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e ROBUSTIFYING THE KALMAN FILTER;

P

, Protection Against Symmetrically Straggling Measurement Errors
0

35, D. P. Gaver

e P. A. Jacobs

h

o 1. INTRODUCTION.

o

;" Tracking and prediction algorithms based on simple Gaussian (normal
W distribution) measurement errors and structural models are commonly used in
- practice under the name of KALMAN Filters. If (a) measurement errors are not
KD suitably Gaussian, e.g., if occasional outliers occur or (b) true structural

behavior is not simple, perhaps displaying apparently discontinuous behavior
caused by unfavorable sensor-target orientation, then traditional filter
performance may dramatically degrade. In this paper, we will propose and
" study procedures based on an elaborated model of the KALMAN:-type but with
o the measurement errors coming from a family of possibly suitable non-Gaussian
3:"," distributions (e.g., Student-t) to represent, and suitably compensate for more-
thick-tailed-than-Gaussian measurement error, i.e., distributions with long
straggling tails having the tendency to produce symmetric outliers.

X

In particular the basic stochastic model considered here is

»
»
»
) On =6p.1 + o (1.1)
2 Yn =0 + &g (1.2)
>
N
¢ where {wp]} are independent normal/Gaussian random variables with mean O
L™ . . . .
/ and variances {1,} and {€,) are independent random variables having mean 0.
The random variable 0y, is unobservable. The random variable Y}, is interpreted
.~ . . - .
b as the observation of 8, made with measurement error €q; €p is not Gaussian,
- E but controllably long-tailed. The problem is to estimate 6, from Y1,..., Y, in
iy the simple recursive fashion that characterizes the classical KALMAN filter.
.'% Expression (1.1) is a simple random walk and does not represent very
~:: interesting dynamics, but does provide suggestive illustrations.
R In the next, or second, section, we will describe a procedure, the ALMA

(standing for KALMAN with outliers suppressed), which is based on a model in
which the components of the error sequence {€,} have a Student-t distribution.
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In the third section, the traditional KALMAN procedure will be
described. It is based on the assumption that components of {€,} have iid

normal distributions. Finally, a robust procedure due to West [1981} will be
described.

In section 4 results of an extensive simulation experiment will be
presented and discussed. The simulation experiment compares the various
procedures. The results indicate that the ALMA procedure is significant'y :
better than the KALMAN when the true measurement error distribution is
Student-t. Further, there is not much lost in using the ALMA procedure instead
of the KALMAN when the true measurement error distribution is normal.

2. THE ALMA FILTER AND RELATED PROCEDURES.

While many measurement errors of physical quantities are approximately
normal, especially "in the middle" of their distribution, there can well be |
thicker-than-normal/Gauss tails and also occasional extreme outliers; that these ‘
can have seriously degrading effects in regression-like problems has been the
subject of considerable research; we cite books by Mosteller and Tukey (1977),
Huber (1981), Hampel (1986); in the time-series context the article by Martin and
Yohai (1986), which contains many references; also lately the articles by West
and his associates (1981,1985); it is to West's approach that our methodology
should best be compared.

One way to model these features is to extend the tails of the normal by
continuous scale mixing. Such an approach can lead to the Student-t form, and

to many other useful forms as well. We will assume here that {€,} are
independent random variables, now having in the Student-t distribution with
mean 0, scale op (not the standard deviation) and d degrees of freedom; that is,

d+1

217-
=c(d)—| 1+ 2, 2.1
Pg () =c )Cn[ (on) d] (2.1)

Let y; denote the ith measurement and y" = (yy, ..., y,). Assume that 8, _
1| yN-1 has a normal distribution with mean m,,_1 and variance Cp.1. Since wp is
assumed to have a normal distribution with variance t,, 6, y™ ! has a normal
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distribution with mean mp_1 and variance C:=Cn-1+1:n. Thus, from (1.1), (1.2),
and (2.1)

P {6hedB,Y e dy | Y1=yts. Yn-1=¥Yn-1)

2
-mn.1)2 0-
=;.;xp{-%(%—-l§(d+l)ln[l ;;’i) %{}}dedy 2.2)
n

- 2
~Kexp[ 5 CED L L o)) aaay

where the approximation replaces the expression in the exponent by an
approximating quadratic in 6.

