-R189 235 ADA (TRADEMARK) COMPILER VALIDATION SUMNARY REPORTCU) = 121
ggT‘l‘g:Rk7CONPUTIMG CENTRE LTD MANCHESTER (ENGLAND)
UNCLASSIFIED . F/G 12/%

E

L4
x‘E {
e d

W
. ll=
FEFER rE
N

—
FI'F :
Fr .

EF

w v,
O
™
—
N
i o

==

==y I

-
L
e
N
.

S

oy
L
—
=
-
(s]

o

o

_) Wi BOUORY NESBLUTION Tiot CHART

R S IO Ty 3 OO SO R T ORI o (K R s
bty l’,’i“.‘i\;h" NG ‘|‘A X .'0‘."‘.‘0% .°|.l‘3 I‘.,iﬁ;“'.l'! O "i.l‘
":..f?.‘."t:.g.i:b. ':“h " ““." () ") ‘l ‘I'.'.ﬁ'l""’|:\‘|‘l'q'0'.:"

® AT) (R v ¢ L)

ai‘:ﬂ’ﬁﬂ?',u'}u!h-‘r 10 *

NSO

‘:4
: s oy X
Mt o . " OOQN GG

)

A §

OMC FILE COR.

AVF Control Number: AVF-VSR-90502/11

AD~ATES 235

Ada* - COMPILER
VALIDATION SUMMARY REPORT
ALSYS
AlsyCOMP_014, V2.0
Host: SUN-3/160
Target: IBM 370/3084Q

Completion of On-Site Testing
30 April 1987

Prepared By
The National Computing Centre Limited
Oxford Road

Manchester [:) i !(:
M1 7ED

UK ELECTE
DEC 2 8 1987
P d F
Ada Joi;:pgiigragrOffice CQii

United States Department of Defense
Washington, D.C.
usa

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

DISTRIBUTION STATEMENT A

87 12 14 162

Apnrovsd for public releare;
Deilte i imiled

- e

RO OAOACEONCAGACAACACAGIG AT AR A UACI
"!f“*kv # "4"." .E'Q“'.‘)'—}\l'»lli.ri't?t’;‘".‘-‘o'.’l'.‘a"‘«"{s’nb‘h.‘»'l}"jf ’

UNCLASSIFIED Y

Y'SE(‘UF.HTY CLASSIFICATION OF THIS PAGE (When Dats Entered)

e READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE i eTRUCTIONS
1. REPORT NUMBER |2. GOVT ACCESSION NO.]3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)]] 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report:

30 Apr.'87 to 30 Apr.'8s
ALSYS. AlsyCOMP_D14, V2.0 Host: SUN-3/160 Target: IBM

370/3084Q 6 PERFORMING ORG. REPORT NUMBER

7, AUTHQRGS). . 8. CONTRACT OR GRANT NUMBER(s)
The National Computing Centre Ltd.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
The National Computing Centre Ltd. AREA & WORK UNIT NUMBERS
Oxford Rd., Manchester, M1 7ED, UK

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
gdath1g§ lzroglr)am 0ff1c§ £ Def 30 Apr. °87
nite ates Department © efense T RUNE:
Washington, DC 20301-3081ASD/SIOL - NOVBLR OF TALS

S8

14, MONITOR.I NG AGENCY NAME .& ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS (of thisreport)
The National Computing Centre Ltd. UNCLASSIFIED

15a. gEaEBaEé FICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue onreverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada

Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

D TOR 1473 E0ITION OF 1 NOV 65 IS OBSOLETE

1 JaN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

7y ++++++++HHH bbb
+ Place NTIS form here +
i + +
¢ ++++++t R

-
-

0L e on

-

e

X} v J K B
""ag\'ﬂ.‘v\fl’\s‘.n\ RS -

DU IO TR A DN AN A NDN ¢
B T e e O o

Lo v

o '
A
-ﬁﬁ‘ Ada* Compiler Valid .tion Summary Report:
b)
LI
Q%“ Compiler Name: AlsyCOMP_014, V2.0
KON
ffﬁ Host: Target:
§§ SUN-3/160 IBM 370 3084Q
0 under under

y BSD UNIX MVS
L;és) 4.2 3.2
W
fh
i Testing Completed 30 April 1987 using ACVC 1.8
:’!'.ﬂ;
KM
Ly This report has been reviewed and is approved.
iyt
ey
R
fe'h -
Kl
e Vony Gwillim
ffg Oxford Road

i Manchester
s M1 7ED
e
Sy
RS
',n‘g'i

")
‘et :
e Ada Validation Office
e Dr. John F. Kramer

) Institute for Defense Analyses | Aceession PFor
5 Alexandria VA NTIS GRA&I 4
Hu DTIC TAB a
0 Unannounced 0O
;": Justification _ _ . _ [}
g g 03 (Y=
9 - SR m e B
el Ada Joint Program Office M
:.,\: Virginia L. Castor | Distribution/
' ! Director AV&ilg})!l}P? Codes
"-‘ Department of Defense [|Avall and/or
) Washington DC Dist Special

" \ |
Sy 4
i L
\ﬁ; .
:.o.. ;
o
M0 *Ada is a registered trademark of the United States Government
Sy (Ada Joint Program Office).
0:::#
b

LY
o.:"

OOCAOIOSIOE W PITMA O PN R AOOE A I SR RN
HEE R Rk R G “;tb_;,, At R Boed s" A

P]

’;.
»

DS
a
AT

F® 4 *
:\I~

s
74

i
ety

522

XD
;';';‘)

v
Pg

Ll B v,
YN,
»»leuu’l’

K%
-4

')
A
¥,
ﬁ‘
04
. "‘

g

‘ "y Wy w - - - -y b N S IR Y .) =
) AT Yy OO 0 X 0 AP
b ."“"‘r‘\:’x:"-a'\’-‘\ J;‘Ja‘q\;.!h' ;?’s AN \‘} ":’) .«;‘!’;‘!lu',h‘?'.f'l' ‘1"‘,9)

L TwTOw TON YN TR T A

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the AlsyCOMP 014, V2.0
using Version 1.8 of the Ada* Compiler Validation Capability (ACVC).
The AlsyCOMP_ 014, V2.0 is hosted on a SUN-3/160 operating under BSD
UNIX 4.2. Programs processed by this compiler may be executed on a IBM
370 3084Q operating under MVS 3.2.

On-site testing was performed 27 April 1987 through 30 April 1987 at
ALSYS Ltd, Henley-on-Thames, under the direction of the National
Computing Centre (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2246 of the 2399 tests in
ACVC Version 1.8 to be processed during on-site testing of the
compiler. The 19 tests withdrawn at the time of validation testing,
as well as 134 executable tests that make use of floating-point
precision exceeding that supported by the implementation were not
processed. After the 2246 tests were processed, results for Class A,

C, D, or E tests were examined for correct execution. Compilation
listings for Class B tests were analyzed for correct diagnosis of
syntax and semantic errors. Compilation and link results of Class L

tests were analyzed for correct detection of errors. There were 36 of
the processed tests determined to be inapplicable; The remaining 2210
tests were passed.

The results of validation are summarized in the following table:
RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 14

Passed 105 269 352 243 161 97 134 262 121 32 217 217 2210
Failed 0 0] 0 0 0 0 0 0 0 0 0 0 0
Inapplicable 11 56 68 4 0] 0 5 0 9 0 1 16 170
Withdrawn 0 5 5 0 0 1l 1 2 4 0 1l 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity
to ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

LW g O

- AT
SRS ORI NN)

=3 90" >
o T z\!!,‘:'\‘,.'n !h!l:‘,

e Srd !
MO TN R TR IO TN K O

3
o,
L TABLE OF CONTENTS
.o,l
]
» CHAPTER 1 INTRODUCTION
§§ 1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT1-2
i 1.2 USE OF THIS VALIDATION SUMMARY REPORTcovcocu... 1-2
1.3 REFERENCES ...c...... ettt reeteneeaeeaas Cereeaes 1-3
o 1.4 DEFINITION OF TERMS Ceeeeeaeeeeaas R ceee..1-3
b 1.5 ACVC TEST CLASSES .vevcevccn.. e teceteteaeeaa e, 1-4
i'a,
CHAPTER 2 CONFIGURATION INFORMATION
B
o 2.1 CONFIGURATION TESTED «vvcevecaocanacans Ceeeteeraaaa. 2-1
A 2.2 IMPLEMENTATION CHARACTERISTICS O
’tl
o
A’
7 CHAPTER 3 TEST INFORMATION
)
b 3.1 TEST RESULTS «vvveeeeerecenecncnaesnnnnnnnnaaanesenad=l
s 3.2 SUMMARY OF TEST RESULTS BY CLASS ..cceevecescaasassed-l
3.3 SUMMARY OF TEST RESULTS BY CHAPTER ceeeeeaaa3-2
i‘ 304 WITHDRAWN TESTS .-Qo.i.oon-o.o.-..o.o_c000000000000003_2
- 3.5 INAPPLICABLE TESTS +vvcvvecceccnnanacacsanasonncansesd=2
vl 3.6 SPLIT TESTS +veueeveceocnnooaseanassseassananansaneead—d
0 3.7 ADDITIONAL TESTING INFORMATION ..ccvveeecnconnoseasa3-4
T 3.7.1 Prevalidationcccc0c.e D
D 3.7.2 Test Methodc... et eteteeieeeeeaeearaaeaaan 3-4
" 3.7.3 Test Site Ceestsecctnaersesraeetenensns ..3-5
]
!::'
I‘|:
"
N APPENDIX A COMPLIANCE STATEMENT
.
o
W
s APPENDIX B APFENDIX F OF THE Ada STANDARD
)
pt
@
e APPENDIX C TEST PARAMETERS
"
o
!
o APPENDIX D WITHDRAWN TESTS
b
'.;:
P
¢
o

B Catinrs : DTN E A A
1!‘!1".‘!&.-""! X “,n'aﬁ! XA \ W0 Q‘l (" .'0. 'l!.'l i .lt ‘0 q‘? >0. *, 'l ") 'l..'l‘:‘i".‘ ..'.'|‘Q% ,q'l‘ oL .I " § 8,0 .a “‘ ?il, ¥ 20, ".’ l "l), K,‘, iﬂ by &'i &‘rté

h CHAPTER 1

‘oh

2

'1:;:6

" INTRODUCTION

AN

i\

:l:tgi \\:\

ﬁﬁﬁ This Validation Summary Report (VSR) describes the extent to which a

;ﬂg specific Ada compiler conforms to the Ada Standard. This report
1 explains all technical terms used within it and thoroughly reports the

3'5 results of testing this compiler using the Ada Compiler Validation

K0 Capability (ACVC). An Ada compiler must be implemented according to

:ﬁ: . the Ada Standard and any implementation-dependent features must

hy conform to the requirements of the Ada Standard. The Ada Standard

ﬁﬁ must be implemented in its entirety, and nothing can be implemented

that is not in the Standard..

Wt

%5 Even though all validate da compilers conform to the Ada Standard,

(?. it must be wunderstood” that some differences do exist between

{d& implementations. _-The Ada Standard permits some implementation

KN dependencies-~for example, the maximum length of identifiers or the

P! maximum values of integer types. Other differences between compilers

v result from characteristics of particular operating systems, hardware,

T?’ or implementation strategies. All of the dependencies demonstrated

j&k during the process of testing this compiler are given in this report.

N

&ﬁ *>The information in this report is derived from the test results

o . produced during validation testing. The validation process includes

oy submitting a suite of standardized tests, the ACVC, as inputs to an

;@3 Ada compiler and evaluating the results. The purpose of validating is

e to ensure confermity of the compiler fo the Ada Standard by testing

00 that the compiler properly implements legal language constructs and

$?' that it didentifies and rejects illegal language constructs. The

on testing alsc identifies behaviour that is implementation dependent but
7 permitted by the Ada Standard. Six classes of tests are used. These

%& tests are designed to perform checks at compile time, at link time,

) and during execution. /; } . , ‘ ;i

:ﬂ\,: g ’d”H.H‘ b 16 Adg_ A—‘t D A £ }50"\"\@__(1_3« b

n:l{t' ;] N *

3 1-1

MY

BLAINOACAC0 Yy X
WY ,’?'ﬂ,‘ 's“-, . "('.'a"a‘"’ "’""‘:'

Taie, ., AV ORI 20 Ol DAOGHN BOOCOODCOUSOGOOOOICL R RE
R A T N L e e O A Y O G R R A AT M AT

INTRODUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard.

. To determine that the implementation-dependent behaviour is
allowed by the Ada Standard

Testing of this compiler was conducted by NCC under the direction of
the AVF according to policies and procedures established by the Ada
Validation Organisation (AVO). On-site testing was conducted from
27 April 1987 through 30 April 1987 at ALSYS Ltd, Henley-on- Thames.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the
United States, this 1is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. 552). The results of this wvalidation
apply only to the computers, operating systems, and compiler versions
identified in this report.

The organisations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

The National Computing Centre Ltd
Oxford Road

Manchester

M1 7ED

United Kingdom

T DAL O O ORIOUTM R MO IOLY O MO MO BN OO OO OO0
Pyttt "’,"‘\”’q"":‘"gs.‘tt"‘»l”tt.':i'|.o"f-"‘?o"t’“tt"\"‘.o"‘.-"’-"’.-"..'"“'ff-"fr"‘.o Lttt

- - -

e e w v PR

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 REFERENCES

1.

1.4 DEFI

ACVC

Reference Manual for the Ada Programming lLanguage,
ANSI/MIL-STD-1815A, FEB 1983.

Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

Ada Compiler Validation Capability Implementer's Guide,
SofTech, Inc., DEC 1984.

