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? Experimental observations of ignition in premixed gaseous ?:f
: reactants indicate that perfectly homogeneocus initiation is -?Q
' practically unrealizable. Instead, caombustion first sets in, as a 33’
rule, at small, discrete sites where inherent inhomogeneities cause M
5 chemical activity to proceed preferentially and lead to localized R
; explosions. Combustion waves propagating away from these "hot -xﬁ
i, spots” or "reaction centers" eventually envelope the remaining ﬁ3§‘
3 bulk. .‘.r-‘
D AN
X This study examines the spatial structure and temporal evolution \}:
: of a hot spot for a model involving Arrhenius kinetics. The hot Y
)¢ spot, characterized by peaks in pressure and temperature with AT
ﬁ‘ little diminution in local density, is shown to have one of two .}h
I possible self-similar structures. The analysis employs a R
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1. Introduction EE
This paper descibes mathematically the birth and growth of a hot 3 §
spot, or localized thermal explaosion, in a premixed reactive gas. tﬁ
Experimental observations on the initiation of combustion in %E:
gases at high temperatures, in shock tubes and elsewhere, have &#'
demonstrated conclusively that spatially homogeneous combustion is N
‘.
essentially an unattainable ideal. In fact, ignition first sets in ‘gi
locally, in small volume elements at discrete sites, where chemical ;é;
reaction proceeds preferentially due to inherent imperfections in 't
the system. In due course, combustion waves originating from 33
LY
localized explosions occuring at these "hot spots”, "reaction §b
centers" or "exothermic centers" envelope the entire reacting mass. if:
The role played by these sites as precursors of more dramatic SEE
combustion phenomena is revealed with unsurpassed clarity in Urtiew gﬁ;
and Oppenheim’'s {11 photographic records of deflagration-to- :;.
detonation transition in a Hydrogen—-Oxygen mixture confined to a Eié'
tube. These photographs show that as the deflagration travels down ;i;‘
the tube, it accelerates and evolves into a highly folded turbulent ,E%
flame, preceded by a so—-called precursor shock. Eventually, an Eg
exothermic center is formed in the vicinity of the flame, near the E&g
tube wall. The localized explosion in this center creates a blast A
wave which propagates through the preconditioned mixture behind the Ef(
precursor shock and ultimately evolves into a fully-developed :§¥
detonation. The same feature appears in other modes of detonation-— iﬁ’
initiation, as well as in other geometric configurations. ;ﬁ
.:;.

The early analyses of reaction-center dynamics are due to Zajac

N ]
7

and Oppenheim [2] and Meyer and Oppenheim [31. In these studies
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e the reaction center is assumed to be a spatially homogeneous source :'
a. of chemical energy, capable of expansion and separated from its -
WY inert surroundings by an impermeable barrier, across which only ;:
o )
) £
_ﬁ' momentum transfer can occur. Either by prescribing a specific P
e ‘2
. ‘2,
h reaction scheme, or by specifying an energy release profile within ‘>
X the center, the above authors were able to compute the resulting h;
N =
N pressure pulse. N
Wy o
{ PR
eu In this paper the reaction center is treated as part and N
g parcel of the reacting medium rather than an isclated entity in an -&-
K2 s
) w0
4 inert atmosphere, and is found to have a definite spatial xi
N ~ g
Y h*
g” structure. The aim of this paper is to describe this structure and ;f
¥ to study its temporal evolution in a plane, one-dimensional i“:
. 204
~2 framework, under the asssumption that the reactive gas underqgoes a -3

>
5
O

va

single, one-step, first-order, irreversible chemical reaction of

G the Arrhenius type. 0One may argue that the simple overall kinetic Sﬁj
§ scheme adopted here is too idealized to be realistic. However, for E;,
E& large activation energies, the kinetics does capture an essential gi’
- attribute of most combustion systems, namely, a reaction rate which $3
S accelerates rapidly with increase in temperature. Thus the model o
‘E is quite appropriate for studying problems, such as the one at

; hand, which owe their genesis to the interaction between

5 gasdynamics and chemical heat release at highly temperature-

v sensitive rates.

XX

]

The configuration of the system is so prescribed as to provoke

PR
a2 Ak

the development of a single hot spot, and this can be accomplished
in a variety of ways. For example, the shock-induced thermal-

runaway studies of Clarke and Cant [4]1 and Jackson and Kapila [3]
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considered a semi—~infinite expanse of gas ignited by a piston-

driven shock, thereby creating a hot spot at the piston face.
Instead, the present work assumes that the gas is confined between
two parallel planes, and that its initial state possesses a slight
spatial nonuniformity. (In a practical situation these non-
uniformities may be caused by a variety of factors, such as
turbulence, interacting pressure waves, or, in the case of
condensed explosives, material imperfections.) The mathematical
model leads to an initial-boundary value problem for the egquations
of reactive gasdynamics. An asymptotic solution is developed in
the limit of large activation energy, and the analysis is carried
as far as the end of the localized explosion within the center.
The subsequent expansion of the center, and the eventual generation
of a blast wave, will be the subject of a future publication.

The temporal evolution of the explosion occurs in two stages,
beginning with the induction stage. Here the state of the gas is a
small perturbation pf the initial state and the underlying physical
processes are those of linearized acoustics coupled to a weak but
nonlinear chemical reaction. The reduced equations require a
numerical solution (see {41 and [5]) which exhibits local thermal
runaway. Induction is followed by the explosion stage, which
consists of several distinct spatial zones. There is the
practically frozen outer zone, and a rapidly shrinking i{inner zone
or layer in which intense chemical activity leads to an explosive
growth of temperature and pressure. Nonlinear chemistry is again
coupled to linearized gasdynamics, but now the linearization is

about an atmosphere undergoing a spatially homogeneous thermal
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explosion. As the layer shrinks, it recedes away from the outer
zone, thereby creating an intermediate zone which is frozen in
time. Although highly nonlinear, the explosion stage is amenable
to analysis because gasdynamics is of secondary importance;
temporal variations are much too rapid for the gas to undergo
significant expansion.

For the specific reaction scheme under consideration it is found
that the reaction center can have one of two posible spatial
structures, depending upon whether the temperature profile within
the hot spot has a sharp peak or a rounded peak (Figure 1). The
former typifies hot spots originating at boundaries (e.g., & piston
face), and the latter those occuring in the interior of the vessel.
These structures, which will be referred to as the "Typa B"
(boundary-type) or "Type I" (internal type), are both self-similar.
The former is described below in detail, with only the results for
the latter given in section 6. In addition teo these two structures
there exists a third, described briefly in the Appendix; it is
singular and corresponds to very special initial conditions.

The specific configuration under study here was also examined,
with similar methods, by Poland and Kassoy [6]1. Their analysis
differs from ours in one crucial respect; they considered the
distinguished limit in which the spatially homogeneous induction
time at the initial state and the conduction time acroas the vessel
are of the same order, i.e., the Frank-Kamanetskii number § is of
order unity, albeit supercritical. In our analysis the induction
time is comparable to the acoustic time across the vessel, i.e., §

is very large. In physical terms, the explosive mixture being
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2. The Basic Equations, and Betup

unsteady motion are [7]

——

considered here has a faster reaction rate.