2.1 The ALMA Procedure,

The ALMA procedure provides a Gaussian approximation to the
distribution of 6, | y", but one that emphatically differs from the classical linear-
in-observations form. Following an argument in Gaver et al. [1986],
differentiate both sides of (2.2) with respect to 6 to obtain

O-u(y) O-my; d+l O-y 1
CZ)’) B C” + d 0,2 0- 2 1 * (23)
n n 1+ (__x) a
On

Equating the terms involving 6 results in the following equation:

Accession For

1 1 1 i
8y == + W)= NTIS GRAXI g (2.4)
SO N DTIC TAB
n n Unannounced 0
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where the weight

wy =S — . (2.5)

0- 1
Mok

Furthermore, equating the constant terms results in

=l 4w (2.6)
C, op
The ALLMA procedure approximates 0, | yn by the normal distribution
having mean
1 1
m =G |m  — + w(y)y5 2.7)
n [ n C: n’’n 0'21]
and variance
1 17"
Cn=|—— + w(yn) = (2.8)
n |:C: ¥n O’Zn]
where
w(yp) = d;l L T (2.9)

Note that the weight w(y,) involves the unknown 6. One implementation
uses approximate weights of the form

wi(yn) = &1 - (2.10)
1+ YnMap) k
On

When k=l, m,_; is used in place of 0 in (2.9).
When k=-}, 0.5(mg_1 +Yp) is used in place of ©.
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The basic ALMA procedure is to evaluate wy(yy) and then use it to find

e
- -

-1

" ' 1 1

’ Co=|=7 + wklyn) % (2.11)
\ $ I:Cn oﬁ]
\" < and .
’l .

| m = Cp (2L + Wk(yo;)yn : (2.12)
K Ca n
:2 The point estimate of 8, given yn is 8,=m,, and an estimate of the variance

of 8 is C,. Thus the procedure provides a particular Gaussian posterior

approximation. In other similar contexts, non-linear filters for example, it has
o been suggested that the procedure (2.10) - (2.12) be iterated with the newly-

«.j computed m,, replacing m,_y in (2.10) - (2.12) in each iteration. In the
~ simulations 0, 1 and 2 iterations were implemented, and the results compared.
R 2.2 The Biweight.
)

3.3 The ALMA procedure is an iterative reweighting procedure. In the

s ordinary regression context another weight has been suggested: the so-called

: (Tukey) biweight, cf. Mosteller and Tukey (1977). In our context, the biweight
e procedure can replace the weight wi(y) in the ALMA procedure with the

‘.. biweight

»

¥ -1272 1N

‘;S wa(y)= [l -k ((}"mn-l{aon‘\’ajf | ) ] if k [(y—mn_l{acn‘\fn l J <1 (2.13)
)

SN 0 otherwise.

s The variance of a Student-t distribution with d degrees of freedom and
b . d . . . . N

- scale 6 is 0 I3 if d>3, otherwise being infinite. Hence the (bi)weight wg(y) uses
= the measurement y if | y | is within a standard deviations of m,,_1, the estimate of
; 6n-1- The weight is zero if the deviation is greater.

:?,’E , As was done in the basic ALMA procedure, 0, 1, and 2 iterations of
(2.10)«2.12) were tried, with wg(yy) replacing wy(yy), for values of a=5,7,9
i and k=1, 0.25.
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2.3 Aspects of the Likelihood Procedure.

It is possible for the likelihood function (2.2) to exhibit two local 8-
maxima. In such a case, the likelihood procedure approximates the local
maxima and chooses the one which globally maximizes the likelihood.

To examine the details let

d
f(0) = aalnP ( One dO,Yne dy}

-1
2
-(6-maq. - -
fem oot 2],
C On 02

n n

Now it is clearly possible for f(8)=0 to have multiple roots. To be
specific, f(8)=0 for those O satisfying

0= 93+92(-2y-mn_l)

+6[o':d + y2+(d+l)C: + 2ym“_l]

2 #
+ [-mn_ Ohd-m y -(d+1)nd].

The properties of this cubic-in-8 equation can be deduced from classical
results.

