~
o
o
N
[

~
L]
%
m
e]
wn
«
o
>
w
o
w
m
w
W

m
m
:
m
m

%
2
:
g
:
£
5
2

-p188 993

-

LTS d PARE T

b 4

\

*u
oy

)

"\

¢

AL
T
Y N

Vo

LN

a‘*

~
ol

N

S

EJ

<

e

AD-A188 995

NAVAL POSTGRADUATE SCHOOL -

~ Monterey, California o
one EILE.CORY |

THESIS _

DESIGN, IMPLEMENTATION, AND EVALUATION OF A
VIRTUAL SHARED MEMORY SYSTEM IN A
MULTI-TRANSPUTER NETWORK

by
Simon J. Hart

December 1987 ;

Thesis Advisor: Uno R. Kodres .

Approved for public release; distribution is unlimited
gn\‘f -'r !

4ok "

« ' s
. m :

(\;;LCTE
_FEB181988

\\
sl

ol X
=

Attt AN

"8 2 11 03¢

- 'y\\‘r‘iv\"\’-\ '\“\p:- RO \-.\n.’.: ‘._‘_....--. ‘_\
RN AN GROLAT (S AL AN A RA T R ST hAS!

UNCLASSLELED
ZECORITY CLASS FICATION @ “HIS PAGE.

REPORT DOCUMENTATION PAGE

M3 Re: AT ScCURITY CLASSIFICA 1ON 1b RESTRICTIVE MARKINGS
nclassified
23, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution 1is 'mlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATIC £ "ORT NUMBER(S)
g
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable) P
Naval Postgraduate School Code §2 Naval Postgraduate School _
6. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIF Code)
Monterey California 93943-5000 Monterey California 93943-5000
I
| 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUf. &R
ORGANIZATION (If applicable)
‘ - -
! 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
- PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO ACCESSION NO

11, TITLE (Include Security Classification)
"DESIGN, IMPLEMENTATION, AND EVALUATION OF A VIRTUAL SHARED MEMORY SYSTEM IN
A MULTI-TRANSPUTER NETWORK" (u)

12. PERSONAL AUTHOR(S)
Hart, Simon J.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
faster's Thesis FROM 70 987, December 107
16. SUPPLEMENTARY NOTATION

17. COSAT) CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP OCCAM, Transputer, Multi-Transputer Network,
Delay Insertion loop, Virtual Shared Memory.

' 19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis presents the design, implementation, and evaluation of a
virtual shared memory in a multi-Transputer network. The thesis explores
the Transputer Hardware inplementation model and highlights the important
details that programmers of such systems may necd before being able to
optimize such networks.

~ All the programs and examples presented in this thesis were implemented
in the OCCAM programming language, using the Transputer Development Systen,
D700C, Becta 2.0 March 1987 compiler version.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21, ABSTRITLT SECURITY CLASSIFICATION
(9 UNCLASSIFIED/UNULIMITED [0 SAME AS RPT D omncusers | Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | ¢ OFFICE SYMBOL
Prof. Uno R. Kodres (408) 646-2197 Code S52Kr
OD FORM 1473, 84 maR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION GF THIS PAGE

Al other EditIOﬂS are Obsolete 1.5 Government Printing Ctfice 198+ - 60624,

UNCLASSTFIED

A AR AR LI ASCHER L L LI % CARG 5 X O AR SOV

RN A n fia dia-dty B A) At Rl Al a2 cad ol

Approved for public release; distribution is unlimited.

Design, Implementation, and Evaluation of a
Virtual Shared Memory System in a
Multi-Transputer Network

by

Simon J. Hart
Lieutenant Commander, Royal Australian Navy
B.S., University of New South Wales, 1977

-

Submitted in partial fulfillment of the
v requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1987

Author: Q i Cga'rl/

imdn J. Hart
en KA
Approved by: Lttes /=~ ArL=

/ }Jno R. Ko?r;s, Thesis Advisor
/’ "//,/// // é’//ﬂ/

Richard A. Adams, Second Reader

Vince . ~um, Chairman,
nt o Computer Scicnce

Fremgen,\Acting Dean
tion Policy Sciences

/ James
of Infi a

2

ABSTRACT

This thesis presents the design, implementation, and evaluation
of a virtual shared memory in a multi-Transputer network. The thesis
explores the Transputer hardware implementation model and high-
lights the important details that programmers of such systems may
need before being able to optimize such networks.

All the programs and examples presented in this thesis were
implemented in the OCCAM programming language, using the Trans-
puter Development System, D700C, Beta 2.0 March 1987 compiler

version._

. Accession For

NTIS GRA&I
DTIC TAB
Unannounced O
Justification .]

By
Distribution/ |
Availability Codes
Avail and/or

Dist Special

A-l

b}

QUALITY
INSPECrep

2

P

DN
Sl .
P AY IR

]

P Ay
R
Sals
e

FRYRRGR Y&)

R P IR Y
VTR CIRA LR CECRRR R G CX N

PRSI S RN s g g s e b ahes s 3athen g ha'iag o)t Gaig Aud Rap (ol Bal Bl Rag Sub Sal ool A Pt Lt i LR R

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in
this research may not have been exercised for all cases of interest.
While every effort has been made, within the time available, to ensure
that the programs are free of computational and logic errors, they
cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.

Many terms used in this thesis are registered trademarks of
commercial products. Rather than attempting to cite each individual
occurrence of a trademark, all registered trademarks appearing in this
thesis are listed below the firm holding the trademark:

INMOS Limited, Bristol, United Kingdom
Transputer
OCCAM
IMS T414
IMS T800
Transputer Development System (TDS)

ADA Joint Program Office, United States Government
ADA

q
i

[4
[y

3

:
A

S

<Y

‘s "y 3
. ’
P "h_

LY .'i
.
O®as

hY

o
[NDE LY
[d's

S AR AR O P Te e L e e o

‘2 aii bl ataatatadat Bl Bat bat Bt 'a 0Va b e ' e dta dta gha ghe g 80 gt gt Al il Fat @ Bl Mol $20° 800" .00 &' b a0A &Y 3 at

TABLE OF CONTENTS

L INTRODUCTION - sesesssnesesesnaasisaarsssnrnans 11

MESSAGE-ORIENTED ARCHITECTUREiumne 12
HARNESSING NETWORKS OF PROCESSORScccocecerenencnces 13

1. Efficiency vetsensnsnsnssrsasssanens 13

2. Programming Languages ..., 14

D. NETWORK TAXONOMYccucmmmmummmsissnssssossesssnssssssssossasasasses 15
1. Homogeneous Networkscisniinnccnnnsiiieceinns 15

2. Non-Homogeneous Networks ... 15

E. OBUECTIVES ...iiiinninisssisismsisssmsssssssisisisssssasssssssasssssssssssssssasess 16
F. THESIS OVERVIEW ... 16
II. TRANSPUTER HARDWARE IMPLEMENTATION ..o 18
A GENERALiirmenicmmiisisiisisessisisssesisisssesssssasssssassssssssssssssssanns 18
B SEQUENTIALMODEL.......c.ccocievuinuinessnessessessasssmssesssessanessasseoanssesnens 19
1. RegISter Set ... ssssesssses 19

2. Instruction FOrmat ... 20

3. Memory Management ... 22

4. Execution SpPeed ...t 23

C. PARALLELMODELcocvciniisieniisnisieessesscsessessessessessisssssssnssesscssssnsans 24
L. OVEIVIEW ..ttt sssssssssssnssnsesssssessssenens 24

Sy s

NN

R '\.'\ .

o
SRR

R

n‘l"'jl? P
o

"{ﬂf' .‘I ’I
".

L r «

A S A
AR

>n‘(<
2

R
' C8 L.

';\.’i Y
2"y

. A .‘. ."‘: .‘l 4..- .

.
Y

i RCENEY

T,y
DR
ey

s
l.. .

.- .'..
.Eﬁﬁpi? ;
RN

l.I'.o

ol
[o

S' * .'- :. ". :. P

e s

PR
AT

AT VW AN

2. Process Representation vosnsasainee 2D

3. Process Priority and INterruptscvecnccssnescnscraennns 27

4. Process SChedulingcocceecserccnssacsissessnccassnscsassasesnsssanesssanes 28

5. TIme SHCE PETOAScccvecveinrernsnnsainnnsnicrnessnnssnsssescssensasesaeronnones 28

6. Overheadsnviinnniensiseniississassssnessssssassssesssnssssses 28

7. Programming PractiCescccesecsncssccsnnsssssssesssssscssssessessonsnsens 29

D. TIMERS AND TIMINGSccccesetermsnessesnncssssssasssssssossesssssssssensassanssasenes 30
1. Overview . vereasrensnss 30

2. Use of Timers for Timing Constructscccoeeescrncscnnnnennens 30

3. Programming PractiCeccueiieinccrccanenenenneerassnsesasnncssncssaeeses 32

III. COMMUNICATIONScccovvernnnmsnsnsnsnsisnssscssrsosmossasssssssosensssasansens . 33
A. GENERALmennrenssnsassssssanns vessssssasasssseasasasaasaatsssans 33
B. BASIC NOTIONScccccsmesesssnnssssessesssonsessassssasassesssssssssssassssassssssnesassases 33
C. INTERNAL COMMUNICATIONcccoccusucererensaensasssnssssnsnsssssaonsranes 34
D. EXTERNAL COMMUNICATIONcccocesscosuecsssnnnressanssansrassasesassanens 35
E. LINKS ccctstnnastscnssssessinsssisssnssssssssssssasmssssnsssssssssssssssssssssensssssssssossases 37
F. PROCESSOR PERFORMANCEcccccsnnssnnnesenansesenassasensessasassesans 38
G. EVALUATION .eiecicsisnnscsisinsssssessssssmsnsssssssessssasssssssssasesssssesssssssons 38
H. PROGRAMMING PRACTICEccoucvinmsisnsnrsssenssesssnssnssssssssesessasesesss 40

IV. MULTI-TRANSPUTER NETWORK WITH GLOBALLY
DISTRIBUTED VARIABLESccccounninmentnininnnnanssssssensnssesssssssessessseses 41

A INTRODUCTION ..ciriuscninissenssssssnmsssrsssesmassssssnesssssamessessasssesssessssess 41

Cla ARSSAS SIS A A F

AL AN

et

a

SRR

K o e e s e

J PRach et ahath o't o ath thos g bttt h A hn et g LAt s bt heg bbbl oA
e
?‘- - T
. N,
MOTIVATION .oovvrcnrrcassrsssessssmssssssssssssssssessscsssne NS | 3
5
C. OPTIMUM NETWORK CONFIGURATIONccvcinnccsesnsasecennss 42 ‘* :
- D. EVENT COUNTS AND SEQUENCERSiesscsensinee . 43 223
R
1. EVENt COUNLScccccevrrerinnnrenansarcsssssancssicsssssansaesssssssnassosssassasssasesssssns 43 SN
S '.‘- 2
i
2. SEQUETICETSceovueerserresnsesssssnsssssssssssssssssssssssssssssmssmsssssssssssssssssssesss 44 Wi,
f\ A
E. EFFICIENCY ..ooooooreoosumsosmsssssmsssssissssssssssssassesesssssssssssssssesssssssssssee 44 o
«': ..::
‘\'()
V. DESIGN AND IMPLEMENTATION OF A VIRTUAL SHARED f‘-:]
MEMORY IN A MULTI-TRANSPUTER NETWORKccc.ccocovunnnns 45 o
!
A OVERVIEW .cooremessvsrssssssse sttt 45 %!
-':l""
B. SYSTEM MODEL AND ASSUMPTIONSc.ccoeuniuuirenncnresisinsnenns 45 v
e3¢
1. NOAE ACHVILEScccuneeercneesansrnssnssssssssssasssssssenssessasssessasessessasssens 45 OO
Mty
2. ASSUINPHONS ...ccucuiuinsinsencresnsesssnsassssssncasssessessesssnsassssssnsasssssscsssans 46 :EE\
. N4
3. Process DESCHPHONccersessesssssssesensncsssesesesnsssesssasassssesssenens 47 >
RN
" 4. Program SLIUCLUIEcesssmcmsesssmemsanssssssassrsssssssesssass 48 ‘_‘-E:Q
bt
C. MACRO-DESIGN DECISIONSccccouvuirunseeesarsnssnsansassassessssassossessssnce 48 ;" A
1. ProCess PHOTILYcccccmermssisosssmmsscsssensossassssssssssssssssesassssens 48 {; g
"
2. System Message PasSing ..., 49 E.tf’;
N
3. Synchronization and Data Passing Mechanism 50 E:i:
)
4. System Shut DOWI ..., 51 '
5. External System Monitoring ..., 52

—m“mmmmmvmwr TWAT AU WM TV UK AR LR AR AM TN R AN 8 7 F T3 A "™ MW

3. CAlCUIALELccoceernecnecrncncssscsnssncssssessessesssssssssssssssssessesaosasssssnssssansansases 53

VI. EVALUATION OF THE VIRTUAL SHARED MEMORY IN A

MULTI-TRANSPUTER NETWORKcccccoerrernnriecerennesessensessessessoscssseses 56

A. OVERVIEW .. 56

B. MULTI-PROCESSOR REPRESENTATIVE PROBLEMS 56

1. General veeeesaressanesssnsssanssnrassnne 56

2. The Heat Flow Problemccccceitrenerenmneiirnncssessesesrsssscssssssssnsssssses 56

C. EVALUATION ...ococcrecrncrcorcsornesensssasssssssossassasssnssssessssonssssssssossassasesnsessssas 58

1. DeSCHPHONccovesvireissnccnisessnesncsnsssnssnesssssncssnsnrssssssasssssssassnsssasses 58

2. RESULILSccceectreereeenercaeseseseassssesesssassssssseesssssssesssesaressossssssesssssessasess 58

3. OLSBEIVALIONS ..ceouereeerreaccrenersssarssssenesssssassessesssssesessssssssssssessssesssasssse 60

4. CONCIUSIONS ...ucoerererssrsseessnsssacsacsssessassssesssessnssssessssessessnsssssasssnssssons 61

VIIL. CONCLUSIONS AND RECOMMENDATIONSccccccotmnrrennnceensennnsanes 64
A OONCLUSIONSccoceerneesssnessrencsassssssessassssssssssnsessssssssasssssssessasessassssnssss 64

B. RECOMMENDATIONScocccvvrrnsnnenncressncssesassasssssssssesssossesnsensossssess 65
APPENDIX A PRIORITY EVALUATION SOURCE CODEccccoeueemeeeees 67
APPENDIX B PROCESSOR DEGRADATION SOURCE CODE 73
APPENDIX C VIRTUAL SHARED MEMORY SOURCE CODE 75
LISTOF REFERENCEScccceccteeereesessrnneeesccssssssenssasessssssssssasssssesssssssssesssassssssns 101
INITIAL DISTRIBUTION LISTccuuuieiieeernenenrersereenssssssesersssssssssesssssssssssonsnnnsss 104

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.1
3.2
3.3
5.1
5.2
5.3
5.4
5.5
5.6
6.1
6.2
6.3
Al

LIST OF FIGURES
T414 ReGISLET St ...covenenrrrrircniictisannesisniancasanssssisssessesnssssssnssasssssssone 20
Instruction FOrmatiieieincsninssineisssnninnsscsnssnnsseienninisnes 20
Instruction FOIMNALccciinencmsnesnnniinnsiiisessisisscsmsosisssscns 21
Pfix INStruction EXAMIPIEc.cerverereresssssnmnssessssssssssesssssssessssssseses 22
Process WOIKSPACEcccvrrinniinnnncnncrnsssacsssessnssssscssssmsssssssssesssssssssesses 25
Process State RegISters.... e 27
Clocks and TIMINGcciiminimmmiommnmmmssisssssesesssssssssons 30
THDETS cccuuieinnennssnessensancssissussssnsnsesanssssssssssassssssasssassasssssssnsessassnssssessnessssssssnass 31
Accurate TINING LISHNGcceceereirermeecsessessscsessssssessesersesssssssssssossons 32
Transputer Link AITangements ... 35
CommuniCationNs SEt-UPcccmmnorinisisinsemenassssisisssssnsserasnsnssssss 36
Communication Reschedulingcieinnnnnnnnccneneneneneneesnenns 37
NOAE ACHVIHESc.coovirseecensanssissiesssssscnssnnannssssssessesseassessessesesssssnsssssssansasnes 46
Node Process LISHNGcecvcerenereernersrneessseencssensssenessssessnseressnsssssasessssnees 49
Shutdown Token Path ... 51
Filter Data Process LISHNGccccoveeerenenenersesersssssesssesssseseessesessnsense 52
UPAALE LISHNEv.ovoverrvecrrerienssensesssessssssssansssessssssssssssssssssssssssssssmsssessasesnns 54
Calculate LISHINGccccvviminnieniiennnnsesssinssnssmmsssesssssssssmssssssssssns 55
Heat Flow Through @ WITEcccccvvvuiinriinnnirnnneenneencciensneessneesesnsessenns 57
Performance COMPATiSONccoecervererererennnesesnenssssssesssssnessesssssnssserans 59
Ring Configuration Activity Analysis ... 62
Logical Structure of Processor Degradation Program 65
9

‘n .'.-\'.»"'«.-

w
N Y

¥

'-»Iz
l-l{.- ! :_. ','l.

