
999 NAW PROPAGATION IN LAMINATED COMPOSITE PLATES(U) i
COLORiDO UNIV AT BOUILDER DEPT OF MECHANICAL ENGINEERING
S K DATTR ET AL. RUG 67 CUiER-9?-4 NO14- 6-K-62N

UNCLASSIFIED FFO 11/4 ML

mimmmmmmmllllllmllmlllll
sio



101

1A 1.61

MICROCOPY~ ~ ~ ~ REOUINJS HR

NAOA UREA 0 SINA -3 A



FTEILE CC,'

Contract N00014-86-K-0280

WAVE PROPAGATION IN LAMINATED COM4POSITE PLATES

S.K. Datta
University of Colorado, CIRES

A.H. Shah
University of Manitoba

R.L. Bratton, Research Assistant and
T. Chakraborty, Research Associate

University of Colorado, CIRES

CUMER 87-4 August. 1987

'Em DTIC
9%ELECZTE

DEC 3 10o7E

: APZov~d for publIc r ~

DFatzbution Unirto

4S
11~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ...... .... 1111111111& A.cl
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A stiffness method has been used in this paper to study dispersive wave propagation

in a laminated .anisotropic plate. The advantage of this method is in its usefulness in

obtaining numerical results for the dispersion characteristics of waves propagating in a plate

with an arbitrary number of arbitrarily anisotropic laminae. We have applied this method

here. as a way of illustration, to a plate, made tp of transversely isotropic laminae with

the axis of isotropy of each lamina lying in the lane of the lamina. Results thus obta-

ined are shown to agree well with the exact solutions for isotropic and transversely iso-

tropic single layered plates. We present numerical results for cross-ply (OP/W0/) lami-

nated composite plates and show that the frequency spectrum in this case differ consider-

ably from that for a single layered () plate.

(submitted for publication in the Journal of the Acoustical Society of America)

',. * V h% '%%q, r



Introduction

In the past dynamic behavior of infinite periodically laminated medium has been stu-

died extensively. A review of the literature on exact and approximate analysis of this

problem can be found in [1.2]. In [2] a stiffness method was presented for studying

harmonic wave propagation in a periodically laminated infinite medium. In this method

each lamina is divided into several sublayers and the displacement distribution through the

thickness of each sublayer is approximated by polynomial interpolation functions. These

functions involve number of discrete generalized coordinates, which are the displacements

and tractions at the interfaces between the adjoining sublayers. This ensures continuity of

these quantities at these interfaces. By applying Hamilton's principle the dispersion equa-

tion is obtained as a standard algebraic eigenvalue problem. Eignevalues and eigenvectors

of this equation yield the frequencies of propagating and evanescent modes and the associ-

ated displacements and tractions at the intefaces. Results obtained by this method for an

infinite medium with isotropic laminae were shown to agree well with exact solutions [1].

In this paper we use a similiar technique to study dispersion of waves in a lami-

nated plate. Although the method is easily applied to arbitrarily anisotropic laminae, we

have illustrated the method for the case when each lamina is transversely isotropic with

the symmetry axis lying parallel to the lamina. This study is motivated by the desire to

model wave propagation in a continuous fiber-reinforced laminated plate. If it is assumed

that the wave lengths are much longer than the fiber diameters and spacing, then each

lamina can be modeled as a homogeneous transversely isotropic medium with the symmetry

axis paralled to the fibers. The overall effective elastic properties of such a medium can

be calculated from the fiber -and matrix properties by using an effective modulus theory

[3,4]. Such an assumption has been made in this paper. Thus this study examines the ed -

dispersion characteristics of guided waves in a layered anisotropic plate.

Although wave propagation in a homogeneous isotropic plate has been thoroughly

studied using exact or approximate means by MindLin [5] and many others, not many : Codes

exact solutions for layered plates have been reported. Most of the works on layered . .
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plates have used approximate plate theories or effective modulus theory for the entire plate

(Dong and Nelson [6] for discussion) because of the extreme complexities involved in the

equations obtained when the exact three dimensional linear theory of elasticity is used.