- Al



: Let

' 4
I D= ( 'm"'l) (2.16)
:0 0"
-
D 2

2 ct ct

, + (Yﬂ"—L 2d2-5d(d+1) — - —(d+1) | —
N On 2 4 2

Y n n
N
|“‘
b 3
: c,
3 +] d+d+) = | 5
N 0’;;
!
o
v, .
then if

o
! 2 D>0 (2.15) has I real root and two conjugate imaginary roots;

v
L
& D=0 (2.15) has 3 real roots, at least two of which are equal;
o D<0 (2.15) possesses 3 real and unequal roots.
AN
D Note that if d=e so that €, has a normal distribution, then certainly D>0
o and (2.2) has a unique maximum. If d<e and Cﬁof is small enough, then D>0
3-:: and once again (2.2) will have a unique maximum. If d<e and Cflo;‘z is large
-

»

! 6v3-10 .
:\’3 cnough (actually, larger than ( \[d—+1 )d = d4fl)’ then D<O for an interval of
- 2
fl.:, values of (y-m,;) and (2.15) will have 3 real unequal roots; in this case (2.2) will
e have two local maxima.
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The likelihood procedure computes D. If D20 it uses the ALMA
procedure with weight

1
2
wk(y)J’%‘[u(";“’““) —d‘i] 217

to compute 68,. If D<0, then two candidate estimates 6,, and 6, of © are
computed. Both estimates are obtained via the ALMA procedure (2.7)-(2.9).
One approximates weight (2.9) by setting 6=m,_; as in (2.10); think of the result
as prior-dominated. The other approximates weight (2.9) by setting 6=y,so that

w(y) = ddil-; the result is data-determinated. The likelihood function is then

evaluated at each value of 6:0,and 8, The quoted estimate of 8, is st equal to
the 6, that comes closest to maximizing the global likelihood; the estimate of the
variance is set equal to the corresponding C,,.

3. THE KALMAN AND WEST PRCCEDURES.

In this subsection, the traditional KALMAN procedure will be described
for the model (1.1)-(1.2). A procedure proposed by West (1981) will also be
discussed.

3.1 The KALMAN Procedure,

The KALMAN filter finds the estimate 8, of 8, which minimizes the
conditional mean square error of (9,,-9,‘) given yn. If {€,} are independently

normally distributed with mean 0 and variances {Y,}, then the KALMAN filter

can be viewed as a Bayesian updating procedure; see Meinhold and Singpurwalla
(1983).

The Bayesian KALMAN procedure assumes 8,_;ly™! is normal with mean
my,.; and variance C,_,. Thus, from (l.1) 8,ly™! is normal with mean m,.; and
variance C:-—.C,,_, +1,. From (1.2)

(0yma)) 1 (v00)’
P(8,edB,Yaedy | y™1) =K exp % "-m:'l 12- I n 0dy (3.1)
Cn YH
s A A A R A S O

@,
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-chp{z[—+—1 —ﬂ—}- XL -—+—) jl }d@dy. (3.2)

Thus 6,|y" has a normal distribution with mean

mn=Cn{mn‘;'1' + y"n'] (3.3)
Cn Yn
and vanance
1 17!
cn=[—# " —J . (3.4)
Cn Yn

The estimate of 8,, given y" is then
6, = mn (3.5)
and an estimate of the variance of 8, is C,,.

Comparing (3.3)-(3.4) with (2.10)-(2.12) indicates that, if y, is close to
my,_1, then the ALMA procedure will closely resemble the KALMAN. In

particular, if yn = 6, and d—oo, the 2 estimators are identical. However, if y,, is

far from m,,_1, then the ALMA procedure will tend to discount that observation,

relying on its estimate of 6,_; to strongly influerce its estimate of 6,. This
behavior implies that the ALMA procedure will be less quickly responsive to
changes in the values of 6, than will be the KALMAN. This is the price paid for
robustness to outlying measurement errors: KALMAN treats all changes in
observations as representative of structural ( 0,) changes; ALMA is more

tentative. Of course ALMA may be tuned towards KALMAN by increasing the
d-value.

3.2 The West Procedure,

AT TS DTSR CE T S A ~p
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West proposes an estimation procedure for 8, given y" in the case in
which the density Pe,, is symmetric about 0. In the special case in which Pe,, is

normal, West's procedure reduces to the KALMAN filter.