4

[
5
“ NS

-."'h i

)s, .7 ." ., ")
‘ s

> »

DEDICATION
This thesis is dedicated to:

my wife, Susan,

and

our son, Timothy.

L0 A S P

M an e e S 3

e

X X

I. INTRODUCTION

A. BACKGROUND
A union of language research by CAR Hoare [Ho79] and the

advances of VLSI has produced a unique microprocessor architecture,
called the Transputer, which was developed in the United Kingdom by
INMOS corporation. The AEGIS Modelling Laboratory at the Naval
Postgraduate School has considered the Transputer as a very attractive
architecture for future weapons systems contrcl. Weapons systems
control computers in general have the following characteristics:

1. They are physically distributed,

2. They require fault tolerance,

3. They are required to be powerful enough to handle very high rate
of data now produced by sophisticated sensors,and

4. They are required to be flexible and extendible.

For the above reasons, multicomputer architectures are an attrac-
tive option for future weapons systems. Parallel systems intrinsically
provide three of the above requirements for a weapon system
architecture: high performance, fault tolerance, and extensibility.
These features are attained by synchronizing and coordinating the dis-
tributed multicomputer network to meet the required aim of the
application. Each of the processors must communicate with each
other. The most common methods of interprocessor communication
are shared memory and message passing. Shared memory communi-
cations allows data written to memory by one processor to be read by

others. Message passing is mainly point-to-point communication.

11

AN
- ’.r. ‘.

-

TP

P

{

ESAR YA \;F\}\ 4

T T N T O O O W U PV O I P U U U Y OO Y O ey v T G VP AN O e 7]

There are two major disadvantages of a message-passing scheme

compared to a shared memory. The first is that data from a data

I

structure in memory must be organized into messages, which incurs a

substantial overhead. The second disadvantage is that there may not

always be direct communication links in a network. Messages would
have to be passed from one processor to the next until the recipient
received it. The disadvantages of shared memory over message pass-
ing schemes are three fold. First, in a physically distributed system
shared memory would be difficult, if not impossible, to implement.
The second disadvantage is that processors must be tied to a high-
speed bus which soon becomes a bottleneck as the number of proces-
sors is increased. Other critics claim that memory and processor
technologies are increasing faster than backplane technologies and
that using a bus would prevent the use of the state-of-the-art micro
computers and adversely effect any extensibility [Wi87a]. The main

objection to the bus structure, however, is that the bus constitutes a

single point of failure and therefore is not suitable for fault-tolerant

~systems. E
b

B. MESSAGE-ORIENTED ARCHITECTURE S
The disadvantage of some multi-processor architectures that have %
been developed to date is that they are a collection of uniprocessors
glued by some technique of inter-processor communication mecha- 1
nism, typically shared memory. These systems are typically single- %
application oriented and inflexible. A philosophy behind the i
Transputer is that it is designed to be a multi-processor architecture 'E

AP TR At A, . -‘:-{* et L P
R e e

with a powerful uniprocessor capability. The inter-processor com-
munications system is actually designed into the processor and not a
glue. This message-passing scheme is implemented by four bi-
directional links. The bi-directional links are in fact two uni-
directional on-chip DMA channels known as link engines. This
provides several advantages:

1. An increase in processors increases the number of links which
may be operated in parallel,

2. Computation occurs in parallel with message passing. The CPU
can operate with minimal degradation during interleaved mes-
sage passing, and

3. Flexible networks can be designed, since position of processors
in a network is not critical.

The links are serially interconnected to reduce the space on-chip
and reduce the costs of interconnecting and production. This con-
trasts to present naval computers in use, such as the AN/UYK 7,
where the sophisticated DMA channels are not on-chip and have par-
allel connections. This increases not only the cost but also the com-
plexity of the system, since there must be additional hardware to
integrate the channel to the AN/UYK 7 computers for efficient mes-
sage passing.

C HARNESSING NETWORKS OF PROCESSORS
1. Efficiency
The aim of any network is to obtain optimum efficiency and
performance. The Transputer and OCCAM permit formidable systems
to be built. Given any distributed network, the most difficult problem

13

---------- SEIE SRS IR T O S DTS N '-.‘-\'
SRR RGIAARASCHRRANLS CLASAN OB AUAS LT L S5 08 SUERRNGHN (Xt

TAR L A

,'.,(

"—

"

e

h

] *:'.':\',\”E\‘C\‘ 2 AN

programmers face is efficiently synchronizing all processors in the

network. In a multitransputer network, processes that communicate
with each other do so synchronously. This makes programming sim-
pler but imposes higher system overheads, which may degrade system
performance while processors are idle waiting for the next data set to
process. Despite optimized inter-process communications hardware,
this situation can still exist with with the Transputer. The overheads
of the system are not only the idle wait period of network processors
but also that of routing messages throughout the network.
2. Programming Languages

To ease the difficulty of programming networks of Transput-
ers, the OCCAM programming language [In87b] has been developed as
the high-level language of the Transputer. OCCAM is a structured lan-
guage which addresses the two main issues, inter-process
communications, and parallel processing at the lowest level.

Although several programming languages for parallel pro-
cessing have been developed, few are commercially available such as
ADA and Concurrent Pascal [ShWa87]. Most of the languages use fea-
tures that are based on the assumption of shared memory, such as
monitor and semaphore constructs. ADA for the Transputer is being
developed by joint venture involving INMOS and ALSYS software house.

There are now compilers available for the Transputer for
other high-level languages such as Pascal, C, and Fortran, but they do
not have any ability to exploit parallel activity or communications.

Programming productivity could be enhanced by allowing program-

14

MO SV | WLETL L r LN E & A

~
.
Y

v,

mers to take advantage of these programming languages by using their
particular features, such as records and pointers, and “harnessing”
them within the OCCAM language features. This is particularly perti-
nent since OCCAM at present does not have well-developed high-level

programming language features.

D. NETWORK TAXONOMY
1. Homogenecous Networks

A homogeneous network is an MIMD network where each
node performs the same calculation on separate data. Two examples
of harnesses the power of homoéeneous networks have been
published: the Mandlebrot algorithm [Po85] and the ray-tracing
algorithm [At87, Pa87]. These exemplify methods of maintaining full
utilization of homogeneous computations throughout a processor
network with dynamic load balancing.

2. Non-fjomogeneous Networks

A non-homogeneous network is an MIMD network where
each node in the network may perform different calculations on sepa-
rate data sets. Not all applications have the property of all processors
using the same algorithm throughout the network. A weapon system
is a good example of this. Different processors may have different
responsibilities, such as navigation, radar data handling, and displaying
the data. Techniques for maximizing throughput in the published
examples are not suitable for non-homogeneous systems. Other
methods are required. One such method is synchronizing the system
using abstract data types called eventcounts and sequencers [ReKa79].

15

-
24

§ WY

%

% % e
>
O ?-

Lrers ';-::J’J'Ji "

l:.l’ "n:‘-".l’ .- .

', '.'l'?’

I
SN

RS
PP
ll.l."

TR
t'. .‘./

. 2

« ¢ o 0 ¥
‘3 e

-
‘s t‘w E‘- ﬂ &'-' v

This method of synchronizing distributed systems is ideally suited to a
network with low message-passing overheads.

E. OBJECTIVES

In order to explore the methods of programming the Transputer,
a full appreciation of its complicated hardware implementation is
needed. This thesis intends to build an understanding of the Trans-
puter model through the recently published literature and
experimental programming evidence. This should enable readers
some insight into what is required to optimize Transputer networks.

Further to the 'n-anspuier model exploration, the objective is to
create a prototype system to investigate an alternative method of using

and synchronizing Transputer networks.

F. THESIS OVERVIEW

The remainder of this thesis is organized in the following fashion.
Chapter II describes the two modes of computation of the Transputer,
sequential and parallel, a full understanding of which is necessary to
understand performance and optimization techniques. Chapter III
discusses the communication model of the Transputer in a network.
Chapter IV describes the Transputer network architecture and how
the network is connected. Chapter V describes the synchronizing
mechanism based on eventcounts and sequencers and the underlying

details.

16

)

Chapter VI discusses evaluation results and summarizes the
lessons learned and and issues raised during this exploration. Chapter
VII provides conclusions to be drawn and subsequent

recommendations.

17

P !fiffréfll‘-’f_'..‘

e
" la

’
s

A
PRPRRL T .._:.
R ISR

-

IO. TRANSPUTER HARDWARE IMPLEMENTATION

A. GENERAL
There are three subjects that need to be mastered before pro-
gramming Transputer networks. These are :
1. The programming language OCCAM;

2. The use of the Transputer Development System for the respec-
tive host; and

3. The hardware of the Transputer.

The language OCCAM is straightforward for anyone with a back-
ground in structured programming languages. The Transputer Devel-
opment System, however, is not trivial to master. Until now there has
been little detailed information on this aspect due to the rapid devel-
opment of the system. For the novice, detailed descriptions and
examples are contained in [Po87].

The Transputer hardware appears very much straightforward
when examining the architectural diagram [In87a, p. 34]. To under-
stand the differences between this architecture and the Intel 80386
or the Motorola 68020 architectures, and to fully harness performance
capability, a detailed examination of the Transputer model is neces-
sary. For ease of explanation, the Transputer model has been divided
into two naturally distinct models, the sequential and the parallel

models.

P

".‘u'. LN M

.

N

B. SEQUENTIAL MODEL
The Transputer is a reduced instruction set computer (RISC).

The characteristics of a RISC machine are summarized as follows:

1. Operations are always register to register. Only LOAD and STORE
instructions access memory only.

2. Operations and addressing modes are reduced. Operations usu-
ally occur in one cycle. Addressing modes are relative and
indexed (other instructions can be developed from these two
basic modes if required).

3. The instruction set is simple and instructions do not cross word
boundaries.

/ recent comparison of other RISC machines [GiMi87] showed
‘that the Transputer (T414 20 Mhz) is one of the most powerful RISC
architectures available with a 10 MIPS linear performance capability.

1. Register Set

The Transputer CPU is stack based with only six registers:
three system registers and three evaluation stack registers. The three
evaluation stack registers are labelled A, B. and C.

The system registers are the Workspace Pointer, which indi-
cates the process in execution; the Instruction Pointer, which points
to the next instruction to be executed; and the Operand Register,
which is used for the formation of instruction operands. This is shown
in Figure 2.1.

There are other registers available only to the system to assist
in processor management. These are two timing registers and four

registers to manage two task queues. These will be discussed in the

Parallel Model.

19

VA GEHEL YR '(LN A

RN AN RN M o A &)

M . . . e e LT P -~ o« -
.,nl\.‘,‘- '!A ey 4 ’_f ,.J'-’."' [..‘-"-"-. LS l"‘ "o e 0

Py wywywy

[A S,

e e ta ke a8 a2 a'h athaa s a'h acz a'h 0 b £ AR 0K R aa b G iod a0 i iat gl Aty Aig 87 L ATR 0 B8 A0 LY AV AV IR RS SEA Rak b M

I414 REGISTER SET
Memory
A
B
C ocal variable 3
al v le
Workspace Polnter flocal varlable 2
local variable |
Instruction Pointer ——m——
al variable O
Operand foc
Program
Workspace pointer - Indicates the executing
Process. P
instruction Pointer - is byte addressable il b t
Accumulators arranged In a stack
All registers are 32 bit

Figure 2.1
T414 Register Set

2. [Instruction Format
All instructions are eight bits long and are divided in two.
The low-order four bits are the data and the high-order four bits are ’
the opcode or function, as shown in Figure 2.2.

Instruction Format
7 4 3 0

Function Data

-

To Operand Register

Opcode
All Instructions are one byte long

Figure 2.2
Instruction Format

20

Tl

PR

i

P LA , Cas, T LR LR

»
DA O L S

The data is loaded into the lower four bits of the 32-bit
operand register and the opcode operates on the entire operand reg-
ister. This allows 32 bits of data to be used if required, as shown in
Figure 2.3.

All instructions load their data field into the least significant 4 bits
of he operand register -]

instruction operates on the entire Operand Registeras the operand

l 7 4 3 0
Function Data

Operand Register ‘ <—

31 4 3 0

Figure 2.3
Instruction Format

The fact that the function part of the instruction has only four
bits allows the Transputer 16 one-cycle instructions. Examination of
the instruction set [In87b] will show that 13 of these actually manipu-
late the processor. These single-byte instructions are the most fre-
quently used instructions, such as store, load, calls, and jumps. The
three remaining instructions manipulate the operand register. These
are Pfix, Nfix, and Opr. Pfix and Nfix manipulate the operand register.
An example of this is shown at Figure 2.3. Opr executes the instruc-
tion in the operand.

21

. -

Pfix Instruction Example

Instructton ==> Pfix Data03
Operand Data00|] DataOi] Data02

Before Pfix execution

Instruction ==> Pfix Data04
L
¢ q
i

Operand Data0O | DataO! Data02{ Data03

After Pfix Execution

Sequences of Pfix, Nfix instructions build up longer operands
in the Operand Register.

Pfix - copies data to least significant four bits and shifts left
four places

Nfix - same as Pfix but inverts the operand register before
shift

Figure 2.4
Pfix Instruction Example

The simplistic nature of this instruction set facilitates the
writing of a disassembler for compiled OCCAM code. There is a disas-
sembler available in the AEGIS modelling group written in PASCAL
[Br87]. This has proved most useful to unravel some previous myster-
ies of the Transputer.

Most arithmetic and logical operations are zero address
instructions which operate on the contents of the stack registers.