For a two layer or three layer (sandwich) isotropic plate the governing dispersion equation

becomes tractable and has been discussed in [7-9].

Wave propagation in a monoclinic crystal plate has been fullr'invistigated in [10-12].

However. to our knowledge, no exact solutions for laminated anisotropic plate are avail-

able. In [6.13.15] the authors present a stiffness method to study this problem. They

use interpolation functions for the displacements that involve as generalized coordinates the

displacements at the interfaces between layers and at the middle of the layers. Although
S /

the technique yields generally good results for the frequency spectrum, it does not lead

directly to the determination of the tractions at the interfaces.

For studying scattering by cracks or inhomogeneitis using a hybrid method in which

the localized region near the scatterers is represented by finite elements and the exterior

solution by superposition of modes (propagating and non-propagating) it is necessary not

only to get accurate approximations to displacements, but also to the tractions at the

boundary separating the inner and outer regions (for applications of this hybrid technique

see [15-17]). It is with this application in mind that we present in this paper a stiffness

method that incorporates as generalized coordinates displacements and tractions at the inter-

faces between the layers (and sublayers). As mentioned before the results obtained by

this method for a periodically laminated infinite medium agree well with known exact solu-

tions. Here we show that for an isotropic and transversely isotropic plate the method

* yields results in excellent agreement with the exact solutions. It is noted that the present

method using the same number of sublayers yields more accurate results at high frequencies

than obtained by the technique of Don& et al (6,13.14]. Intuitively it is clear that as the ,1

number of sublayers tend to infinity the results based on the present formulation, where

the continuity of displacement and traction is maintained at the interfaces, should approach

the exact continuum solution.
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Governing Equations

We consider time harmonic waves in a plate composed of n laminae. For simplicily

in analysis it will be assumed that each lamina is transversely isotropic with the symmetry

axis aligned with either the x or the y axis (Fig. 1). This assumption is not necessary

for the development of the equations but. it is made here to keep the algebra as simple as

possible for the anisotropic problem at hand. Under this assumption the wave propaga-

tion problem reduces to two uncoupled ones: plane strain in which the displacement

components are ux , o, uz, and SH or antiplane strain when the only nonzero displace-

ment component is uy. So in the following we shall treat these two separately.

Plane Strain

Consider the ith lamina bounded by z = zi I and z = zi+ 1.  The stress strain

relation in this lamina will be given by

c (i) c) 0
11 13r{xx (i) c exx

Ozz € 13 € 33 0 ezz (1)
Oxz 0 0 c ) 1 xz

where aij and eij are the stress and strain components, respectively, and we have written

,fxz -
2exz- Note that if the y axis is the axis of symmetry, then

e(i) (i) and (i) , c(') -11 c 33 c55 5 11 13
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Then the problem is equivalent to that of an isotropic one. In order to get good numer-

ical results each lamina will be divided into several sublayers. m. say. Within the ith

sublayer we " will choose a local coordinate with the origin at the mid-plane and xi. yi.

zj. parallel to the global x.y~z axes,

respectively. Let 2hj be the thickness of this sublayer. Denoting u~j to be the displace-

ment at a point in the jth lamina we write

(j)
ZJ. 

1 C (i) [C -(iS ax1  f ()

C33  33 33 33 J

where fn (n-1... 4) are cubic polynomials in the local coordinate zi given by

f, (2.3ni qi flu (2+3 jin'))

4 4 ,3)

f3 + 17,(l- f. - ii (_I _3 j). +.lei + ij j)

Here )?j - zj/h, and Up. wj. xj. ej are the values of u, xz* and oz at the jth p

node. These nodal values of the displacement and traction components are functions of

xj (-x) and t. In this paper it will be assumed that the time dependence is of the form 5

* "'a. CO being the circular frequency. The factor e-(V will be dropped in the sequel.
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The equations governing the nodal generalized coordinates fuj. ;(. wj. vj) will be

obtained using Hamtilton's principle. For this purpose we calculate the lagrangian. L, per

unit length in the y-direction of the plate as

n nI Zi .h puj {aH dzj tj - e hI. }T[~) I c)dzi d
iL n L i-IZ j Jh Ith 

-~j }dx

i-i1 j-1

The overbar denotes complex conjugate.