The equations of reactive gasdynamics for

pl ane,

= 3“1

, Accession Fo;

one—dimensional,
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gas pressure, density,

(2.1a) Py + up, + pu, = 0,

(2.1b) Pluy + uu) + (1/N)p, = 0,

(2.1c) ATy + uT ) — L(Y-1)/Y1(py + up,)
(2.1d) P(Yy + u¥ ) = —w,

(2. 1) P = AT,

where

(2.1€) w = [1/(86)1pYexp{6-6/T).

Here p, p, T, u and Y are, respectively,
temperature, velocity and reactant mass fraction.

The variables

have been made dimensionless with respect to a constant reference

state pgy, Pg, To and Y,

speed c,, defined by

co = Urpp/pg1t’?,

Velocity is referred to the acoustic

time to t,, the homogeneous induction time at the reference state,

and length to cpty.

The diffusion terms have been left out because

they are much too small to play a role in the problem under study.
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The dimensionless parameters appearing above are the specific—heats

ratio ¥, the chemical heat release B and the activation energy @.
Let the reacting gas be confined to the interval 0 < x < a. At

the walls the appropriate boundary conditions are

(2.2) u(O,t) = ula,t) = O.

The initial state of the gas is taken to be an ote~ 1) perturbation

of the spatially homogeneous and stationary reference state, i.e.,

(2.3a) utx,00 = & lu, (x,0,

(2.3b) $(x,0) =1 + 6 '%,(x,0) for & =T, p, Y and p,

where the precise specification of u;(x,0) and §;(x,0) must await

the next section. Note that

(2.3c) Pp(x,0) = py(x,0) — Ty(x,0)

in accordance with the gas law (2.1e). An asymptotic solution of the
initial-boundary—-value problem (2.1)-(2.3) is sought in the limit

& > o, with 8 and ¥ fixed and 0(1), until the localized explosion

has reached completion. The various stages of evolution are

detailed in the following sections.

3. The Induction Stage
The initial conditions (2.3) suggest that, at least initially,

the state of the gas remains an o™ perturbation of the

f‘- _‘4' 'f.-( .I -( ~-’ - -( ~‘_ -( :' ." --, -'_{‘-;‘.-. ..-. _--. ._
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reference state. During this period, referred to as the induction ﬁ:
i
i ”
atage, one therefore seeks the expansions o
0
o~
(3.1) u~6lu +l, B~ +0la L, =y
L)
BN
for =T, p, Y and p '
2
.--- .
which, upon substitution into the set (2.1) yield the leading-order N
disturbance egquations 2:_
5 K
. :( be!
29 \.‘.‘q
': (3.2a) (373t x 3/3x)(py * Yuy) = Yexp(Ty), :;?
W Y
}‘ (3.2b) 3/3tLYT; - (¥-1)py1 = Yexp(Ty), :g;
5 (3.2c) Py = py — Ty, 3Yy/73t = —(1/B8)exp(Ty). "a
Y v
b o
Y
% ¥
i Except for the nonlinear source term, eqns. (3.2a,b) are simply ~
¥ T2
y those of linearized acoustics in a uniform atmosphere. It is a *
2 simple matter to integrate them along the characteristics, as was ff
. " -_'
Q done in (4] and [5] for a different configuration. During :&
7 induction it is enough to concentrate on the variables T, p; and :J’
7,
Q uy, because once they are known, the first eqn. in (3.2c) yields g, ‘_-_
\' while the second, combined with (3.2b) and integrated, determines 15'
-_ Yy according to the expression .Q'
> ]
v, s
o, s
-, %
A, 0
L? (3.2d) Ty - Lr=1)/701py + BYy = T1(x,0) - L(X-1)/¥1py(x,0) AN
+ BY(x,0). * 7
o e
ﬂ .‘.
~
5 "
&: Equations (3.2) need to be solved numerically, and this was done 'ﬁ
,; for BN
7. Tad
& :
CAL) AR
Y ,’... -':'
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~ .
x;:'f\ o .n“\'- \J‘ "o .‘_‘-’:;I': N :..‘:; "-‘-f'\ RSN AT IR \ \- ‘J‘_‘. - Y ~ - PN .u: - .".- = : \: I - :~ - "




and for a variety of smooth initial conditions and interval lengths

a. A high-resolution, adaptive ODE integrator was employed to
integrate along the characteristics. All computations displayed
thermal runaway, characterized by the unboundedness of Ty and py
somewhere in the interval [0,al] at a finite time te- The numerical
results can all be summarized by considering two representative
cases, for which the initial values of pressure and mass fraction
correspond to those at the reference state and the initial velocity

is zero, i.e.,

(3.3a) Py(x,0) = Y;(x,0) = u;(x,0) = O,

while the initial temperature perturbations are prescribed as

(3.3b) Ty (x,0) = bl1-(x/a)] for case I, bL1-(x/a)2] for case II.

(Numerical results to be presented below correspond to a = 0.8, b =
0.5.) In both cases the initial disturbance has a single maximum
at x = O, causing it to become the site of thermal runaway. The
essential difference between the two cases is that in I the
temperature disturbance has a nonzero spatial gradient (sharp peak)
and in Il a zero spatial gradient (rounded peak), at x = 0. Thus I
typifies a hot spot located at the boundary (e.g., the shock
configuration discussed in [4) and [5]), and Il an internal hot

spot (easily visualized by a symmetric reflection about the
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»
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s
“
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origin). Henceforth the two cases will be referred to,
respectively, as Type B (boundary) and Type I (internal). Their
spatial structures, it turns out, are different.

In the follawing sections the Type-B problem is discussed in
detail. The Type-I problem can be treated analogously and is, in
fact, slightly simpler to analyze; it was deemad sufficient,

therefore, to simply state its solution in section 6.

We start with Figure 2, which displays the numerical results for
the Type-B induction solution. The four graphs there exhibit,
respectively, the profiles of T,, py, uy; and g, against x for
increasing values of t, upto the time beyond which the integration
routine was unsuccessful for a time step 10‘6, thus signalling the
imminence of blowup. An examination of the T;- profile near blowup
reveals the birth of a boundary layer at x = 0. Additional
information is provided by Figure 3, where the function expl-
T{(0,t)] is graphed near blowup. The straight—-line graph in the
figure has slope 1.4 (=Y), and a t-intercept equal to the blowup

time t_,, allowing one to conclude that

(3.4) T{(0,t) ~ —8nL¥(t—t)] + 0(1) as t » t,.

Figure 4 displays time plots of the solution at x = 0, and shows
clearly that while T,(0,t) and p;(0,t) become unbounded, p,;(0,t)
does not. Therefore, p,(0,t) must have precisely the same leading-

order behavior as T;(0,t), i.e.,

(3.5) Py(0,t) ~ —fnlt,-t] + O(1) as t > t.
%-\-._}\L._:\;. .l.‘.}._u-.-.-. P (( 'x-’-l-' . ST _,. e , P UL N o UL o) JU YA
A N N O R IR I TR VA DA ey G N T e o o e e




To summarize, the induction stage exhibits the classic logarithmic

singularity of spatially homogeneous thermal runaway [8].