NITION OF TERMS

The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Acda Standard ANSI/MIL-STD-1815A, February 1983.

Applicant

AVF

AVO

Compiler

The agency requesting validation.

The National Computing Centre Ltd. In the context of
this report, the AVF is responsible for conducting
compiler validations according to established policies
and procedures.

The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

1-3

S INTRODUCTION
Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that a compiler
e test is not required to support or may legitimately support in
‘y a way other than the one expected by the test.

Passed test A test for which a compiler generates the expected

result.
.a Target The computer for which a compiler generates code.
.
mi Test A program that checks a compiler's conformity regarding a
W particular feature or features to the Ada Standard. In

RN the context of this report, the term is used to designate
a single test, which may comprise one or more files.

NS Withdrawn A test found to be incorrect and not used to check
31 conformity to test the Ada language specification. A
) test may be incorrect because it has an invalid test
R objective, fails to meet its test objective, or contains

illegal or erroneous use of the language.

'l
p 1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the AcCVC. The ACVC
) contains both legal and illegal Ada programs structured into six test

% classes: A, B, ¢, D, E, and L. The first letter of a test name
W identifies the class to which it belongs. Class A, C, D, and E tests
ﬁ, are executable, and special program units are used to report their
ﬁf results during execution. Class B tests are expected to produce
‘L compilation errors. Class L tests are expected to produce link errors. ‘
¢
ﬁﬁi Class A tests check that legal Ada programs can be successfully
Q compiled and executed. However, no checks are performed during
%{ execution to see if the test objective has been met. For example, a
Aﬁ Class A test checks that reserved words of another language (other
than those already reserved in the Ada language) are not treated as
~ reserved words by an Ada compiler. A Class A test is passed if no
:J errors are detected at compile time and the program executes to
%’ produce a PASSED message.
r
ﬁ' Class B tests check that a compiler detects illegal language usage.
D, Class B tests are not executable. Each test in this class is compiled
e and the resulting compilation listing is examined to verify that every
A syntax or semantic error in the test is detected. A Class B test is
ﬁ: passed if every illegal construct that it contains is detected by the
ﬁ. compiler.
e
ot 1-4

« «n.\.nh' nl»uh

N ol Y »
S " ‘\‘ :‘:‘ " ;' Ot .A’ ‘n',s el s' 'a' °,,4 RO AR A .\' L 'm“‘. \',t«' :ﬁ OIS L LN o';u

:ﬁ: ‘ INTRODUCTION
)

o
@S Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a

F¢ PASSED, FAILED, or NOT APPLICABLE message indicating the result when

sm. it is executed.

A}

h, Class D tests check the compilation and execution capabilities of a

A compiler. Since there are no requirements placed on a compiler by the
) Ada Standard for some parameters--for example, the number of

oo identifiers permitted in a compilation or the number of units in a

’3 library--a compiler may refuse to compile a Class D test and still be
~ a conforming compiler. Therefore, if a Class D test fails to compile

'7 because the capacity of the compiler 1is exceeded, the test is

) classified as inapplicable. If a Class D test compiles successfully,

it 1is self-checking and produces a PASSED or FAILED message during
“ execution.

29

‘

ﬁ: Each Class E test is self-checking and produces a NOT APPLICABLE,
f{ﬂ PASSED, or FAILED message when it is compiled and executed. However,
&\ the Ada Standard permits an implementation to reject programs

containing some features addressed by Class E tests during
o compilation. Therefore, a Class E test is passed by a compiler if it
~ is compiled successfully and executes to produce a PASSED message, or
)} if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to

';p execute. Class L tests are compiled separately and execution is
" attempted. A Class L test passes if it is rejected at link time--that
"ﬁ is, an attempt to execute the main program must generate an error
3{& message before any declarations in the main program or any units
Y referenced by the main program are elabkorated.

J

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of
identity functions used to defeat somne compiler optimization
allewed by the Ada Standard that would circumvent a test objective.
The procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of these units is checked by a set of
executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

S
= o)

SNV, oo oo O
-" '.- .-'--)‘9' e J'."J.' LR

e

ALK
‘?Jﬁ;'.-&)" Bt

2

s

b 4
Oy

\v

. .- -------] . P - - N - o o ['e i - d
Pl NCATIE Y \ Ao OO AN o W
A LIS b’ Ve P e et AR R O N e e O D

RS

Ind
'

Fr

-

ol ul

S il"l

b

AT Y LN

L N o -lsl.'c.h‘ ’l‘ ."'9 \ 1' J Lkl !.!l.-'!. 9;“"\." .". w " 'q’-"!‘c. ":, .‘A Db Dop M R R '.h-

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intendec
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55
characters, contain lines with a maximum length of 72 characters, use
small numeric values, and place features that may not be supported by
all implementations in separate tests. However, some tests contain
values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard either meeting the pass
criteria given for the test or by showing that the test is
inapplicable to the implementation. Any test that was determined to
contain an illegal language construct or an erroneous language
construct 1is withdrawn from the ACVC and, therefore, 1is not used in
testing a compiler. The tests withdrawn at the time of validation are
given in Appendix D.

T R W WO A W (L " -,'*x\,‘_ ')_\J,‘-v .

\-\

AL BUR A

CHAPTER 2

‘g: CONFIGURATION INFORMATION

é" 2.1 CONFIGURATION TESTED

?S The candidate compilation system for this validation was tested under
the following configuration:

v Compiler: AlsyCOMP_014, V2.0

o ACVC Version: 1.8

B Certification Expiration Date: DD Month 1988

L Host Computer:

Vol Machine : SUN-3/160

o Operating System: BSD UNIX
-4'.: 4.2

Memory Size: 6 M

Ky Target Computer:
Y Machine : IBM 370 3084Q

a‘ Operating System: MVS
] 3.2

Vo Memory Size: 2 M region

transfer of executable programs

% Communications Network: Magnetic tape was used for the
%: from nost to target.

O O OO AL AT DA e DTN L T, 02 47 ST 4 Tl IANe
N N A e Lot e e e X LR e R T DTN DI i Kl D

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers 1is to determine the
behaviour of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, Dblock statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55A03A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002K.)

Universal integer calculations.

An implementation 1s allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and
processes them correctly. (See tests D4AO02A, D4A002B,
D4A004A, and D4A004B.)

. Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORT_FLOAT, and LONG_FLOAT in the package
STANDARD. (See tests 886001C and B86001D.)

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC_ERROR or CONSTRAINT ERROR during execution.
This implementation raises NUMERIC_ERROR during execution.
(See test E24101A.)

. Array Types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds

® —

f 75, STANDARD. INTEGER'LAST and/ or SYSTEM.MAX INT.

,-:.{-l

o A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
vz} raises NUMERIC ERROR when the array type is declared. {See
) test C€52103X.)

- 2-2

4

%4

L

L]

Yo 1Y) Sl

N « ;‘": % l £ 1 M A i't ‘. P Ny, 's '!“ [t q"'* (P 4.0..'0...0...0.0” (SR ‘I. .." '. & !'. K '. "J .5‘ 4 .l" ‘.‘.‘i' " .l. ‘l' "F‘ial}'\‘ “' .".“ * ' " ~'

Wy CONFIGURATION INFORMATION

& A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type 1is declared. (See test (C52104Y.)

W
:‘: A null array with one dimension of length greater than
K INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
; : either when declared or assigned. Alternatively, an
Sk implementation may accept the declaration. However, lengths
;& must match in array slice assignments. This implementation
;%: raises NUMERIC ERROR w.1en the array type is declared. (See
P test E52103Y.)
h: In assigning one-dimensional array types, the expression
e appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
Mo expression's subtype is compatible with the target's subtype.
Ry In assigning two-dimensional array types, the expression does
qf: not appear to be evaluated 1in its entirety before
NN CONSTRAINT ERROR is raised when checking whether the
15 expression's subtype is compatible with the target's subtype.
(See test C52013A.)
)
fj} . Discriminated types.
‘-
ﬂ% During compilation, an implementation is allowed +to either
DL accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible
o discriminant constraint. This implementation accepts such
:?_ subtype indications during compilation. (See test E38104A.)
B
:2; In assigning record types with discriminants, the expression
o appears to be evaluated in its entirety before
D CONSTRAINT ERROR is raised when checking whether the
o expression's subtype is compatible with the target's subtype.
!t (See test C52013A.)

e . Aggregates.
N

In the evaluation of a multi-dimensional aggregate, all
e choices appear to be evaluated before checking against the

‘Qf: index type. (See tests C43207A and C43207B.)
)
‘:ﬁ In the evaluation of an aggregate containing subaggregates,
K all choicas are evaluated before being checked for identical
@ bounds. (See test E43212B.)
W
Y
:'g All choices are evaluated before CONSTRAINT ERROR is raised
2 if a bound in a nonnull range of a nonnull aggregate does not
ﬁ" belong to an index subtype. (See test E43211B.)
0

. 2-3
g
:’.- /.

Tt
...‘..
i

.......................

U

R

LD LM)
‘.u'}l,' X

L]

J
:"é:
.';t"
CONFIGURATION INFORMATION
e .
N . Functions
Wy
An implementation may allow the declaration of a parameterless
" function and an enumeration literal having the same profile in
the same immediate scope, or it may reject the function
&' declaration. If it accepts the function declarations, the use
iy of the enumeration literal's identifier denotes the function.
e This implementation rejects the declarationu. (See test
) E66001D.)
e
o . Representation clauses.
L)
éé The Ada Standard does not require an implementation to support
R representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
A operation of representation clauses is not checked by Version
i 1.8 of the ACVC, they are used in testing other language
oy features. This implementation rejects 'SIZE and 'STORAGE_SIZE
{“ for tasks, 'STORAGE_SIZE for collections, and 'SMALL clauses.
‘e Enumeration representation clauses appear not to be supported.
(See tests C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)
U 2)
;’ . Pragmas.
%!
? 3 The pragma INLINE is not supported for procedures. The pragma
R INLINE is not supported for functions. (See tests CA3004E and
CA3004F.)
1';""
L . Input/Output.
LY
fﬂ: The package SEQUENTIAL IO can be instantiated with
ﬁ? unconstrained array types and record types with discriminants.
D) The package DIRECT IO can be instantiated with unconstrained
e array types and record types with discriminants without
s defaults, however, USE_ERROR will be raised if IO operations
‘&' are attempted. (See tests AE2101C, AE2101H, CE2201D, CE2201E,
ity and CE2401D.)
e
e An existing text file can be opened in OUT _FILE wmode, can be
I created in OUT_FILE mode, and can be created in IN_FILE mode.
Yy (See test EE3102C.)
N
;%- Only one internal file can be associated with each external
f." file for text I/0 for both reading and writing. (See tests
Y CE3111A.E (5 tests).)
) Oonly one internal file can be associated with each external
o] file for sequential I/0 for both reading and writing. (See
o tests CE2107A..F (6 tests).)

¥
A &

Only one internal file can be associated with each

¥

.
v
1 ‘-$
158
2

'\ "
@
-~
Ny
.;f

2-4

N AT PG ," - A =y J % n ;
ARG S e i’?'l' ‘a’ l‘.' wh "'Q'.‘t‘« g "u 'a gy l". % k‘e \l l'n‘l i ”&‘Q‘i‘v Gl 'I‘ i "'taﬁ!q:"nf*';;i""

CONFIGURATION INFORMATION

external file for direct I/O0 for both reading end writing.
(See tests CE2107A..F (6 tests).)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and
CE2108C.)

Generics.

Generic subprogram bodies can only be compiled 1in separate
compilations provided that no instantiations of the
corresponding generic occur prior to the compilation of the
generic body. (See test CA2009F.)

Generic package bodies can only be compiled in separate
compilations provided that no instantiations of the
corresponding generic occur prior to the compilation of the
generic body. (See tests CA2009C and BC3205D.)

) OO0
|‘-‘f “f“i‘:'i :h‘,.'l‘-

»

") OOV UOONLOOGOE
‘r.i.lv.r.51‘5]‘.":‘“'#‘%!(' "‘:!c.:.ﬂ.:‘z'v“

K
i‘“‘
N CHAPTER 3
iy
¥ b
e TEST INFORMATION
)
R
L)
o
L
N
14
3.1 TEST RESULTS

{E Version 1.8 of the ACVC contains 2399 tests. When validation testing
331 of AlsyCOMP 014,V2.0 was performed, 19 tests had been withdrawn. The
*#i remaining 2380 tests were potentially applicable to this validation.
%ﬁ The AVF determined that 170 tests were inapplicable to this
’ implementation, and that the 2210 applicable tests were passed by the
R implementation.

o
A58 The AVF concludes that the testing results demonstrate acceptable
o0y] P
e conformity to the Ada Standard.
N
POl |
3 3.2 SUMMARY OF TEST RESULTS BY CLASS

U
EE;
;:!’, RESULT TEST CLASS TOTAL
4"'

t,:.

