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1. Introduction

The overall purpese of the Ultrasonic Physical Modeling Pr
well International Science Center is to model seismic wave propagation in the Earth
using ultrasonic wave propagation in scale laboratory models. By using well-calibrated
sources and receivers, our hope is to shed light on the effects of complex structure and
geology on the propagation of seismic waves, and thus aid the national research effort in
seismic monitoring of nuclear explosions. The intent is to complement numerical model-
ing, providing insight and guidance in complex situations where such modeling may not

yet be feasible, owing to limitations in combuter power.

In this report, we address the general problem of a nuclear explosion source re-
gion which has material properties significantly different from those of the surrounding
seismic wave propagation medium. Such a situation exists, for example, in the case of
explosions set off in Yucca Flat at the Nevada Test Site. The existence of a source
region with differing material properties from the surrounding medium can have
considerable effects on recorded surface wave amplitudes, as has been shown by some
numerical studies (e.g., Regan and Glover, 1985). This in turn has implications for yield

estimation, and possibly for discrimination.

2. The Receiver

It is absolutely imperative in a study of this kind to have a receiver with a
well-known responise. We use an NBS-iype conical transducer (Proctor 1980, 1982a,b)
manufactured by Industrial Quality, Inc.; it is shown in Fig. 1. This transducer is a verti-
cal component displacement sensor with a | mm contact area, and a very flat response.
The element is piezoceramic, and it is coupled to a large brass backing which effectively
eliminates resonances, as well as minimizing coherent reflections back into the element.
Figure 2 shows'typical response curves for this type of transducer, sent to us by NBS.
The response is flat enough that when we look at a signal from this transducer, we can

consider that we are looking essentially at raw vertical component displacement.

1
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‘1 Rockwell International

Fig. | The NBS-type conical transducer used in this study, showing the point-like
probe.

3. The Source

Just as important as having a well-characterized receiver is having a well
characterized source. The source we use is a simple one, but it is quite effective. Basi-
cally, we achieve a step-function point unloading of the surface by breaking a pencil lead
on it. This is a variant of the well-known breaking-glass-capillary source used by the
NBS, and is discussed in detail by Hsu and Hardy (1978). Figure 3 shows a picture of the
source assembly, and Fig. 4 shows the source time function of the breaking pencil lead,
obtained via deconvolution by Hsu and Hardy. The apparent noisiness in the response is
due to the deconvolution process. The source approximates a step function; actually it is
a ramp, but the rise time of the ramp is less than | ys.

4, Lamb's Problem

Figure 5 shows the result of a measurement made by setting off the source on
the gabbro "halfspace”, and recording the signal received by the transducer 200 mm away

2
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Fig. 2

70

SENSITIVITY (dB RE 1 V/umd

10

30
20
&G 104
pd
<
=
& 0
L
<
T -101
o
_20.
-30

Typical displacement response curves for ihe NBS-type conical transducer.
a) Amplitude. (b) Phase. The receiver is close to a true displacement sensor.
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Fig. 3 The pencil-lead source used in this study. Electrical contact is broken when
the pencil lead breaks, triggering the recording system. The pencil-lead source
corresponds to step function unloading of the surface.

i

TIME, pSEC

Fig. 4 Source-time function of a pencil lead source, obtained by Hsu and Hardy (1978)
by deconvolution. Some spurious structure has been introduced by the decon-
volution,
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(the standard distance for all the measurements presented in this report). The displace-
ment record is essentially a solution of the classic Lamb's problem (see e.g., Miklowitz,
1978; Mooney, 1974; Breckenridge et al, 1975) for a point force on a surface. Figure 5
shows, for comparison, the result of Boler et al, (1984) for a similar setup, using a break-
ing-glass-capillary source and a true displacement transducer. The results are very simi-
lar in appearance to ours. Boler et al include the theoretical response computed from
Lamb's solution. The first arrival P wave is very small in the theoretical solution, and is
very small in Boler et al's measurements. In our results, there is only a hint of it, as a
minor inflection before the onset of the large signal. The large signal observed in both

our record and in Boler et al's is, of course, the S wave followed by the Ravleigh wave.

