
-A199 642 KCNOWLEDGE RETRIEVAL. AS SPECIALIZED IWFEIENCE(U) in2
RCHESTER UNIl MY DEPT OF COMPUITER SCIENCE A N FRISCH
MYI 8? TR-214 NSI4-S-C-0197

UNCLAIFIEDO F /O 29NL

EEEmhohmhEEEEI
EhmhhhhEohmhhI

1.2 LA

I

1Knowledge Retrieval
as

Specialized Inference

Alan Mark Frisch

Department of Computer Science

The University of Rochester

Rochester, NY 14627

TR 214

May 1987

t ELECTE
2JAN2 11988

Department of Computer Science

University of Rochester
Rochester, New York 14627

Approved for public roleoa -i

~ ~ Z

•9 I

Knowledge Retrieval
as

Specialized Inference %

Alan Mark Frisch
Department of Computer Science

The University of Rochester

Rochester, NY 14627

TR 214 *

May 1987 .7.."-*%%

DTIC
Author's current address: ELECTE

Department of Computer Science JAN 2 1 1988
University of Illinois
1304 West Springfield Avenue
Urbana, Illinois 61801. D C(.

With slight modification, this report reproduces a dissertation submitted in partial fulfillment

of the requirements for the degree Doctor of Philosophy in Computer Science at the University I i
of Rochester, supervised by James F. Allen.

% 0

At the University of Rochester this reseach was supported in part by the Office of Naval .' a, '-

Research under grant N00014-80-C-0197 and by the National Science Foundation under grant
DCR-8351665' . At the University of Sussex it was supported in part by both the Science and 0

Engineering Research Council and the Alvey Directorate under grant SERC GR/D/16062.

-DISR~UtIOr s~rT EMiNT r.jAv 'r'v'vI for vuIibi . 7

S, % ,

-. - .. . ' .,% -% , -'

'No Z6Z N N z

SECURITY CLASSIFICATION OF THIS PAGE (Wen Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM %.

2. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER ,.

TR 214. z'e e
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

0
Knowledge Retrieval as Specialized Inference technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Alan M. Frisch DCR-8351665

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA & WORK UNIT NUMBERS.'. -, - -
Dept. of Computer Science A.OU MB

University of Rochester
Rochester. NY 14527 ___

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 0 _

DARPA/1400 Wilson Blvd. May 1987 .
13. NUMBER OF PAGES%Arlington, VA 22209 103103 %, -

14. MONITORING AGENCY NAME & ADDRESSfIf different from Controlling Office) IS. SECURITY CLASS. (of this report) % ,

Office of Naval Research unclassified
Information Systems IS.. DECLASSIFICATION/DOWNGRADING ."'

Arlington, VA 22217 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) %. % ,

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report) ,, .. .,

W,4... , ,w

IS. SUPPLEMENTARY NOTES

16 %

< 4
19. KEY WORDS (Continue on reverse side it necessary and Idenify by block number)

knowledge retrieval knowledge representation
limited inference logic
semantic networks

20. ABSTRACT (Continue on reverse side if nece..aary end identify by btock number) % 0

"',, .. ,

Artificial intelligence reasoninq systems commonly contain a large
corpus of declarative knowledge, called a knowledge base (KB), and provide
facilities with which the system's comoonents can retrieve this knowledqe.)
This thesis sets out to study the very nature of retrieval.--Formal •
specifications that capture certain informal intuitions about retrieval are p-

developed, studied, and implemented by retrieval algorithms. -

01 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE A

SECURITY CLASSIFICATION OF THIS PAGE (47t'vn Da(t Ent.red) _ .

%5* .6
%* %***

* V b _W V_ _'.tN*p7VV7V V*~* ~ ~ ~ W 'A. L~ ~.VI

20. ABSTRACT (Continued)

Consistent with the necessity for fast retrieval is the guiding intuition that a
retriever is, at least in simple cases, a pattern matcher, though in more complex cases
it may perform selected inferences such as property inheritance. iASeemingly at odds
with this intuition, this thesis view! ?4he entire process of retrieval 'as a form of
inference and hence the KB as a representation, not merely a data structure. A
retriever makes a limited attempt to prove that a queried sentence is a logical
consequence of the KB. When constrained by the no -chaining -restriction, inference
becomes indistinguishable from pattern matching. Imagining the KB divided into
quanta, a retriever that respects this restriction cannot combine two quanta in order to
derive a third.

The techniques of model theory are-adapted-t build non-procedural specifications
of retrievability relations, which determine what sentences are retrievable from what
KBs. Model-theoretic specifications are presented for four retrievers, each extending
the capabilities of the previous one. Each is accompanied by a rigorous investigation
into its properties and a presentation of an efficient, terminating algorithm that
provably meets the specification.

For my parents,

Frances and Hubert Frisch

, NSPECTED

NTIS CPA&I
OI)TC TABG
Unjnro~jrced D

By
Di.A: ih: liorI

?4!I.(!()I
4

%

Curriculum Vitae]
Alan Frisch was born in Newark, New Jersey on June 19, 1954. Following his 1972 gra-

duation from West Orange High School he fled New Jersey for Carnegie-Mellon University

where he majored in mathematics but mostly studied computer science and psychology. During
his undergraduate career he acquired a mild, though increasing addiction to artificial intelli-

gence, taking many courses in the subject and working for two years on computer vision in the

Artificial Intelligence Laboratory. He also spent a summer at Argonne National Laboratory as

a graphics programmer. In December, 1976 he completed his studies at Carnegie-Mellon and

was awarded a B.S. in Mathematics.

He spent the next year and a half as a development programmer at IBM in Poughkeepsie,

New York, but maintained his sanity by taking graduate computer science courses given by

Syracuse University.

His craving for A.I. grew and in the autumn of 1978 he began a long, active and long
career as a graduate student in computer science at the University of Rochester. He was

granted an M.S. in Computer Science in 1982. During his tenure at Rochester he served as a

teaching assistant, research assistant, and instructor. His research included work on natural

language processing, knowledge representation and logic programming, and he was a principal
contributor to the ARGOT natural language system and the HORNE logic programming sys-

tem.

In August, 1983 the veteran graduate student moved to Brighton, England for a one year

appointment at the University of Sussex as a Lecturer in Artificial Intelligence (i.e., a British

Assistant Professor). Subsequently, the Science and Engineering Research Council and the
Alvey Directorate awarded him a grant to study inference in sorted logic and he stayed in the

Cognitive Studies Programme at Sussex for an additional two years.

By 1986 he learned to direct his habitual A.I. activities towards productive ends and in

August of that year he successfully defended his Ph.D. thesis at Rochester.

Alan Frisch is now back in the colonies as an Assistant Professor with the Supercomputing

Illini in the Computer Science Department of the University of Illinois at Urbana-Champaign.

He resides in Urbana with his English wife and international beer can collection.

I V
._

Acknowledgements

Over six years of work on knowledge retrieval has provided me the time, opportunity and "

good fortune to encounter and be influenced by many people. I thank all those who have

encouraged me, who have listened critically to my ideas, and who have shared their best ideas

with me.

I thank my thesis committee, James Allen, Chris Brown, Henry Kyburg, and Haim Men-

delson for their time, their comments, and their patience in dealing with the difficulties of I

arranging a defense for a student 4000 miles away. I am especially grateful to Henry Kyburg for

his detailed comments on my manuscript and for helping to make the terminology of this thesis

as standard and as consistent as possible. d

James Allen, my thesis advisor, originally interested me in knowledge retrieval and steered

me in the right direction for many years. For four years I had the privilege of collaborating

with him on a near-daily basis and from this apprenticeship I came to understand the ins andA

outs of research. For this he has my deepest gratitude; but mostly I thank him for making my

early graduate years fun.

If anything of mathematical beauty lies between these covers, then I must credit Pat.

Hayes. If not, I thank him anyway; without the countless hours he spent listening to, cursing at

and rewriting the theorems and proofs of my early work, I would never have learned how to .
construct proofs, beautiful or otherwise. I also thank him for serving as an initially official and

later unofficial member of my thesis committee.e

Had it not been for David McAllester I would long ago have completed this thesis, or,

more precisely, a vastly inferior thesis of the same name. I had almost completed the syntactic

specifications of my retrievers in December 1982 when lengthy discussions with him convinced

me that I could give semantic accounts of the retrievers. The discussion also provided me with

initial methods to approach the task, which after three years of work resulted in the

specifications contained in this thesis. I consider the quality of this work to be an outgrowth of

Dave's insight and I am extremely grateful to him for sharing his ideas with me.

The reader familiar with the work of Peter Patel-Schneider will recognize the debt that I

owe him. Some of the most important logical constructions used in this thesis are modifications

of constructions that he has used in his own work. I thank him for sharing his best ideas with

me; had he not done so, the foundation of this work would have crumbled. I can only hope that

he benefits from my work as I have from his.

I am grateful to the friends and colleagues I had at the University of Rochester. Much of

what I know about logic came not from textbooks but from the continual discussions that I had

over several years with Andy Haas, Don Perlis, and Henry Kautz. The Al Study Group and the d

ARGOT research project provided it stimulating atmosphere in which to work. I amn

% %

particularly grateful to the initial users of ARGOT's knowledge retriever, Mark Guiliano, Diane

Litman and Marc Villain, whose patience and cooperation helped to debug the system.

I was privileged to receive constant encouragement, support, and stimulation from some of

my colleagues at the University of Sussex, most notably Gerald Gazdar, Chris Mellish, and

Aaron Sloman. I thank Chris and Aaron for their assistance in obtaining a grant to support my

work, and Aaron for reading and criticizing almost everything I wrote.

In various ways I have been aided by many people in the field and, in particular, I thank

Ron Brachman, Tony Cohn, John Kender, Hector Levesque, Allen Newell, Alan Robinson, and

Christoph Walther.

I'm sure that every Computer Science Ph.D. graduate from Rochester understands the

deep appreciation that I have for Jill Orioli Forster. It might have been possible to complete

this thesis without her, but it would have been a hell of a lot harder.

For her loyal love and support, for the boundless energy she invested in assisting me on

many long nights of work, for drawing all the figures in this thesis, for correcting, recorrecting,

and re-recorrecting my spelling, for proofreading every page of this thesis, and for helping me

to omit many needless words, I cannot even begin to express the gratitude I have for my wife,

Frances Evelyn. I can only hope for the privilege of reciprocating during the completion of her

thesis.

V1 -

Abstract

Artificial Intelligence reasoning systems commonly contain a large corpus of declarative

knowledge, called a knowledge base (KB), and provide facilities with which the system's corn-

ponents can retrieve this knowledge. This thesis sets out to study the very nature of retrieval. Ij
Formal specifications that capture certain informal intuitions about retrieval are developed,

studied, and implemented by retrieval algorithms. N

Consistent with the necessity for fast retrieval is the guiding intuition that a retriever is,

at least in simple cases, a pattern matcher, though in more complex cases it may perform

selected inferences such as property inheritance. 0
:A

Seemingly at odds with this intuition, this thesis views the entire process of retrieval as a ,1

form of inference and hence the KB as a representation, not merely a data structure. A retri-

ever makes a limited attempt to prove that a queried sentence is a logical consequence of the

KB. When constrained by the no-chaining restriction, inference becomes indistinguishable from

pattern-matching. Imagining the KB divided into quanta, a retriever that respects this restric-

tion cannot combine two quanta in order to derive a third.

The techniques of model theory are adapted to build non-procedural specifications of

retrievability relations, which determine what sentences are retrievable from what KB's.

Model-theoretic specifications are presented for four retrievers, each extending the capabilities

of the previous one. Each is accompanied by a rigorous investigation into its properties, and a

presentation of an efficient, terminating algorithm that provably meets the specification.

The first retriever, which operates on a propositional language, handles only yes/no%

queries, the second also handles wh-queries, and the third allows quantifiers in the KB and the %

query. Each is shown to be, in some sense, the strongest retriever that meets the no-chaining

restriction.

The third retriever forms an excellent basis for integrating a specialized set of inferences

that chain in a controllable manner. This is achieved by incorporating taxonomic inference,

such as inheritance, to form the fourth retriever, an idealized version of the retriever incor-

porated in the ARGOT natural language dialogue system. It is characterized by its ability to

infer all consequences of its taxonomic knowledge without otherwise chaining.

ViI

Table of Contents

1. Introduction .. 1
1.1. An Overview of ARGOT's Organization

1.2. Knowledge Retrieval as Inference
1.3. Retrieval as Pattern Matching
1.4. Thesis Synopsis

1.5. A Method for Specifying Retrievers

1.5.1. A Toy Example
1.6. Requirements on Retrievability
1.7. Other Methods for Limiting Inference

1.8. A Note on Notation

2. A Retriever for a Propositional Language .. 15
2.1. The Propositional Predicate Calculus

2.2. A Matter of Fact
2.3. Defining RP

2.4. Properties of RP
2.5. The Retrieval Algorithm

2.5.1. The Conjunctive Normal Transform
2.5.2. Retrievability of CNF Sequents

3. A Retriever that Handles W h-Queries ... 37
3.1. An Approach to Wh-Queries
3.2. Substitutions and Unifiers
3.3. The Specification of Retrievability of Schematic Sequents
3.4. The Retrieval Algorithm

4. A Retriever for a Quantificational Language ... 56

4.1. An Inadequate Treatment of Quantification
4.2. RQ: The Logic of a Retriever for a Quantificational Language
4.3. Proper +es of RQ
4.4. Computing Retrievability

5. A Retriever that Reasons about Taxonornies ... 67

5.1. The Sorted First-Order Predicate Calculus

5.2. RT: The Logic of a Taxonomic Retriever

5.3. An Approach to Computing with Restricted Quantifiers

5.4. Well-Sorted Substitutions and Unifiers

5.5. Properties of RT

5.6. Computing Retrievability

- Vin -

, . %,,--.- %~

5.6.1. Answering Sorted Schematic Queries I
5.6.2. Computing Retrievability of SFOPC Sequents

S. Conclusion... 86
6.1 External Contributions
6.2 Extensions

References ... 891

ix-

List of Figures

Figure 1.1: The Organization of ARGOT.. 14

Figure 1.2: Resolution Refutations of {P VQ, _"P, -'Q}I... 14P
Figure 2.1: Truth Tables for RP ... 34
Figure 2.2: The A3 Semi-Lattice... 21
Figure 2.3: A Herbrand A3S Semi-Lattice .. 34

Figure 2.4: The Search Space of P, R =*(P VQ)A(R v-R) 35
Figure 2.5: The Condensed Search Space of P, R = (P VQ)A(R v-iR) 35
Figure 2.6: The Search Space of Q =* (PVQ V-P)A-Q ... 36
Figure 2.7: The Search Space of P, R = (R V-R)A(P vQ) 36
Figure 3.1: Search Space of P (a), R i=(iVQ(i)(9V-R()......................... 54
Figure 3.2: Proof at Left Lifts Proof at Right... 49
Figure 3.3: Proof at Left Lifts Proof at Right... 49
Figure 3.4: A Non-Ground Proof that is Lifted... 49

Figure 3.5: Proof of the SSRA Correctness Theorem ... 54
Figure 3.6: Search Space for the Query Country (i) ABorders (US,i) 55
Figure 3.7: Search Space for the Query Borders (US,i) A Country(i) 55

Chapter 1

Introduction

One truism of artificial intelligence is that an intelligent system must have vast amounts I

of knowledge of its domain. Some of this knowledge appears to be maintained independently of

its use. For example, I know that certain English words are considered rude. I can use this%
knowledge in achieving my goals, thereby behaving differently when I choose to insult from

when I choose to be polite. I can also use this knowledge to recognize the intentions of other S

speakers. Furthermore, I can verbalize this knowledge in order to inform a non-native speaker

of our conventions. Knowledge of this nature is often called "declarative," though the word is

somewhat ill-defined.

Accordingly, artificial intelligence reasoning systems commonly contain a large corpus of

declarative knowledge, called a knowledge base (KB), and provide facilities with which the

system's components can retrieve this knowledge. An example of such a system, the ARGOT

dialog participation system, is outlined in the next section.

This thesis addresses the problem of building a knowledge retriever and obtaining a

thorough understanding of it. Though my study of retrieval began by designing and imple-

menting the retriever in ARGOT, and the retriever examined in this thesis forms the core of

the ARGOT retriever, the goal of the work is not primarily the construction of a particular

retriever. Rather, its goal is more generally to gain an understanding of the very nature of

retrieval and to produce techniques useful in addressing this and, hopefully, related problems.

I intend to attain these general goals while constructing a specific retriever by carrying out

the construction in a principled way. First, I elucidate certain intuitions about the nature of

retrieval and put forth criteria that a retriever must satisfy. Then I formally specify a retriever

that captures the intuitions and meets the criteria. Finally, I design an algorithm that imple-

ments the specification.

In sum, the principal contribution of this thesis is the transformation of retrieval from an

ill-defined unstudied process to a formally-defined and well-studied one.

* 1.1. Amx Overview of ARGOT's Organization

A very brief overview of ARGOT's organization suffices to illustrate the structure of a sys-

tem containing a KB and knowledge retriever and to show how these components are used.
Allen, Frisch and Litman (1982 describe ARGOT in more detail.

ARGOT is designed to play the role of a computer operator partaking in extended English

dialogs with computer users. As depicted in Figure 1.1, the system is divided into three

concurrently-running modules: a task goal reasoner, a communicative goal reasoner, and a

-u-1r J Mr~W VW W'VF%~~t~L~ ~L"~(~~

-2-

linguistic reasoner. All declarative knowledge used by the three modules is stored in a common

knowledge base and is accessed only through a knowledge retriever. Hence, the only view of the

KB available to the system's modules is that provided through the query-processing facilities of

the retriever. The internal structure of the KB is completely hidden.

The reasoning modules of ARGOT are not general-purpose reasoning systems but rather

are highly specialized for the tasks they perform. On the other hand, the retriever is not spe-

cialized for any particular task such as linguistic reasoning, though it is able to do some taxo-

nomic and temporal reasoning.

1.2. Knowledge Retrieval as Inference

At all points throughout this thesis I keep in mind that a KB3 is not only a data structure,

but also a representation. By this I mean that the KB makes a set of assertions, sentences to

which a semantics attributes truth conditions.

In response to a query a retriever returns one or more sentences. (A sentence that can be

retrieved from a KB by some query is said to be retrievable.) In doing this, the retriever must

respect the semantics of the language it operates on. More precisely, a retriever should return a

sentence only if the truth of the sentence is assured by the truth of the KB, that is, only if the

sentence is entailed by the KB.

These considerations lead to the viewpoint that retrieval is inference, which is taken to be

a mechanism that derives logical consequences. But what kind of inference is retrieval? How

much and what kind of inference capability should be packaged up in a retriever?

Let us address these questions by first considering the extreme position of making a retri-

ever as strong as possible. Such a retriever would be able to retrieve all logical consequences of

the KB. An example of this approach is the KRYPTON knowledge representation system

(Brachman, Fikes and Levesque, 1983; Brachman, Gilbert and Levesque, 1985), which employs

a complete inference mechanism known as theory resolution (Stickel, 1985). However, in dis-

cussing their design of KRYPTON, Brachman, Gilbert and Levesque (1995) express dissatisfac-

tion with this choice of inference mechanism:

We would no doubt have used a more computationally tractable inference frame-

work than full first-order logic if an appropriate one were available.., the full

first-order resolution mechanism is, in a sense, too powerful for our needs.

Indeed, in any language as expressive as the first-order predicate calculus determining

whether one sentence entails another is only semi-decidable. If we design a system that relinqu-

ishes control to its retriever then we must demand that the retriever returns control and that itI

To design a retriever that computes all, or even most, of the logical consequences of a K13

is to put the muscle of the system in the 'wrong place. The power of the systerin belongs in theP

bS

P Aq

-3-

special-purpose modules of the system, which can be built with the necessary domain-

dependent control structures, not in the knowledge retriever, which is a domain--independent

inference engine.

Efficiency rather than power is the primary consideration in designing a retriever. A sys-

tem can compensate for a retriever that is efficient but weak by performing computations itself,

but it cannot compensate for a retriever whose excessive power leads to inefficiency.

The above considerations lead to the conclusion that retrieval is limited inference. This

raises the question to which we now turn: what inferences should a retriever perform?

1.3. Retrieval as Pattern Matching

A common intuition, whose prevalence can be witnessed by examining the range of retriev-

ers in use, is that retrieval is fundamentally a pattern-matching operation. According to this

intuition a KB consists of a set of data objects and a query supplies a target pattern to which

the retriever responds by reporting which data objects match the pattern. Whether or not a

particular data object matches the target is independent of the other data objects. Hence, in a

parallel implementation each data object can be realized by a distinct processor and there is no

need for communication between them. The idea of using pattern matching to access a

memory structure is a familiar one, present, for example, in the notion of a content-addressable

memory.

A strict pattern-matching system, such as a content-addressable memory, never combines

two or more data objects in order to match a target successfully. Doing so would require com-

munication between the processors in a content-addressable memory. I call such an operation
"chaining."

In general, chaining is the operation of combining two or more pieces of a representation

together in order to derive a third. The archetypal form of chaining occurs in applying the rule

of modus ponens to infer Q from P and P -Q.

The simplest form of pattern matching occurs in matching an object against itself. Hence,

if retrieval is pattern matching, a retriever should be able to retrieve everything that has been

added explicitly to the KB. A retriever that can do this is said to satisfy the verbatim retrieval

criterion. For example, if I add "PVQ" to a KB, then its retriever should report "yes" when I
query "PvQ". It should do this readily by matching "PVQ" to itself.

Contrast this, the simplest case of pattern matching, with the operation of a resolution
theorem prover. Using a refutation strategy, it replaces the problem of proving that PVQ

entails PVQ with the problem of proving that {PVQ, -nP, -iQ} is unsatisfiable. It can solve

this problem by finding one of the resolution refutations of Figure 1.2. Each of these refuta-

tions contains two applications of the resolution inference rule. Every application of this infer-

ence rule resolves two clauses together to derive a third and hence involves chaining.

BZ~~p

-4-

To increase their power, pattern matchers are often extended with rewrite or deduction

rules. One such system is SNePS (Shapiro, 1979), a semantic-network system that a user

accesses by specifying a target network-pattern to be matched against the network in the KB.

SNePS also allows the user to specify backward chaining rules that are used to attempt to

rewrite target patterns. 1 Database systems also are frequently extended with facilities to han-

dle rewrite rules; such systems are called deductively-augmented data bases. A final example of

the incorporation of rewrite rules into a pattern matcher is the ubiquitous use of inheritance in

semantic-network systems. Unlike the rewrite rules used by SNePS or deductively-augmented

data bases, which are added to the system by the user, the rewrite rules that constitute inheri-

tance are built directly into semantic-network retrievers.

We are now in a position to answer the question, "What is retrieval?" Retrieval is an

inference process, limited in such a way that it is fundamentally a pattern-matching process,

though it may be extended to do a bounded amount of some specialized form of chaining. Though

I take this as being an accurate characterization of retrieval, it is an intuitive characterization,

not a rigorous or precise one. This is appropriate because the notion of retrieval is intuitive

rather than technical. The intuitive nature of this characterization arises from its formulation

in terms of the notion of pattern matching, itself an intuitive notion.

Let us examine our intuitions about pattern matching more closely. The weakest

pattern-matching retriever can retrieve only what is contained explicitly in the KB. However,

pattern matchers can often succeed at

*retrieving PVQ from a KB containing QVP, and

*retrieving Q from a KB containing P A Q

While our intuitions clearly allow us to call these retrievals pattern matching, our intuitions getI

murky when we try to see how far the notion extends. Which of these actions should be called

pattern matching:

*retrieving PVQ from a KB containing Q,
*retrieving --- ,P from a KB containing P, and

Though it is not clear where the intuitive notion of pattern matching ends, it is clear that

retrievals involving chaining, such as

*retrieving Qfrom aKB containing Pand P -+Q,

are not pattern matching.

Unlike pattern matching, chaining becomes a precise term once a method of breaking a

representation into quanta has been determined. Whether or not a given retriever performis

chaining is then a cut and dried question. Because the notion of chaining is precise and is

closely aligned with the intuitive notion of pattern matching, I henceforth use no-chaining,

SNePS also allows forward chaining rules to be specified.

% % %

-5-

rather than pattern matching, as the defining characteristic of retrieval.

The effect of this no-chaining restriction depends critically on the granularity at which

knowledge is quantized. At one extreme, if the entire KB is considered to be a single quantum,

the no-chaining restriction becomes vacuous; there can't be any chaining simply because there

aren't two quanta to be chained together. At the other extreme, if each quantum is merely an

atomic sentence then only verbatim retrievals can be performed; the only atomic sentence

entailed by an atomic sentence is the sentence itself.

If the elimination of chaining is to eliminate all inference that does not correspond intui-

tively to pattern matching, then the KB must be divided into fine-grained quanta. As an illus-

tration, if the no-chaining restriction is to disallow

* retrieving Q from a KB containing PA(P-"Q),

then the KB should be divided into two quanta, P and P--*Q. I shall return to the issue of

quantization in Chapter 2, where the design of the first retriever is undertaken.

1.4. Thesis Synopsis

The principal technical result of this thesis is the formal specification of a knowledge retri-

ever that performs all inferences that don't require chaining, all inferences that involve taxo-

nomic information, but no others. The specified retriever is a highly specialized inference

engine; it does all chaining of a certain sort but no other chaining. Relative to the way that

knowledge is quantized, this is the strongest retriever that does no chaining other than with tax-

onomic information.

This retriever operates on a first-order logic. While some may argue that this language is

not sufficiently expressive for certain Al tasks such as natural language processing, it is expres-

sive enough to make the retrieval problem difficult. Most notably, entailment is undecidable in

this logic.

This retriever is specified as the last in a series of four retrievers, each of which extends

the capabilities of the previous one. The four specifications are presented successively in

Chapters 2 through 5 of this document. Accompanying each specification is a rigorous investi-

gation into its properties, a presentation of an efficient, terminating algorithm, and a proof that

the algorithm meets the specification.