) A B C D E L

ot
‘le::: Passed 68 862 1208 17 11 44 2210
R
g%
;':.::' Failed 0 0 0 0 0 0 0

X
‘.l‘ .

e Inapplicable 1 5 160 0 2 2 170
W .
P L Withdrawn 0 7 12 0 0 o] 19
e
: TOTAL 69 874 1380 17 13 46 2399
4
Wy

@
e
ot 3-1

i

e ¢ O tOCH L7
3 Q'g i LK "h" [E,‘ et ": “,,J -

A e (LIS M o S0 e A ML YOS 6 A MO A PO A OO R AN
RSO AR N NI R A O N e R O S e

7l TEST INFORMATION

iy 3.3 SUMMARY OF TEST RESULTS BY CHAPTER

-~
e

g RESULT CHAPTER
;ﬂ’ 2 3 4 5 6 7 8 9 10 11 12 14 TOTAL
oy

) Passed 105 269 352 243 161 97 134 262 121 32 217 217 2210
}:&. Failed o o o o0 o0 0o o ©o0 O 0 0 0 o
k)
U
2:;':4 Inapplicable 11 56 68 4 O0 O 5 0 9 0 1 16 170
“-’,G‘

H withdrawn o 5 5 0 0 1 1 2 4 0 1 0 19
;{:ﬁi} TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399
LIy
o
3.4 WITHDRAWN TESTS

VI . . .
:g» The following 19 tests were withdrawn from ACVC Version 1.8 at the
';i time of this validation:

>

¢ C32114A C41404A B74101B

’ B332C3C B45116A C87B50A
Wy c34018a C48008A C92005A

; C35904A B49006A C940ACA
1 B37401A B4A010C CA3005A..D (4 tests)
A BC3204C

f)' See Appendix D for the reason that each of these tests was
e withdrawn.
o
P
*:ﬁ 3.5 INAPPLICABLE TESTS
3

Yo
g 0 .

oA Some tests do not apply to all compilers because they make use of
oy features that a compiler is not required by the Ada Standard to
ﬂ$ support. Others may depend on the result of another test that is
%t either irapplicakle or withdrawn. For this valicdation attempt, 170
ﬁ& tests were inapplicable for the reasons indicated:
!
AN
].“ . C34001E, B52004D, B55B09C, and C55BO7A use LONG_INTEGER which is
.E? not supported by this compiler.
X C55B16A makes use of an enumeration representation clause
3{ containing noncontiguous values which is not supported by this
W compiler.

R 3-2
4“’|
q.:,.

DADOSL A
P N

R, RN

1
‘i" W

3 A0S 1A 30
'X\q ﬁ‘s_':.‘g P T

AWML 1t e Ve Ty U TV a Wb o I L
BONCOIR MO OOBAGBN CIRODONE IS O DO AN L A

bbb b ca i O A Ll Al L ~r -————

%J“ TEST INFORMATION
At . B86001D requires a predefined numeric type other than those
{$ defined by the Ada language in package STANDARD. There is no such
-] type for this implementation.
'P'&
k'j . BA2001Z requires that duplicate names of subunits with a common
) ancestor be detected at compilation-time. This compiler correctly
RN detects the error at link-time, and the AVO rules that such
K - behaviour is acceptable.
1528
:* . C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
f?“ this new definition in this implementction and the test cannot be
' executed since the package REPORT is dependent on the package
oo TEXT_IO.
Sy
!tﬁ . C87B62A..C (3 tests) use length clauses which are not supported by
:j this compiler. The length clause is rejected during compilation.
N
ol . CA2009C, CA2009F, and BC3205D compile generic subunits in separate
compilation files. Separate compilation of generic specifications
. and bodies is not supported by this compiler when instantiations
e precede the generic bodies.
[«
32
U+ . CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
N which is not supported by this compiler.
R
&H . CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
ﬁw' which is not supported by this compiler.
?J . AE2101H, CE2401D use instantiation of package DIRECT_IO with
) unconstrained array types wnich is not supported by this compiler.
TS
i . CE2107A..F (6 tests), CE2110B, CE3111A..E (5 tests), CE3114B and
4» CE3115A attempt to associate more than one external file with the
k{ same internal file, which is not supported by this implementation.
Y
'S . The £following 134 tests make use of floating-point precision that
ey exceeds the maximum of 18 supported by the implementation:
AU
g*. T247730..Y (1 testis)
@p C357050..Y (11 tests)
i C357060..Y (11 tests)
®x C357070..Y (11 tests)
3 C357080..Y (11 tests)
! C358020..Y (11 tests)
0 C452410..Y (11 tests)
I~ C453210..Y (11 tests)
b ' C454210..Y (11 tests)
C454240..Y (11 tests)
S C455210..Z2 (12 tests)
0 C456210..2 (12 tests)
‘
' 3-3
04
2y
¥,
':‘:.:: J 1 p (. # Ca o o o ”, o, o0 Ca® ¥ o L § L LRI TR
B “:"‘v'7‘.:"51"'.:'i::’*?;'\5!“?4.153\(.’[4' .-’i_e., “{ ,ﬁku’j.w " LM IO WAL WAL o o) i,Q . % 1) ‘.1'0‘. \y' ‘Q.“q [l.‘l,‘ "'y ' M {i\

Qf TEST INFORMATION
Q 3.6 SPLIT TESTS

e If one or more errors do not appear to have been detected in a Class B
i tecst because of compiler error recovery, then the test is split into a
v set of smaller tests that contain the undetected errors. These splits

are then compiled ard examined. The splitting process continues until

A all errors are detected by the compiler or until there is exactly one
N error per split. Any Class A, Class C, or Class E test that cannot be
oy compiled and executed because of its size is split into a set of
) smaller subsets that can be processed.
LX)
e .
ﬂ Splits were required for 15 Class B tests.
i B26005A
A B32202A B45102A B95069A
B32202B B61012A B95069B
B B32202C B62001B
2 B33001A B62001C
i B37004A B62001D
k2 B43201D B91004A
2
Wl 3.7 ADDITIONAL TESTING INFORMATION
u
'-,') N .
T 3.7.1 Prevalidation
e
e Prior to validation, a set of test results for ACVC Version 1.8
. produced by AlsyCOMP 014,V2.0 was submitted to the AVF by the
~ applicant for review. Analysis of these results demonstrated that the
R compiler successfully passed all applicable tests, and the compiler
oS5 exhibited the expected behaviour on all inapplicable tests.
’\-P.
;%, 3.7.2 Test Method
W
> . . .
w‘ Testing of AlsyCOMP 014,V2.0 using ACVC Version 1.8 was conducted on-
by 5 N ' . - . . .
yf site by a validation team from the AVF. The configuration consisted
W of a SUN-3/160 operating under BSD UNIX 4.2, and a IBM 370 3084Q
@ target operating vnder MVS,V3.2. The host and target computers were
- linked via magnetic tape.
;; A magne:ic tagpe contzining all tests was takea orn-site by the
‘W validation team for processing. The magnetic tape contained tests
5N that make use of implementation-specific values were customized
@n before being written to the magnetic tape. Tests requiring splits
R during the prevalidation testing were not included in their split form
o s on the magnetic tape. The contents of the magnetic tape were loaded
A9 first onto a VAX 750 computer, where the required splits were
NG performed using the VAX editor (EDT) using prepared command scripts.
ﬁf The processed source files were then transferred to the host computer
) via an Ethernet connection.
'I
408 3-4
Lo,
frr-
o
.‘t
.“‘

' RN A

! » - ["R ..t e . R) TR
: O A U ’ " ".ls o g T T T e W T A o IR
N A A AOAGAON U AOOCIIGI M 0t p R R ¥ o P R Mg ¢ DA ARSI MO UGUON AL CAX AR S0 AT GG

2N$. 3 - i Shal o aod had diad . ealitadiac aat dia. da T

n

; 4 TEST INFORMATION
T

g“: After the test files were loaded to disk, the full set of tests was

compiled and linked on the SUN-3/160, and all executable tests were
run on the IBM 370 3084Q. Object files were bound on the host

o computer and bound object modules were transferred to the target
T computer via magnetic tape. Bound object modules were linked on the
E . target computer and run. Results were transferred to the host
IS computer via a data-link using SNA protocol and printed from a VaX 750
e connected to the host computer via Ethernet.
)
Lty The compiler was tested using command scripts provided by ALSYS Ltd
g and reviewed by the validation team.
‘:'!!.
fgﬁ Tests were compiled, 1linked and executed (as appropriate) wusing a
M single host computer and a single target computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
W archived at AVF. The listings examined on-site by the validation team
&' were also archived.
!
e 3.7.3 Test Site
e The validation team arrived at ALSYS Ltd, Henley-on-Thames on 27 April
i?r 1987 and departed after testing was completed on 30 April 1987.
Pk.)
\:""
o
A'..,l.
A
e
L
W
.- -
J
ah
o
R)
R
.:".c
f
qﬂ
) %
l;.‘l
1
Y.
i 3-5
L]
“:\'vu
e
fﬁ?
o
ERX
S
w e s . .

’ ” .- - [P ¥ ®a " PRI TR LR A D L T N A VT
awle) Qg A o w Pl . DS LIS P S AL WS A
;ilA._‘l..:l‘. 0.,‘1)‘! o JJ,“ h','n"'q',n’,u ."‘.‘-'a'l'.'t‘:h'.'l'!" othigd f\rﬁ\ ' \ n.‘_._. < .* ! o .‘ \ L \ s \ N .,! \’-;,‘. \- "-’..1_\{.‘1 -

by

APPENDIX A

COMPLIANCE STATEMENT

ALSYS Ltd has submitted the following
compliance statement concerning the
AlsyCOMP 014,V2.0.

DU PN TON T VR W T 0 T

COMPLIANCE STATEMENT

Y Compliance Statement

ompiler: AlsyCOMP 014, V2.0

Test Suite: Ada* Corpiler Validation Capability, Version 1.8

A Host Computer:
My
Machine: SUN-3/160
.l"'. .
2 Operating System: BSD UNIX
) -
x 4 . 2
L)
Sg Target Computer:
e Machine: IBM 370 30849Q
Are, i
-? Operating System: MVS
oS 3.2
R,
e Communications Network: Magnetic tape was used for the
o transfer of executable programs
?‘ from host to target
),
0
0N ALSYS Ltd. has made no deliberate extensions to the Ada language
KW standard. '
n‘Q..
. ALSYS Ltd. agrees to the public disclosure of this report.
jﬁ ALSYS Ltd. agrees to comply with the Ada trademark policy, as
‘S defined by the Ada Joint Program Office.
s
J
o |
Date: BO G

N o AR

l‘.

)

A ALSYS Ltd:_

“i L J Jordan
i vMarketing Director
n
At
e
b »

g *2da is registered trademark of the United States Government
f%' tAalUd JOLNT rrogram Urrice).

h

:‘| » A-2

\
o

%,
%
Al l-:l‘
oY

¥ D T UL N AT T
) - - . -~ . o A d f .

[- Ol) W1 AN AN 2%
DO N S O A N N AL R DO ?"4"'0‘;"‘ 0 "&"'a"‘a OO0)

l'('!

i
ﬁi".
»
9\

S
RN
.'l‘.'
‘::.

2
b APPENDIX B

L

"‘) APPENDIX F OF THE Ada STANDARD
“he
i
IO . .
'$ The only allowed implementation dependencies correspond to
‘uet implementation-dependent pragmas, to certain machine-dependent

conventions as mentioned in chapter 13 of MIL-STD-1815A, and to

Wl certain allowed restrictions on representation classes. The
D) implementation-dependent characteristics of the AlsyCOMP 014, V2.0 are
o described 1in the following sections which discuss topics one through
aﬁ eight as stated in Appendix F of the Ada Language Reference Manual
o (ANSI/MIL-STD-18154). The implementation-specific portions of the
d package STANDARD are also included in this appendix.
: - Package STANDARD is

-’ .
fm. “e
s type INTEGER is -2 147 483 648 .. 2 147 483 647 ;
oo type SHORT INTEGER is range -32_768 .. 32_767 ;
a
(‘.l
R type FLOAT is digits 15 range -(1.0-2.0%*-56)*2.0%*252 ..
K- (1.0-2.0%%=56) %2, 0%*252;
J type SHORT_FLOAT is digits 6 range
K0 -(1.0-2. 0**-24)*2 O**252 . (1.0-2,.0%*%-24)*2.0%*%252 H
;i: type LONG_FLOAT is digits 18 range
: Y -(1. 0=-2.0%*~ 112)*%2.0%%252 . (1.0-2.0%%-112) %2 ,0%%252 ;
§? type DURATION is delta 1.0E-4 range -86_400.0..86 _400.0;
C’_&_l
§i‘ end STANDARD;
e
i::
49

o:

o,

7,

&

is

:E B-1
,'.

“»

KM p)
* P
AT e a‘. n‘. |' W, 't’ \' l’ ‘:"’ N 4‘- LAV ‘l‘e‘l' ":.“' p Y. *‘n !"a Wy ieo Wy 3’ i" 3‘::"”“!» 'f “M 3‘!:"0“ 35 R N 0- T .”- AN J-‘ '. 8 ’.“ll A | K]

e ot ol o -
IARWINIT B £TEILN

£

1) l‘
IO Y 'a. ".! "l.

Alsys IBM 370 Ada* Compiler

Appendix F

Implementation - Dependent Characteristics

Version 2.0

Alsys S.A.
29, Avenue de Versailles
78170 La Celle St. Cloud. France

Alsys, Inc.
1432 Main Street
Waltham. MA 02154. U.S.A.

Alsys Ltd.
Pariridge House. Newtown Road
Henley-on-Thames,
Oxfordshire RG9 1EN. U.K.

* Adais aregistered trademark of the U.S. Government, Ada Joint Program Office

D L9 N0 U
5‘1 l‘v. .y‘l (MR . Ty ”“ % 5““ Y .“Q (°| \' "!q‘\ "Q .,.l |. o J.(\' 5 ﬁ..l‘g'l'. I"'ltl}:\:

'| "‘.“

Ny

e 253 ¥

1

®

L APCROUOE MO
AL AL AL

Copyright 1987 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printzd: April 1987

Alsys reserves the right to make changes in specifications and other information
contzined in this publication without prior notice. Consult Alsys to determine
whether such changes have been made.

