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\ A stiffness method has been used in this paper to study dispersive wave propagation
in a laminated .anisotropic plate. The advantage of this method is in its usefulness in
obtaining numerical results for the dispersion characteristics of waves propagating in a plate

with an arbitrary mxmber of arbitrarily misotropic larninae We have applied this method

-

here, as a way of illustration, to a plate made up of tnnsversely isotropic laminae with

‘v_., . - e

the axis of isotropy of each lamlna lymg m the phne of the lamina. Results thus obta-

ined are shown to agree well thh the exact solutxons for 1sotrop|c and transversely iso-
tropic single layered plates. We present numerical results for cross-ply \Q/_%ll/?_'_)/7 lami-
nated composite plates and show that the frequency spectrum in this case differ consider-

ably from that for a single layered\(g_'},plate.
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Introduction

In the past dynamic behavior of infinite periodically laminated medium has been stu-
died extensively. A review of the literature on exact and approximate analysis of this
problem can be found in (1.2]. In (2] a stiffness method was presented for studying
harmonic wave propagation in a periodically laminated infinite medium. In this method
ecach lamina is divided into several sublayers and the displacement _q_istribution through the
thickness of each sublayer is approximated by polynomial interpolation functions. These
functions involve number of discrete generalized coordinates, which are the displacements
and tractions at the interfaces between the adjoining sublayers. This ensures continuity of
these quantities at these interfaces. By applying Hamilton’s principle the dispersion equa-
tion is obtained as a standard algebraic eigenvaiue problem. Eignevalues and eigenvectors
of this equation yield the frequencies of propagating and evanescent modes and the associ-
ated displacements and tractions at the intefaces. Results obtained by this method for an
infinite medium with isotropic laminac were shown to agree well with exact solutions [1].

In this paper we use a similiar technique to study dispersion of waves in a lami-
nated plate. Although the method is easily applied to arbitrarily anisotropic laminae, we
have illustrated the method for the case !lhen each lamina is transversely isotropic with
the symmetry axis lying parallel to the lamina. This study is motivated by the desire to
mode]l wave propagation in a continuous fiber-reinforced laminated plate. If it is assumed
that the wave lengths are much longer than the fiber diameters and spacing, then each
lamina can be modeled as a homogeneous transversely isotropic medium with the symmetry
axis paralled to the fibers. The overall effective elastic properties of such a medium can
be caiculated from the fiber and matrix properties by using an ecffective modulus theory
{3.4]. Such an assumption has been made in this paper. Thus this study examines the
dispersion characteristics of guided waves in a layered anisotropic plate.

Although wave propagation in a homogeneous isotropic plate has been thoroughly
studied using exact or approximate means by Mindlin (5] and many others, not many

Most of the works on layered

: !
El

exact solutions for layered plates have been reported.
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plates have used approxin;ate plate theories or effective modulus theory for the entire plate
(Dong and Nelson [6] for discussion) because of the extreme complexities involved in the
equations obtained when the exact three dimensional linear theory of elasticity is used.
For a two layer or three layer (sandwich) isotropic plate the governing dispersion equation
becomes tractable and has been discussed in [7-9].

Wave propagation in 2 monoclinic crystal plate has been fully™ invéstigated in {10-12].
However, to our knowledge, no exact solutions for laminated anisotropic plate are avail-
able. In (6.13,15) the authors present a stiffness method to study this problem. They
use interpolation functions for the displacements that involve as generalized coordinates the
displacements at the interfaces between layers and at the middle of the layers. Although
the technique yields generally good results for the frequency spe.ctr(um. it does not lead
directly to the determination of the tractions at the interfaces.

For studying scattering by cracks or inhomogeneitics using a hybrid method in which
the localized region near the scatterers is represented by finite elements and the exterior
solution by superposition of modes (propagating and non-propagating) it is necessary not
only to get accurate approximations to displacements, but also to the tractions at the
boundary separating the inner and outer regions (for applications of this hybrid technique
see [15-17]). It is with this application in mind that we present in this paper 2 stiffness
method that incorporates as generalized coordinates displacements and tractions at the inter-
faces between the layers (and sublayers). As mentioned before the results obtained by
this method for a periodically laminated infinite medium agree well with known exact solu-
tions. Here we show that for an isotropic and transversely isotropic plate the method

&ie-lds results in excellent agreement with the exact solutions. It is noted that the present

method using the same number of sublayers yields more accurate results at high frequencies

‘than obtained by the technique of Dong et al (6,13,14). Intuitively it is clear that as the

number of sublayers tend to infinity the results based on the present formulation, where

" the continuity of displacement and traction is maintained at the interfaces, should approach

the exact continuum solution.