Using (2) in the strain-displacement relation, and in turn in (4) * we get the expres-

sion for L(i) as

{~~ju j T(C 1 } 1 7 T [C.I(q) + 1JTCJ~ T

- T T

I I (e 1J(q_) q-T e(q')



q[ Tjq q [. T,]fq*'j I T e. fqjdx (5)

where (q) is defined as

(q) ujl XX.w-.VjI j T -(6)

and the primes denote derivatives with respect to x. The matrices [C2). IEC,], etc. are

defined in the Appendix 1.

The L.agrangian for the complete plate is obtained by summ in Ig over all the layers

and its variation leads to the governing equation for the plate as

w'(-(C~j IQ"] - cc,] IQ']+ EM] IQ])

-(EEJ CQiv] + MSI EQ ..J + (F,) IQ"] +

CEJ. IQ'J + ME1 (QJ) - 0 (7)

Note that the matrices (C, [MI. MI.. MI,. and IB,] are symmetric. whereas. the others

are skew-symmetric. These assembled matrices are defined in Appendix 1. It is seen that

the generalized coordinate vector (Q) satisfies a fourth order homogeneous ordinary differ-

ential equation in x.

A solution to equation (7) can be assumed in the Iorm

(0] - [QjgikX (3)
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where EQJ] represents the amplitude vcenor. Substituting (8) in (7) we get a set of linear

homogeneous equations to solve for CQ,]:

k4[K,] - ik3[K,] - k'(K,] + ik(K.] + CK, (Q.) =0 (9)

.where

(K,] - (R,]

(K] - (,

(K3) - [E.1 + w9(C,]

(K4] - CE4] + e,9CCJ

(K,] - [EFl - ON9(]

For nontrivial solution the determinant of the coefficient matrix must be zero. This

equation is the dispersion equation to solve for the cigenvalues k for given W. Alterna-

tively. Eq. (9) can also be written as ([K.I - 0?(MP]) (Q.) -0 U

where

(Ko] k*[K,J ik'EK,] k2[(Ej + jk(E,] + MI. [Mp) [ M) ikEC,] k'[C2

This leads to the eigenvalue problem for solving w2" for given k.
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Antiplane Strain

The derivation given above is for the case of plane strain. The antiplane strain

case can be considered in a similiar manner and that results in a much simpler fre-

quency/wave number equation. In this case we assume

u (j ) =v 1 f,+v j f2 + I l j f,1

55 C (j)

Here r - c(Q)4 (j ) /Z.
44 y

The corresponding eigenvalue problem for the wave number is

(-k2 [K.] + [K.1) {Q.) - 0 (1?)

and that for the frequency is

([Ks) - C.[Ms]) {Q.) = 0 (13)

where

(KS] - kCK.J + [K,]

[K.] - &2 [M s ] - [K,)

and the corresponding matrices for the sublayer from which these are assembled are def-
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imed in Appendix 1. The vector {q) is defined as {vj.I. rj_-I . v 1, rj IT

As illustrative examples we show equations (9) and (10) for an isotropic plate, a

fiber-reinforced (0) homogeneous plate. a three-layered (001900/0) plate and a four-layered

(0'/90"/0*/90*) plate. These results are discussed in the next seqtion- We also present

some numerical results for the SH case.

Numerical Results and Discussion

In orde" to validate the method we first considered an isotrbpic plate with Poisson's

ratio, , - 0.31. A full discussion of the frequency spectrum for this case was given by

Mindlin [5]. Both the eigenvalue problems (9) and (10) were solved. The comparison of

the results obtained for real and imaginary wave numbers with those of Ref. [S] are

shown in Fig. 2. In this figure a " = -, where H is thickness of the

.5,

plate. For this computation the plate was divided into 25 sublayers. It is seen that the

results agree with the exact solution extremely well at low and moderate frequencies. The

agreement at high frequencies is also quite reasonable. We also used the interpolation

functions adopted by Dong and Huang (15], and obtained the frequency spectrum keeping

the same number of sublayers. Comparison of the results with the exact solution is

shown in Fig. 3. The loss of accuracy at high frequencies is evident. Of course, the V

accuracy will improve if morc'sublayers are taken [6].

