thus obtain the optimum detector of Gaussian signal in the

presence of white or colored noise.




CASE I Identical Signal Envelopes.
Suppose that the twe transmiited signals, in two different channels, have

identical envelopes and may dier only in their energies and phases, i.e.,

- 3 r g SI
i) = [’;gg} - \j;} 3(t) = [ﬁjﬁ: :,-3,} () = 450)  (3.19)

where E; and E; are the energies and §; and 8, are the phases of fy(t) and

fa (). respectively, and s(t) is a real valved function with unit energy. Thus,
T - -
B = / it (=01
0

~and (3.19)

T
/ s*(t)dt = 1.
0

The signal components in received wave forms can be written as

bf(t) = [23 ﬁ::} {‘/\gf :j:]s(t)=zlgl(t)+zggz(t) (3.20)

23 = by VE 6% + byy/Erei® = 5] A = AT,

b b
we (3] wne 2]

We observe that ¢ (t) and 4,(t) are orthonormal functions, the signal process

éz (t) is a two-dimensional vector in ¢,, and ¢, plane, and its components




zy and 73 are random variables. These two functions, ¢ (t), ¢,(t), can be

augmented into a C. Q. N. set. In summary, it is possible to expand 7(t) as

o 2
jfj P )= LR + D wg ) Hn (32

L}:ﬁg () =) g, (t) | : Ho (3.22)

where it is important to note that for ¢ > 3, all r;’s are independent of the
hyj_;otheses H, and Hy. Because of the independence between b and w(t) the
first two coefficients r; and r; are independent of the remaining coefficients
ri = w;,t+ > 2. But r; and r; are not necessarily independent of each other.
In any case, this does not prevent us from obtaining the likelihood function

P(R|H:| _ PRy, Ry|H))

A(R) = P[R|Ho| = P{Ry,R2|Ho|’

(3.21)
The joint covariance matrix of ry,r; can be derived as follows:
Elrir}|Ho| = E| / / #1(0ut)! (u)g, (u)dt du
= / A 81 () Nob(t = u)}g, (u)dt du
= Np /0 ! Q{(t)g).(t)dt = Nobi; 4,5 =1,2.  (3.22)

In a similar manner and due to independence of z; and w;, 4,5 = 1,2 it is

observed that

E["i’;‘IHll = E[I,‘I;] + E[w.-w;]

= E[pT AA'S]) + Nobij. (3.23)

Cc-9




Thus, R = (Ry, R3)7 is a zero-mean Gaussian random vector whose covari-

ance matrices are given by
K, = E[RR'|Ho| = NoI (3.24)

and
K, = E[RR"|H\| = E[s4A"b") + NoI
(3.25)
= .I.{.a + NOIa

where X, = E[bAA'b!] is the covariance matrix of the received signal com-

ponents.

The matrix X, may be diagonalized by a unitary transformation T, i.e.,

T'K,T = [‘“ °1 (3.26)

0 k3

where T = [C,!C,| is 2 2 x 2 unitary transformation, u; and u; are eigen
values of K ,, and C, and C, are the corresponding eigen vectors. Using thé
fundamental theorem of linear algebra we then expand X,, K, and X, in

terms of eigen values and vectors as shown below.
K, =mC,C} + uiCyC}

Ko = NoC,C! + NoCyC} = NoTIT!
K, =K, + Ky = (1 + No)C,C} + (3 + No)CaC}

- By + No 0 t
oz [m MNO]T

The above results also allow us to write the inverses

(3.27)

C ’ A 0
K'=T o ? ™, Kt=T|' oa-m LTt (3.28)
0 "ﬁ; &o-ﬂl:-

o

Substitution of the joint Gaussian probability density functions

P|R\Ry|Hy) = (2x) 3| K)| "/ 2ezp(-R'K[ ' B),0 = 0,1

Cc-10




in (3.21) and simplification of its logarithm gives the two-channel log likeli-

hood ratio

IR=B.t(K_EI—K1_1)_@=(RtT) GT*‘-%‘EW 0 (TfR)

Ba+No

2
= i 12 o
> Gl 529

: ¢! R
Y=TIR=[C, ! CJ)IR=| % &, .
Y=T'R=[C, : C|'R l:g; R] (3.30)

The R vector is derived by correlating the received waveform with the trans-

mitted signal s(t), i.e.,

=1 ST0ee [ oT0m0ar
/ s()et)de. (3.31)
0

Hence, the optimum receiver for the identical envelope case has the form

given in figure 2 below.