. . " - - . . . .~ N . ‘q‘
O Y P T TR P e T e




At

w

LAt

Governing Equations

We consider time harmonic waves in a plate composed of n laminae. For simplicily
in analysis it will be assumed that each lamina is transversely isotropic with the symmetry

axis aligned with either the x or the y axis (Fig. 1). This assumption is not necessary

for the development of the equations but. it is made here to keep the algebra as simple as
- “

possible for the anisotropic problem at hand. Under this assumption the wave propaga-
tion problem reduces to two uncoupled ones: plane strain in which the displacement
components ar¢ uy. O, Uy, and SH or antiplane strain when the only nonzero displace-

ment component is Uy. So in the following we shall treat these two separately.

Plane Strain

Consider the ith lamina bounded by z = z;_; and z = zj,). The stress strain

relation in this lamina will be given by

[ o _® o, -
. i 13 0 .
Xx i @G xx
%22 . ‘13 ©33 0 €2z m
Oxz (0 Tx2
0 0 cSS

where %jj and € are the stress and strain components, respectively, and we have written

Yxz = 2exz. Note that if the y axis is the axis of symmetry, then
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Then the problem is equivalent to that of an isotropic onc. In order to get good numer-
ical results each lamins will be divided into several sublayers. m, say. Within the ith
sublayer we ‘will choose 2 local coordinate with the origin at the mid-plane and xj. y;.

zj. parallel to the global x.y.z axes,

respectively. Let Zhj be the thickness of this sublayer. Denoting ul)) 10 be the displace-

Mt at a point in the jth lamina we write ~ -
'¥J -4 ¥
@ oy . g Ml a4
ul = Ul e ujfs + 0 xi/1 a; f, + 0 Y o, fo ()
55 55
(l) - wi'l fl + wif’ + - -—13— —1:-‘— f, + ._—l-— g; - —!‘-3— —y]-
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where f, (n=1, ..., 4) are cubic polynomials in the local coordinate zj given by

.

= b e wpot e SRR Y

h; h;
f, = -41- (1-n; - LT S I O -}- (-1 -n nj + )

Here n; = Zj/h and uj, Wj. Xj. o are the values of uy, Uz, 0xy. and oy, at the jth

node. These nodal values of the displacement and traction components are functions of

X; (sx) and t. In this paper it will be assumed that the time dependence is of the form

- iunt . (& being the circular frequency. The factor et wiil be dropped in the sequel.




The equations governing the nodal generalized coordinates {uj. xj- wi. aj} will be

obtained using Hamilton's principle. For this purpose we calculate the lagrangian, L, per

unit length in the y-direction of the plate as

'L'ZL""ZZ J ,(,){.}{ lez, J < (1 ez fx

j=1 =1 j=1 -h
DML

The overbar denotes complex conjugate.

Using (2) in the strain-displacement relation., and in turn in (4), we get the expres-

sion for L(i)j as

o 1 fe T T T T
L); - i’[("‘ {q-} [C,J{q—.} . lq—} (C.)a) + {;} (ciT(a') + {;} tMi(a) )
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qe qn
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q qe

{; *T[e,]{Q-} - {;ﬁ }Tre.nq’) -




h }T[e,l{q} - {; }T[c,]{q'} - {‘-‘ }Tie.l (q}!x (5

where fq) is defined as

: ¥heq 74 -
ta) = §uior %A Wit g1 v . ;. "i3 T M (6

and the primes denote derivatives with respect to x. The matrices [C,), [C,]). etc. are

defined in the Appendix 1.

The Lagrangian for the complete plate is obtained by summing over all the layers

and its variation leads to the governing equation for the plate as
w'(-[C,] [Q"] - [C,] {Q'1+ (M] QD)
- (] (QV]+ [E] Q"] + [E} [Q) +

(EJ Q'] + [E) [QD) = 0 %)
Note that the matrices [C,), [M], (E,), (E,]. and (E,] are symmetric, whereas, the others
are skew-symmetric. These assembled matrices are defined in Appendix I. It is seen that
the generalized coordinate vector {Q) satisfies a fourth order homogeneous ordinary differ-

ential equation in x.

A solution to equation (7) can be assumed in the form

[Q] = [Q,)eikx (8)
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where {Q,] represents the amplitude ve~tor. Substituting (8) in (7) we get a set of linear -

homogeneous equations to solve for [Q,]: Y
K4[K,] - KK, - K(K,] + k(K] + (K, {Q.} = 0 9 ",
’ )
where ~ - »
(K] = (E] 3
h

(K,] = [E,] 0,

.
(K,] = [E,] + &'(C,] )
f

-_ .