5. The Cylindrical Graben Model

As a first step toward. studying this problem, we have studied a cylindrical low
velocity "graben," or plug, embedded in a high velocity medium (Fig. 6). The high veloc-
ity medium is a fine-grained gabbro with Vp = 6.2 km/s, Vg = 3.6 km/s, and Vg =
3.3 km/s. The plug is filled with lower velocity materials, whose properties are shown in
Table 1.

Table 1
Properties of Modeling Materials

Longitudinal Shear Rayleigh Poisson's
Velocity Velocity Velocity Ratio Density
Material Vp, km/s Vo km/s VR» km/s v 0, glcc
Crystalbond 504 2,407 1.096 1.01 0.369 1.32
(Aremco Prods. Inc.)
HPAL3 3.287 1.742 .61 0.305 2.01
Gabbro 6.200 3.623 3.33 0.240 2.97
>
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HALFSPACE MEASUREMENT
| | | I | | |

| 1 | | I | ]
20

TIME, uSEC

AMPLITUDE (mV) TIME (uS)

-10 -B o B 10 16 20
TIME, uSEC

Fig. 5  Signal observed by actuating the source on the gabbio "halfspace." Similar
signals obtained by Boler et al (1984) are shown for comparison,
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Cylindrical "Graben”
Low Velocity

Gabbro "Halfspace”

Vp = 6.2
Vs = 3.6
VR = 3.3
f
{? ; Fig. 6 The model of a cylindrical graben filled with low velocity material, e‘mbedded

in a fine-grained gabbro "halfspace."

[t is important to have a good idea of the scale factors involved. Taking Yucca
Flat as a rough guideline, we may say that a graben of interest in the Earth is roughly
L® = 20 km in diameter. If the source material in the Earth has a Rayleigh wave velocity
VR® = 1.2 km/s, then a 20 s Rayleigh wave in the Earth has a wavelength AR = 24
km =L®. Now, the model graben has a diameter L™ of 13 mm. We would like to know
the frequency in the model of the Rayleigh wave analogous to a 20 s Rayleigh wave in
the Earth. The wavelength of this analogous wave in the model graben must be roughly
equal to the graben diameter, i.e., ARm «L™,  Since leT] ranges from roughly | to
1.6 km/s, this means that the frequency ranges from roughly 80 to 120 kHz, depending on
the material in the graben. Hence, Rayleigh waves of 80 to 120 kHz in the model are
‘ analogous to 20 s Rayleigh waves in the Earth.

7
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5.1 Source in Graben, Centered

Figure 7 compares the halfspace response discussed above o the displacement
signal obtained when the source is set off at the surface of the cylindrical graben, in the
center. The graben is filled with Crystalbond 504 (also referred to as "crystal wax" in
the figures), a material with significantly slower velocities than gabbro (see Table 1).
The signal is quite complex, with a large amount of ringing.

HALFSPACE MEASUREMENT

. '
--------------------------------------------------------------------------------------------------------------------------------

TIME, pSEC

SOURCE AT GRABEN CENTER
GRABEN FILL = CRYSTAL WAX

TIME, pSEC

Fig. 7 Comparing the halfspace signal (also shown in Fig. 5), with the signal observed
when the source is actuated at the center of the surface of the cylindrical plug
("graben") filled with Crystalbond 504. Source-receiver distance is 200 mm.
Vertical scale is 100 mV per divisicn.
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Energy which, when the source is set off on the halfspace, goes downward and
is not recorded at the surface, is now trapped and redirected by the graben structure.

