
A-Al" 995 DESIGN IMPLEMENTATION UD EVALUATION OF A VIRTUANN V/2
gHRE MEMORY SYSTEM IN A NULTI-TRANSPJTER METWORK(U)

WVAL POSTGRADUATE SCOOL MONTEREY CA 5 J HART DEC 67
UNCLASSIFIED F/O L2/5 AL

7I flhhl..hlMf

li 0 9 M5 §2-2

lIIII 5ll -4

I
' .'

NAVAL POSTGRADUATE SCHOOL
Monterey, California

In

0)

THESIS

DESIGN, IMPLEMENTATION, AND EVALUATION OF A
VIRTUAL SHARED MEMORY SYSTEM IN A

MULTI -TRANSPUTER NETWORK

by

Simon J. Hart

December 1987

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited

SEBi 81g8 98

8 211 036

UNULASS Ib I P __

SECURITY CLASS'-ICATION 7HIS PAGE

REPORT DOCUMENTATION PAGE
la. R. /tT 7GCUIRTY CLASSiFIC ,iON lb RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is :mlimited

,4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MJNITORING ORGANIZATI R ORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

qaval Postgraduate School (If applicable) Naval Postgraduate SchoolCode 52 Naa PotrdaeSh l

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Cty, State, and ZIP Code)

4onterey California 93943-5000 Monterey California 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NU. iER
ORGANIZATION (If applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification)
"DESIGN, IMPLEMENTATION, AND EVALUATION OF A VIRTUAL SHARED MEMORY SYSTEM IN
A MULTI-TRANSPUTER NETWORK" (u)

12. PERSOEAL AUTHOR(S)
art, Simon J.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OP REPORT (Year, Month, Day) 15 PAGE COUNTlaster's Thesis FROM ______ TO _ _ 1987 D7

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP OCCAM, Transputer, Multi-Transputer Network,

Delay Insertion loop, Virtual Shared Memory.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis presents the design, implementation, and evaluation of a

virtual shared memory in a multi-Transputer network. The thesis explores
the Transputer Hardware inplementation model and highlights the important"
details that programmers of such systems may need before being able to
optimize such networks.

All the programs and examples presented in this thesis were implemented
in the OCCAM programming language, using the Transputer Development Sy-stel,
D700C, Beta 2.0 March 1987 compiler version.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT I 21. ABSTRAT SECURITY CLASSIF!CATION
IN UNCLASSIFIED/UNLIMITED E3 SAME AS RPT E DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Coae) i.lc OFIICE SYM:30 L
Prof. Uno R. Kodres (408) 646-2197 1 Cnde 5?T-

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLAS"IliATION OF THIS PAZ
All other editions are obsolete

P, 0 1 1? 62

UNCLASSI FI 1:D
1

¢ f ' " -. . q[r . r. • . a .- " - , '.'"' " ' '. . -. . . .

Approved for public release; distribution is unlimited.

Design, Implementation, and Evaluation of a
Virtual Shared Memory System in a

Multi-Transputer Network

by

Simon J. Hart
Lieutenant Commander, Royal Australian Navy

B.S., University of New South Wales, 1977
p.

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1987

Author:L I t,
AmnJ. Hart

Approved by: zk'k/,
T no R. No res, Thesis Advisor

I., ! ii/ I!/

Richard A. Adams, cond Reader

Vince .um, Chairman,

par nt o C puter Science

James/t. Fremgpn, Acting Dean "
of Infprintio d P cy Sciences

2

WV ~ ~ ~ ~ ~ ~ ~ -V-WW -WWr"RMVWW1V

AB3STRACT 1

This thesis presents the design, implementation, and evaluation

of a virtual shared memory in a multi-Transputer network. The thesis

explores the Transputer hardware Implementation model and high-

lights the important details that programmers of such systems may :

need before being able to optimize such networks.

All the programs and examples presented In this thesis were .,,

implemented in the OCCAM programming language, using the Trans- ,.

puter Development System, D700C, Beta 2.0 March 1987 compiler

version.-

Accession For

NTIS GRA&I
DTIC TAB N.In

Unarmounced "

Justification
%

By
Distributlon/

Availability Codes
Avail and/or

Dist Special ,

...'1',

QI AtIT V

4..

(' D-72]

3

TEIS DISCLAIMER

The reader is cautioned that computer programs developed in

this research may not have been exercised for all cases of interest.

While every effort has been made, within the time available, to ensure

that the programs are free of computational and logic errors, they

cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user. c.

Many terms used in this thesis are registered trademarks of

commercial products. Rather than attempting to cite each individual

occurrence of a trademark, all registered trademarks appearing in this

thesis are listed below the firm holding the trademark:

INMOS Limited, Bristol, United Kingdom

Transputer

OCCAM
IMS T414

IMS T800

Transputer Development System (TDS)

ADA Joint Program Office, United States Government

ADA

4.

1:' '' .'' ",.;' ' ...'. ..' ' -"" " " "" " " "" " ' ''" "'4" . .' -- " " ' ;

' " .-;" ""]e,' W "' < o"w,' ..' '" ,""" ,°"¢' '''-' ' ' "'"""' " " "e" e'""'"' e', -,.".ij'_ .< 1-

TABLE OF CONTENTS1

L R OD T IO N .. 11

B. MESSAGE-ORIENTED ARCHITECTURE 12

C. HARNESSING NETWORKS OF PROCESSORS 13

1. Efficiency... 13 -1,1.0

2. Programming Languages ... 14

D. NETWORK TAXONOMY .. 15

1. Homogeneous Networks .. 15

2. Non-Homogeneous Networks ... 15

E. OBJECTIVES .. 16

F. THESIS OVERVIEW ... 16

IL TRANSPUTER HARDWARE IMPLEMENTATION 18

A GENERAL ... 18

B. SEgQ NIALMODEL 19

1. Register Set 19

2. Instruction Form at .. 20

3. Memory Management ... 22

4. Execution Speed ... 23

C. PARALIELMODEL ... 24

1. Overview 24

5

:.-.4

2. Process Representation .. 25

3. Process Priority and Interrupts .. 27

4. Process Scheduling ... 28

5. Time Slice Periods .. 28

6. Overheads 28

7. Programming Prctilces 29

D.T[MES, AND TIMINGS 30

1. Overview .. 30

2. Use of Timers for Timing Constructs 30

3. Programming Practice ... 32

I. COMUNICATIONS 33

A GENERAL .. 33

B. BASIC NOTIONS 33

C INTERNAL COMMUNICATION ... 34

D. EXTERNAL COMMUNICATION .. 35

E. LINKS 37

F. PRO0CESSOR PERFORMANCE ... 38

G. EVALUATION .. 38

H. PROGRAMMING PRACTICE .. 40

IV. MULTI-TRANSPUTER NETWORK WITH GLOBALLY A

DISTRIBUTED VARIABLES .. 41

A INTRODUCTION .. 41

6

B M OTIVATION ... 41

C. OPTIMUM NETWORK CONFIGURATION 42

D. EVENT COUNTS AND SEQUENCERS . 43

1. Event Counts ... 43

2. Sequen n s ... 44 - -

E. EFFICIENCY ... 44

V. DESIGN AND IMPLEMENTATION OF A VIRTUAL SHARED

MEMORY IN A MULTI-TRANSPUTER NETWORK 45

A OVERVIEW .. 45 No

R SYSEM MODEL AND ASSUMPTIONS 45

1. Node Activities 45

2. Assum ptions ... 46

3 . Process D escription4 7 %

4. Program Structure .. 48.4

C. MACRO-DESIGN DECISIONS .. 48

1. Process Priority ... 48

2. System Message Passing .. 49

3. Synchronization and Data Passing Mechanism 50

4. System Shut Down .. 51

5. External System Monitoring 52 "."

D. MICRO-DESIGN DECISIONS 52

1. Filter Process .. 52

2. U pdate .. 53

7 7
.dv

-n

3. Calculate .. 53

VI. EVALUATION OF THE VIRTUAL SHARED MEMORY IN A
uMLTZ-TR 4px NcxTwom 56

A OVERVIEW .. 56

B. MULTI-PROCESSOR REPRESENTATIVE PROBLEMS 56

1. .. 56

2. I Heat Fw Problem .. 56

C. EVALUATION .. 58

1. Descrlpti 58

2. Results ... 58

3. e.eratkris 60

4. Conclusions ... 61

VIL CONCLUSIONS AND RECOMMENDATIONS 64

A. C N US N ... 64

B, RECOMMENDATIONS ... 65

APPENDIX A PRIORITY EVALUATION SOURCE CODE 67

APPENDIX B PROCESSOR DEGRADATION SOURCE CODE 73

APPENDIX C VIRTUAL SHARED MEMORY SOURCE CODE 75

= OFIM EF ... 101

INITAL DISIRIBLTON UST .. 104

8

M.nr~rW W WW~l I NO rt:a ~Rmns MY K7 -,NrXSt . rq rz79q%~1V.~ w~s r., w. v w ~ z w F-PW r Un...'6 - -4 V ~

u-

LIST OF FIGURES 01

2.1 T414 Register Set ... 20

2.2 Instruction Form at .. 20

2.3 Instruction Form at ... 21

2.4 PffxIxlstniction Example.. 22

2.5 Process Workspace .. 25

2.6 Process State Registers ... 27

2.7 Clocks and Timing 30

2 .8 ... 3 1

2.9 Accurate Mnjing Listing .. 32

3.1 Transputer Link Arrangements .. 35

3.2 Communications Set-Up .. 36

3.3 Communication Rescheduling ... 37

5.1 NodeAct ties .. 46

5.2 Node Process Listing ... 49

5.3 Shutdown Token Path .. 51

5.4 Filter Data Process Listing .. 52

5.5 Update isting ... 54

5.6 Calculate Listing .. 55

6.1 Heat Flow mmgh a Wlre 57

6.2 Performance Comparison .. 59

6.3 Ring Configuration Activity Analysis 62

A. 1 Logical Structure of Processor Degradation Program 65

9
9 -'-'.J -

7- %

4 , ;. .- :..- .'....-.. -... ,-.,- :..-, -..- ".: - ,'.,...-.........-...-...-..... .'

DEDICATION

This thesis is dedicated to:

my wife, Susan,

and

our son, Timothy.

1p

p

.