BRCOLPOLC C'..lﬁ‘ O) N, %
'h.i,,a |,l4\,lg ggldg.i‘%y“"h’cly‘\, h““""i“'tgl" ‘| ‘. i ot

\ .Q ‘q'i,; L \, ,.G‘ (%] q,i iy &4}'0‘ .: 6 e‘

Pt PREFACE

o
"‘:' This ALy IBY 370 Ada Compiler Appendix F i for programmers. software
3 engineers, project managers, educators and students who want to develop an Ada
"-.: program for any [BM Svstem 370 (30XX or 43XX) processor that runs MVS,
AW
¢) This appendix is a required part of the Reference Manual for the Ada Programming
v Longuage. ANSE MIL-STD 1813A, Februarv 1983 (throughout this appendix,
L& citations in square brackets refer to this manual). It assumes that the user is already
* -~ oy . .
N familiar with the MVS operating system, and has access to the following I1BM
'y documents:
Do . .
b OS. VS2 MV'S Overview, GC28-0984
;:c‘ OS, VS2 Svstem Programming Library: Job Management, GC28-1303
X
s 0OS,/VS2 MVS JCL, GC28-1350
5: IBM System,;370: Principles of Operation, GA22-7000
) 2
‘348 IBM System;/370 System Summary, GA22-7001
R
2
K ‘b. -
»
b on
5% N
A
i
xes
¢
e
<
Vi
2
q
N
3
8 -*
¥
‘_-:,
@5
"
o
o
L)
N
e
™
.:$
L
)
.; Alsys IBM 370 Ada Compiler. Appendix FoVersion 2.0 i

A A A AT AT S T AT e o et tatar.
O Stk s) " \ * o Lt e Lt
’!"“' s .A.&mu L% "‘"’ a"’ } .; WL oM

3.40%) q l 3! *A‘ y :n,‘l'y."o,":!“q 1) Q.l‘}. ¥) Jt ",

WO Ve T Lo L T T T

TABLE OF CONTENTS

APPENDIX F 1
1 Implementation-Dependent Pragmas]
1.1 INTERFACE |
Calling Conventions 2
Parameter-Passing Conventions 3
Parameter Representations 3
Restrictions on Interfaced Subprograms 5
1.2 INTERFACE_NAME 5
1.3 Other Pragmas 6
2 Implementation-Dependent Attributes 6
3 Specification of the Package SYSTEM 6
4 Restrictions on Representation Clauses 7
5 Conventions for Implementation-Generated Names 7
6 Address Clauses 7
7 Restrictions on Unchecked Conversions 8
8 Input-Output Packages 8
8.1 Specifyving External Files 8
Files 8
FORM Parameter 9
8.2 Text Terminators 11
8.3 EBCDIC and ASCII 12
8.4 Package OS_ENYV 21
9 Characteristics of Numeric Types 22
9.1 Integer Tyvpes 22
9.2 Fioating Point Type Atiribuzes 23
SHORT_FLOAT 2
FLOAT 23
LONG_FLOAT 24
93 Auritutzs of Type DURATION 24
10 Other Implementation-Dependent Characteristics 24
10.1 Characteristics of the Heap 24
10.2 Characteristics of Tasks 25
10.3 Definition of a Main Program 23
10.4 Ordering of Compilation Units 25
N 11 Limitations 26
30 : [1.1 Compiler Limitations 26
v
PN
-
k d
‘ Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 i
a. ":)

" L .(J'/ .r.r-r.-,,z u Tt a ot Lt T S A AL .
2 "lv' o ""”'U"*H' Lt -'.v“a"o. (iR Ol T A T 13‘;5.4:)@ AR IR (R SR

W,
ROR
5
35
.
o Appendix F
‘. Y
b3 . . e
et Implementation-Dependent Characteristics
"' 1
o
e This appendix summarises the implementation-dependent characteristics of the Alsys
IBM 370 Ada Compiler.
' L]
el The sections of this appendix are as follows:
: 1. The form, allowed places, and effect of every implementation-dependent
o pragma.
i
3'_' 2. The name and type of every implementation-dependent attribute.
:{,! The specification of the package SYSTEM.

i

- The list of all restrictions on representation clauses.

W

The conventions used for any implementation-generated names denoting

N implementation-dependent components.
‘. y 6. The interpretation of expressions that appear in address clauses, including
o those for interrupts.
" 7. Any restrictions on unchecked conversions.
o
:._,' 8. Any implementation-dependent characteristics of the input-output
o5 packages.
w3 9. Characteristics of numeric types.
J 10. Other implementation-dependent characteristics.
[y v
;;‘g 11. Compiler limitations.
:. The name Ada Run-Time Execcutive refers to the run-time library routines provided
o) for all Ada programs. These routines implement the Ada heap, exceptions, tasking
3 control, and other utility furctions.
»,
b f. .
W 1 Implementation-Depandent Pragmas
>
\ »
o . . .
o, Ada programs can interface with subprograms written in assembler or other
o languages through the use of the predefined pragma INTERFACE [13.9] and the
2 implementation-defined pragma INTERFACE_NAME.
o
%
B 1.1 INTERFACE
Pragma INTERFACE specifies the name of an interfaced subprogram and the name
y of the programming language for which calling and parameter passing conventions
k.
A !
'_' Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 ! !
L
¥
L]
‘)‘0'

]

. .,,,, 2 D S W o WO AR A T AV LN AL OACR Y] . R \ 0L
N & ‘)\ GAGHG , L AONDRS . -4 UMMM QRO
R 3 N 2 A et e LR AR S S e RLORCII IS AL AT SRR DO C RN RO KIS

e X

[P

-

K %,

will be generated. Pragma INTERFACE takes the form specified in the Reference
Vil

pragma INTERFACE ({anguage name. subprogram_namey;

where

s Jaiguage_name 18 the name of the other language whose calling and
parameter passing conventions are to be used.

o subprogram_name is the name used within the Ada program to refer 1o
the interfaced subprogram.

The only language name currently accepted by pragma INTERFACE s
ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond
to the language used to write the interfaced subprogram. It is used only to te!l the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use. ASSEMBLER is used to refer 1o the standard
IBM 370 calling and parameter passing conventions. The programmer can use the
language name ASSEMBLER to interface Ada subprograms with subroutines written
in anv language that follows the standard IBM 370 calling conventions.

Calling Conventions

The contents of all of the general purpose registers must be left unchanged by the
call, except register 0, which is used for returning results. On entry to the
subprogram, register 13 contains the address of a register save area provided by the
caller.

Registers 15 and 14 contain the entry point address and return address, respectively,
of the calied subprogram.

An interfaced subprogram should have the following structure:

STM RI14.R12,12(R13) -- save registers
-- suhprogram body

LM RI14,R12,12(R13) -~ restore registers
PR Ri¢ -- reiurn to caier

Any registers which are altered by the execution of the subprogram should be saved
as the first action upon entry to the subprogram, using a single ST or STM
instruction. This enables the Ada Run-Time Executive to treat any interruption
occuring during the execution of the body of the subprogram as the implementation-
defined Ada exception SPURIOUS _ERROR being raised at the point of call of the
subprogram. This exception is not visible outside the Ada Run-Time Executive, and
hence cannot be handled by the Ada program.

o

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0

OOt SOSHNON) OG0 0
..‘94“':‘!‘5‘!':‘!'..".(ol "h"’a"'-t‘!',"‘t.".-‘!'n !‘0.';.1"“

O)
“.‘ .“.b

2 Parameter-Passing Conventions

On entry to the subprogram, register 1 contains the address of a parameter addiess
- fist. Each word in this hist is an address corresponding to a parameter. The last
werd an the List has its it 0 (sign bit) set.

For actual parameters which are literal values, the address is that of a copy of the
value of the parameter; for all other parameters it is the address of the parameter

ubject. Interfaced subprograms have no notion of parameter modes; hence
" parameters whose addresses are passed are not protected from modification by the
::.} subprogram, even though they may be formally declared to be ot mode in.
,)-:j No consistency checking is performed between the subprogram parameters declared
o in Ada and the corresponding parameters of the interfaced subprogram. It is the
i programmer's responsibility to ensure correct access to the parameters,
!.'.
SN .
~ Parameter Representations
ey
N , , .
:: . This section describes the representation of values of the tvpes that can be passed as
' parameters to an interfaced subprogram.
h..:f
:'_-',',' Integer Types [3.5.4]
_J
4 . .
Y Ada integer types occupy 16 (SHORT_INTEGER) or 32 (INTEGER) bits. An
R INTEGER subtype falling within the range of SHORT_INTEGER is implemented as
" a SHORT_INTEGER in 16 bits.
L} .?'
'
s
M Enumeration Tvpes [3.5.1)
o
A~
)
el Values of an Ada enumeration type are represented interrzlly as unsigned values
2 representing their position in the list of enumeration literals defining the type. The
"3 . . 4 -
B first literal in the list corresponds to a value of zero.
'.1 ;
.. .
'_‘_\.;’ Enumeration tvpes with 256 elements or fewer are represented in § bits, those with
x':; more than 256 elements in 16 bits. The maximum number of values an enumeration
L)l tvpe can include is 63536 (2**16).
*:- The ADA predefined type CHARACTER [3.5.2] is represented in 8 bits, using the
: -:: standard ASCII codes [C].
B
e
& Flcating Poiat Tvpes {3.5.7, 3.5.8]
@n
\: Ada floating-point values occupy 32 (SHORT_FLOAT), 64 (FLOAT) or 128
"'-r (LONG_FLOAT) bits, and are held in 1BM 370 (short, long or extended floating
J \: point) format.
L
w5
JA
Vil
-
: Alsvs IBM 370 Ada Compiler. Appendix F. Uersion 2.0 3
o
®
N
w4
l":“

S ouNLOuT Q > ” S B T “ARA N A - : - .
S N e e N e ot)) T Tu LR PACL P SRR T LA R
[N _“!,"t l’__n.\ 0._‘,\,"!;‘,.."‘.“," 1 -?!“,h“,l“phizf‘q’ !'. '_l o/ ‘. v AP A :.l_‘ [o ‘ o fﬂl,\ O “‘ 3“‘0‘ [‘3‘3“&“:‘0,

PR e b o ade o gk ode i one an 4

':.'

P,

‘S:f.

LX)

:::5:0

;.""‘

oy . . A -

"'::“ Fixed Point Tvpes [3.5.9, 3.5.10]

K

I‘q'l"

e Ada fixed-point types are managed by the Compiler as the product of a signed

AW pmaniissa and a constant sme!/l. The mantissa is implemented as a 16 or 32 bit

! integer value. Smal/l is a compile-time quantity which is the power of two cqual or
Y immediately inferior to the delta specified in the declaration of the type.

D

s B

LY The attribute NMANTISSA is defined as the smallest number such that:

A5y
. 2 ** MANTISSA >= max (abs (uppe: _bound), abs (lower__bound)) , small

N

S The size of a fixed point type s

‘o MANTISSA Size

’ -

14

1. 15 16 bits
‘& 16 .. 31 32 bits
!
)

\i\ Fixed point types requiring a MANTISSA greater than 31 are not supported.

\.,,.:

.f u\

¢ Access Tvpes [3.8]

et

e Values of access tvpes are represented internally by the 3]-bit address of the

Y designated object. Note that bit 0 (the sign bit) of the 32-bit word holding a non-

% o » . -

:.-:- null access value may be set or clear, depending upon certain conventions used by
"y the Ada Run-Time Executive, and must be preserved. The value zero is used to

represent null.

HeY
-
> Arrav_Tvpes [3.6]

A%)

.'.

c," Ada arrays are passed by reference; the value passed is the address of the first

) etement of the array. When an array is passed as a parameter to an interfaced

;;‘o" subprogram, the usual consistency checking between the array bounds declared in the

'1' calling program and the subprogram is not enforced. It is the programmer's

2y responsibility to ensure that the subprogram does not violate the bounds of the array.

-I‘.'q -

W)

Wy Values of the predefined type STRING [3.6.3) are arrayvs, and are passed in the same
) wayv: the address of the fi-st character in the string is passed. Elements of a string
~ are represented in 8 bits, using the standard ASCII codes.

&

LR

LA

::-f. Record Types [3.7]

-’;«'

; Ada records are passed by reterence, by passing the address of the first component

" of the record. However, unlike arrays, the individual components of a record may

K

i be reordered internally by the Ada compiler. Moreover, if a record contains

. discriminants or components having a dynamic size, implicit components may be

N, . .

-, added to the record. Thus the exact internal structure of the record in memory may

'.u" not be inferred directly from its Ada declaration.

[)

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 4

0 ATy Rt - " AR s T T N -~a " a®

b3 .:'0@‘:' y O..

et oy b N *
KL a\\ LS

.y AN X LIRS P o X
() ;)
DR :‘a i‘&“!‘l :?o.t'o Yy " k> !Q. &;‘J, 3%""‘!0"?&".!&'52"

Q!’. »
LR
l‘.'\
W .I‘
(Y
Yo
R Restrictions on Interfaced subprograms
ANY
W
A The Ada Run-Time [hecutive uses the SPIE (SVCO 14 muacro. Intertaced
, subprograms should avoid use of this facility, or else resture interruption processing
,s: 10 its original state before returning to the Ada program. Fatlure to do so may lead
j;-g} to unpredictable results,
b
"\ Similarly. interfaced subprograms must not change the program mask in the Program
"‘)-' Status Ward (PSW) of the machine with-.ut restoring it before returning.
el
NN 1.2 INTERFACE_NAME
,"\
%) Pragma INTERFACE_NAME associates the name of an interfaced subprogram, as
R declared in Ada, with its name in the language of origin. If pragma
- INTERFACE_NAME is not used, then the two names are assumed to be identical.
,,. This pragma takes the form
;'Q'
’ pragma INTERFACE__NAME (subprogram_name, string _literal),
o
el where
rye; s suhprogram_name is the name used within the Ada program to refer to
e the interfaced subprogram.
Wi
-
S n siring_literal is the name by which the interfaced subprogram is referred
to at link-time,
e
‘ The use of INTERFACE NAME is optional, and is not needed if a subprogram has
e the same name in Ada as in the language of origin. It is useful, for example, if the
.r::. name of the subprogram in its original language contains characters that are not
‘;\.'‘ permitted in Ada identifiers. Ada identifiers can contain only letters, digits and
.’~;. underscores, whereas the IBM 370 linkage editor/loader allows external names to
s contain other characters, e.g. the plus or minus sign. These characters can be
J specified in the string_literal argument of the pragma INTERFACE_NAME.
RS
!:".r:' The pragma INTERFACE NAME is allowed at the same places of an Ada program
O as the pragma INTERFACE [13.9]. However, the pragma INTERFACE_NAME
_):..‘-: must always occur after the pragma INTERFACE declaration for the interfaced
o subprogram.
S In order to conform to the naming conventions of the I1BM 370 linkage editor/loader.
.$-_.: the link-time name of an interfaced subprogram will be truncated to 8 characters

and converied to upper case.