4. Type-B Blowup Btructure

Although numerics has elucidated the temporal character of the
blowup singularity, further analysis is needed to ascertain its
spatial structure. This will be done by examining separately the
boundary layer, whose emergence has already been noted, and the
region outside. First, it is convenient to introduce a new time

variable r via the expressian

(4.1) r =t

Then, following simple manipulations, ears. (3.2a,b) transform into

(4. 2a) 9py/dx - ¥3uy/3rt o,

(4.2b) Y3uy/3x — 3py/3t (¥-1)3py /3t — YaT,;/3t = Yexp(T,y),

where the dependent variables are now treated as functions of x and
T. The relevant boundary condition is the first of (2.2), re-

written as

(4.3) uy €0, T) = O.

Elementary manipulations on (4.2a,b) and (4.3) yield the following

integral, which will prove to be of value later on:
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R > o

-~11-
e
(4.4) 3y = F explf exp(T (0,t)rdt],
T
where 3(r) denotes the disturbance tempmrature gradient at x = O,
and 3o its initial value, i.e.,
(4.5) o) = faT 00 70x] 00 3o = Ftg-).

Recall, from (3.3b), that 3, vanishes for type I but is negative
for type B. Then (4.4) shows that F(r) = O (rounded peak) for the
former and decreases monotonocally to -® (sharp peak approaching a

cusp) for the latter as t > O+,

4.1 The Boundary Layer
Turning now to the asymptotic analysis near blowup, eqns. (4.2a,b)

govern the region outside the boundary layer, where the outer limit

process

x > 0 and fixed, v » O

applies. The boundary layer, on the other hand, corresponds to the

inner limit process

s > O and fixed, tv > O,

where s(x,tr) is the spatial coordinate in the boundary layer,

reflecting its self-similar structure. The shrinking nature of the

layer requires x to vanish under the inner limiting process, and




D

) . .f-'i‘
| -12- .
‘ ',\_.\
] then a moment ‘s reflection suggests the definition DN,
i -".'\
-"‘n'& ()

l.. }‘

(4.6) s = x/T, L

e,

I.~ -’ -

uﬁz*

s

which assigns coequal importance to the x- and r-derivatives, QS?W

- :l

thereby providing the richest equations for the inner limit. (It 9

bl

LN

will transpire that this scaling does not quite cover the entire }{ﬁ.

£

boundary layer, but more about that later.) These equations, ﬁ{:’
LAy

obtained by transforming (4.2a,b) to the (s,tv) variables, are ;»L

S

Rl

..f '-l

I
(4.7a) (823/3s — T3/3TILYT, — (¥-1)py1 = Yrexp(T,), .

1 1 1 ,-.{\

AL A

(4.7b) (s3/3s — ©d/3T)py + Y3uy/3s = Yrexp(T,), ’ﬁ‘f

RN

(4.7c) (s3/3s — td/3r)uy + (1/7)3p,/3s = O. P
i

r";\' _..
It is convenient to isolate the temparal singularity from the -

s

gspatial structure, by setting 'ﬁ}if

AN

~ -"_l-‘

LN

RXX
(4.8a) Ty = —2n(XT) + fis,1), Y
S,
(4.8b) Py = —2n(ByT) + g(s,1), ,:::::4:

AN
(4.8c) u; = h(s,n), ?}ii

2% 0 )8

T

where the yet unknown constant B, represents a weak influence of - -

the initial conditions on the self-similar boundary layer, and will
be determined in due course by matching. The structure functions
f, g and h are assumed to be o(1) in the limit r 3+ 0. Substitution

of (4.8) into (4.7) yields the structure equations
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(4.9a) sf, - tf .+ (r-Dhg = ef - 1,

s T -
(4.9b) s(fg —gg) — tlf, — gg) - hg = 0, .
(4.9c) shg - th,. + (1/¥)g, = O.
I
[l
The only boundary condition appropriate for the above set is the Y
A
wall condition
(4.10) h(0,tr) = O.
In addition, since the initial data are smooth, the structure
functions and their s—-derivatives are required to be regular in s.
Consider the asymptotic expansions
(4.11) & ~ 01 ()34 (s) + 05(T)@,(s) + ... for & = ¥, g, and h,
as tv * 0. The gauge sequence {o_ (7)} is not yet specified, but a
clue as to its identity is provided by the inteqgral relation (4.4),
FoA
rewritten as ol
Ly
e
T o
(4.12) £,00,0) = 35 © exp[-f €1/ (rtrexpté 0,t)3dt] -
te N
) ‘:':' 7,
in view of the scaling (4.6) and the prescription (4.8). For small A
~

t the f-expansion in (4.11) allows the above relation to be reduced

further to the asymptotic form

(4.13) o4fy°(0) + ... =

T
o exp [0y - (41(0)/7}{)t‘1o,(t> dat +...],

where

L4
Cd
L4
<
v
o
)

o
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(4.14) A= (r-1)/7r. :
Recall, from (4.5), that the constant 3o is nonzero for the Type-B
prablem. Then, the assumption that £, °(0) is nonvanishing
(involving no loss of generality) leads to the conclusion
o
(4.15) oy(r) = 2A ::r\.l-\__
o
N
if the two sides of (4.13) are to balance at leading order. With ‘__'
oy determined, it can be shown that the expansions (4.11) proceed ﬁg?
in powers aof . E&;?
The boundary-layer analysis can now be carried out, and as rh-:
hinted earlier, the layer is found to have a two-sublayer :
structure. It is convenient to refer to Figure 5 in which the
various spatial regimes near and beyond blowup are displayed .
schematically. OR refers to the outer region and BL to the g
v,
boundary layer; the latter is subdivided further into an interior ;
sublayer L; and an exterior sublayer Lg. We shall first examine :
the interior sublayer, show that it becomes nonuniform for large s, E_.
determine the appropriate scaling and expansions for the exterior E
sublayer, and demonstrate that the latter merges smoothly into the :
outer region. Only one or two terms of the expansions in each
region will be computed; continuation to higher orders is
straightforward though increasingly complex algebraically. -
:
4.1.1 The Interior Sublayer L; -

Substitution of (4.11) into (4.9) yields the leading-order

N .

Sy Pl 0, R R
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structure equations for the inner sublayer,

(4.16a) sfy’ — (M1, + (F-1Dh;y' = O,
(4.16b) s(f;°-gy") - N#y-gy) ~ h;" = 0,
(4.16c) shy* - Ay + (1/7)gy" = O.

The boundary condition

(4.16d) hy (0) = O

comes from (4.10), and the solution is restricted additionally by the

requirement that it be regular. If g and h;y are eliminated from

(4.16a~c), the result is the third-order equation

(4.17) E(s3-8) 8,717 + ALQ1-3sD)€,°1" ~ (s2-1/6 "

+ (A1) (3A-8)sf, " + (A2-1) (2N §, = 0O

for £;. The points s=0 and a=1 are sinqgular points of this

equation and the three linearly independent solutions have the

asymptotic behavior

1, s and sZns as s + 0, and

1, 1-5 and 11-s|3Y~"1)/27 55 5 5 1.