10

I. INTRODUCTION

A BACKGROUND

A union of language research by CAR Hoare [Ho79] and the

advances of VLSI has produced a unique microprocessor architecture.

called the Transputer, which was developed in the United Kingdom by

INMOS corporation. The AEGIS Modelling Laboratory at the Naval

Postgraduate School has considered the Transputer as a very attractive

architecture for future weapons systems control. Weapons systems

control computers in general have the following characteristics:

1. They are physically distributed,

2. They require fault tolerance,

3. They are required to be powerful enough to handle very high rate
of data now produced by sophisticated sensors,and

4. They are required to be flexible and extendible.

For the above reasons, multicomputer architectures are an attrac-

tive option for future weapons systems. Parallel systems intrinsically

provide three of the above requirements for a weapon system

architecture: high performance, fault tolerance, and extensibility.

These features are attained by synchronizing and coordinating the dis-

tributed multicomputer network to meet the required aim of the

application. Each of the processors must communicate with each

other. The most common methods of interprocessor communication

are shared memory and message passing. Shared memory communi-

cations allows data written to memory by one processor to be read by

others. Message passing is mainly point-to-point communication.

11.', -* .

There are two major disadvantages of a message-passing scheme

compared to a shared memory. The first is that data from a data

structure in memory must be organized into messages, which incurs a

substantial overhead. The second disadvantage is that there may not

always be direct communication links in a network. Messages would

have to be passed from one processor to the next until the recipient

received it. The disadvantages of shared memory over message pass-

ing schemes are three fold. First, in a physically distributed system

shared memory would be difficult, if not impossible, to implement.

The second disadvantage is that processors must be tied to a high-

speed bus which soon becomes a bottleneck as the number of proces-

sors is increased. Other critics claim that memory and processor

technologies are increasing faster than backplane technologies and

that using a bus would prevent the use of the state-of-the-art micro

computers and adversely effect any extensibility [W187a]. The main -

objection to the bus structure, however, is that the bus constitutes a

single point of failure and therefore is not suitable for fault-tolerant

systems.

B. MESSAGE-ORIENTED ARCHITECTURE

The disadvantage of some multi-processor architectures that have '-

been developed to date is that they are a collection of uniprocessors

glued by some technique of inter-processor communication mecha-
'I

nism, typically shared memory. These systems are typically single-

application oriented and inflexible. A philosophy behind the ,'

Transputer is that it is designed to be a multi-processor architecture

I1-

L-.°

with a powerful uniprocessor capability. The inter-processor com-

munications system is actually designed into the processor and not a

glue. This message-passing scheme is implemented by four bi-

directional links. The bi-directional links are in fact two uni-

directional on-chip DMA channels known as link engines. This

provides several advantages:

1. An increase in processors increases the number of links which
may be operated in parallel,

2. Computation occurs in parallel with message passing. The CPU
can operate with minimal degradation during interleaved mes-
sage passing, and

3. Flexible networks can be designed, since position of processors

in a network is not critical.

The links are serially interconnected to reduce the space on-chip

and reduce the costs of interconnecting and production. This con-

trasts to present naval computers In use. such as the AN/UYK 7.

where the sophisticated DMA channels are not on-chip and have par-

allel connections. This increases not only the cost but also the com-

plexity of the system, since there must be additional hardware to

integrate the channel to the AN/UYK 7 computers for efficient mes-
"U

sage passing.

C, HARNESSING NETWORKS OF PROCESSORS

1. Zffcinc

The aim of any network is to obtain optimum efficiency and

performance. The Transputer and OCCAM permit formidable systems 7
to be built. Given any distributed network, the most difficult problem

13

-If. AL .0- -0 .1 :iv-.

programmers face is efficiently synchronizing all processors in the

network. In a multitransputer network, processes that communicate

with each other do so synchronously. This makes programming sim-

pler but imposes higher system overheads, which may degrade system

performance while processors are idle waiting for the next data set to

process. Despite optimized inter-process communications hardware,

this situation can still exist with with the Transputer. The overheads

of the system are not only the idle wait period of network processors

but also that of routing messages throughout the network.

2. PrummiU.nlggMas

To ease the difficulty of programming networks of Transput-

ers, the OCCAM programming language [In87b] has been developed as

the high-level language of the Transputer. OCCAM is a structured lan-

guage which addresses the two main issues, inter-process

communications, and parallel processing at the lowest level.

Although several programming languages for parallel pro-

cessing have been developed, few are commercially available such as

ADA and Concurrent Pascal [ShWa87]. Most of the languages use fea-

tures that are based on the assumption of shared memory, such as

monitor and semaphore constructs. ADA for the Transputer is being

developed by Joint venture involving INMOS and ALSYS software house.

There are now compilers available for the Transputer for

other high-level languages such as Pascal, C, and Fortran, but they do

not have any ability to exploit parallel activity or communications.

Programming productivity could be enhanced by allowing program-

14

I'

-1,,

mers to take advantage of these programming languages by using their

particular features, such as records and pointers, and "harnessing"

them within the OCCAM language features. This is particularly perti-

nent since OCCAM at present does not have well-developed high-level

programming language features.

D, NETWORK TAXONOMY

1. Homogeneous Networks

A homogeneous network is an MIMD network where each

node performs the same calculation on separate data. Two examples

of harnesses the power of homogeneous networks have been

published: the Mandlebrot algorithm [Po85] and the ray-tracing

algorithm [At87, Pa87]. These exemplify methods of maintaining full

utilization of homogeneous computations throughout a processor

network with dynamic load balancing.

2. Non-Homogeneous Networks

A non-homogeneous network is an MIMD network where

each node in the network may perform different calculations on sepa-

rate data sets. Not all applications have the property of all processors

using the same algorithm throughout the network. A weapon system

is a good example of this. Different processors may have different

responsibilities, such as navigation, radar data handling, and displaying
the data. Techniques for maximizing throughput in the published
examples are not suitable for non-homogeneous systems. Other

methods are required. One such method is synchronizing the system

using abstract data types called eventcounts and sequencers [ReKa79]. I
15

X.5'

This method of synchronizing distributed systems is ideally suited to a

network with low message-passing overheads.

E, OBJECTIVES

In order to explore the methods of programming the Transputer,

a full appreciation of its complicated hardware implementation is

needed. This thesis intends to build an understanding of the Trans-

puter model through the recently published literature and

experimental programming evidence. This should enable readers

some insight into what is required to optimize Transputer networks.

Further to the Transputer model exploration, the objective is to

create a prototype system to investigate an alternative method of using

and synchronizing Transputer networks.

F. THESIS OVERVIEW

The remainder of this thesis is organized in the following fashion.

Chapter II describes the two modes of computation of the Transputer,

sequential and parallel, a full understanding of which is necessary to

understand performance and optimization techniques. Chapter III

discusses the communication model of the Transputer in a network.

Chapter W describes the Transputer network architecture and how

the network is connected. Chapter V describes the synchronizing

mechanism based on eventcounts and sequencers and the underlying

details.

16

& ~ '~ U - _,

Chapter VI discusses evaluation results and summarizes the

lessons learned and and issues raised during this exploration. Chapter

VII provides conclusions to be drawn and subsequent

recommendations.

4.

171

MWnr WO 10-WiW f Ir-5VV W

H. 'TSPU77.R EXARD-MUE IMPLEMENTATION

A GENERAL

There are three subjects that need to be mastered before pro-

gramming Transputer networks. These are:

1. The programming language OCCAM;

2. The use of the Transputer Development System for the respec-
tive host; and

3. The hardware of the Transputer.

The language OCCAM is straightforward for anyone with a back-

ground in structured programming languages. The Transputer Devel-

opment System, however, is not trivial to master. Until now there has

been little detailed information on this aspect due to the rapid devel-

opment of the system. For the novice, detailed descriptions and

examples are contained in [Po87].

The Transputer hardware appears very much straightforward

when examining the architectural diagram [In87a, p. 34]. To under-

stand the differences between this architecture and the Intel 80386

or the Motorola 68020 architectures, and to fully harness performance

capability, a detailed examination of the Transputer model is neces-

sary. For ease of explanation. the Transputer model has been divided

into two naturally distinct models, the sequential and the parallel

models.

18

"- ' - - .%-t * .J -.' .% ?.. -. *. %,.,.. .-," -y-.-. - -"- -"-*"p..

R SEQUENTIAL MODEL

The Transputer is a reduced instruction set computer (RISC).

The characteristics of a RISC machine are summarized as follows:

1. Operations are always register to register. Only LOAD and STORE
instructions access memory only.

2. Operations and addressing modes are reduced. Operations usu-
ally occur in one cycle. Addressing modes are relative and
indexed (other instructions can be developed from these two
basic modes if required).

3. The instruction set is simple and instructions do not cross word
boundaries.

I recent comparison of other RISC machines [GiMi871 showed

that the Transputer (T414 20 Mhz) is one of the most powerful RISC

architectures available with a 10 MIPS linear performance capability.

The Transputer CPU is stack based with only six registers:

three system registers and three evaluation stack registers. The three

evaluation stack registers are labelled A. B. and C.

The system registers are the Workspace Pointer, which indi-

cates the process in execution; the Instruction Pointer, which points

to the next instruction to be executed; and the Operand Register,

which is used for the formation of instruction operands. This is shown

in Figure 2. 1.

There are other registers available only to the system to assist

in processor management. These are two timing registers and four

registers to manage two task queues. These will be discussed in the

Parallel Model.

19

14 AEISTF 5ETMemory
A
B

C local variable 3
Workspace Pointer lclvral

~ local variable I
Instruction Pointer lclvral
Operand lclvral

Workspace pointer - Indicates the executing Poa

Process.
Instruction Pointer - Is byte addressable Id Iad sti

Accumulators arranged In a stack

All registers are 32 bit

Figure 2.1

T414 RegisH~ter Set

2. Ingt to FoErmat
All instructions are eight bits long and are divided in two.

The low-order four bits are the data and the high-order four bits are

the opcode or function, as shown in Figure 2.2.

Instruction Format

7 4 3 0

I Function Data

________To Operand Register

Opcode

AllI Instructions are one byte long

Figure 2.2

Instruction Format

20

The data is loaded into the lower four bits of the 32-bit

operand register and the opcode operates on the entire operand reg-

ister. This allows 32 bits of data to be used if required, as shown in

Figure 2.3.

All instructions load their data field into the least significant 4 bits
of he operand register

Instruction operates on the entire Operand Registeras the operand
7 4 3 0

Function Data

Operand Register 4

31 4 3 0

Figure 2.3

Instruction Format

The fact that the function part of the instruction has only four

bits allows the Transputer 16 one-cycle instructions. Examination of

the instruction set [In87b] will show that 13 of these actually manipu-

late the processor. These single-byte instructions are the most fre-

quently used instructions, such as store, load, calls, and Jumps. The

three remaining instructions manipulate the operand register. These

are Pfix, Nfix, and Opr. Pfix and Nfix manipulate the operand register.

An example of this is shown at Figure 2.3. Opr executes the instruc-

tion in the operand.