»
-

5

The Ada Run-Time Executive contains several external identifiers. All such
identifiers begin with the string "ALSYS". Accordingly, names prefixed by "ALSYS",
in any combination of upper and lower case, should be avoided by the user.

tn

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0

o o T sy LT o LTI P X ' v o P T
“ e RIRERCRCACHORISRT -t 0 N LAY TR CR LY
R TR e b = SR T A b N M Y Y AL O o B e e

2

Example
poorage SAMEPLE DDATA s
{00 SAMPLE DEVICE XN INTEGER) retuqn INTEGER,
£ n PROCESS SAMPLE (X INTEGER) return INTEGER,
Frovate
pragma INTERFACE [ASSEMBLER, SAMPLE DEVICE),
jragma INTERFACE (ASSEMBLER, PROCESS_SAMPLE),
pragma INTERFACE NAME (PROCESS _SAMPLE, "PSAMPLE"),
end SAMPLE DATA.
1.3 Other Pragmas
No other implementation-dependent pragmas are supported in the current version of
this compiler.

2 Implementation-Dependent Attributes

There are no implementation-dependent attributes.
3 Specification of the Package SYSTEM

package SYSTEM is
type NAME is (IBM_370);

SYSTEM_NAME : constant NAME := NAME'FIRST,;

MIN_INT : constant := -(27°31);
MAX_INT : constant := 2”°31-1;

MEMORY_SIZE : constant := 2°°24;
type ADDRESS is range MIN_INT .. MAX_INT;

STORAGE_UNIT : constant := §;
MAX_DIGITS . constant := 18;
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant ;= 2#1.0#e-31;
TICK : constant ;= 0.0},
NULL_ADDRESS : constant ADDRESS := 0,

subtype PRIORITY is INTEGER range 1 .. 10,

-- These subprograms are provided to perform
-- READ/WRITE operations in memory.

generic

type ELEMENT_TYPE is private,
function FETCH {FROM : ADDRESS) return ELEMENT_TYPE;

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 6

~5 S s v, Y » -
RSP MRt GNI, he

o
ey
i‘:‘:'l
’t.\;'l
l“!]
A
)
)
o Yy
ey Lenelic
) type ELEMENT_TYPE s private
- procedure STORE (INTO ADDRESS, OBJECT ELEMENT _TYPE:
‘l
1 .
13 end SYSTEM,
}‘ &:
=:9" The generic function FETCH mayv be used to read data objects frem given addresses
\,' in store. The generic procedure STORE mayv be used to write data objects to given
i addresses in store.
KN
::’,z.
“ 4 Restrictions on Representation Clauses
Ay
¥
' Representation clauses [13.1] are not supported by this version of the Alsys IBM 370
oy Ada Compiler. Any program containing a representation clause is rejected at
"\"5 compilation time. The pragma PACK [13.1] is also not supported. However, its
'(-: presence in a program does not in itself make the program illegal; the Compiler will
:::‘J simply issue a warning message and ignore the pragma.
‘¥
‘L
5 Conventions for Implementation-Generated Names
20
-._-:* There are no implementation-generated names [13.4] in the current version of the
.:-;.. Alsys IBM 370 Ada Compiler.
n-' :
o The following predefined library units cannot be recompiled:
[ALSYS_ADA_RUNTIME
' ::4- ALSYS_BASIC_IO
SO ALSYS BINARY_10
L2 ALSYS_COMMON_IO
e ALSYS_FILE_MANAGEMENT
2 ALSYS_SYS_IO
‘ 1 CALENDAR
Y DIRECT_IO
) ‘; EBCDIC
’ \-E [0_EXCEPTIONS
H OS_ENV
SEQUENTIAL_IO
o~ STANDARD
SoN SVSTEM
" TEXT_IO
o UNCHECKED_CONVERSION
A d UNCHECKED DEALLGCATION
On -
0N
""\‘
poo 6 Address Clauses
0,
¥ . . .
' f" Address clauses [13.3] are not supported in this version of the Alsys IBM 370 Ada

A Compiler.

~

':"!: Alsvs IBM 370 dda Compiler. Appendix F.oVersion 2.1)

” v W, Ny

» X S AGH0 3 ALL TR] f Ok Cx, f
\ EMOOOOTUMN N L0 QOO NO0 } AOHON (} g 4 (U ¢
&y “v" re, "- (AN |.~b!‘ -‘4. .l.i.|.-‘\.-5'..'\.-.O‘n“..‘n“‘l‘-‘.‘..'.7‘0‘ ‘l"\‘“"‘l.-.l‘! a\‘,".' .v““'.‘.“"' .q"“. ... N, “) M) ‘|' .I‘O“ K] ""‘.‘.‘"_“.:'..J"t!"'."...i ‘:"t.‘.’

7 Restrictions on Unchecked Conversions

Uncheched consersions [13.10.2] are allowed only between types which have the
same value tor their "SIZE attribute.

8 Input-Output Packages

The predetined input-output packages SEQUENTIAL 10 [14.2.3], DIRECT_I1O
[14.2.3}, and TEXT_10 {14.3.10]) are implemented as described in the Language
Reference Manual, as is the package 10__EXCEPTIONS [14.5]. which specifies the
exceptions that can be raised by the predefined input-outpu: packages.

The package LOW_LEVEL 1O [14.6], which is concerned with low-level machine-
dependent input-output, has not been implemented.

8.1 Specifying External Files

The NAME parameter supplied to the Ada procedure CREATE [14.2.]1] must
represent an MVS dataset name (DSNAME). The NAME parameter supplied to the
OPEN procedure [14.2.1] may represent a DSNAME or a DDNAME.

Files

An MVS dataset name as specified in the Ada NAME parameter may be given in
any of the following forms:

OPEN (F, NAME => "UNQUALIFIED.NAME", ...);

OPEN (F, NAME => "FULLY.QUALIFIED.NAME™, ..);

OPEN (F, NAME => "UNQUALIFIED.PDS (MEMBER)", ...);

OPEN (F, NAME => "FULLY.QUALIFIED.PDS (MEMBER)™, ...);
An unqgualified name (not enciosed in apostrophes) is first prefixed by the name (if
any) given as the QUALIFIER parameter in the program PARM string when the
program is run.
The QUALIFIER parameter may be specified as in the following example:

" “TEP20 EXEC PGM=IEB73 PARM="QUALIFIER(PAYROLL.ADAY
A fully qualified name (enclosed in single quotes) is not so prefixed. The result of
the NAME function is always in the form of a fully qualified name, i.e. enclosed in
apostrophes.

Members of partitioned datasets are specified within parentheses.

The file name parameter may also be a DDNAME (see below) in the case of OPEN.

4lovs IBM 370 Ada Compiler. Appendix F. Version 2.0 §

\
™y
o

$
"R
ikl
::‘:: FORM Parameter
N .!'

' The FORM parameter comprises a (possibly empty) set of attributes (the FORM
K parameter may, of course, be given as a null string [14.2.1]) formulated according to
.:l': the lexical rules of (2], separated by commas. Attributes are comma-separated;
{' 4 blanks may be inserted between lexical elements as desired. In the descriptions
',v: below the meanings of natural, positive, etc., are as in Ada; attribute keywords
ff:c: (represented in upper case) are identifiers [2.3) and as such may be specified without

) regard 1o case.
1Yy
[}

L USE_ERROR is raised if the FORM parameter is illegal.

N
O00)

"':c' The attributes are as follows:
"‘.‘
'0_"..

i dy File sharing attribute
K32
B 1nd This attribute allows contral over the sharing of one external file between several

-'\.: internal files within a single program. In effect it establishes rules for subsequent
c,.:' OPEN and CREATE calls which specify the same external file. If such rules are
violated or if a different file sharing attribute is specified in a later OPEN or
v CREATE call, USE_ERROR will be raised. The syntax is as follows:

o

‘ .

‘ -'\"_i NOT_SHARED | SHARED => access_mode
Y Ca

.Y
*" where
M access_mode = READERS | SINGLE_WRITER | ANY
E)

o A file sharing attribute of: !
by

“ _I-?

Rt NOT_SHARED

_‘{ implies only one internal file may access the external file.

iR

o
'-‘.,-2 SHARED => READERS
<

-

- imposes no restrictions cn internal files of mode IN_FILE, but prevents
e any internal files of mode OUT _FILE or INOUT_FILE being associated

with the external file.

>
"*

33 SHARED => SINGLE_WRITER
¥ g
".:'.: is as SHARED => READERS, but in addition allows a single internal ftile
.“;. of mode OUT_FILE or INOUT_FILE.

l ’ - ,

v SHARED => ANY

oV

v

places no restrictions on external file sharing.

g;- -
e

The defult is SHARED => NOT_SHARED.

|
ed
R

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 9

)

s

=S
LA
A

T Y Y LTRSS A RO AL AN T . Y IS
DRI LB AN A T L T O R A C R A R G AR Gh G el

B AR Lt M R A Ll i 730 0 AR 2 e

”

\RAY) ~,
ORI v 4
.n Ll v‘!‘p’l’u’l -‘l’ g‘! D.;,.l.

¢
bF 4

\J
’
r

~ ¥
h
>

=

Record size attribute

By detault, records are output according to the tollowing rules:

» tor TENT_JO and SEQUENTIAL 10, sariable-length record files
(RECFM = V),

» for DIRECT IO, fixed-length record files (RECFM = F).

In the case of DIRECT_ 10 for constrained tvpes the record size is determined by
the size of the type with which the package is instantiated. The user can specify the
record size attribute to force the representation of the Adu element in output records
of a given bvte size. Of course, such a specified record size must not be smaller
than ELEMENT_TYPE'SIZE / SYSTEMSTORAGE_UNIT; DATA_ERROR will
be raised if this rule is violated.

There is just one case in which the record size attribute is mandatory, that of
DIRECT_IO for mode OUT_FILE or INOUT_FILE for unconstrained types. In
the absence of the record size attribute in this case, USE_ERROR will be ruised
(although the package may be instantiated without error).

If the record size attribute is specified, fixed-length records (RECFM = F) will be
generated.

In the case of TEXT_IO, output lines will be padded to the requisite length with
spaces; this fact should be borne in mind when re-reading files gencrated using
TEXT_I10 with the record size attribute set.
In the case of DIRECT_1O of unconstrained types, the length of each item precedes
the binary image of the item itself in the external file; it is held in 2 or 4 bytes
depending on the maximum size of the item.
The syntax of the record size attribute is as follows:

RECORD_SIZE => natural
where natural is a size in bytes.
The default is

RZCORD_SIZE => ELEMENT_TYPE'SIZE / SYSTEM.STORAGE__UNIT
for DIRECT_IO of constrained types,

RECORD_SIZE => 0

(meaning variable-length records) otherwise.

o Carriage control

This attribute applies to TEXT_IO only, and is intended for files destined to be sent
to a printer.

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 10

H@® I sy,

-

f \ % 2 L") P & g™ ™y " P~ - ! L1 ' LIS S f o gw - -
h O Wil Ly L4 LY o) Sy LIS, 1l 30, O 0 L) iyt
Uit N N WA D Wi RN ,(’J» o 1 _ﬂgkn’?&", , by (L BN, Qo‘c‘n‘t‘»“':‘u\ﬁ'.'o'!‘o':.l’!‘:'!‘iv-». :"A’\'g'x‘..‘ﬁ. J"z‘. DG A N

(3

-y - .
‘. P« LA 4 -~
Sl AR

-
P d

»

-
s

A

-
)
v

LR R

,;'%"

PY 7%

o

5 o
LA L Ly S S

n

'fl

.,5

02

.

.

&

I.PJ"

o

b

e?‘

)

RN IACTR
'ﬁ\)

For a file of mode OQUT_FILE, this attribute causes the output procedures of
TEXT 10 to place a carriage control character as the first character of every output
record: “1' (skip to channel 1) if the record follows a page terminator, or blank (skip
1o next line) otherwise. Subsequent characters are output as normal as the result of
calls of the output subprograms of TEXT_1O.

For a file of mode IN_FILE, this attribute causes the input procedures of TEXT_1O
to interpret the first character of each record as a carriage control character, as
described in the previous paragraph. Carriage control characters are not explicitly
returned as a result of an input subprogram, but will (for e.znple) affect the result
of END_OF_ PAGE.

The user should naturally be careful to ensure the carriage control attribute of a file
of mode IN_FILE has the same value as that specified when creating the file.

The syntax of the carriage control attribute is as follows:
CARRIAGE_CONTROL => boolean

The default is CARRIAGE _CONTROL => FALSE.

DDNAME attribute

This attribute affects the semantics of the NAME parameter,

If the DDNAME attribute is specified, the NAME parameter is taken to be the name
of a DD statement which the user must have provided in the JCL to run the Ada
program.