Once again, assume 6.1 | yn-1 is normal with mean my,_; and variance

. . . #
Cp_1 so that 6,lyn-1 is normal with mean m,,_jand variance C,,=Cy,_14 Ty,

P(8 €db, Ynedy|Yi=y1,..Yn.1=¥n1)

=Kex[{J-(6~mn n? +ln pe (y- 9)}&)0/ (36)
Cl’l

(e . )’ )

1 2 ]
=~ Kexpy ~(6-mn.1)" — o (ln P (y-mn.1) + 8(y-mp.1)(8-mp.y) - G(y-mp.1)~——5—"—

(3.7)
where a Taylor expansion provides
B0 =3 R W (3.8)
-d2
G) = 757 R (- (3.9)
Completing the square in (3.7) results in
P [0, dB,Y e dy | Y1=yi..., Yn-1=Yn-1)
1 1 1y
=Rexp 5{ o + G()"mn-l)} (G-mn.u)-g(y-mn.x{g+ G(Y‘mn-l):‘ . (3.10)
- n
Hence, P{0,e d6 | Y ,=y;.....Yn=yp} is approximated by a normal
distribution having mean
mp = Mg} + Caglys-mp ) (3.11)

« -
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and variance
-1

Cn=I:El§+ G(Yn'mn-l)] . (3.12)

n

In the special case in which € has a Student-t distribution with d degrees
of freedom and scale parameter G,

S(d+1)
1 2
)=c(d)y—~—| 1+ ] (3.13
pg (u)=c n[ (O'n) d )
d+1 u 217 u
- LAR R 14
g(u) d [1+(Gn) d]o'zn (3 )

and

G(u) = %lé[w(“;)z;‘{] -2[1- (%)jg : (3.15)

Since G(yn-mp-1) is playing the role of a variance in (3.10), but may
become embarrassingly negative for large u, West suggests that it be replaced by
max(0,G(y,—my,_1)); this step has been taken in the simulations that illustrate the

various procedures proposed here. West suggests another possibility in West et
al. (1985).
4. A SIMULATION EXPERIMENT.

All simulations were carried out on an IBM 3033AP computer at the
Naval Postgraduate School. Random numbers were generated using the
LLRANDOMII random number package; cf. Lewis and Uribe (198]1).

For each replication of the simulation the model of (1.1)-(1.2) is generated
for n=0,1,...,100. In the simulations reported below {w,} are iid normal with

AN
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mean zero and variance one. For each replication, estimates B, of 8, given yn
are computed using each of the procedures described above. The data collected

3 are the estimation error Qn - 0, for n=25, 50, 75, 100 and the estimate of

2 variance Cp, n=25, 50, 75, 100. The number of independent replications is

) 1000.

;. Tables 1 and 2 report results of the KALMAN and ALMA procedures for

simulations in which {€,} are iid normal with mean zero and variance one. The
ALMA procedure actually uses the incorrect measurement error model that
{e,]} are iid Student-t with d=3 degrees of freedom and variance equal to one.

! Results for the ALMA procedure are shown for weights as in (2.10), for k=1.0
! and k=0.25. The procedure was iterated O, 1, and 2 times.

Table 1 shows statistics of 8,-0, for n=25, 50, 75, 100. As anticipated, the
KALMAN procedure which uses the correct (normal) model exhibits the
< smallest variance of 8, - 6,. The ALMA procedure with k=0.25 and 0 iterations
¢
¢
¢

and the ALMA procedure with k=1 and 1 iteration have the smallest variances
for the ALMA procedures.

Table 2 exhibits the estimates of the variance of 6,,, namely C,, for the
ALMA procedure for n=25, 50, 75, 100. The KALMAN estimate of the
variance is the constant 0.618 for all of these n. This constant is the limiting

. : : . li
solution to equation (3.4) with 1, = Y,=1; that is, with C=:n 1r:1 Cn
1

C=gqg——
1
T+ 7

a simple quadratic with appropriate solution

C=%\/—3= 0.618.

The variance of 8,8, for the KALMAN procedure in Table 1 is close to
the calculated 0.618.

The mean values of C,, for the ALMA procedure with k=0.25 and 0
iterations and k=1 with 1 iteration are about half that of the corresponding
variances of 8,8, in Table 1.