With the ability to manipulate the operand register, there is the

AR A" sl P TS S AR P L L AKX NBEBAS Dk L A AR

22

Lo Al "0 A0 Al Bl Aie-Aie Bie SNS_R -k A b S D Ant it A Skl

e
possibility of 232 possible zero address instructions. Further, the ?:\.:
Transputer uses a PLA in the decode path which presumably will allow s
instruction set redesign as the architecture matures [GIMi87]. ::Z;::‘

Memory utilization is a feature that the programmer must be s
aware of to optimize Transputer performance. Memory is divided into o
on-chip and off-chip memory space. The reason for delineation is that
on-chip memory is faster than off-chip memory due to time required -,.::"-'.
for external memory interface. Typical memory cycle intervals for a
data fetch are: on-chip memory, two cycles; off-chip memory, a
minimum of three but typically four cycles. This means that frequently \'
used data structures should be placed in on-chip memory for maxi- '\:f_
mum performance. -tf
Address space of the Transputer is signed. This is unusual '{" -‘
but should improve all logical and arithmetic address operations since ..:
there is no need to manipulate the values into one's or two’s comple- ‘.;
ment form for each operation. 0
4. Execution Speed
The Transputer instruction format allows many instructions ;:-::
to be executed in one clock cycle (50 nanoseconds). In reality, about f:"'-:
half the instructions require two clock cycles or less. The eight-bit :::
instruction and a four-byte word allow four instructions to be read at E__:
one fetch. This is an excellent feature since its provides a virtual ‘}
four-instruction cache without the cost of on-chip space. Another ?:_
important advantage of this feature is that it provides an almost total EE\
>
23 R
A N L e o S (il Lo (o T e TN A Iy AT e e S -‘.-:E:

decoupling of instruction execution speed from memory speed. The
only exception to this is when the prefetched word contains an
instruction mix of one-cycle instructions. This means that the loca-
tion of the program is not critical for performance maximization.
Details of the implementation of the sequential model is contained in
[In87D]).

C PARALLEL MODEL
1. Qverview

In either model, the basic execution unit is a process. A pro-
cess may consist of many sub-processes executing concurrently, time
sharing the processor. A process may be allocated one of two priority
levels for execution. The higher priority process is uninterruptable. It
will run until blocked by communications or timer inputs.

Although not explicitly stated, the parallel model is based on
the following assumptions:

a The shortest context switch is made by saving the least amount of
data for any given process,

b. A process must do 1/0,

c. A process not doing I/0 is in a loop and must eventually execute
either a loop end instruction or jump instruction, and

d. A high-priority process needs to execute as soon as it is ready.
Most multi-tasking for any system takes place in an operating
system. This is not the case with the Transputer since it is imple-
mented in the hardware. The parallel model requires the following

hardware support for implementation :

24

RN IRAAINRDIO 3%

..
LY
S
et

LN

P4
e
s
: :;&:-'
a Two timing registers; ,::: :
lr~¢
1,
b. Four Process Queue Registers; and G
M
c. Special registers for saving some process context switch data. -
N
‘h
2. Process Representation NOL
v
Initiation and termination of processes may be performed s
| either at compile time or dynamically. Each concurrent process is O,
| %9
‘ ‘l‘ &
represented by a vector of words in memory called the process ."_2:
h:.'\'.
‘%
workspace. This space is used to hold the local variables and tempo- :;.;'j.
rary values manipulated by a process. The workspace is organized as a ..
falling stack with end-of-stack addressing. All local variables are g
o
NN
addressed as positive offsets from the Workspace Pointer. DA
P)
Process Workspace
Memory
workspace -
used to hold local variables and
temporary values manipulated by the process d
oy
. ::54.
workspace Pointer -l
- -l
: Instruction Pointer ::f
local variable2 — location for descheduled process ST
local variabiel S
e
local variableQ linkage information for scheduling KON
< communication and timer inputs e
B
<+
‘::k
WAk
a ot
Figure 2.5 Ay
.
(S
Process Workspace -é
o
N
N
\.'\d‘
Py
__\:H

. e i » i . g
) b alamls abe s AVa Ris 5% A% &' £ 27e 42 A% £'2.6°2 A 0°0 8 BB R A" Aub” o8 _Pal ot St 4 * L 4N -¥ s

There are other locations associated with the workspace
which are used by the operating system. These locations are used for
linkage information such as scheduling, communication, and timer
inputs and are addressed as negative offsets from the Workspace
Pointer. This linkage space varies depending on the the synchroniz-
ing constructs used by the process, such as ALT, TIMER, or any com-
munications. When a process is descheduled, the Instruction Pointer
is stored in the word below the Workspace Pointer. Details of the
linkage area are given in [In87d].

A process is in one of three states: executing, ready, or
blocked. The executing process is found by examining the contents of
the Workspace Pointer Register. Ready processes are placed in one of
two queues. Blocked processes have their workspace pointers stored
in appropriate words which are used to relink these processes to the
necessary queues when they are rescheduled. The Transputer
maintains two ready queues, one for each priority. Each queue is
maintained using two registers; one points to the Workspace Pointer
of the head of the queue and the second points to the Workspace
Pointer of the process at the tail of the queue. Each process has
associated with its workspace a word which indicates the next process
in the ready queue. A diagram showing the logical structure of this
organization is shown at Figure 2.6.

26

. ..'.‘ ; -

I C e 0 ¢ °

PP ALAs

NOORRXA, TR

o

-
v

l’.u"n' X

R i 4 '..'..'..'. ™
SN RRRARIIN) %7

Process States - Executing and Ready

wreg Executing Process
—>

workSpace Pointer

High Priority Scheduled Processes
Queye Reqisters

Head HPOI | HPO2

Tail
4

led Pr
Queue Registers Scheduled Processes \

Low Priority
Each box represents

HPO3

-

Head LPO1 LPO2 a process workspace
Tail l-
Figure 2.6

Process State Registers

3. Process Priority and Intrrupts

When a high-priority task is ready and no other high-priority
task is executing, it preempts any low-priority task that may be exe-
cuting. Generally, this takes place at the end of the current instruc-
tion. Some instructions are interruptible; for example, block move
or 1/0 instructions. Full details of interruptible instructions are in
[In87d p. 30]. This preemption constitutes an interrupt. The state of
the low-priority process is saved in special system memory locations
at the low end of on-chip memory and the workspace pointer is

placed at the head of the low-priority queue. The process context

27

switch time is low since it need only save six registers and memory
allocation for saving the state is on-chip.
4. Process Scheduling
There seems to be a widespread misunderstanding that the
low-priority processes are time-sliced. This is a misnomer since

there is no fixed period for process descheduling. The mechanism

works according to the following rules:

a A process will be descheduled when it attempts to synchronize
(via communication) with a process that is not yet ready to syn-
chronize, or when it attempts to communicate externally using
the hardware links.

b. If a process does not perform any I/O for more than one
time-slice period, it will be descheduled at the next
descheduling point. Details of these instructions are given in
[In87b p. 66].

5. Iime Slice Periods
A time-slice period is defined as 1024 ticks of the high-pri-
ority clock. When the one-time slice period has occurred, the pro-
cessor will attempt to deschedule the low-priority process that has
been executing. Each time the process reaches a descheduling point,
the processor checks to see if a time-slice period has elapsed. If so,
the process is descheduled and added to the end of the appropriate
list. In short, the minimum period of time for “time-slicing” is one
millisecond, with the expected maximum period being two
milliseconds.
6. Overheads
There is full instruction level support for context switching

which provides very low overheads. Sub-microsecond context switch

28

E'c;t'.‘;.:;gl ; Y e s L e e AN S R R T TR A T S TR TS TP I

é
!
|
!
'
!:

S AR LT 0,

rd

times are quoted by INMOS [In87b, In87c] for a 20 Mhz processor.

Experimental data has shown that overheads are one microsecond on
the average.
7. Programming Practices

It is important to understand the parallel model since it does
have an impact on high-level programming practice in allocating pri-
orities to processes to ensure efficient process execution. The lesson
is to avoid placing a computation-bound algorithm in a high-priority
process. High-priority processes should be kept short and I/O bound;
otherwise, network performance will be sub-optimal.

This aspect of the model was investigated in the following
manner. A simple calculation process which ran for a known
execution time was placed as a background process to a high-priority
process. The background process executing time was delayed by the
length of the high-priority process, which validated this aspect of the
model. Further investigation proved that placing a computation-bound
process in the high-priority queue did in fact degrade the perfor-
mance of other high-priority processes. The conclusion from the
investigation showed that high-priority process allocation should be
given to message-passing code. This allows all network messages to
be passed as quickly as possible. Further discussion and examples are

provided in [At87].

29

b g 2 o R

Ty

e i ma B e

D. TIMERS AND TIMINGS
1. Qverview
The Transputer has two 32-bit timers. The timers provide
accurate process timing and allow the programmer to deschedule
processes explicitly until a specified time. Implementation is shown

in Figure 2.7.

Clocks and Timing
A Accyrate Timing Construct B._Pracess Descheguling Construct
m;:‘ EsF:ai]t?csiop :' PROC deschedule (VAL INT time)
SEQ
clock 7 start TIMER clock
.. sequential code INT now :
clock ? stop SEQ
clock ? now
clock ? AFTER now PLUS time

Figure 2.7
Clocks and Timing

A diagram showing processes on the timer queues is shown
in Figure 2.8. The main point to note here is that use of timing queues
is expensive in cycle time (30 cycles) and is dependent on the length
of the queue.

2. Use of Timers for Timing Constructs
Timing constructs should be used very carefully. This is

especially the case with parallel constructs and timing communication

30

rates. Thorough investigation into the use of timers showed the fol-

lowing results: '

a An elapsed time construct as in Figure 2.7 provides elapsed time
from start to finish. However when used in a parallel construct,
this also includes context switch overheads and time spent in the
queue and not just execution time of that process.

b. Enveloping a PAR construct with an elapsed time construct
includes spawning, executing, and context switch overheads X
needed to execute that construct. :

c. Timing communications constructs (either input or output) can-

| not be considered accurate due to the nature of the communica-
tion implementation. This is especially so with external link

| communications, since the link engine is a DMA channel and
! communication is decoupled from the processor until finished. .

Timers

‘/ Hi/low

clock register

PR

Comparator Next Time

L Head —{T T2 T3 T4 !

Each process is descheduled and placed in the queue

according time order The Next Time register is obtainegd

from the head of the queue when the time is reached the

process Is rescheduled and the next time is placed in the register
for Comparisen. ’

Figure 2.8

Timers

4 3. Programming Practice
B The use of the elapsed time has been useful to accurately time
sequential in-line code and useful for estimates of time for parallel

: construct code. For the most accurate timing of in-line code, it is
" recommended that the process be run at high priority so that the one
. microsecond clock is used. An example of this is shown in Figure 2.9.
Y
N
. Accurate Timing Code
E PRI PAR
p TIMER clock :

0 INT start, stop :

¥ SEQ

y clock 7 start

. .. timing code

_ clock 7 stop
; SKIP
R
L)

‘ Figure 2.9
¥
Accurate Timing Listing

It is also worthy of note that using timer constructs is expen-

sive in cycle time. For example the instruction timer input has a

by worst case of 30 cycles. This may be important when programming
y real-time programs.

Processes executing in parallel have a requirement to com-

. municate with each other. This aspect of the Transputer is investi-

Y

gated in the next chapter.

T T

" 32

() Yo PP Y e Y N W,V LN "."\-"'".'-r"."r'f'f\f'-f
'l‘c‘l’n 1, 'Q.'.l 0'-‘\'?!".‘9 A LA LA AS (Y) ...'lhb) .'_ .. "y, '. '(I f W .F\‘r ,\ N 2 .

N

-t

R N P N
LR AU LS

AN S

- - -

e e W

-

RS S

m. COMMUNICATIONS

A GENERAL

The most powerful aspect of the Transputer is that it is specially
designed for the two main criteria of multi-processor architectures:
parallelism and inter-process communication. Understanding the
communications mechanism of a network allows a programmer to use
these features to advantage in the pursuit of optimizing network per-
formance. This chapter discusses the essential performance issues of

Transputer communication.

B BASIC NOTIONS

In the Transputer, concurrent processes communicate syn-
chronously by using channels. Communications only occur when both
the sending and receiving processes are ready. This model was devel-
oped by C. A. R. Hoare in the experimental language CSP [Ho79].
OCCAM contains a construct which implements an abstraction of CSP
synchronous communication. This abstraction is called a channel. A
channel may be described as an unbuffered, unidirectional connection
between two processes. The construct is the same for internal or
external inter-process communication. There is a difference,
however, in the way each method of communication is conducted.
Internal communication is achieved simply by memory-to-memory
data transfer. External communication is conducted by one of the 8
DMA link engines. Each link engine corresponds to an external chan-

nel. Each Transputer link has two unidirectional channels.

33

O - . P T T
-.'\.." ., -!. A AR f‘ff_f

i maa

- B A A o WS

r——wmmmmmmwm APYIAR R AT W M N S w W g T T LW T LY

C INTERNAL COMMUNICATION

A channel is a single word in memory. This channel is assigned to
the two communicating processes by the programmer. At compile
time this channel is assigned a specific word in memory. This word is
used to hold either an address to a process’ workspace or the special
value 80000000H (the minimum integer) which represents nil. All
channels are initialized to nil at compile time.

To exemplify the communication, assume there are two concur-

b
>
-
.
"

rent processes, Alpha and Beta, in a single Transputer. Alpha is the

sender and Beta is the receiver. Suppose Alpha is ready to send, and

(SRR
PP

Beta is not yet ready to receive. When Alpha attempts to communi-

cate, three items are loaded into the stack: the address of the dedi-

RN

cated channel, the address of the message data structure, and the
length of the message. Once this information is loaded, the output
instruction is executed.

Upon execution of this instruction, the channel word is examined.
If it contains the nil pointer, it is the first process to attempt to
communicate and accordingly places its Workspace Pointer (contents
of the WReg) and Alpha’s instruction pointer (contents of the IReg)
and the message length and pointer in the linkage area below Alpha's

workspace. Alpha has now been descheduled and is in a blocked state.

Alpha will remain blocked until such time as Beta attempts to

Cete v o
'-'-"l * P
t B L

communicate via the dedicated channel. When Beta attempts to ‘
receive, the same information is loaded into the evaluation stack and ':'
N
the value stored in the channel word is checked. This channel word --f:~
N
~)

34

.....
BAC A Y .
AR RN 'k.

R PR L

- 3 c Ba® ¥a" bavala . ba 02" e oA : : ~ab o tale ol A, v,
2 ek 5o Al e Ba6 B Bat dnt D2t £.8 Fa #a® Da* Gat 2o fla¥ Bedlav Lot tat Rt ga 1 Yg® bR ald o ba‘ 00 4 av T « ol Gl ¥ . L

! now contains the pointer to Alpha’'s workspace. The processor now

conducts the transfer by block move, after which the channel word is

»:s re-initialized and Alpha and Beta are rescheduled. The com-
ity
:.:: munication process is symmetrical; if Beta had become ready first
. then exactly the same procedure would be followed but in the reverse
y order.
>
a
D. EXTERNAL COMMUNICATION

When a process wants to communicate with an external process,
E: it does so by using one of the 8 DMA link engines. The link used is
x.
‘\' explicitly allocated by the programmer. This selection is dependent
v on direction of communication and the network topology. The link
'}x arrangements are shown in Figure 3.1.
< SO
A
T

¥ ' Link Arrangements and Corresponding Channels

o inkain 80001CH

0 Link 1 link2ln 800018H
] fink1in 800014H
“ [}

e _>' Link O Link 2 4_; inkoIn 800010H
b \ link3out 80000CH
N Link 3 link2out 800008H
hi linkout 800004H
.'h' Tl linkOout 800000H
4y

i Coresponding

: Transputer Links As Channels Memory Locations
%
13

b Figure 3.1

’I

b Transputer Link Arrangements

7

o

»

4 35

,l

‘.

’,

A

| o
T D O A G e e TN A N

P K

W ¥ R T Y K

v rEY

vy

F—-—v‘v—'wm"'“ 28 ok $a8 £a8 28 7ok Saf “al Eaf $28 Aad P20 L0 GA D RTI B La'E 0 LR g b g kS oh) Sug b LU A L g Sk Gl Gah g Vet A Sl Sl Sl gl AR R R A) |

Each link has a dedicated channel word which is placed in one of
the eight lowest words of memory in the Transputer. Given exactly
the same example as above, but each process in separate Transputers,
the procedure for communication is followed as described above with
the following exception. The use of special channel words is detected
and the three pieces of information are sent to an autonomous link

engine interface unit. This is shown in Figure 3.2.