CREATE will raise USE_ERROR if the DDNAME attribute is specified in its
FORM parameter.

If DELETE is called for a file opened with the DDNAME attribute of the FORM
parameter having been specified, USE_ERROR will be raised, but the file will be
closed.
The syntax of the DDNAME attribute is as follows:

DDNAME => boolean

The dofault is DDNAME => FALSE.

8.2 Text Terminators

Line terminators [14.3] are not implemented using a character, but are implied by the
end of phvsical record.

Page terminators [14.3] are implemented using the EBCDIC character 0C
(hexadecimal).

4lsys IBM 370 dda Compiler. Appendix F. Version 2.0 11

-v.,nq- AT G N - L -

'\\'n\“"' "-‘\\\

~ ", eyt e VS LY «
W, .!k\‘.. A b e “ ey c,"a."n.'u.c;.,.“.. ..‘:\‘v LA T L N ..

o J

‘ 0_‘!5#‘

%

L
Y 5.:
o File terminators [14.3] are not implemented using a character, but are implied by the
,. end of physical file.
3%
" The user should avoid the explicit output of the character ASCILFF [C). If the user
vy explicitly outputs the character ASCILLF, this is treated as a call of NEW_LINE
:;‘: [14.3.4].
oy
s “f .
i 8.3 EBCDIC and ASCII
" Aa B
‘,: : All 1O using TEXT_IO is performed using ASCH/EBCDIC translation,
s CHARACTER and STRING values are held internally in ASCIl but represented in
._..'2 external files in EBCDIC. For SEQUENTIAL IO and DIRECT_IO no trauslation
[_‘L': takes place, and the external file contains a binary image of the internal
v representation of the Ada element.
;_-{; It should be noted that the EBCDIC character set is larger than the (7 bit) ASCII and
-.j.': that the use of EBCDIC and ASCII control characters may not produce the desired
‘:-“. results when using TEXT_IO (the input and output of control characters is in any
o case not defined by the Ada language [14.3]). Furthermore, the user is advised to
Al exercise caution in the use of BAR (|) and SHARP (#), which are part of the lexis of
Ada; if their use is prevented by translation between ASCII and EBCDIC, EXCLAM
-}.::' (!) and COLON (:), respectively, should be used instead [2.10].
\‘ Various translation tables exist to transiate between ASCII and EBCDIC. The
P predefined package EBCDIC is provided to allow access to the translation facilities
used by TEXT_10 and OS_ENV.
i The specification of this package is as follows:
)
: > package EBCDIC is
¥
] 1]
A type EBCDIC_CHARACTER is {
-) nul, -- 0 =0h
:) soh, -- 1=1h
| “,(4, stx, -~ 2=12h
:‘ -u"\ etx, -- 3=3h
n E_4,
5 A ht, -- 5=5h
9. E_6,
gy del, -~ 7=17h
j-{,'- E_s,
b E_9,
ﬁ Z_A,
X] ve -~ 11 = CBh
id np, -- 12 =0Ch
: : cr, -- 13 =0Dh
B s0, -- 14 = 0Eh
:,; si, -- 15 = OFh
oA\ dle, -- 16 = 10h
) f del, -- 17 = 11h
. de2, --18 = 12h
A
b
:) Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 12
v L]
ol

Jn"n‘* .'\‘" "‘c. AN .0‘..'0':' |l .'. e ﬂ' " \"'"' "’Cﬂ)

c- Dt

Y,
L -
4;5
‘e‘l'
y |'\
\""!!
N de3 19 = 12h
My
':: E_14
A nl, -- 21 = 15h
bs -- 22 = 16h
) -
{0 E_17,
»‘\-* can, -- 24 = 18h
x:: em, -- 25 = 1%h
18
19 E_1A
TR E_1B
E_IC
gs, -- 29 = 1Dh
rs, -- 30 = 1Eh
us, -- 31 = 1Fh
E_20,
E 21,
{s, -- 34 = 22h
[N
& E 23,
Ao E_24,
0 E_25,
A3 etb, -- 38 = 26h
Y esc, --39=12%h
E_28,
(< E_29
A%, _J,
52 E_2A,
= —
45 E_2B,
~::: E_2C,
iy enq, -- 45 = 2Dh
‘ ack, -~ 46 = 2Eh
[bel, -- 47 = 2Fh
P E_30,
Wl E_31
[} "
}.-j syn, -- 50 = 32h
)" E_33,
J E 34
T E_35
‘:: E_36
" eot, --55=37h
i
; E 38
LM %,
..}.o‘ E
: 39
34 -
(] E_3A,
o E_3B,
y ded, -- 60 = 3Ch
:.I: nak, -- 61 = 3Dh
i T 2,
, 2 ek, -- €3 =3%h
o; <p, -- 64 = 40h
& a
. .,j E_41,
:J E 42,
" E 43, ‘
a7 E_44,
< E_45, <
E_46. |
1‘ »
B ~'
o ' \f 370 Ada C iler. Appendix F. Version 2.0 13
Wy Alsys IBM 370 Ada Compiler. Appendix . 2.
3
A
[]
57 ':
g

.

NV Y N Y 1 e) ‘ .. A ‘..
-0 "'l't ALY “l. l f AN .‘!'l’. I|‘.‘I .‘l n.i n.i‘ \ “‘.:'I.’\.O'Q.O 5 O ‘ f. ’\:'.t’) ".A...l..-‘ ‘.6.‘ "'a‘b‘” l‘*“'ﬁl' “i“'&x .l QAL ‘!

-- 75 = 4Bh
-- 76 = 4Ch
-- 77 = 4Dh
-- 78 = 4E°

-- 79 = 4Fh
-- B0 = 50H
-- 90 = 5Ah
-- 91 = 5Bh
--92 =5Ch
-- 93 = 5Dh
-- 94 = 5Eh
-- 95 = 5Fh
-- 96 = 60h

-- 97 = 61h

--107 = 6Bh
--108 = 6Ch
--109 = 6Dh
--110 = 6Eh
--111 = 6Fh
--121 = 7%h
--122 = 7Ah

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0

14

T
T2

.i:'{::‘ .

RE
¥ *'.

,: ' --123 = 7Bh
oy ‘@, --124 = 7Ch

--125 = 7Dh
ik =", --12¢ = 7Eh

*‘:,0, --127 = 7Fh
: 1 E_80, I
i a’, --129 = 81h
D) ,‘ b, --130 = 82h

| e, --131 = 83h

‘, .) 9, --132 = 84h
'{e:ﬁ: e’ --133 = 85h
'::c:: r, --134 = 86h
‘.1:!:1 g, --135 = 87h
P b, --136 = 88h
it i, --137 = 8%h
o E_8A,

? Y E_8B,

4 E_8C,

: E_8D,

s

Rl E_8F,
- E_90,

';-. '3, --145 = 91h
[', --146 = 92h
3 _‘\;: v, --147 = 93h
AP 'm’, --148 = 94h
ot ', --149 = 95h
. 0", --150 = 96h
s P --151 = 97h

:j 'q’, --152 = 98h

SN r, --153 = 9%h

! E_9A,

E_9B,
2 E_sC,
hy E_9D,

;b' E_9E,
A,"] £ _9F,

‘o E_AO,

P --161 = 0A1h
b ', --162 = 0A2h
e 't --163 = 0A3h
-2 W, --164 = 0A4h
g v, --165 = 0ASh
k' '\-d W, --166 = 0A6h
M. ¥ X', --157 = 0ATh
@ 'y, --168 = 0ASh

7,,.5 2", --169 = 0ASh

L E_AA,
SN E_AB,
:,:.0 E_AC,

(¥ T, --173 = 0ADh

> E_AE,
,-f::
;: Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 15

y \'

[An
L

.48
i
Wy -t ot m et w g A AL w ALt . , N . - - X - - .
i.‘:::‘;a‘:, t‘,»’l"l‘e’t‘:'l'..l‘.,‘l'.bs' : ':'a'l‘:,lh e!' o) ‘E’.’Qf‘ Gﬁﬁ‘e. YA l@&!:!"‘nsl At ’ : RO O .'.-‘z‘l?t"‘!l“”“‘:"ff

s
2o b
13
g
w.l),
Wy
P‘I'l
f
o'l' F;__.-\F,
.
‘e E_ BO
v E_H1,
E B2,
e E_B3,
O E_Bs,
rod E_BS,
oYy E_Ré,
Wy E B7,
N _
. E_Bg,
! E_Bo,
4 E BA
) -
o E_BB,
G E_BC
|‘| - 4
& . --189 = OBDh
E_BE,
AT E_BF,
o () --192 = 0COh
js' ‘A, --193 = 0C1h
™, 'B', --194 = 0C2h
Iy 'C’, --195 = 0C3h
'D’, --196 = 0C4h
N E, --197 = 0CSh
~7 'F', --198 = 0C6h
N_: 'G’, --199 = 0C7h
> "H’, --200 = 6C8h
iy T - _
‘ . 201 = 0CSh
E_CA,
* 1yl
¥, E_CB,
"y
W E_Cc,
b E_CD,
1 .
'.‘. E_CE,
o E_CF
J 'y, --208 = 0DOh
,:"‘ I, --200 = 0D1h
X ‘K, --210 = 0D2h
N R --211 = OD3h
:, M --212 = 0D4h
"y, N --213 = 0DSh
o 0, --214 = 0D6h
N P, --215 = 0D7h
)
L 'Q --216 = 0D8h
L]
R, --217 = 0D%h
E Dy,
E_DB,
E_DC,
E_DD,
E_DE,
E_DF,
\’, --224 = OEOh
E_E1,
'St --226 = 0E2h
Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 16

N\

. ' (] 3 8
OO OOONUOOCOLOOOO LOOOLN) %) 1 iy
Ayt u‘f04.‘A.‘,',‘.h.’.t.'3n ;'r','c"‘o'a‘n‘«'l‘-‘b!!h e it

A &

a3z

(3

b <
s e

LRANY

>\ o

e T - &
JoL LR

S S)

P
"
5
LY

-
-
[o SR}

28

SO 3
. At1"‘.‘tfa,!_1xstg!i

SEL
RNL
GE
SPS
RPT
RES
ENP
POC
UBS
ctli
IFS
Ds
SOS
w<s
BYP
INP
LF
SA
SFE
SM
SwW
CcsP

: constant EBCDIC_CHARACTER :=
: constant EBCDIC_CHARACTER :-
: constant EBCDIC_CHARACTER :

: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_ CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_ CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: zonstant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCPIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_ CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER

L R N N

L2
[« N]

5

(23
<

' ' '
[N TR I TR Y)
[X3
(=]

[
—

--232
--233

--240
--241
--242
--243
--244
--245
--246
--247
--248
--249

:=E_9;
= E_A;
= E_4;
= E_4;
= E_17;
:= E_1A;

= E_1B;
= E_1C;
= E_20;
= E_21;
:= E_28;
= E_24;
= E_24;
= E_25;
= E_28;
= E_29;
= E_2A;
= E_2A;
= E_2B;

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0

Lol el A b aad Radin i db il i dhall dhad

1}

i}

= OF1lh
= 0F2h

= 0F7h

: - Ca g o m e = LY TR “ RO I AT AT Y §
000 OO0 O e S Ll A\) AL L o) O T
A ;"‘ |‘,‘Q.‘n’n' i ,t'i.w”tz'\‘.n‘ilni’:'l R AR ‘I’s.l-t’ }%t'm‘l‘a Wty b‘.&l.. ; ‘,‘h'ﬁm"- WA

OE3h
0E4h
OESh
OE6h
OETh
OEsh
0EYh

0FOh

0F3h
0F4h
OF5h
O0F6h

OF 8h
OF9h

17

™

i’
Y
s,

q -

‘i
a. : MFA constant EBCDIC_CHARACTER = E_2C;
PO IR zenstant EBCDIC_CHARACTER = E_33;
S PP censtant EBCDIC_CHARACTER = E_34;

A TRN constant EBCDIC_CHARACTER = E_3§;
';:‘ NBS constant EBCDIC_CHARACTER := E_36;
125 SBS “constant EBCDIC_CHARACTER := E_38; y

e IT - constant EBCDIC_CHARACTER := E_39;
" RFF - constant EBCDIC_CHARACTER := E_34;
ot cus constant EBCDIC_CHARACTER := E_3B;

- RSP . constant EBCDIC_CHARACTER := E_41;
;‘ CENT - constant EBCDIC_CHARACTER := E_4A;
~J SHY : constant EBCDIC_CHARACTER := E_CA;
‘A HOOK : constant EBCDIC_CHARACTER := E_CC;
: FORK : constant EBCDIC_CHARACTER := E_CE;
Y NSP : constant EBCDIC_CHARACTER := E_E1;

CHAIR : constant EBCDIC_CHARACTER := E_EC;
Wels EO constant EBCDIC_CHARACTER := E_FF;
.
'lfzi E 0 : constant EBCDIC_CHARACTER := nul;

Cu E_1 : constant EBCDIC_CHARACTER := soh;

E 2 : constant EBCDIC_CHARACTER := stx;
b E_3 - constant EBCDIC_CHARACTER := etx;
& E_5 : constant EBCDIC_CHARACTER := ht;
.J'* E_7 : constant EBCDIC_CHARACTER := del;
B o) E_B : constant EBCDIC_CHARACTER := vt;
W, E_C : constant EBCDIC_CHARACTER := np;

E_D : constant EBCDIC_CHARACTER := cr;
o EE : constant EBCDIC_CHARACTER := so;
:‘_Zf E_F . constant EBCDIC_CHARACTER := si;

~7 E_10 : constant EBCDIC_CHARACTER := dle;
e E_11 : constant EBCDIC_CHARACTER := del;