'-"'.:"."'--::\-:\’\:\:,\"'\-:'.'r'i ~ '-"‘.:_'.""s::\{ ~° \"’\'{"v.'rr:' ~ '-"'."_\' :\"\':\"' "_\."_-," RN '“-.“'_ ----- . -.‘:\"\“a':-.',-." -.‘:-."'\"_' TaaT ~."_ SR
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! Tables 3-4 report results for a simulation in which {€,} are iid Student—t
with 3 degrees of frecdom and viriance equal to 1. Table 3 reports statistics of

. . . ya 3 . . -

X the estimation error. @,‘--Gn, for tae KALLMAN, ALMA, Biweight, Likelihood,

i

;' Y and West procedures. As usual, the KALMAN procedure assumes {€,} are iid

! normal with mean () and varance 1. The other procedures assume (€,} are iid

Student—-t with 3 degrees of treedom and variance equal to 1. The ALMA

procedure with k= 25 and no nerat ons exhibits the smallest variance of B, -6,
The more con.plicated Likeithood procedure with k=0.25 and no iterations
exhibits the next-vnaiiest vanance. The ALMA with k=1 and 1 iteration
exhibits the third smallest caran e

. The Biweir..o rocedurs was implementod with the constants in the weight
(2.13) a=5.7.9 and k=25 and 11 the procedure was iterated 0,1, and 2 times.

The results for a=:S were much worse than those for a=7 and 9 indicating that
a=5 is not large enosgh to suppress outlving values; they are not reported.
Iterating the biweight procedure 1 and 7 times did not improve the results for
any values of a. The results of Table 7 indicate that the biweight procedure with
the smallest variance uses k=1.0 and a=7 with no iterations.

e Ak N

. -

The West procedure deescribed in West (1981) as currently implemented
does not do as well as the KALMAN. The statistics of C,; in Table 4 seem to
indicate that the difficulty is wiih the estimate of variance, C,; the fix for
negative G(y—m,, ) makes it possible for € to increase by one in successive
times over long perads of time.

- Table 4 exhibits the statisticn of Cp. The KALMAN procedure, the
ALMA procedure with k=0.25 and O iterations, the ALMA procedure with k=1
B and 1 tteration, the Likelihood procedure with k=0.25 and O 1terations and the

Biweight with k=1, =7 all have imean Cy approximately half the variance of @)n-
Op.

P

5. CONCLUSIONS.

| The simulaiton resotts cotamed 1o date mdicate that a satisfactory robust
KALMAN=ATMA procedune u:i!v'c\‘ the k=0.25 weight-starting option and
requires no teration, While the aveve filter i about 74 less efficient than the

» KALMAN when measurcment errors are ideally Gaussian, ttis about 6% more
efficient when errors are lens anled non-Gaussian; etticiency is in terms of
ratios of ‘estimated vartances and s ot the only meaningtul criterion.
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Examination of Table 3 reveals through values of skewness, and kurtosis , that as
anticipated, the robust ALMA estimation errors are substantially more closely

Gaussian than are the corresponding KALMAN products when measurement
errors are Student-t.
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Table 1
Statistics of 8,-6,,
Normal Measurement Errors with Variance 1

&\ A

oy
v T J' Ky I'r'-r".f‘.r

Time n: 25 50 75 100
Proc Nbr k MVS K|MVS KIMVS KIMYV S K
Iter
K - - 0.00 0.61 0.04 001 | 0.02 062001 0.15 | 003 0.63 002029 | 0.00 0.600.05 0.19
A 0 10 002 091 007 0.60 | 0.03 077 021 1.40 | 0.01 0.78 0.0t 018 | 0.01 0.84 0.19 0.78
025 0.00 0.650.02 007 | 003 0.65 0.04 0.03 |0.02 0.64 001 014 | 0.00 0.67 0.05 017
A 1 10 001 070 0.05 0.02 | 004 0.69 0.15 062 | 0.01 0.68 0.00 002 | 0.03 6.73 0.06 0.01
025 0.02 0.70 0.000.07 | 0.03 0.76 0.02. 009 |-0.03 0.74 0.04 010 | 0.00 0.75 0,02 030
A 2 10 001 0.71 002009 | 004 0.75 0.06 0.06 |-0.02 0.72 0.01 004 | 0.00 0.76 0.01 025
025 0.02 0.77 001 0.1 | 002 083 0.020.10 | 003 0.82 0.04.009 | 0.00 0.81 0.04 031
Procedure (Proc.) Statistics
K = KALMAN M = Mean
A = ALMA V = Vanance
S = Skewness
K = Kurtosis
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E Table 2
Statistics of Cy