The first retriever, which operates on a propositional language, handles only yes/no

queries. The second retriever additionally handles wh-queries; its algorithm introduces

unification into the simple algorithm of the first retriever. An important result shows that even

when there are an infinite number of answers to a wh-query, the set of answers can be finitely
characterized.

The third retriever extends the second by allowing quantifiers in the KB and the query.

First, it is shown that the obvious, straightforward treatment. of quantifiers results il a

% %"

retriever that is not guaranteed to terminate. Closer examination of the difficulty reveals that

this treatment of quantifiers subtly violates the no-chaining restriction. A new specification is

presented, which uniformly respects the no-chaining restriction throughout its treatment of the

entire language, including the quantifiers. Analysis of the relationship between quantifiers and

wh-queries reveals how the second retrieval algorithm can be used to implement this third

specification.

Each of these first three retrievers meets the no-chaining restriction; moreover, for the

class of problems handled each is the strongest retriever that meets the restriction, modulo the

way that knowledge is quantized. If the thesis were to end here, it could aptly be entitled "The

Logic of No-Chaining."

The fourth retriever integrates taxonomic inference such as inheritance into the pattern-

matching inference of the third retriever. The algorithm for this fourth retriever is interesting

in that it uses the taxonomic information solely during unification. A theorem is presented that

states the conditions that are necessary and sufficient to justify this computational technique.

The technique and the theorem justifying it are both general enough to be used to add a taxo-

nomic component to almost any computational system that works with schematic variables,

including rewrite systems, grammars and their parsers, theorem-provers, and logic-

programming systems. This fourth retriever forms the core of the retriever incorporated in

ARGOT.

1.5. A Method for Specifying Retrievers

Rather than specify how a retriever operates, this thesis concentrates on specifying what a

retriever computes. This is done by specifying a retrievability relation that determines what

sentences are retrievable from what KB's, just as a provability relation determines what sen-

tences are provable from what sets of axioms. Thus, retrievability is a relation between

knowledge bases and sentences. If knowledge base kb and sentence q stand in this relation then

we say that q is retrievable from kb and write kb ---R q. Thus, the problem of specifying a retri-

ever comes down to one of specifying a retrievability relation. This section puts forward a

model-theoretic specification method that is used throughout this work. 2

Each of the four retrievers of this thesis operates on a language whose semantics is given

by a standard Tarskian (1935) model theory. Each model theory yields an entailment relation I

which, analogous to a provability or retrievability relation, defines what sets of sentences entail

what sentences. Entailment relations are well-suited for use in specifications because they are

precise, often have simple definitions, and abstract away from all issues of formal syntactic

2 Frisch (1985a) provides a more-general discussion of this technique.

-

operations. However, Tarskian entailment cannot be used to specify retrievability; what is

retrievable from a KB is but a small subset of what is entailed by a KB. %

The approach advocated here for specifying retrievability is to produce another modelI
theory whose entailment relation is weakened 3 in such a way that the retriever is a sound and
complete inference engine with respect to it. Many people initially find this approach quite odd. 0

They are accustomed to thinking of a model theory as specifying what can be concluded validly

from what-in some sense, as a competence theory of inference. I suggest that those who are 4
comfortable with this viewpoint consider the weaker model theory as a performance theory of

inference. Other people are accustomed to thinking of a model theory as a way of assigning

meaning to symbols and are skeptical of producing a new meaning assignment. But I am notI
suggesting that the original model theory be discarded; on the contrary, it is still a valuable

device in the study of meaning. The new model theory can be thought of as providing an addi-

tional meaning assignment. If the retriever is working under this alternative meaning then it is

a complete inference engine. Hence, the symbols mean one thing to us and another to the retri-

ever. According to our theory of meaning the retriever is incomplete but according to its

weaker theory of meaning it is complete.

How can these new, weaker model theories be produced and what is their relationship to

the unweakened model theory? To answer the question consider a model theory as laying down

a set of constraints on what constitutes a model. Of all (mathematical) objects, only those that

satisfy the constraints qualify as models. A model theory also associates with each model a

valuation, a total function from sentences to their truth values. Hence, a model theory con-

strains the range of valuations that can be generated. In a standard propositional logic, for

example, these constraints ensure that any valuation that assigns two sentences True, alsoI
assigns their conjunction True. The entailment relation associated with a model theory is a
product solely of the range of valuations that the model theory generates. Relaxing the con-0

straints produces a new model theory, one that may generate additional valuations. No matter

how the constraints are relaxed, the new model theory must have a weaker entailment relation

than the original. That is, if hi and h 2 are entailment relations and h2 is obtained by relaxing

the model theory for h, ,thna h/3 implies a hj /. To see this, observe that a valuation can

serve only as a counterexample to a claim that one sentence entails another; hence if none of the

valuations from the relaxed model theory are counterexamples then certainly none from the ori-

ginal model theory are.

One entailment relation is weaker than another if the inferences sanctioned by the first are a subset of those

sanctioned by the second

8 -

1.5.1. A Toy Example

Consider a program that reasons about an arbitrary equivalence relation named "r". A
user communicates with the program, making assertions and queries, each of which specifies a
sentence of the form r(a,3), where a and 6 are symbols drawn from some lexicon.

This program can be specified in terms of the symbolic manipulations it performs. There
are many conceivable specifications but for the sake of argument let us say that the program
works by maintaining a collection of disjoint sets. Initially there is a unit set for each symbol in
the lexicon. Whenever the user asserts r(a,3) the program combines the sets that contain a
and 6 into a single set. To respond to the query r(ao) the program simply determines whether
the elements a and 3 are in the same set. There are many well-studied algorithms for perform-
ing this set-union task (Tarjan and van Leeuwen, 1984), the best of which can process a series
of n assertions and queries in slightly greater than 0(n) time.

To the user of the system this specification is too detailed and too concrete. He does not
need to know, nur does he care, whether the program works one way or another. At the level of
abstraction with which the user is concerned the various implementations are all identical. (Of
course, for other concerns, such as implementation, there is a world of difference between

different specifications.) A more abstract, non-procedural definition of this reasoning system
can be obtained by replacing the question "What does the reasoner do?" with "Given a set of
previously-asserted sentences, what query sentences succeed?" At this higher level of abstrac-
tion the various set-union algorithms are all equivalent.

In response to the question of what queries succeed, it can be shown that the program

described above answers "yes" to a query if, and only if, it legitimately can do so based on what

it has been told. That is, it answers "yes" if, and only if, the queried sentence is entailed by the
set of asserted sentences. Forgive my pedantry while I spell out the obvious details of the

model theory that gives rise to the entailment relation for this language; these details will be
valuable in considering how to relax a model-theoretic specification.

Each of the model theories discussed in this thesis is given a name. The one presented
next is called "E". In cases where confusion could arise, terms like "E-model" and "E-
entailment" and symbols like hE are used to indicate which model theory is under considera-

tion.

An E-model is a pair (D,A) where D is a non-empty set of individuals called the domain
and A is a function that maps every symbol in the lexicon to an element of D and maps r to a

binary relation over D such that:

(1) A(r) is reflexive,

(2) A(r) is symmetric, and

(3) A(r) is transitive.

The valuation associated with (D,A) is the function that takes each sentence of the form
r(a,d3) to True if the relation A(r) holds between A(a) and A(d), and to False other'Aise.

%" , . " .",.

These valuations can be used in the usual fashion to define the notions of E-satisfiability, E-
validity, and E-entailment for this language.

This model theory serves two purposes in analyzing the program. First, it provides a

rigorous semantics for the language that the program manipulates and in doing so defines

entailment for the language. Second, it is used in specifying what the program computes by
stipulating that it responds "yes" if, and only if, the queried sentence is E-entailed by the

asserted sentences. In the case of this program the two uses go hand-in-hand because the pro-

gram is a sound and complete inference engine. But it is important to distinguish between

these two uses of a model theory as we turn our attention to a reasoning program that is not

complete.

Suppose that for some reason we were not happy with a program that required slightly

greater than O(n) time to process a series of n assertions and queries. (I told you this was a
toy example!) Furthermore, suppose that we were willing to replace the set-union algorithm

with the following algorithm, which is much weaker but slightly faster. Whenever r(a,/3) is

asserted, the program adds the pair (c,/3) to an associative store. The program responds "yes"

to the query r(a,fl) if, and only if, alpha and beta are identical or the associative store contains
either (a.3) or (/3,or).

This program is incomplete with respect to E. For example, if only r(a,b) and r(bc)

have been asserted, the query r(a,c) will not result in "yes" even though the queried sentence is

E-entailed by the two asserted sentences. E still gives a semantics for the language manipu-

lated by the program but it no longer specifies what the program computes. However, there is

a weaker model theory-call it EW-whose entailment relation does specify the input/output

relation of this program. Ew is identical to E except that constraint (3), which says that A(r)

must be transitive, is eliminated. With respect to Ew the program is a sound and complete

inference engine-though admittedly soundness and completeness are normally taken to be with

respect to a model theory that specifies the meaning of the language.

Every model in E is also a model in Ew, but not vice-versa. For example, consider the

model (D',A') where D'= 1,2,3 and A' is such that:

A'(a) = 1

A'(b) = 2

A'(c) = 3

A'(r) =)(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)1

This model respects constraints (1) and (2) but not constraint (3). The valuation gen-
erated by (D',A') is not generated by any E-model, hence E_ is strictly weaker than FE.

Returning to the example previously cited, (D',A') demonstrates that r(a,b) and r(b,c) do not

EW-entail r(a,c).

%0
p.

pT

." A :.","'" .. ': .,,,-.-"'::-.-": ,....;.-:-.... ..- .'-.-.:....

- 10-

Though this example program specification is quite simple it has illustrated many of the
major points about the method of specifying programs with model theory.

1.6. Requirements on Retrievability

There are three restrictions that I place on any retrievability relation. Each of these
already has been discussed more or less explicitly, but here they are made explicit and precise
by presenting them in terms of the restrictions they impose on a retrievability relation.

If kb is a set of sentences and q a single sentence of some language whose Tarskian entail-
ment relation is HT then any retrievability relation "-R for that language must satisfy:

soundness: kb .-- q only if kb T q.

verbatim retrieval: if q E kb, then kb --+R q.

decidability: -'R is a decidable relation.

The first requirement demands that no sentence can be retrieved from a KB unless it is
entailed by the KB, while the second demands that sentences explicitly in the KB are retriev-
able. Both of these requirements are met by any retrievability relation that is the entailment
relation of a model theory obtained by relaxing T. As previously argued, relaxing constraints in

a model theory can only weaken its entailment relation and therefore the soundness require-

ment is met. The verbatim retrieval requirement quite clearly is met by any entailment rela-
tion.

It is a virtue of the model theoretic specification technique that it imposes constraints on
the relations that can be specified, some of which are demanded independently by the nature of

the relations that we are attempting to specify. Consequently, relations that fail to satisfy the
soundness and verbatim retrieval requirements cannot even arise in this study. This contrasts

with earlier work (Frisch and Allen; 1982) employing a more syntactic form of specification in
which it was necessary to prove that each specified retriever met these requirements.

Given that the retrievability relations of this thesis are produced by the advocated
model-theoretic method, only the decidability requirement need concern us. This requirement,
which ensures that the retriever can be realized by an effective procedure that is guaranteed to
terminate, is weaker than it ideally should be-that the retriever could be realized by a pro-
cedure requiring only some small amount of computational resources. As previously discussed,
the first three retrievers attempt to achieve this required efficiency through the elimination of
chaining. Achieving decidability in the fourth retriever requires that all necessary taxonomic
reasoning can be performed with only a bounded amount of chaining.

The three requirements discussed in this section can be captured poetically, as well as for-

mally:

S

1 ".

-i11- 6

Insist what's explicit is found

Within computational bound. 4

And what's retrievable

Must be believable, %e

So make sure that inference is sound.

1.7. Other Methods for Limiting Inference

The computing literature contains a number of approaches to limiting inference. This sec- I
tion reviews several of these and argues that none of them is appropriate for limiting inference
in a retriever. This should not be surprising, for each of the approaches was developed for pur-

poses other than retrieval.

One way of limiting inference is to restrict the expressiveness of the representation

language used to express the knowledge in the KB. Such restrictions can simplify the decision

of whether a given fact is entailed by the facts in the KB. This is the approach taken to yield

efficient retrieval in data bases. For example, even in the area of logic data bases where the

emphasis is on more expressive languages, data bases often are limited to the Horn-clause sub-

set of First-Order Predicate Calculus.' This restriction precludes expressing "Either John or his

brother has the money" without expressing which one has the money. This approach to simpli-

fying retrieval can also take the form of making assumptions about the domain and its relation-

ship to the representation language. Common assumptions are that the domain is finite, that

each individual symbol in the language denotes a distinct individual (E-saturation or unique

name assumption; Reiter (1980; 1984)), that each individual is denoted by some individual sym- i
bol (Domain closure; Reiter (1980; 1984)), and that everything that cannot be proved true is

false (Closed World Assumption; Reiter (1978; 1984)). The general acceptance of this approach

to achieving efficient retrieval distinguishes the field of data bases from the field of Al

knowledge representation. I
Assumptions of the sort described above should not be built into an AI knowledge

representation language. To do so would restrict the set of situations in which a system could 0

perform intelligently. These assumptions are just not true of our everyday world and its rela-

tionship to any system possessing common sense.

A representation should define a set of valid inferences that could be made, not those that

are made. Even if the retriever only makes a small portion of all valid inferences the remaining

possibilities must be available for the reasoner to consider.

Gallaire, Minker, and Nicolas (1978) overview the field of logic data bases in general, and define Horn clauses
in particular. Kowalski (1979) treats Horn clauses in depth.

-12-

Another common approach to limiting inference is to restrict the amount of resources used

in the computation (Norman and Bobrow, 1975; Bobrow and Winograd, 1977; Robinson and

Sibert, 1981). This can be done by restricting computation time, the total number of inference
steps taken, or the depth of the inference. These approaches are unsuitable for knowledge
retrieval because they limit all forms of inference uniformly. For example, if inference is lim-

ited to a depth of 5, then properties cannot be inherited down 6 levels of a type hierarchy. In
general, there may be some kinds of inference that we want to be computed completely and oth-
ers that we want to be ignored completely. A methodology for limiting inference for retrieval
should provide the designer with enough control to pick and choose the inferences that he Nants

to be performed.

A further class of limited inference systems consists of the incomplete theorem provers

that are fairly common in the literature: for example, Brown's (1978) system. Typically, these

systems are not guaranteed to terminate, and often fail to meet the verbatim retrieval cri-
terion.

A method of limiting inference that has been suggested to me is to find a traditional proof

system in the mathematical literature consisting of a set of axioms and inference rules and then

eliminate some of these inference rules and/or axioms. But there is no reason to believe that
the distinctions between the kinds of inference drawn by these inference rules and axioms are
the d'stinctions that I want to draw.

1.8. A Note on Notation

I have attempted to use standard notation and terminology as far as possible. Most of the
notation and terminology is defined when it is first used. However, it is worth introducing some

at the very outset:

" Recalling that a V/3 means that no model both satisfies c and falsifies /3, a model that

satisfies ce and falsifies 3 is called a countermodel to C h.
* A literal is an atomic formula or its negation. The former are called positive literals and the

latter, negative literals. If a is an expression or a set of expressions, LITERALS(c,) is the
set of all literals occurring in a.

" If 4 is a formula then its complement, written Oc, is defined by:

€- ='if €--

- "-' otherwise

* A model theory is said to be decidable or undecidable according to the decidability of its

entailment relation.

" As previously stated, every model theory discussed in this thesis is given a name. T is the
Tarskian model theory. It names the Tarskian model theory for whatever language happens
to be under discussion.

-4

k -,,'v,"',)',-7',,' ', ;-'.¢.,-*,' ' ' ', '. ,' .' ..;,:..''..', "" ,'.", ,' . • -.- t ,""#""-. -', ',-' -' .' " " •- .," " "

w'.jr -Mrd-IM W.-wt u-%1U WN- -iul -EiuUul ~ -i V l ~W~W VUJ'im l W T -

- 13 -

" The least upper bound of a set X is written as UX.

" In introducing a formula q5, I may write 4)[xj, - , x,]. Subsequently, I write 4)t, 1"

to refer to that formula which results from replacing all occurrences of x, in 4) by t, (for

1 : n

" If 4' is a formula containing free variables xj, ,,, then its universal closure, denoted by

V4', is VX1 , ,n z, , and its existential closure, denoted by 30', is]xj, x. z,4.

-14 -

Task(Goal Reasoner ~

Communicative Goal ReasonerI Knweg

Linguistic Reasoner

Figure 1.1: The Organization of ARGOT

PvQ pPVQ -

Q Q p Ip

0 0

Figure 1.2.' Resoution Refutations of (PVQ, -P, -Q)

Chapter 2

A Retriever for a Propositional Language

This chapter develops and studies a retriever for a propositional language whose truth-

functional semantics is given by the standard Tarskian (1935) model theory. The retrievability

relation developed is the entailment relation of RP, a model theory obtained by relaxing the

Tarskian model theory.

Even within the confines of a propositional language one encounters the most fundamental

issues in the study of retrieval: How can a representation be quantized? How can a Tarskian

model theory be relaxed to obtain a model theory that does not allow these quanta to be

chained? After chaining is eliminated, what sort of inferences remain? What properties does a

"logic of no-chaining" have and how do they compare to the properties of the Tarskian logic

from which it was derived?

The principal results of this chapter include:

* a workable definition of a "quantum" of representation,
0 the specification of RP, a propositional logic that is a relaxation of T,
0 a proof that no form of chaining is valid in RP,

a proof that, modulo the way that the representation is quantized, RP is the strongest

logic that allows no chaining, and

* a specification of a retrieval algorithm that meets this model-theoretic specification,

i.e., a decision procedure for RP.

2.1. The Quantifier-Free Predicate Calculus

The retriever studied in this section operates on the sentences of a language called

"Quantifier-Free Predicate Calculus" (QFPC). That is, throughout this chapter a KB consists
of a finite set of QFPC sentences and a query specifies a QFPC sentence to be retrieved. There-

fore, the retrieval problems considered in this chapter are those that can be represented as a

finite QFPC sequent, a sequent whose antecedent is a finite set of QFPC sentences and whose

consequent is a single QFPC sentence.

Syntactically and semantically, QFPC is identical to First-Order Predicate Calculus

except that QFPC has no quantifiers. Briefly, the lexicon of QFPC consists of a set of variables,

a set of function symbols, and a set of predicate symbols. In the usual manner, variables and
function symbols can be combined to form terms, which can be combined with predicate sym-
bols to form atomic formulas, which in turn can be combined with the logical connectives to

form molecular formulas. As usual, a sentence is a formula with no free variables. Therefore,

since QFPC has no quantifiers, a QFPC sentence has no variables whatsoever.

"II

- 16-

It may appear curious that QFPC allows variables in its formulas even though the retri-

ever only deals with variable-free sentences. However, there is reason to this madness. Accom-

modating variables into the analysis of this chapter adds little complexity but greatly simplifies

matters in Chapter 4 when the retriever is extended to handle quantifiers. For example, this

chapter presents a theorem concerning the application of a normal-form transformation to for-

mulas. Because this result concerns all formulas-not just sentences-it is applicable to the

more-general circumstances that arise in Chapter 4.

This is a good place to reiterate that I never speak of the value of an open formula relative

to a model; it only has a value relative to a model and an assignment of values to variables

(henceforth simply called a value assignment). A sentence, however, does have a value relative

to a model, and can be satisfied or falsified by a model. Accordingly, only sentences participate

in entailment relations-including hkF , which specifies the retriever of this chapter.

2.2. A Matter of Fact

Recall my original suggestion that a retriever should operate by dividing the KB and
query into quanta called "facts" and then performing retrieval on a fact-by-fact basis. In other

words, a query succeeds if, and only if, each of its facts is retrievable from a single fact in the

KB. However this in itself does not necessarily lead to an efficient retriever since it may still be

difficult to decide whether a single fact is retrievable from a single fact. Two extreme

approaches could be used to obtain an easily-decidable retrievability relation between facts.

One is to allow facts to be complex objects and to make retrievability between facts be a weak

relation in comparison to T-entailment. The other approach is to allow facts to be only simple

objects and to make retrievability between facts be a strong relation in comparison to T-

entailment. If the first route is taken, a version of the original problem remains: How should

T-entailment be weakened to yield an efficient retrievability relation over the set of facts?

I pursue the second route. Facts are defined to be so syntactically simple that retrievabil-

ity over the set of facts can be taken as T-entailment. A retriever designed in this way occu-
pies a privileged position; modulo the definition of fact, it will be the strongest retriever that

does no chaining.

These considerations impose three criteria on the way that facts and the RIP model theory
are defined. Let us now make these criteria explicit. If 0, and 02 are facts and 4) is a set of

facts then:

No chaining: P 4RP 01 if" for some € CP 0 lRP €1.
Strength: 01 4RP '2 iff 01 hT €k "

Efficiency: There is a simple algorithm that decides whether <p i T ' 2"

Taken together, the Strength Criterion and the Efficiency Criterion demand that T

entailment between facts must be easily decidable. Since deciding T entailmen btcuci ,

II

- 17-

arbitrary sentences of QFPC is intractable, facts must be expressively weaker than sentences in

general; that is, it must be that there are sentences that are not T-equivalent to any fact. The

two most obvious choices are to take a fact as a disjunction of variable-free literals or as a con-

junction of variable-free literals. I have chosen the former. I know of no reason why the other

choice is not viable and, though not pursued here, an investigation of the consequences of that

choice would be worthwhile. However, of the two choices, a disjunction of literals provides a

more natural basis for knowledge representation.

The following theorem assures us that with the above definition of "fact" it is possible to

satisfy the Strength Criterion without violating the Efficiency Criterion.

T-Decision Theorem for Facts

For any facts, 01 and 02, 01 T 02 iff either

(1) 02 has complementary literals, or

(2) LITERALS(Ol) C LITERALS(2).

Proof
If clause: Assume Condition (2). From the definition of V observe that a T-model satisfies a

disjunction iff it satisfies one of the disjuncts. Therefore, any T-model satisfying 01 also

satisfies 02; i.e., 01 [T 02" On the other hand, assume Condition (1). From the T-truth table I
for -i observe that each literal or its complement is satisfied by any T-model. Thus, (by the
argument above) any disjunction containing complementary literals is satisfied by every model,

and therefore (p , h 2

Only-if clause: Assuming neither Condition (1) nor (2) is satisfied, I construct M, a T-model

that satisfies 0, but falsifies 02. Let M assign False to every literal in 02. This is possible since
by assumption no literal occurs both positively and negatively in 02. Therefore M falsifies 02.

An obvious consequence of the initial assumption is that 0, contains some literal not contained

in 02. Call it L. If L' is one of the disjuncts in 02 then M assigns False to Lc and hence True

to L. Otherwise, we are free to let M assign True to L. In either case, M assigns True to L
and therefore, by the definition of V, satisfies 01.

The two syntactic conditions for T-entailment can be easily computed. Even if facts are

encoded as unordered lists, this decision can be made in O(n log n) time, where n is the sum of

the lengths of the facts. This could be reduced further by a better encoding of facts. Proof

complexity is another important measure. A proof that one fact T-entails another would have

to demonstrate either that every member of a certain set of literals was contained in another or

that a certain set contained complementary literals. The size of each of the necessary demons-

trations is proportional to the size of the facts involved.

Im

- 18-

2.3. Defining RP

With the definition of "fact" in hand we are ready to relax the constraints on T in order to
produce RP. In doing so, we can safely ignore the Efficiency Criterion because of the previous

theorem, and thereby concentrate on satisfying the No-Chaining and the Strength Criteria.

However, this is tricky because these criteria apply opposing forces; the No-Chaining Criterion
demands a logic that is weak in a certain way, while the Strength Criterion demands a logic

that is strong in another way.

It is tempting to try to produce the specification of the relaxed model theory by following
the tactic used in Section 1.5.1 of simple textual deletion of some constraint on what constitutes
an unrelaxed model. However, in the case of T it is not so straightforward. E specifies three
constraints on the relations that can be assigned to the symbol r and thus prevents the atomic
sentences of the language from obtaining certain combinations of truth values. (Recall that all

sentences in the object language of E are atomic.) Relaxing E to obtain E' involves deleting
one of the three constraints, allowing the atomic sentences to be given additional combinations
of the two truth values.

Unlike E, T places no constraints on what a model can assign to a predicate symbol and
therefore the atomic formulas of the language can be assigned any combination of the two truth
values. So the strategy of generating additional valuations by giving the atomic sentences more

combinations of the two truth values cannot be pursued in this case. This leaves two options:
either allow atomic sentences to be mapped to values other than True or False or modify the
way values are assigned to molecular formulas. This thesis pursues the first strategy. Else-
where (Frisch, 1985a) I have specified a nearly identical retriever using the second strategy.

Examination of why P and -'PVQ T-entails Q provides the insight used to derive the
new model theory, RP. Consider this three-step argument that P, -IPVQ hT Q:

(1) Assume that P and -nPVQ are both satisfied by a certain model.

(2) Since P is satisfied, -P isn't.
(3) Consequently, if the model is to satisfy -nPVQ, as assumed, it must satisfy Q.

As far as chaining is concerned, step (2) is the crucial one; it connects P and -'PVQ. The vali-
dity of the step rests on the assumption that a model satisfies only one of P and -,P-a
justified assumption in T where a model assigns each sentence either True or False, but never
both. RP relaxes the restriction that the assignments of True and False are exclusive by allow-
ing each sentence to be assigned a non-empty subset of {True, False}. Hence, RP has three

truth values: {True/, JFalse: and True, False,. We will see that this modification admits
models that satisfy both P and -P, thus eliminating modus ponens as a sound rule of infer-

ence.