In general one can expect a one-parameter family of regular
solutions to exist, and numerical computations verify that such is

indeed the case. A convenient parameter is
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(4.18) A = £,(0).

With £, known, h;y’ can be eliminated from (4.16a,b) to obtain a
first-order differential equation for g; whose regular solution

turns out to be

T
(4.19a) 9y = Lr+1/0/7r-136; — 8?/Ar-03f x7M " (dx,
0
and then, (4.14c) integrates to give
T
(4.19b) hy =9y /(N = [s?7 M 3f x"Agy 7 Gxrdx,
0

where regularity has been imposed again. Thus the full solution at
this order depends on the single parameter A;. Graphs of f;, g
and hy for A; = 1 are drawn in Figure 6.

At this stage the solution (4.8) has the following expansions

in the interior sublayer:

(4.20a) Ty ~ —8n(ro + Mis) + L.,
(4.20b) py ~ —en(BjT) + thg,(s) + ...,
(4.20c) up ~ thhyts) + Ll

In order to determine the spatial extent of L; one needs the
asymptotic behavior of f,, gy and h; for large s. This is easily

obtained from (4.17) and (4.19), as

(4.21a) £y~ ~Aals 2T 1/ Y gns + B
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+Cf5 + -.-]'
(4.21b) gy ~ —Aals(2V1Y/Y 4 p g(¥-1)/Y 4 g1/ Y (p pns + By
g 9 9
+cqs—‘y+1)/y+ _--]'
(4.21)  hy ~ -Aats TV p png + B + g s Y+ Ll

Here «, Bg and C; are constants with values

&« = 2.660, By = -0.234, C; = 0.0737

obtained by integrating the f; equation (4.17) numerically. The

remaining constants appearing above are given by

Ag = —r-1) r-1127¢2r%), Ay = (F+DA D),
Ap = 20,7/ (7-1)2, By = A/ (r=1) + (FH1DB/(r-1),
(4.22) By, = 2B ¥/ (r-1)2 — y(3r-1DHYA/(r-1)3,

Cq = (27+1)C/(2¥-2), Cp = -3YCe/(¥-1),

D, = -3Ce¥3/(r-12,

The range of validity of the expansions (4.20) can now be determined.
For example, substitution of (4.21a) into (4.20a) suggests that the

latter becomes nonuniform when

A (27-1)/7 2 g(1), i.e., s = OCc™H,

= (rY-1)/(2r-1)
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and the definition (4.14) of A has been invoked. Correspondingly,

x = 0¥/ 271y o (1),

The smallness of x indicates that although one has reached the edge
of Lj, the outer region is still too far. The need for an exterior

sublayer is therefore apparent.

4.1.2 The Exterior Sublayer Lg
In this sublayer the appropriate variables are § and t, with ¢

defined by

(4.24) € = ¥ g = /¥ (27-1)

The expressions (4.8) for Ty, p; and u; hold again, provided f, g

and h are now treated as functions of § and r. The structure

equations, obtained from (4.%9) by transforming from s to §, are

(4.25a) (1-mgfe — té  + (r-DeH h, = ef-1,
(4.25b) (1-w §(fa—ge) — tv(f —g) — 13 he = 0,
(4.25c) (1-m¢he — tho + 1/ g¢ = O.

Matching requirements imposed by L;, obtained by substituting

(4.21) into (4.20) and then employing (4.24), are

(4.26a) f o~ A §27TDY 4 28 gno,

(4.26b) 9 ~ —Ayax ¢2VD/Y gty
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. R
j. (4.26¢c) h ~ —Aja c® ¢/ 7ta (—p gnc + 2ne) + B3 o
~ iy
+ 0(c2Hy, ag ¢ 3 O. S
§ ' .o.'
Vr_‘
) Guided by these the Lg—solution is sought in the form .,
L)
]
! e
n'.h
(4.27a) f ~Fgolg) + ...,
R
. (4.27b) g ~ Ggl(&) + ..., sl
o Ve a
L
(4.27c) h ~ c#08nT Ho($) + Hy(6)3 + ... . o
N
3 Substitution into (4.25) leads to the differential equations .\;{
i o~
) PN
" o
(1—u) §Fo" = exp(Fo)--l, :_‘
BN,
Fo' — Bo: = 0, -:.'-
Y,
3 (1-) §Hy" - wHg = O, )
- 1Y -
2 (1-u) §Hy " = 1Hy = Hy — (1/7)Gy", -
) n,%
W AL
: o
* whose solutions, subject to the matching requirements (4.26), are "
) "f".,
3 (2r-1)77 o
~ (4. 28a) Fo(g8) = Gplg) = - EInl1+A a¢ l, '
) -’.:
N (4.28b) Ho(€) = —Ajaf(r-1)/r23gY-1)/7, Ry
! e
: (4.28c) Hy(9) = aja ¢ "D/ Y0c2r-10 7722 cene + Fe)y - B0, -
e e
|. oW
) \:.\
AR
, Thus the Lg-solution can be written as ::‘-
lfI
\ -
: (4.29a) Tl ~ —en(YT) + FO(E) * ..,
L (4.29b) Py ~ —2n(B;t) + Fo(€) + ...,
o,
4 (4.29c) up ~ ¥ R Hp(6) + Hy(e)1 + L. . .
LR Iv"\f
R
:.: ‘:_\
o SA
X .
‘¥ =3
) T
~? w
R s A S R e A A '
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One must consider the behavior of this solution for large § in
order to assess the spatial extent of the sublayer Lg. This can be
done, for example, by substituting the large-¢ behavior of (4.28a)

into (4.29a). The result is the expansion

Ty ~ —€2r-1/03en ¥/ 27" Dy — pnipjon + ...,
as § » o,
which clearly becomes disordered when § = D(t—Y/(ZY—l))_
Correspondingly, x = 0(1), indicating that the edge of the boundary
layer bas now been reached. The next step is to see if the

boundary layer merges smoothly with the reqgion OR.

4.2 The Outer Region OR
In the outer region, where x and t are the proper variables, the

solution can be expanded as

(4-30) ’1 ~ ilo(x,te) + T QII(X) + LEC U] fDl" ’1 = Tl, pl and ul’

where the leading terms are the numerically obtained limiting
values at blowup and the higher-order terms can be computed from
(4.2a,b) under the outer limit process. It is a straightforward
matter to establish that a match of (4.30) with the Lg—-solution
(4.29a-c) requires the following asymptotic behavior of the outer

solution at blowup:

(4.31a) Ty ~ ={Qr-11/78nx - en(Aja?) + ...,
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(4.31b) Py ~ ~{(2r-1)/738nx - En(AyoBy) + ...,
(4.310) uy ~ —Aga x Y/ Tear-1) /723 00(r-1) /73 gnx

+ zn(Ala)]+Bh} + ..., as x * O.

A careful examination of the numerical solution does, indeed,
confirm this behavior. The constants A; and Bl' the only ones yet
undetermined, can then be found by comparing the above expansions
with the numerical solution. The comparison is made at the “edge”
of the boundary layer, i.e., for (x,t) satisfying r << 1, ¥/ 2r-1
<< x << 1. It should be emphasized that the structure of the
blowup singularity is influenced by the initial conditions only via
these constants; otherwise, the ww=lution has a universal, self-

similar structure.