. E_12 - constant EBCDIC_CHARACTER := dc?;
J E_13 : constant EBCDIC_CHARACTER := dc3;
"' E_15 constant EBCDIC_CHARACTER := nl;

' E_16 . constant EBCDIC_CHARACTER := bs;

; ’. E_18 : eonstant EBCDIC_CHARACTER := can;

g E_15 - constant EBCDIC_CHARACTER := em;

oo E_1D _constant EBCDIC_CHARACTER := gs;
E_1E : constant EBCDIC_CHARACTER :=rs;

’ E_IF : constant EBCDIC_CHARACTER := us;
. E_22 constant EBCDIC_CHARACTER := fs;
" E_26 : constant EBCDIC_CHARACTER := etb;
e E_:7 “eznstznt EBCDIC_CHARACTER = esc;

. E_2D - constant EBCDIC_CHARACTER := eng;
il E_2E . constant EBCDIC_CHARACTER '= ack;
A E_2F constant EBCDIC_CHARACTER := bel;

.}; E_32 - constant EBCDIC_CHARACTER := ayn;

» E_37 “constant EBCDIC_CHARACTER := eot;
e E_3C constant EBCDIC_CHARACTER = de4;
Wt E_3D constant EBCDIC_CHARACTER := nak,

E_3F - constant EBCDIC_CHARACTER = sub;
5
t' .
:' Alsys IBM 370 4da Compiler. Appendix F. Version 2.0 18

ok) N R T A T b e e , 7 2540
u'.v i '»‘l ."in (UL N -n'Q'.‘ ’ Lot N IL AL LT v LS et N L » CUCN QO N Xy

S
v

R
Sm A
L
-

PR

- g

-A“
-
> -

&,

2

-’
-

- constant EBCDIC_CHARACTER = sp;
“constant EBCDIC_CHARACTER = ',
. constant EBCDIC_CHARACTER = '<';
: constant EBCDIC_CHARACTER = '(;
: constant EBCDIC_CHARACTER := '+,
: constant EBCDIC_CHARACTER := '}
: constant EBCDIC_CHARACTER := '&;
: constant EBCDIC_CHARACTER := 'V,
: constant EBCDIC_CHARACTER :='$’;
: constant EBCDIC_CHARACTER := '*";
: constant EBCDIC_CHARACTER :="');
: constant EBCDIC_CHARACTER := '},
: constant EBCDIC_CHARACTER :='"";
: constant EBCDIC__ CHARACTER := -

: constant EBCDIC_CHARACTER :=
: constant EBCDIC_ CHARACTER :=');
: constant EBCDIC_CHARACTER :='%";
: constant EBCDIC_CHARACTER :="'_";
: constant EBCDIC_CHARACTER := '>;
: constant EBCDIC_ CHARACTER :='7;
: constant EBCDIC_CHARACTER :="";
: constant EBCDIC_CHARACTER := ";
: constant EBCDIC_CHARACTER := '#';
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER := '}
: constant EBCDIC_CHARACTER := '=;
: constant EBCDIC_ CHARACTER := ";
: constant EBCDIC_CHARACTER :='a’;
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :='¢’;
: constant EBCDIC__CHARACTER :
: corstant EBCDIC_CHARACTER :='e’;
: constant EBCDIC_ CHARACTER :='f’;
: constant EBCDIC__CHARACTER := 'g’;
: constant EBCDIC__CHARACTER := 'h’;
: constant EBCDIC_CHARACTER :='i';
: constant EBCDIC_CHARACTER := 'j’;
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :='I’;
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER := 'n’;
: constant EBCDIC_CHARACTER := 'o';
: constant EBCDIC__CHARACTER := 'p';
: constant EBTDIC_CHARACTER := 'q’;
: constant EBCDIC_CHARACTER :='r;
: constant EBCDIC_CHARACTER :='-";
: constant EBCDIC_CHARACTER :='s';
: constant EBCDIC_CHARACTER :="t’;
: constant EBCDIC_CHARACTER := "u’;
: constant EBCDIC_CHARACTER :="'

: constant EBCDIC__CHARACTER := 'w;
: constant EBCDIC_CHARACTER := 'x';

il
3

1}
A,

lkl;

il
o

I
< €

4lsvs IBM 370 Ada Compiler. Appendix F. Version 2.0

]
®

i
g

i
<

-

19

ACRERYT

LR EAR it w o ORI K O

s

S
gt o)
e
"~

e
* ot

E_C?
E_C3
E_C4
E_C5
E_C6
E_C7
E_C8
E_C9
E_DO
E_D1
E_D2
E_D3
E_D4
E_DS
E_Dé
E_D7
E_D8
E_D9
E_E0
E_E2
E_E3
E_E4
E_ES
E_E6
E_E7
E_E8
E_E9
E_FO
E_F1
E_F2
E_F3
E_F4
E_F5
E_F6
E_F7
E_F8
E_Fo

constant EBCDIC_CHARACTER

- constant EBCDIC_CHARACTER

constant EBCDIC_CHARACTER

. constant EBCDIC_CHARACTER -
: constant EBCDIC_ CHARACTER

: constunt EBCDIC_ CHARACTER

: constant EBCDIC__CHARACTER :
. constant EBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER =
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :=
: constant EBCDIC__CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTZR :=
: constant EBCDIC__CHARACTER :
: constant EBCDIC__ CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant LBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__ CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CEARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :=
: constant EBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC_CHARACTER :=

]

type EBCDIC_STRING is array {PCSITIVE range <>) of EBCDIC_CHARACTER,;

function ASCII_TO_EBCDIC (S : STRING) return EBCDIC_STRING;

-- CONSTRAINT_ERROR is raised if E_STRING'LENGTH /= A_STRING'LENGTH;

procedure ASCII_TO_EBCDIC {A_STRING : in STRING;

E_STRING : out EBCDIC_STRING);

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0

BAGHOE
St

v
&

AN SN XU

[v,‘».c (Y}

s O
Tty ¥
A AL ALY LA

ONGAAACSCMAACANRCAS I
“\‘I'.&" 5."'.‘74 (AN ""l“vt‘ ‘e

»H,!

.
Lalal

)

v

vewrew NPT e dad o ah ol ol pak el e

functi w EBCDIC_TO_ASCH (S EBCDIC_STRING) veturn STRING,

- CONSTRAINT_ERROR 15 raised if E_STRING'LENGTH /- A_STRING'LENGTH,

procedure EBCDIC_TO_ASCH (E_STRING in EBCDIC_STRING.

A_STRING - out STRING),
end EBCDIC,

The procedures ASCI_TO_EBCDIC and EBCDIC_TO_ASCH are much more
etficient than the corresponding functions, as they do not make use of the program
heap. Note that iff the in and out string parameters are of different lengths (i.e.
A_STRING'LENGTH s= E_STRING'LENGTH), the procedures will raise the
exception CONSTRAINT_ERROR.
8.4 Package OS_ENV

The implementation-defined package OS_ENV enables an Ada program to
communicate with the environment in which it is executed.

The specitication of this package is as follows:
package OS_ENV is
subtype EXIT_STATUS is INTEGER;
function ARG _LINE return STRING;

procedure ARG _LINE (LINE : out STRING;
LAST : out NATURAL);

function ARG_START return NATURAL;

procedure SET_EXIT_STATUS (STATUS : in EXIT_STATLUS);

procedure ABORT_PROGRAM (STATUS : in EXIT_STATUS);

end OS_ENV;

The exit status of the program (returned in register 15 on exit) can be set by a call
of SET_EXIT_STATUS. Subsequent calls of SET_EXIT_STATUS will overwrite
the exit status which is by default 0. If SET_EXIT_STATUS is not czlled, a
positive exit code may be set by the Ada Run-Time Executive if an unhandled
exceépuon is propagaied cut of the main subprogram, or if a deadlock situation is
detectad.
The following exit codes relate to unhandled exceptions:
Cause of exception

Exception Code

NUMERIC_ERROR:

] divide by zero
Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 21
'b..‘w - " \ P AR e \ Y \. - ‘-) I T R |

AV Al vy 'r‘- '\! " \-('. .

1 . DRI
'f ‘ X (\ .* -' n' -~ 3 ’0.|4|.¢"‘.':“g . ‘”*5’* i“ ¥y 7‘! i,

Dl LN Bl

(Y
;'6::
N
£
’t’,‘! 2 numeric overflow
ROt CONSTRAINT_ERROR:
T 3 discriminant error
" 4 lower bound index error
ol 5 upper bound index error
A 6 length error
.' 0 7 lower bound range error
'o{.: 8 upper bound range error
' N 9 null access value
v STORAGE_ERROR:
'.‘ 4 10 frame overflow
:Q (overflow on subprogram entry)
'.-.‘a 11 stack overflow
':»;: (overflow otherwise)
ot 12 heap overflow
. PROGRAM__ERROR:
SN 13 access before elaboration
! 14 function left without return
.\d SPURIOUS _ERROR:
:":1 15-20 <an erroneous program>
) NUMERIC _ERROR 2 (other than for the above reasons)
- CONSTRAINT_ERROR 22 (other than for the above reasons)
N 23-24 <unused>
'\-*J . .
Ny 25 static exception
‘\j (any exception raised as the
4 result of a raise statement)
L
. Code 100 is used if a deadlocking situation is detected and the program is aborted as
‘i' a result,
N
H"-f Codes 1000-1999 are used to indicate other anomalous conditions in the initialisation
*,:,', of the program, messages concerning which are displayed on the terminal.
B)
J
N 9 Characteristics of Numeric Types
‘l
K2
:‘\’"'; 9.1 Integer Types
'v\i"
The ranges of values for integer tvpes declared in package STANDARD are as
o follows:
l::‘.
j:.:‘ SHORT_INTEGER -32768 .. 32767 --2%*15 -1
INTEGER -2147483648 .. 2147483647 - 2%*3] -]
'
50
'k For the packages DIRECT_IO and TEXT_IO, the ranges of values for types
b, COUNT and POSITIVE_COUNT are as follows:
W
\::H
>
.ﬂ.'“
I Alsys 1BM 370 Ada Compiler. Appendix F. Version 2.0 22

3 ',

Rich , y
'ﬁ:*a'_"t‘:‘s'a KRR

ACTCAOR NN WA) (AN
“\ u‘u‘m.' “"e-“‘.‘?“e."«‘."o“'ai‘h

s

A

A LA TN AL ST TN T ML
R yh T

COUNT O 2147483047 -- I%*31 -1
POSTTINE COUNT 1 2147483647 -~ 2%F3 -1
F.1 the package TEXT 10, the range of values for the type FIELD i1s as follows:

FILLD 0 .. 25§ -~ 2¥¥8 -]

9.2 Floating Point Type Attributes

SHORT_FLOAT

DIGITS 6

MANTISSA 21

EMMAX 84

EPSILON 2.0 ** -20

SMALL 2.0 ** -85

LARGE 2.0 ** 84 * (1.0 - 2.0 ** -2])
SAFE_EMAX 252

SAFE_SMALL 2.0 **-253

SAFE_LARGE 2.0 ¥* 127 % (1.0 - 2.0 ** -2])
FIRST <2.0 *¥* 252 % (1.0 - 2.0 ** -24)
LAST 2.0 ** 252 % (1.0 - 2.0 ** -24)
MACHINE_RADIX 16

MACHINE _MANTISSA 6

MACHINE_EMAX 63

MACHINE _EMIN -64

MACHINE_ROUNDS FALSE
MACHINE_OVERFLOWS TRUE

SIZE 32

FLOAT

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 2.0 ** -50

SMALL 2.0 ** -205

LARGE 20**204*(1.0-20%* -5
SAFE_EMAX 252

SAFE_SMALL 2.0 ** -253

SAFE_LARGE 2.0 ** 252 % (1.0 - 2.0 ** 51)
FIRST -2.0 ** 252 * (1.0 - 2.0 ** -56)
LAST 2.0 *%* 252 * (1.0 - 2.0 ** -56)
MACHINE _RADIX 16

MACHINE _MANTISSA 14

MACHINE _EMAX 63

MACHINE _EMIN -64

MACHINE_ROUNDS FALSE

4lsvs IBM 370 Ada Compiler. Appendix F. Version 2.0 23

¥ P .
Eariada A RRGENRY Ore o Y L W A
R ',.f',e'ht"' ORI ABAE SOOAEA N i, It ‘,!“J‘ ot ,l_".o""l"tc"

Ch T M X
‘.&ff:q"‘g'l‘,“btr

MACHINE OVERFLOWS
SIZE

LONG_FLOAT

DIGITS
MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

TRUE
64

18

61

24

2.0 ** -60
2.0 ** -245

2.0 ** 244 % (1.0 - 2.0 ** -6

252
2.0 ** -253

2.0 ** 252 % (1.0 - 2.0 ** -61)
-2.0 ** 252 * (1.0 - 2.0 ** -112)
20%*252% (1.0 - 2.0 ** -112)

16

28

63

-64
FALSE
TRUE
128

9.3 Attributes of Type DURATION

DURATION'DELTA
DURATION'SMALL
DURATION'LARGE
DURATION'FIRST
DURATION'LAST

10 Other Implementation-Dependent Characteristics

2.0 ** -14
20** -14
131072.0
-86400.0
86400.0

10.1 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Ada Run-
Time Executive's representation of task objects, inciuding the task stacks, are

allocated in the heap.

All otjects whose visibility is linked to a subprogram or block have their storage

reclaimed at exit.

Use of UNCHECKED_DEALLOCATION on a task object may lead to

unpredictable results.

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0

. ' - an - A
AOE 00 N iy) 1
RO ORER RIS

SO ‘ 0 "y YL
R U DV A

24

T
I

a8 @
I 2 W
» .