Link Communication

A Count Link Registers Link Registers A Count
B Link p—d <4 - g Link

C Pointer C Pointer

Twigted Chblt
Stack Stack

Communications Set Up

Figure 3.2
Communications Set-Up

Alpha is blocked until the link engine has completed the block
transfer. Once the transfer has been completed, both processes are
then rescheduled by placing the Workspace Pointers in the link
interface units on the appropriate queues, as shown in Figure 3.3.

36

oo S Bl i

PUPRIR | CPEPRPLPLIRILIY PR T W W

2 1W -

TatmTYTETs

S 4.

Link Communication

Link Registers Link Registers

orkspace Ptre€- —> Workspace

-~

Pointer | Twitted Chble Pointer

ount Ibount ,

Workspace Workspace

Communications

After communication is finished, processes are rescheduled by DMA link
engine and the Work space Pointer is placed in the appropriate queue.

Figure 3.3
Communication Rescheduling

E. LINKS

Access to the links is via the processor controlling the link
engine. Each link wire has a separate DMA channel so all engines may
be active simultaneously. The DMA engine interleaves all memory
requests appropriately. The control registers of the DMA engine are
memory mapped. Although the link protocol is an important perfor-
mance parameter in examining data throughput, this subject is not
covered in this paper. [Va87] provides a detailed description of the
topic. Other pertinent information is that there is no error checking
done with link communications. However, if the length of link twisted

cables is greater than 0.9m, suitable error checks should be made.

37

S P NN

DA e]

F. PROCESSOR PERFORMANCE
There are two main areas where link communication will influ-
ence processbr performance: |

1. Communication transfer setup time, which is approximately 21
cycles per message for external links {In87b].

2. DMA link engine cycle stealing, which consumes typically 4 pro-
cessor cycles every 4 microseconds per link engine.

Significant to processor performance is the link engine’s usage of
the internal bus during any inter-processor communication and its
potential degradation of the processor utilization. Cycle stealing by the
DMA link engines yields varying degrees of performance degradation
for given instruction mixes. An investigation was made into the use of
the internal bus in an attempt to quantify maximum performance
degradation for particular instructions.

Discussion with an INMOS consultant [Ma87] revealed that, when
the process conducting I/O and the process using the processor are of
the same priority, the internal bus gives priority to the link engines
over the processor due to their lower bandwidth. A higher-priority
process will always preempt lower-priority processes from internal
bus usage. This means that, to ensure efficient network communica-
tions, processor performance will always be degraded to some degree
since computation bound processes should be run at low priority and

hence would never have bus priority.

G. EVALUATION
Two operations, divide and block move, were selected to deter-

mine the maximum performance degradation. It was anticipated that

38

o a0a 21, 4T 400 AV AR o at "alecatetale Ao At el a0 a0 Sl ot aale ik Ml Al tal Salatalh Tl Sal o Nal Sal AR Yal Vb tall ta b

the degradation of the processor would be the greatest for the opera-
tion with greatest amount of memory access time. Each background
process, consisting of several iterations of instructions, was timed
with no link operations and then as a background process with eight
link engines in operation. All programs were on-chip. The evaluation
program is shown at Appendix A. The results are shown in Table 3.1.
TABLE 3.1
BACKGROUND PROCESS DEGRADATION

TABLE 3.1 - Backgraund Process Degradation
Block move Divide
Iterations In-line Background % In-line Background %
50 4167 4600 (72) 9.0 223 192 (3) -
100 8333 10688 (167) 22.0 445 448 (7) 1.0
500 41658 44736 (699) 6.9 2217 2368 (37) 6.3
1000 83316 86336 (1349) 35 4433 4800 (75) 7.6
5000 416573 420736 (6574) 9.9 22156 25088 (392) 11.0

All results are shown in high level ticks (1 microsecond) for both
the In-line and background process execution. They represent the
execution time without and with link interference respectively. The
bracketed figures are the low level ticks recorded for the background
calculation with the four link interference. These low level ticks re
converted to high level figures for sake of comparison. The

appropriate percentage degradation is also shown. The expected

39

NN L o AN

W T i

-

results were that block move instructions would be delayed by 12%

and divide instructions by 9%. Divide operations gave varying
performance degradation between 1.0 and 11.0% and block move of
3.5 and 22.0%. Within the basic understanding of the Transputer
model, this is difficult to explain.

Based on the fact that links transfer one byte of data every 23 bit
times and a minimum instruction fetch at 200 microsecond intervals,
eight link engines in operation for the T414 Transputer link protocol
(16 processor cycles every 4 microseconds), the absolute maximum

degradation possible is 25%.

H. PROGRAMMING PRACTICE

Investigation into this aspect of processor performance has shown
that in a network, to maximize performance, the largest overhead in
message passing is the transfer set-up time. More studies need to be
conducted to verify it. Discrete messages should therefore be kept as
long as possible, which agrees with [At87].

Further discussion with an INMOS consultant [Ma87] revealed
that The Royal Signals Research Establishment, United Kingdom, has
studied the overheads of network message passing concerning
processor efficiency and the optimum message length was found to be
between 10 and 100 bytes.

Understanding the fundamental Transputer models is the first
step toward use of the Transputer in a particular system architecture.
The next step is harnessing the optimized multiprocessor

characteristics. Chapter IV looks at a method to use these features.

40

!
*

A o = S

P

ATV RS S

s A YD,

IV. MULTI-TRANSPUTER NETWORK WITH GLOBALLY
DISTRIBUTED VARIABLES

A. INTRODUCTION

The aim of this chapter is to lead the reader into what motivated
the design of multi-Transputer networks with globally distributed
variables. We briefly discuss what configuration was selected, and
briefly describe the synchronizing mechanism to implement the
design.

B. MOTIVATION

One successful method of harnessing multiprocessor systems is
implemented using shared memory and global variables. Processes
may communicate by means of globally shared variables maintained in
a physically shared memory. The reading and writing of these vari-
ables is controlled by an operating system which en<ures reading and
writing is achieved in a carefully synchronized fashion. For example,
using the classic producer-consumer paradigm, the operating system
will ensure that any writing to a global data structure is completed by a
producer before any consumer process can read such a data structure.
One such mechanism is described by Reed and Kanodia [ReKa79] and
showed its implementation within a shared memory environment.
This synchronization is based on eventcounts and sequencers. Such a
synchronization system was used in the MCORTEX operating system
[Ga86, Ko83], which provided very satisfactory performance results.

The features of the synchronization mechanism in particular are well

WmmWWW)’“‘P RN TN WNT NI WT, .T

suited to physically distributed systems such as multi-Transputer {
networks.

The problem domain is harnessing the network to its full poten-
tial, given the two factors of proven multiprocessor synchronization
mechanism and a powerful Transputer multiprocessor architecture.
Our proposed solution is a network of Transputers which share no
physical address space but maintain an equivalent of a physically
shared memory system by replicating the global data structures
throughout the nodes in the network. Each participating node pro-
ducing any new value for any global data structure would broadcast this
value throughout the network for updating the other node's replication
memories. This is called a virtual shared memory system. In this
system, network communication is conducted with minimal
degradation to each node's processing power. To achieve this, the
network must be set up in an optimum configuration to ensure optimal

performance.

C OPTIMAL NETWORK CONFIGURATION

The four links of the Transputer allow flexible network configura-
tions which are application dependent. [Be85] discusses optimal
configurations of multi-Transputer networks. The superior network
configuration for implementing the virtual shared memory system is
the delay insertion loop structure [We80]. The reasons for such a

selection are as follows:

RPN AURRARIU] WA NN

1. Addressing schemes overheads are minimal.

42

|
\

EX AT AP I Yl L

I

2. A transmitting node needs to know the location of any receiving
node.

3. Message broadcast is facilitated.

4. Node connections can be established quickly and easily. (This
may be software controlled using an INMOS C004 connection
scheme [In87e].)

5. A loop configuration allows a high message throughput rate.
6. A loop structure enhances modularity throughout the network.

The major disadvantage of the system is its reliability due to its
serial nature. This is recognized but ignored for sake of evaluation.
Fault tolerance within this system is another issue. The prototype for
the virtual shared memory system therefore uses only a unidirectional
ring structure.

Source code for the ring is shown at Appendix B. The ring size is
dictated by the structure of the INMOS B0OO3 Evaluation Boards. Con-
sequently, the minimum size is four nodes and increments are in mul-
tiples of four. Other network structures are shown and discussed in

[Hi).

D. EVENTCOUNTS AND SEQUENCERS
1. [Eventcoynts
An eventcount [ReKa87] is an abstract data type (ADT) which
maintains a count of the number of occurrences of a particular class of
events within a system. It is implemented as a non-negative integer
variable initialized to zero. Associated with this ADT are three primi-
tive operations as follows:

a. advance (Event.count)

43

A 1T

b. read (Event.count)

c. await (Event.count, Threshold.Value)

Advance causes the value of the eventcount to increment by
one. This signals another occurrence of an event associated with that
eventcount. Read returns the present value of the eventcount. Await
provides a non-busy wait synchronization tool which deschedules a
process until such time as the eventcount has reached or exceeded
the threshold value. Thereupon it is rescheduled for execution.

2. Sequencers

The sequencer is also an ADT. It is designed to provide total
ordering of events within the system which is implemented as a non-
negative integer variable. The only operation associated with it is
ticket(This.Sequencer). This operation returns the current value of
the sequencer and then increments the sequencer value by one. The
concept is analogous to the barber shop ticket system when, upon
entering the shoﬁ, the customer takes a ticket and, when the barber
calls his number, he is the next person for a haircut. This mechanism

provides mutual exclusion for system resources if required.

E. EFFICIENCY

The software design objective is to minimize processor idle time
and maximize system throughput. Multiprocessor systems will suffer
reduced efficiency by bottlenecks due to serialized processing caused
by inadequate synchronization. With careful attention to the multi-
Transputer network architecture and use of eventcounts and

sequencers, these bottlenecks may be avoided.

44

V. DESIGN AND IMPLEMENTATION OF A VIRTUAL SHARED
MEMORY IN A MULTI-TRANSPUTER NETWORK

A OVERVIEW

This chapter attempts to walk through all the design issues
involved in designing and implementing a prototype virtual shared
memory system in a multi-Transputer network. The aim of the chap-
ter is to document the design decisions so any subsequent work in the
area may benefit from both the strengths and weaknesses of these
decisions. The design process was an iterative one. Changes were
made as an understanding of the models discussed previously became
clear. The issues are dealt with from a top-down design view of the
problem. Consequently, this chapter is divided logically into system
model and assumptions, macro-design decisions, and micro-design

decisions.

B SYSTEM MODEL AND ASSUMPTIONS
1. Node Activities
Each node during system operation will have three major
activities:
a message routing,
b. updating all incoming global data structures, and
c. calculation of data for distribution.
These activities are directly mapped to associated processes
labelled filter.data, update, and calculate. Their logical structure is
shown in Figure 5.1.

45

B e
. . D s a T "
PR .
(L A R R . CIAC A

LOENS(FAARARRAA WLISET R | Y R RIARA L TR

VIRTUAL SHARED MEMORY NODE

FILTER.DATA

From
Next

Previous
aur / UPDATE
DATA
NODE CALCULATION NODE. UPDATE
Figure 5.1
Node Activities

2. Assumptions
The design decisions discussed in this chapter are based on

the following assumptions :

a All nodes in the delay insertion loop are connected by DMA link
engines with a 20 Megabit/second capacity.

b. The minimum size of the ring is four nodes.

c. The ring is incremented in multiples of four nodes.

LIRSS
-~)‘\.r

v,
o

''''''''''

Y 3 a5 et FWYWUwWU Ty W . VA NS AN oSN %8 20 'R AU GV ot AN B A ST A AR A L B R AR A gt A Al A Al Al -

d. The system is responsible for calculating a given global data
structure for a particular class of problem domain. Each node is
responsible for calculating a particular section of the system
globally distributed data structure and distributing the resulting
data throughout the system.

e. Implementation of the global data structure is accomplished by
each node maintaining a replication of the data structure so that
at any stage of system computation any node can provide the sys-
tem state of computation.

f. A system state of computation is provided by monitoring the sys-
tem eventcount status.

g. Total ordering of events throughout the system can be provided
by sequencers.

h. Only one specified node is responsible for providing external sys-

tem status monitoring. This is referred to as the Input/Output
node (I0.node).

3. Process Description
& Filter Data Process
This process is the delay insertion ring emulator. It is
responsible for placing the node’s updated data on the ring and
removing messages the node placed on the ring. This process is the
crux of the ring configuration. A major design decision in this process
was a modification of the strict implementation of the delay insertion
loop. A variable number of messages per node is permitted instead of
the single message. This was implemented to permit determination
of the optimum message passing method in the loop structure.
b. Update Process
Update process is responsible for updating the global
data structure as the Filter.data process passes all system data to it.

This includes its own data updates. This was a specific design

47

.......

RPN

AN

Ab bbb Al A e bl b R AN e b o bk ke lhe A 20

decision so that only the Update process could write to the data
structure. The Update process, which monitors overall system status,
synchronizes with and sends the appropriate values to Calculate.

c. Calculate Process

The Calculate process encapsulates the node calculation
routine for providing updated data throughout the system. Each calcu-
lation provides the nodes updated data which is placed in the ring for
distribution when the Filter.data process is ready to do so. This pro-
cess is responsible for advancing the node’s eventcount and issuing
sequencer requests as appropriate.
4. Program Structure

The global data structure replicated within the node is
considered an abstract data type with the operations within the update
process, providing read and write operations on the data structure.
Other abstract data types within the node are the eventcount for the
node and any sequencers that may be required within the system. The

OCCAM code for the node processes is shown in Figure 5.2.

C MACRO-DESIGN DECISIONS

1. Process Priority
Examination of the program structure in Figure 5.2 shows the

use of the high-priority process queue for message passing. This

ensures that any message received is dispatched without delay to

Al VMW,

ensure good system performance. Update and Calculate are low-

priority processes and will execute in round-robin fashion when no "
=
)
¢

48

T A"
‘?‘4"'« e ..’i !

no messages are to be dispatched. All processes which use the link

engines should be run at high priority [At87].

NODE PROCESS

INT event.count
[node.no]INT eventcounters
[node.no * block.size]INT array
CHAN OF ANY ext.in, ext.out, int.in, int.out, data
PRI PAR
filter.data(ext.in, int.in, int.out, ext.out)
PAR
update(int.out, data)
calculate(data, int.out)

Figure 5.2
Node Process Listing

2. System Message Passing

Data communication is conducted by transmission of three
discrete items: node identification, node data, and node data event
count.

Each node receives these three items and either sends the
message on or withdraws it from the ring. The present implementa-
tion presents the worst-case efficiency since three messages are dis-
patched and received for one data message produced by each node.

The alternative design is to package the three items in one
data structure and send the data structure to each node. This would
require an overhead of every message being encoded and decoded for

each insertion and receipt at each node. These overheads would be

49

R

minimal to the overheads of 63 cycles per message incurred by each
node for each communication set-up.

A basic two-tiered message passing scheme is implemented
for the system to distinguish data packages and system coordination
messages. Basically, any message with a non-negative integer header
is system data, and negative headers are system manipulation calls
such as sequencer requests and shut down calls.

Typing of channel protocol was not attempted for the con-
struction of the ring, since it was not desirable for a development sys-
tem which may need a flexible communication protocol. However, it
is considered an important aspect to modularity in future development
of such systems. For example, if for a given system a design decision
was made concerning the message format and content, typed chan-
nels would provide valuable checks for module correctness and system
compatibility at compile time. This would be important for non-
homogeneous systems in modular development. For any subsequent
work in this area, it is recommended that protocols be used after effi-
ciency issues have been resolved and after adequate modular testing.