4.3 Summary

s

The near-blowup analysis is now complete, and can be summarized. 23.

In the interior sublayer LI the expansions are ig;

s

o

(4.32a) Ta~tl+ 8 l-2nro + Ms) + Lo01 + Lo, :%;

(4.32b) p~1+ 8 -gnByr) + g sy + L.l3 + L., e
(4.37c) u~o6ltchh e + L1+ L,

where f;, gy and h; are defined by (4.17) and (4.19). In the

exterior sublayer, the solution is

(4.33a) T~1+ 08 -enroy + Fot§) + ...1 + ...,

(4.33b) Bo~1+ 87 l-enByr) + Foe) + L.00 + ...
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(4.33c) u~ 8 ek gt Ho(e) + P H (&) + L 1+ L.,
where F,, Hy and H; are given by (4.28). In the outer region the

expansions take the form

(4.34a) T ~1+ 0T x,t) + 0T + ...,
(4.34b) P ~1+ 68 poix,ty) + 0()1 + ...,
(4.34c) u ~ 8 ltuggtx,t) + 0O + ...,

where TlO' Pijo and u;, are the terminal values of the induction
solution, determined numerically.
The remaining variables p and Y can be computed, upto 0(9—1), by

appealing to the first equation of (3.2c) and (3.2d). The results

are

(4.35a) P~1+ 0 ltenr/B + N (g ¢ LLlT L,

(4.35b) Y ~ 1+ @A lenb o + N Lr-gy-rE o+ L1+ Ll
in LI v

(4.36a) p~1+ 60 tencr/Bp + L1+ Ll

(4.36b) Y~ 1+ @8N entbo - Fte) + ...1 + .

in Lg, and

(4.37a) P~ + 8 lpotx,t )T glx,t) + 0O + ...,

(4.37b) Y a1l o+ (08T -1 /03p glx,tg) —Tiolx,tg)

+ b(il—-x/a) + O(e)) + ... .
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(4.38) b; = explyb + Y&nY - (¥-1)2nB;1].

I}
.

3
L

g
3 4 *

Dbserve that the BL-solutions (4.32), (4.33), (4.35) and (4.36)

P~
.

break down when ~-fnr = 0(8), signalling the end of the induction

-
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stage, and the onset of explosion. In contrast the OR-solutions,

\

(A (4.34) and (4.37), suffer no disordering and in fact, become

e g
) N
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N increasingly accurate as t ¥ 0.
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5. The Type-B Explosion Stage et

The nonuniformity just encountered decrees that further ‘A

evolution in the boundary layer occur on the new time scale o,

oo
l.l
e

PURNENGS

defined by

PR A
a
hA G

’
,
,
’
¢

[

7,

s

(5.1) r = e 90,

For o = 0(1) the limit @ +» ® corresponds to a time interval of
exponential brevity; its role in the evolution of thermal

explosions was first recognized and exploited by Kassoy [(8). The

two sublayers comprising the boundary layer must again be examined

in turn. In fact, we shall find that as the boundary layers AT

r e
. te b
l.l
l‘
o

cantinue to shrink, an expanding void, or an intermediate region

[ 3] g
r """.‘ s
¢' Y
hJ

L

(denoted by IR in Figure 5), is created between the sublayer Lg and

the outer region OR; this region begs a separate treatment.

S.1 The Interior Sublayer L;

The spatial coordinate in this region remains s, now written as

s = x/t 6o

]

n

X
-

o
s d
SR

thereby expressing explicitly the continuous shrinkage of the

'y ]
L6077,
.

L g
"l

region. In the (s,0) variables eqns. (2.1) transform into o

X
o,
4

.

Wal
(5.2a) 671! p, + sp_ + (pur_ = O, “IAlnl)
-

(5.2b) PLO™ ! Uy + sugl + (1/¥pg + puug = O,

T et T AT T T e At
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(5.2¢c) ete™t T+ sT1 - Cr-12/73167) p o+ sp]

g
+ ulpT, = CLr-1)/73p 1 = W,
(5.2d) PLO™l v+ sY_1 + upY_ = -(1/8)W, X

(5.2e) p = PT, Lo

where

(5.3) W= 61 prexptoti-o-1/7)1.

]

The boundary condition (2.2) is rewritten as 23
(5.4) u(o,0) = 0. S

At fixed s the solution must match with the induction zone as o >

0. To obtain the necessary conditions one applies the "explosion

limit" o fixed, 6 > ® to the L;-solution (4.32), (4.35) and gets .5
"I
(5.5a) T ~ 140 - 8 gnr + ... + 8[§,(s) + ...1, r
(5.5b) p~1+c — 61 B, + ... + 8lgq(s) + ...1, S
‘h.:'/l‘:-

(5.5c) u ~ &hy(s) + ...1, }:}}
tal
(5.5d) P ~1+ 681 an(y/B + ...+ Blgy(s)—f () + ...1, ey
(5.Se) Y ~ 1-a/¢BY) + (@8Y) lenby + ... T
N
+ s Lr-1g(e)-Yf (8)+ ...], as @ > O. RS,
RS
Here, N
R
AN

o

(5.6) § = g1 e 99N,

MWL
PCPTE T

e T S e S e P S PR VI
F‘.I,\I“.J‘_'.( o P PN P A A .:-.r__.,g




where A was defined in (4.14) and b; in (4.38). These conditions
reveal that spatial variations in the explosion stage appear only
at the (exponentially small) 0(8) level, thereby suggesting that
the solution is spatially uniform to all algebraic orders in 6. In
other words, the structure of the interior sublayer consists of an
extremely weak chemico-acoustic field superimposed over a uniformly

exploding atmosphere. Accordingly one seeks expansions of the form

(S5.7a) u ~ §uyls,o) + ...,

(5.7b) & ~ Polo:®) + &§ 3y(s,0) + ..., fOr =T, p, P, and Y,

with the understanding that the $; contain all terms of algebraic
orders. Substitution into (5.2) finds the §, satisfying the

standard equations of constant-volume thermal explosion [83, i.e.,

(5.8b) (1/7)pp3To/ 80 = —Bpn2Yo/30 = Wy

1Y

The solution, subject to the matching conditions (5.5), is

(5.9a) o ~ %00 * @ ! 8y, + ..., fOr =T, p, ¥ and g,
where
(5.9b) Too = Pog = (1-0) 71, Yoo = (1+¥B-Ta) 7 (¥BY, Poo = 1,
00 00 00 00 00
(5.9¢) Tay = -(1-0) 2enfra-e32vanl, pPny = n(y/B)Y,
01 00 01 1
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The structure functions $; satisfy, to leading order, the equations

(5.10a) (53/3s-N) py + ppduy/ds = 0,
(5. 10b) Po(s3/3s-Nuy + (1/7)3p/3s = O,
(5.10c) (83/38—N LPoT —C(F=1)/¥3p,T1 = T Wo/To2,
(5.10d) Po(s3/35-N) Yy = — T Wo/ (BTZ),

(3. 10e) Py — poT1 - Top1 = 0,

where W, was defined in (5.8b). Replacement of T, and Wy by their
leading-order values from (5.9), followed by the use of the trans-

formations
uy = (-1’2 4, s = s(1-y71V/2]
reduces the set (5.10) to

(5.12a) (83/38-M T, + (¥-1)3u,/93s
(5.12b) (83/98-N) (Ty—py) — du,/3s
(5.12c) (53/35-M)u; + (1/7)3p,/3s
(5.12d) Py = (p{~T{)/Toos

(5. 12e) (53/35-NYy + (1/(8¥)3T{ = O.