Figure 8 compares the results from a centered source in the graben for two
different fill materials. The top trace is a copy of the signal discussed immediately
above, where the graben is filled with Crystalbond 504. The bottom trace is for a graben
filled with HPAL3, an aluminum-filled resin with faster velocities than Crystalbond 504,
but slower velocities than gabbro. As might be expected, the amplitude of the ringing is
smaller than in the case of Crystalbond 504. As the material property contrast increases

between the graben and the surrounding medium, the observable effects of ringing appear
to increase.

e GRABEN FILL = CRYSTAL WAX
A 20
TIME, pSEC

---------------------------------------------------------------------------------------------------------------------------------

-----------------------------------

o gy to....'. GRABENFILL = HPALS
(FASTER THAN CRYSTAL WAX,
TIME, KSEC I OWER THAN GABBRO)

!

Fig. 8  Comparing signals from a source at the graben center. Top trace is for a
graben filled with crystal wax (same as Fig. 7); bottom trace is for a graben
filled with HPAL3. HPAL3 is faster than Crystalbond ("crystal wax™), but

slower than gabbro. Source-receiver distance is 200 mm. Vertical scale is
100 mV per division.
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5.2 Source in Graben, Off-Center

Figure 9 shows signals obtained when the source is actuated in the graben in
various off-center positions. The relative position of source and receiver is shown sche-
matically in plan view beside each trace. In each case, the source is actuated along a
diameter, halfway between the center and the rim of the graben. (It is easy to see that
this is as if the source were kept in one of the three positions, and the receiver were
moved around.) Clearly, an off-center source produces a radiation pattern. Both the
shape and amplitude of the signal depend on ‘the relative position of source and
receiver. The trace with the largest amplitude has a maximum peak-to-peak amplitude
about twice as large as that with the smallest amplitude. These results are fairly easy to
rationalize in terms of simple focusing. When the source is excited in the off-center
position furthest from the receiver (Fig. 9, top trace), a larger portion of the boundary
between the graben and the rest of the medium is illuminated in the direction of the

receiver.

Figures 10 through 12 show the off-center signals in each of the three positions
just discussed, for different fill materials (again, Crystalbond 504 and HPAL3). The
effect on amplitude of the different fill materials appears to be accentuated in the off-

center cases.

5.3 Voiceprints

Figures 13 and 14 show an interesting presentation of the data. What is shown
is a "voiceprint® of the data for the source on a halfspace (Fig. 13), and the data for the

source in the graben center when the graben is filled with Crystalbond 504 (Fig. 14).

The voiceprint is obtained by filtering the traces with different bandpass fil-
ters, and plotting the results in order of increasing center frequency of the bandpass fil-
ter. In this case, the filters have a passband of 200 kHz, and the increment in center fre-
quency between traces is 40 kHz. Thus, the bottom trace shows the data filtered from 0-
200 kHz {center frequency 100 kHz), the next trace up shows the data filtered from 40-
240 kHz (center frequency 140 kHz), the next trace after that shows the data filtered
from 80-280 kHz (center frequency 180 kHz), etc. What results is essentially a fre-
quency-time plot. (Note that the traces are also rectified and low pass filtered, to avoid
spurious wiggles resulting from the increasing center frequency of the bandpass filter.)
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Fig. 9

TIME, pSEC
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---------------------

A

(]

v

TIME, pSEC

Signals from sources actuated off-center in a graben filled with Crystalbond
504 ("crystal wax"). Each trace is accompanied by a plan view showing the
relative positions of source and receiver. Distance from graben center to
receiver is 200 mm. Vertical scale is 200 mV per division for the two top
traces, and 100 mV per division for the bottom trace.
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Fig. 10
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GRABEN FILL = CRYSTAL WAX

20 TIME, uSEC

........................................................................................................