[KJ = [E] + &'C\)

- =
".

! A"‘r 1 B
WATALYYY

(K] = [Eyj - &'[M]

For nontrivial solution the determinant of the coefficient matrix must be zero. This

I,
equation is the dispersion equation to solve for the cigenvalues k for given w. Alterna- A
¥
tively, Eq. (9) can also be written as ([K,] - W' M,)) {Q,} = 0 S
where
V,
Q)
i
(K,) = k(K] - ik’K,] - K’[E,] + ik(E,) + (E], [M,] = [M] - ik[C,] + k[C,] i
- y. ‘
4, 4
4)‘
This leads to the eigenvalue problem for solving w® for given k. A
;
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Antiplane Strain

The derivation given above is for the case of plane strain.

The antiplane strain

case can be considered in a similiar manner and that results in a much simpler fre-

quency/wave number equation.

o ()
y

N §) M
Here r ¢:44 du ylaz.

The corresponding eigenvalue probiem for the wave number is

(-K'[KJ + (K {Q,} = 0

and that for the frequency is

(IKq) - ' [M;D) {QJ) = 0

where

(K] = KK,] + [K,]

(K,] = o [M;] - [K,]

In this case we assume

= v:. ¢ 1, vi f —
i-1 Vot c(l)
55

{11

(13)

and the corresponding matrices for the sublayer from which these are assembled are def-

ENER e

AT TR PR



AU RS A RO NN SN REB RNV AN P A" N AN RN, ’ " fou

ined in Appendix I. The vector {q} is defined as {Vj_l. Ti-1+ Yje Tj }T

As illustrative examples we show equations (9) and (10) for an isotropic plate, a
fiber-reinforced (0") homogeneous plate, a three-layered (0°/90°/0°) plate and a four-layered
_(0°/90°/0°/90") plate.  These results are discussed in the next segtion. We also present

some numerical results for the SH case.
Numerical Results and Discussion

In order to validate the method we first considered an isotrbpic plate with Poisson’s
ratio, » = 0.31. A full discussion of the frequency spectrum for this case was given by
Mindlin [5]. Both the eigenvalue problems (9) and (10) were solved. The comparison of

the results obtained for real and imaginary wave numbers with those of Ref. [5] are

shown in Fig. 2. In this figure Q = LH—. ¥y = ]-"& where H is thickness of the
~ulp

plate. For this computation the plate was divided into 25 sublayers. It is seen that the
results agree with the exact solution extremely well at low and moderate frequencies. The
agreement at high frequencies is also quite reasonable. We also used the interpolation
functions adopted by Dong and Huang [15), and obtained the frequency spectrum keeping
the same number of sublayers. Comparison of the results with the exact solution is
shown in Fig. 3. The loss of accuracy at high frequencies is evident. Of course, the
accuracy will improve if more sublayers are taken ([6).

We then considered a fiber-reinforced plate when the fibrs are aligned along the x-

axis (0°). The properties of the plate are given in Table 1. As mentioned before, for -

propagation in the 0° (90°) direction the problem is tractable anaiytically. The frequency
equation for this case is given in Appendix Il. Figure 4 shows the comparison of the

frequency spectrum obtained by the present method with the exact solution for propagation
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in the x-~direction. It is seen that the comparison is excellent. In this figure

Q= wH and v = Ezl:- It is seen that as k - « the slopes of the disper-
ZrI(CSS/p)Q'

sion curves for the first symmetric and antisymmetric modes tend to the ratio

AVR/ Css/p. where VR is the Rayleigh wave velocity in the x-direction. For the dis-

cretization method we used 15 sublayers.

The next problem considered was a sandwich plate with 0°/90°/0° configuration.
Figure 5 shows the dispersion curves. These curves differ considerably from those shown
in Fig. 4. It is seen that the cut-off frequencies are lowered as well as the slopes of the
curves. Branches of imaginary wave numbers are also quite different. In these computa-
tions we used 15 sublayers also.

To see the comparison between our results and those obtained by the author of

Ref. [14) we considered a 4-layer (0°/90°/0°/90°) plate with the properties® given in [14).
Solid lines in Fig. & are Dong and Huang's results using 20 sublayers. Open circles and
dashed lines are ours using the same number of sublayers. The agreement deteriorates at
high frequencies. For the same composite plate we show in Fig. 7 the complex frequency

branches. Solid dots are obtained by the method of [14].

Finaily, figures 8 and 9 show the SH wave spectra for homogeneous (0°) and three-
layer (0°/90°/0°) plates. Although the curves look very similiar, it is interesting to note
that the cut-off frequencies are increased in the latter case. This is contrary to what was

found in the plane strain case.

