The Magnitude of Secondary Electron Contributions in Photon Stimulated Desorption

By

Prepared for Publication in the Desorption Induced Electronic Transitions, DIET III (Springer Series in Surface Science)

George Washington University
Department of Chemistry
Washington, D.C. 20052
December, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

Recent reports on the extent of secondary electron contributions in electron/photon stimulated desorption (ESD/PSD) appear to be contradictory. Jaklir et al. suggested that secondary electrons provide the dominant contribution to the H⁺ yield from NH₃/N₂ and called the process x-ray induced ESD (XESD). Others have concluded that the XESD process is the dominant mechanism in the PSD of N² and O² ions from the mixed condensed gases such as N₂ and O₂ in the PSD of H⁺ ions from NH₃/N₂/N₂O. On the other hand, experimental evidence exists in the literature for the dominance of the direct photon excitation mechanisms. This paper presents a re-examination of the three systems mentioned above where a dominant XESD effect has been postulated to determine the validity of the conclusions previously reached.
The Magnitude of Secondary Electron Contributions in Photon Stimulated Desorption

D.E. Runeker, T.E. Madey, and R.L. Kurtz
Surface Science Division, National Bureau of Standards
Gaithersburg, MD 20899
and
B. Sambe
Chemistry Department, George Washington University
Washington, DC 20052

1. Introduction

Recent reports on the extent of secondary electron contributions in electron/photon stimulated desorption (ESD/PSD) appear to be contradictory. JAEGER et al. [1] suggested that secondary electrons provide the dominant contribution to the H⁺ yield from NH₃/NH and called the process x-ray induced ESD (XESD). Others have concluded that the XESD process is the dominant mechanism in the PSD of N₂ and O₂ ions from mixed condensed gases such as N₂ and O₂ [2] and in the PSD of H⁺ ions from OH/YbO-5m [3]. On the other hand, considerable evidence exists in the literature for the dominance of the direct photon excitation mechanisms. This evidence usually comes from observed differences between the ion yield and the secondary electron yield or from the absence of any clear structure or "turn on" at certain core levels [4].

It seems clear that the magnitude of the XESD effect is generally not known, but this is an important question. Most helpful in sorting out the complex mechanisms in PSD has been the comparison of the photon energy dependence of the ion spectral yield with constant initial state photoelectron spectra [5]. However, if the ion yield is dominated by effects from the secondary and back-scattered electrons, then this comparison provides no information because the ion yield will simply reflect the bulk DOS, regardless of the excitation involved. Moreover, the usefulness of PSD extended x-ray absorption fine structure (EXAFS) measurements for obtaining information on surface structure [6] will be highly limited if XESD contributions dominate. This paper presents a re-examination [4] of the three systems mentioned above where a dominant XESD effect has been postulated to determine the validity of the conclusions previously reached.

2. H⁺ from NH₃/NH

The H⁺ yield spectrum from NH₃/NH(110), where the NH layer was believed by JAEGER et al. [1] to have an appreciable thickness, reveals the N IS edge [1]. This suggests that the XESD mechanism must be acting, if indeed all N ions are separated by many NH layers from the outer surface. Furthermore, at the N K edge, the total electron yield (TEY) and H⁺ yields are very similar except for the presence of a shoulder in the H⁺ yield which is not present in the TEY. This shoulder was interpreted by JAEGER et al. [1] to arise from the direct core level excitation of a surface NH molecule, the remainder of the yield spectrum arising from the XESD mechanism. Based on this interpretation, the XESD process is estimated to cause 60% of the total yield.

Our thermal desorption studies and other data indicate, however, that the thickness of the NH₃ films used by JAEGER et al. [1] were considerably different from those which they reported [4]. We also indicate that the observed shoulder in the H⁺ yield arises because the 1e⁻/4e⁺ excitation at this energy has a higher branching ratio for the desorption process than for excitation into the Rydberg or continuum orbitals [4]. This is indicated because of the surprising character of the 4e⁺ orbital. Thus, we do not believe that sufficient evidence has been provided to indicate that the XESD contribution is dominating in this case; indeed, we believe that the difference between the TEY and the H⁺ yield provides evidence that it is not dominant.