GRABEN FILL = HPAL3

TIME, pSEC

Signals for one of the off-center positions in Fig, 9,
Crystalbond 504 ("crystal wax") and a graben filled

from graben center to receiver is 200 mm,
division,

for a graben filled with
with HPAL3. Distance
Vertical scale is 200 mV per
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Fig. 11

! : : GRABEN FILL CRYSTAL WAX
20 TIME, pSEC

'
----------------------------------------------------------------

il
-------------------------------------------------------

- GRABENFILL = HPAL3

N ‘
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20
TIME, pSEC

!

Signals for one of the off-center positions in Fig. 4, for a graben filled with
Crystalbond 504 ("crystal wax") and a graben filled with HPAL3. Distance

from graben center to receiver is 200 mm. Vertical scale is 200 mV per
division.
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Fig. 12

20 TIME, pPSEC

Signals for one of the off-center positions in Fig. 9, for a graben filled with
Crystalbond 504 ("crystal wax") and a graben fiiled with HPAL3. Distance
from graben center to receiver is 200 mm. Vertical scale is 100 mV per
division.
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Fig. 13 "Voiceprint" of the halfspace signal shown in Fig. 6. Each trace in the voice-
print represents the signal filtered by a bandpass filter with a bandwidth of
200 kHz. The increment in center frequency of the filter is 40 kHz as we
move from the bottom trace upwards. Thus, this is a time-frequency diagram.
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Fig. 14  Voiceprint similar to that in Fig. 13, but this time for the signal of Fig. 7, the
signal from the source actuated in the graben center when the graben is filled
with Crystalbond 504 ("crystal wax").
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Examination of the voiceprints shows that although the low-frequency levels
are quite similar between the two cases, the case with the source in the graben has con-
siderably more energy in the higher frequency é'ange, from 500 to 700 kHz center fre-
quency. Considering that 100 kHz in the model is roughly analogous to 20 s in the Earth,
this 500 to 700 kHz range corresponds roughly to 3 or 4 s in the Earth.

6. The Yucca Flat Model

We have constructed an accurate scale mecdel of Yucca Flat, based on the
generalized map shown in Fig. 15, which was constructed from the work of Ferguson et al
(1986). The rectangular box outlines an area where many nuclear explosicas have been
detonated (see, e.g., McLaughlin et al, 1986). The basin was drilled in a fine-grained
gabbro halfspace and filled with Crystalbond 504 (Aremco Products, Inc.). The properties

118° 07 30" 118° 00" 116° 62' 30"
-37*16' +
-37°07' 30" +
-37° 00 +
ﬁﬁ

0 3

KILOMETERS

YUCCA FLAT, NEVADA
DEPTH CONTOURS IN METRES
PALEOZOIC - TUFF CONTACT

Fig. 15 Generalized map of Yucca Flat used in constructing the physical model. Map
was drawn based on the work of Furgeson et al (1986). Large rectangle
delineates area where many explosions were located.
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of the gabbro and Crystalbond are given in Table . The source is excited on the surface

of the basin and receivers are placed outside the basin on the halfspace, as shown in Fig.
l6.

I mm in the model represents | km in the Earth. If the material filling the
basin in the Earth has a Rayleigh wave velocity Vp = 1.2 km/s, then a 20 s Rayleigh wave
in the Earth has a wavelength of 24 km. Thus, the analog of the Earth's 20 s Rayleigh
wave has a wavelength of 24 mm, Given that the basin fill material has a Rayleigh wave
velocity of 1.01 km/s, this corresponds to a frequency of about 40 kHz. Thus, in this
scale model of Yucca Flat, a 40 kHz Rayleigh wave corresponds roughly to 20 s Rayleigh
wave in the Earth.

PLAN VIEW OF MODEL
RECEIVER POSITIONS

SOURCES
EXCITED

ON SURFACE
OF BASIN

BASIN
FILLED

WITH

CRYSTAL FINE-GRAINED

WAX GABBRO
HALFSPACE

Fig. 16 Overall geometry of the model. "Crystal wax" refers to Crystalbond 504
(Aremco Prods., Inc.)
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6.1 Source Excited Within the Scale Model of Yucca Flat

Figures 18-21 show the waveforms obtained when the source was excited on
the surface of the basin. For comparison, Fig. 17 shows the waveforms obtained when
the source was excited in the gabbro before the basin was excavated. In each case, the
receiver positions are identical - 200 mm from the same reference point in the basin (the

same point as the source position in Fig, 20).