We then considered a fiber-reinforced plate when the fibrs are aligned along the x-

axis (0). The properties of the plate are given in Table 1. As mentioned before, for-

propagation in the 0 (90P) direction the problem is tractable analytically. The frequency

equation for this case is given in Appendix II. Figure 4 shows the comparison of the

frequency spectrum obtained by the present method with the exact solution for propagation

9
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in the x-direction. It is seen that the comparison is excellent. In this figure

k and 7 - H. It is seen that as k - the slopes of the disper-

2 (C55IP)O'

sion curves for the first symmetric and antisymmetric modes tend to the ratio

VR/CSS/P, where VR is the Rayleigh wave velocity in the x-direction. For the dis-

cretization method we used 15 sublayers.

The next problem considered was a sandwich plate with 00/90/0* configuration.

Figure 5 shows the dispersion curves. These curves differ considerably from those shown

in Fig. 4. It is seen that the cut-off frequencies are lowered as well as the slopes of the

curves. Branches of imaginary wave numbers are also quite different. In these computa-

tions we used 15 sublayers also.

To see the comparison between our results and those obtained by the author of

Ref. [141 we considered a 4-layer (0*/90P/00/90) plate with the properties* given in [14).

Solid lines in Fig. 6- are Dong and Huang's results using 20 sublayers. Open circles and

dashed lines are ours using the same number of sublayers. The agreement deteriorates at

high frequencies. For the same composite plate we show in Fig. 7 the complex frequency

branches. Solid dots are obtained by the method of [14).

Finally, figures S and 9 show the SH wave spectra for homogeneous (00) and three-

layer (0"/90/00) plates. Although the curves look very similiar, it is interesting to note

that the cut-off frequencies are increased in the latter case. This is contrary to what was

found in the plane strain case.

*(C,,) O" - 21.289 X 10" psi; (C,3 )00 - 0.592 X 100 psi; (C,,) 0 o - 2.3186 X 100 psi; (C,,) 00

- 0.850 X 10' psi; p - I _L.
cmi
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Conclusion

A stiffness method using through- thickness interpolation functions for the displace-

ments that maintain continuity of displacements and tractions at the interfaces between the

layers has been used to study guided waves in a laminated composite plate. It is shown

that the results agree with exact known solutions for homogeneous plates and also with

their numerical solutions. The advantage of the method is that it is more accurate at high

frequencies with smaller number of sublayers than others in which only displacement con-

tinuity is enforced. Also, tractions and displacements are obtained as eigenvectors, so that

the former need not be calculated by differentation afterwards.

Numerical results presented show significant differences between the dispersion curves

for the homogeneous fiber-reinforced plate and the cross-ply laminated plate.

Although the case of wave propagation along a principal direction has been studied.

the method is easily applicable to off-axis propagation. For purposes of illustration only

a small number of laminae has been considered. But, because we divide each lamina into

several sublayers. each of these sublayers can have different properties. So any number of

laminae can be considered.
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Table 1. Properties of 0' and 90' laminae. All the stiffnesses are in units of 10" N/rn'.

p(g/cm') CosC C12  C,,. CS,

0P lamina 1.2 1.6073 0.1392 0.0644 0.0350 0.0707
9T. lamina 1.2 0.1392 1.6073 0.0644 0.0707 0.0350
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Appendix

We fIrst define the following uiatrices:

(N,] 0 -~cf 0 i0 0 0 .

[ocw 0 0 0 -,C,f. 0 0 0

rf, i/fCf 0 f, 11cs1J. 0 1
[N.] = 0 0 f, 1/C'.f1  0 0 f, 

4/" 
.