21

Pfix Instruction Example

Instruction== Pf ix DataO3

Operand DataOO DataO I DataO2

Before Pflx execution

Instruction==> I Pf I x Data 0 4

Operand DtQ aa I DataO2 DataO3

After Pftix Execution

Sequences of Pfix, Nfix Instructions build up longer operands
In the Operand Register.

Pflx - copies data to least significant four bits and shifts left
four places

Nfix - same as Pfix but Inverts the operand register before
shift

Figure 2.4

Pflx Instruction Example

The simplistic nature of this instruction set facilitates the

writing of a disassembler for compiled OCCAM code. There is a disas-

sembler available in the AEGIS modelling group written in PASCAL

[Br87I. This has proved most useful to unravel some previous myster-

ies of the Transputer.

Most arithmetic and logical operations are zero address

instructions which operate on the contents of the stack registers.

With the ability to manipulate the operand register, there is the

22

?.-Mrs'U !YwX'1 a.- r*T my- X_ kr% -.

possibility of 232 possible zero address instructions. Further, the

Transputer uses a PIA in the decode path which presumably will allow

instruction set redesign as the architecture matures [GiMi87].

3. Memory Management

Memory utilization is a feature that the programmer must be

aware of to optimize Transputer performance. Memory is divided into

on-chip and off-chip memory space. The reason for delineation is that

on-chip memory is faster than off-chip memory due to time required

for external memory interface. Typical memory cycle intervals for a

data fetch are: on-chip memory, two cycles; off-chip memory, a

minimum of three but typically four cycles. This means that frequently " '

used data structures should be placed in on-chip memory for maxi-

mum performance. -

Address space of the Transputer is signed. This is unusual

but should improve all logical and arithmetic address operations since

there is no need to manipulate the values into one's or two's comple-

ment form for each operation.

4. Execution SDeed

The Transputer instruction format allows many instructions

to be executed in one clock cycle (50 nanoseconds). In reality, about

half the instructions require two clock cycles or less. The eight-bit -- .

instruction and a four-byte word allow four instructions to be read at

one fetch. This is an excellent feature since its provides a virtual

four-instruction cache without the cost of on-chip space. Another

important advantage of this feature is that it provides an almost total

23

.-..:

decoupling of instruction execution speed from memory speed. The

only exception to this is when the prefetched word contains an

instruction mix of one-cycle instructions. This means that the loca-

tion of the program is not critical for performance maximization.

Details of the implementation of the sequential model is contained in

[In87b1.

C PARALLEL MODEL

1. Orview

In either model, the basic execution unit is a process. A pro-

cess may consist of many sub-processes executing concurrently, time

sharing the processor. A process may be allocated one of two priority

levels for execution. The higher priority process is uninterruptable. It

will run until blocked by communications or timer inputs.

Although not explicitly stated, the parallel model is based on

the following assumptions:

a The shortest context switch is made by saving the least amount of
data for any given process,

b. A process must do I/O,

c. A process not doing I/O is in a loop and must eventually execute
either a loop end instruction or Jump instruction, and

d. A high-priority process needs to execute as soon as it is ready.

Most multi-tasking for any system takes place in an operating

system. This is not the case with the Transputer since it is imple-

mented in the hardware. The parallel model requires the following

hardware support for implementation:

24

, .'....' '.€ .", m". ._" .". ." ". .. ,'. '.' .''''..'. .. '..;'''..'''.' .',.'. :.''.,'...'.. - ..

a Two timing registers;

hL Four Process Queue Registers; and

c. Special registers for saving some process context switch data.

2. Process Reresentation

Initiation and termination of processes may be performed

either at compile time or dynamically. Each concurrent process is

represented by a vector of words in memory called the process

workspace. This space is used to hold the local variables and tempo-

rary values manipulated by a process. The workspace is organized as a

falling stack with end-of-stack addressing. All local variables are

addressed as positive offsets from the Workspace Pointer.

Process Workspace
Memory

Workspace -

used to hold local variables and
temporary values manipulated by tne process

Workspace Pointer

Instruction Pointer 61.
local variable2 location for descheduled process

local variable I

local variableO linkage information for scheduling
4d communication and timer inDuts

Figure 2.5

Process Workspace

25

0aN

There are other locations associated with the workspace

which are used by the operating system. These locations are used for

linkage information such as scheduling, communication, and timer

inputs and are addressed as negative offsets from the Workspace

Pointer. This linkage space varies depending on the the synchroniz-

ing constructs used by the process, such as ALT, TIMER, or any com-

munications. When a process is descheduled, the Instruction Pointer

is stored in the word below the Workspace Pointer. Details of the

linkage area are given in [In87d].

A process is in one of three states: executing, ready, or

blocked. The executing process is found by examining the contents of

the Workspace Pointer Register. Ready processes are placed in one of

two queues. Blocked processes have their workspace pointers stored

in appropriate words which are used to relink these processes to the

necessary queues when they are rescheduled. The Transputer

maintains two ready queues, one for each priority. Each queue is

maintained using two registers; one points to the Workspace Pointer

of the head of the queue and the second points to the Workspace

Pointer of the process at the tail of the queue. Each process has

associated with its workspace a word which indicates the next process

in the ready queue. A diagram showing the logical structure of this

organization is shown at Figure 2.6.

26

=WVW~f9MF~rLFW%?WPW~q" F nV~tFW1YWXFWL7W1Mn 7W P M I " Pin Nn A- W1 w Fn .l "n PM WWI WW . . l . I

Process States - Executing and Ready

Wreg Executing Process

orkSpace Poite

High Priority Scheduled Processes
Queue ResistersHead HP HP2 H0

Tall ,

"f

Low Priority
Queue Reqisters Scheduled Processes

Each box represents
Head _LP02_a process workspace

Tal

Figure 2.6

Process State Registers

3. Process Plority and Intmts

When a high-priority task is ready and no other high-priority

task is executing, it preempts any low-priority task that may be exe-

cuting. Generally, this takes place at the end of the current Instruc-

tion. Some instructions are interruptible; for example, block move

or I/0 instructions. Full details of interruptible instructions are in

[In87d p. 301. This preemption constitutes an interrupt. The state of

the low-priority process is saved in special system memory locations

at the low end of on-chip memory and the workspace pointer is

placed at the head of the low-priority queue. The process context

27

switch time is low since it need only save six registers and memory

allocation for saving the state is on-chip.

4. Process Schedujing

There seems to be a widespread misunderstanding that the

low-priority processes are time-sliced. This is a misnomer since

there is no fixed period for process descheduling. The mechanism

works according to the following rules:

a A process will be descheduled when it attempts to synchronize
(via communication) with a process that is not yet ready to syn-
chronize, or when it attempts to communicate externally using
the hardware links.

b. If a process does not perform any I/O for more than one
time-slice period, it will be descheduled at the next
descheduling point. Details of these instructions are given in
[In87b p. 661.

5. Time Slice Periods

A time-slice period is defined as 1024 ticks of the high-pri-

ority clock. When the one-time slice period has occurred, the pro-

cessor will attempt to deschedule the low-priority process that has

been executing. Each time the process reaches a descheduling point,

the processor checks to see if a time-slice period has elapsed. If so,

the process is descheduled and added to the end of the appropriate

list. In short, the minimum period of time for "time-slicing" is one

millisecond, with the expected maximum period being two

milliseconds.

I.

There is full instruction level support for context switching

which provides very low overheads. Sub-microsecond context switch

228 '

Ut
|*

times are quoted by INMOS [In87b, In87c] for a 20 Mhz processor.

Experimental data has shown that overheads are one microsecond on

the average.

7. Prognmin Practices-

It is important to understand the parallel model since it does

have an impact on high-level programming practice in allocating pri-

orities to processes to ensure efficient process execution. The lesson

is to avoid placing a computation-bound algorithm in a high-priority

process. High-priority processes should be kept short and I/O bound;

otherwise, network performance will be sub-optimal.

This aspect of the model was investigated in the following

manner. A simple calculation process which ran for a known

execution time was placed as a background process to a high-priority

process. The background process executing time was delayed by the

length of the high-priority process, which validated this aspect of the

model. Further investigation proved that placing a computation-bound

process in the high-priority queue did in fact degrade the perfor-

mance of other high-priority processes. The conclusion from the

investigation showed that high-priority process allocation should be

given to message-passing code. This allows all network messages to

be passed as quickly as possible. Further discussion and examples are

provided in [At87].

29

N-N

_k -7:-

DL TIMERS AND TIMINGS

1. hme

The Transputer has two 32-bit timers. The timers provide

accurate process timing and allow the programmer to deschedule

processes explicitly until a specified time. Implementation is shown

in Figure 2.7.

Clocks and Timing

A. Accurate Timing Construct B. Process Descheduling Construct

TIMER clock PROC deschedule (VAL INT time)
INT start, stop:
SEQ

clock ? start TIMER clock
... sequential code tNT now:
clock ? stop SEQclock 7 now

clock ? AFTER now PLUS time

Figure 2.7

Clocks and Timing

A diagram showing processes on the timer queues is shown

in Figure 2.8. The main point to note here is that use of timing queues

is expensive in cycle time (30 cycles) and is dependent on the length

of the queue.

2. Use of Timers for Timing Constructs

Timing constructs should be used very carefully. This is

especially the case with parallel constructs and timing communication

3I

30 :

i-

rates. Thorough investigation into the use of timers showed the fol-

lowing results:

a An elapsed time construct as in Figure 2.7 provides elapsed time
from start to finish. However when used in a parallel construct,
this also includes context switch overheads and time spent in the
queue and not Just execution time of that process.

b. Enveloping a PAR construct with an elapsed time construct
includes spawning, executing. and context switch overheads
needed to execute that construct.

c. Timing communications constructs (either input or output) can-
not be considered accurate due to the nature of the communica-
tion implementation. This is especially so with external link
communications, since the link engine is a DMA channel and
communication is decoupled from the processor until finished.

Timers

~ HI/low
clock register

Comparator'L Next Time

Head 1 2 3 4

Each process Is descheduled and placed in the queue
according time orderThe Next Time register Is ootained
from the head of the queue When the time is reached the
process Is rescheduled and the next time Is placed In the register
for Comparison.

Figure 2.8

Timers

31

***;.

. Pronmming PMctice

The use of the elapsed time has been useful to accurately time

sequential in-line code and useful for estimates of time for parallel

construct code. For the most accurate timing of in-line code, it is

recommended that the process be run at high priority so that the one

microsecond clock is used. An example of this is shown in Figure 2.9.