Normal Measurement Errors with Variance 1

Time n: 25 50 75 100
Proc Nbr k M \% M \% M V M V
Iter
A 0 1.0 .50 .08 49 .07 48 .06 48 .07
0.25 31 .01 30 .01 30 .01 30 .01
1 1.0 23 .02 22 .02 22 .02 22 .02
0.25 .04 .00 .14 .00 .14 .00 13 .00 )
2 1.0 14 .01 13 .01 13 .01 13 .01
0.25 09 .00 09 .00 09 .00 09 .00
Procedure (Proc,) Statistics
A=ALMA M=Mean
V =Variance

€ g€
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Student-t Measurement Errors with 3 degrees of freedom and Variance 1.

Table 3

Statistics of 0,-0,,

W = West

Time n: 25 50 75 100
Proc Nbr k a MV S K MV S K|MVS KIMV S K
Iter

K - - {001 057 04827 {00205300222 |00206707887 |00405401717

A 0 10 - |003 067 00710 |0020580081.1 |00207100214 |001 06501017

025 - {001 053 01616 |00l 048008 15 | 00205700121 |002 050026 23

A 1 10 - |oor 055 00915 |001 049009 12 |002 061001 18 |001 05208 24

025 - | 001 063 04641 |001 05800331 |003 06900635 |003 05802027

A 2 10 - |oor 058 01624 |001 05400516 |00306400219 |002 054026 26

025 - [002 071 06655 |001 06600943 |00307901849 |004 0.64005 29

B 0 107|001 05 01725 |001 05100722 |00205900926 00205203124

0257 | 001 061 06852 [00105700439 |003 06903560 |00405601327

B 0 109|001 057 04235 |001 05400030 |00206200733 |00 05302 25

0259 |oo1 063 07657 001057005 41 00307207599 |004 057011 28

L 0 10 -]|003 068 01215 |003 056009 1.0 | 00306900215 |001 065013 18

025 . |001 054 02317 [001 04801115 |003 06000421 |00205202 25

L 1 10 - |00t 055 01317 |001 04900912 |002061 00118 |00 052 023 24

025  |001 063 05341 |00005700728 |003069 00734 |003 05802027

L 2 10 - |00 059 0225 |001 053008 16 |00305300219 |002054026 26

025 - |om 072 07055 00006500139 |00307 01849 | 004 064005 29

w - - looe 112 02632 051384 01443 |008 774 00351 |0791249025 52

K = KALMAN M = Mean

A = ALMA V = Vanance
B = Biweight S = Skewness
L = L.ikelihood K = Kurtosis
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e Table 4
1) . L
' Statistics of Cp
] . .
4 Student-t Measurement Errors with 3 degrees of freedom and Variance 1.
)
8
N
\ Time n: 25 50 75 100
X Proc Nbr k a M V M VvV M V M V
" Iter ;
X A 0 1.0 .46 .07 .44 .06 .48 .07 .45 .06
» 025 - .29 .01 28 .01 29 .01 29 .01
s A 110 - 21 02 20 .02 21 .02 21 .02
025 -| .13 .00 13 .00 14 .00 14 .00
A A 210 13 .01 12 .01 13 .01 13 .01
0.25 09 .00 09 .00 09 .00 09 .00
4 B 010 71 29 .01 29 .00 29 .01 29 .00
2 0.25 7| .27 .00 217 .00 27 .00 27 .00
B 010 9| .28 .00 28 .00 28 .00 28 .00
Y 025 9| .27 .00 27 .00 27 .00 27 .00
L 010 44 .06 A4 06 46 .06 46 .06
. 0.25 29 .01 28 .01 29 .01 29 .01
- L 110 21 .02 20 .02 21 .02 21 .02
v 0.25 .14 .00 .14 .00 .14 .00 .14 .00
; L 210 13 .01 12 .01 13 .01 13 .01
: 025 -| .09 .00 09 .00 09 .00 .09 .00
wWoo. . ] 88 64 16 240 23 543 29 946
te
i hures(Proc.) Statist
: Pr .
) A=ALMA M=Mean
. B=Biweight V =Variance
L]
L =Likelihood

A W = West
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