Let us make this precise. Like a T-model, an RP-model is a pair (D,A) where D the
domain-is a non-empty set and A is an assignment of appropriate semantic objects to the
non-logical symbols of QFPC. As in a Tarskian model, A assigns to every n-ary function

%S

-S 19-

symbol a function from D' to D. However, unlike a Tarskian Model, A assigns to every n-ary

predicate symbol a function from D' to {{True}, {Falsej, JTrue, False]j. In comparing RP to

T the difference between True and {True} and between False and {False} always will be

ignored.

The exclusivity of True and False is built implicitly into the usual semantic equations that

determine how T recursively assigns values to molecular formulas. Consider, for example, (2.1)

and (2.2), the semantic equations for disjunction and negation. Here, ¢1M. is the truth value

of formula 4 relative to model M and value assignment e.

LaVflJ M ' =True if RadM, =True or Efl1Jm"e =True (2.1)

=False otherwise

g--,, M 'e =True if jaeM ' =False (2.2)

= False otherwise

Notice that in these equations the assignment of False is based on the non-assignment of

True. Let us now assume that formulas can be assigned a set of values-True} and JFalse in

the Tarskian case-and define the assignment of True and False independently of each other.

(2.1) and (2.2) can be written equivalently as (2.3) and (2.4).

True G fIaVflM ' iff True G ciJ M 'e or True E (2.3)

False C oaV v M ' iff False C]4M' and False G fl]]A('

True G [IJ-n]M 'e iff False E RcajMe (2.4)

False C iff True G Cal' 'e

The semantic equations for the other logical connectives can be rewritten in a similar
fashion, or, equivalently, they can be defined in terms of disjunction and r.egation. For exam-

ple, define

A = Xx,y. -,(--V-'y)

or, if you prefer,

True GaAfl M e iff TrueG, M 'e and TrueC CfJM ' (2.5)

FalseG oiAfl]]M ' iff FalseE a]M 'e or False C DlIM 'e

Figure 2.1 displays the truth tables for negation, disjunction and conjunction in this

three-valued logic. "T," "F," and "TF" abbreviate the names of the truth values in the obvious

Accommodating value assignments at this point facilitates the incorporation of quantifiers in Chapter 4

%S

-".PLS

- 20 -

way.

It should now be clear that these semantic equations-(2.3), (2.4), and (2.5)-can be used

to assign values to formulas in RP-models as well as in T-models. It should also be clear that

T-models are precisely those RP-models where no atomic sentence is assigned {True, False(.

Hence, as one would expect, each three-valued truth table contains the truth table for the two-

valued Tarskian logic.

We say that model M satisfies sentence ct if, and only if, True EIcd"M"; otherwise M

falsifies a.2 Furthermore, M satisfies a set of sentences iff it satisfies each sentence in the set

and M falsifies a set of sentences iff it falsifies some sentence in the set. As usual, a set of sen-

tences A RP-entails sentence # iff there is no model that satisfies A and falsifies fl. A queried

sentence of QFPC is retrievable from a KB of QFPC-sentences if, and only if, the queried sen-

tence is RP-entailed by the sentences in the KB.

Let us now return to the example that motivated this definition of RP and ask, "Do P and

-,PVQ RP-entail Q?" The answer is "no", because there are RP-models that satisfy both P

and -1P. For example, consider model M, which assigns True, False to P and JFalse: to Q.

According to the definitions of the connectives, M assigns jTrue, False} to both -1P and

-,PVQ. So, M satisfies both P and -iPVQ but falsifies Q, and therefore is a countermodel to

the claim that P, -,PvQ RP Q.

2.4. Properties of RP

Now that RP is defined, this section examines some of its properties. The preeminent

results of this section show several logical equivalences for the RP logic and show that the

retrievability relation that RP defines satisfies the Strength and the No-Chaining Criteria.

These results lead directly to the decision procedure of the next section. However, before turn-

ing to them, we first observe some of the algebraic properties of this model theory. These alge-

braic properties prove very useful both in examining the properties of direct concern and in

comparing this logic to others.

First note that the three truth values under the partial order of set inclusion form the

upper semi-lattice shown in Figure 2.2. Because this semi-lattice forms three-fourths of

Belnap's (1975; 1977) A4 lattice, I call it A3 and denote its partial order by E----A1

It doesn't matter what e is since o is a sentence and hence contains no variables

p

,-:,-,:t % - . "., _ ,-o, ... ' 7...; .. '. -'. . -.. €'.€.,. ' ., :." :...- - .'7..- €.(:'. . : : . . ' ' . - " :'S

21 U

JTrue, False,'

{True} {False •

Figure 2.2: The A3 Semi-Lattice

As usual, an n-ary logical connective can be viewed as a function from an n-tuple of truth

values to a truth value-in this case C:A3'---.A3. -A3 can be extended to order A3' on a

point by point basis; i.e.,

(al...'"a) A3" (31 ,...,/3,) iff ai EA3/%i for all l<i<n.

Now, examination of the truth tables for disjunction and negation reveals that they are mono-

tonic functions; that is, if -,WCA3' and C is the function denoted by "V" or "-," then

Z;EA3-W implies C(o) LA 3 C(A). Considering equations (2.3) and (2.4), this observation is not

surprising. The presence of True or False in the assignment to a formula is determined solely

by the presence, never the absence, of True or False in the assignment to its subformulas.

Finally, all logical connectives are monotonic, since they can be defined as compositions of dis-

junction and negation.

Further examination of the truth tables reveals that JTrue, False} is a fixed point for both

negation and disjunction, and therefore a fixed point for all the logical connectives.

On its own, A3 is not very interesting. However, it can be used to construct complete
upper semi-lattices of RP-models. This construction, and several others encountered in this

thesis, require sets of models that are "compatible" in the following sense:

Definition: Compatible Set of Models

A set of models is compatible if, and only if, every model in the set has the same domain and

each function symbol is assigned the same function in every model.

Several points deserve explicit mention: A set containing one model is compatible, as is the

set of all Herbrand models. Compatible models interpret every term identically, though they

may differ in their interpretations of the atomic sentences.

A maximal set of compatible RP-models forms a complete upper semi -lattice, called an

A3S semi-lattice, under the partial ordering EA 3 , defined as:

M EA 3 5 M' iff gJorM"e L ga] M', (. 6)

for every atomic formula a and valie assignment r

Here is a simple example of an A3S semi lattice. Consider the language whose lexicon ha.,-

only three symbols: a zero-place function symbol, a, and two one place predicates. P) and

m C*'. ' ".'*° ' 'P' ' " -'''' -" ', " % " %' ," '- %"% '" "'" % ' *', '," ' '' " ,'' " .""-.''...% - ''.. "'. ''' .""..' , S'

-22-

Every Herbrand model (D,A) for this language is such that D={ a and A(a)=a. The Her-

brand models differ in their assignment of the truth values to P(a) and Q(a). Accordingly, a

Herbrand model M can be described succinctly by the pair (QP(a)M 'e, IQ(a)JM'). So, for

example, (TF,F) is the Herbrand countermodel to the claim that P(a), -'P(a)VQ(a) kRp Q(a).

Now, Figure 2.3 shows the A3S semi-lattice of the Herbrand models for this language. * our

examination of the general properties of A3S semi-lattices continues, the reader may fi use-

ful to check all claims against this semi-lattice. %

The minimal elements of an A3S semi-lattice are precisely the Tarskian models of the

semi-lattice. Each A3S semi-lattice has a greatest element, T, which assigns True, False , to

every atomic formula, regardless of the value assignment. Furthermore, because)True, False

is a fixed point of every logical connective, T assigns jTrue, False(to every formula. Therefore

every sentence is RP-satisfiable. Here for the first time, a logical property has fallen out of the %

algebraic properties.

With A3 and A3S now in place, we are in a position to examine the connections between

them. By the end of this section these connections will prove to be our most valuable tool in

studying the properties of RP. The connections between a semi-lattice of models and a semi

lattice of truth values are made by sentences. Associated with every sentence is a function,

called the intension of the sentence, which maps each model to the value of the sentence in that

model. Thus, the intension of sentence a, written aJ, is defined as

=adf E',I XM. l(2.7)

This notion can be extended to formulas by speaking of the intension of a formula relative to a

value assignment. Hence, if t, is a formula and e is a value assignment, the intension of i, rela-

tive to e, ,is defined by

He¢4 df XM. R 11 Mle (2.81

The application of an intension, say [ci,]', to a model M is written as "a, , not "V'(.l)".

Intensions have some important properties-- for example, the following siiiiple oilt:

Monotonic Intension Lemma

Let ¢, be any formula and e be any value assignment. Then , is monotonic i.e.,

MEA3s M' implies 1 1 M, ---A3 E 1 ,:Me

Proof

Clearly the intension of every atomic formula is monotonic: that is the defining characteristIC

of E:A3 (see (2.6))! The logical connectives are also monotonic functions. Therefore the iti,.en-

sion of a molecular formula, being composed of the intensions of atomic formulas and connec-

tives, is also monotonic. U

Consequently, if V satisfies a sentence so does every A' such that % L 1'. lihr'f,,r. a

AL0

- 23 -

corollary to the above theorem is that every T-tautology is also an RP-tautology.

Every non-Tarskian model in an A3S semi-lattice is the least upper bound (l.u.b.) of a set

of Tarskian models. If S is an A3S semi-lattice and YCA3S, then it is easy to see that the

l.u.b. of Y is that model in S which assigns to each atomic sentence the union of the sentence's

values in all the models of Y. Extending this to atomic formulas as well as atomic sentences.

this observation is that for any atomic formula a and value assignment e,

ga LJ"e =U{D " yI E Y (2.9)

Any go, '-regardless of whether a is atomic-that satisfies this condition is said to be com-

pletely additive.3 Complete additivity can be divided into two component properties: HJ] is

completely additive iff it is both

completely t-additive: TrueCEJaIu 'e iff TrueCU aJV 1 ly (Y',

for every Y that is a subset of some A3S lattice, and

completely f-additive: False C [a]JuY' e iff False C Li : ka" I! Y ,

for every Y that is a subset of some A3S lattice.

The following lemma characterizes some formulas whose intensions are completely additive.

Complete Additivity Lemma

Let a and 3 be formulas and e be a value assignment. Then:

(1) If a is atomic then [aJ is completely additive.

(2) If goE] is completely t-additive then - is completely f additive.

(3) If Rao] is completely f-additive then [-,' is completely t-additive.

(4) If aE]' and 3IV are completely t--additive then so is

(5) If [aE' and 3J' are completely f-additive then so is goA3E.

Proof

(1) Obvious. Previously stated as (2.9).

(2) F'alse (ac"r iff True C llau ' ,e (def. of

iff True C- U) c]]a 'e ly C Y: (assumption)

iff for some y G Y, True G 94 '" (def. of A3)

iff for some y C Y, False e [-4a1 rP" (def. of -)
iff False [U I[-,a'a" 'l C Yt (def. of A3)

(3) Similar to (2).

(4) True (C aV!:l Ye

iff True,(k, ,, ', or Truer (3p ' Y, e (def. of V)

This term is used by some authors (e g Sanderson (1973)) while others use 'meet homomorphic" or upper

horh ir ph '

d.

%~~ NP% .

- 24 -

iff Truel I{ Ja y'' eIyE Y} or True E1 {[f/3 e IyGY} (assumption)

iff for some y E Y, True Ggacy'e, or some y G Y, True!J/Ilye (def. of A3)

iff for some y E Y, True Ea]e or True E flIP/ (metalogical)

iff for some y G Y, True C ay/31I (def. of V)

iff True E UI { kVflJY' e l yE Y} (def. of A3)

(5) Similar to (4). U

Not every intension is completely additive. For example, one can observe that the

intension of PAQ is not completely t-additive by considering the simple case in which:

Y ={Ml, M21J

j pj]Mie = True Q]jMie = False

[PIM2' - False mQ]m,, = True

Consequently,

gpEUY,' - True, False} DQIUre - {True,False}

RPAQ Uy ' = ITrue, Falsel,

U":[PAQ 'e ly C Y =False

So, gPAQEU 'Ye contains True but U{PAQ Y"Yly C Y does not, thereby demonstrating

that the intension of PAQ is not completely t-additive. 4

Fact Intension Theorem

Every fact has a completely t-additive intension.

Proof

The Theorem follows immediately from the Complete Additivity Lemma. By statement (1),

the intension of every atomic formula is completely additive, and thus, by (2) and (3), so is

the intension of every literal. Therefore, by (4), a disjunction of literals must have a com-

pletely t-additive intension. U

We now turn directly to the logical properties of RP. As in two-valued logic, it is often

convenient to restrict our attention to the Herbrand models. This selective attention is

licensed by the Herbrand-Model Lemma, which says that for certain purposes the Herbrand

models are representative of all models. This lemma holds in RP for precisely the same rea-

o oNotice that Y is not a directed set so this example does not demonstrate that the intension of PAQ Is not
con~tin~uous

.

Azle
S.

- 2s- . -

sons that it holds in a two-valued logic, so it is stated here without proof.5

Herbrand-Model Lemma

Let A and B each be a set of sentences. If no Herbrand RP-model satisfies A and falsifies B

then A R=Rp B.6

Since the set of all Herbrand models is compatible, it forms an A3S semi-lattice that,

for certain purposes, is representative of all A3S semi-lattices. Thus, for example, one can

examine the semi-lattice of Figure 2.3 in order to verify that 0 RpP(a)V-'P(a) and that

P(a) ip P(a)VQ(a).

It is now easy to prove that RP meets the No-Chaining and Strength Criteria.

No-Chaining Theorem

Let 4) be a set of sentences and a be a fact. Then 4) HRp a iff for some E (D 4 RP 4%.

Proof
If clause: Obvious.

Only-if clause: Assuming that there is no 4) such that 4) RPa, I construct a model M*
that satisfies every 4)C4) but falsifies a. From the assumption it follows that for every 4D4)

there is a Herbrand RP-model, Me that satisfies 4 and falsifies a. Let M* =1 U iMoI404cr.

Now, for every 4 G 4D, M€LE 3S M* and therefore, by the Monotonic Intension Lemma, M*
satisfies 0. Moreover, True V f, I{aE M10E(D because each Me falsifies a ; therefore, since a

is a fact, the Fact Intension Theorem assures us that True 0 laM '.

From here, the presentation could proceed in two ways, each building on the T-Decision

Theorem for Facts. One approach would proceed by first proving the RP-Decision Theorem
for Facts, which says that RP-entailment between facts can be decided in the same way that

the T-Decision Theorem for Facts says to decide T-entailment. The Strength Theorem

would then follow immediately. The other approach would begin by proving the Strength

Theorem, which then yields the RP-Decision Theorem for Facts as an immediate conse-

quence. However, since both the RP-Decision Theorem for Facts and the Strength Theorem

are interesting in their own right, and since both have simple proofs, I take a third approach

by proving each theorem independently.

Strength Theorem

If 4 is a fact and 0 is a sentence then 4 kRP 1 ifl 4 [T t"

Robinson (1979) gives an excellent exposition of Ilerbrand models

Because this is the propositional case, Skolem Normal Form is not an issue

,-# . ".",.." .' .'-.. ..', ".'.,.:,'.,v . ".- ..','-,, .-, ., .>, - ,.. "' .' ," "." -" " -"- ', .".' ". '".? ' - S

- 26-

Proof
Only-if clause: Immediate since every T-model is an RP-model.

If clause: Assuming 4 T 0 and that M is an RP-model satisfying 4, 1 show that M satisfies

4. Since M is the l.u.b. of a set of T-models, the Fact Intension Theorem implies that there

must be some T-model M'EA3 S M that satisfies €. Furthermore, since 0 j ,, M' must also

satisfy 0. Therefore, by the Monotonic Intension Lemma, M must satisfy ¢. U

RP-Decision Theorem for Facts

For any facts, 01 and 02, 01 hRP 42 iff either

(1) 02 has complementary literals, or

(2) LITERALS(0 1) C LITERALS(0 2).

Proof

If clause: Assume Condition (2). From the definition of V observe that an RP-model

satisfies a disjunction iff it satisfies one of the disjuncts. Therefore, any RP-model satisfying

40, also satisfies 02; i.e., 0 [1RP 02. On the other hand, assume Condition (1). From the RP-

truth table for -, observe that each literal or its complement is satisfied by any RP-model.

Thus, (by the argument above) any disjunction containing complementary literals is satisfied

by every model, and therefore 01 [RP 02"

Only-if clause: Immediate since every T-model is an RP-model. U

Notice that this theorem and the proof of its if-clause are identical to the T-Decision

Theorem for Facts and the proof of its if-clause (except of course that one concerns T and

the other RP). Moreover, the only-if-clause of this theorem could be proved by mimicking

the proof of the only-if-clause of the T-Decision Theorem for Facts.

This section concludes by presenting some RP-equivalences. However, we first examine

the notion of equivalence itself, which must be handled with care when working with a

multi-valued logic.

In general, two notions can be distinguished: mutual entailment (), defined in (2.10),

and equivalence (-), defined in (2.11).

a iff a -fl and 13H0 (2.10)

akfl iff falIM'
= jM., for all M and e. (2.11)

N N%

".j - 'o '% , ' j',.' .' __Vm ' ' j, ' '% , __ , % _ . .' i,..' , % i , , ' , -'". '."" " " " " ", -".."".. "," "= .,

- 27 -

The relationship between these two definitions becomes clear if they are rewritten as

a /B iff for all M and e, True JacMc iff True[CfJ3J M 'e (2.10')

a----8 iff for all M and e, True E Rai M " iff True E31I M and (2.11')

False E [oM " e iff False E RM ' e.

Notice that (2.10') defines equivalence over all formulas whereas (2.10) only defines it over the

sentences.

Trivially in T, and non-trivially in some multi-valued logics (Belnap, 1975; 1977), these

two definitions coincide. However, in RP they do not. This is demonstrated by the sentences

PV-iP and QV-,Q, which (mutually) RP-entail each other, but are not RP-equivalent.

Since each of these two sentences is an RP-tautology, every model assigns each of them a

value containing True. However, in a model that assigns {True, False} to P and .[True} to

Q, PV-,P is assigned {True, False} while QV-'Q is assigned {True}.

The choice of whether to use mutual entailment or equivalence depends on one's pur-

poses. This thesis is often concerned with substituting equals for equals and is therefore con-

cerned with the notion of equivalence.

RP-Equivalence Theorem

If a, 3, and ip are formulas of QFPC then

(1) aV ERPa

(2) ra^EaRpa

(3) - -'aRP a

(4) a A^(3vP) - p (,(k^fl)v(o^O)

(5) aV(/3A^) -Rp (aV/3)A(aVb)

(6) V/ =RP -(-A--/3)
(7) oA,3 =p -(-V-3)

Proof

Construct the truth tables. U

2.5. The Retrieval Algorithm

In certain cases it is simple to see how retrievability can be decided. The Fact Decision

Theorem for RP provides a method for deciding whether or not a query consisting of a single

fact is retrievable from a KB containing a single fact. The No Chaining Theorem extends

the method to the case where the KB contains any finite number of facts. rinally, the seman-

tics of conjunction, which says that an RP-model satisfies a conjunction iff it satisfie.- each

conjunct, provides for the case where the KB contains conjunctions of facts and the query is a

% e
-. 5 ~ *' ~ 5.5 * -t

- 28 -

conjunction of facts. Hence, retrieval problems based on conjunctions of facts play a special

role in the analysis.

Formulas that are conjunctions of disjunctions of literals are traditionally said to be in

conjunctive normal form (CNF). The use of CNF in the decision procedure divides the

remainder of this section naturally into two subsections. The first is concerned with

transforming arbitrary QFPC formulas into CNF while the second is concerned with the

details of deciding if a CNF query is retrievable from an KB of CNF sentences.

The sections and chapters that follow use some terminology, which is now introduced.

Since every retrieval problem is characterized by the set of sentences in the KB and the

queried sentence, I introduce into the meta-language objects, called sequents, that encode

such characterizations. A sequent is, quite simply, a pair whose first element is a set of sen-

tences and whose second is a single sentence. According to this definition a sequent, like a

pair of numerals, is merely a syntactic object; it has no assertional import; it is neither true

nor false. A sequent composed of kb and q is written as "kb=q"; kb is called the antecedent

of the sequent, and q is called the succedent of the sequent. In writing a sequent such as

JP(a),Q(a)=R(a) I usually omit the set signs and simply write P(a), Q(a)= R(a).

A sequent is said to be finite or infinite according to the number of sentences that it con-

tains. Both finite and infinite sequents are used frequently throughout the remainder of this

thesis though, of course, retrieval problems always correspond to finite sequents. This

chapter is concerned only with sequents of QFPC, i.e., sequents containing only sentences of

QFPC. When we examine retrievers operating on other languages, sequents of those

languages will be used.

Finally, I stretch the terminology slightly and say that a sequent kb*q is in an entail-

ment relation, by which I mean that kb entails q. Similarly, I say that a sequent is in a

retrievability or a provability relation.

2.5.1. The Conjunctive Normal Transformation

The conjunctive normal transformation (CNT) is a well-known algorithm for converting

any QFPC formula to a T-equivalent CNF QFPC formula. After this transformation is

presented, a theorem will state that, the transformation's output is also RP-equivalent to its

input.

S.S

6""2€ .€' ,, . % %'. ."n"t ." ". •" "" - "" ' " . "" . ". ""*- ""'"" .".".," " " ". '. ''°." " -" ""o0

- W9

Definition: Conjunctive Normal Transformation
Input: An arbitrary formula of QFPC.

Output: A CNF formula of QFPC.

(1) Eliminate all occurrences of -+ and * by the following rules:

Rewrite tp---o to -,a0V€

Rewrite 0-0 to (-1bA-'0)V(0A0)

(2) By the following rules push all occurrences of -, inward so that only atomic sentences
are negated:

Rewrite -1"-,V to t
Rewrite -,(01V .."" V.) to -01A " A-O,,

Rewrite -'(0 1A ... AO.) to -101V ... V-0.

(3) With the following rule, distribute V over A so that no A occurs within the scope of an

V:
Rewrite OV(1A '''AO) to (OVO)A' 'A(tPVO)

Conjunctive-Normal-Transformation Theorem
Every QFPC formula is RP-equivalent to its conjunctive normal transform.

Proof

Each of the rules rewrites a formula to an RP-equivalent formula; hence the transformation

as a whole rewrites sentences to RP-equivalent sentences. The RP-equivalences that justify

the rewrite rules of step (1) follow from the definitions of -* and -, while the others are

from the RP-Equivalence Theorem. .

A sequent is in CNF iff all of its sentences are. The conjunctive normal transformation

can be used to put arbitrary sequents into CNF merely by replacing every formula in the

sequent with its transform. Because this operation replaces equals with equals, the resulting
sequent is in the RP-entailment relation iff the original one is. More concisely, I say that the

CNT preserves RP-entailment.

2.5.2. Retrievability of CNF Sequents

As stated at the outset of Section 2.5, the RP-Decidability Theorem for Facts, the No-
Chaining Theorem and the semantics of conjunction make clear how to decide hRP for CNF

sequents of QFPC. Nevertheless this section presents a decision algorithm, not because it is

of intrinsic interest, but. because it lays the foundation for the more-interesting algorithms of

the chapters that follow. The algorithm is called the "Ground Sequent Retrieval Algorithm"

or simply the "GSRA"; the word "ground" is used to distinguish this algorithm, which

operates on the sentences of QFI'C, from the algorithm of the next section, which operates on

sentence schemas.

,-

-30-

Ground Sequent Retrieval Algorithm

Input: kb=*q, a CNF sequent of QFPC.