Eqns. (5.12a-c) are identical to (4.16a-c) if Tis Py Gl and s in
the former are identified, respectively, with f4+ 93y hy and s in
the latter. Following the arguments of section 4.1.1, therefore,

one is led to the solution
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(5.13a) Ty = A () /A 14, (8),

(5.13b) p; = [A;(a)/A;1g, ()

(-0 12 4§, = -0 1/21A, (/a3 (5),

where A; is the constant introduced earlier in (4.18). The
amplitude function al(o) is unknown at this stage, and will be
determined by matching with the exterior sublayer. So far we only
know its initial value as a result of matching with the induction

solution (4.32), i.e.,

It is now a simple matter to solve (5.12d) for £y, and compute Y, by

integrating (5.12e) subject to the regularity requirement. The

resulting expressions are

i‘:-"';",
A
.-\:.'.‘ T
(5. 13a) Py o= (1—0)[51(o)/Alltgl(s)—flts)], ﬁg?&
~ ~ ~ .:.;:‘):‘: |
(5.15b) Yl = [Al(o)/(BAl)][{(Y—l)IY}gl(s)—fi(5)]. ’

Both the spatially uniform and the spatially-varying components

of the expansions (5.7) are thus determined at leading orders,
although the latter involve al(o) which is still to be found. It ':1f;:
is worth noting that the spatial structure of the solution is
essentially the same as it was at induction-stage blowup; the
scalings (S5.11) simply reflect tha temporal evolution of the

acoustic spead.

As in section 4.1.1, the Lj;-solution breaks down for large s,
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: o
. the nonuniformity now occuring (see the expansion (4.21)) at -;
4 . %
.:‘ 052{2Y-1)/Y - g(1). One is then led to the exterior sublayer. f:::
X A
3 f\'-
a- 5.2 The Exterior Bublayer Lg {:-;j.
\ R
Here the proper variables are § and o where § is now related to x -':.'_-::
K e
and s via the expressions -
)’ "
+ "
{ _ B n _
£ (S5.16) ¢ = x 0¥/ (2Y-1) . (y_gy~1/2 3 4 aOu’ 3
4 Lo
::‘ and u was defined in (4.23). In the new variables the full equations ':5:’.
" ER
"
, (2.1) read
A
_" ‘.;
- (5.17a) ol p_+ (1-wep, + @ U (py), = O, S
Ll o g g ._:’._
- (S5.17b) Gou -1 + (1-weuel + (1/Vp,. + =0 o
- : pe Yo ) Sug Pg + Auug = 0, o
A "~ N
- (5.17¢) pLO™Y T 4+ (1-wET.d - Cr-n/rteT p o+ (1-wép,d b
b Gon R
- - - - =
W + e uleT, ((r-1)/7r3p1] W, &
o
o (5.17d) pte”l v 4+ (1= €Y1 + e g0k upYe = —(1/8)W, -~
» ._':
) (5.17e) p = pT, b
A
O LS
o where W retains the definition (5.3). The solution is subject to T
& e
the following matching conditions imposed by Ly: N
NS
N >
2 1.
TN _ _ ._\'.
b (5. 18a) T o~ Tgo + 81 [Ty - P2V 1)/ o ) -]
- b}
- (5.18b) P ~Too + 81 [Tgy + poy/t1-0y — pgt2¥-1D/¥y o -
v &
-é; (5.180) u ~ —e"98 pe (VD 4o 4 i
. -1 —ay 172 oY
) 6! tapenci-o1/2ey + B3]+ LLo, =
r— — "-'
. (5. 18d) P~ + 01 po L, ¢
- N
’-‘ '~-.':
O
‘. L
". ::.‘
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(5. 18e) Y ~ Yoo * @8N Henwb /0y - Ty +

Pg(zy_l)/)’] + “eay as e +> 0.

Here,

(5.19a) Pla) = af (o) (1-g) (R¥-1)/2N)
with

(5.19b) P(O) = aA,,

from (5.14). In obtaining the conditions (5.18) we have employed
the expansions (4.21) and the solution (5.13); the variables with
double subscripts are the spatially homogeneous functions appearing
in (5.9). It turns out that campliance with these conditions also
ensures temporal matching with the induction stage. The Lg-

solution is now sought in the form

(5.20a) T ~Too + & T8, + ...,

(S.20b) p~Too* @1 pte,o0 + ...,

(S.20c) u~ e 9% G,(5,00 + 871 4, (8,00 + ...T,
(5.20d) Y o~ Yoo + 071 Ve, + Lo,

(5.20e) pat vt po el

Substitution into (5.17) shows that (5.17a) is satisfied

identically to o . at 0(1), (5.17b) reduces to

J‘J‘?.;z ¢ f.‘-’.f‘ ' R
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‘l‘l*-'\-'k -“\'.' S
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wha
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(1-u) €305/ 3¢ — g

whose solution subject to the matching requirement

(5.21) Ug = ((r-1)/7%yopgY"1V/7,

At 0o 1y, (S.17e) yields

(5.22) Py = Ty + pgy/(1-0),

while (5.17c) reduces to

(5.18c)

(1~ "2 + (1-wedTy7a¢ - cr-1/r3[1-072

+ (- eap, /28] = Yoo expl(1-0 27,1,

and, in view of (5.22), simplifies further to

(5.23) (1-0)72 + (1-w §3T,73¢ = Fyyg expl (1-0) 2T 1.

Its solution, consistent with the matching condition

(5.24) ?1 = Toy - (1-g) "2 ,n[1 . (1_0,2P§(2V—1)/y]_

With ?1 known, (S5.22) defines Sl' In order to determine ?1

consider (5.17d) at 0t~ 1); it yields

-8V 1-0)72 + (1-w €3V /2

is

(S.18a),
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2'\4
= (-1/8)Ygn expl(1-0)°T,1.
When linearly combined with (5.23) the above equation leads to
arT, + B¥Y,1/23¢ = o.

The matching condition (5.18e) then provides the following expression

for Yl:
(5.25) BYV, = en(by/¥) — T,.
It now remains to determine Gl* and the function P(o) (or,

equivalently, al(o)). Both are obtainable from (5.17b) which, at

0(e~ 1y, reads

(5.26) (1-u) §3U,/3¢ — muy; = -3ug/d0 - (1/¥)3p,/d6.