1

f" "l
!

l.‘z |Y|l My ‘
‘.(é) I (' . t qg(“n’“b}
AN ,LS , ‘Tm.]‘\\ L—p
° .
Y, T MHa
X(ﬂ F |1 \Yx\,{ No ( Py y) |

Figure 2. Optimum Receiver for Identical Envelope Case

Using the new orthonormal functions

¥,(t) = Cys(t), 1=0,1

C-1l




gives

T
=/ _;{;_‘t(t);(t)dt l=0,1
0

and cor.:quently the optimum receiver has the form

Matrix

;@_,__ [ - e
1o

Figure 3. Another Form of Optimum Receiver for Identica.l‘Envelope Case

L

CASE II. The Orthogonal Envelopes Case.
This is another extreme situation in which we assume that the trans-

mitted signals in the two channels are orthogonal. This implies that

T
/0 L) f3(8)dt =

Hence the signal comonents of the received waveform can be written as

o= (3 ta] [0

= baa

o T o ] o 4] o (3]

~b1x\/-_¢ (t) +bu\/—¢ +du\/_¢ (¢) +"’32\/E;¢ (¢)

[ 0 A
4.0= 7 _f‘ét)} 0= 7p: [fl(:)]' &0 =TE”"[ ()]

l 0
L (t) = - f’ (t)

C-12




It is easy to verify that ¢ (t),4,(t),¢ (t), and ¢ (t) form a set of orthonor-
mal functions. They can be augmented to a C.O.N. set. Using this C.O.N.
set, it is possible to expand #(t) and then verify that the coefficients r;'s
are statistically independent random variables for ¢ > 5, and that they are
independent of the hypotheses H, or Hy. As for the coefficients ry,rs,r3,
and rg it can be seen that they are statistically independent of r¢’'s ¢ 2> 5, \
and constitute a four-dimensional sufficient statistic.

Let R = (r;,rz,73,74)7. Then the logarithmic likelihood ratio can be
written as

Hy

Ir =RYKS'-KTHR 2 4
Ho

where, in this case, both X, and X, are 4 x 4 matrices and

Ky=Nol, K,=K,+Ko=EXX"+Nol

] T Aks
X=0buvE, buvE, buvE:, bavE).
As in case I, the statistic g can be written as

1% ] ha by ]
+ No)No (pa + No)No' (us + No)No ™ (e + No)No'™

lg= Y'dlagonal[(

—Z(#;'*'NO)N l llz

where

_K:I B [C ]tR (YthYlei)T'

Here, as in the previous case, u;'s denote the eigen values and C,'s denote the
corresponding eigen vectors of the K, matrix. The optimum receiver for this

case has the form given in figure 4, where a; = i/ {(#s+No)No}, i = 1,...,4.
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% Y,
—’C’g——— § 1 Makrx M

T 3
b BAE

% Y4
'Q‘g { *‘—4 1«

Figure 4. Optimum Receiver for the Orthonormal Envelopes

It is useful to note that unlike the identical envelope case, here we have
a four dimensional sufficient statistic. Both cases give correlation receivers.
As long as all statistics of the scatter matrix b and the energies of the trans-
mitting signals are known, it is easy to derive the structure of the optimum
receiver which requires solution of some matrix eigen values problem.

Knowledge gained in this case can now be employed to obtain the opti-

mum receiver in the general situation. This case is considered below.

CASE III. The General Model.

In general the signal components in returned waveforms can be expressed

C-14




Whenever the additive noise is colored, a possible solution is obtained
by first applying a whitening filter and then using the results known for
the white noise case. We follow the above approach to solve the problem
in the multi-channel mode! also. More specifically, let the model for slowly
fluctuating point target in the presence of colored noise be given as follows:

(1) + m(t) + w(t) = bf(t) + =zt) : H
{ n(t) + wlt) = n(t) : Ho
Then, we can design a whitening filter hy(t,u) such that after passing
through this filter, the noise n(t) will become a white noise process with

a height of spectral density 1. Thus, if

n,(t) = /Ew(t:“)ﬁ(u)du

then
E(n.()nl(u)) = 6(t - u)L

After passing through the whitening filter hy (2, u), the received waveform
r(t) becomes r,(t) where
bf.(t) + no(t) @ H
r.(t) = {
n.(t) : Ho
and

fu() = / ot ) £(u)du.

Results of Case III, when applied to r.(t), given above, give us the desired
optimum receiver. The optimum receiver has exactly the same form as given
in figure 4 except that all expressions are replaced by their starred versions
which identifies that we are dealing with the fltered process. The whiten-

ing filter A, (t,u) is obtained by solving a matrix eigen value problem that

C-15




depends on the statistics of the n.(t) process. Hence, the colored noise case
can be handled only if statistics of the colored noise are known. The nature
of the equation to obtain h,(t,u) remains the same as for the single- channel

case.

4. CONCLUSIONS.

In this paper we have developed the construction of cptimum receiver
for the slowly fluctuating point target in the presence of white or colored
noise. It is concluded that, in general, in the case of the n-channels model,
n? matched filters (or correlations) are required to obtain the receiver. The
matching is done with the orthogonalized signals instead of the transmitted
signals. The optimum receiver computes the weighted sum of the outputs of
matched filter. These weights are such that the risk in detection is minimized.
We do not evaluate the performance measures of these optimum detectors.
Howevaer, it follows from the distributional properties of the summands that
these measures can be derived in terms of weighted sum of chi-squares. When
the number of channels, n, is large these performance measures can be ap-
proximated by normal. In general, approaches discussed in 1] and (2] are
applicable.
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