Accurate Timing Code

PRI PAR
TIMER clock.
INT start, stop
SEQ

Clock ? start
... timing code
clock ? stop

SKIP

Figure 2.9

Accurate Timing Listing

It is also worthy of note that using timer constructs is expen-

sive in cycle time. For example the instruction timer input has a

worst case of 30 cycles. This may be important when programming

real-time programs.

Processes executing in parallel have a requirement to com-

municate with each other. This aspect of the Transputer is investi-

gated in the next chapter.

32

M. COMMUNICATIONS

A GENERAL

The most powerful aspect of the Transputer is that it is specially

designed for the two main criteria of multi-processor architectures:

parallelism and inter-process communication. Understanding the

communications mechanism of a network allows a programmer to use

these features to advantage in the pursuit of optimizing network per-

formance. This chapter discusses the essential performance issues of

Transputer communication.

B BASIC NOTIONS

In the Transputer, concurrent processes communicate syn-

chronously by using channels. Communications only occur when both

the sending and receiving processes are ready. This model was devel-

oped by C. A. R. Hoare in the experimental language CSP [Ho79].

OCCAM contains a construct which implements an abstraction of CSP

synchronous communication. This abstraction is called a channel. A

channel may be described as an unbuffered, unidirectional connection

between two processes. The construct is the same for internal or

external inter-process communication. There is a difference.

however, in the way each method of communication is conducted.

Internal communication is achieved simply by memory-to-memory

data transfer. External communication is conducted by one of the 8

DMA link engines. Each link engine corresponds to an external chan-

nel. Each Transputer link has two unidirectional channels.

33

," ',* -',-"', ,"¢ " . ,:,. ' , . ., -- ' - ., ,

C. INTERNAL COMMUNICATION

A channel is a single word in memory. This channel is assigned to

the two communicating processes by the programmer. At compile

time this channel is assigned a specific word in memory. This word is

used to hold either an address to a process' workspace or the special

value 80000000H (the minimum integer) which represents nil. All

channels are initialized to nil at compile time.

To exemplify the communication, assume there are two concur-

rent processes, Alpha and Beta, in a single Transputer. Alpha is the

sender and Beta is the receiver. Suppose Alpha is ready to send, and

Beta is not yet ready to receive. When Alpha attempts to communi-

cate, three items are loaded into the stack: the address of the dedi-

cated channel, the address of the message data structure, and the

length of the message. Once this information is loaded, the output

instruction is executed.

Upon execution of this instruction, the channel word is examined.

If it contains the nil pointer, it is the first process to attempt to

communicate and accordingly places its Workspace Pointer (contents

of the WReg) and Alpha's instruction pointer (contents of the IReg)

and the message length and pointer in the linkage area below Alpha's

workspace. Alpha has now been descheduled and is in a blocked state.

Alpha will remain blocked until such time as Beta attempts to

communicate via the dedicated channel. When Beta attempts to

receive, the same information is loaded into the evaluation stack and

the value stored in the channel word is checked. This channel word

34
.

.1

.. .. • . . °

. t:. = =- -- .' -4*-- .'-''-'-'. -.- . v","'....".- ..."':,;,'-.'v ---;.-,---'-",--..,, ,...v ... :

now contains the pointer to Alpha's workspace. The processor now

conducts the transfer by block move, after which the channel word is

re-initialized and Alpha and Beta are rescheduled. The com-

munication process is symmetrical; if Beta had become ready first

then exactly the same procedure would be followed but in the reverse

order.

DL EXTERNAL COMMUNICATION

When a process wants to communicate with an external process,
it does so by using one of the 8 DMA link engines. The link used is

explicitly allocated by the programmer. This selection is dependent

on direction of communication and the network topology. The link

arrangements are shown in Figure 3.1.

Link Arrangements and Corresponding Channels

I_ link3ln 8001CH
Link 1 link21n 8018H

Lik Lnk2'4'- .0 linklln 80[]014H

UnkO0 Link 2 link01n 800010H

link3out
l -nk_3_ _, link2out 8C008H

l linklout 8000]04H

link0out 1000

Corresponding
Transputer Links As Channels Memory LocatIons

Figure 3.1
Transputer Link Arrangements

35

Each link has a dedicated channel word which is placed in one of

the eight lowest words of memory in the Transputer. Given exactly

the same example as above, but each process in separate Transputers,

the procedure for communication is followed as described above with

the following exception. The use of special channel words is detected

and the three pieces of information are sent to an autonomous link

engine interface unit. This is shown in Figure 3.2.

Unk Communication

A Count Uink Registers Link Registers A Count

Communications Set Up

Figure 3.2

Commumications Set-Up

Alpha is blocked until the link engine has completed the block

transfer. Once the transfer has been completed, both processes are

then rescheduled by placing the Workspace Pointers in the link

interface units on the appropriate queues, as shown in Figure 3.3.

36

i
-I

Unk Communication

Unk Registers Unk Registers

'I

Twi td I ointer

Workspace Workspace

Communications

After communication is finished, processes are rescheduled by DMA link
engine and the Work space Pointer is placed in the appropriate queue.

Figure 3.3

Communication Reschedu.ng

E. LINKS

Access to the links is via the processor controlling the link

engine. Each link wire has a separate DMA channel so all engines may

be active simultaneously. The DMA engine interleaves all memory

requests appropriately. The control registers of the DMA engine are

memory mapped. Although the link protocol is an important perfor-

mance parameter in examining data throughput, this subject is not

covered in this paper. [Va87J provides a detailed description of the
% v=

topc.Otom ation ist herking"

donesth link commnicatios. Howevhepriesthe lengthroflink twsednk

ceis Eater tank wrehas suitable erro chcksl sol benmade. myI'

beacie iulanosl.Th DAenie ntreae al37or%

requstsappopratey. Te cntrl rgisers f te DA egin ar

N

1 PROCESSOR PERFORMANCE

There are two main areas where link communication will influ-

ence processor performance:

1. Communication transfer setup time, which is approximately 21
cycles per message for external links [In87b].

2. DMA link engine cycle stealing, which consumes typically 4 pro-
cessor cycles every 4 microseconds per link engine.

Significant to processor performance is the link engine's usage of

the internal bus during any inter-processor communication and its

potential degradation of the processor utilization. Cycle stealing by the

DMA link engines yields varying degrees of performance degradation

for given instruction mixes. An investigation was made into the use of

the internal bus in an attempt to quantify maximum performance

degradation for particular instructions.

Discussion with an INMOS consultant [Ma87] revealed that, when

the process conducting I/O and the process using the processor are of

the same priority, the internal bus gives priority to the link engines

over the processor due to their lower bandwidth. A higher-priority

process will always preempt lower-priority processes from internal

bus usage. This means that, to ensure efficient network communica-

tions, processor performance will always be degraded to some degree

since computation bound processes should be run at low priority and

hence would never have bus priority.

G. EVALUATION

Two operations, divide and block move, were 05elected to deter-

mine the maximum performance degradation. It was anticipated that

38

.*.1

the degradation of the processor would be the greatest for the opera-

tion with greatest amount of memory access time. Each background

process, consisting of several iterations of instructions, was timed

with no link operations and then as a background process with eight

link engines in operation. All programs were on-chip. The evaluation

program is shown at Appendix A. The results are shown in Table 3.1.

TABLE 3.1

BACKGROUND PROCESS DEGRADATION

TABLE 3.1 - Backgraund Process Degradation

Block move Divide

Iterations In-line Background % In-line Background %

50 4167 4600 (72) 9.0 223 192 (3) -

100 8333 10688 (167) 22.0 445 448 (7) 1.0

500 41658 44736 (699) 6.9 2217 2368 (37) 6.3

1 000 83316 86336 (1349) 3.5 4433 4800 (75) 7.6
,.

5000 416573 420736 (6574) 9.9 22156 25088 (392) 11.0
4,

All results are shown in high level ticks (1 microsecond) for both

the In-line and background process execution. They represent the

execution time without and with link interference respectively. The

bracketed figures are the low level ticks recorded for the background

calculation with the four link interference. These low level ticks re

converted to high level figures for sake of comparison. The

appropriate percentage degradation is also shown. The expected

39

0,

results were that block move instructions would be delayed by 12%

and divide instructions by 9%. Divide operations gave varying

performance degradation between 1.0 and 11.0% and block move of

3.5 and 22.0%. Within the basic understanding of the Transputer

model, this is difficult to explain.

Based on the fact that links transfer one byte of data every 23 bit

times and a minimum instruction fetch at 200 microsecond intervals,

eight link engines in operation for the T414 Transputer link protocol

(16 processor cycles every 4 microseconds), the absolute maximum

degradation possible is 25%.

H, PROGRAMMING PRACTICE

Investigation into this aspect of processor performance has shown

that in a network, to maximize performance, the largest overhead in

message passing is the transfer set-up time. More studies need to be

conducted to verify it. Discrete messages should therefore be kept as

long as possible, which agrees with [At87].

Further discussion with an INMOS consultant [Ma87] revealed

that The Royal Signals Research Establishment, United Kingdom, has

studied the overheads of network message passing concerning

processor efficiency and the optimum message length was found to be

between 10 and 100 bytes.

Understanding the fundamental Transputer models is the first

step toward use of the Transputer in a particular system architecture.

The next step is harnessing the optimized multiprocessor

characteristics. Chapter IV looks at a method to use these features.

40

:L- " - , % -% , ,, -.-. -. - - o .- ,. % . - .o.° ° , , . - . -,- , , ,. , "

IV. MULTI-TASPUTER NCETWORK WITH GLOBAL
DIS

A INTRODUCTION

The aim of this chapter is to lead the reader into what motivated

the design of multi-Transputer networks with globally distributed

variables. We briefly discuss what configuration was selected, and

briefly describe the synchronizing mechanism to implement the

design.

R MOTIVATION

One successful method of harnessing multiprocessor systems is

implemented using shared memory and global variables. Processes

may communicate by .means of globally shared variables maintained in

a physically shared memory. The reading and writing of these vari-

ables is controlled by an operating system which enzures reading and

writing is achieved in a carefully synchronized fashion. For example,

using the classic producer-consumer paradigm, the operating system

will ensure that any writing to a global data structure is completed by a

producer before any consumer process can read such a data structure.

One such mechanism is described by Reed and Kanodia [ReKa79] and

showed its implementation within a shared memory environment.

This synchronization is based on eventcounts and sequencers. Such a

synchronization system was used in the MCORTEX operating system

[Ga86, Ko83], which provided very satisfactory performance results.

The features of the synchronization mechanism in particular are well

41

suited to physically distributed systems such as multi-Transputer

networks.

The problem domain is harnessing the network to its full poten-

tial, given the two factors of proven multiprocessor synchronization

mechanism and a powerful Transputer multiprocessor architecture.