Output: SUCCESS or FAILURE

(1) let s - number of conjuncts in q

(2) let q, i1A conjunct of q (l is)

(3) let K be the set containing every conjunct of every sentence in kb

(4) for i=ltos do

(5) choose to do either step A) or step B)

(6) A) choose p,, a positive literal in q,

(7) choose ni, the complement of a negative literal in q,

(8) if n, = pi

(9) then continue

(10) else FAIL

(11) B) choose b, EK

(12) let 1, ,..., 'a, be the literals of bi

(13) choose Fi, a total function from LITERALS(b,) to LITERALS(q,)
~~~(14) if 1j, , . ,,)= F ( ,).. F li,)

(15) then continue

(16) else FAIL

(17) SUCCEED

The "choose" statements in this algorithm make non-deterministic choices, which means

that the algorithm succeeds iff there is some sequence of choices that leads to the
"SUCCEED" statement at the end. If a choice must be made from an empty set of options

then the execution fails. This can happen on line (6) if q, does not contain both a positive

and a negative literal, or on line (11) if K =0.

This interpretation of the choose statements motivates the following definition of prova-

bility. We shortly shall see the justification for using the term "provable."

Definition: G SRA-Provability

Let kb=*q be a CNF sequent of QFPC. Then, q is GSRA-provable from kb (written

kb GSRA q) iff there is some sequence of choices for which the Ground Sequent Retrieval Algo-

rithm halts with SUCCESS when input kb=*q.

The following theorem states that the GSRA meets the retrieval specification of Section

2.3; that is, RP-entailment and GSRA-provability are one and the same. Armed with the

results of Section 2.4, the proof of this theorem is straightforward.

I , '. %. . . . . .. • " " - " ' "



- 31 -

GSRA Correctness Theorem

Let kb=*q be a CNF sequent of QFPC. Then, kb kRPq iff kb q.

Proof
The GSRA succeeds iff every iteration of the loop (with i ranging from 1 to s) succeeds. The

ii" iteration succeeds iff either step (A) or step (B) succeeds. Step (A) succeeds iff q, has com-

plementary literals and step (B) succeeds iff for some
b1 EK, LITERALS(b,)CLITERALS(qi). Thus, by the Fact Decision Theorem for RP, the

i0% iteration succeeds iff bi Rp q1 for some b. EK. By the No-Chaining Theorem this hap-

pens precisely when K Hep qj. The semantics of A says that a conjunction is satisfied iff each
of its conjuncts is. Therefore, K R~p q,, for l<i<s, iff K Rp q iff kb Rp q.

Not only is the GSRA correct, but when executed with a finite input each of its steps is
effectively computable and the algorithm terminates. Crucial to this claim is that, when

working with a finite input, every non-deterministic choice is made from a finite set of

options that can be effectively constructed. For instance, in choosing an F in line (12) the set

of all total functions from LITERALS(b,) to LITERALS(qi) can be constructed. If bi has r

literals and q, has s literals then there are s' such functions, each of which can be finitely

represented. Because all choices are made from finite sets a deterministic machine can exe-
cute this non-deterministic algorithm simply by trying all combinations of choices.

A survey of all combinations of choices is, of course, a search space. A search space can
be displayed as a tree in which each node represents a choice that must be made and the arcs
emanating from a node represent all of the options available and are labeled as such. The
node at the end of an arc represents the next choice that must be made after that arc is
chosen. The first choice that an execution of the GSRA encounters is located at the root of

the tree. Every path originating from the root represents an initial sequence of choices that

an execution could make. Hence, a path from the root to a leaf represents the sequence of
choices made during some complete execution of the program and the leaf is labeled

"SUCCEED" or "FAIL" according to the outcome of that execution.

Figure 2.4 displays the search space implicitly defined when the GSRA is executed on

the input sequent P, R=(PVQ)A(RV-,R). Because some of the leaf nodes are labeled

"SUCCEED", the algorithm successfully retrieves (PVQ)A(Rv-'R) form the KB containing

P and R.

A consequence of the previous discussion is that every finite sequent has a finite search
space. In attempting to retrieve a sentence with s conjuncts the GSRA iterates at most s

times, making three choices on each iteration. Hence, a search space has a depth of at most

3s. Furthermore, the tree is finitary since all choices are made from a finite number of
options.



-32-

Search spaces in the style of Figure 2.4 can be summarized in another style of display.

Observe that Subtree I in Figure 2.4 displays the following: an unsuccessful attempt to show

that PVQ has complementary literals (terminating at node [2]), two unsuccessful attempts to

show {R}C {P, Q (terminating at nodes [8] and [9]), an unsuccessful attempt to show

{P}c {P, Q} (terminating at node [7]), and a successful attempt to show {P }C {P, Q 1.

Each of the unsuccessful attempts corresponds to an unsuccessful attempt to apply an infer-

ence rule in a certain manner. Traditionally, deductive search spaces display only successful

rule applications, suppressing the failed attempts. Of course, a successful rule application is

not necessarily part of a successful proof.

From here on I follow this lead by displaying only those choices that allow execution to

continue to the end of the iteration in which they occur. So, only that part of Subtree I con-

taining nodes [1], [3], [4] and [6] is of interest. Since this represents the three choices made on

a particular iteration, they are collapsed into a single arc labeled with the three choices. Fol-

lowing this convention, Figure 2.4 can be redisplayed as Figure 2.5. Notice that arcs 1-6, 6-

' 11, and 6-15 of Figure 2.5 summarize respectively Subtrees 1, 11, and III of Figure 2.4.

The discussion has brought us to an appropriate point for making a rare comment

about implementation issues. A good implementation of the GSRA could indeed avoid many

of the unsuccessful choices that are suppressed in the condensed style of search space. For

example, in step (B), b, is chosen and then a test is made to see if

LITERALS(bi) C LITERALS(qi). An implementation could exploit an indexing scheme for

accessing all elements of K that pass the subset test while avoiding those that fail.

This chapter has progressed from a model theory directly to an algorithm, avoiding

proof theory in its traditional form of axioms and inference rules. This is appropriate in a

study of knowledge retrieval, which is, after all, a computational process. The simplicity of

RP allowed for a smooth transition from the model theory to the algorithm.

Though this study has no need for a traditional proof theory, proofs themselves are use-

ful objects. While the retrieval algorithm can determine what follows from what, a proof

provides an argument that it does follow. Furthermore it is often valuable to examine the

properties of proofs, such as their size, and relationships between proofs, such as the so-called

lifting relationship, which is used in the next chapter. Fortunately, we already have at hand

constructions that can naturally be called proofs; a proof is a path through a search space

originating at the root and terminating at a leaf node labeled "SUCCEED". This definition is

appropriate because a claim that a certain path is a proof of a certain sequent can be readily

tested.

One last issue deserves attention. Recall that the GSRA works for any query q in CNF:

in particular, it works for any query obtained by permuting the conjuncts of q. Many prob-

lem solvers, including theorem-provers, use a selection function to determine what order to

work on the components of a conjunctive goal. The GSRA could employ a selection function.

.'.' ','.' '..':' ''- .''.'. '. "':.' ,"". .V,,'-,'-,% ':Z' .. - .".' - -'." .. ..", ",':'.'':..'.:.'" z .'.. ".' .'.¢' " .". . .:' " €I



-33- -

At the outset of each iteration it would select one conjunct of q from those that have not

been selected previously. It is clear that the correctness of the GSRA is independent of what

selection function is used.

Though the order in which the conjuncts of a query are retrieved does not affect the

correctness of the GSRA, it can affect the search space. The obvious example is of a query

that fails. The sooner that a failing conjunct is selected, the smaller the resulting search

space. Figure 2.6 shows the search space for Q (PVQV-P)A-Q while the search space for

Q=.-,QA(PVQV-nP) consists of a single node with no arcs.

Even for successful queries the order matters. By reordering P, R= (PVQ)A(RV-,R)
to P, R=*(Rv-,R)A(PVQ) the search space of Figure 2.5 is transformed to that of Figure
2.7. The modifications caused by reordering successful queries are inconsequential because, at

least presently, we can be content with finding one proof, a task whose difficulty is indepen-

dent of goal ordering.

Not only can the conjuncts of a query be reordered, but they can be retrieved indepen-

dently of each other. The latter is a stronger property that entails the first. The stronger

property obtains as a consequence of the semantic definition of conjunction, which implies

that

kbk Rp q1
A .. "Aq. iff kbk Rp q, and • and kb hp q,I

for any sequent kb=*qA • Aq,,. Furthermore, if this sequent happens to be in CNF, then

the GSRA Correctness Theorem implies that

kb sR qA Aq. iff kb GSR-Aql and ... and kb eGsRA q,

Alternatively, this property can be observed by direct examination of the GSRA. Each itera-
tion of the algorithm is independent of all previous iterations; nothing computed during one

iteration is carried forward for use during future iterations. Problems that can be divided

into independent subproblems the way that CNF retrievability can are called "decomposable"

and an algorithm that decomposes such problems confronts an AND/OR search space (Nils-
son, 1980).

Of the two properties, selection-function independence and decomposability, the latter

is more important in constructing a retriever for QFPC sequents that is efficient. Yet this

chapter now concludes having examined selection functions more closely than decomposition.

This has been done in an attempt to lay the groundwork for examining the retrievers of the
following chapters, all of which are independent of selection function though none are decom-

posable.



Now'y'Avwrw~wwju

- 34 -

A T F IT V T F TF

T F T T F TF T T T T

F T F F F F F T F TF

TFITF TF TF F TF IT T TF TF

Figure 2.1: Truth Table for RPI

<iT TF> -

<T.TF> <T*FF> <iTT> <F.T*F>S

V.A4



-35 -

37 P>I
_ - Ci

k1

fA

xxcx

ILI



r ~. ' ~ ,..w -w-lw-, wl-vd- .,- vv wv.. ,WvlLTw rw- P-tr-F. 'w 'w '~'PV~V'P'~- '-y " Y~ w

- 36-

(191

step (A) step (B)
n '-,P / b,=Q

/

/\

[20] (21]

FAIL FAIL

Figure 2.6: The Search Space for Q 4> (P V Q V -P) A -Q

1221

step (A) step (B)

[23] (24]

step (B) step (B)
bzmP b2-P

F 2(P) - P F2(P) -P

(25] (261

SUCCEED SUCCEED I

Figure 2.7: The Search Space of P, R 41- (R V R) A (P V Q)

N

I



- ~ ~ ~ ~ ~ "WOO WMP VFW,-~-3- -. 3. 3. -- ~- ~- -wr' - V- v ~~ --. ww~ wuw- I. W-1 71

Chapter 3

A Retriever that Handles Wh-Queries

The retriever specified in the previous chapter responds to queries merely by indicating

success or failure. In this sense, such queries correspond to yes/no questions in English. Access-

ing a KB with this retriever would be like playing a game of Twenty Questions. This chapter

specifies a retriever that responds to certain queries by supplying a set of answers. Such queries

are more like English wh-questions.

The specification of this retriever generalizes the specification of the last chapter by allow-

ing sentence schemas of QFPC as queries and as elements of the KB. Thus, we are now con-

cerned with retrieval problems that are characterized by finite schematic sequents of QFPC.

This chapter defines what schematic sentences are and specifies a retrievability relation for 'p

schematic sequents in terms of the RP-entailment relation for non-schematic sequents.

3.1. An Approach to Wh-Queries

Let us consider the rather obvious way that the retriever of the last chapter can be used in

answering a yes/no question. Then by analogy we can reason about what capabilities a retri-

ever would need in order for it to be used in answering a wh-question. Though the analogy

proceeds by considering a sequence of English sentences, I am not making any linguistic claims.

Suppose we wished to answer the question

Does Roth sell expert systems? (3.1)

Ideally we would like to turn to the retriever and issue the imperative

Tell me whether "Roth sells expert systems" is true. (3.2)

but, of course, the best that the retriever can do is respond to
@

Tell me whether "Roth sells expert systems" is retrievable. (3.3)

Indeed, this is what the retriever does when given the query "Roth sells expert systems" ",

(expressed in the logical language, of course). In general, we give the retriever a queried sen-

tence q and in doing so issue the command

Tell me whether q is retrievable. (3.4) %

Now let us consider wh-queries in an analogous way. Suppose that we wish to answer the

question

37 -

,%



38

Who sells what.' (3.5)

which corresponds to the imperative

Name every r and y such that x sells y. (3.6)

However, the form of this imperative bears little resemblance to the form of its analog, (3.2).
The former imperative contains a quoted sentence and asks for a report on its truth. Putting

(3.6) in this form results in

Name every pair of terms such that "x sells y" is a true sentence when the (3.7)
first element of the pair is substituted for x and the second element of the

d pair is substituted for y.

The awkwardness of this request is caused by the need to correlate the entries in the
* requested pairs with x anid y. Some of this can be avoided by asking for a substitution rather

than a pair. That is, instead of asking for pairs such as (Roth, expert systems) and (Wilson,
* designer drugs) it is simpler to ask for substitutions such as "substitute 'Roth' for x and 'expert

systems' for y" and "substitute 'Wilson' for x and 'designer drugs' for y". By asking for substi-

tutions, the answer itself supplies the necessary correlations. Following this strategy, (3.7) can

be rephrased as

Name every substitution for x and y whose application to "x sells y" results (3.8)

in a true sentence.

However, as before, the best that the retriever can do is respond to the command

Name every substitution for x and y whose application to "x sells y" results (3.9)

in a retrievable sentence.

In general, we give the retriever a sentence schema q and in doing so issue the command

Name every substitution for the schematic variables in q whose application (3.10)
* to q results in a retrievable sentence.

This all but specifies a retrievability relation that handles wh-queries in the form of
schematic queries. In (3.10) the meaning of "retrievable" is precisely that given by the retrieva-
bility relation 1 Yp . So, the specification of retrievability formalized in this chapter does not

fold, spindle or mutilate RP-rather it defines retrievability of schematic queries in terms of
substitution and RP-en tail ment.

Following the next section's formalization of the notion of substitution, Section 3.3
* specifies the retrievability relation and Section 3.4 presents a retrieval algorithm that meets the

specification. As the reader familiar with automated deduction might suspect, this algorithm
uses unification to lift the Ground Sequent Retrieval Algorithm to the schematic level.



-39-

3.2. Substitutions and Unifiers

This section presents the basic and fairly standard definitions and theorems concerning

substitutions and unifiers. The reader familiar with this subject may wish to skim the section

to familiarize himself with my notation. I have attempted to include those and only those

definitions and theorems on which the remainder of this chapter rests. Plotkin (1972), Robin-
son (1979), Huet and Oppen (1980), and Eder (1985) cover this topic in more detail.

Intuitively, a substitution is a function that maps an expression such as "z sells y" to

another expression such as "Wilson sells designer drugs." Basically, the mapping works by

replacing variables with expressions while leaving everything else alone.

I follow the common conventions of naming substitutions by Greek letters (in this case, 0,
a, -1, p, X and E) and writing the application of a substitution 0 to an expression e as e 0 rather

than O(e).

Definition: Substitution e

A substitution is a function 0 from expressions to expressions such that for every expression e:

(1) If e is a constant then e0=e.

(2) If e is composed of el, e 2, . . . ,e then e0 is composed of e1 0, e . . . , e,,0 in the

same manner.

(3) If e is a variable then e0 is an expression.

A substitution may also be applied to a set or a tuple of expressions; in such a case the

substitution is merely applied to each expression in the set or tuple. Thus, if E is a set of

expressions, then EO=1,eOle CE} and if -=(epe 2,... ,e) is an n-tuple of expressions, then

V= (e 10, e 20 , . e. , 0).

Observe that substitutions are uniquely determined by their treatment of the variables;

that is, 01 =02 iff v0= v02 for every variable v. The substitutions that arise in this work are

such that vO#v for only a finite number of variables v. By an abuse of terminology, the set of

all such variables is called the domain of 0, or simply DOM(O). 0 is said to be a substitution for
a set of variables V if DOM(O) C V.

VARS(e) denotes the set of all variables that occur in expression e. If it is empty, e is

said to be ground. A substitution is said to be ground if it maps every variable in its domain to

a ground expression.

e' is said to be an instance of e if e'= e0, for some substitution 0. Of particular interest

are the ground instances of an expression-those instances that have no variables. If e is an

expression, then e0, is the set of all of its ground instances, and if E is a set, of expressions. then

E, is the set of all ground instances of all expressions in E.

An algorithm needs a systematic way of naming each substitution it uses with a finite

expression. Since we are only concerned with substitutions that have finite domains, this can be

S$



- 40 -

accomplished in the following straightforward way. Suppose that the domain of a substitution

is {X1 ,z 2, . . . ,z,} and that each xi is mapped to some expression t,. Then this substitution is

denoted by {t 1/z 1 , t 2 /z 2 ,..., t,/x.}. This naming scheme is also used in the text.

Substitutions, being functions, can be composed. If 0 and a are substitutions then their

composition, 0"a, is Xe.a(0(e)). In other words, 0"a is such that e(0a) =(eO)a for all expressions

The following lemmas concerning substitution are crucial for this work but are stated

without proof because they are so widely known. (See, for instance, Robinson (1979) or Love-

land (1978).)

Substitution Lemmas

(1) The identity function, henceforth denoted by e, is a substitution. Furthermore,

0-c = c--0=0, for any substitution 0.

(2) If a and 0 are substitutions, then so is a'0.

(3) The composition of substitutions is associative. That is, (01-02)03=0 1(02"03), for all sub-

stitutions 01, 02, and 03.

Because of this last lemma, parentheses are not needed when writing compositions of sub-
stitutions.

0 is said to be a renaming substitution iff for any variables, z and y, zO and yO are vari-

ables and z0=yO iff z =y. Expression el is a variant of expression e2 iff e20= e1 for some

renaming substitution 0.

Given expressions e and e' we will often want to know whether e,, and e'g. intersect.

This is equivalent to determining whether {e,e ' is unifiable, in the following sense.

Definition: Unifier

Let E be a set of expressions and 0 be a substitution. If EO is a singleton then 0 is said to be a

unifier of E or, alternatively, 0 is said to unify E.

Often we will want to compute the set of all unifiers of E, but this may be infinite. Luck-

ily, we need not be concerned with substitutions that can be obtained from others by
composition-we only need a (hopefully finite) basis from which we can generate all substitu-

tions in the set. This can be done by ordering the substitutions and forming the basis of a set

of substitutions from certain representatives of its maximal elements.

Definition: More General

Substitution 01 is more general than substitution 02 (written 01 02) iff 01" r=02 for some substi-

tution a.

%



-41 -

Note that > is reflexive and transitive but not anti-symmetric. Hence, despite its typo-

graphic appearance, > is not a partial order.

Definition: Complete Set

Let 0 ' and 9 be sets of substitutions. Then 19' is a complete set of 9 iff:

(1) 0' is correct; if O' E)' and 0'>8 then 0 C E.

(2) 9' is complete; if 6 G E then for some 0' C E', 0>0.

Not every set of substitutions has a complete set. For instance, if 0={f(y)/z then

E={0} does not have a complete set. For if it did, the completeness condition insists that such

a set contains a substitution u>O. However, the correctness condition would then be violated

because 9 fails to contain every substitution less general than a-for instance, f (a) /z .

When a set of substitutions does have a complete set, it has many. However, they are not

all created equal; some are smaller than others. Let us consider an example. The set of unifiers

of {x,a} has many complete sets, including {{a/z}} and {{a/z},{a/z,b/yI}. The second set is

larger than the first because it contains redundant information; notably, one of its substitutions

is less general than the other. Accordingly, when representing a set of substitutions with a

complete set it is economical to use a complete set that is most general in the following sense:

Definition: Most General Set of Substitutions

A set of substitutions is most general if it does not contain two distinct substitutions Fuch that

one is more general than the other.

I often will be concerned with most general complete sets of the unifiers of sonic set of

expressions E and therefore call such a set an MGCU of E. The above example states that the

set of all unifiers of {a,x} has a complete set. In fact, the set of all unifiers of any given set of

expressions has a complete set. This is a consequence of Robinson's (1965) celebrated

Unification Theorem, which also states that the Unification Algorithm computes MCU's of

cardinality 1.

Unification Theorem

Let E be any finite set of expressions. Then E is unifiable iff the Unification Algorithm so indi-

cates upon termination. Moreover, the substitution a then available as output is such that .a

is an MGCU of E.

Often, we will be concerned with the behavior of a substitution on only a certain set of

variables. This motivates the definition of the restriction of a substitution.

del



-42-

Definition: Restriction of a Substitution

If V is a set of variables and 0 is a substitution, then 0 restricted to V, or 0/V, is the substitu-

tion such that for every variable v:

(1) if vC V then v/V=vO.

(2) if vO V then v0/V=v.

We will have occasion to use the following lemmas, which follow immediately from the

definition of "restriction."

Restriction Lemmas

Let 0 be a substitution, V be a set of variables, and e be an expression. Then:
(1) VARS(e)g V implies eO=eO/V.

(2) OV > 0.
: (3) (01-0)/V > Ol/V.02.

3.3. The Specification of Retrievability of Schematic Sequents

Recall that our goal is to specify a retriever that responds to a queried sentence schema by

supplying a substitution for the schematic variables in the sentence schema. This idea is now

formalized starting with the definitions of "schematic variable" and "sentence schema."

Schematic variables are meta-linguistic variables that range over the terms of the object
language (QFPC, in this case). Sentence schemas are identical to sentences except that
schematic variables may appear anywhere that terms may. In particular, every ground sen-

tence is a sentence schema that happens not to contain any schematic variables. Schematic

sequents can be constructed from schematic sentences just as ground sequents are constructed

from ground sentences.

Schematic variables are distinct from the so-called logical variables, object-language vari-

ables used for quantification. To reflect this distinction, schematic variables always wear hats,

e.g., i, 9, and i. The distinction between schematic and logical variables is not important in

this chapter because QFPC sequents do not contain logical variables. However with the intro-

duction of quantification in the next chapter, logical variables will occur in sequents a'nd the dis-

tinction will be vital. To help keep the distinction clear, I use the expression SVARS(e) to refer
to the set of schematic variables in e and LVARS(e) to refer to the set of logical variables in e.

Though sentence schemas are neither true nor false, the domain of the retrievability rela-

tion can be extended to include schematic sequents. The motivation for this extension is the

idea that a schematic query should succeed iff one of its ground instances is retrievable. In

addition, schematic sentences can be contained in a KB with the understanding that this is

equivalent to a KB that contains all instances of its schemas. The specification of retrievability

of schematic sequents is stated more precisely by the following definition.

V,,-¢ ,* • ,,C ,*e ,,,e,€ ,,,,'- ,. . "  . .. .. ,, ," .".. ."". ... . . . ."". " "',. " ... - . '. "...".''.".e .'''..,.' °'  . ". "

", .*'"e * ' " '?
•

*e ":' ,'''/ - ',," ',, ;." ',.,., . :,: ,, i ...- "a. , :. ... ., .:. .



,I

-43-

Definition: Retrievability of Schernatic Sequents

Let kb= q be a schematic sequent of QFPC and 9 be a ground substitution for SVARS(q).

Then q is retrievable from kb with answer 0 iff kb9, kRp qO. Additionally, 0 is said to be an

answer to kb= q.

Notice that a retriever meeting this specification is sound in that any answer 0 to kb= q is

such that kbg, T qO. Also notice that if a ground query is retrievable, it is retrievable with only

one answer, c. What's more, this definition of retrievability and the definition of the last

chapter coincide over the set of ground sequents. That is, a ground sequent kb='q is in the

above retrXcv.ility relation iff kb hjp q.

Give. a sequent we could consider various problems: the problem of deciding whether it

has an answer, the problem of finding some specified number of answers to it, or the problem of

finding all answers to it. Since a solution to the last of these would provide a solution to the

previous two, we henceforth only consider the problem of finding all answers to a sequent.

Therefore, every retrieval problem can be characterized by a finite schematic sequent; kb*q

characterizes the problem of finding every 0 such that q is retrievable from kb with answer 0.

In response to a query, the obvious thing for a retriever to do is to hand back a list of all

answers. However, this is impossible because many schematic sequents have an infinite set of

answers. For example, among the answers to P(f(i))=*P(j) are
if (a)/ , f (f (a)) , f (f (f(a))) , .. (3.11)

The solution to this difficulty lies in finding a way to finitely characterize infinite sets of