The figures are meant primarily to illustrate waveform character; they should
not be used as an accurate guide to arrival times. Arrival times are not completely reli-

able because of triggering problems in the apparatus, which we have subsequently
rectified.

Examination of Figs. 18-21 yields the perhaps rather surprising resuit that the
presence of the basin does not seem to be making much difference in the shape of the
waveform. When the source is anywhere within the rectangular box representing the
location of many actual explosions (Figs. 18-20), the waveforms appear almost like half-
space responses. There does appear to be some complexity and ringing, but nothing like
what is observed in the case of the cylindrical plug graben. The loss of symmetry in
going from a cylindrical plug graben to a more realistic structure seems to have
dramatically reduced the focusing effects.

The only case where relatively dramatic effects on the waveshapes is observed
is shown in Fig. 21, when the source is excited over the deepest portion of the graben.
Here, we see some of the same kind of complexity and ringing observed in the cylindrical
plug graben. This is not difficult to rationalize, because the structure at this position
locally approximates a plug or bowl-like structure.

6.2 Spectral Ratios

Figures 22 and 23 show some spectral ratios for the data in Figs. 19 and 21. At
each position, the magnitude spectrum of the waveform obtained with the source excited
on the basin surface is divided by the magnitude spectrum of the waveform obtained
through the gabbro before the basin was excavated. If the spectral value of the denomi-
nator is too smali (5% or less of its maximum value), the ratio is set to zero. Thus, we
obtain some notion of the effect of the structure on the wave propagation.
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Fig. 17 Waveforms obtained on the gabbro halfspace before the Yucca Flat model was
excavated. Vertical scale is 50 mV per division. Horizontal scale is 50 us per
division.
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Fig. 18 Waveforms obtained from sources excited on the surface of the basin. The
point "X" in each case is the reference point - all receivers are 200 mm from
this reference point. The dot with the rays coming out of it indicates the posi-
tion of the source in each case. In each case, the vertical scale is 20 mV per
division, and the horizontal scale is 20 us per division.
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Fig. 19 Waveforms obtained from sources excited on the surface of the basin. The
point "X" in each case is the reference point - all receivers are 200 mm from
this reference point. The dot with the rays coming out of it indicates the posi-
tion of the source in each case. In each case, the vertical scale is 20 mV per
division, and the horizontal scale is 20 us per division.
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Fig. 20 Waveforms obtained from sources excited on the surface of the basin. The
point "X" in each case is the reference point - all receivers are 200 mm from
this reference pomt. The dot with the rays coming out of it indicates the posi-
tion of the source in each case. In each case, the vertical scale is 20 mV per
division, and the horizontal scale is 20 us per division.
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"Fig. 2l Waveforms obtained from sources excited on the surface of the basin. The
point "X" in each case is the reference point - all receivers are 200 mm from
this reference point. The dot with the rays coming out of it indicates the posi-
tion of the source in each case. In each case, the vertical scale is 20 mV per
division, and the horizontal scale is 20 ys per division.
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Fig. 22 Spectral ratios for the data in Fig. 19. At each position, the magnitude
spectrum of the waveform obtained with the source excited on the basin sur-

face is divided by the magnitude spectrum of the waveform obtained through
the gabbro before the basin was excavated.
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Fig. 23 Spectral ratios for the data in Fig. 21