*(C,)g* = 21.289 X 10° psi; (C,)ge = 0.592 X 10° psi; (Cp)ge = 2.3186 X 10° psi; (Cy)ge

- 1 - A
0.350 X 10* psi; p = 1 poy
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Conclusion

A stiffness method using through-thickness interpolation functions for the displace-

~ -
ments that maintain continuity of displacements and tractions at the interfaces between the
layers has been used to study guided waves in a laminated composite piate. It is shown

that the results agree with exact known solutions for homogeneous plates and also with

their numerical solutions. The advantage of the method is that it is more accurate at high

frequencies with smailer number of sublayers than others in v(hich clmly displacement con-
tinuity is enforced. Also, tractions and displacements are obtained as eigenvectors, so that
the former need not be calculated by differentation afterwards.

Numerical results presented show significant differences between the dispersion curves
for the homogeneous fiber-reinforced plate and the cross-ply laminated plate.

Although the case of wave propagation along a principal direction has been studied,
the method is easily applicable to off-axis propagation. For purposes of illustrat?on only
a small number of laminae has been cc;nsid::red. But, because we divide each lamina into
several sublayers, each of these sublayers can have different properties. So any number of

laminae can be considered.
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Table 1. Properties of 0° and 90° laminae. All the stiffnesses are in units of 10" N/m’.

I
P(clcm') Cu Cu Ca C« Cu
0° lamina 1.2 1.6073 0.1392 0.0644 0.0350 0.0707
90" lamina 1.2 0.1392 1.6073 0.0644 0.0707 0.0350
~ -
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Appendix 1

We first define the following matrices:

[N]- 0 0 ~“0 0 0 'f'O
' -C,/Cui, 0 0 O -C,/Cuf. 0 O 0

-~
[N] - f‘ I/C“f, 0 0 f: 1/C!lfl 0 0
. : 0 0 f, 1/Cyf, 0 0 f, 1/Cyul,
0 o L o 0 0 f. o .
(dj = 0 0 0 0 0 0 0 O
-Ci/Cyfy, O 0 0 -C,/Cul. O 0 0
L UG o 0 Louclts o 0
(b] = "Cnlcu 3 0 0 0 'Cu/cnfa 0 0 0
L 0 0 f,-f,7 1/Cyf, (] 0 f,-f;° 1/Cyul,
(o0 o -9 o-- o- 0 O 0
(@ = 0 0 £’ 1/Cufy” 0 0 f,’ 1/Cuf
Lf.' 1/C,.fy O 0 ' 1/Cyfs’ 0 0

Then [C,]. [C,], etc. can be written as

F“ n(i)

(G, = J - ol [N,]Tm.mz

. (c,) = J o9 [N.]T[N,]dz

My < 1 o [N,]Tm,]dz



ed = 1 [a]Ttcti a1z

e = J [a]Ttc )baz
(e = / [4]TIC Ita)az
. .
(e = / [b] 1cPb)ez
T .
[e.d = J [b] (€ )la)dz

(e, =/ [a]T[C(i)][a]dz

For antiplane motion we define:

(N] = fs

Lt —1,
c M
Then we get

! D mNIT
(m] = / oD [N] [(Nlaz

k] = / . [N]tNjez

I c [N']T[N']dz

[k1] -
[c) = U, - ¢;T
(C.] = UC, . [M] = Um , [E] = Ue,

(E,] = Ule, - ¢,1) , E, = lf(e, + )

[E)] = Ute,T - ¢) , [E,] = Ue,

[K) = UK, , [K,] = UK, . [Mg = UM,
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Appendix 11

For the propagation of waves along the plate of transversely isotropic material
considered here the dispersion equation separates into two., one for the symmetric motion
and the other for the antisymmetric case. In the former case we get

tan(s,H/2) . s,E,T, ~ - .
tan(s,H/2) s,E,T, (I.1n

whereas, for the latter we have

tan (S|H/z) S,E,T, .
Ba(s,H/2) | SET, (11.2)

In writing (II.1) and (I1.2) we have defined the following quantities,
a = C,/C,. B = C,/Cy
E, = Bk’ -5’ + k* (8-8-af)
E, = Bk’ -5s") + &k (8-8-08
T, = &k’ - Ka + s2s8-1)
T, = k? - kKla + $,2(3-1)

= .1 + C,/C,s. k' = &Y/(C%/p)

51,2 " % [-(P7-k, (1+8) 2 {(K*v-K,'(1+B))* -

BE-E) Ko )]

y=1l4+08-28
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