Our proposed solution is a network of Transputers which share no

physical address space but maintain an equivalent of a physically

shared memory system by replicating the global data structures

throughout the nodes in the network. Each participating node pro-

ducing any new value for any global data structure would broadcast this

value throughout the network for updating the other node's replication

memories. This is called a virtual shared memory system. In this

system, network communication is conducted with minimal

degradation to each node's processing power. To achieve this, the

network must be set up in an optimum configuration to ensure optimal

performance.

C. OPTIMAL NETWORK CONFIGURATION

The four links of the Transputer allow flexible network configura-

tions which are application dependent. [Be85 discusses optimal

configurations of multi-Transputer networks. The superior network

configuration for implementing the virtual shared memory system is

the delay insertion loop structure [We80]. The reasons for such a

selection are as follows: ..9

1. Addressing schemes overheads are minimal.

42%42

'9#,

.5.

2. A transmitting node needs to know the location of any receiving
node.

3. Message broadcast is facilitated.

V

4. Node connections can be established quickly and easily. (This
may be software controlled using an INMOS 0004 connection
scheme [1n87e1.)

5. A loop configuration allows a high message throughput rate.

6. A loop structure enhances modularity throughout the network.

The major disadvantage of the system is its reliability due to its

serial nature. This is recognized but ignored for sake of evaluation.

Fault tolerance within this system Is another issue. The prototype for

the virtual shared memory system therefore uses only a unidirectional

ring structure.

Source code for the ring is shown at Appendix B. The ring size is

dictated by the structure of the INMOS B003 Evaluation Boards. Con-

sequently, the minimum size is four nodes and increments are in mul-

tiples of four. Other network structures are shown and discussed in

[Hil.

M. EVENTCOUNTS AND SEQUENCERS

1. Ey~tcounts

An eventcount [ReKa87J is an abstract data type (ADT) which

maintains a count of the number of occurrences of a particular class of

events within a system. It is implemented as a non-negative integer

I

varansittiee to no Ass dwit thcis o ae threepii

tiv oeatonnectolos:cnb salse ucl n aiy Ti

ay dane sofetaecontrolduiga)NO 04cneto

434

b. read (Event.count)

c. await (Event.count, Threshold.Value)

Advance causes the value of the eventcount to increment by

one. This signals another occurrence of an event associated with that ,

eventcount. Read returns the present value of the eventcount. Await

provides a non-busy wait synchronization tool which deschedules a

process until such time as the eventcount has reached or exceeded

the threshold value. Thereupon it is rescheduled for execution.

2. S gcr

The sequencer is also an ADT. It is designed to provide total

ordering of events within the system which is implemented as a non-

negative integer variable. The only operation associated with it is

ticket(This.Sequencer). This operation returns the current value of

the sequencer and then increments the sequencer value by one. The

concept is analogous to the barber shop ticket system when, upon

entering the shop, the customer takes a ticket and, when the barber

calls his number, he is the next person for a haircut. This mechanism

provides mutual exclusion for system resources if required.

E. EFFICIENCY

The software design objective is to minimize processor idle time

and maximize system throughput. Multiprocessor systems will suffer

reduced efficiency by bottlenecks due to serialized processing caused

by inadequate synchronization. With careful attention to the multi-

Transputer network architecture and use of eventcounts and

sequencers, these bottlenecks may be avoided.

44

h

V. DESIGN AND IMPLEMENTATION OF A VIRTUAL SHARED
MEMORY IN A MULTI-TRANSPUTER NETWORK

A OVERVIEW

This chapter attempts to walk through all the design issues

involved in designing and implementing a prototype virtual shared

memory system in a multi-Transputer network. The aim of the chap-

ter is to document the design decisions so any subsequent work in the

area may benefit from both the strengths and weaknesses of these

decisions. The design process was an iterative one. Changes were

made as an understanding of the models discussed previously became

clear. The issues are dealt with from a top-down design view of the

problem. Consequently, this chapter is divided logically into system

model and assumptions, macro-design decisions, and micro-design

decisions.

R SYSTEM MODEL AND ASSUMPTIONS

1. Node Activities

Each node during system operation will have three major

activities:

a message routing,

b. updating all incoming global data structures, and

c. calculation of data for distribution.

These activities are directly mapped to associated processes

labelled filter.data, update, and calculate. Their logical structure is

shown in Figure 5.1.

45

7S

_I

a~ A % *1 ~ ~ *v * * K' A, a' ~ ~ ~.*1 '*.~.*''*~~*.'.**

J ,I.d J~ ~,.* a ~ .*,.in

VIRTUAL SHARED MEMORY NODE

FILTER.DATA

EXT.1N XT.OUT

From TO

7E.

NODE CACULATION NODE. UPDATE

F'igure 5.1

Node Activities

2. Asmpin

The design decisions discussed in this chapter are based on

the following assumptions:

a All nodes in the delay insertion loop are connected by DMA link
engines with a 20 Megabit/second capacity.

b. The minimum size of the ring is four nodes.

c. The ring is Incremented in multiples of four nodes.

46

d. The system is responsible for calculating a given global data
structure for a particular class of problem domain. Each node is
responsible for calculating a particular section of the system
globally distributed data structure and distributing the resulting
data throughout the system.

e. Implementation of the global data structure is accomplished by
each node maintaining a replication of the data structure so that
at any stage of system computation any node can provide the sys-
tem state of computation.

f. A system state of computation is provided by monitoring the sys-
tem eventcount status.

g. Total ordering of events throughout the system can be provided
by sequencers.

IL Only one specified node is responsible for providing external sys-
tem status monitoring. This is referred to as the Input/Output
node (IO.node).

3.Process Deseiotion

a. Filter Data Process

This process is the delay insertion ring emulator. It is

responsible for placing the node's updated data on the ring and

removing messages the node placed on the ring. This process is the

crux of the ring configuration. A major design decision in this process

was a modification of the strict implementation of the delay insertion

loop. A variable number of messages per node is permitted instead of

the single message. This was implemented to permit determination

of the optimum message passing method in the loop structure.

b. Update Process

Update process is responsible for updating the global

data structure as the Filter.data process passes all system data to it.

This includes its own data updates. This was a specific design

47

,:, . .', ...;. ; ' . .. :; ." .,;. .". : .. . +.. ,.

decision so that only the Update process could write to the data

structure. The Update process, which monitors overall system status,

synchronizes with and sends the appropriate values to Calculate.

c. Calculate Process

The Calculate process encapsulates the node calculation

routine for providing updated data throughout the system. Each calcu-

lation provides the nodes updated data which is placed in the ring for

distribution when the Filter.data process is ready to do so. This pro-

cess is responsible for advancing the node's eventcount and issuing

sequencer requests as appropriate.

4.]ProgMrar Structure

The global data structure replicated within the node is

considered an abstract data type with the operations within the update

process, providing read and write operations on the data structure.

Other abstract data types within the node are the eventcount for the

node and any sequencers that may be required within the system. The

OCCAM code for the node processes is shown in Figure 5.2.

C MACRO-DESIGN DECISIONS

1. Process Priori

Examination of the program structure in Figure 5.2 shows the

use of the high-priority process queue for message passing. This

ensures that any message received is dispatched without delay to

ensure good system performance. Update and Calculate are low-

priority processes and will execute in round-robin fashion when no

48

- s - n -.rr~nra. -nfh I Z wrv~tfhwurrr wwr~u. .. rpr .r wn .r ri .- Wqr... -U M r T V V' v tL jy Vw -. -

no messages are to be dispatched. All processes which use the link

engines should be run at high priority [At87].

NODE PROCESS

INT event.count
[node.no]INT eventcounters
[node.no * block.size]INT array

CHAN OF ANY ext.in, ext.out, int.in, int.out, data
PRI PAR

filter.data(ext.in, int.in, int.out, ext.out)
PAR

update(int.out, data)
calculate(data, int.out)

Figure 5.2

Node Process Listing

2. System Messe Pasn

Data communication is conducted by transmission of three

discrete items: node identification, node data, and node data event

count.

Each node receives these three items and either sends the

message on or withdraws it from the ring. The present implementa-

tion presents the worst-case efficiency since three messages are dis-

patched and received for one data message produced by each node.

The alternative design is to package the three items in one

data structure and send the data structure to each node. This would

require an overhead of every message being encoded and decoded for

each insertion and receipt at each node. These overheads would be

49

.5 a~~ - - -,, . -, -,- - - -

minimal to the overheads of 63 cycles per message incurred by each

node for each communication set-up.

A basic two-tiered message passing scheme is implemented

for the system to distinguish data packages and system coordination

messages. Basically, any message with a non-negative integer header

is system data, and negative headers are system manipulation calls

such as sequencer requests and shut down calls.

Typing of channel protocol was not attempted for the con-

struction of the ring, since it was not desirable for a development sys-

tem which may need a flexible communication protocol. However, it

is considered an important aspect to modularity in future development

of such systems. For example, if for a given system a design decision

was made concerning the message format and content, typed chan-

nels would provide valuable checks for module correctness and system

compatibility at compile time. This would be important for non-

homogeneous systems in modular development. For any subsequent

work in this area. it is recommended that protocols be used after effi-

ciency issues have been resolved and after adequate modular testing.

3& Synchronization and Data Passing Mechanism

The eventcount primitive await has not been implemented in

this prototype. It is possible to implement an alternative to read by

using the read primitive of dependent eventcounts together with the

use of an internal channel to provide system synchronization. This is

the case with the synchronization method between the Update and

Calculate process.

50

VKW" V VWW no I* d; J. w. ,; I TRK W W W I:; : : . J, i: : J,7
.,

.VII., ' .WVI,-Frvrk r lj-y"YK u,)t- ,r - ,W P.7q. W V , 6-..-

This is not the only method of synchronization and internal

node data passing. In certain instances, passing data by reference may

be a more efficient method. This would require a sequential, vice the

parallel, construct. Passing data by reference method was not used for

this implementation because it was considered a restrictive method

for system inter-node synchronization. The merits and examples of

data passing methods are described well in [At87]; it is particularly

suitable for certain data flow architectures.

4. System Shut Down

System shut down is achieved by passing two tokens. The

first token informs all nodes to cease calculating and sending any fur-

ther messages: the second shuts all system processes down.

The route taken by these tokens is shown in Figure 5.3. The

criteria for system shutdown is flexible and may be generated either by

a node in the loop or by the external system monitor.

Shutdown Token Path

FromPreviousW
ToNext, Filter.Data

Calculate Update

Figure 5.3

Shutdown Token Path

15

5. External System Monitoriri.

The state of the system is monitored by a process external to

the ring structure. The 10 node is responsible for tapping all mes-

sages to the external system monitor. The system monitor may then

either display the system state as required or provide any necessary

input data for the system operation. This process is the user interface

to the system.