. At each position, the magnitude

spectrum of the waveform obtained with the source excited on the basin sur-

face is divided by the magnitude spectrum of the waveform obtained through
the gabbro before the basin was excavated.
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The spectral ratios indicate that the structure seems to be causing some amp-
lification of high frequencies, above 400 kHz, relative to the lower frequencies. The
spectral ratio for frequencies lower than 400 kHz is generally close to 1 or 2. For fre-
quencies higher than 400 kHz, in the case when the source is within the rectangle in the
northern part of the basin, the spectral ratio reaches a maximum of about 5. In the case
when the source is located to the south, above the deepest portion of the basin, the spec-
tral ratio in the high-frequency portion can be as high as 20. Remembering from Section
6 that a 40 kHz Rayleigh wave in the model is analogous to a 20 s Rayleigh wave in the
Earth, we see that the amplification is occurring for waves analogous to ones with

periods of 2 s and shorter in the Earth.

In both cases, the direc. ons of greatest amplifications of high frequencies
appear to lie in the southeast and the northwest.

7h Conclusions

We have described experiments intended to clarify seismic wave propagation
from sources actuated in graben-like structures. We have studied two models, an ideal-
ized cylindrical graben and a scale model (I mm to | km) of the Yucca Flat basin exca-
vated into a halfspace of fine-grained gabbro and filled with low-velocity material.

Ultrasonic waves were excited on the surface of the model basin using a break-
ing pencil lead as a source; this source represents a step-function point unloading of the
surface. The waves have been monitored using a true displacement conical transducer
placed on the gabbro halfspace outside the basin, 200 mm away. Rayleigh waves of 40-
120 kHz in the model correspond roughly to Rayleigh waves of period 20 s in the Earth,
depending on the model and the fill material.

First, we made measurements setting the source off on the halfspace (made of
gabbro, with Vp = 6.2 km/s), and within a cylindrical "graben” of 13 mm diameter and
2 mm depth. The graben was filled with either Crystalbond 504 (Vp = 2.407) or HPAL3
(Vp = 3.287). The presence of a source region with significantly slower velocities than
the surrounding region appears to lead to a more complex signal, with more "ringing"
than would be apparent if there were no such source region.  The presence of such a
source region appears to result in a relative amplification of the high-frequency part of
the signal, The frequencies analogous to 3-10 s in the Earth appear to be amplified rela-
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tive to lower frequencies. When the source is set off in the graben in an off-center posi-
tion, a radiation pattern is established, with amplitude varying by a factor of 2 or more.
Material effects appear to be accentuated when the source is excited off-center.

In the case of the more realistic scale model of Yucca Flat, the presence of
the basin was also found to have an effect on the waveforms obtained. Some ringing and
complexity are introduced into the waveforms, compared with waveforms obtained on a
halfspace without a basin present. However, the effects are less dramatic than those
observed when sources are excited on a model basin which is perfectly cylindrical in
geometry. The most complex waveforms are obtained when the source is excited over
the deepest portion of the graben. Here, we see some of the same kind of complexity
and ringing observed in the cylindrical plug graben. When the source is anywhere within
a rectangular box, representing the location of many actual explosions (Figs. 18-20), the

effects are much less pronounced; the waveforms appear almost 'ike halfspace responses.

The presence of the basin can cause some amplification of ..igher frequen-
Cies. Frequencies higher than about 400 kHz, which correpond roughly to periods of 2 s
or shorter in the Earth, appear to be amplified relative to lower frequencies. This effect
is most pronounced when the source is in the southern portion of the basin, as compared
to the case when it is in the northern portion. The data also suggest an additional
enhancement of this effect for wave propagation directions to the northwest or
southeast.

In the real Earth, Yucca Flat is not embeuded in a homogeneous halfspace, but
in a more complex multilayered structure, and this may have a significant effect on
seismic waveforms. It would be beneficial to conduct experiments involving grabens

embedded in multilayered structures.

Clearly, a breaking pencil lead is a different source from a nuclear explosion,
and although it is well characterized and useful in experiments such as these, it is not an
exact model of a bomb., Thus, some caution should be exercised in the interpretation of

!

these results.
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