3. Synchronization and Data Passing Mechanism

The eventcount primitive await has not been implemented in
this prototype. It is possible to implement an alternative to read by
using the read primitive of dependent eventcounts together with the
use of an internal channel to provide system synchronization. This is
the case with the synchronization method between the Update and
Calculate process.

S T N T e T I TR R U i S L P S I A
P T g P R e P R sy T SoL AT

......

4, Cus

aln,

o A A 9 g 4

AP

"oy w4

W NPT,

This is not the only method of synchronization and internal
node data passing. In certain instances, passing data by reference may
be a more efficient method. This would require a sequential, vice the
parallel, construct. Passing data by reference method was not used for
this implementation because it was considered a restrictive method
for system inter-node synchronization. The merits and examples of
data passing methods are described well in [At87]; it is particularly
suitable for certain data flow architectures.

4. System Shut Down

System shut down is achieved by passing two tokens. The
first token informs all nodes to cease calculating and sending any fur-
ther messages; the second shuts all system processes down.

The route taken by these tokens is shown in Figure 5.3. The
criteria for system shutdown is flexible and may be generated either by
a node in the loop or by the external system monitor.

Shutdown Token Path

FromPrevious
ToNext

Filter.Data

<

Calculate Update

Figure 5.3
Shutdown Token Path

51

L

. ‘e w Ny " A W e & wm a LR e % L . L v e % % TN e - L N o N -~ v " ‘el]
J-,-"..r . .-.-.'_.'\, AT T N '}.'-','—','-\'\-':\ TR .__: e ~ 4-:'_-") ‘_‘-. NS ‘..‘\.,\..,‘.(_ O

5. [External System Monitoring
The state of the system is monitored by a process external to

the ring structure. The IO node is responsible for tapping all mes-
sages to the external system monitor. The system monitor may then
either display the system state as required or provide any necessary
input data for the system operation. This process is the user interface

to the system.

D. MICRO-DESIGN DECISIONS
1. Filter Process
The Filter.data process is solely responsible for the routing of
messages throughout the system. Basically, the OCCAM language con-
structs PRI ALT/ALT easily allow multiplexing of data from several
input channels. In Filter.data, there is one internal and one external

channel to multiplex. The code for Filter.data is at Figure 5.4.

FILTER.DATA PROCESS

PROC Filter.Data(CHAN OF ANY External.ln, Internal.ln,
internal.Out, External.Out)

... PROC buffer 7
.. PROC mix o
CHAN OF ANY own.data, other.data "
PAR e
Bufter(External.in, other.data) oy
Buffer(Internal.In, own.data) -
Mix(other.data, own.data, Internal.Out, External.Out) ._.‘1
::::\:

Figure 5.4 =

._;.I

'b._'

Filter Data Process Listing .

R

One very important rule for using link engines for extensive NG
data routing processes is always use buffering to decouple the link N
.

-

52 o

s

_8

A L o 1 A T N S S A P S S U AV Vi

from the multiplexing process [At87, Pa87]. Failure to do so may
result in deadlock and reduced efficiency. This occurred in a
preliminary version of our implementation. It was found that without
buffering, deadlocks occurred, especially as the number of nodes
increased (as greater message traffic or number of messages allowed
on the ring per node increased). Buffering the link engines allowed
processes to run without any deadlock.

A corollary to the buffering rule is always decouple link
engines from computation. This is a matter of efficiency, however,
and not deadlock prevention. Decoupling link engines actually allows
real concurrency of input, computation, and output.

2. Update

The main design issue is access to the globally distributed
data structure. Only this process may access the data structure and
send the appropriate data to Calculate for the necessary calculation.
The two-tiered message passing scheme is supported throughout.
Figure 5.5 shows the basic structure of the Update process.

3. Calculate

This process is responsible for the system calculation and
event count advance primitive. The two-tiered message passing
scheme prevails. Figure 5.6 shows the basic structure of the Calculate

process.

A AR ATats

T T T T T O T T T N I R W U L OB LR LS W

sl sl b8 g il Y,

PROC update(VAL INT machine, CHAN OF ANY in, data)
[block.size]INT sector
[node.no]INT event.count] event. count :
INT node :

BOOL active
SEQ
... initialize variables
WHILE active
SEQ
..getmessageheade r
F

header positive
- getmes sage data
-« Wileda ta to data structure
... deemin e synchronization details
otherwise
pass sysiem oken

Figure 5.5
Update Listing

54

-
)

G- W

-

La TR I N S

NN

“_ .
Ll
(]

L '.. ‘l' YN w " ’!" f"'

3%)

e)

A
=~

I B s, “ ey
SRR POL R AR,

»

Ny

[

Aa

L.
.
Sl

PROC calculate(VAL INT machine, CHAN OF ANY data, out)
[block.size]INT sector
INT event.count
BOOL active :
. PROC advance(event.count)
. PROC send.data(machine, sector, out)
... PROC heat.flow(left, right, length)
SEQ
initialize
heat.flow(left, right, sector)
send.data(machine, sector, out)
... advance(event.count)
WHILE active
... get synchronization message
|F
header positive
. get boundary conditions
heat.flow(left, right, sector)
. send.data(machine, sector, out)
advance(event.count)
otherwise
pass system tokens

Figure 5.6
Calculate Listing

taa'a MAtR A VL URA B UMY 0 Bl het b Al R0 ot S

VI. EVALUATION OF THE VIRTUAL SHARED MEMORY IN A
MULTI-TRANSPUTER NETWORK |
A. OVERVIEW
The aim of this chapter is to examine the performance of the
prototype virtual shared memory system in a multi-Transputer net-
work. The prototype is evaluated using a representative problem
which may arise using multi-processor architectures. The results are
then compared to the ideal case and conclusions drawn from the

results.

B. MULTI-PROCESSOR REPRESENTATIVE PROBLEMS
1. General
The heat flow problem was selected to evaluate the prototype
virtual shared memory system since it is representative of many such
problems that arise in meteorology, oceanography, engineering, and
science. The single-dimensional heat flow solution was selected since
it facilitated a simple template for a similar but more complicated
problem domain.
2. The Heat Flow Problem '

The heat flow problem in a single length of wire is described

mathematically as a solution of the partial differential equation:

with specified initial and boundary conditions. The problem is to

examine the heat distribution in the wire as a function of time.

56

y 147 W RN Do Vo e e ™ "-")I'-,v"‘._
:. tf:(ﬂ‘;ﬁ.ﬁ K ‘..(.J'._'...‘:.x{-i',(hf.ﬁim‘('ﬂ A

PR, .o,
‘-"'/\4‘-".'! ~

A L AN A T A AT L Lo

[GG P

The system is responsible for determining the temperature of
a particular length of wire. The length of wire is then divided into N
sections which are directly mapped to the number of nodes in the
network. These sections of wire are further divided into a number of

P points which monitor temperature. This is shown in Figure 6.1.

One Dimensional Heat flow Example
Heat Flow through a Wire

Left Boundary Right Boundary

B EELE I] | 1 | I] B

Wire is divided into N sections
ach section is divided into P points

Figure 6.1
Heat Flow Through a Wire

The lengtﬁ of wire is represented by a globally distributed data struc-
ture which is a single dimensionalal array with (N * P) points. Each
node is responsible for calculating the temperature of each of the P
points in its a section of the wire.

The heat flow through the wire is computed by each node
calculating the temperature of each point in its section and broad-
casting it throughout the network. When all processors have com-
pleted the calculations, one iteration is said to have completed. This
represents one unit of time. Iterative count is maintained by moni-

toring the eventcounts associated with each node in the system. For

57

...

TRV AN T OTUTUS 4" S s D gt he g aiataloSRb Al Wal egl ol S Pl v g tad cad Sad LR iOal Sl Al vl hat A TR R Al bat st on Attt Aot |

example, when all eventcounts are at least equal to one indicates that

the system has completed its first iteration.

Data for display is passed from the specialized I0.node in the
network to a monitor process which displays the heat flow calculations
periodically. This process is decoupled from the ring so the display-
ing of data incurs minimal degradation to the system. Source Code of
the heat flow and the ring monitor process are available in Appendix C.

C EVALUATION
1. Description
The prototyp‘e is evaluated using a four- and eight-node loop
configuration allowing two messages per node in the loop. Global data
structure sizes used are 100, 200, 400, 800, and 1600 integers. The
network performance was timed over one thousand iterations. The
timing was conducted from a monitoring process which timed the
system from the passing of iteration information until the system stop
token was received.
2. Results
Prototype results are given in Table 6.1 and Figure 6.2. Note
that all performance results are measured for off-chip data for two

reasons: it provides a worst-case evaluation and all results are under

uniform conditions.

TABLE 6.1
PROTOTYPE PERFORMANCE RESULTS

Table 6.1 - Delay Insertion Loop Performance

Data Structure Four Node On/Off Chip Eight Node On/Off Chip
Size
100 55,996 Off 111,106 Off
200 114,739 Off 230,134 Off
400 226,780 Off 448,324 Off
800 448,360 Off 896,921 Off
1600 892,628 Off 1763,736 Off
(Units in low level tick counts per 1000 iterations)
PERFORMANCE COMPARISON
2000 -1

- || Elapsed Time(s)

5 -~ Elapsed Time(4)

g 15004l

£ ‘ Eight Node Ring

E 1000 -

e

i

500 Four Node Ring
0 T T
0 1000 2000
Data Size - Words

Figure 6.2

Performance Comparison

gl g an g =t

e e i

ARE)
-

>

=

.....

3. Observations

All system elapsed time data are plotted against data struc-
ture size per node. The slope of the four-node ring results is exactly
half that of the eight-node results. This is a linear relationship. If the
system throughput is thought of as the number of points calculated per
unit time, then the throughput for all data on both four- and eight-
node configurations remains relatively constant at an average of 7.1
points calculated per 1000 ucks (kiloticks). Thus, the ring configu-
ration for this problem domain provides no linear performance
improvement. This can be explained, however, by analyzing a time
line of processor calculation and communication activities throughout
the network.

Figure 6.3 shows an example of a full calculation and message
cycles for a four node ring configuration. Each processor has two main
activities, calculation and message passing. These two activities are
shown in Figure 6.3. Each processor shares a link with an adjacent
processor. For example, processor O and processor 1 share a link. It is
assumed that each message is synchronized within some arbitrarily
small time after it is sent. The heavy lines along the time axis
represent processor cycle time used by each activity. Eack link
activity is labelled with the originator of the message. Each processor
calculation is labelled with the data set produced.

As each processor calculates its data, it is placed in the net-
work for sequential distribution. Any calculation of data in a processor

is known as processor useful activity. For strict implementation of the

60

,r:.".(:-r::n'"‘f‘ o

'''''''''

A A

delay insertion loop, only one message per node is allowed in the sys-
tem at any time. This means that processor useful activity and idle
time is dependent on message transit times through the ring
configuration and length of processor useful activity. Examination of
Figure 6.3 shows the length of the processor idle time. It is
considerably longer than the useful activity time.

For the given problem domain of a linear heat distribution
through a length of wire the calculation of each point in a section of
wire may be described mathematically as:

1
Uy := R‘[Ux—l + (%) + U1+1]

One may now estimate the calculation time for each point.
The processor useful activity time may be calculated as a function of
points per section of wire by calculating the execution time of the
above equation. An approximate time of calculation for a point is 3
microseconds (3 microseconds per word). Message transmission time
can be calculated as a function of link protocol and channel rate.
[Va87] showed the net data transfer rate per T414 link is 23 bit times
per byte or 4 microseconds per word. Therefore the processor spends
more time in this problem sending data sets than calculating them.
The network, therefore is said to be message bound and the idle time
is dependent on the number of messages in the system.

4. Conclusions
The observations made show when a Transputer network is

configured in a ring configuration and the problem domain is message

61

AR P IS SYEERY Y T C.T.T T T WERMW VY S.c. o' m swmmy s T e e - W e

P YWV WUNTW LT UV N VW TR TR UVY LY VW Ay 8

sis&reuy K1japov uopemIguo)d Surd

5
=] .
] £'9 2Ingig
(v} ————
D)
”m 1s g jo uonuindwo) 00 awgy 9IPL) 108533034 -
7]
..nm 19g neQ o0 dunn], J13jsuws] —
n
% -
m < Jwij pasde|] waasAg
(=}
0
o —¢ Pyl Py ——Ppur——— Punr yuin
v 14 I 0 £
m Anandy njasn
m.. €D) € 308533014
- — PP ——Per———— P A1
.m_ t 1 0 €
> N
— w—— Awanoy [njasp ©
w (28] T Jossadolg
o] — PPt ———Ppam——f——Ppom—{ yul7]
m 4 1 0 £
— Luanoy njasp
m 10 [305332034
Q
rn _—! F e N O e Sunn- -4 .
161 o
g, z : n = b
g Fuanov njasn g
8 g 0 o awil, 3ip] Awanoy [njasp Jossasold poo 0 Jossasolg by
208 L \ ;
w P
.w.. £ (4 1 £ -
el o sisAleuy AuAloy uopeinbyuon Guly ;
: 4 3
&
a 8
[d

. . . o s Py w WA
‘‘‘‘‘ -— e R B SL F I merws —.N i N

| dad et Bt R 8 fai Ao 2.0 9.8 Pt o= foi fat o0 Sob ol o o) $ar he Bat fa- - ta- Ph-ath - oth o0 oML 08 gof gt h b ok B0 A Bl Saf LB Sol Vol Vob Sal ol Shl il R Al Aby Aln Ao e Na b Rd BA Ak A0 bl

Processor idle time is proportional to the number of nodes in
the ring since message passing dominates calculation. The more
processors waiting idly for data, the less effective the overall solution
to the problem.

To ensure high system performance, one must ensure a high
frequency of system useful activity or, conversely, reduce the
processor idle time. This may be achieved by minimizing the
message passing time or by ensuring each node's useful computation
time is higher than the idle wait time. Message passing times may be
reduced by passing essential data only throughout the network. For
example, if the data set computation time in Figure 6.3 approached
the message loop transit time, the idle time would be reduced
producing more efficient system performance. Conversely, if in the
single dimensionalal heat flow problem the boundary (essential) values
only were passed then idle time would be reduced and overall system
performance would improve.

In short, the single dimensional heat flow problem is not
sufficiently computation intensive to test linear performance
improvement of a ring configured Transputer network. Future work in
this area requires a more comprehensive look at the problem domain

computation versus message passing time ratio.

63

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has investigated and documented some very
fundamental issues involving programming the Transputer and has
investigated its suitability as a future weapon system processor. The
topics selected for discussion are germane to network configuration
and of course do not cover all details. An attempt has been made to
include as many suitable references as possible for the reader for
further discussion and examples. The topics covered in this thesis are
only a preliminary investigation into this new frontier of
microprocessors.

Unless the basic notions of the Transputer model are revealed,
further investigation may provide misleading results. The first half of
this thesis has attempted to distill the essence of the basic hardware
implementation. Understanding this aspect should give a better
insight into improving network performance.

Another fundamental issue investigated concerning networks of
Transputers is the maximum degradation on a Transputer CPU when
all link engines are operating. The major overhead is setting up the
data transfer of 21 cycles per message. The other overhead is due to
cycle stealing on the internal bus by each of the link engines as they
transfer data. The maximum degradation was calculated to be 25% for
the T414 link protocol. Predictions of degradation for a particular

instruction did not prove conclusive. Message passing in Transputer

64

---- ¥ e T s Cu s o Nt ot N e e T T e e T T T e L T L LT
MM:&& :‘m MM{L‘:‘-{L,_L{‘.{L’L(LIAJA".A{AJ‘L(.L\A& PE IS, PR VS VR O S Y PN

S alo ataad ot tab tall iR ¢ W) TRy .2t 2%k atd afh avy “ald AVR ath gl iath ala aba-aVAY 04 oRat Sa* dav iy) B Bat a¥ bat oot Bt 4.8 .

networks should be packaged into long essential messages. If the
maximum degradation of the Transputer CPU due to link engine cycle
stealing is 25% for a 10 MIP processor, then the overall system per-
formance is still very satisfactory.