answers. Fortunately such a method is at hand. Notice that the substitutions in (3.11) are all

less general than o = {f(i)/9 . Moreover, every ground substitution for {J that is less general
than a is an answer. Therefore, a can be used to characterize an infinite set of answers, and

accordingly is called a generalized answer. Note, however that a itself is not an answer because

ja is not ground.

Definition: Generalized Answer

Let kb=*q be a schematic sequent of QFPC and -y be a substitution for SVARS(q). Then -Y is a

generalized answer to kb= q iff every ground substitution K<'1 for SVARS(q) is an answer to

kb = q.

The set of generalized answers to a sequent is no smaller than the set of answers to that
sequent; in fact, every answer is a generalized answer. However, generalized answers have the

important property that they can be characterized by finite complete sets. Furthermore, given

a complete set of generalized answers F to kb =±q, it is easy to recover the set of all answers: it

is simply

*010 is a ground substitution for SVARS(q), and O<- for some I Efr

% % A



44

This, then, provides the solution: I characterize the set of answers to a sequent by a finite

complete set of its generalized answers. This characterization depends on every finite schematic

sequent of QFPC having a finite complete set of generalized answers. Indeed, this is the case

and is so proved in the next section where I present a retrieval algorithm and prove that, when

input a finite schematic sequent of QFPC, the algorithm always halts and outputs a finite com-

plete set of generalized answers to the input sequent.

3.4. The Retrieval Algorithm

This section addresses the problem of computing a complete set of generalized answers to
a schematic sequent. Once again the solution is divided into two stages: the first transforms all
arbitrary sequent into a CNF sequent and the second computes a complete set of generalized

answers to a CNF sequent.

The Conjunctive Normal Transformation can be applied to sentence schemas in the same

way that it is applied to ground sentences; a schematic variable is treated just like any other

term. As the following theorem tells us, the CNT preserves retrievability and therefore every

retrieval problem can be transformed into a CNF retrieval problem. One observation lies at

the root of this theorem's proof: the composition of the CNT with any substitution is commuta-

tive. In other words, CNT(aO) = CNT(a)9, for every substitution 0 and sentence schema Q.

CNT Theorem for Schematic Sequents

Let kb=:q be a schematic sequent of QFPC. Then 0 is an answer to kb= q iff it is an answer to

the CNT of kb = q.

Proof

Consider the two conditions necessary for q to be retrievable from kb with answer 0. First, 0
must be a ground substitution for SVARS(q), which obviously is the case iff it is a ground sub-

stitution for SVARS(CNT(q)). Second, kbg,, must RP-entail qO. By the Conjunctive Normal

Transformation Theorem, this is the case iff CNT(kbg,) Rp CNT(qO), which, by comrnuta-

tivity, is the case iff CNT(kb)g, FFp CNT(q)O. .J

Once a schematic sequent has been transformed into CNF, the Schematic Sequent

Retrieval Algorithm (or SSRA) below can be used to compute a complete set of general answers

to it. The essence of the SSRA is that its computations are, in some sense, schemas for the

computations performed by the Ground Sequent Retrieval Algorithm. This method of handling

sentence schemas is commonplace in the field of automated deduction, where the schematic

computations are said to lift the ground computations. The correctness of the SSRA is esta-

blished via the Lifting Theorem, which says that every ground instance of a schematic proof is

a ground proof and every ground proof is an instance of some schematic proof.

% -% - %

" ',., ,.. ' , ' . . .r .- . €"d"i"i - " " -" d" " ="." " :" " ' 'A'' J' *' ' ''% " '"' 'S



- 45 -

Schematic Sequent Retrieval Algorithm

Input: kb=*q, a schematic CNF sequent of QFPC

Output: SUCCESS or FAILURE; if SUCCESS then a substitution is also output

(1) let s = number of conjuncts in q

(2) let qj = iih conjunct of q (1 i~s)

(3) let K be the set containing every conjunct of every sentence in kb

(3') let 0 0 =

(4) for i=ltos do

(5) choose to do either step A) or step B)

(6) A) choose pi, a positive literal in qj

(7) choose ni, the complement of a negative literal in qj

(8) if niEi_1 and pieiel are unifiable

(9) then let U be any MGCU of niEi_1 and pjEi_-

choose Oi E Ui

let ei = (C01 '0 2 '''OI)/VARS(q)

(10) else FAIL

(11) B) choose bi CK and rename it so that VARS(bi)fARS(qi- 1)= 0

(12) let 1,1, . . ., li, m  be the literals of b,

(13) choose Fi, a total function from LITERALS(bi) to LITERALS(q,)

(14) if (1i, ,m) and (Fi(li,), .. , Fi(li,m))eiI are unifiable

(15) then let U be any MGCU of (1j,,, li,m) and (Fi(li,),..., F,(/im))Ei_1
choose 0i G Ui

let Ei = (e'01 -02 ... O)/VARS(q)

(16) else FAIL

(17) SUCCEED and output E,

As before, the SSRA defines a provability relation.

Definition: SSRA-provable

Let kb=*q be a schematic CNF sequent of QFPC. Then, q is SSRA-provable from kb (written
kb s-R q) with extracted answer 0 iff there is some sequence of choices for which the Schematic
Sequent Retrieval Algorithm halts with SUCCESS and outputs 0 when input kb =q.

The principal result of this section is that every extracted answer is a generalized answer

and that the set of extracted answers produced by all proofs is a complete set. Before turning

our attention to the series of results that lead to this conclusion, let us examine the SSRA itself,
particularly by comparison to the GSRA.

The Ground Sequent Retrieval Algorithm and the Schematic Sequent Retrieval Algorithm

have the same form. This is reflected by the step numbering, which indicates the



-46-

correspondence of the steps in the two algorithms.

The most prominent addition incorporated in the SSRA is the sequence of substitutions

0 0, E) , . . . , E,. Each e, L called the ith partial extracted answer and, as previously defined,

e, is called the extracted answer. Each Ei is a maximally general substitution that can be

applied to q in order that the computation can complete i iterations making the choices that it

did. For O<i<s, eO =(c.01 ... O)/VARS(q) where, as we shall see, Oi is a maximally general

substitution that can be applied to qEi_1 in order that the computation can complete the i'h

iteration given the choices that have been made on the first i-1 iterations. Accordingly, E0 is

initialized to e just before the start of the first iteration (in step (3') and each successive 4, is

computed during the ijh iteration. Note also that E,._ e<E, for l<i<s.

Now let us consider how each 9,, and consequently E,, is derived. The equality tests of (8)

and (14) have been replaced with uniflability tests. This is what one expects; two schematic

expressions are unifiable iff some ground instance of the first schema is equal to a ground

instance of the second. In each case, if the unifiability test succeeds, then 0i is chosen from

among the elements of an MGCU. 0j, as computed in steps (9) and (15), is a maximally general -

substitution that allows the expressions of steps (8) and (14), respectively, to be unified. Once

0i is computed, steps (9) and (15) each proceed to compute ei.

The only other difference between the SSRA and the GSRA is located in step (11). Here,

the schematic algorithm renames bi in order to avoid variable name clashes.

The sequence of EO's computed by a schematic computation encodes the relationship

between the schematic computation and all of the ground computations that are instances of

the schema. Consider the example of retrieving q =P(C,i,)AQ(tb,i,i) from

kb -{P(:,a, ), Q(a,i,i)}. The first iteration computes 01 =a/, iv i, /i'I and

1=-0 1 / V ={a/li . This indicates that every ground query that is an instance of

qE)O =P(t ,a,fi)AQ(ti,a,ii) could also have completed this first iteration. The second iteration

must find the instances of Q(tb,a,i) that succeed and in doing so computes 02 ={a/),t/f'

and E)="a/tb,a/i}. This indicates that every ground query that is an instance of

qE 2 =P(a,a,fi)AQ(a,a,fi) also could have completed the two iterations. Hence, as desired, 2 e

is a generalized answer to kb= q.

Let us now observe that every step of the SSRA is effectively computable. To see this, we

need only consider the operations that are part of the SSRA but not the GSRA:

(1) deciding whether two expressions are unifiable,

(2) finding an MGCU of two unifiable expressions,

(3) applying a substitution to an expression,

(4) restricting the domain of a substitution, and

(5) composing two substitutions.



- 47 -

The Unification Theorem tells us that (1) and (2) are finitely computed by the Unification Algo-

rithm. Since substitutions produced by that algorithm have finite domains, they can be

represented as sets such as {a/i, b/j }. Using this representation (3), (4) and (5) can each be

computed straightforwardly, and furthermore, the substitutions resulting from (4) and (5) also

have finite domains.

We also can observe that the SSRA always terminates when input a finite sequent. As dis-

cussed in the previous chapter, this claim is contingent on every non-deterministic choice being

made from a finite set. Except for the choices made in steps (9) and (15), this observation has

already been made in the course of examining the GSRA. Steps (9) and (15) pose no problem

because the Unification Theorem tells us that these choices are made from finite sets-indeed,

singleton sets.

It may seem odd that the algorithm is stated in such a way that a non-deterministic

choice is made from a singleton set. The algorithm turns its back on the Unification Theorem,

and so does the theoretical analysis that follows. Only in the above discussion of termination is

the size of MGCU's considered, and even there only their finiteness matters. By ignoring the

size of the MGCU's, both the algorithm and the analysis achieve greater generality, generality

that is exploited in Chapter 5. That chapter introduces a variety of unification for which non-

singleton MGCU's exist. Since the results of this chapter are independent of the size of the

MGCU's, they can be carried over intact and used in Chapter 5.

Steps (8) and (14) do not say how to decide unifiability nor do steps (9) and (15) say how

the MGCU's are to be computed. Though the Unification Theorem points to the Unification

Algorithm as one method that could be used, neither the algorithm nor the analysis insist on

this. For example, the proof of the algorithm's correctness is not contingent on whether the

MGCU is or is not one that could be computed by the Unification Algorithm. Though I do not

do so, this app. oach could be taken one step further, for the correctness of the algorithm in no

way depends on whether the complete sets of unifiers are most general. The use of complete

sets that are not most general would only introduce redundancy into the search spaces of the

algorithm. In the extreme case, the use of infinite complete sets would yield infinite search

spaces and render the guarantee of termination null and void.

The SSRA implicitly defines a search space in the same way that the GSRA does. The

only differences are that the arcs of an SSRA search space are labeled with an additional equa-

tion to show the value of 0,, and that SUCCESS nodes are labeled with the corresponding

extracted answer. By the argument above, the SSRA implicitly defines a finite search space for

every finite sequent. Figure 3.1 displays an example of an SSRA search space, that of

P(a), R(i)=*(P(i)vQ(i))A(R( )V'-R(i). To expedite the display and the discussion that fol-

lows, the labels on search space arcs are condensed and written as four-tuples in one of two

forms:

0
4.

",.

S



-48-

(A, pi, n, 0,), or

Examination of the SSRA and the GSRA shows that they behave identically when input a

ground sequent. This is stated by the Ground Equivalence Theorem.

Ground Equivalence Theorem

Let kb=*q be a ground CNF sequent of QFPC. Then kb G q iff kb SSRA q. Moreover, the
Ground Sequent Retrieval Algorithm and the Schematic Sequent Retrieval Algorithm implicitly

define isomorphic search spaces. They differ only in that every arc in the schematic search

space has an additional label of the form "0, =el.

Now that we see how the GSRA relates to the SSRA on ground sequents, let us see how

the SSRA on ground sequents relates to the SSRA on schematic sequents. I have already men-

tioned that computations with schematic sequents are themselves schematic for computations
on ground sequents. This notion is captured by the definition of lifting.

Definition: Lifting

Let D be a length s derivation from kb---q with partial extracted answers 0 0 ,0 1, ... , and

let D' be a length s derivation from kb'=q' with partial extracted answers 0,0
1 , .... 0,e.

Thei, D lifts D' provided that these conditions are met for 1<i<s:
* The it arc of D is labeled with step A iff the ith arc of D' is.
* If the i' A arc of D is labeled (A, n,, p,, 0,) and the i1h arc of D' is labeled

(A, n,', p,', 0,') then (n,', p,') is an instance of (n,, p,).
* If the i1A arc of D is labeled (B, bi, (01. , On), 0,) and the it arc of D' is labeled

(B, bi', (. , . , € n' ) , 00,) then b,' is an instance of b,, and (n', .... , O ') is an in-
stance of (€ 1, •

q'(('O' O,') is an instance of q(• • 0,), i.e., 0,1<19.

For example, the proof displayed along the left path of Figure 3.1 lifts the (one and only)

proof of P(a), R(a), R(b)= (P(a)VQ(a))A(R(a)V-'R(a)) and the one along the right path lifts

the (one and only) proof of P(a), R(a), R(b)=*(P(a)VQ(a))A(R(b)V-,R(a)). Figures 3.2 and
3.3 show these proofs.

d' or d' l lor Ir -
% %



- 49-

(B, Pi(a), (P (i)), {a/ l (B, Pi(a), (P (a)), c)

(A, R (i), R ) {alt} (A, R (a), R (a), c)

SUCCEED with a/ i, a/ SUCCEED with c

Left: Proof of P(a), R(i)*(P(i)vQ(i))A(R( )V-R(i))

Right: Proof of P(a), R(a), R(b)=*(P(a)VQ(a))A(R(a)V'R(a))

Figure 3.2: Proof at Left Lifts Proof at Right

(B, P(a), (P(i%),'{a/!,) (B, P(a), (P(a)), c)

(B, R(i), (R(tj)), J /i ) (B, R( b), (R( b)),

SUCCEED with J a i } SUCCEED with c

Left: Proof of P(a), R(i) (P(i)VQ( ))A(R(i)V-,R(i))

Right: Proof of P(a), R(a), R(b)= (P(a)VQ(a))A(R(b)V-'-R(a))

Figure 3.3: Proof at Left Lifts Proof at Right

Though ground proofs such as those shown above are of particular interest, they are not the

only proofs that can be lifted. For instance, Figure 3.4 displays a non-ground proof that is

lifted by the right path of Figure 3.1. Note that the proof in Figure 3.4 lifts the right proof of

Figure 3.3.

(B, P (a), (P (i)), I{a /i '

(B, U(b), (R(b)), +

SUCCEED with ,a/ i

Proof of P(a), R(a), R(b)= (P(i)VQ(i))A(R(b)V-"R(i))

Figure 3.4: A Non-Ground Proof that is Lifted

As a result of the lifting relationship between proofs, the Lifting Theorem is obtained.

.'m~',',,.4',,%4% ',,%, "_% % % % . . . . % % % -' - . ,- . ... ., .F % -. . . . . . . . - . . .



Lifting Theorem

Let kb=*q be a schematic CNF sequent of QFPC and a be a ground substitution for SVARS(q).

Then kbg, s qa if" for some -yta, kb SRA q with extracted answer -Y.

Proof

I refer to a proof of kb,,=qa as P' and a proof of kb=*q as P. Furthermore, I refer to the

values produced by P' by superscripting them with ' in order to distinguish them from the

values produced by P, which are not superscripted. For instance, q0
1 , ..., q,' are produced by

P' while q0, • • •, q, are produced by P. Also, throughout this proof let V = VARS(q). First I

make the general observation that for O<s<s, E0 = (01. .•i)1CV = (ei_1 '0e)/V.

if clause: Let Prop2(j) be the proposition: 0

If proof P traverses the loop j times producing a partial extracted answer 0 that

is more general than a, then there is a proof P' that traverses the loop j times.

Prop2(s), which is the if-clause of this theorem, is proved by induction. Prop2(0) trivially

holds; 0 0 =E, which is more general than any a. Assuming Prop2(i-1) I now prove Prop2(i),

for any 1<i<s. By the induction hypothesis, 8,-,>a. On the it' iteration of the loop, P exe-
cutes either step (A) or step (B). In each case I show that P' can successfully execute the same

step.

Step (A): If P successfully executed step (A) then 0, unifies njEij and pj~jl. Hence e,_j'0j
unifies n, and pi. Because DOM(e,_.0,)C V, E,.0, =(j_,.O)/V, which in turn equals e,.
So, E3 unifies ni and p,. Now P' can also choose step (A) and can choose n,' = nia and p,'= pia.

Since O i is more general than a and unifies pi and ni, a also unifies them and hence p,' = n,'.

Therefore P' can successfully complete the ih iteration.

Step (B): If P chooses step (B), b, and Fj then (l,, . . . ,l,,) and (F,(I,,), ... ,F,(,.))0,_1

are unifiable by 0,. Since O, a, let p be such that e,'p=a. Now, P' can also choose step (B)

and can choose b,' and F',' so that b,'=- b,.Op (we will see shortly that this choice is indeed a

ground formula) and F,'(l,,')=F,(ljj)oa, for l<j<m. However, for l<j<m, F,(l,4a equals

Fj(ljj)0,p, which in turn equals F,(l~i)8,_1 0,p because VARS(F,(l,))C V. Hence, for

l<j<m, lI,, = l,OSp equals F,'(l, ') =F(lj,,)E,_,p. Therefore, P' can successfully execute

step (B).

only-if clause: Let Propl(j) be the proposition:

If proof P' traverses the loop j times then there is a proof P that traverses the loop

j times producing a partial extracted answer 01 that is more general than a.

I prove Propi(s), which is the only-if clause of this theorem, by induction. Propl(O) trivially

holds for O0 = . Assuming Prop(:- 1) I now prove Prop(i). On the ith iteration of the loop I'

executes either step (A) or step (B). Consider each possibility:

Step (A): If P' chooses step (A) and n,' and p,' then n,'= p,'. P can then choose to do step (A)

and can choose n, and p, so that n,a =n,' and p,a -p,' . Since 0, -a (by the inductive



- 51 -

hypothesis), there exists a substitution X such that

".=a. (3.12)

Also because Oj_, a, nEj 1 and piEij are unifiable. Moreover, one element of any MGCU of

nje._ I and pQ_, is more general than X. Let P choose it as 0,. Now, from (3.12) it follows

that EO_'0j u and so Ej>a. Therefore P can execute step (A) generating a partial extracted

answer Ei >a.

Step (B): If P' chooses step (B) and b,' and Fj' then I,,t'F,'(I,,') for 1<j<m. Then P can

choose step (B) and bi and F so that Fj(4,)a=F,'(l,'), for 1<j:m, and bip=b' for some

substitution p whose domain is VARS(bi). Then 1,,p=Fj(1,j)a, for l<j<m. Because E,_>a
(by the inductive hypothesis), there is a substitution X such that

0,_lA =or (3.13)

Also because e GI >o, li,,p and F,(li,)ei_1  are unifiable. Because

DOM(p)f-VARS(FjI(lj,)E,._)=0, li, and F;(i,j))_j1 are also unifiable. Moreover, one ele-

ment from any one of their MGCU's is more general than X. Let P choose it as 0,. Now, from

(3.13) it follows that e;_ '0j>a, and so e,>a. Therefore, P can execute step (B) producing a

partial extracted answer E i that is more general than a. '
SSRA Correctness Theorem

Let kb= q be a schematic CNF sequent of QFPC and =r{+lkb 'SS-RA q with extracted answer

y}. Then F is a complete set of general answers to kb=q.

Proof

0 is an answer to kb= q

iff kbg, Rp qO (Def. of Schematic Retrievability)

iff kbg, SA qO (GSRA Correctness Theorem)

iff kbg, IssRA qO (Ground Equivalence Theorem)

iff kb SSRA q with some extracted answer "y>O (Lifting Theorem)

Therefore, if -y is an extracted answer then every ground substitution 0<-y for SVARS(q) is an

answer. So -1 is a generalized answer. Going the other way, if 0 is an answer then some ">O is

an extracted answer. Hence I is a complete set of generalized answers. This proof is encapsu-

lated in Figure 3.5. U

As a consequence of this theorem we can now see the validity of the previously unsub-

stantiated claim that every finite schematic sequent has a finite complete set of general

answers. Such a set is, of course, F of the Correctness Theorem. That r is finite if kb*q is

finite is obvious when one recalls that every finite sequent has a finite search space.

The Correctness Theorem does not claim that F is a most-general complete set, and

indeed, in general, it is not most general. Obviously, F would not be most general if in steps

%0



S-5-

(9) and (15) the SSRA used complete sets of unifiers that were not most general. Less obvi-

ously, this can happen even though MGCU's are used. Figure 3.1 shows that one extracted

answer to P(a), R){a/i}, is more general than the other,

{a/i, a/}. In some sense this situation is purely coincidental; it is not caused by some

defect in the algorithm such as a failure to schematize to the most-general level. The second

arcs of the two proofs are unrelated, being computed by different methods; they yield two

answers such that one just happens to be more general than the other.

Before closing this section, we return to the issue of selection functions. Like the GSRA,

the correctness of the SSRA does not depend on the order in which the conjuncts of a query

are worked on. This is true of the SSRA for the same reason that it is true of the GSRA:

since the SSRA is correct for any arbitrary CNF query, it is correct for every query obtained

by permuting the conjuncts of that arbitrary query.

However, unlike the GSRA, the SSRA does not have the stronger property of decomposa-

bility. The conjuncts of the query P(i)VQ(i) cannot be retrieved independently of each

other. In retrieving P(i) on the first iteration, the substitution 0 1 is computed, and the

second iteration has the task of retrieving Q(i)e1. Whereas a ground query has the property

of being retrievable if each of its conjuncts is, a non-ground query does not have this pro-

perty. In particular, conjuncts sharing variables are not decomposable. For example, both

P(i) and Q(i) are retrievable from P(a)AQ(b) but P(f)AQ(i) is not.

Though the choice of selection function does not affect the correctness of the SSRA, it

can have a drastic effect on efficiency. This is illustrated by an example drawn from Chat-80

(Warren, 1981; Warren and Pereira, 1982), a computer program that accesses a simple KB in
order to respond to English queries about world geography. Chat-80's KB contains atomic

sentences describing the sort of each geographical entity it knows about, for instance

Country(US), Country(Canada), Country(Mexico), Country(Iceland),

Ocean(Atlantic), Ocean(Pacific), Ocean(Indian),

It also contains an atomic sentence for every border shared by two of these entities:

Borders (US, Canada), Borders( US,A tlantic), Borders (Iceland,Atlantic), ...

To find all countries bordering the U.S. either query (3.14) or (3.15) could be issued.

Country (i)ABorders (USi) (3.14)

Borders( US,i)A Country () (3.15)

Either query does the job, but the second does it more efficiently. Since there are only 5 enti-

ties bordering the U.S. but approximately 150 countries, it is simpler to generate the 5 border-

ing entities and check whether they are countries than to generate the 150 countries and check

whether they border the U.S. The search spaces for these two queries are displayed below in

Figures 3.6 and 3.7. The arcs of these search spaces are labeled only with the value of 0,

n. N V



- 53 -

instead of an entire 4-tuple.

I use Chat-80 to illustrate the importance of the selection function because the program

contains a query-planning mechanism that can automatically replace a query like (3.14) with

a query like (3.15). To do this, the query planner estimates the number of answers that there

are to each conjunct in the query and places that conjunct first. Then this is repeated for the

remaining conjuncts, taking into account that variables may become instantiated as a result

of the substitutions computed by answering the previous conjuncts. For example, on the basis

of its estimates that Country(!) has 150 answers and Borders(US,i) has only 5, the query

planner chooses (3.15) over (3.14).

Chat-80's query planner has other capabilities, of which I illustrate only one more.

When confronted with the query

Country( )ABorders ( US,£ )A Country ( )ABorders (France,j)

(which asks for all countries bordering the U.S. and all countries bordering France) Chat-80

can decompose it into two independent queries:

Country (i)ABorders (US,i)

Country(f)ABorders (France, j)

Furthermore, it realizes that because of the shared variables, neither of these two queries can

be decomposed further.

Chat-80's query planner provides an excellent example of some techniques that can be

used to build smaller search spaces. I say nothing more on this issue other than to suggest

that similar techniques could be used to reduce the search required to answer the wh-queries .

of this chapter.
01

01

. _ := . _ " • Jr
•

" , .. 
•

. •, o 
•

• , o . a .° , .° - - - - . - - ** ,- , . , .° • 0



- 54 -

<B. P(a), <PCi )>. IQ l I>

A

V%
<A. R(l) . R( ). {alj;)>,, "\<B.R ),< ( >.1 1>

SUCCEED SUCCEED

Figure 3.1: Search Space of P(a), RW =9, (PWi VQ(i)) A (R() V -R(i))

SSRA Corrwtnm Theorm

kb with extracted angwer -y)G < --------------------------- is , an wer to kb q

LfUng Theorem Retrio-bity
o(" Schematic 3squen

kb, MqB 0 kb, I-&qe 0 kbI, ,q

Ground Equivalen Theorem OSRA Cor'tno Theorem

Figure 35: Proof of the SSA Correcmm Theorem

N N N % N N %
A A.



l-adli Icelm'dJi~ I
{Mexzcolij/ (UKi)\

FAIL FI&L, FAIL

SUCCEED with SUCCEED wi-th
(Cwwada /I) I Maxicoil)

Figure 3.6: Search Spame for the Query Country(i) A Border(Usi)

SUCCEwauh SCMI vth -
Figure 3.7: Search Spain for the Query Bamors(rUS, i)A CountryWi

orI



- M W . W j .,N " WV"V W,

Chapter 4

A Retriever for a Quantificational Language

This chapter extends the retriever of the previous chapter to deal with the entire first-

order predicate calculus, quantifiers and all. The first section of this chapter shows that using

RP to interpret quantifiers in the usual fashion yields an undecidable logic. Analysis of RP

reveals how it allows chaining to slip in subtly, leading to undecidability. On the basis of this

analysis, the second section develops a new logic, RQ, which is designed to agree with RP on

retrievability in the absence of quantifiers, yet be decidable in their presence. Section 3 exam-

ines the properties of RQ, showing that it agrees with RP on propositional retrievability and

that it has the important Strong Herbrand Property, which this chapter introduces. On the

basis of these two properties, the fourth and final section demonstrates how the Schematic

Sequent Retrieval Algorithm can be used to decide RQ-entailment.

The retriever that this chapter specifies operates on a language called the First-Order

Predicate Calculus (FOPC), which is identical to QFPC except for the addition of quantifiers

according to the following grammatical rule:

if V is a formula and z is a variable then 3z and Vxt, are formulas.

As is usual, FOPC sentences are closed FOPC formulas.

The logic developed here, RQ, is defined only for sentences in prenex form. Hence, from
this point on, the word "sentence" only refers to prenex form sentences. A prenex form sentence

contains no quantifiers in the constituent subformulas of any of its logical connectives. In terms

of the surface syntax, quantifiers in a prenex form sentence appear at the left end of the sen-