-

"“ N
TR W

- e e
ol
a s

- + y K Y
AR SAASASS (R

(3

R

10.2 Characteristics of Tasks

The default task stack size is 16 Kbytes, but by using the Binder option TASK the
size tor all task stacks in a program may be set to any size from 4 Kbytes to 10
Abytes.

Timeslicing is implemented for task scheduling. The default uime slice is 1000
milliseconds. but by using the Binder option SLICE the time slice may be set to any
period of 10 milliseconds or more. It is also possible to use this option to specify no
timeslicing, i.e. tasks are scheduled only at explicit synchronisation points.
Timeslicing is started only upon activation of the first task in the program, so the
SLICE option has no effect for sequential programs.

Normal priority rules are followed for preemption, where PRIORITY values run in
the range 1 .. 10. AIll tasks with "undefined" priority (no pragma PRIORITY) are
considered to have a priority of 0.

The minimum timeable delay is 10 milliseconds.

The maximum number of active tasks is limited only by memory usage. Tasks
release their storage allocation as soon as they have terminated.

The acceptor of a rendezvous executes the accept body code in its own stack. A
rendezvous with an empty accept body (e.g. for synchronisation) does not cause a
context switch.

The main program waits for completion of all tasks dependent on library packages
before terminating. Such tasks may select a terminate alternaiive only after
completion of the main program.

Abnormal completion of an aborted task takes place immediately, except when the
abnormal task is the caller of an entry that is engaged in a rendezvous. Anv such
task becomes abnormally completed as soon as the rendezvous is completed.

If a global deadlock situation arises because every task (including the main program)
is waiting for another task, the program is aborted and the state of all tasks is
dieplaved.

10.3 D<finition of a Main Program

A main program must be a non-generic, parameterless, library procedure.

10.4 Ordering of Compilation Units

The Alsvs IBM 370 Ada Compiler imposes no additional ordering constraints on
compilations bevond those required by the language. However, if a generic unit is
instantiated during a compilation, its body must be compiled prior to the completion
of that compilation [10.3).

to
'y

Alsyvs IBM 370 Ada Compiler. Appendix F., Version 2.0

P R I . .-
RGN PR o ln

- .{,A;..\-'.; ‘,‘,-' ¢ ‘:"‘; 20 .-:‘.‘: 1.:;‘.,.- -P\‘,";ﬂ'~
o' 8 . s afd ot o) "

=~

pEYs
A >

Py
-
-
-

s

11 Limitations

AR
"k

11.1 Compiler Limitations

{2 s The maximum identifier length is 235 characters.
. 2 » The maximum line length is 235 characters.

D) ¢« The maximum number of unique identifiers per compilation unit is 1500.
s The maximum number of compilation units in a library is 1023.

s The maximum number of subunits per compilation unit is 100.

Y\:\" s The maximum size of the generated code for a single program unit
(subprogram or task body) is 128 Kbytes.

».'; s There is no limit (apart from machine addressing range) on the size of
Re the generated code for a single compilation unit.

<
; s There is no limit (apart from machine addressing range) on the size of a
19N single array or record object.

s The maximum size of a single stack frame is 64 Kbvtes including the
5.0 data for inner package subunits which is "unnested”" to the parent frame.

Ny s The maximum amount of data in the global data area of a single
M compilation unit is 64 Kbytes, including compiler-generated data.

‘
‘
2 Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 26

L A AR p— , . '
S OB R RO CDE O Byt et e et

) S S
" ‘5’15 Tt 1‘:’.‘,'5 "\l.!‘t‘;.‘a

o«
A

5

e

TNENNE

L 2 Y

5 4y

a
"V’l

5l‘.

. o o' e
SULA PN T Y

+ A @i

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST

in its file name.

names that begin with a dollar sign.
each of these names before the test is run.

validation are given below.

NAME AND MEANING

$BIG_ID1
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID2
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID3
Identifier the size of the
maximum input line length
with varying middle character.

$BIG ID4
Identifier the size of the
maximum input line length
with varying middle character.

$BIG_INT LIT
An integer literal of value 298
with enough leading zeroes so
that is is the size of the
maximum line length.

$BIG_REAL LIT
A real literal that can be
either of floating- or fixed-
point type, has value of 690.0,
and has enough leading zeroes to
be the size of the maximum line
length.

0 0

L ey by BV Y (W
o F DRSNS ‘-’l'."1"_35’!'é.z‘if¢'l’o'¢.

? t'!?xf '

Actual values to be substituted are identified by
A value must be substituted for

The values used for this

VALUE

A....Al

254 characters

A....A2

254 characters

A....A3A....A

127

127 characters

A....A4A....A

127

127 characters

0....0298

252 characters

0....069.0E1

249 characters

OO0 MO, 1, CMEN p S) R PRCAC (00 " ORI
‘,2.'5,“ 1‘.9"“-.1"\3 ‘,&“’?’,ﬁi"“‘ﬁ‘-:!kfi‘* N R) ‘QS.'J 3;5’ :-5'-5"':.(’1‘?‘.&

AN

L0

G\

0

"

o TEST PARAMETER
)
i S
3&{ NAME AND MEANING VALUE
[AP0 |
b
3 $BLANKS 235 blanks
2 A sequence of blanks twenty
1oy characters fewer than the size
‘f§ of the maximum line length.
qh $SCOUNT_ LAST 2 147 483 647
s A universal integer literal
prd whose value is TEXT IO.COUNT'LAST.
p SEXTENDED ASCII_CHARS "abcdefhgijklmnopqrstuvwxyz
A string literal containing all 1$%2@[\] Y ()~"
LYY the ASCII characters with
’Qﬁ printable graphics that are not
AN in the basic 55 Ada character
’5;';" set.
O,
$FIELD_LAST 255
A% A universal integer literal
;ﬁi whose value is TEXT_IO.FIELD'LAST
A5t
v, SFILE NAME WITH BAD CHARS T??22?2? LISTING Al
ﬁ&; An illegal external file name
that either contains invalid
”Q characters or is too long if no
50N invalid characters exist.
>,
192 SFILE NAME WITH WILD CARD CHAR TOOLONGNAME LISTING Al
I i An external file name that
) either contains a wild card
N character or is too long if no
>§ wild card characters exists.
Sy,
.; SGREATER_THAN_DURATION 100_000.0
o A universal real value that lies
i between DURATION'BASE'LAST and
e DURATION'LAST if any, otherwise
5 any value in in the range of
_.}: DURATION.
*
o $GREATER_THAN DURATION_BASE_LAST 10_000_000.0
®: The universal real value that is
[N greater than DURATION'BASE'LAST,
‘fhc if such a value exists.
ey
e $ILLEGAL EXTERNAL FILE NAME1 T?22222?
u An illegal external file name.
h"i‘
B c-2
R
)
M
? "
i ‘f

3 SOOI RIS O 3O e A IO T I NI s 2 QU AN DU N
IR T I ca OSONDDIBENS DM IOV

SOl

'l.
:;"\
v
e TEST PARAMETERS
&
™ NAME AND MEANING VALUE
R
(\' SILLEGAL EXTERNAL FILE NAME2 TOOLONGNAME LISTING Al
*ﬁﬁ An 1llega1 external file name
X that is different from
-".,o:g SILLEGAL EXTERNAL FILE NAMELl.
M 1
- $INTEGER_FIRST -2 147 _483 648
:&2, The universal integer literal
> expression whose value is
§\ INTEGER'FIRST.
;3,' \
A $INTEGER_LAST 2_147_483 647
. The universal integer literal
Mi expression whose value is
'.s y INTEGER'LAST.
o
ey
.E:E::t $LESS_THAN_ DURATION -100_000.0
@-' A universal real value that lies
X between DURATION'BASE'FIRST and
¢ DURATION'FIRST if any, otherwise
: 4 any value in the range of DURATION.
2$: $LESS THAN DURATION BASE FIRST -10_000_000.0
Vor The universal real value that is
. less than DURATION'BASE'FIRST, if
Yol such a value exists.
i~
; :‘*f-’ $MAX DIGITS 18
S The universal integer literal
ol whose value is the maximum digits
J supported for floating-point types.
DOOK
0
'gk" . $MAX_IN_LEN 255
s The universal integer literal
::\’ whose value is the maximum input
ot line length permitted by the
f} implementation.
Wt
()
e $MAX_INT 2 147_483_647
i The universal integer literal
;?3 whose value is SYSTEM.MAX INT.
lx'.
" $NAME NO_SUCH_TYPE
jﬁf A name of a predefined numeric
o8 type other than FLOAT, INTEGER,
3 SHORT_FLOAT, SHORT INTEGER,
bel< LONG_FLOAT, or LONG INTEGER if |
& one exists, otherwise any :
undefined name. !
,:.o c-3

wwrgwery A o & v Y W W WW WU W WA

}-
-

248

oY

L‘v
Py

TEST PARAMETERS

NAME AND MEANING VALUE
B SNEG_BASED INT 8420000000000#
;'.::' A based integer literal whose
, highest order non-zero bit falls
g in the sign bit position of the
N representation for SYSTEM.MAX INT.
-
K $NON_ASCII_CHAR_TYPE (NON_NULL)
-‘»rf An enumerated type definition for
e a character type whose literals
‘:: are the identifier NON_NULL and
. all non ASCII characters with
. printable graphics.
L
s
2
Ced
A
By
2
m{
o
e
Qe
oy
)
a5
s
72
e,
oo
T
()
N,
B
DAY

L) DACKYOSOA0 AN L
I O N RN

’

* 1
N .'; W, ‘, t.g!l‘g:‘.'b'\",t "ln"'p“‘\"." G .‘l.‘ gf ,‘i [# 0 O ‘,.‘»“ e ,“’, , " i) "hht ‘
Ao F el ot LAY .

R AMY IR iuu
NS .n‘l*l_k" "5:)? - S

B
g APPENDIX D
)
!
“'"‘ WITHDRAWN TESTS
{2
)
Y
B
W
%5 Some tests are withdrawn from the ACVC because they do not conform to
b the Ada Standard. The following 19 tests had been withdrawn at the
3* time of validation testing for the reasons indicated. A reference of
A the form "AI-ddddd" is to an Ada Commentary.
¥ . C32114A: An unterminated string literal occurs at line ¢2.
f
)
!r¥ . B33203cC: The reserved word "IS" is misspelled at line 45.
o
o8- . C34018A: The call of function G at line 114 is ambigucus in
4 the presence of implicit conversions.
WY
“3 . C35904A: The elaboration of subtype declarations SFX3 and
LT SFX4 may raise NUMERIC_ERROR instead of CONSTRAINT
2& ERROR as expected in the test.
oY
e . B37401A: The object declarations at lines 126 through 135
3¢ follow subprogram bodies declared in the same
ety declarative part.
i
) . C41404A: The values of 'LAST and 'LENGTH are incorrect in
- the if statements from line 74 to the end of the
79 test.
5
)
W . B45116A: ARRPRIBL 1 and ARRPRIBL 2 are initialized with a
~$~ value of the wrong type--PRIBOOL TYPE instead of
s ARRPRIBCOL TYPE--at line 41.
i "
Y‘ . C48008A: The assumption that evaluation of detault initial
e values occurs when an exception is raised by an
ey allocator is incorrect according to AI-00397.
Lt
,35 . B49006A: Object declarations at 1lines 41 and 50 are
e terminated incorrectly with colons, and end case;
@a is missing from line 42.
o
o . B4AoOlocC: The object declaration in 1line 18 follows a
‘23 subprogram body of the same declarative part.
L)
Ny

D-1

P W ™ LIPS S

e “"\-F{ _-_\ .'_::(\ A \.$

Al xl S T, P S gt

. 3 N TS S
" \ SN A . o
"‘ l‘!.‘,!’ ol "* W "'\‘.h ‘h RO N o Mol 1 ol A l HWe 1S, .': ! '- ‘.. \¢ 1.' Tty !

. B " TTOCTO " TOrTOTTORTYO _—T
X ki
U

WITHDRAWN TESTS

b . B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

= . C87B50A: The call of "/=" at line 31 requires a use clause
) for package A.

oy . €92005A: The "/=" for type PACK.BIG_INT at line 40 is not
o visible without a use clause for the package PACK.

. C940ACA: The assumption that allocated task TT1 will run
' prior to the main program, and thus assign SPYNUMB
DO the value checked for by the main program, is
e erroneous.

,; . CA3005A..D: No valid elaboration order exists for these tests.

g (4 tests)
i;

ol . BC3204cC: The body of BC3204C0 is missing.

& EY
RSV B P

Ca M 1 CRICYLOENLM P PO PRI AENEN Rat) R
AR R MR AP ORI O AR SN NN

MRS U)

< s o L - TP T YT T WU T T 4 TOXY

s

,:
!‘:
.J;

kY
lg’

R LG .b AT AN T e T e e e "sk , ‘0 ‘q* 20, “0 ,b, O .r'. o'l,| ‘ l.l;k WY
I N A SR 0‘:.“1‘-,3“;4*3 IAOAN '\‘.,‘; i ”*' RS 0: i"‘o'z!‘ ::: f"' "'v ' ‘:m‘ la.v) \\ o"'i::""':::“'.':.'
s SN L, ok Wl Wi l g K
LI ¥ i AN g “:‘.".‘d . 0‘...

yoE .xx“ﬂ," ¢::a:‘-. a ' WO ‘l"l
l ’ . ¥ 'I‘ ‘u.‘.‘“‘ &5.2"‘ N ¢
3 i i T IS) h

. :;.-‘-

St
, t’:'t‘ ‘&', a‘, .‘. 3 " A“‘
H ‘ ‘

"".*;*t‘o

03 slg’i‘q‘ﬂ‘. Ky