With Uy and p,; known (see (S5.21), (5.22) and (5.24)), the

general solution of the above equation can be written as

(5.27) oy = C@r-n/7ryeTD /Y e - r-1)7723 (0P " g

+ P/ g 2T IY  01ap (12002 (27711 75,4]

where K(o) is the i1ntegration "constant'. As ¢ *> O, Gl has the

asymptotic behavior

(5.28) Gy ~ Cr-ny/rye DY e cir-1) 712y (opy
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+ C2r-1/7%P1ng + K] + ...,
1,

which must agree with the 0(6~ term in (5.18c). Matching the £n¢

terms yields the differential equation
LoP(o)1l” =P

whose solution, subject to (5.19b), is

(5. 2%9a) P = oAy,
or, equivalently,

(5.29b) A, = A (1-gy~(2r-D7@2n

With P determined, matching of the §-independent terms in (5.28)

and (5.18c) yields K:
(5.30) K= (eA{ /0 L(1/2) en(1-0) - (¥2/(2¥—1)}Bh],

where the constant By was defined in eqn. (4.22). The Leg-
solution at the explosion stage is thus complete.

It is instructive to compare the solutions in the two sublayers.
In each the background field is that of a spatially homogeneous
thermal explosion, but the superimposed spatially-varying field is

quite different, both in amplitude and structure. In LI the

spatial component is exponentially small in amplitude but has a
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chemico-acoustic character; all disturbances to the background
homogeneous field are of the same size. In Lg the spatial
variations in T, Y and p are 0(6_1), while those in u and p are
exponentially small, 1.e., the evolution i1s essentially due to
constant-volume chemical amplification of a spatially-non-
uniform field, with gasdynamics playing a very minor role.

As o increases, | and p increase and Y decreases, in both the
sublayers. Eventually, p and T peak when Y5, the leading term

in Y, vanishes. This happens at (see (5.%9))
(S.31a) a = BY/(1+8)),

and the peak values are

(5.31b) T ~ 1487, p ~ 1+87.

At the same time, the 0@ 1) term (in T, say: see (5.20a), (5.24)
and (5.9c)) develops a logarithmic singularity, indicating

breakdown of the solution and the end of the explosion stage.

S.3 The Outer Region OR

This region remains essentially stationary, and hence plays no
role during the explosion stage. For the sake of completeness, we
give below the asymptotic form of the outer solution as x > O3

these expressions are determined by combining (4.31) and (4.34):

(5.72a) T~1+ 0! [mcar-ty/remx - encajan] + ...,

Lo Ale it hia Sl BN RS dU R ) Saf ¥ §
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’

s
’




(5.32b) p~1 + 61} [—{<2r—1)/¥)znx ~ en(AjaB )] + ...,
(S5.32¢) u~6!aa x"‘1”’{{(27—1)/¥2}[{-(7—1)/x}znx

- encA;01 - By + ...

CnA
Pad
PN
g,
N
s
Similar expressions can be written for p and Y. The important Qy:a
Ly
A
point to note is that this solution is unmatchable with that in Lgs o
™
'\..'-J..w
for example, to leading order, T is | in OK and 1/(1-0) 1in Lg. The ?ti
reason is the emergence of the intermediate region IR in Figure 5, Eﬁi
A
created by the receding boundary layer. In this region T must e
,
PR
vary, at leading order, from the outer value 1 to the inner value g
P
.\-

1/(1-a). R

5.4 The Intermsdiate Region IR
This region, because of its passive character, w~ill only be

described very briefly. It is governed by the variables o and X,

Y

-
~an
where X is defined by e
s " - .

..
PLIPA
£,
A A
it
L ‘.
Yy
5

,'.
2

(5.33) x = e 9%,

Matching with the neighboring regions is carried out at fixed o, by

setting

X = -1 pnx

as one approaches the outer region, and

X = o(1-w) - 81 gng,

€4ﬁ¢iﬁ5

o

l“'
Ny

‘

Y '-’.‘-3:" ;‘“;f_'-".'-'.".{_‘-';.\:‘;-'-;»". N e e T T N T N L e N T T e N AT T AT Y e
. VA% Y » Y - A W N L A T A R R A I I R
p&ﬁ:k B A N A A T R S R W A R Rt N T R Y R, A A T T Y YA A L R A Y




as the boundary layer is approached. Therefore the range of X is

(5.34) O < X < oll-w;

recall that u was defined in (4.23). From (5.20) one can easily

conclude that leading—-order matching with Lg requires

(5.35a) T~ 1/(1-0) + ... , as X *» o(1—),

with analogous expressions far p and Y, while

(5.35b) P ~l, un~e @X-DI/Y iy 1y/7230, 00.

Therefore the solution is sought in the form

(5.36a) 2~ + ..., for =T, p, o and V,
and
(S.36b) u ~ e @Xr-vsr O . .

In the (X,0) variables the full equations (2.1) read

Py - (upry e 8lo"X) - o
P[Uo, - uux E_Q(U—X)] - (1/y)px Q’O(U—X) = o'
p[Ty - uTy e X] _ tr-1y/13[p, - upy e X] = u,

plvy - ury e @o"X] = _(1/pw,

T R R R T O S
A ST I RN )
[ Sl S -(“T‘.’-J" \-,\-_\,'S P

-

~

N
P
q

0
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where W retains the definition (5.3). Clearly, the solution 1s

stationary, i.e., independent of o to all algebraic orders.

Specifically, the reaction term W is exponentially small since one
expects T < 1/(1-0). The leading-order terms can then be
determined simply by appealing to the matching conditions (5.335),

and one finds that

5

"
= o) -1 RO
(5.37a) TY = 1/01—-(1—w) * X3, A
RS
NI

’:\':-.

o

with analogous expressions for p and Y, while K
T

DASAN

hRRY

N v.l_ -

(5.37b) P =1, u® = cr-nr7r2rae -7 ix.
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It is a simple matter to check that the above solution also matches
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.

)
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with the outer expansions (3.32) as X » O.

e
A
v

The analysis of the Type-B explosion is thus complete.

6. Tha Type-1 Explosion
In this section details are largely omitted and emphasis is on
the results, since the treatment follows closely the Type-B

analysis just concluded.

6.1 The Induction Stage
Figures 7(a-d) display the numerical solution of the induction

Similarity with Figures

problem. The graphs are self-explanatory.




2(a-d) is obvious, but two points of contrast are noteworthy.
First, the temperature profile now has a rounded peak. Second, the
boundary layer is thicker; this can be seen more clearly in Figure 8,
where Tix,t)/T;(0,t) is plotted at the last successful time step
for each of the two cases.

The boundary layer retains the form (4.8) and a two-sublayer

structure emerges once again. The expansions are

(6.1a) T ~ 1 + 9—1[~£n(¥t) ~ tént {(Y—l)/Y}A1 +

v -Ags? A + L]+ L,
(6. 1b) p~1+68l[-enBio) - rent Crend/v3A, +

© [-A1s? + (D=3 + A7YT + o]+ oL,
(6.1c) u~ 6 eene -2a;5/73 4+

v [2A5/(r-1) — Aj/7is + .. ] + ...

in L, and

(6.2a) T~1+ 6 -tnro - enc1+a ¢?) T
(6.2b) p~1+ 8 [-anBiv) - anc1+A ¢ + e ]+l
(6.2¢) u ~ 8 e 2ene 270863 + /2 -2/nA,¢ tn(1+A,¢2)

+ L2A5/00-1) - Ag/r3CY + L] o+ Ll
in Lg. The coefficients A, A, and By are to be determined by
matching with the outer solution as before. The spatial coordinate

¢ in Lg is defined by

(6.3) ¢ = xscl’/?,
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implying that the boundary layer is now 0(c1/2) thick, and hence
thicker than the O(¢¥/ (2717, Type~B layer. The finding of Figure
8 is thus confirmed.