tence. Thus, Vxly(P(x)-,R(x,y)) is in prenex form whereas Vx(P()-3yR(z,y)) is not. A

prenex form sentence is in universal prenex form if[ it contains no existential quantifiers; like-

wise, it is in existential prenez form iff it contains no universal quantifiers.

A prenex form sentence divides neatly into two parts: a prefix containing all the *
quantifiers and a matrix containing the entire quar,tifw r-free formula that appears to the right

of the quantifiers. Hence, Vx y (P(z)-R(z,y)) is composed of a prefix of Vzxy and a matrix

of (P(x)---R(z,y)). By convention, when I speak of instances of a prenex sentence I am actually

referring to instances of its matrix.

4.1. An Inadequate Treatment of Quantification

This section investigates the outcome of giving quantifiers their standard interpretation in

RP-models. By the "standard interpretation" for quantifiers I mean that a model M with

domain D assigns a value to a quantified formula accfrdiwz to the folloving semantic

56

%.



- 57 -

equations, where e[dlx] is a function identical to e with the possible exception that
e[dlx](x)=d:

True C RzcxaM ' iff for all d ED, True C IM,,Id/,] (4.1)

False EVxc4 MC iff for some d ED, False c gj]M
'e[d/z ]

TrueExaI M',e iff for some dCD, TrueEgla]M 'eid/z ]  (4.2)

False EgLxc,1 M ,' iff for all d ED, False E ICfMd/zl

Since T uses the standard interpretation for quantifiers, every T-valuation is an RP-

valuation. Thus, for FOPC as well as QFPC, h is weaker than hT.

We can continue to view sentences as defining intensions, functions from A3S to A3, by

considering a quantifier as a logical connective with an infinite number of arguments. It is easy
to see that the intension of every sentence is monotonic, even in the presence of quantifiers.

Hence, as before, the FOPC sentences valid in RP are precisely those valid in T.

This spells disaster because T-validity is only semi-decidable. Thus, it is impossible to

determine whether an arbitrary FOPC sentence is retrievable from a KB even when the KB is

empty. Furthermore, as the following theorem states, the entire hT relation can be mapped

. into p.

T to RP Mapping Theorem

Let kb=*q be a finite sequent of FOPC, let P1 , . . . ,P. be the predicates occurring in kb, and

let WYkb be the sentence

(P(Zx,,...,I)AiPj(xi.,Zm,))' V v (3P,(Zl,...,Zm.)A-Pn(X1,...,,))

Then kb FT q iff kb IRP qV4'kb 2

Proof

if clause: Assume kb VRP qVPkb. Then kb IT qVIkb, and because 'Pkb is T-unsatisfiable,

kb H q.

only-if clause: Assuming kb H q, I show that no RP-model is a countermodel to kb kRp qV4$k).

An RP-model that does not satisfy kb is not a countermodel. If an RP-model that does satisfy

kb is Tarskian then it satisfies q (by the assumption); otherwise it satisfies %Pkb (since it assigns

{True, False} to some atomic formula). Therefore no RP-model is a countermodel to

kb h-Rp qV'Pkb.

This theorem and its proof were inspired by Patel-Schneider's (1985) closely-related First-Order Entailment

Undecidability Theorem.

That RP-validity and T-validity are identical is the special case of this theorem when kb 0

*~~ ~ V,~s~~,



- 58

This result is surprising considering that RP does not sanction modus ponens and that all
sentences are RP-satisfiable. What went wrong? Why hasn't the no-chaining restriction led to

decidability in this quantificational logic? These questions can be answered by observing how

this undecidability has arisen out of som fundamental properties of RP. The resulting insights

are used to motivate the development of RQ.

To proceed with the analysis some of our tools need to be generalized. To begin with, the
notion of entailment needs to be generalized to allow one set of sentences, A, to entail another

set, B. As before, A HB means that no model satisfies A and falsifies B, and as before, a

model satisfies a set of sentences iff it satisfies each member. Additionally, we now say that a

model falsifies a set of sentences iff it falsifies each member.

Since entailment is now a relationship between sets of sentences, it is worth generalizing
the definition of "sequent" to allow a set of sentences to appear in its consequent. These new

sequents are called generalized sequents, while mundane sequents with single-sentence conse-

quents are called ordinary sequents. As is consistent with the definition of entailment, I draw
no distinction between a sequent whose consequent is a single sentence and one whose conse-

quent is a singleton set. Hence, every ordinary sequent is also a generalized sequent. As with

antecedents, set signs in a consequent are often omitted. Thus I often write "P, Q= P, Q"
instead of "{P, Q}=*{P, Q ", and "P, Q VP, Q" instead of "{P, Q/ VIP, Q ".

Retrieval problems are always characterized by ordinary sequents. Non-ordinary sequents
arise only in analyzing retrieval. The primacy of ordinary sequents over non-ordinary sequents

is reflected in the choice of adopting the convention that only ordinary sequents are considered

unless it is explicitly stated otherwise.

Though non-ordinary sequents do not arise directly in characterizing retrieval problems,
they do arise in relating RP-entailment for FOPC sequents to that for QFPC sequents. This

A
relation is established by the famous Herbrand Theorem. Though originally formulated for T,

it holds equally well for many other logics, including RP. A logic for which the lierbrand
Theorem holds is said to have the Herbrand Property. The Herbrand Theorem concerns

sequents in a normal form known as Skolem Normal Form (or SNF).

Definition: Skolem Normal Form
A generalized sequent of FOPC is in Skolem Normal Form (SNF) ifT all sentences in its an-

tecedent are in universal prenex form and all sentences in its consequent are in existential

prenex form.

% ""% "



- 5g - ,

Herbrand Theorem 3

Let kb Q be a generalized SNF sequent of FOPC. Then, kb entails Q iff kb,, entails Qg,.

For T, both the Herbrand Theorem and its proof are widely published.4 The proof, which

is fairly general, is a product of the Herbrand Model Lemma and the use of the standard

interpretation for quantifiers. Thus the proof for T can be used directly to prove the theorem

for RP.

The Herbrand Theorem for RP relates RP-entailment for SNF sequents of FOPC to RP-

entailment for sequents of QFPC. As such, the theorem provides a way of eliminating universal

quantifiers from an antecedent and existentials from a consequent when considering questions of

RP-entailment for SNF sequents. As an example of this theorem in action consider a language

whose lexicon contains only the zero-place function symbols "a" and "b." The Herbrand

Theorem reduces the question of whether (4.3) holds to the question of whether (4.4) holds.

VxP(x) p P(a)VP(b) (4.3)

P (a), P (b ) 1RpP P(a)VP (b ) (4.4)

The results of Chapter 2 bear on this latter implication. According to the RP-Decision
Theorem for Facts, (4.4) holds, and, according to the GSRA Correctness Theorem, the Ground
Sequent Retrieval Algorithm could be used to determine this.

In stark contrast to universal quantifiers in an antecedent, the occurrence of existentials in %

a consequent is extremely problematic. Observe that the Herbrand Theorem reduces the ques-

tion of whether (4.5) holds to the question of whether 4.6 holds.

P(a)VP(b ) RP 3xg P(x) (4.5)

P(a)VP(b) h p P(a), P(b) (4.6)

However, since (4.6) involves a generalized sequent, the results of Chapter 2, which only concern

ordinary sequents, cannot be brought to bear. The GSRA can't be used to decide whether this

implication holds. The No-Chaining Theorem doesn't apply.

Nonetheless, (4.6) does indeed hold. Any model that satisfies P(a)VP(b) must satisfy

either P(a) or P(b). In either case, the model does not falsify {P(a),P(b)}. This example

illustrates that RP sanctions chaining among the elements of the consequent of a generalized

sequent. Consequently, to respond to an existentially quantified query, a retriever specified by

The usual statement of the Herbrand Theorem contains a claim about compactness That aspect of the
theorem is omitted from the present statement since it is not used in this work

Once again Loveland (1978) and Robinson (1979) provide good expositions.



- 60 -

RP may have to chain together multiple instances of the query. Moreover, there is no bound on

the number of instances that may need to be chained and therefore RP-validity is not decid-

able.

This example of chaining within a consequent is rendered benign by its simplicity, so let us

consider a more-complex example where many instances of a query must be taken into account.

Simply observe that the query

3x -I(0) V [I(X)A-I(s (x))] V I(s(s(s(s(O))))) (4.7)

is RP-valid. This may become more apparent by thinking of the interpretation in which "I"
denotes a predicate that is true of precisely the integers, "s" denotes the successor function and

"0" denotes zero. To form a valid (i.e., non-falsifiable) set, at least four ground instances of

(4.7) are required: those generated by the substitutions {O/}, {s(O)/}, {s(s(O))/z}, and

{s(s(s(O)))/x . It is only by taking these four instances together that a valid set can be formed

and it is because of this that chaining enters.

4.2. RQ: The Logic of a Retriever for a Quantificational Language

The RQ model theory for FOPC is developed with the goal of endowing the retrievability

relation specified by RQ-entailment with two properties. Firstly, over the sentences of QFPC

the retrievability relations specified by RQ and by RP should be identical. In this sense the

retriever specified in this section should be an extension of the retriever specified in Chapter 2.

Secondly, the retrievability relation specified by RQ should comply with the no-chaining res-

triction in all respects, including its treatment of the quantifiers.

The previous section points out that it is not sufficient merely to prohibit chaining among

the facts of the KB, but that it is also necessary to prohibit it among instances of the query. In

Chapter 2 the development of a logic that prohibits chaining among the facts of the KB was

driven by an attempt to define a logic in which (4.8) does not hold.

P, -,PVQ H Q (4.8)

In the same vein, this section's development of a logic that prohibits chaining among the

instances of a query, is driven by an attempt to define a logic in which (4.9) does not hold.

P(a)VP(b) [I-3xP(x) (4.9)

A logic does not sanction the chaining of instances of a consequent if it has the Strong Her-

brand Property:

For any kb=*Q, a generalized Skolem Normal Form sequent of FOPC, kb

entails Q iff kbgr entails a single element of Q,,.

Whereas the Herbrand Property can reduce entailment with quantifiers to propositional entail-

ment for generalized sequents, the Strong Hterbrand Property can reduce it to propositional

'-":--" " " - '"' "":"" ""'-='" ",< '":" - "" ; ". '" ":""" : " ::' ' "?'" """"" "" """



-61-

entailment for ordinary sequents. In a logic that has this property (4.9) holds only if

P(a)VP(b) HP(a) or P(a)VP(b) I=P(b) (4.10)

(4.10) does not hold in T or any logic weaker than it.

The Strong Herbrand Property can be divided into a quantificational component and a

propositional component. The quantificational component is the Herbrand Property. It

reduces the problem of deciding whether (4.9) holds to the question of whether (4.11) does.

P(a)VP(b) H {P(a),P(b)} (4.11)

We can endow RQ with the Herbrand Property by giving quantifiers their standard interpreta-

tion. The propositional component of the Strong Herbrand Property is the Minuteness Pro-

perty:

A set of sentences entails a second set iff it entails a single element of the

second set.

This property reduces the problem of deciding whether (4.11) holds to the problem of deciding

whether (4.10) does.

Now consider how RQ can be defined so as to possess the Minuteness Property. If (4.11)

does not hold then there must be a model that satisfies P(a)VP(b) but falsifies both P(a) and

P(b). That a disjunction can be satisfied when its disjuncts aren't is reminiscent of modal logic

where P(a)VP(b) may be necessarily true in spite of the non-necessity of P(a) and of P(b).

(Symbolically, O(P(a)VP(b)) V EP(a), EJP(b).) This insight motivates the possible-worlds

style definition of RQ, to which we now turn.

Calling an RP-model a 3-setup,5 an RQ-model is defined simply as a compatihie set of 3-

setups. 3-setups assign truth values to quantifier-free formulas in the same manner as RP

models. The valuation associated with an RQ-model is defined in terms of the valuations asso-

ciated with its 3-setups. Speaking very loosely, an RQ-model assigns a quantifier-free formula

True if the formula is necessarily True, and False if it is possibly False. Quantifiers are inter-

preted in the standard way. (4.12), (4.13) and (4.14) define how prenex formulas are assigned
truth values relative to a value assignment e and an RQ-model M whose common domain is D.

TrueE VxciI M ' iff for all d ED, True E[[M ' I[ /l (4.12)

False EVxce ' e iff for some d ED, False E 0RalMe'l/ ' ]

True E ]xzaI M e iff for some d ED, TrueE Ec Me[d/zI (4.13)

False E 3f Ml ' iff for all d ED, False C a epM ' eId' /

This term derives from Belnap's use of the word "setup" to denote a 4-valued assignment.



-62-

and if a is quantifier-free

True[G lal M e iff for every 3-setup s EM, TrueC 901 #,e (4.14)

FalseE aa M' iff for some 3-setup s EM, FalseC Ea"

Regarding these semantic equations, several points are noteworthy. First of all (4.12) and

(4.13) merely reiterate (4.1) and (4.2), and hence quantifiers receive their standard interpreta-

tion. Secondly, (4.12)-(4.14) do not assign values to non-prenex form sentences. Finally, to

every prenex formula, a model and a value assignment assign a legitimate truth value, that is, a

non-empty subset of {True, False).

The valuation associated with an RQ model that contains only one 3-setup is identical to

the valuation associated with that 3-setup. Hence every RP-valuation is an RQ-valuation and

therefore RQ-entailment is weaker than RP-entailment.

Furthermore, RQ can generate valuations that RP does not. Among them are those

valuations generated by countermodels to (4.9) and (4.11). Consider M, a model containing two

3-setups, s1 and s 2, which have the common Herbrand domain {a,bl. Supposing that these 3-

setups assign truth values to the atomic sentences as shown in (4.15), then they must also make

the assignments shown in (4.16) and M must make the assignments shown in (4.17).

RP(a)" =- fTruej gP(a)P" = {Falsej (4.15)

IIP(b)'i = JFalse} IP(b)" ={True}

[[P(a)VP(b)E"= {True} P(a)VP(b)]]° = 'True', (4.16)

RP(a) = False' (4.17)

jJP(b)]M = {False,

IP(a)VP(b)] M = !True'

[:x px]M = [False}

By satisfying P(a)VP(b) and falsifying both ]zP(x) and {P(a),P(b)}, M demonstrates that, as

desired, neither (4.9) nor (4.11) hold in RQ.

4.3. Properties of RQ

In a straightforward manner, this section proves that RQ does indeed have the properties

that led to its design: that hRp and hRQ completely agree on the ordinary sequents of QFPC,

and that in virtue of having the Minuteness Property and the Herbrand Property, RQ has the

Strong Herbrand Property.

First consider the Herbrand Theorem for RQ. Since RQ-models are composed of RP

models, the Herbrand Model Lemma holds in RQ as well as in RI'. Because of this and HQ's

1I



-63-

use of the standard interpretation for quantifiers, the Herbrand Theorem also holds in RQ.

Now consider the RP-RQ Equivalence Theorem and the Minuteness Theorem.

RP-RQ Equivalence Theorem .

An ordinary sequent of QFPC is in kp iff it is in . pa

Proof

if clause: Trivial since every RP-model is an RQ-model.

only-if clause: Let kb=*b be an ordinary sequent of QFPC. Assuming that RQ-model MRQ

satisfies kb and falsifies q, I show that some 3-setup in MRQ satisfies kb and falsifies q. Since -,

MRQ falsifies q, some 3-setup s CMRQ falsifies q. Since MRQ satisfies kb, so does every 3-setup

in MRQ. Therefore some 3-setup in MRQ satisfies kb and falsifies q. U

Minuteness Theorem (a.k.a. the Mi,, .... Th..)

For any kb=*Q, a generalized sequent of QFPC, kb RQ Q iff for some q C Q, kb hRQ q.

Proof

if clause: Obvious. :%

only-if clause: I show that if kb RQ q for every q C Q then kb RQ Q. I do this by assuming

that for every q C Q there is a Herbrand model Mq that satisfies kb and falsifies q, and con- p,

structing a Herbrand model M* that satisfies kb and falsifies Q. The Herbrand Lemma justifies

my restricted attention to Herbrand models. Let M' be the union of every Mq. Since they are

Herbrand 3-setups, the 3-setups in M* are compatible and therefore M* is an RQ-model.

Since each 3-setup s CM is in some Mq and M satisfies kb, s also satisfies kb. Hence M"

satisfies kb. Furthermore, every q C Q is falsified by some 3-setup in Mq, and hence by some %.

3-setup in M'. Therefore M' falsifies Q. * S

The Herbrand Theorem, the Minuteness Theorem and the RP-RQ Equivalence Theorem
state the most fundamental properties of RQ. These results dovetail together to form compo-

site results in a manner suggestive of the way that sentences combine to form paragraphs. The

Herbrand Theorem relates RQ for FOPC sequents to RQ for generalized QFPC sequents, •

which the Minuteness Theorem relates to [jQ for ordinary sequents, which the RP-RQ

Equivalence Theorem relates to Rp for ordinary sequents. RP-entailment for ordinary QFPC

sequents is well-studied in Chapter 2. Results from that chapter, such as the No-Chaining

Theorem, can be dovetailed onto the end of the above sequence of results.

Of these composite results, I now present two of the most interesting: the Strong 11er-

brand Theorem and the Generalized No Chaining Theorem.

S'

* *~**4 *****~ * ****~***~* \/.'..* .-. * ** .



- 64 -

Strong Herbrand Theorem
Let kb= Q be a generalized SNF sequent of FOPC. Then kb FRQ Q iff kbg, RQ-entails some

element of Q,.

Proof
Follows immediately from the Herbrand Theorem for RQ and the Minuteness Theorem. a

Generalized No-Chaining Theorem
Let 4) be a set of QFPC sentences and A be a set of facts. Then 4) RQ A if for some <DC4 and

a CA, ) huC1

Proof
, RQ A iff for some a CA, 4) RQ a (Minuteness Theorem)

iff for some a CA, ID Rp a (77 -RQ Equivalence Theorem)

iff for some a C A and 0 C <b, 0 hhp a (No-Chaining Theorem for RP)

iff for some c CA and 4 C 4), 4 )RQ a (RP-RQ Equivalence Theorem) E

4.4. Computing Retrievability
This section examines how the retrievability relation specified by RQ can be decided. As

in previous chapters the use of a normal form divides the presentation in two. The first part

presents the Skolem Normal Transformation, which transforms sequents into Skolem Normal
Form. The second part demonstrates that by treating quantified variables schematically, the
Schematic Sequent Retrieval Algorithm can be used to decide whether an SNF sequent is in

The Skolem Normal Transformation (SNT) defined below maps an arbitrary sequent into
an SNF sequent in such a way that, as stated by the Skolem Normal Transformation Theorem,

its input is in h iff its outptut is. The SNT Theorem for T is well-published. Since its proof
applies to RQ as well as to T, the theorem is stated without proof.

A

1%



-65 -%

Definition: Skolem Normal Transformation
Let kb= q be an FOPC sequent. Its Skolem Normal Transform is computed by the following

steps.

(1) While kb contains a sentence 0 that contains an existential quantifier do:

Observe that k is of the form

VX1 VX2 ... VXn 3y 0 [y]

for some n >0 and prenex-form formula V) [y ]. Choose C, some n-ary function symbol

that does not occur in kb=*q and replace O's occurrence in kb= q with

wX1 vX2 .. •X •1X1 w, [(,..., I,,]

(2) While q contains a universal quantifier do:

Observe that q is of the form

3z, 3X:2 .. ,,3x Vy 0 [y]

for some n>0 and prenex-form formula b [y]. Choose , some n-ary function symbol
that does not occur in kb= *q and replace q's occurrence in kb= q with

3, 32 .. 3x• • b [C(xj, • • )]

Skolem Normal Transformation Theorem

A generalized sequent of FOPC is in R iff its Skolem Normal Transform is.

It should be noted that unlike the CNT, the SNT is not a transformation on sentences; it
only applies to sequents as a whole. The SNT does not replace sentences with their equivalents;

it merely preserves IR, which is all we are currently interested in.

Once a sequent is in SNF the Schematic Sequent Retrieval Algorithm can decide if it is in
Q . Consider the SNF sequent of FOPC kb= q and the schematic sequent kb'=*q' that is

obtained by dropping its quantifiers and renaming its logical variables to schematic variab!es.
From Chapter 3 we know that the SSRA can decide whether kbg,' RP-entails some instance of

q'. Therefore, because kbg, = kbg,, qg, = qg,, and RP and RQ are equivalent for ordinary

sequents of QFPC, the SSRA also decides whether kb,, RQ-entails some instance of q. Finally,

according to the Strong Herbrand Theorem, deciding whether this last implication holds is
equivalent to deciding whether kb kRQ q.

FOPC Retrieval Theorem
Let kb= q be an ordinary SNF sequent of FOPC and let kb'= q' be the schematic sequent that
results from removing all quantifiers from kb=q. Then kb F1q q iff kb' SSRA# q'.

N



- 66 -

Proof

kb HRQ q iff for some qg C qg, kbT IRQ qg (Strong Herbrand Theorem)

iff for some qg' Cqg,' kbg,' R= qg' (Since kb, = kb,, and qg, = qg,)

iff for some qg'C qg,' kbg,' hRp qg' (RP-RQ Equivalence Theorem)

iff q' is retrievable from kb' (Def. of Schematic Retrievability)

iff kb' ss--R q' (SSRA Correctness Theorem) 0

lob

I



Chapter 5

A Retriever that Reasons about Taxonomies

This chapter develops a retriever that augments the no-chaining retriever of the previous

chapter with the capability to chain in certain highly-constrained circumstances, namely when

reasoning about taxonomies and when performing inheritance. This kind of inference has been

performed by most semantic-network systems.

Let us consider an example that illustrates what I mean by "reasoning about taxonomies"

and by "inheritance." Let kb be the knowledge base containing sentences (5.1)-(5.4).

Mustang( Olde -Black) (5.1)

Vz Mustang (z)-+Auto (z) (5.2)

Vz Auto(x)--+ Vehicle(z) (5.3)

Vz Mustang (z)---Built(Ford,z) (5.4)

Among the sentences T-entailed by kb are

Vz Mustang(x)--- Vehicle(z) (5.5)

Auto ( Olde -Black) (5.6)

Built (Ford, Olde -Black) (5.7)

The derivations of (5.5) and (5.6) from kb each exemplify what I have in mind when I speak of

reasoning about a taxonomy while the derivation of (5.7) exemplifies inheritance.

The retriever of Chapter 4 performs none of these inferences; kb RQ-entails neither (5.5),

(5.6), nor (5.7). If this is not clear then observe that any model M that has a domain of three

elements-denoted by "Olde-Black," "Ford" and "Touring-Machine"-and that makes the fol-

lowing truth assignments satisfies each of (5.1)-(5.4) but falsifies each of (5.5)-(5.7).

fMustang( Olde-Black)1JM = {True, False}

JMustang( Touring -Machine) M = {True}

RMustang(Ford) M = {False}

RAuto (Olde -Black) M = {False }

gAuto( Touring -Machine) M = JTrue, False'(

RAuto(Ford)JM ={False}

R Vehicle (Touring -Machine ) M = {False

qJVehicle (Ford)JM = {False I

- 67

.%



- 68 -

qBuilt (Ford, Olde -Black) M =F alse }

RBuilt (Ford, Touring -Machine p M = {False

The goal of this chapter is to extend RQ so that it can reason about taxonomies and per-

form inheritance without performing any other kind of chaining. A difficulty arises because cer-
tain desirable inferences-such as those exemplified above-are instances of the application of
modus ponens, an inference rule that the retriever should not use indiscriminately. How then
can a specification of retrieval distinguish the desirable forms of chaining from the undesirable

forms?

The way out of this predicament is to follow a strategy often employed in the construction
of semantic-network systems. In such systems specialized notation is used to encode certain

kinds of information and specialized inference mechanisms are then used to deal with that nota-

tion. Typically, special nodes and links are used to encode taxonomic information. Accord-
ingly, the retriever specified in this chapter operates on a language, called the Sorted First-
Order Predicate Calculus (SFOPC), that extends FOPC with special notation for representing
categories and for expressing that members of a category have particular properties.

5.1. The Sorted First-Order Predicate Calculus

We now turn to the definition of the Sorted First-Order Predicate Calculus. Since

SFOPC has some of the features of a traditional sorted logic, I henceforth use the terminology

of that field rather than more general terms such as "taxonomy." Roughly speaking a sort is a

taxonomic category and a sort symbol denotes a sort.

In addition to the usual function and predicate symbols, the SFOPC lexicon contains a
countable set of sort symbols. Typographically, sort symbols are written entirely in upper-

case. Semantically, a sort symbol, like a monadic predicate, denotes a subset of the domain.

In addition to the ordinary kind of variables, SFOPC has restricted variables. A restricted
variable is a pair, x:r, where x is a variable name and r, often referred to as a restriction, is a

finite set of sort symbols. Henceforth, the term "variable" refers generally to either an ordinary
variable or a restricted variable.

A variable whose restriction is {S 1,S 2, ... S,, } is written as z:S,S 2, ... ,S. The order

of the sort symbols is irrelevant, and thus z:S1 ,S 2 and z:S 2,Sl are one and the same variable.

For clarity, variables are often written in angle brackets, such as (z:S ,S2,S3).

To avoid confusion I never write a formula containing two distinct variables that have the
same variable name. That is, no formula contains variables (z:r) and (z:r') where r and r' are

distinct. This enables use of the following shorthand. If a formula has multiple occurrences of
the same variable then the restrictions often are written on only the first occurrence. For

example, (5.8) can be abbreviated as (5.9).

%%%



6 9

VX:S P(x:S)VQ(x:S) -6,.

VX:S P(r)VQ(Z) F.9

r and w are meta-linguistic symbols that always stand for restrictions. (X:7, ... . n

is a variable whose restriction contains precisely the sorts T UrU Ur3 . I
Put crudely, a Tarskian model for SFOPC is a Tarskian FOPC model to which an assign-

ment to sort symbols has been grafted.' More precisely, a T-model for SFOPC is a pair (M.-

where M is a Tarskian FOPC model and As is a sort assignment, a function that maps each

sort symbol to a subset of the domain of M.

A sort symbol denotes the set of individuals that As assigns to it. A restriction also

denotes a sort, the intersection of the sorts denoted by the sort symbols in the restriction.

Therefore, if M=(M',As ) is a T-model for SFOPC, and S is a sort symbol, and

r S1 .S , S. } is a restriction, then:

gsJM'e =As(S)

fIrfM~e = p]JMef n .. m

A restricted variable only ranges over the subset of the domain denoted by its restriction.

Formally this is captured by the following semantic rules for quantifiers with restricted vari-
ables:

TrueC GJVz:r O M.' iff for every d E rJJM ' , TrueC 6 gM,ejd/ z! (5.10)

FalseGfVX:r OM,e iff for some dG RrM ' , FalseG MC 'z;/ I
True E l3:lr C, iff for some d G ]r]Me, True C [AI€eld /z;  (5.11)

False G Z:r O]Me iff for every d C RrMe', False E qoMI] /I