Timing in the Transputer must be done with great care. Naive
use of the TIMER will produce misleading results. The programmer
of real-time programs must take great care to ensure correct program
modelling when using the TIMER.

The major conclusion that one could make is that programming
Transputer networks requires a detailed knowledge of how the hard-
ware implementation works before the full performance can be har-
nessed. The aim of the implementation of a virtual shared memory is
to use the link engines and the CPU to the maximum with minimal
mutual interference. Results obtained from the evaluation indicate
that to implement virtual shared memory processor useful activity
must be analyzed against message-passing time. Message bound
systems do not provide linear performance gains in a ring

configuration.

B. RECOMMENDATIONS

The emphasis, however, in the AEGIS modelling group is to find a
suitable architecture for future weapon systems control. The
MCORTEX system has proved to be a satisfactory system using
hierarchical shared memory and bus systems. The aim is to map the
Transputer to such a system, optimizing the unique Transputer archi-

tecture. This thesis is the first to implement and evaluate such an

65

DO M XM LM R M K M o =

.- I S DI, AN NN N et Me N S e
VS AR RE AR AT AR AT \.-'.4,- .'JI" }- - -\\ ~", 3, I{. \. ‘F\'_‘- '-’ .FJ'\ Ry f .~ 'r\‘F".\ \"N ‘h*...*.“- J\-‘ .-:’_h-_-

gramming such a network and the understanding of the hardware

implementation. To this aim, it is recommended that the virtual
shared memory prototype be further investigated for suitable
improvement and rigorous evaluation for computation bound problems.
The major unresolved problem from this research is the prediction of
degradation in the performance of the Transputer CPU caused by the
links engines' activity. It is recommended that this be further
investigated and documented.

Programming productivity is enhanced by using a wide variety of
tools. The latest edition of the Transputer Development System pro-
vides an adequate debugger for debugging networks of Transputers
which should improve program productivity. The library system
included in the latest OCCAM language compiler has provided some
excellent routines for use. It is recommended that further
investigation be made into the full utilities of the Transputer
Development System for use. This includes such items as making
bootable files for stand-alone application programs and incrementally
improving the INMOS supplied libraries. Detailed investigation into
! the tool set available will enhance further activities and research with
the Transputer networks. Further, it is recommended that languages

such as C and Pascal and ADA (when it becomes available) be

Y

investigated for use. The use of these languages may improve
programming productivity by allowing program portability and the use
of language features not yet available in OCCAM.

66

RS LIRSS RIS\ A A

N AN N P R T PG L O PR VO R N
G Sy i AR

APPENDIX A

A. SUMMARY

The aim of this evaluation is to measure the performance
degradation of the Transputer CPU while all eight link engines are
performing data transfer. The logical structure of the program is
shown in Figure A.1. The center node contains the evaluation code.
Each satellite contains message-passing code to work the link

engines. One satellite contains the user interface to report the results.

Logical Structure of Processor Degadation

Sattelite processors
conduct continuous
ink transfer with

centre processor.

All eight DMA link Background process placed
engines are running in the centre processor

Figure A.1
Logical Structure of Processor Degradation Program

67

OO T TOU RN FOF O A N T O A W W R T U W USsOVMN USOL LW DWW U W S LU R R R RN R TS Y BN 8 7 700

B SOURCE CODE

CHAN OF ANY in.1, out.1 :
CHAN OF ANY in.2, out.2 :
CHAN OF ANY in.3, out.3 :

PLACED PAR
PROCESSOR 0 T4
PLACE in.1 AT linkin2 :
PLACE in.2 AT linkint :
PLACE in.3 AT linkin3 :
PLACE out.1 AT linkOut2 :
PLACE out.2 AT linkQut1 :
PLACE out.3 AT linkOut3 :
central.node(0, in.1, in.2, in.3, out.1, out.2, out.3)

PLACED PAR
PROCESSOR 1 T4
PLACE in.1 AT linkOut3 :
PLACE out.1 AT linkin3 :
busy.transfer.T1(1, out.1, in.1)
PROCESSOR 2 T4
PLACE in.2 AT linkOut0 :)
PLACE out.2 AT linkin0 : d
busy.transfer.T1(2, out.2, in.2)
PROCESSOR 3 T4
PLACE in.3 AT linkOut2 :
PLACE out.3 AT linkin2 :
busy.transfer.T1(3, out.3, In.3)

S. M 2 & A ‘" "as ANEN & & 8.8 A A&

sl AL, n_

68

R el S Aal Sl Sal Aol Aol Sal Rl Sed Bt hal el fat e il het J ‘g

PROC central.node(VAL INT machine,
CHAN OF ANY in.1, in.2, In.3,
out.1, out.2, out.3)
VAL data.size IS 1024 :
-- this size was chosen to fit all data on chip
VAL par.tag IS -1 :
-- connected to host user interface
CHAN OF ANY in.0, out.0:
PLACE in0 AT4:
PLACE out.0 AT O :

[4]CHAN OF ANY to :

TIMER clock :

INTCT :

[2]INT start, stop :

INT link.iteration, length :

INT x1, x2, x3, 21, 22, z3 :
[data.size]INT data0, data1, data2, data3
[data.size/4]INT sector :

SEQ
-- initialize
SEQi = 0 FOR data.size/4
sectorfi] := 100
-- synchronize data
in.0 ? link.iteration
in0?CT
in.0 ? length
out.0 ! pripar.tag
-- unhindered computation timing
INT now :
SEQ
now = 10
clock ? start[0]
-- block.move code
SEQi=0FORCT
[data0 FROM 0 FOR length | = [sector FROM 0 FOR iength]
-- division code
SEQi=0FORCT
Now = now / 1
clock ? stop(0]
-- synchronize sateliites
PAR
out.1 ! link.iteration . length
out.2 ! link.iteration . length
out.3 ! link.iteration , length

69

bat At Al A4 das BaS B2 £o) ol Sal 2.8 ha fak Sol £23 Aol Lo Sel Sk Sod Jad Bed® Bl St et Bt Ret Rat Rat RaV Sav _jias o

-- start all link engines
PRI PAR
PAR
PAR

SEQi = 0 FOR link.iteration
SEQ
in.0 ?x1; [data0 FROM 0 FOR length]; z1
to[0] ! x1; [data0 FROM 0 FOR length]; z1

SEQ | = 0 FOR link.iteration
SEQ
to[0] ? x3; [data3 FROM 0 FOR length]; 23

PAR out.0 | x3; [data3 FROM 0 FOR length]; z3

SEQi = 0 FOR link.iteration
SEQ
in.1 ?x1; [datal FROM 0 FOR length]; z1
to{1] ! x1; [datat FROM O FOR length]; z1

SEQ ! = 0 FOR link.iteration
SEQ
to[1] ? x3; [data3 FROM 0 FOR length]; z3
out.1 | x3; [data3 FROM 0 FOR length]; z3

PAR
SEQi = 0 FOR link.iteration
SEQ
in.2 ?x1;[datal FROM 0 FOR length]; z1
t0{2] 1 x1,; [datal FROM 0 FOR length]; z1
SEQ | = 0 FOR link.iteration
SEQ
to[2] ? x3; [data3 FROM 0 FOR length); z3
PAR out.2 | x3;[data3 FROM 0 FOR length); z3

SEQi = 0 FOR link.iteration
SEQ
in.3 ?x1;[data1 FROM 0 FOR length]; z1
to{3] | x1;[datat FROM 0 FOR length]; z1
SEQ | = 0 FOR link.iteration
SEQ
to{3] ? x3; [data3 FROM 0 FOR length]; z3
out.3 ! x3;[data3 FROM 0 FOR length]; z3

70

Lol R AR okl o R ‘.ﬂ'

SEQ
deschedule(10)
SEQ k = 0 FOR link.iteration
INT now :
SEQ
f now = 10
-- interfered computation timing
clock ? start[1]
SEQi=0FORCT

[dataO0 FROM 0 FOR length] :=

clock ? stop[1]
-- send results to display

| out.0 | (stop[1] - start[1]) ; (stop[0] - start[0])
4 .

:

‘

)

L)

\

) 71

I

Ky o P L Ca A oo P T SN A e

Bl

[sector FROM 0 FOR length]

Aol ol ad

PROC busy.transfer.T1(VAL INT machine, CHAN OF ANY In, out)
VAL data.size IS 1024 :
INT x1, x2, z1, z2 :
INT link.iteration, length :
[data.size]INT data.out, data.out :

SEQ
-- initialize
SEQi =0 FOR data.size
data.outi] := machine
x1 = machine
21 =1
-- synchronize data
in ? link.iteration; length
-- send and receive

PAR
SEQ
SEQi = 0 FOR link.iteration
SEQ out | x1; [data.out FROM 0 FOR length] ; z1
E

SEQk = 0 FOR link.iteration
out | x2; [data.in FROM 0 FOR length) ; 22

72

RAFACINIPE | S

APPENDIX B
UNIDIRECTIONAL LOOP CONFIGURATION SOURCE CODE

-- N node uni-directional ring configured for BO0O3 application

AUTHOR : SJ HART

DATE : 25
OCTOBER 1987

VERSION .20

ENVIRONMENT : MACINTOSH 512 TDS 2.0 BETA 2.0(MARCH 1987)
FILE.NAME : ringstructure. TSR

TOP.FILE : TEST.TOP

DESCRIPTION : Uni directional ring structure

-- link channel offsets

VAL linkOin 1S 4
VAL linktin IS 5
VAL link2in IS 6
VAL link3in 1S 7
VAL linkOout IS O
VAL linkiout IS 1
VAL link2out IS 2
VAL link3out IS 3

-- Each internal channel is associated with a table indexed
-- when the internal channel is mapped onto an external channel

VAL clockwise.in IS [link1in, link3in, link3in, link3in] :
VAL clockwise.out IS [link2out, link2out, link2out, linkOout):

-- this varies according to network size
VAL No.B003 IS 1

VAL n IS (4 * No.B003)
VAL node.no IS n

-- channel declaration

X Al B YL BN SN
- -—.-.-----"----“,-'wmmmmﬂwm‘rx‘n'"r,"ﬂ.r‘u‘.\v WRa™® ™™, g

[node.no) CHAN OF ANY clockwise :

- separately compiled "node” to be extracted to all nodes

... SC modules
- Configuration Code
— MACHINE IS THE NODE REPLICATOR IDENTIFIER

PLACED PAR
VAL machine IS 0 :
PROCESSOR machine T4
-- position of node within the BO03 board (0..3)
VAL clock.in IS (machine + (node.no-1)) \ node.no
VAL clock.out IS machine

VAL map.index IS machine \ 4

CHAN OF ANY from.kb, to.monitor :
PLACE clockwise|[clock.in] AT clockwise.in [map.index] :
PLACE clockwise[clock.out] AT clockwise.out [map.index] :
PLACE to.monitor AT LinkQin :
PLACE from.kb AT LinkOout

0O.node02(machine, from.kb, clockwise[clock.in],
clockwise[clock.out], to.monitor)

PLACED PAR machine = 1 FOR node.no-1
PROCESSOR machine T4

-- position the node within the B003 board (0..3)

VAL clock.in IS (machine + (node.no-1)) \ node.no

VAL clock.out IS machine

VAL map.index IS machine \4

PLACE clockwise[clock.in] AT clockwise.in[map.index]
PLACE clockwise[clock.out] AT clockwise.out[map.index]

node(machine, clockwise [clock.in], clockwise [clock.out])

74

‘J.‘]

" APPENDIX C g

SHARED MEMORY SOURCE CODE :
A SUMMARY
The following paragraph summarises the processes contained in "

the implementation of a virtual shared memory in a network of
Transputers. The code of each of these processes follows. ;
:
PROC node(VAL INT machine, CHAN OF ANY ext.in, ext.out)
-- This process is the code contained in all nodes throughout the network. j
-- The process contains three parallel processes -
- (1) fiter.data =
-- (2) update b
-- (3) calculate !
»
PROC buffer(CHAN OF ANY in, out) ‘
-- single software buffer for prototype virtual shared memory system. v
PROC mix(CHAN OF ANY ext.in, int.in, ext.out, int.out) :

-- This process multiplexes two channels.
i -- One external and one internal. This process is
-- responsible for the network message passing scheme.

PROC filter.data(VAL INT machine, -- node
CHAN OF ANY ext.in, int.in, --in
int.out, ext.out) -- out

-- To be used by receive process for multiplexing data from

R “"‘ ‘e s s 5
) A

g
ISR JOX SR

1
ok

75

., - CL.
.....
> g

o ik g aed o b aed oid ais e ate alavata et teafnr ot et tat far tat it RV oot et fon ad ot Riad el b iR b il) 0eb b A AD AL A B AL RS LS DAY RS AR AN

-- previous node OR the node.calculation

PROC update(VAL INT machine, CHAN OF ANY in, data)

-- Place sector in the virtual array according to the node
-- from whence it came and send synchronization data to calculate

-

PROC write.data(VAL INT start.point,
VAL []INT sector, [JINT array)

PROC calculate(VAL INT machine, CHAN OF ANY data, out)

-- this procedure will dispatch all details
-- concerning the nodes calculations and update the event count
-- the process assume synchronization data from update via data channel

PROC advance(INT event.count)

-- advances the given eventcount by one

PROC send.data(VAL INT machine, []INT sector, CHAN OF ANY out)

-- Implements communication protocol for the prototype

PROC heat.flow(VAL INT left, right, []INT length)

-- One dimensional heat flow calculation
-- This is typical of probelms that may be solved in this network

PROC 10.node(VAL INT machine,
CHAN OF ANY from.kb, ext.in, ext.out, to.screen)

-- Display the node data structure at each consistent data point to
-- external monitor

PROC 1O filter. MUX(VAL INT machine, -- node .
B

76 :

"

h! W

L D™

Tty

CHAN OF ANY ext.in, int.in, -in
int.out, ext.out, to.display) -- out -

PROC 10.update(VAL INT machine, CHAN OF ANY in, data)

PROC ring.monitor(CHAN OF ANY keyboard, screen) :

-- host machine user interface with the network

PROC monitor(CHAN OF ANY from.kb, to.monitor, to.screen, A
from.monitor)

-- external monitoring process to the system

PROC write.int(CHAN OF ANY to.screen, VAL INT number, field)

-- display utility for numeric data to screen *
¥
PROC clear.line(CHAN OF ANY to.screen) .
-- utility for clearing line :
P

PROC go.to(CHAN OF ANY to.screen, VAL INT X, Y)

-- utilty for cursor position 2

-y

PROC write.s(CHAN OF ANY to.screen, VAL [] BYTE string)

PROC collect.data(CHAN OF ANY to.monitor, to.data.structure)

-- multi buffering process only to decouple display from the systerh

S PRI

PROC update.memory(CHAN OF ANY in, to.screen, [JINT array
[node.no]INT event.count)

-- receives the two tiered messages from the system and
-- responds accordingly. Primarily responsible for timings and data

78

JRIRYY ERIINSORIEIST "SSPV | ¢ R RWRIRIRW] NPy VEWSWW S T S WWS N

B. DETAILED SOURCE CODE

PROC node(VAL INT machine, CHAN OF ANY ext.in, ext.out)

The process contains three parallel processes
(1) filter.data

(2) update

-- (3) calculate

-- node variables

[SO0JINT on.chip.space : -- push all data off-chip
-- internal channels
CHAN OF ANY int.in, int.out, data :

-- system variables

VAL node.no IS 4
VAL block.size IS 100 :
[node.no*block.size]INT array : -- node data structure 1D array

-- system tokens
VAL stop.token IS -1
VAL shut.down.token IS -2

VAL otherwise IS TRUE

PRI PAR

filter.data(machine, ext.in, int.out, int.in, ext.out)
PAR

update(machine, int.in, data)
calculate (machine, data, int.out)

79

This process is the code contained in all nodes throughout the network.

et Ba0 3.8

b A

F A L N

N
“
*»
!