D. MICRO-DESIGN DECISIONS

3L. Filter Prooes

The Filter.data process is solely responsible for the routing of

messages throughout the system. Basically, the OCCAM language con-

structs PRI ALT/ALT easily allow multiplexing of data from several

input channels. In Filter.data, there is one internal and one external

channel to multiplex. The code for Filter.data is at Figure 5.4.

FILTER.DATA PROCESS
PROC Filter.Data(CHAN OF ANY External.In, Internal.In,

Internal.Out, External.Out)
... PROC buffer
... PROC mix
CHAN OF ANY own.data, other.data
PAR

Buffer(External.In, other.data)
Buffer(Internal.In, own.data)
Mix(other.data. own.data, Internal.Out, External.Out)

Figure 5.4

Filter Data Process Listing

One very important rule for using link engines for extensive

data routing processes is always use buffering to decouple the link

52

E

from the multiplexing process [At87, Pa87]. Failure to do so may

result in deadlock and reduced efficiency. This occurred in a

preliminary version of our implementation. It was found that without

buffering, deadlocks occurred, especially as the number of nodes

increased (as greater message traffic or number of messages allowed

on the ring per node increased). Buffering the link engines allowed

processes to run without any deadlock.

A corollary to the buffering rule is always decouple link

engines from computation. This is a matter of efficiency, however,

and not deadlock prevention. Decoupling link engines actually allows

real concurrency of input, computation, and output.

2. Update

The main design issue is access to the globally distributed

data structure. Only this process may access the data structure and

send the appropriate data to Calculate for the necessary calculation.

The two-tiered message passing scheme is supported throughout.

Figure 5.5 shows the basic structure of the Update process.

3. Calculate

This process is responsible for the system calculation and

event count advance primitive. The two-tiered message passing

scheme prevails. Figure 5.6 shows the basic structure of the Calculate

process.

53

PROC update(VAL INT machine, CHAN OF ANY in, data)
Pboctsize]INT sector
Inode.no]INT eventcount] event, count

SEQ
I e varables

WHIE activ
SEQ

..get message heade r
IF

header positive -

-. get mes sage data -

- wbda ta to data structure
deb130irn e synchronization details

cihewise
POS'S SYIt oken

Figure 5.5

Update Listing

54

a~u~wn w~w W SWWW WWWfl flrVrw W VnMup .y flWWWW' ". -V - W WT" U n W u -N . UNYSW-

PROC calculate(VAL INT machine, CHAN OF ANY data, out)
[block.sizelINT sector
INT event.count
BOOL active

... PROC advance(event.count)
... PROC send.data(machine, sector, out)
... PROC heat.flow(left, right, length)
SEQ
... Initialize
... heat.flow(left, right, sector)
... send.data(machine, sector, out)
... advance(event.count)
WHILE active

... get synchronization message
IF

header positive
... get boundary conditions

... heat.flow(left, right, sector)
... send.data(machine, sector, out)
... advance(event.count)

otherwise
pass system tokens

Figure 5.6

Calculate Listing

55

VI. EVALUATION OF THE VIRTUAL SHARED MEMORY IN A
MULTI-TRANSPUTER NETWORK

A OVERVIEW

The aim of this chapter is to examine the performance of the

prototype virtual shared memory system in a multi-Transputer net-

work. The prototype is evaluated using a representative problem

which may arise using multi-processor architectures. The results are

then compared to the ideal case and conclusions drawn from the

results.

B. MULTI-PROCESSOR REPRESENTATIVE PROBLEMS

1. Gener

The heat flow problem was selected to evaluate the prototype

virtual shared memory system since it is representative of many such

problems that arise in meteorology, oceanography, engineering, and

science. The single-dimensional heat flow solution was selected since

it facilitated a simple template for a similar but more complicated

problem domain.

2. The Heat Flow Problem

The heat flow problem in a single length of wire is described

mathematically as a solution of the partial differential equation:

t'

with specified Initial and boundary conditions. The problem is to

examine the heat distribution in the wire as a function 6f time.

56

%ruirU~ KRU1r~"TLXX% V~'i 7T7I V% Irv'.~~

The system is responsible for determining the temperature of

a particular length of wire. The length of wire is then divided into N

sections which are directly mapped to the number of nodes in the

network. These sections of wire are further divided into a number of

P points which monitor temperature. This is shown in Figure 6.1.

One Dimensional Heat flow Example
Heat Flow through a Wire

Left Boundary Right Boundary

\ Wire is divided into N sections
ach section is divided into P points

Figure 6.1

Heat Flow Through a Wire

The length of wire is represented by a globally distributed data struc-

ture which is a single dimensionalal array with (N * P) points. Each

node is responsible for calculating the temperature of each of the P

points in its a section of the wire.

The heat flow through the wire is computed by each node

calculating the temperature of each point in Its section and broad-

casting it throughout the network. When all processors have com-

pleted the calculations, one iteration is said to have completed. This

represents one unit of time. Iterative count is maintained by moni-

toring the eventcounts associated with each node in the system. For

57

example, when all eventcounts are at least equal to one indicates that

the system has completed its first iteration.

Data for display is passed from the specialized IO.node in the

network to a monitor process which displays the heat flow calculations

periodically. This process is decoupled from the ring so the display-

ing of data incurs minimal degradation to the system. Source Code of

the heat flow and the ring monitor process are available in Appendix C.

C EVALUATION

I. Description

The prototype is evaluated using a four- and eight-node loop

configuration allowing two messages per node in the loop. Global data

structure sizes used are 100, 200, 400, 800, and 1600 integers. The

network performance was timed over one thousand iterations. The

timing was conducted from a monitoring process which timed the

system from the passing of iteration information until the system stop

token was received.

2. Results

Prototype results are given in Table 6.1 and Figure 6.2. Note

that all performance results are measured for off-chip data for two

reasons: it provides a worst-case evaluation and all results are under

uniform conditions.

58

TABLE 6.1

PROTOTYPE PERFORMANCE RESULTS

Table 6.1 - Delay Insertion Loop Performance

Data Structure Four Node On/Off Chip Eight Node On/Off Chip
Size

100 55,996 Off 111,106 Off

200 114,739 Off 230,134 Off

400 226,780 Off 448,324 Off

800 448,360 Off 896,921 Off

1600 892,628 Off 1763,736 Off

(Units in low level tick counts per 1000 iterations)

PERFORMANCE COMPARISON

2000-
-a- Elapsed lime(S)

. Elapsed ime(4)

1 000 1

500- Four Node Ring

0-
0 1000 2000

Data Size - Words

Figure 6.2

Performance Comparison

59

ak % Vi

3. Observtionh

All system elapsed time data are plotted against data struc-

ture size per node. The slope of the four-node ring results is exactly

half that of the eight-node results. This is a linear relationship. If the

system throughput is thought of as the number of points calculated per

unit tine, then the throughput for all data on both four- and eight-

node configurations remains relatively constant at an average of 7.1

points calculated per 1000 Licks (kiloticks). Thus, the ring configu-

ration for this problem domain provides no linear performance

improvement. This can be explained, however, by analyzing a time

line of processor calculation and communication activities throughout

the network.

Figure 6.3 shows an example of a full calculation and message

cycles for a four node ring configuration. Each processor has two main

activities, calculation and message passing. These two activities are

shown in Figure 6.3. Each processor shares a link with an adjacent

processor. For example, processor 0 and processor 1 share a link. It is ,

assumed that each message is synchronized within some arbitrarily

small time after it is sent. The heavy lines along the time axis

represent processor cycle time used by each activity. Eack link

activity is labelled with the originator of the message. Each processor

calculation is labelled with the data set produced.

As each processor calculates its data, It is placed in the net-

work for sequential distribution. Any calculation of data in a processor

is known as processor useful activity. For strict implementation of the

60

all r

IF.Na VT-W-rjV.: J W. . V;WT .

delay Insertion loop, only one message per node is allowed in the sys-

tem at any time. This means that processor useful activity and idle

time Is dependent on message transit times through the ring

configuration and length of processor useful activity. Examination of

Figure 6.3 shows the length of the processor idle time. It Is

considerably longer than the useful activity time. .

For the given problem domain of a linear heat distribution

through a length of wire the calculation of each point in a section of

wire may be described mathematically as:

Ui Ui-1 + + Ui+ 1]

One may now estimate the calculation time for each point.

The processor useful activity time may be calculated as a function of

points per section of wire by calculating the execution time of the

above equation. An approximate time of calculation for a point is 3

microseconds (3 microseconds per word). Message transmission time

can be calculated as a function of link protocol and channel rate.

[Va87 showed the net data transfer rate per T414 link is 23 bit times

per byte or 4 microseconds per word. Therefore the processor spends

more time in this problem sending data sets than calculating them.

The network, therefore Is said to be message bound and the idle time

is dependent on the number of messages In the system.

4. Conclusions

The observations made show when a Transp~ter network is

configured In a ring configuration and the problem domain is message

61

bound, system performance will not improve as processors are added

to the system.

pE

iU

U r - ,
0 ~EV

010

62

Processor idle time is proportional to the number of nodes in

the ring since message passing dominates calculation. The more

processors waiting idly for data, the less effective the overall solution

to the problem.I

To ensure high system performance, one must ensure a high

frequency of system useful activity or, conversely, reduce the

processor idle time. This may be achieved by minimizing the

message passing time or by ensuring each node's useful computation

time is higher than the idle wait time. Message passing times may be

reduced by passing essential data only throughout the network. For

example, if the data set computation time in Figure 6.3 approached

the message loop transit time, the idle time would be reduced

producing more efficient system performance. Conversely, if in the

single dimensionalal heat flow problem the boundary (es'sential) values

only were passed then idle time would be reduced and overall system

performance would improve.

In short, the single dimensional heat flow problem is not

sufficiently computation intensive to test linear performance

improvement of a ring configured Transputer network. Future work in

this area requires a more comprehensive look at the problem domain

computation versus message passing time ratio.

63

VII. CONCLUSIONS AND ECOMMENDATIONS

A CONCLUSIONS

This thesis has investigated and documented some very

fundamental issues involving programming the Transputer and has

investigated its suitability as a future weapon system processor. The

topics selected for discussion are germane to network configuration

and of course do not cover all details. An attempt has been made to

include as many suitable references as possible for the reader for

further discussion and examples. The topics covered in this thesis are

only a preliminary investigation into this new frontier of

microprocessors.

Unless the basic notions of the Transputer model are revealed,

further investigation may provide misleading results. The first half of

this thesis has attempted to distill the essence of the basic hardware

implementation. Understanding this aspect should give a better

insight into improving network performance.