Notice that if S is a sort symbol that denotes the entire domain in some model M, then
[iV(z:S)EM = [Vz O]M, and R](x:S)¢]M-' =-- g:z]M,e. Consequently, unsorted variables
are often treated as sorted variables implicitly restricted to the "universal" sort. Also notice

that if S denotes the empty set in some model, then 'hat model assigns {True: to V(z:S)o and

JFalse' to 3(x:SO.

Now that quantifiers can be restricted to range over subsets of the domain we need a way
to express relationships among these subsets. To do this, SFOPC is endowed with a special set

of formulas, which are called S-formulas to distinguish them from the previous formulas, which

are called A-formulas. S-formulas are constructed like ordinary formulas of FOPC except that

they contain no ordinary predicate symbols; in their place are sort symbols acting as monadic

predicate symbols. Hence, every atomic S-formula is of the form S(t), where S is a sort sym-

bol and t is an ordinary term. In the obvious way I use the terms S-sentence and S- litral.

Ir.

;-::--. -



70-

S-formulas are assigned truth values as one would expect: an atomic formula S(t) is

assigned True if the domain element denoted by t is a member of the set denoted by S, and a

molecular S-formula is assigned a value in the usual Tarskian manner.

SFOPC is no more expressive than FOPC; each sentence of SFOPC is T-equivalent to one

(of about the same length) of FOPC. Clearly the addition of sort symbols does not make the
language more expressive since they behave semantically like monadic predicate symbols. Nor
does the addition of restricted variables enhance the expressiveness of the language. To see

this, observe that if r is the restriction {SD,21, . .. S, } and e is a variable assignment that

maps x to d, then

d E r[4 Mr iff gSj(x)AS 2(X)A . AS(x) M' =True

Because of this relationship I henceforth abbreviate the formula SI(t)AS 2(t)A ''AS.(t) as

r(t). Finally, observe that any formula containing restricted quantifiers can be rewritten to a

T-equivalent one without restricted quantifiers on the basis of these equivalences:

Vz:r O~[x:,r] =T ]X 7-(x)-O[xl

The formula that results from removing all restricted quantifiers from a formula o by this
rewriting process is called the normalization of 0 and is denoted by cN. If 1D is a set of formu-

las, then 0 C p.

A KB now consists of a set of SFOPC sentences and a query always specifies an SFOPC

sentence to be retrieved. It is often convenient to consider a KB as consisting of two com-

ponents, an AKB containing all the A-sentences in the KB, and an SKB containing all the S-
sentences in the KB. Sequents of SFOPC are often written in a form that exhibits the distinc-

tion between S-sentences and A-sentences. Namely, in an SFOPC sequent written in the form

i,akb= q, the antecedent is divided into a set of S-sentences, E, and a set of A-sentences, akb.

Similarly, entailments are written in the form E,akb q.

As before, only A-sentences in prenex form are considered and therefore "A-sentence" only
refer: to prenex form A-sentences. As this chapter progresses various restrictions are placed on

the SKB.

It is worth noting that the SKB is a theory of a taxonomy, not a taxonomy.

5.2. RT: The Logic of a Taxonomic Retriever

This section defines RT, a model theory for SFOPC whose entailment relation serves as a

retrievability relation. RT extends RQ to handle the syntactic extensions introduced in the last

section. Recall that the resulting retrievability relation is to respect the no chaining restric-

tion, except that it is to reason completely with taxonomic information. Thus the retriever



M~dWV-u' iWWUWV-jwV WW~ W1IWV V V rq V VUWV )WVV TV K~ VV W . 'V V W9 WV WWV V 'VVW X1- - 'WV WV KWM VWWyJ1L WI'

-71 -

should perform all taxonomic inferences sanctioned by the Tarskian semantics. We will see

shortly that this is a simple notion to capture in a model theory.

Since the retriever is to reason fully about sorts, the interpretation of sort symbols--

unlike the interpretation of predicate symbols-should not be weakened. So a sort symbol

should be given its full Tarskian meaning. The definitions that follow are made with this in

mind.

Just as a Tarskian SFOPC model is formed from a Tarskian FOPC model by appending a
sort assignment to it, so an RT-model is formed from an RQ model. Thus, an RT-model is

merely a pair consisting of an RQ-model and a sort assignment. An alternate view is that RT

relaxes the Tarskian model theory for SFOPC in the same way that RQ relaxes the Tarskian

model theory for FOPC.

An RT-model, M=(M',AS), assigns the same semantic values to sort symbols and S-

formulas as does any T-model whose domain is the common domain of M' and whose sort

assignment is AS. To prenex-form A-formulas containing no restricted quantifiers, M assigns

assigns truth values in the same manner as M'. Hence, equations (4.12)-(4.14) describe how RT

assigns truth values to such A-formulas. Restricted quantifiers are treated in RT as in T-that

is, according to (5.10) and (5.11). Thus, ignoring unrestricted quantifiers, the semantic equa-

tions for RT are:

True E Vx:r p M, iff for every d CIIr4 Me' , True y11MejI / ] (5.12)

False E Vx:r OjM,e iff for some d CITIM,e, False G jkIM,eId/l]

True C Jz:r 4 4 M, e iff for some d E Jir M 'e, True C go4 M,eld/z] (5.13)

FalseC E:Ex:r O M, iff for every d ERrMc' , FalseCoMeId / z l

and if a is quantifier-free

True Ga M'e iff for every 3-setup s E M', True g"4 (5.14)

False C Rac M e' iff for some 3-setup s GM', FalseE Ra "e

Notice that, as in RQ, these equations do not assign values to non-prenex form A-sentences.

In contrast to T, RT treats sort symbols and monadic predicate symbols differently.

Whereas each monadic predicate is mapped to a function from the domain to the set of three

truth values, each sort symbol is mapped to a subset of the domain-or, equivalently, to a func-
tion from the domain to {True,False;. Thus, S-formulas operate in a two-valued logic, A-

iormulas without restricted quantifiers operate in a three-valued logic, and A-formulas with

restricted quantifiers operate in both. The logic sanctions chaining in those parts of the

language that operate in two values but, not in those parts that operate in three values.

In order to observe some chaining that RT sanctions, let us return to the simple taxo-

nomic inferences considered at the beginning of this chapter. First observe that RT agrees with

%



-72-

RQ that none of (5.5)-(5.7) is entailed by kb, the KB containing sentences (5.1)-(5.4). However.
if all of the sentences are written using MUSTANG, AUTO, and VEHICLE as sort symbols,
then the entailments do obta.n. (5.1)-(5.4) can be written (T-equivalently) in SFOPC as three

S-sentences and one A-sentence:

MUSTANG(Olde -Black) (5.1')

Vz MUSTANG (x)--A UTO (x) (5.2')

Vz AUTO (z)-*VEHICLE(x) (5.3')

Vx:MUSTANG Built(Ford,z) (5.4')

Furthermore (5.5) and (5.6) can be rewritten (T-equivalently) in SFOPC as two S-sentences: %

Vz MUSTANG(z)-- VEHICLE(z) (5.5')

AUTO(Olde -Black) (5.6')

And now, (5.1')-(5.4') RT-entail (5.5'), (5.6'), and (5.7). In particular, (5.2') and (5.3') together
RT-entail (5.5'), and (5.1') and (5.2') together RT-entail (5.6'); both of these entailments

operate entirely within two-valued Tarskian logic and obtain for the usual reasons. Addition-

ally, (5.1') and (5.4') together RT-entail (5.7), but not as obviously. Consider any variable

assignment e, and any model M that satisfies both (5.1') and (5.4'). Let OB be gOlde-

Blackl M t. Since M satisfies (5.1'), OB GMustang?". M also satisfies (5.4'), and thus by

equation (5.12), True E gBuilt(Ford,z)JIMCI°0 j ]. 
I Consequently, True E DBuilt(Ford, Olde -

Black) e. That is, M satisfies "Built(Ford,Olde-Black)."

5.3. An Approach to Computing with Restricted Quantifiers

The primary goal of the remainder of this chapter is to develop an algorithm that imple-

ments the retriever specified in the previous section-that is, a procedure for deciding whether

any given ordinary finite SFOPC sequent is in the RT-entailment relation. However, before

proceeding with the details of the technical developments it is worth pausing to overview the
structure of these developments. In order to present a clear picture, this overview omits certain

secondary, though important, points.

The approach used to develop a retrieval algorithm that operates on a language with res-

tricted quantifiers and a sort theory mimics the approach used in Chapters 3 and 4 to develop a
retrieval algorithm that operates on a language with ordinary quantifiers. So, let us begin by

recapping the approach to ordinary quantifiers. 711

It may or may not be the case that FalseC IBuilt(Ford,OIde -Black)! °

%"

%5



-73-

First, the notion of substitution was developed and then used to form the link between

schematic sentences and their ground instances. Then the Ground Sequent Retrieval Algorithm
was "lifted" to form the Schematic Sequent Retrieval Algorithm; this lifting operation primarily

involved replacing each test for equality between expressions with a test for unifiability, which,
if successful, yields a complete set of unifiers. The Lifting Theorem proved that the SSRA does

indeed treat schematic sentences as sentence schemas, that is, as representatives for their

ground instances. Thus, it was established that the SSRA could be used to handle quantified

sentences by removing their quantifiers and replacing their quantified variables with schematic

variables.

The remainder of this chapter proceeds along the same lines, except that instead of work-

ing with ordinary variables it works with restricted variables, both quantified and schematic.

First, Section 5.4 introduces the notion of a substitution being well sorted. Informally, a substi-
tution is well sorted relative to a sort theory if it maps each variable to a term that satisfies the

restriction associated with the variable. Well-sortedness must be considered relative to a sort

theory because it is the sort theory that determines which terms satisfy which restrictions. '
Building upon the notion of well sortedness, Section 5.5 examines the properties of RT.

The most important result of that section, the Sorted Herbrand Theorem, relates the retrieva-

bility of E,ak.b=q, under certain circumstances, to the retrievability of akb,=q* , where

akbr., and qrg, are the ground instances of akb and q that are obtained by substitutions that

are well sorted relative to E. Hence, sentences with restricted quantifiers can be treated as

sorted schematic sentences, schematic sentences in which the schematic variables have restric-

tions associated with them.

Section 5.6 then takes up the task of developing a retriever for sorted schematic sequents.

The algorithm itself, the Sorted Schematic Sequent Retrieval Algorithm (SSSRA), is identical to

the SSRA with the exception that it uses well sorted unifiers wherever the SSRA uses arbitrary

unifiers. The Sorted Lifting Theorem states that the SSSRA deals with sorted schematic sen-

tences as it would deal with the set of all well sorted instances of the schema. This theorem is

proved by systematically modifying the proof of the Lifting Theorem of Chapter 3. With this

in place, it is easy to see that retrievability of sequents with restricted quantifiers can be

decided by removing all quantifiers, replacing restricted quantified variables with restricted

schematic variables, and handing the resulting sorted schematic sentence to the SSSRA.
Justification for doing this is provided by the Sorted Lifting Theorem and the Sorted Herbrand

Theorem.

We now consider well sorted substitutions and unifiers, which form the foundation of this
approach to restricted quantifiers.

Ik



- 74 -

5.4. Well Sorted Substitutions and Unifiers

According to the previously-stated informal definition, a substitution is well sorted rela-

tive to a sort theory if it maps each variable to a term that satisfies the restriction associated

with the variable. More precisely, a substitution 0 is well sorted relative to a sort theory E if,
and only if, for every variable z:r, (z:r)O is a term t such that E HV(r(t)).

Two special cases of this definition are worth noting. If 0 is well sorted relative to E and
maps z:r to a ground term t, then it must be that E kr(t). In other words, E must entail that

t is of sort r. If 0 maps Z:r to a variable y:w then it must be that E HVy:w r(y). That is, E
must entail that w is a subset of r.

Expression e' is said to be a well sorted instance of e relative to E if e'=e 0, for some sub-
stitution 0 that is well sorted relative to E. In the obvious way, I speak of well sorted ground

instances of a formula and write e g, to denote the set of all ground instances of e that are well

sorted relative to E.

Since they are substitutions, well sorted substitutions enjoy all the properties possessed by

substitutions in general. So, for example, Substitution Lemma (3) of Chapter 3, which says
that composition of substitutions is associative, trivially holds for well sorted substitutions.

For other reasons, the correlates of Substitution Lemmas (1) and (2) hold for well sorted substi-

tutions.

Well Sorted Substitution Lemmas

(1) The identity substitution, c, is a well sorted relative to any sort theory.

(2) If a and 0 are well sorted substitutions relative to E, then so is a'0.

Proof

(1): c maps every variable x:r to itself and any E entails Vx:r r(x) since Vz:r r(x) is a valid sen-

tence.

(2): I assume 0 and a are E-well sorted, and show that for any variable, (X: E kVr((z:r)Oa).

Let ¢[(yl:r), . . . ,(y,:r)] be (x:T)O. Since 0 is E-well sorted, ED entails

V 710[y 1:'ri),., (y.: 7.])

which normalized is

V r1(y1)A''. Ar.(yv)-r(O[y1 , . . Y.,J) (5.15)

For l~i<n let

¢;[z,.~d;l),. ., z,. :r;.=)]be (y,:,r,)a

Since a is s-well sorted, for each li<n, E2 entails

wih V rJ,(k)'

which normalizes as

e**.- -



V(A,(Z,1)Ai.(Zim) i(i[Zi, . , (.16) 1
By combining each sentence of (5.16) with (5.15) we can conclude the E entails

which is the normalization of
V r-((x :-)Oa)

The closure of the well sorted substitutions under pairwise composition, as stated by the

second lemma above, is crucial to the viability of considering only well sorted substitutions. In

previous chapters the most common way of obtaining new substitutions is by composing exist-

ing substitutions. The closure under composition of the set of well sorted substitutions is neces-

sary if we are to compute with well sorted substitutions in manners akin to the way we com-

pute with ordinary substitutions.

Section 3.2 defines what it means for a substitution to be a unifier, for one substitution to

be more general than another, for one set of substitutions to be a complete set of another, and

for a set of substitutions to be most general. All of these notions can be adapted to well sorted

substitutions as follows:

Definition: Well Sorted Unifier

Let E be a set of expressions and 0 be a substitution. 0 is a well sorted unifier of E relative to

E if it is a unifier of E and is well sorted relative to E.

Definition: E-More General

Let 01 and 02 be substitutions that are well sorted relative to E. 01 is E-more general than 02

(written 01 >r 02) iff 01 -a = 02 for some substitution a that is well sorted relative to E.

Definition: E-Complete Set

Let eY and E be sets of substitutions that are well sorted relative to E. Then eY is a E-

complete set of 0 iff:

(1) 0' is correct; if O'E0' and O'>E 0 then 0EE.
(2) O is complete; if O 8E then for some e' ce', 0'> 0.

Definition: E-Most General Set of Substitutions

A set of E-substitutions is E-most general if it does not contain two distinct substitutions such

that one is E-more general than the other.

The Unification Theorem assures us that any finite unifiable set of expression has a single-

ton MGCU. However, this is not the case for E-unifiers; for some E there exist E-unifiable sets

of expressions that have non-singleton EMGCUs (E-most general E-complete sets of E

-0 -0



- 76 -

unifiers). Here is an example:

Let E ={ Vz,y ODD(z)AODD(y)-.+EVEN(plus(x,y)),

Vx,y EVEN(x)AEVEN(y )--.EVEN(plus(z,y)) }
Let E = {z:EVEN, plus(v,w)}

Then 01 = {plus (z :EVEN,y :EVEN)/z, x :EVENvl, y :EVEN/w }
and 02 = {plus (z: ODD, y: ODD )/z, z: ODD /v, y : ODD/w}

are each E-unifiers of E and

e={o, 1 2) is a EMGCU of E.
Notice that neither 01 nor 02 is E-more general than the other. Indeed, a finite set of expres-

sions may have an infinite EMGCU. For instance:
Let E ={ VzT(i(z))--- T(i(s(x))), T(i(a)) }

Let E={z:T, i(s(y))}

Then { {a/y,i(s(a))/z:T}, {s(a)/y,i(s(s(a)))/z:T}, } is a EMGCU of E.

We now consider the Sorted Unification Algorithm, which given two expressions and a sort
theory determines whether the expressions are unifiable with respect to the sort theory, and, if
so, returns a E-complete set of -- unifiers for the two expressions. The form of the algorithm is
similar to that of the ordinary Unification Algorithm. Both algorithms repeatedly find a place
where the two expressions differ and remove the difference by applying a substitution. Not all

differences between two expressions can be removed by a E-substitution, but those that can are

said to be E-negotiable.

The notions of difference and negotiability can be captured by saying that two expressions,
one containing the subexpression e1 where the other conta;is e 2, have the difference {e1 ,e2 /.

The difference set of the two expressions contains all the differences that the two expressions

have.

Definition: Difference Set

The difference set of expressions E and E' (written DIFF(E,E')) is defined as:

DIFF(E,E) =0 if E and E' are the same expression.

=DIFF(ej,ej)U . . . UDIFF(e,,e ')

if E is composed of constituents el,e 2, . . ., e,, and E' is composed in the

same manner of constituents elt,e 2l, . . .
,

={{E,E'}} otherwise.

Definition: E-Negotiable

A pair of expressions {e 1,e 2} is E-negotiable iff at least one of e1, e 2 is a variable, say z:r, and

the other is a term, say t, such that x:r does not occur in t and E 3(-r(t)).

The Sorted Unification Algorithm makes non-deterministic choices of the same kind as
those made by the GSRA and the SSRA. Each successful execution path through the algorithm

%I



- 77 -

results in the output of a single E-unifier. The set of all outputs produced by all execution

paths is a E-complete set of E-unifiers. If all execution paths terminate in FAILURE, then the

input expressions are not E-unifiable.

Sorted Unification Algorithm

Input: expressions A and B of SFOPC, and E, a sort theory

Output: SUCCESS or FAILURE; If SUCCESS, then a substitution is also output

(1) let a=c

(2) while AaBa do

(3) select {U,V)EDIFF(Aa,Ba)

(4) if { U, V) is negotiable then
(5) let x:r be whichever of U,V is a variable and let t be the other

(6) let E be any E-complete set of E-substitutions such that

for every cE , E HVr(t0)

(7) choose X, I
(8) let a =aA''{t/x:r}

(9) else FAIL

(10) SUCCEED with output a

In step (3) a difference is selected from the difference set of Aa and Ba. This is intended

to be the same kind of selection as considered in the discussion of selection functions. Recall

that selections, unlike choices, do not require different alternatives to be considered.

In step (5), if both U and V are variables then it does not matter which is taken as x:r.

As previously pointed out, it is possible for two expressions to have an infinite EMGCU.

In the algorithm this could arise in step (6) where there may not be a finite E-complete set of

E-substitutions E such that for every 0cE, E[ Vr(t0). This is not necessarily a problem if all

we want to do is determine whether two expressions are unifiable, or even if we want to com-

pute a fixed number of unifiers, but it is certainly a problem if we want to compute a -

complete set of E-unifiers.

Even if every possible choice of E is a singleton, step (6) may not be effectively comput-

able. There is no decision procedure for determining whether there is a E such that E H Vr(tO)

or even whether E Hr(t) for ground t. This is an immediate consequence of the undecidability

of FOPC. Observe that E's limitation to monadic predicates has no effect on the decidability
since E may still contain sentences with arbitrary function signs.

Therefore, if the Sorted Unification Algorithm is to effectively compute a finite E-

complete set of E-unifiers then E must be such that

for any sort expression r, and any term I there is a finite E-complete set of -

substitutions such that for every OEe, E HVr(tG) and, furthermore, there is an

effective procedure for finding that set.



WK~~~~~- VIR 6wvw':wlr~mylpn~pr~ WvR W"VwvWvU

- 78 -

An important problem, which is not addressed in this thesis, is the identification of a set of

syntactic constraints that guarantee that a sort theory has the above property.

5.5. Properties of RT

To begin with, RT is an extension of RQ; that is, over the sentences of FOPC RT agrees

with RQ.

RQ-RT Equivalence Theorem

A FOPC sequent is in Q iff it is in T-

Proof

if clause: Trivial since every RQ-model is an RT-model.

only-if clause: If (M,SA) is an RT-countermodel to a FOPC sequent then M is an RQ-

countermodel to that sequent. U

Under the Tarskian semantics for FOPC the rule of Universal Instantiation, which derives

an instance of a universally-quantified formula, and the rile of Existential Generalization,

which derives an existentially-quantified formula from an instance of it, are both sound. The

following lemmas state a corresponding result for SFOPC, under both the RT and the T model

theories.

Instantiation and Generalization Lemmas

Let M be any RT model, 0 be any A-formula of SFOPC, E be any sort theory, and 0 be any

E-substitutiui. Then:

Instantiation Lemma: If M satisfies VO and E, then M satisfies V(tp0).

Generalization Lemma: If M satisfies 3(00) and E, then M satisfies 30.

Since these lemmas hold for any RT model they also hold for any T model.

As with other Herbrand theorems, the Sorted Herbrand Theorem pertains to sequents in

Skolem Normal Form. Skolem Normal Form for SFOPC sequents is just as it is for FOPC

sequents: sentences in the antecedent must be in universal prenex form and those in the conse-

quent must be in existential prenex form.

Before turning to the Sorted Herbrand Theorem, one last concept must be introduced. If

(M,A s) is a Herbrand model then AS is called a Herbrand sort assignment. The Herbrand sort

assignments can be ordered in the following way:

A S'<A S, iff for every sort symbol S, A S'(S) C A S(S)

As will be seen, the importance of sort theories that have a l.ast lterbrand sort assignment

],e



-7M -N

looms large in this section. 2

Sorted Herbrand Theorem for RT

Let E,akb=q be any SFOPC sequent in Skolem Normal Form such that E has a least Her-

brand sort assignment. Then E,akb 'r7T q iff akbg, hRT qr"

Proof

if clause: From the Instantiation and Generalization Lemmas it follows that if RT model M

satisfies EUakb and falsifies q, then M satisfies akbE9 , and falsifies qr

only-if clause: If there is a countermodel to akb. 9 RT qr.g then there is a Herbrand counter._

model, (M,AS), in which As is the least Herbrand sort assignment of E. I show that (M,A 5 ) is

also a countermodel to E,(akbN ), ok 'T (qN)g,. I first consider a, an arbitrary sentence in akb

and show that (M,A s ) satisfies (a~N)O, an arbitrary ground instance of . (aN)O is of the form j4
T A • •A AT -+,. If P 0akb1 , then E V#T A • AT . Since As is a least Herbrand sort .1

assignment, (M,AS) falsifies T I A ... AT. and hence satisfies (aN)O. On the other hand, if

/8E akb then (M,A 5 ) satisfies # (since it satisfies akb,) and therefore also satisfies (aN)W. I

now show that (M,AS) falsifies (qN)O, for any ground substitution 0. (qN)0 is of the form

TIA • ATA#f If 3l eqEg, then E # T1 A ... ATE. Since As is a least Herbrand assignment,

(M,A s ) falsifies TIA ... AT. and hence falsifies (qN)O. On the other hand, if /3Cqrg, then

(M,A s) falsifies 6 (since it falsifies qrg,) and therefore falsifies (aN)6. -

What happens if E has more than one minimal Herbrand sort assignment? Consider the

knowledge base consisting of E and akb:
E ={BAB Y(Ralph)VD OG (Ralph))}e

akb = { Vx:DOG Annoys(x,Alan), Vz:BABY Annoys(z,Alan) } I
Notice that E has two minimal Herbrand sort assignments; one that satisfies only

"BABY(Ralph)" and another that satisfies only "DOG(Ralph)." akbEg, =0 because E does not

logically imply any atomic sentences. Now, here is the problem: EUakb RT-entails
Annoys (Ralph,Alan), but akb£ g, does not. .0

Reiter (1977) noticed that this difficulty ause in his work on deductive databases. His
solution was to insist that E satisfied a condition called "r-completeness "-that for every sort

symbol S and every term t either E [S(t) or E H--,S(t). This condition is equivalent to

requiring that E has a unique Herbrand sort assignment, not merely a unique minimal one.

Though Reiter found a sufficient condition, it is grossly over-restrictive. What about the condi-

tion that E must have a least Herbrand sort assignment? Is it also over-restrictive? After

These least Herbrand sort assignments are akin to the least Herbrand models that are central to the theory of
logic programming. In that literature, least models are often called unique minimal models.

%

V 0.,



- 80-

presenting a lemma, the Necessity/Sufficiency Theorem asserts that the condition is necessary.
The proof shows that for any E having multiple minimal Herbrand sort assignments, an exam-
pie like the above baby-and-dog one can be constructed.

Least Model Lemma
Let %P be a set of universal prenex-form sentences. Then %P has a least Herbrand model iff for

any finite set of ground atomic formulas A, %P T A implies 4F T a, for some a CA.

Proof

if clause: Let PG be the set of all ground instances of the clausal form of %V. Furthermore, let

M be the greatest lower bound of all Herbrand models of *i. I assume that for any finite set of
ground atomic formulas A, %P T A implies *I kT a, for some a GA, and I show that M satisfies

Pg and therefore %P. Let C =-a 1 V • V-, VlV ... V/, be an arbitrary clause in PG. If
some model of *I satisfies one ai then so does M and hence M satisfies C. Otherwise every

model of 41 falsifies every ai and hence %Y 1/-IV ... V/,3m. By the assumption, there is an i
such that 0 =Pki,, and M satisfies /8, and therefore M satisfies C.

only if clause: Assume 'I has a least Herbrand model M and that A is a set of atomic sentences
such that 4F h A. Then it must be that M does not falsify A, and hence satisfies some a CA.
But since M is a least model, every Herbrand model of %P satisfies a. Therefore 4' k a. A

Necessity/Sufficiency Theorem
Let E be a sort theory where each sentence is in universal prenex form. It is both necessary and
sufficient that E has a least Herbrand sort assignment for the following statement to hold:

For every Skolem Normal Form SFOPC sequent of the form E,akb=*q,

E,akb RT q iff akbrE9  FRT q

Proof
Sufficiency: This is equivalent to the Sorted Herbrand Theorem for RT.
Necessity: I assume that E does not have a least Herbrand sort assignment and construct an
akb and q such that E,akb hRT q, but akbE9 , VRT qlg,. By the Least Model Lemma, there is a
finite set of ground atomic formulas, A = P 1 (Q), ... ,Pn()}, such that E HA and for every