I | PO

PROC buffer(CHAN OF ANY in, out)
-- single software buffer for prototype virtual shared memory system.

INT node, event.count :
[block.size]INT data :
BOOL active :
SEQ
active := TRUE
WHILE active
SEQ
in ? node
IF
node >=0
SEQ
in ? data ; event.count
out ! node; data; event.count

otherwise
IF
node = shut.down.token
SEQ
out | node
active := FALSE
node = stop.token
out | node
otherwise
SKIP
:-::1
o
80 53
’.
£
‘_\1
=~
NN eI I I T e NN T N NN S

.
a"a™u"2"n 2 HR LA W N

PROC mix(CHAN OF ANY ext.in, int.in, ext.out, int.out)

-- This process multiplexes two channels.

-- One external and one internal. This process is

-- responsible for the network message passing scheme.

VAL max.message.load IS 1
INT node , event.count
INT message.no
[block.size]INT sector
BOOL active
SEQ
-- initialization
event.count =0
active := TRUE
message.no =0
WHILE active

PRI ALT

MERCa a"a"ATA R s ARLT_*

(message.no < max.message.load) & int.in ? node
-- internal input from calculation

SEQ ;
IF :
node >=0 '
SEQ
int.in ? sector ; event.count
PAR -- send the update to next node
ext.out ! node ; sector; event.count .
int.out ! node ; sector; event.count {
message.no = message.no + 1
otherwise --node <0
IF

atataaM A A LA LA N SRV

node = stop.token
ext.out | stop.token -- dispatches stop.token i
node = shut.down.token .
SEQ ;
ext.out | shut.down.token
active := FALSE -- dispatch then shut down

- i
ext.in ? node - :
-- external input from previous node

SEQ

81

............

node <> machine
-- includes the stop.tokens and other nodes
SEQ

|F
node >=0 -- send on & stop process
SEQ
ext.in ? sector ; event.count
PAR

ext.out | node ; sector ; event.count
int.out | node ; sector ; event.count
otherwise -- node <0
SEQ
IF
node = stop.token
int.out |stop.token
-- the stop.token has travelled
-- the full ring and stopped ALL processes
node = shut.down.token
intout | shut.down.token
-- shut down token will shut down all

- but the IO node
otherwise
SKIP
node = machine
SEQ

ext.in ? sector ; event.count

message.no := message.no - 1
otherwise

SKIP

82

(2
¢

e N 2 7

LT T T T I T i v e T

*

L g
A

.ﬂjﬁﬂ ‘r“: - 5'4‘0. AN ':"]‘ l'ﬂ

5

NN

7
s

P T

¢ PROC filter.d=ta(VAL INT machine, - node

: CHAN OF ANY ext.in, int.n, n
int.out, ext.out) - out
. - To be used by receive process for multipiexing data trom

-- previous node OR the node.caiculation

CHAN OF ANY other.data, my data
. PAR
buffer(ext.in, other.data)
buffer(int.in, my.data)
' mix(other.data, my.data. ext out. int out)

ICRC I XX N R

83

- a_ e e~
g e e e

B P i) (A » AT AT A AT AR AR ~-_». {' “ .
R A A O A Dl M 2 o \.l' "n v .!- L YIRS e N Iy e N D R A -:‘.p..; Ny

g o d any and Anl ol Sl Aad g vy A A andh oA ol Sad 2od Sad Ad Bl AR Bal Sl Add Bad Sad Ba® Lol IS It S il e S R A A

PROC update(VAL INT machine, CHAN OF ANY in, data)

-- Place sector in the virtual array according to the node
-- from whence it came and send synchronization data to calculate

VAL INT initial value IS 0
INT stant.point, count

[block.size]INT sector . -- node responsibility
[node.no]INT event.count : -- iteration record
INT node . -- which machine
BOOL active ;

PROC write data(VAL INT start.point.
VAL [JINT sector, []INT array)

SEQ
[array FROM start.point FOR block.size] := sector

SEQ
-- initialize vanables
SEQi= 0 FOR biock.size
sector{i] .= -machine
SEQ k = 0 FOR (node.no * block.size)
array{k] = initial.value
active = TRUE

WHILE active
SEQ
in ? node
-- two-tier message system
F
node >= 0
SEQ
in ? sector ; event.count[node]
start.point .= node ° block.size
write.data(start.point, sector, array)
-- synchronize the calculation
F
node = ((machine + (node.no - 1))\(node.no))
VAL right.boundary IS 0 (INT)
VAL left.boundary IS 10000 (INT)
INT left, right ;
SEQ

q

18K .

»
s ®

84

A ML A

G[y*‘:-"".-‘,-?.(~'

-p

PR s PP P
(AN -.!.!\Awﬂ'.‘\!l-h!ap.\.\.j

-- determine boundary conditions
IF

machine =0
SEQ
left := left.boundary
right := array[block.size + 1]

machine = (node.no - 1)
SEQ
left := array[((block.size * machine) - 1)]
right := right.boundary

otherwise
SEQ
left := array[((block.size * machine) -1)]
right := array[(block.size * (machine +1))]
data ! node ; left ; right

otherwise
SKIP
otherwise -- node <0
-- pass the system message through the node
IF
node = stop.token
data ! stop.token
node = shut.down.token

SEQ
data ! shut.down.token
active := FALSE
otherwise
SKIP
4
L]
85
B R e s O A L s o o S e 4 0 S e e S i s S

{ PROC calculate(VAL INT machine, CHAN OF ANY data, out)

-- this procedure will dispatch all details
-- concerning the nodes calculations and update the event count
-- the process assume synchronization data from update via data channe!

v L an e 2

VAL INT initial.value IS 0 (INT)
VAL right.boundary IS 0 (INT)
VAL left.boundary IS 10000 (INT)
INT left, right

[block.size]INT sector

BOOL active, stop.signal

INT event.count

T

PROC advance(INT event.count)

SEQ
event.count := event.count + 1

PROC send.data(VAL INT machine, [JINT sector, CHAN OF ANY out)

-- Implements communication protocol for the prototype
y SEQ
) out ! machine ; sector ; event.count

PROC heat.flow(VAL INT left, right, []INT length)

--- one dimensional heat flow calculation
-- This is typical of probelms that may be solved in this network

VAL rate IS1 (INT)
SEQ
length[0] := ((left + (rate*length[0])) + length[1])/(rate+2)
SEQi =1 FOR (block.size - 2)
length[i] := ((length[i-1] + (rate*length[i])) + length[i+1])/(rate+2)
length{block.size-1] := ((length[block.size-2] +
(rate * length[block.size-1])) + right) / (rate+2)

86

AT P T LM T a" s MR A es aa

SEQ

-- initialization

SEQi = 0 FOR block.size
sector{i] := initial.value

SEQ k = 0 FOR node.no * block.size
array(k] := initial.value

active := TRUE

stop.signal := FALSE

event.count .= 0

--- a simple calculation
; F
: machine = 0
SEQ
left = left.boundary
right := array[block.size + 1]
machine = (node.no - 1)
SEQ
left := array[((block.size * machine) - 1))
right := right.boundary
otherwise
SEQ

left .= array(((block.size * machine) -1))

\ right .= array((block.size * (machine + 1))
heat.flow(left, right, sector)
send.data(machine, sector, out)
advance(event.count)

' WHILE active

i INT node :

SEQ
data ? node -- synchronise or stop
F
node >= 0 -- filter code for negative numbers
| IF

) stop.signal

' SKIP

‘ otherwise

SEQ
data ? left; right
-- geét synchronization data

3 heat.flow(left, right, sector)

send.data(machine, sector, out)

advance (event.count)

X otherwise
’ SEQ

87

-~ -~

AR O AR TR P I P 5, T 3% S0 ST
R N Y RN N R N % S s s

.............