Another fundamental issue investigated concerning networks of

Transputers is the maximum degradation on a Transputer CPU when

all link engines are operating. The major overhead is setting up the

data transfer of 21 cycles per message. The other overhead is due to

cycle stealing on the internal bus by each of the link engines as they

transfer data. The maximum degradation was calculated to be 25% for

the T414 link protocol. Predictions of degradation for a particular

instruction did not prove conclusive. Message passing in Transputer

64 1
~ ~ I

u~~~WWUW'ru I 1J M9q . JX f WKWWWa V TW V'VW WWWWry~w 'gm WA) WVWUv R 'IFV v 9jw' ~ (WV r ,~ - v -J -'W Fl rxr" F %F7 " KF W Y- WT - VV- V Y -

networks should be packaged into long essential messages. If the

maximum degradation of the Transputer CPU due to link engine cycle

stealing is 25% for a 10 MIP processor, then the overall system per-

formance is still very satisfactory.

Timing in the Transputer must be done with great care. Naive

use of the TIMER will produce misleading results. The programmer

of real-time programs must take great care to ensure correct program

modelling when using the TIMER.

The major conclusion that one could make is that programming

Transputer networks requires a detailed knowledge of how the hard-

ware implementation works before the full performance can be har-

nessed. The aim of the implementation of a virtual shared memory is

to use the link engines and the CPU to the maximum with minimal

mutual interference. Results obtained from the evaluation indicate

that to implement virtual shared memory processor useful activity

must be analyzed against message-passing time. Message bound

systems do not provide linear performance gains in a ring

configuration.

B. RECOMMENDATIONS

The emphasis, however, in the AEGIS modelling group is to find a

suitable architecture for future weapon systems control. The

MCORTEX system has proved to be a satisfactory system using

hierarchical shared memory and bus systems. The aim is to map the

Transputer to such a system, optimizing the unique Transputer archi-

tecture. This thesis is the first to implement and evaluate such an

65

gramming such a network and the understanding of the hardware

implementation. To this aim, it is recommended that the virtual

shared memory prototype be further investigated for suitable

improvement and rigorous evaluation for computation bound problems.

The major unresolved problem from this research is the prediction of

degradation in the performance of the Transputer CPU caused by the

links engines' activity. It is recommended that this be further

investigated and documented.

Programming productivity is enhanced by using a wide variety of

tools. The latest edition of the Transputer Development System pro-

vides an adequate debugger for debugging networks of Transputers

which should improve program productivity. The library system

included in the latest OCCAM language compiler has provided some

excellent routines for use. It is recommended that further

investigation be made into the full utilities of the Transputer

Development System for use. This includes such items as making

bootable files for stand-alone application programs and incrementally

improving the INMOS supplied libraries. Detailed investigation into

the tool set available will enhance further activities and research with

the Transputer networks. Further, it is recommended that languages

such as C and Pascal and ADA (when it becomes available) be

investigated for use. The use of these languages may improve

programming productivity by allowing program portability and the use

of language features not yet available in OCCAM.

66

IN...

APPENDIX A

PROCESSOR PERFORMANCE DEGRADATION EVALUATION SOURCE

A SUMMARY

The aim of this evaluation is to measure the performance

degradation of the Transputer CPU while all eight link engines are

performing data transfer. The logical structure of the program is

shown in Figure A. 1. The center node contains the evaluation code.

Each satellite contains message-passing code to work the link

engines. One satellite contains the user interface to report the results.

Logical Structure of Processor Degadation
Sattelite processors
conduct continuous gi,
link transfer with
centre processor.

0.0

ill eight OMA link . Background process placed
engines are running In the centre processor

Figure A. 1

Logical Structure of Processor Degradation Program

67

B.SOURCE CODEC

CHAN OF ANY in. 1, out. 1
CHAN OF ANY in.2, out.2:
CHAN OF ANY in.3, out.3:

PLACED PAR
PROCESSOR 0 T4
PLACE in.1 AT linkln2:
PLACE in.2 AT linkini:
PLACE in.3 AT Iinkln3:
PLACE out.1 AT IinkOut2:
PLACE out.2 AT linkOuti :
PLACE out.3 AT IinkOut3:
central.node(O, In.1, In.2, In.3, out.1, out.2, out.3)

PLACED PAR
PROCESSOR 1 T4

PLACE in.1 AT IinkOut3
PLACE out.1 AT linkln3:
busy.transfer.TI(1, out.1, In.1)

PROCESSOR 2 T4
PLACE in.2 AT linkOuto
PLACE out.2 AT linkino :
busy.transfer.TI(2, out.2, In.2)

PROCESSOR 3 T4
PLACE in.3 AT linkOut2
PLACE out.3 AT Iinkln2:
busy.transfer.TI(3, out.3, in.3)

68

V-W W-. - -- rWlrW--w- W W- I I
PROC central.node(VAL INT machine,

CHAN OF ANY In.1, In.2, In.3,
out.1, out.2, out.3)

VAL data.size IS 1024:
-this size was chosen to fit all data on chip

VAL par.tag IS -1 :
-- connected to host user interface
CHAN OF ANY in.0, out.0:
PLACE in.O AT 4:
PLACE out.0 AT 0:

[4]CHAN OF ANY to
TIMER clock:
INTOCT:
[2]INT start, stop
INT link.iteration, length:
INT x1, x2, x3, z1,z2, z3
[datasize]INT data0, datal, data2, data3
[data. size/4] INT sector:

SEQ
._ initialize
SEQ i -=0 FOR data.size/4

sectori] *= 100
- -- synchronize data

in.0 ? link.iteration
in.0 ? CT
in.0 ? length
out.0 I pnipar.tag

-unhindered computation timing
INT now:
SEQ

now :. 10
clock ? start(0J

-block-move code
SEQ - 0 FOR CT
[dataO FROM 0 FOR length] [sector FROM 0 FOR length]
-- division code
SEQ i -0 FOR CT
now*: now / 1
clock ? stop[0J

-synchronize satellites
PAR

out.1 ?linkiteration length
out.2 !linkiteration length
out.3 !link.iteration length

PRVW..... RUWU VWWWV .WWK N, 1. F ,M,. . N F , . R'P ' , P P T .P -

-- start all link engines
PRI PAR

PARPAR
SEQ i - 0 FOR link.iteration

SEQ
in.0 ? xl; [datao FROM 0 FOR length]; zl
to[O] I xl; [data0 FROM 0 FOR length]; zl

SEQ I - 0 FOR link.iteration
SEQ
to[0] ? x3; [data3 FROM 0 FOR length]; z3
out.0 I x3; [data3 FROM 0 FOR length]; z3

PAR
SEQ i - 0 FOR link.iteration

SEQ
in.1 ? xl; [datal FROM 0 FOR length]; z1
toil] I xl; [datal FROM 0 FOR length]; zl

SEQ I - 0 FOR link.iteration
SEQ
to[l] ? x3; [data3 FROM 0 FOR length]; z3
out.1 I x3; [data3 FROM 0 FOR length]; z3

PAR
SEQ i - 0 FOR link.iteration

SEQ
in.2 ? xl; [datal FROM 0 FOR length]; zl
to[2] I xl; Idatal FROM 0 FOR length]; zl

SEQ I - 0 FOR link.iteration
SEQ
to[2] ? x3; [data3 FROM 0 FOR length]; z3
out.2 I x3; [data3 FROM 0 FOR length]; z3

PAR
SEQ i - 0 FOR link.iteration

SEQ
in.3 ? xl; [datal FROM 0 FOR length]; zI
to(31 I xl; [datal FROM 0 FOR length]; zI

SEQ I - 0 FOR link.iteration
SEQ
to[3] ? x3; [data3 FROM 0 FOR length]; z3
out.3 I x3; [data3 FROM 0 FOR length]; z3

70

Ij
. .. * R Y% * * % .~" % * (%

SEQ
deschedule(1 0)
SEQ k = 0 FOR link.iteration

INT now:
SEQ

now:= 10
-- interfered computation timing
clock ? start[l]
SEQ i = 0 FOR CT

[dataO FROM 0 FOR length] [sector FROM 0 FOR length]
clock ? stop[l]

-- send results to display
out.0 I (stop[l] - start[I) ; (stop[0] - start[0])

71

PROC busy.transfer-TI(VAL INT machine, CHAN OF ANY In, out)
VAL data.size IS 1024
IN x1, x2, z1,z2
INT link.iteration, length
[data.size]INT data.out, data.out:

SEQ
__ initialize
SEQ i= 0 FOR data.size

data.out[i] :=machine
x1 : machine
zi :=1
-- synchronize data
in ? Iink.iteration; length
-- send and receive
PAR

SEQ
SEQ i = 0 FOR Iink.iteration

out Ilxi; [data.out FROM 0 FOR length]; zi
SEQ

SEQ k = 0 FOR link.iteration
out I x2; [datain FROM 0 FOR length] ;z2

72

wQV .u cL- W- - aiv-~I T~hr .W!R - - k- W J J wu.J

APPENDIX B

-- N node uni-directional ring configured for B003 application

AUTHOR SJ HART
DATE 25
OCTOBER 1987
VERSION 2.0
ENVIRONMENT MACINTOSH 512 TDS 2.0 BETA 2.0(MARCH 1987)
FILE.NAME ringstructure.TSR
TOP. FILE TEST.TOP
DESCRIPTION Uni directional ring structure

-- link channel offsets

VAL link~in IS 4
VAL linkl in IS 5
VAL link2in IS 6
VAL link3in IS 7
VAL link0out IS 0
VAL linkl out IS 1
VAL Iink2out IS 2
VAL link3out IS 3

-Each internal channel is associated with a table indexed
-when the internal channel is mapped onto an external channel

VAL clockwise.in IS [linklin, link3in, link3in, link3in]:
VAL clockwise-out IS [ink2out, link2out, link2out, link0out]:

-- this varies according to network size

VAL No.B3003 IS 1
VAL n IS (4 * No.B3003)
VAL node.no IS n

-channel declaration

73

[node.no] CHAN OF ANY clockwise

- separately compiled "node" to be extracted to all nodes

.SC modules

- Configuration Code

- MACHINE IS THE NODE REPLICATOR IDENTIFIER

PLACED PAR
VAL machine IS 0
PROCESSOR machine T4

-position of node within the B003 board (0.-3)
VAL clock.in IS (machine + (node.no-1)) \node.no
VAL clock.out IS machine
VAL map.index IS machine \ 4
CHAN OF ANY from.kb, to.monitor
PLACE clockwise[ctockinj AT clockwise.in [map.index]
PLACE clockwise[clock.out] AT clockwise.out [map.i ndex]
PLACE to.monitor AT Linkoin
PLACE from.kb AT Unk0out

O.nodeO2(machine, from.kb, clockwise[clock.in],
clockwi se[clock. out], to. monitor)

PLACED PAR machine -1 FOR node.no-1
PROCESSOR machine T4

-position the node within the B003 board (0-.3)

VAL clock.in IS (machine + (node.no-1)) \ node.no
VAL clock.out IS machine
VAL map.lndex IS machine \4
PLACE clockwise~clock. in] AT clockwise. i n[map. index]
PLACE clockwise[clock.out] AT clockwise. out~map. index]

node(machine, clockwise (clock.in], clockwise [clock.out])

74

APPENDIX C

A SUMMARY

The following paragraph summarises the processes contained in

the implementation of a virtual shared memory in a network of

Transputers. The code of each of these processes follows.