3. O⁺ and N⁺ from N₂-O₂.

Recently PANKS et al. [2] reported the TEY and O⁺ and N⁺ yields from a condensed mixture of N₂ and O₂. The presence of large N⁺ and O⁺ yields at both the N and O K levels indicates very strongly that the XESD mechanism is playing an important role; indeed, they concluded that the XESD mechanism dominates for N⁺, but is small for O⁺ desorption.

PANKS et al. [7] analyzed their data on the basis of absolute quantities, namely on their experimental absolute ion yields and photon fluxes, and on previously reported photoionization cross-sections. The latter in particular are not known very accurately. We prefer to rely on the TEY which they reported, indeed a simple comparison of the TEY and O⁺ and N⁺ spectral yield curves indicates that the O⁺ yield is very similar to the TEY, while the N⁺ is very different [4]. This indicates, contrary to the above, that the O⁺ yield is dominated by the XESD mechanism, while the N⁺ yield is not. A detailed analysis indicates that the XESD cross section for N⁺ and O⁺ are comparable, but that the direct cross section for N⁺ is 20 times that for O⁺ [4].

The primary core level dissociation process in diatomics involves Auger decay of the core hole, resulting in a two-hole (3h) final state, which directly results in dissociation via a "Coulomb explosion". This Auger stimulated desorption (ASD) mechanism is known to be active in the gas phase [7], and it is believed to be active also in the condensed phase, at least for N₂ and CO [7]. We believe that a similar mechanism is appropriate in the condensed N₂-O₂ mixture, only in this case an electron transfer occurs from a resonant 2e⁻ orbital of a neighboring O₂ molecule [4]. This transferred electron screens the two valence holes caused by the Auger decay and thus prevents the ASD process. This electron transfer cannot occur in condensed N₂ because the comparable 2e⁻ orbital is empty.

Evidence that this charge transfer process can occur in O₂ comes from visible absorption spectra. Isolated O₂ dimers in a solid neon host have a characteristic absorption spectrum [8] resulting from absorption of a single photon to produce a singlet state in which both halves of the dimer are electronically excited. The electronic energy transfer is believed to result from electron exchange of the 2e⁻ electron [8]. Furthermore, recent absorption and photoelectron data on condensed N₂ and O₂ reveal that the 2e⁻ band is significantly broadened by normal intermolecular interaction [9]. Finally, direct evidence has been given recently indicating that 2e⁻ electron transfer does occur in condensed NO [10].
4. B' from OH-YbO/Sm

Finally, the B' yield from an oxidized Yb surface on a bulk Sm metal substrate shows large features which arise from the Sm and Yb 4f-4f giant resonances [3]. Although little of the Sm surface is thought to be exposed, the Sm feature is much larger than the Yb feature. If indeed the Sm surface is totally covered, this strongly indicates that the XESD process is dominant in this system. The B' which desorbs is most likely bonded to the O atoms in the oxidized Yb. The giant resonance, 4d-4f*, Auger decays or autoionizes predominantly to 4f**-l, a one-hole valence state which does not lead to desorption. Thus the direct ASD process is inactive at both the Yb and Sm core levels, and the XESD process is expected to dominate [4].

5. Summary

It has been shown for the three systems discussed above that either alternate interpretations of the data are possible, indicating that the XESD effect is not dominant, or that the XESD process dominates only because the direct ASD mechanism is suppressed. This makes the results on these three systems consistent with the significantly larger number of papers, which indicate that the XESD contribution is generally not dominant [4]. We conclude that in cases for which the direct core level ASD process is active, the indirect XESD contribution is generally on the order of 35% or less. The XESD contribution apparently dominates the total yield only in those cases when the direct ASD contribution is suppressed.

References

5. D.E. Ramaker: p.70 in Ref. 3 above.
DATE
FILMED
3 8