BOANEA LN, b
N 5“’1”!;",".,. [% ’.

~~~~~~



et e e e g e st e e d e s et e A it Ak i idtate sie e g dle i A ad Ak b AT A e "“‘F"*

-- system messages
F

node = stop token
SEQ
out | stop token
stop signal = FALSE
-- do not send any more data
node = shut down token
SEQ
out | shut down token shut down F
active = FALSE
otherwise
i SKIP

-y e aw

v v

-




PROC 10.node(VAL INT machine,
CHAN OF ANY from kb, ext.in, ext.out, to.screen)

-- Display the node data structure at each consistent data point to
-- @xternal monitor

[SOO)INT on.chip.space

CHAN OF ANY int.in, Int.out, data. to update
CHAN OF ANY other data. my data

VAL stop.token IS -1 (INT)
VAL shut. down token IS -2 (INT)
VAL time token IS -3 (INT)

VAL otherwise IS TRUE
VALnodeno IS 4
VAL bilock size IS 100
INT teraton
(node no’block 8126]INT array
SEQ
from kb ? teration
{0 screen ! teration
PRI PAR
10 fiter MUX(machine. ext in, int.out, int In, @xt out. 1o screen)
PAR
10 update(machine. int in . data)
Calculate (machine. data int out)

-- node data structure

89

.............



LA Bt Sl ' ' e Ria A% L'a Rie RUn gty fla phe gie Al gn nr aliy oh, ad

PROC IO filter. MUX(VAL INT machine, -- node
CHAN OF ANY ext.in, int.in, -in
int.out, ext.out, to.display) -- out

VAL max.message.load IS 1 :
CHAN OF ANY other.data, my.data :
[max.message.load+1JCHAN OF ANY extension :
PAR
buffer(ext.in, other.data)
buffer(int.in, my.data)
10.mix(other.data, my.data, ext.out, int.out, to.display)

PROC 10.mix(CHAN OF ANY ext.in, int.in,
ext.out, int.out, to.display)

TIMER clock . -- timer for message circuit
INT start, stop, message.no:
INT node, event.count :
[block.size]INT sector
BOOL active
SEQ

-- initialize

event.count .= 0

active .= TRUE

message.no = 0

WHILE active

PRIALT

(message.no < max.message.load) & int.in ? node
-- internal input from calculation

SEQ
IF
node >= 0
SEQ
int.in ? sector ; event.count
PAR -- send the update to next node

..........

s

extout | node ;sector; event.cc. it o
int.out | node ; sector; event.count o
to.display | node ; sector; event.count N
message.no = message.no + 1 N

clock ? start R

)

90 R

~J_"

o

)

Y
)

S SR N o S W N N T AT A T R N I N NN o
I o e T T R N TR et L ’.ﬁx.‘h.ﬁ..d" v



a0 4%a g §° T 4\ Ao Adg B0 mty Ate S's @i ate AVve &t

otherwise -- calc.in node <0
IF -- check if the stop token and flush the system
node = stop.token
PAR
ext.out | stop.token --dispatches stop.token
to.display ! stop.token
node = shut.down.token
SEQ
to.display ! shut.down.token
active .= FALSE
-- shut down last of PROC's

ext.in ? node -- external input from previous node

F
node <> machine -- includes the stop.tokens
node >= 0
SEQ
ext.in ? sector ; event.count
PAR

ext.out | node ; sector ; event.count
int.out | node ; sector ; event.c sunt
to.display | node ; sector ; event.count
F

node = stop.token
PAR
ext.out | shut.down.token
i to.display ! stop.token
; - the stop.token has traveled the full ring
' node = shut.down.token
SEQ
to.display !time.token ; (stop - start)
int.out | shut.down.token
-- shut down token has shut down
) --all but the 10 node
) otherwise
SKIP
X node = machine
X SEQ
' ext.in ? sector ; event.count
‘ clock ? stop -- stop loop message timing
' message.no := message.no - 1

-~ - ar -

91

AT AT e OURICN NN () » . 370, 2 P | » 1\-1ﬁ‘v’p‘w_-
RSO SCRDO AR Ry S A A I LA Soate el v. it {d xdnd

""- 1‘\‘~ ;i - \¢‘
T ™ \'*-" s ,




T P T T Py T T TP R T T PO R PO O g B o W 0 W X W v W

PROC 10.update(VAL INT machine, CHAN OF ANY in, data)

VAL INT initial.value IS0
INT start.point, count

[block.size]INT sector : -- node responsibility
[node.no]INT event.count : - iteration record
INT node : -- which machine
BOOL active, stop.set

SEQ

SEQi= 0 FOR block.size
sector{i] := -machine
SEQ k = 0 FOR (node.no*block.size)
array(k] := initial.value
active := TRUE
stop.set := FALSE
WHILE active
SEQ
in ? node
F
node >= 0
SEQ
in ? sector ; event.count{node)
start.point := node * block.size
write.data(start.point, sector, array)
-- Stop conditional section
F

IF i = 0 FOR node.no-1
(event.count[i] <= iteration) OR stop.set
SKIP

otherwise
SEQ
stop.set := TRUE
data | stop.token

((node = ((machine+(node.no-1))\node.no))
AND (NOT stop.set))

VAL left.boundary 1S 10000 (INT) :

VAL right.boundary IS 0 (INT) :

INT left, right :

SEQ

IF

machine = 0
SEQ
left = left.boundary

92 v

OO0 OL OO r ' ) ¥ PSRN L PR L RECE OV R s
.\'“"}“\"!i .'. , a Rt AL N 3 BB o pb .



P o AN

U o la dia Aty dte dte Alo Ale Ate Sle Ale She A mmmwmmwmm

AR
) l" l" .‘. 5.' .5.

. Y T Y
a.l‘q‘.‘. 4 ..l...l v 8%

right := array[block.size + 1)
machine = (node.no - 1)
SEQ
left .= array[((block.size * machine) - 1)
right := right.boundary
otherwise
SEQ
left = array{((block.size * machine) -1)]
right .= array{(block.size * (machine+1))]
data ! node; left; right
otherwise
SKIP
otherwise - node <0
[ g
node = stop.token
data | stop.token
node = shut.down.token
SEQ
data ! shut.down.token
active .= FALSE
otherwise
SKIP

93

v - L3 - . AR ] Al .- e, Y - - - " -
AT T, \':\I\Itn‘f\-? - f\'\if: “ fg



PROC Ring.Monitor(CHAN OF ANY keyboard, screen)

CHAN OF ANY t0.B003, from.B0O03 :
PLACE t10.B003 AT 2: --link 2 out
PLACE trom.BOO3 AT 6 : - link 2 in

PROC monitor{CHAN OF ANY from. kb, to.monitor, to.screen,

VAL stop.token IS -1 (INT)
VAL shut.down.token IS -2 (INT) :
VAL time.token IS -3 (INT) :

VAL otherwise IS TRUE

VAL node.no IS 4

VAL block.size IS 100

VAL max.iteration IS 1000

VAL label IS "Virtual Shared Data Structure Test Harness"
VAL shut.down IS "System Shut Down" :
VAL message.line IS 20

INT node, system.count

[block.size]lNT block :

[block.size * node.no)INT array :
[node.no]INT event. count

BOOL active

TIMER clock

INT stant. stop, start.point, granulanty
-- terminal driver constants

VAL tt.go.to IS 5(BYTE):
VAL tt.out.string IS 8 (BYTE):
VAL tt.beep IS13(BYTE) :

VAL tt.terminate IS 15 (BYTE) :
VAL ttinitialise 1S 17 (BYTE) :
VAL tt.out.byte IS 18 (BYTE) :
VAL tt.out.int IS 19 (BYTE) :




2 -’."."-"-,-'.4 .

VA

it < o

~‘I
D

'
)
¥
&
&
=

PROC write.int(CHAN OF ANY to.screen,

VAL INT number, field)
-- algorithm from Gerraint Jones

VAL tt.out.byte IS 18 (BYTE) :
INT value, spaces, width :
SEQ
IF
number >= 0
SEQ
spaces = -1
width =1
number < 0
SEQ
spaces = 1
width =2
WHILE (number / spaces) <= (-10) -- calculate the width
SEQ
spaces := spaces * 10
width = width +1
WHILE width <« field -- pad spaces
SEQ
to.screen ! tt.out.byte; '’
width = width + 1
IF -- place a minus sign if negative
number < 0
SEQ
to.screen ! tt.out.byte; -
otherwise
SKIP
WHILE spaces <> 0 -- display numbers
SEQ
to.screen ! tt.out.byte; BYTE((INT '0') -
spaces = spaces / 10




88 995 DESIGN IMPLEMENTATION AND EVN.IMTIN OF l VIRTM
SHARED MEMORY SYSTEN IN R MULTI-TRANSPUTER NETNORK(U)
NAVAL POSTGRADUATE SCHOOL MTEREV CA S7J mr DEC 87
UNCLASSIFIED







v

AN )
AU DON M IR N b AN Yo = Nee

PROC clear.line(CHAN OF ANY to.screen)

VAL tt.clear.eol IS 9 (BYTE) :
SEQ
to.screen | tt.clear.eol

PROC go.to({ CHAN OF ANY to.screen, VAL INT X,Y)

VAL tt.go.to ISBYTES :
SEQ :
to.screen ! tt.go.to; X; Y

PROC write.s( CHAN OF ANY to.screen, VAL [|[BYTE s)

VAL tt.out.string IS 8 (BYTE):
SEQ
to.screen ! tt.out.string; SIZE s
to.screen!s

PROC advance(INT event.counter)

SEQ
event.counter = event.counter + 1

96




PROC collect.data(CHAN OF ANY to.monitor,
to.data.structure)

[node.no+1]JCHAN OF ANY feed.pipe :

PAR
B INT node, event.count, elapsed.time :
' [block.size]INT sector
: SEQ
b to.monitor ? node
a2 IF
i node < 0
R SEQ
IF
W node = time.token
ol SEQ
i to.monitor  ? elapsed.time
R feed.pipe[0] | node; elapsed.time
i otherwise
va feed.pipe[0] ! node
Ko otherwise
b SEQ
! to.monitor ? sector; event.count
by - feed.pipe[0] ! node; sector; event.count
PAR i =0 FOR node.no
P INT node, event.count, elapsed.time
{k‘f ' [block.size]INT sector
D SEQ
R :'e:ed.pipe[i] ? node
a node< 0
:;:;‘ node = time.token
;:.’ SEQ
oW feed.pipe[i] ? elapsed.time
feed.pipe[i+1] ! node; elapsed.time
o otherwise
e feed.pipe(i+1] ! node
:;:: othesrévge --node >=0
!"'
- feed.pipe[i] ? sector ; event.count
- feed.pipe[i+1] ! node ; sector; event.count
I"'
1
% INT node, event.count, elapsed.time :
3
b‘,b
2
‘. RNt 'x‘?‘4‘!'a‘?'a’f‘i'.'t’('».o';"c'r"5‘-'.‘ % l'!‘l ; s ‘ , 'I' 'l'o"o - ) .- 0' '-l. : ' 0 0':.‘1 s " - m




%
]
[block.size]INT sector : :
SEQ =3
feed.pipe[node.no] ? node o
\, node <0 ),
i IF CW
node = time.token ;
SEQ .o
teed.pipe[node.no] ? elapsed.time -
to.data.structure ! node; elapsed.time <
otherwise "-
to.data.structure | node !
otherwise - node <0 R
SEQ

feed.pipe[node.no] ? sector ; event.count
to.data.structure ! node ; sector ; event.count

AL x
‘k
.‘ﬁ‘i;ﬂ, h

=

98 s

OADN) 1 \ 0 y 9 g CO O e RYOOUT 34 .
b ".':‘.';‘,'»"h,‘,t'\?th,’lédé.’s,.’l!:'o“ o U e O S S DDA TN



[PARRINLY YT I T T U oo T o T ‘Rl 1 a8 &'a 8 s B°2 AV gia gt TETFIYT WY WO Y WO MY A WY

PROC update.memory( CHAN OF ANY in, to.screen, [JINT array,
[node.no]INT event.count )

-- place sector in the virtual array according to the node

y -- whence it came
‘T VAL INT initial.value IS 0

INT start.point, count, ticks :
. [block.size]INT sector : - node responsibility
' INT node, elapsed.time : -- which machine
: SEQ
A SEQi= 0 FOR block.size
‘ sector{i] = -1
: active := TRUE
in ? node
; IF
.' node <0
. IF

node = shut.down.token

y SEQ
{ go.to(to.screen, 28, 20)
v write.s(to.screen, "Shut.Down.Token Received”)

active := FALSE -- process stops
node = stop.token
SEQ
go.to(to.screen, 30, 22)
-write.s( to.screen, "Stop.Token Dispatched")
clock ? stop -- stop the system timer
node = time.token
SEQ

N

o in ? elapsed.time

:' go.to(to.screen, 28, 3)

) write.int(to.screen, elapsed.time, 8)
Y otherwise

- SKIP

" otherwise

) SEQ

; in ? sector ; event.count[node]

o start.point := node * block.size

4 [array FROM start.point FOR block.size ] := sector
.

" SEQ

; -- initialize data
' active = TRUE

99

Lo+ e pame g - ' - Tou ¥ N
'\h‘\*’ \'.‘i‘. \". t.. l'\‘l’. l‘\ 0‘:_ (W .;. R .,l'l’“’ !‘.l‘n I."\ (R 'u 'v‘l' '\




system.count := 0

SEQ i = 0 FOR node.no*block.size
array(i] :=-10

SEQi =0 FOR node.no
event.countfi] :=0

-- handshake with network

from.monitor | max.iterations -- start the process in the network
to.monitor ? granularity  -- get the networks granularity
clock ? start - start the system timer

go.to(screen, 40 - ((SIZE label)/2)) , 1)
write.s(to.screen, label)
go.to(to.screen, 1, 4)
write.s(to.screen, "lterations # ==> ")
write.int(to.screen, iteration, 8)
go.to(screen, 1, 5)
write.s(to.screen, "Granularity ==> ")
write.int(to.screen, granularity, 8)
WHILE active
SEQ
CHAN OF ANY to.data.structure :
PRI PAR
collect.data00 (to.monitor, to.data.structure)
update.memory(to.data.structure, to.screen, array,
go.to(to.screen, 1 ,message.line)
clear.line(to.screen)
go.to(to.screen, (40 - ((SIZE shut.down)/2)), message.line)
write.s(to.screen, shut.down )
-- display system elapsed time
write.s(to.screen, ™C*N Elapsed Time is ==> ")
write.int(to.screen, stop - start, 8)

SEQ
monitor(keyboard, from.B003, screen, t0.B003)
INTch:
keyboard ? ch

100 o

s R R T S A e N A v



(R

Bl

P A

LIST OF REFERENCES DY

I

[At87] Atkin, P. Performance Maximization. INMOS Technical
Note Number 17, March 1987, Bristol, United Kingdom. '

; '-{‘q_

[Be85] Bekir, Evin. Implementation of a Serial Delay Insertion
Loop Communication for a Real Time Multitransputer
System. M.S. Thesis, Naval Postgraduate School,
Monterey, California, June 1985.

NPT

> £
-

[(Br87] Bryant, G. R. PASCAL Source Code for Transputer Instruc-
tion Set Disassembler.

[Ga86] Garret, D. R. A Software System Implememtation Guide
and System Prototyping Facllity for the MCORTEX
Executive on the Real Time Cluster, M.S. Thesis, Naval
Postgraduate School, Monterey, California, December
1986.

[GIMi87] Gimarc, C. E., and Milutinovic, V. M. “A Survey of RISC
Processors and Computers of the Mid 1980's.” IEEE
Computer, vol. 20, no. 9, pp. 59-69, September 1987. ‘

AR AS

L T T
.'.". ot

[Hi] Hill, G. Transputer Networks using the IMS BO03. INMOS
Technical Note Number 13, undated, Bristol, United ;::
Kingdom. ot

.f-‘.-

[Ho79]) Hoare, C. A. R. “Comunicating Sequential Processes.”
Communications of the ACM, vol. 21, no. 8, pp. 666-677,
August 1978.

[In87a] Transputer Reference Manual. INMOS Ltd., January 1987,

i )

Bristol, United Kingdom.
[In87b] T414 Preliminary Data Sheet. INMOS Ltd., 1987,

R

Bristol, United Kingdom.

t

[In87c] T800 Preliminary Data Sheet. INMOS Ltd., 1987,
Bristol, United Kingdom.

101

TN N L

AL IS AT I AR S R LGN LY
s T T



[In87d] The Transputer Instruction Set— A Compiler Writers Guide.
INMOS Ltd., February 1987, Bristol, United Kingdom.

[In87e] INMOS Databook °'87. INMOS Ltd., Bristol, United

Kingdom.

[Ko83] Kodres, U. R. “Processing Efficiency of a Class of Multi- ;
computer Systems,” International Journal of Mini and o
Micro-computers, vol. 5, no. 2, pp. 28-33, 1983. z

[Ma87] Discussion with Philip Mattos, Applications Engineer, b

INMOS Ltd., October 1987.

[MaSh87a] May, D., and Shepherd, R. Communicating Process y
Computers. INMOS Technical Note Number 2, February >
1987, Bristol, United Kingdom. :

[MaSh87b] May, D., and Shepherd, R., The Transputer
Implementation of OCCAM. INMOS Technical Note
Number 21, February 1987, Bristol, United Kingdom.

o s e ~y-uw w
AL PR

[Pa) Packer, J. Exploiting Concurrency: A Ray Tracing
Example. INMOS Technical Note Number 7, undated,
Bristol, United Kindom.

% " T

s

[Po85] Pountain R. “Turbocharging MandelBrot." BYTE
Magazine, vol. 10, no. 9, pp. 359-366, September 1986.

3

[Po87] Poole, M. OCCAM Program Development Using the IMS
D701 Transputer Development System. INMOS Technical
Note Number 16, January 1987, Bristol, United Kingdom.

« " a8
Lo B,

%y

[PoMa87] Pountain, R.,, and May, D. A Tutorial Introduction to

OCCAM Including Language Definition. INMOS Ltd., March
1987, Bristol, United Kingdom.

Ly 4N sl‘-.;x.,t‘,‘ ¢

[ReKa79] Reed, D. P., and Kanodia, R. K. “Synchronization with
Eventcounts and Sequencers.” Communications of the
ACM, vol. 22, no. 2, pp. 115-123, February 1979.

[ShWA87] Shatz, S. M., and Wang, J. P. “Introduction to Software

Engineering.” IEEE Computer, vol. 10, no. 9, pp. 23-31,
October 1987.

PARPRRERT

>4

[Va87] Vanni, Filho J. Test and Evaluation of the Transputer in a '
Multitransputer Configuration. M.S. Thesis, Naval 0
Postgraduate School, Monterey, California, June 1987. r

L/

‘\_
RS
102 -~

.

So N W e ) {"

l'- t. .‘I

P&

5’5'\\\','.
R Y AN

- - - - e _tw _w P JPRL I I L R S T g™ S N w e S St e e
[ SaAX A':‘A e, k I N .-‘\-F\J‘.'v'\ G NEANGN, N A AN U RN A e
N 1) . ! ! R




[We80] Weitzman, C. Distributed Micro/Minicomuter Systems.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.

[Wi87a] Wilson, P. An Introduction to Transputers. INMOS Ltd.,
draft, 1.0, Colorado Springs, Colorado, USA, September
1987.

[(Wi87b] Discussion with Peter Wilson, Strategic Applications Engi-
neer, INMOS Ltd., Colorado Springs. Colorado, USA,
November 1987.

103

VN A T 0 A N A2 S A A AN P A AN ALY

-

T, P



........

) gl MRS

| INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station L
Alexandria, VA 22304-6145

2.  Library, Code 0142 2 <
Naval Postgraduate School N
Monterey, CA 93943-5002

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

4, Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

 BENAAS N X

5. Major Richard A. Adams, USAF, Code 52Ad 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

P AT

Zeds

6. Daniel Green, Code 20F 1
Naval Surface Weapons Center
Dahlgren, VA 22449

. '-:..-‘-' X . =

7. Jerry Gaston, Code N24 1
Naval Surface Weapons Center "
Dahlgren, VA 22449 -y

Captain J. Hood, USN

PMS 400B5

Naval Sea Systems Command
Washington, DC 20362

e R A e AN



- -

SR SRR D

Y R

-

. R .
W -.I'u!“w.i‘-h"t!’n’ WL a8 %%

Y
S

10.

11.

12,

13.

15.

16.

RCA AEGIS Repository

RCA Corporation

Government Systems Division
Mail Stop 127-327
Moorestown, NJ 08057

Library (Code E33-05)
Naval Surface Weapons Center
Dahlgren, VA 22449

Dr. M. J. Gralia

Applied Physics Laboratory
Johns Hopkins Road
Laurel, MD 20702

Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

Director Naval Weapons Design
Department Of Defence (Navy)
CP 1-6-18

Campbell Park Offices

Russell, ACT 2600
AUSTRALIA

Australian Defence Force Academy
Duntroon, ACT 2600
AUSTRALIA

Dr. W.G.P. Robertson

Director, WSRL

GPO BOX 2151

Adelaide, South Australia 5001
AUSTRALIA

Mr Neil Mitchel

INMOS Corporation

2620 Augustine Drive, Suite 180
Santa Clara, CA 95054

Steve Burns

INMOS CORPORATION

P.O. Box 16000

Colarado Springs, CO 80935-1600

105

[ TS I IS S L) - * e " R T M AT @” % a8 " a " a" MTp e~
W Ly CAy Cd ™ B IR SN A N
M Sl a N .'-..l'l‘ BT AT Y

Yy MY

"

_.a_‘.: e e \._.a_..‘,..:_..

Y

“car

N



18.

" 19.

20.

21.

22.

aa s itai'ad asta Aiagiaftsn g% gV gbo a\o v ¢t ta g% dia ata 4’g 4

Lieutenant Commander J. Vanni Filho,
Brazilian Navy

c¢/o Brazilian Naval Commision (DACM)
4706 Wisconsin Avenue, N.W.
Washington, DC 20016

Lieutenant Commander S. J. Hart,
Royal Australian Navy

Combat Data Systems Centre

84 Maryborough Street
Fyshwick, ACT 2610

AUSTRALIA

Dr. R. J. Dyne

Attaché (Defence Science)
Embassy of Australia

1601 Massachusets Avenue
Washington DC 20016

Mr. E. Carrapezza, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

AEGIS Modelling Laboratory, Code 52
Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943

106

to ava (Vo gig gla ¢!

s

AR

a" e @ .
l.l".'




L N P P P T AL PR PRLFUM PLAC LI OB PO YUK YU Iy SUM PN YU G YL TUIK T YOI PO P A I Y Ol N Y Y PO POy T YO S i PO VTR

A

T e

=
3
o~
s
=
-
-~
0(\
DQ

- . -,
e s V!

e

_
(\

T et

k

N N

1]

RGO (™ ™ N W g PR N T R A R W e,
.:g‘,:".?:,\ ,“ b .ﬁ"&- e N N O .I- R A P N N OO
< R e T N T N e ‘."ﬂ". (i LA AN A 9L el