l<i<n, E VPi(r). Let akb be the set of sentences JVxPiQ(z) I I<i<n} U {R(t l) < i< n

and let q be 3z Q(x)AR(x). Then akbE ,=R(i1l<i<n and qE., =q,. Therefore

akbE. , iRT qrg, even though E,akb RT q.

The final result of this section shows that the retriever specified by RT can retrieve a fact
only if it can retrieve that fact from the SK13 and a single sentence of the AKB. Thus, RT
meets one of the objectives that motivated its definition: it does not sanction any chaining other
than with taxonomic information.

A6



V" V UV~UVPm~" Winn WV vKVWW WMJ WV 'WVJW !V WU'.JV'JV 7V "P '. V~-

81

Specialized Chaining Theorem
Let E be a universal prenex form sort theory that has a least Herbrand sort assignment, and let
Q be a set of facts. Then, E,akb RT Q only if for some a G akb and q G Q, EC 1 RT q.

Proof

if Eakb =RT Q

then akbrE, T Q (Sorted Herbrand Theorem)

then akb, Q (RQ-RT Equivalence Theorem)

then a hQ q, for some a E akbr and q C Q (Generalized No-Chaining Theorem)

then a HRT q, for some a C akbr. and q C Q (RQ-RT Equivalence Theorem)

a is a well sorted instance of some sentence ce C akb, and hence by the Universal Instantiation

Lemma E,ci NRT a. Therefore, E,a RT q for some a E akb. U

As with the Sorted Herbrand Theorem, the correctness of the Specialized Chaining

Theorem requires that E has a least Herbrand sort assignment. Otherwise, it is possible to
chain together two A-sentences and a consequence of E. For example, once again consider the

KB consisting of E and akb:

E BAB Y(Ralph)Vn oG Ralph)}

akb = { Vz:DOG Annoys(z,Alan), Vz:BABY Annoys(x,Alan) I
Observe that Annoys(Ralph,Alan) RT-follows from EUakb but not from any of its subsets.

5.6. Computing Retrievability

This section presents and proves correct an algorithm that de'cides whether an SFOPC

sequent is in the RT-entailment relation. The presentation takes place in two subsections. The

first develops an algorithm that solves retrieval problems with restricted schematic variables
and the second shows how retrieval problems with restricted quantified variables can be reduced

to retrieval problems of the first variety.

5.6.1. Answering Sorted Schematic Queries

A sorted schematic sentence of QFPC is a sentence of QFPC in which schematic variables

with restrictions may take the place of ordinary terms. E,akb=*q is a sorted schematic sequent
of QFPC iff E is a sort theory whose sentences are in universal prenex form, akb is a set of

sorted schematic sentences of QFPC and q is a sorted schematic sentence of QFPC. If
E,akb= q is a sorted schematic sentence of QFPC, then q is retrievable from E,akb iff for some

E-substitution a, akbE., [p qa.

%%

l ~ l~ lk . " " a.." gl . .. . . . .. .. .. .- %. . . , , . .. . . . . .. . .. . . .. ... .. . ... .. .. .. • " " . . . . . . " . " " % .. ,.. ".." . '. " . "..
- . - - . , .. , . .. ,% ,- .- . .. . . - . .- .. . . . .- .. - . . .. . .. .-.. " .- .- ,,. .,.,.. . - . . -, 4



- 82-

The Sorted Schematic Sequent Retrieval Algorithm (SSSRA) decides whether a sorted

schematic CNF sequent of QFPC is in this retrievability relation. This algorithm is identical to

the Schematic Sequent Retrieval Algorithm with the exception that step (15) computes

EMGCUs instead of ordinary MGCUs. Thus, when the SSSRA halts it indicates SUCCESS or

FAILURE, and if SUCCESS is indicated the algorithm also outputs a E-substitution.

The algorithm yields a provability relation called SSSRA -provability.

Definition: SSSRA-provable

Let F,akb=*q be a sorted schematic CNF sequent of QFPC. Then, q is SSSRA-provable from

EUakb (written E,akb Iss-sRA q) with extracted answer 0 iff there is some sequence of choices for

which the Sorted Schematic Sequent Retrieval Algorithm halts with SUCCESS and outputs 9

when input E,akb=*q.

The next two results establish that the SSSRA lifts the GSRA. First, the Ground

Equivalence Theorem states that the SSSRA and the GSRA behave identically when input a

ground sequent. Then the Sorted Lifting Theorem states that computations performed by the

SSRA on sorted schematic sequents are themselves schematic for computations on ground

sequents.

Ground Equivalence Theorem

Let kb ==q be a ground CNF sequent of QFPC. Then kb -sRA q iff kb ss-sRA q. Moreover, the

Ground Sequent Retrieval Algorithm and the Sorted Schematic Sequent Retrieval Algorithm

implicitly define isomorphic search spaces. They differ only in that every arc in the schematic

search space has an additional label of the form "0, = ".

Sorted Lifting Theorem

Let E,akb=*q be a sorted schematic CNF sequent of QFPC and a be a E-ground substitution

for SVARS(q). Then akbEg , ssRA qa iff for some E-substitution -1 >r a, E,akb SSSRA q with ex-

tracted answer -

The Ground Equivalence Theorem can be verified by straightforward examination of the

GSRA and the SSSRA. The Sorted Lifting Theorem can be proved by an argument produced

by systematically modifying the proof of the Lifting Theorem. Simply replace all occurrences of

the words "substitution," "unifier" and "MGCU" with the words "E-substitution", ":E-unifier"

and "EMGCU" respectively. The resulting argument is correct because all properties of substi-

tutions, unifiers, and MGCUs that the original proof relies on are also properties (as established

in Section 5.4) of E-substitutions, E-unifiers, and EMGCUs.

Recall that the statement of the SSRA in Section 3.4 is more general than necessary. Step

(15) of that algorithm allows for the situation where two expressions have a non singleton

MGCU, in spite of the fact that the Unification Algorithm always returns a singletotn. The

-I



- 83 -

justification for this overgenerality is now apparent. By allowing for non-singleton MGCUs,
the SSRA and the proof of its Lifting Theorem could be transformed trivially into the SSSRA

and a proof of its Sorted Lifting Theorem.

This section concludes by establishing the correctness of the SSSRA.

SSSRA Correctness Theorem
Let E,akb=*q be a sorted schematic CNF sequent of QFPC and r ={ -Y I ,akb s-sRA q with ex-
tracted answer -1}. Then r is a E-complete set of general answers to E,akb= 'q.

Proof

Let 0 be any ground E-substitution. Then:

0 is an answer to E,akb--=q

if g akbE, -p qO (Definition of Retrievability)

iff akb E gOsRA qO (GSRA Correctness Theorem)

iff akbE,, -ssseA qO (Ground Equivalence Theorem)

iff E,akb SSSRA q with some extracted answer 9 > 0 (Sorted Lifting Theorem)
Therefore, if -y is an extracted answer then every ground E-substitution 0 <r y for SVARS(q) is
an answer. So -y is a generalized answer. Going the other way, if 0 is an answer then some

-y >r 0 is an extracted answer. Hence F is a complete set of generalized answers. U

5.6.2. Computing Retrievability of SFOPC Sequents

This subsection shows the following four steps can be used to decide whether an arbitrary

sequent of SFOPC is in the RT-entailment relation:

(1) Transform the sequent into Skolem Normal Form.

(2) Transform the matrix of every A-sentence of the sequent into Conjunctive Normal Form.

(3) Remove all quantifiers from every A-sentence of the sequent and replace the restricted

quantified variables with restricted schematic variables.
(4) The resulting sequent is a sorted schematic CNF sequent of QFPC. Hand it, over to the

Sorted Schematic Sequent Retrieval Algorithm.

Here is a transformation that puts any SFOPC sequent into Skolem Normal Form and a
theorem stating that the transformation preserves RT-entailment.

% I %



- 84 -

Definition: Skolem Normal Transformation

Let E, akb= q be a prenex form sequent of SFOPC. Its Skolem Normal Transform is computed

by the following steps.

(1) Put E into prenex form via the usual method for Tarskian FOPC.

(2) While E contains a sentence 0 that contains an existential quantifier do:
Observe that € is of the form

VX V 2 ... Vx. 3y 0[y]

for some n>O and prenex--form formula 0[y]. Choose , some n-ary function symbol

that does not occur in E, akb= q and replace O's occurrence in E, akb=*q with

i vZ VX2.... Y V--, 0[ (X1, • •.-, )]

(3) While akb contains a sentence 4 that contains an existential quantifier do:

Observe that 4 is of the form

Vz1:r1 VX2:72 .. VZ,:T, ]Y:r1, )Iyl

for some n>O and prenex-form formula ory]. Choose , some n-ary function symbol

that does not occur in E, akb= q and replace O's occurrence in E, akb==q with

., .° VXl: -1 VXt2:T2, . .. IV2n:7-n  01[V( 1l ... I ,Xn) ]

and add

Vx,, x. • ,1(x,)Ar2(X2)A •••AT.(Xn)---rv("(-- .... ,z )

to E.

(4) While q contains a universal quantifier do:

Observe that q is of the form

]Xj:T 1 ]XI:7"2 .. " 3 Zn Vy:,ry 2

for some n >0 and prenex-form formula Ojy . Choose c, some n-ary function symbol

that does not occur in : , a.Th q and replace q's occurrence in Y, akb q with

and add

VX,' 'X r1(x1)Ar 2(X2)A A'r.(xj,)--r1r((X,... ,n))

to E.

Skolem Normal Transform Theorem

A generalized sequent of SFOPC is in RT iff its Skolem Normal Transform is.

J- .0

EA. Jr' ' ;".. -:::;:: .;:;: .::'. ,"- .:-,x " r '.. /.:, se. x:. - --:'"A: -, : ::: :: : :;-::



042 KNOiLEDGE RETRIEYL AS SPECIALIZED INFUiENCE(U) an
RCETER UNIV NY DEPT OF COMPUTER SCIENCE A M FRISCN
MY 7 TR-214 NMi4-S-C-97

UNCLASSIFIED F/G 12/9 ML

II



1.25 12

186

w I vI w w

11111 11111



a,

- 85- i

A prenex form sentence can be placed in CNF by applying the Conjunctive Normal

Transformation to its matrix. 3 Since a quantifier-free formula and its Conjunctive Normal

Transform are RP-equivalent, they are also RQ- and RT-equivalent. Hence any A-sentence is

RT-equivalent to its Conjunctive Normal Transform. Therefore, every A-sentence in an

SFOPC sequent can be placed in CNF while preserving the retrievability of the sequent. %

After applying these two transformations-the SNT and the CNT- the retrievability of

the resulting sequent can be determined by dropping all quantifiers from its A-sentences,

replacing its restricted quantified variables by restricted schematic variables, and handing the

result over to the SSSRA. The following theorem asserts the correctness of this operation.

SFOPC Retrieval Theorem

Let E,akb=*q be an ordinary SNF sequent of SFOPC and let YE,akb'=*q' be the schematic

sequent that results from removing all quantifiers from akb and q. Then E,akb kRT q iff

~.I~akb's-ssRA q'.

E,akb HRT 9,

iff akbrg , AhT qLgt (Sorted Herbrand Theorem)

iff akbEgr RQ qrg, (RQ-RT Equivalence Theorem)

iff for some qg G qr,,, akb£g, 'RQ qg (Minuteness Theorem)

iff for some qg'C q'EgT akb'E,, RQ qg' (Since kb,, =kb,,' and q,, = qg, )

iff E,akb'sssjA q' (SSSRA Correctness Theorem) U

"

See Section 25.1.

,.

-e "r 'r v

Ic A -~ A A -



Chapter 6

Conclusions

The principal contribution of this thesis has been the transformation of retrieval from an

ill-defined unstudied process to a formally-defined and well-studied one. The key to the suc-

cess of this transformation lied in adopting the viewpoint of knowledge retrieval as a specialized
inference process. More specifically, knowledge retrieval was argued to be an inference process
limited in such a way that it is fundamentally a pattern-matching process, though it may be
extended to do a bounded amount of some specialized form of chaining. This characterization
of retrieval was formalized by replacing the intuitive notion of pattern matching with the pre-
cise notion of no-chaining.

The body of this thesis was devoted to formally specifying a series of four retrievers, cul-
minating in the specification of one that fits the above characterization; it performs all infer-
ences that don't require any chaining, all inferences that involve taxonomic information, and no

others.

6.1. External Contributions

The logical developments of this thesis have been motivated by and applied to the study of

knowledge retrieval. Nonetheless, they may have important applications outside the study of

knowledge retrieval.

In addition to knowledge retrievers, many computational mechanisms used in artificial

intelligence manipulate representations. It is my working hypothesis that we can go a long way

by specifying and studying these mechanisms as inference engines. This thesis supplies a piece
of evidence in support of the hypothesis. The techniques and results of this thesis-especially

the model-theoretic specification technique proposed in Chapter 1 and used throughout-may

be useful in studying other systems that can be viewed as incomplete inference engines.

RP, the propositional logic presented in Chapter 2, forms the basis of all the retrievers in

this thesis. This "logic of no-chaining" is potentially useful as the basis of logics used for other

purposes. One example is obvious: RP could form the basis of a logic of explicit belief in the
same way that Belnap's four-valued logic forms the basis of Levesque's (1984b) and

Lakemeyer's (1986) logics of belief.

Many systems based on automated deduction-deductive databases, theorem provers,
logic-programming systems, etc.-are designed to provide exact answers to queries. That is,

variables in a query get bound only once in a proof. Indeed, it is crucial that logic programs

have this property if they are to be executed by theorem provers that behave at all like inter-

preters for traditional programming languages. Chapter 4 of this thesis revealed the Strong

- 8 -



- 87 -

Herbrand Property as the semantic counterpart of the exact answer property. The Strong Her-

brand Property was shown to be composed of the Herbrand Property and the Minuteness Pro-

* perty. RQ, a model theory possessing the Minuteness Property was constructed from RP, a

non-minute model theory. The same construction can be used to construct other minute logics

from non-minute ones. Consequently, the analysis of Chapter 4 may have significant and pro-

found application to the theory of systems that compute exact answers.

The part of this thesis with the most scope for application outside the domain of retrieval

is the method introduced in Chapter 5 for transforming an unsorted computational logic into a

sorted one. Nothing about the method was specific to retrieval per se, and it could be used to

transform any logical system that handles quantified variables by using unification. Indeed, this

method has been used to add sorts to a logic-programming system (Allen, Giuliano, and Frisch,

1983; Frisch, Allen and Giuliano; 1983) and to the design of a deductive parser (Frisch, 1985b).

There are two reasons why one may want to transform an unsorted logic into a sorted

one.' One reason is that the additional syntactic devices are useful in building a specification of
what entails what. This motivated the introduction of a sorted logic in Chapter 5 where it was

used to specify a retriever that performed certain inferences but not others. This, however,

provides no motivation for adding sorts to an unsorted Tarskian FOPO since that logic already

performs the taxonomic inferences in question. Though the use of a sorted logic may not alter

what entails what, it can be used to build efficient deductive mechanisms. Elsewhere (Frisch,
1985b), I have demonstrated that by introducing sorts into a logic smaller deductive search

spaces can be built, search spaces that exhibit a minim um-comm itment search strategy.

8.2. Extensions

These are some extensions to the current work that are worthy of investigation:

" Develop retrieval algorithms that do not first transform sentences into normal form.

" Redefine RQ and RT so that they handle non-prenex-form sentences. In particular, the new
model theories should admit the usual equivalences that allow sentences to be transformed -

into prenex form.
" Extend the language of SFOPC so that sort atoms can be mixed more freely into S-

sentences. '

" Endow the retriever with the ability to reason about its own knowledge. Following

Levesque's (1984c) approach, this could be done by identifying retrievability with a modal

operator in the representation language instead of with a logical-implication relation.
* Extend the retriever to reason about equality.

1This argument is general and can be used to motivate other syntactic extensions to a computational logic. '



MV7101

- 88 -

* Specify a retriever that can handle both wh-queries and quantifiers.

" Extend SFOPC to allow higher-order restrictions to be placed on variables and build a

retriever that can reason about such restrictions. As it now stands, SFOPC allows restric-

tions to be placed on the values that an individual variable takes on. What I have in mind

is placing restrictions on the values that an n-tuple of variables can take on. For example,

in the sentence V(z,y):5> z<yVy<z the pair of variables must take on pairs of values

drawn from the $ relation. A sort theory then would need to include binary predicate sym-

bols, such as "0", and perhaps even higher-order predicate symbols. I hypothesize that the

techniques developed in Chapter 5 would generalize to this extension in a straightforward

manner.

%



References

Allen, J.F., A.M. Frisch and D.J. Litman, "ARGOT: The Rochester dialogue system," Proc. of
the Second National Conf. on Artificial Intelligence, August, 1982.

Allen, J.F., M.E. Giuliano and A.M. Frisch, "The HORNE reasoning system," Technical Report
126, Computer Science Dept., Univ. Rochester, December, 1983. Revised September,

1984.

Belnap, N.D., "How a computer should think," in Contemporary Aspects of Philosophy, Proc. of IN

the Oxford Int. Symposium, 1975.

Belnap, N.D., "A useful four-valued logic," in G. Epstein and J.M. Dunn (Eds.), Modern Uses of
Multiple-Valued Logic, Dordrecht: Reidel, 1977.

Bobrow, D.G. and Winograd, T., "An overview of KRL, a knowledge representation language,"
Cognitive Science 1, 3-46, 1977.

Brachman, R.J., "On the epistemological status of semantic networks," in N.V. Findler (Ed.),
Associative Networks: Representation and Use of Knowledge by Computers, New York:
Academic Press, 1979.

Brachman, R.J., R.E. Fikes and H.J. Levesque, "KRYPTON: A functional approach to

knowledge representation," Computer 16, 67-73, October, 1983.

Brachman, R.J., V.P. Gilbert and H.J. Levesque, "An essential hybrid reasoning system:
knowledge and symbol level accounts of KRYPTON," Proc. of the Ninth Int. Joint Conf.
on Artificial Intelligence, August, 1985.

Brachman, R.J., and H.J. Levesque, "The tractability of subsumption in frame-based descrip-
tion languages," Proc. AAAI-84, August 1984. ..

Brown, F.M., "Towards the automation of set theory and its logic," Artificial Intelligence 10,
281-316, 1978.

Cohn, A.G., Mechanising a Particularly Ezpressive Many Sorted Logic, Ph.D. Thesis, Dept. of
Computer Science, Univ. Essex, 1983a.

Cohn, A.G., "Improving the expressiveness of many sorted logic," in Proc. of the Third National
Conf. on Artificial Intelligence, August, 1983b.

Cohn, A.G., "On the solution of Schubert's Steamroller in many-sorted logic," Proc. of the

Ninth Int. Joint Conf. on Artificial Intelligence, August, 1985.
de Champeaux, D., "A theorem-prover dating a semantic network," Proc. of the AISB/GI Conf.

on Artificial Intelligence, July, 1978.

Eder, E., "Properties of substitutions and unifications," Journal of Symbolic Computation 1, No.

1, 31-46, 1985.

89 S



- eo -

Fikes, R.E. and N.J. Nilsson, "STRIPS: A new approach to the application of theorem proving
to problem solving," Artificial Intelligence 2, 189-208, 1971.

Frisch, A.M., "Using model theory to specify Al programs," Proc. of the Ninth Int. Joint Conf.
on Artificial Intelligence, August, 1985a. Also as Research Paper 42, Cognitive Studies
Programme, Univ. Sussex, February, 1985. Revised May, 1985.

Frisch, A.M., "Parsing with restricted quantification," Research Paper 46, Cognitive Studies
Programme, Univ. Sussex, February, 1985b. Also to appear in Computational Intelli-
gence, and in A.G. Cohn and R. Thomas (Eds.), Recent Advances in Artificial Intelli-

gence, New York: Wiley, 1986.

Frisch, A.M., "An investigation into inference with restricted quantification and a taxonomic
representation," SIGART Newsletter, No. 91, January, 1985c. Also in Proc. of Alvey
IKBS Inference Research Theme Workshop 1, September, 1984. Also as Research Paper
41, Cognitive Studies Programme, Univ. Sussex, September, 1984.

Frisch, A.M. and J.F. Allen, "Knowledge retrieval as limited inference," in D.W. Loveland

(Ed.), Lecture Notes in Computer Science: 6'A Conf. on Automated Deduction, New York:
Springer-Verlag, 1982. Also in Knowledge Representation and Retrieval for Natural
Language Processing, Technical Report No. 104, Computer Science Dept., Univ. Roches- 4A

ter, December 1982.

Frisch, A.M., J.F. Allen and M Giuliano, "An overview of the HORNE logic programming sys-
tem," SIGART Newsletter, No. 84, 1983. Also in Logic Programming Newsletter, No. 5,
Winter, 1983/4.

Gallaire, H., J. Minker and J.M. Nicolas, "An overview and introduction to logic and data-
bases," in H. Gallaire, J. Minker and J.M. Nicolas (Eds.), Logic and Data Bases, New

York: Plenum Press, 1978.

Goebel, R., "DLOG: A logic-based data model for the machine representation of knowledge,"
SIGART NEWSLETTER, No. 86, 69-71, October, 1983.

Goebel, R., "Interpreting descriptions in a Prolog-based knowledge representation system,"
Proc of the Ninth Int. Joint Conf. on Artificial Intelligence, August, 1985.

Huet, G. and D.C. Oppen, "Equations and rewrite rules: a survey," Technical Report CSL-111,
SRI International, January 1980. Also in R. Book (Ed.), Formal Languages: Perspectives

and Open Problems, New York: Academic Press, 1980.

Israel, D.J., "On interpreting network formalisms," International Journal of Computers and
Mathematics 9, 1-13, 1983a. Also in N. Cercone (Ed.), Computational Linguistics, Oxford:
Pergamon, 1983a.

Israel, D.J., "On the semantics of taxonomy-based semantic networks," unipubli thed
manuscript, 1983b. 0



- 91 -

Konolige, K., "Belief and incompleteness," to appear in J. Hobbs and R. Moore (Eds.), Formal

Theories of the Common-Sense World, Norwood, NJ: Ablex, 1985.

Kowalski, R., Logic for Problem Solving, New York: North Holland, 1979.

Kripke, S.A., "Semantical analysis of modal logic 1, normal propositional calculi," Zeitschrift fur

Mathematische Logik und Grundlagen der Mathematik 9, 67-96, 1963.

Lakemeyer, G., "Steps towards a first-order logic of explicit and implicit belief," Proc. of the

Conf. on Theoretical Aspects of Reasoning about Knowledge, March, 1986.

Levesque, H.J., "A fundamental tradeoff in knowledge representation and reasoning," Proc.

CSCSI/SCEIO 1984, May, 1984a.

Levesque, H.J., "A logic of implicit and explicit belief," Proc. AAAI-84, August 1984. Revised
version appears as Technical Report No. 32, Fairchild Laboratory for Artificial Intelli- 'S

gence, August 1984b. .

Levesque, H.J., "Foundations of a functional approach to knowledge representation,", Artificial

Intelligence 23, 155-212, 1984c.

Lloyd, J.W., Foundations of Logic Programming, New York: Springer-Verlag, 1984.

Loveland, D.W., Automated Theorem Proving: A Logical Basis, New York: Elsevier North-

Holland, 1978.

McSkimin, J.R., and J. Minker, "A predicate calculus based semantic network for deductive

searching," in N.V. Findler (Ed.), Associative Networks: Representation and Use of

Knowledge by Computers, New York: Academic Press, 1979.

Nilsson, N.J., Principles of Artificial Intelligence, Palo Alto: Tioga, 1980.

Norman, D.A. and Bobrow, D.G., "On data-limited and resource-limited processes," Cognitive

Psychology 7, 44-64, 1975.

Patel-Schneider, P.F., "A decidable first-order logic for knowledge representation," Proc. of the

Ninth Int. Joint Conf. on Artificial Intelligence, August, 1985. Revised and much-

expanded version appears as Technical Report No. 45, Artificial Intelligence Laboratory,

Schlumberger Palo Alto Research Center, 1985.

Pearl, J., "On the discovery and generation of certain heuristics," AI Magazine 4, No. 1, 22-33,

1983.

Pigman, V., "The interaction between assertional and terminological knowledge in KRYP-
TON," Proc. IEEE Workshop on Principles of Knowledge-Based Systems, November,

1984.

Plotkin, G.D., "Building-in equational theories," in B. Meltzer and D. Michie (Eds.), Machine

Intelligence 7, Edinburgh: Edinburgh University Press, 1972.

Reiter, R., "An approach to deductive question-answering," 1BN Technical Report 3649, Bolt
Beranek and Newman, Inc., Cambridge, MA., 1977.

S%

'S a *~~ %*' '. '..:~:.~:. 2. >* .:.:



-92 -

-a

Reiter, R., "On closed world data bases," in H. Gallaire and J. Minker (Eds.), Logic and Data

Bases, New York: Plenum Press, 1978.

Reiter, R., "Equality and domain closure in first order data bases," Journal of the A.C.M. 27,
235-249, 1980.

Reiter, R. "On the integrity of typed first-order data bases," in H. Gallaire, J. Minker and J.M.
Nicolas (Eds.), Advances in Data Base Theory, Vol. 1, Plenum Press, 1981.

Reiter, R., "Towards a logical reconstruction of relational database theory," in M.L. Brodie, J.
Mylopoulos and J.W. Schmidt (Eds.), On Conceptual Modelling, New York: Springer-
Verlag, 1984.

Robinson, J.A., "A machine-oriented logic based on the resolution principle," Journal of the
A.C.M. 12, 23-41, 1965. a,'

Robinson, J.A., Logic: Form and Function, New York: North-Holland, 1979.

Robinson, J.A. and Sibert, E.E., The Loglisp User's Manual, School of Computer and Informa-
tion Science, Syracuse Univ., December, 1981.

Sanderson, J.G., "The Lambda Calculus, Lattice Theory and Reflexive Domains," Mathematical
Institute Lecture Notes, University of Oxford, 1973.

Shapiro, S.C., "The SNePS semantic network processing system," in N.V. Findler (Ed.), Associ-
ative Networks: Representation and Use of Knowledge by Computers, New York:

Academic Press, 1979.

Stickel, M.E., "Automated deduction by theory resolution," Journal of Automated Reasoning 1,
333-355, 1985.

Tarjan, R.E. and J. van Leeuwen, "Worst-case analysis of set union algorithms," Journal of the
A.C.M. 31, 245-281, 1984.

Tarski, A., "Der wahrheitsbegriff in den formalisierten sprachen," Studia Philosophica 1, 261-
405, 1935. Translated as "The concept of truth in formalized languages," in A. Tarski
(Ed.), Logic, Semantics, and Mathematics, Oxford: Clarendon Press, 1956.

Walther, C. "A many-sorted calculus based on resolution and paramodulation," Interner Ber-
icht Nr. 34/82, Universitat Karlsruhe, Fakultat fur Informatik, 1982. Also in Proc. of the
Eighth Int. Joint Conf. on Artificial Intelligence, August, 1983.

Walther, C., "A mechanical solution of Schubert's Steamroller by many-sorted resolution,"
Proc. of the Fourth National Conf. on Artificial Intelligence, 1984a. Also in Artificial

Intelligence 26, 217-224, 1985.

Walther, C., "Unification in many-sorted theories," Proc. of the Sixth European Conf. on

Artificial Intelligence, 1984b.

Walther, C., "Schubert's Steamroller - a case study in many-sorted resolution," Interner Hcr-
icht Nr. 5/84, Universitat Karlsruhe, Fakultat fur Informatik, 1984c. -%

.



ad V., ~J~I~pWVWJ'W~'J~bf'V l~r~r~flY,'.V lM'U R MW WWI"V

93 -

Warren, D.H.D., "Efficient processing of interactive relational database queries expressed in

logic," Proc. of the Seventh Int. Conf. on Very Large Data Bases, IEEE, Cannes, France,

1981.

Warren, D.H.D. and F.C.N. Pereira, "An efficient easily adaptable system for interpreting

natural language queries," American Journal of Computational Linguistics 8, 110-122,

1982.

%i



f/Lfth
11 4ffc/

*Moor

% %