It turns out further that the LE—solution is uniformly valid all

the way to ¢ = 0, so that the interior sublayer is, in fact,

superfluous.
For smooth merging with the boundary layer the outer,
numerically computed solution is required to have the asymptotic

form

(b6.4a) T~1+ 67! t-28nx - gnyAp) + L..1 + L.,
(6.4b) p~1+ 681 [-28nx - gn(AB + L.u] + L., .
(6. 4c) u~ 8! [-4(A, /Y xtnx + (~2(A;/7) EnA,

+ 205/7(Y-1) - AQ/YIx + L. + ..., as x *> O.

This behavior was confirmed, and the constants Ay, A and B,
computed, by comparing the numerical solution with the above
expansions. The remaining variables p; and Y; can be determined

as before, by appealing to the first member of (3.2c), and AR

6.2 Tha Explosion Stage

The analysis proceeds as in section 5.2. The appropriate

coordinates are o and ¢, and the requirement of matching with Ly

PR
b Je Nt
)

P o PR AN

is replaced by the condition of regularity at ¢ = 0. The solution

A
v
.
P

' ‘s
7
.

]
'

turns out to be



(6.5a) T

4

{6.5b) p

2

(6.5c) u~ e 9/2 [tn ¢orcra-oz] + ...
(6.5d) P ~t+ 8l pyy L.,

-1
(6.5@) Y o~ Yoo + (@8N 7! [enby /-1y,

+U-0 " Zenc1+n ¢2 ] + L.,

where the constant b, appearing in (6.5e) was defined in (4.38).
The doubly subscripted quantities correspond to the spatially

homogeneous explasion,
stage peaks just as it did for Type-B,

of section 5.2 remain valid.

5.4 carries over,

L A O S R

AN e SR LT EON

Too + 81 [Tor-(1-oy2ent1+a¢%2] + ...,

and were introduced in (5.9). The explosion
and the remarks at
Finally, the IR-analysis of

with obvious modifications.

Too + 871 [To1-t1-a) 2enc1+a ¢234py, 7 t1-0] + ...,
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Concluding Remarks
The spatial structure and temporal evolution of a localized

thermal explosion in a confined gas have been described

mathematically. Localization, rather than a spatially uniform

explosion, occurs as a result of system nonhomogeneities, here

model led by a slightly nonuniform initial temperature. Attention

N

>

is confined to what may be called the fast-reaction limit,

0

L
u"- ‘»

la't‘

characterized by the initial induction time of the reaction being

P
o

I
»

comparable to the initial acoustic time across the vessel, so that

Y
o~
diffusion plays no role. This limit can be achieved if the initial o
™
.: \J
temperature of the unreacted gas has been raised to a sufficiently :Q:
pONA

high level, perhaps by the passage of a strong shock. By contrast,
the slow-reaction limit would correspond to the induction time and
the conduction time being of the same order. The latter problem A
was the subject of Poland and Kassoy’'s investigation [&], ]
The explosion is shown to develop in two distinct stages. The N
first stage is induction, characterized by small perturbations
about a spatially uniform state, where the primary interaction is
between linearized acoustics and weak but nonlinear chemical
heating. Chemical amplification leads to localized thermal .
runaway, or blowup of the perturbations, at a time and location
determined by the initial and boundary conditions. The spatial
structure at blowup is self-similar, differing slightly depending
upon whether the runaway site is at the boundary or in the interior -
of the damain. E:

Induction is followed by explosion, characterized by 0(1)

e
AT T T T L C e e e e e .- . v
NG . T e e e e e T e T e A e e T

. RN
- PR [ YA Y =
V-V IV PPV (VPR P AP T Py
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variations in the state of the gas. The characteristic chemical
time plunges dramatically. The acoustic time drops as well, but
not nearly in the same proportion, so that explosion is dominated
by chemical heating. There is no time for expansian, with the
result that changes in the velocity and density fields are
negligible. Thus the gas explodes locally at essentially constant-
volume conditions, with little change in the spatial structure that
it inherited at runaway. (Analysis in the Appendix shows that 1if
thermal expansion is admitted, the corresponding spatial structure
is necessarily singular.) The explosion stage ends when temperature
and pressure within the explosion have peaked, the final values
being exactly the same, to leading order, as in the spatially
homogeneous case. The subsequent expansion of the hot, highly
caompressed gas, and the eventual development of a blast wave, are

currently under study.
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Appendix

The setup (4.8), employed in the text for analyzing the spatial
structure of blowup, is based on the numerical observation that
both Ty and p; exhibit identical, —-£nt behavior as tr » O.
This abservation, found to hold faor all the numerical runs

undertaken, implies that blowup is a constant-volume process, since

L3

density perturbation gy = py -~ Ty remains bounded. Eﬁg:
Let us now consider the possibility that for some initial ;iﬁ
canditions, blowup lies partway between a constant-volume and a j::«
constant-pressure process, and ask whether a self-similar structure Eiﬁ'
consistent with this notion exists. Accordingly, we replace (4.8) iig
by T
(A.1a) Ty ~ —2nt + f,o(s) + ...,
(A.1b) Py ~ —Afnt + ggls) + ...,
(A. 1) uy ~ hgts) + ...,
where
0 < A< 1.
o
e
The case A = O corresponds to a constant-pressure situation, and ?V

A =1 to the constant-volume case already discussed. Substitution

into (4.7), followed by some rearrangement, yields the leading-

order structure equations
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(A.2a) s(1-52)f,° + [1-82-{(Fr=1)/73N) = (1-rs?
. € 0 s = sT)exp fq,
(A.2b) (1-s2)gg" = slA-Yexp 5],
2 N
(A.2c) Y(1-8%)Yhg " = Yexp fg — A. S
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The transformation

(A.3) fo = —enF

2 A

reduces (A.2a) to the linear equation

BN
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k]

(A.4) s(1-82)F" = [1-82—~{(r=-1)/Y3NIF = 1-rs2.

Once F is known, fg, 9¢ and hg can be computed sequentially from

(A.3) and (A.2b,c).

kY

Equation (A.4) has singular points at s = 0 and 1. It can be

L
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shown that in general integration can remove at most one

singularity, thereby yielding solutions which are singular
either at O or at 1. Such solutions can evolve only from very
special, singular initial conditions, and are therefore

unacceptable if the initial data are smooth. The only regular

solution is the constant

which requires

corresponding to the constant-volume blowup already discussed.
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Figure 1
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A scematic of the temperature profiles for the Type-B (sharp

N
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peaked) and the Type-1 (round-peaked) explosion.
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