0 0 -f' 0 0 0 f. 0]

0 00 0 0 0 0 0)

[]- 1CCfI 0 0 0 -CIS/Czf 4 0 0 01

[ f, i/CSfl 0 0 1Cf, 0 0

CHC.' 0 0 0 -CIJClf. 0 0 0

(b] 0 CJC 2 2  0 fl-tl, I(C 13f, 0 0 f,-f 4 - iic,21j

r0  0 -0 0-0-0 0 01
f" 0-cf3 0 0 f"' I/C,.' .1

1/0 ! 0 0 f; 1/C,,!.' 0 0

Then (CC]. (C,ec a be written a

(C.] [N] 1rN1(NIdz
J- h Q)

(C') -IP(P) [N.] T(N,)dz

[N,]T(N,)dz



( -f[ 4 ]T[(i) J~dldz

[e'l- [d]TrC(j) Jfbldz

-J[dJ([CjIJ Jsdz

(j-I[b]T[(j) ]Cbjdz

(c]-I[b]T[C(j) Jtaldz

(e]-I[a]T[CC~i)Cajdz

For antiplane motion we define:

Then we get

(kJ f I (p [N]T Ndz

(k, - I () [N]T (N.dz

(C,] U(C, C1T)

[C2] UC. [ M] Umn [ E,] Uc,

Mj] U(; - j) F , -U(c, + e.)

[B.] -~, - e,) . (,] Us.

(K.] - UK. . (K,] UK, . (t5] UM~



Appendix 11

For the propagation of waves along the plate of transversely isotropic material
considered here the dispersion equation separates into two, one for the symmetric motion
and the other for the antisymmetric case. In the former case we get

tan(s,H(2) s, E1,T.
tan(sH/2) S,T

whereas, for the latter we have

tan(s,H/2) SA(1.2

tan %sH12) SAET.

In writing (OL.1 and (11.2) we have defined the following quantitiek,

Fn P(k 1  - +' 10 W'(-6-04)

0 (k,' - ,') +e k" 8--5

T,- k'- k'ra + ,6-1

Tar - V - k* +s2 (&- )

+ C,,/C,,.-

S1.2-,'l5) ((k 27-k,2(1.5))s

OM(k,-k'J (k,426O) J

+ 1 00@



List of Figures

1. Geometry of the laminated plate.

2. Comparison of the exact dispersion curves with numerical results for an isotropic plate.

Poissons ratio is 0.31.

3. Comparison of the results obtained by the method of Ref. [15] with the exact results.

4. Comparison of the results obtained by the present methqd for a fiber-reinforced plate

with the exact results.

S. Dispersion curves for a laminated (0./90/0) plater

6. Comparison of the dispersion curves for a 0O/901'/0/90" plate obtained by the present

method witt 'hose obtained using the technique of Ref. (14].

7. Complex frequency branches for a 0 190'/0('90P plate. present method, method of

Ref. [14].

8. Dispersion curves for SH waves in a fiber-reinforced plate.

9. Dispersion curves for SH waves in a laminated (08/90/") plate.

.1



0 0 0 0 9 Q * 0I~ 0 0 0: 

0~~~ 0000 0

I0

SOTRO PIC 9

0 0 0 0 0 0 = 00

0 00

* ~~~5 -. 
-

-



20-

0 8
181 %0 0,

0 -0,
0-0-0-0-0-

0
14 -0.0 to ,-o

_0_0-o-t;-d-11 0.10-

12 00 o 0.
oe -0-0-0-0-

10

09

00
M. -0-0-0

6 % 
a#' Go

.0 00
d

w
Ito -0 or

o F all
6 5 4 3 2 1 0 1 2 3 4 5 6

YR
IMAGINARY REAL



IWO

18 0 
s'

J. .- 4 - 0.4 - 0 ~



-

0 Cc

Art-, -a

CD

o(0 C~jORC



cr

0 c0
l~i c; c.



r')

\ 
\\

cc

C\ (

CM CC)



YR'

44



Ic)

46N :

(D $~

Iii



U-)

U-)

.*\ vj--

M a)

C~i C5 A



00000