PROC node(VAL INT machine, CHAN OF ANY ext.in, ext.out)

-This process is the code contained in all nodes throughout the network.
-- The process contains three parallel processes
-- (1) filter.data
-(2) update
-(3) calculate

PROC buffer(CHAN OF ANY in, out)

-single software buffer for prototype virtual shared memory system.

PROC, mix(CHAN OF ANY ext.in, int.in, ext.out, int.out)

-This process multiplexes two channels.
-- One external and one internal. This process is
-responsible for the network message passing scheme.

PROC fifter.data(VAL INT machine, -- node
CHAN OF ANY ext.in, int.in, -- in

*'q

intout, ext.out) -- out

-To beused byreceive process formultiplexing data from

7I

75I

I .~ *

- previous node OR the node.calculation

PROC update(VAL INT machine, CHAN OF ANY in, data)

- Place sector in the virtual array according to the node
- from whence it came and send synchronization data to calculate

PROC write.data(VAL INT start.point,
VAL []INT sector, []INT array)

PROC calculate(VAL INT machine, CHAN OF ANY data, out)

- this procedure will dispatch all details
-- concerning the nodes calculations and update the event count
-- the process assume synchronization data from update via data channel

PROC advance(INT event.count)

-- advances the given eventcount by one

PROC send.data(VAL INT machine, []INT sector, CHAN OF ANY out)

-- Implements communication protocol for the prototype

PROC heat.flow(VAL INT left, right, []INT length)

-- One dimensional heat flow calculation
-- This is typical of probelms that may be solved in this network

PROC IO.node(VAL INT machine,
CHAN OF ANY from.kb, ext.in, ext.out, to.screen)

-- Display the node data structure at each consistent data point to
-- external monitor

PROC IO.filter.MUX(VAL INT machine, -- node

76

d,

CHAN OF ANY ext.in, int.in, - in

int.out, ext.out, to.display) - out

PROC IO.update(VAL INT machine, CHAN OF ANY in, data)

PROC ning.monitor(CHAN OF ANY keyboard, screen)

-- host machine user interface with the network

PROC monitor(CHAN OF ANY from.kb, to.monitor, to.screen,
from.monitor)

-- external monitoring process to the system

PROC write.int(CHAN OF ANY to.screen, VAL INT number, field)

-display utility for numeric data to screen

PROC clear.line(CHAN OF ANY to.screen)

-utility for clearing line

PROC go.to(CHAN OF ANY to.screen, VAL INT X, Y)

-- utilty for cursor position

PROC write.s(CHAN OF ANY to.screen, VAL fl BYTE string)

PROC collect.data(CHAN OF ANY to.monitor, to.data. structure)

-multi buffering process only to decouple display from the system

77

7..

PROC update. memory(CHAN OF ANY in, to.screen, DINT array
[node. no] INT event.count)

-receives the two tiered messages from the system and
-responds accordingly. Primarily responsible for timings and data

78

%ijW W Is W K ' WWW Yl MynF1r W TX7 my 47 ,rp WIT3' ON

B. DETAILED SOURCE CODE

PROC node(VAL INT machine, CHAN OF ANY ext.in, ext.out)

-- This process is the code contained in all nodes throughout the network.
-- The process contains three parallel processes
-- (1) filter.data
-- (2) update
-- (3) calculate

-- node variables

[500]INT on.chip.space• -- push all data off-chip
-- internal channels

CHAN OF ANY int.in, int.out, data

system variables
VAL node.no IS 4
VAL block.size IS 100
[node.no*block.size]INT array -- node data structure 1 D array

system tokens
VAL stop.token IS -1
VAL shut.down.token IS -2

VAL otherwise IS TRUE

PRI PAR
filter.data(machine, ext.in, int.out, int.in, ext.out)

PAR
update(machine, int.in, data)
calculate (machine, data, int.out)

I

°!

79 "

oS

" .

i, _ _,' % %
-

" % %"• . * . .. -• %. , , ,. .. %. " .. ,. . . ,. • • . • • " % % %• - . - -- •

PROC buffer(CHAN OF ANY in, out)
-- single software buffer for prototype virtual shared memory system.

INT node, event.count:
[block.size]INT data:
BOOL active:
SEQ
active := TRUE
WHILE active

SEQ
in ? node
IF

node >= 0
SEQ

in ? data ; event.count
out I node; data; event.count

otherwise
IF

node = shut.down.token
SEQ

out I node
active := FALSE

node = stop.token
out I node

otherwise
SKIP

8'0

80

"I%

I

PROC mix(CHAN OF ANY ext.in, int.in, ext.out, int.out)
-o This process multiplexes two channels.
-- One external and one internal. This process is

responsible for the network message passing scheme. a

VAL max.message.load IS 1
INT node , event.count
INT message.no
[block.size]INT sector
BOOL active
SEQ
-- initialization
event.count := 0
active:= TRUE
message.no := 0
WHILE active

PRI ALT

(message.no < max.message.load) & int.in ? node
-- internal input from calculation

SEQ
IF

node >= 0
SEQ

int.in ? sector ; event.count
PAR -- send the update to next node

ext.out I node ; sector; event.count
int.out I node ; sector; event.count

message.no := message.no + 1
otherwise -- node < 0
IF

node = stop.token
ext.out I stop.token -- dispatches stop.token

node = shut.down.token
SEQ

ext.out I shut.down.token
active := FALSE -- dispatch then shut down

ext.in ? node
-- external input from previous node

SEQ

81

node <> machine
-- includes the stop.tokens and other nodes
SEQ

IF
node >= 0 -- send on & stop process

SEQ
ext.in ? sector; event.count
PAR

ext.out I node ; sector ; event.count
int.out I node;: sector ; eve nt.count

otherwise - node < 0
SEQ

IF
node = stop.token

int.out I stop.token
-the stop.token has travelled
-the full ring and stopped ALL processes
node = shut-down.token

int.out I shut.down.token
-shut down token will shut down all

-but the 10 node
otherwise

SKIP
node = machine

SEQ
ext.in ? sector ; event.count
message.no message.no-1

otherwise
SKIP

A

82F

PROC filter.d:~A(VAL INT machine, node
CHAN OF ANY ext.in, int in, -n

int.out, ext.out) - out
- To be used by receive process for multiplexing data from
- previous node OR the node. calculation

CHAN OF ANY other.data, my data
PAR

buffer(ext.in, other.data)
buffer(int.in, my.data)
mix(other.data, my.data. ext out. ,nt out)

.18

83

PROC update(VAL INT machine, CHAN OF ANY in, data)
-Place sector in the virtual array accordng to the node
- rom whence it came and send synchronization data to calculate

VAL INT initial. value IS 0
INT utwt.point, count
rbiok.sizeINT sector node responsibility
(node nojINT event count -- iteration record
INT nodie -- which machine
BOOL active

PROC wrtte data(VAL INT start-point.
VAL [JINT sector. (]INT array)

SEQ
[array FROM startpoint FOR block.size J -sector

SEQ
_. initialize variables
SEQ in 0 FOR blockaize

sectorfiJ :. -machine
SEQ k - 0 FOR (node.no block. size)

arrayk] .-. initialvalue
acive -.TRUE

WHILE active
SEQ

in 7node
-two-tier messae system

IF
node >_ 0

SEQ
in ? sector ; event.count(node]
start point :. node * block.size
write. data(start. point, sector, array)
-- synchronize the calculation
IF

node - ((machine +~ (node.no - 1))\(node.no))
VAL night.boundary IS 0 (INT)
VAL left.boundary IS 10000 (INT)
INT left, right
SEQ

84

% %
4%S

-- determine boundary conditions
IF

machine = 0
SEQ

left left.boundary
right := array[block.size + 1]

machine = (node.no - 1)
SEQ

left array[((block.size * machine) - 1)]
right := right.boundary

otherwise
SEQ

left := array[((block.size * machine) -1)]
right:= array[(block.size (machine +1))]

data I node ; left ; right

otherwise
SKIP

otherwise - node < 0
-- pass the system message through the node

IF
node = stop.token

data I stop.token
node = shut.down.token

SEQ
data I shut.down.token
active:= FALSE

otherwise
SKIP

85

PROC calculate(VAL INT machine, CHAN OF ANY data, out)
-this procedure will dispatch all details
-concerning the nodes calculations and update the event count
-the process assume synchronization data from update via data channel

VAL INT initial.value IS 0 (INT)
VAL night.boundary IS 0 (INT)
VAL Ieft.boundary IS 10000 (INT)
INT left, right
[blocksize]INT sector
BOOL active, stop.signal
INT event.count

PROC advance(INT event.count)

SEQ

event.count :=event.count + 1

PROC send.data(VAL INT machine, [JINT sector, CHAN OF ANY out)

-Implements communication protocol for the prototype
SEQ
out I machine ; sector ; event.count

PROC heat.flow(VAL INT left, right, [JINT length)
--one dimensional heat flow calculation

-This is typical of probelms that may be solved in this network

VAL rate ISi1 (INT)
SEQ
length[0J : ((left + (rate* ength [0])) + length[1])/(rate+2)
SEQ i = 1 FOR (block.size - 2)

length[i] :=((length[i-1] + (rate* e ngth[i])) + lengthi+1])/(rate+s2)
length[block. size- 1] :=((length[block.size-2] +

(rate' length [block. size- 1] + right) /(rate+2)

86

SEQ
._ initialization
SEQ I - 0 FOR block.size

soctorill := initial.value
SEQ k - 0 FOR nodeno *block.size

earray(k] :. initialvalue
active :. TRUE
stop.slgnal :-FALSE
event.count :-0

--a simple calculation
IF

machine - 0
SEQ

left :-leff.boundary
right :-array(block. size + 1)

machine - (node.no - 1)
SEQ

left : array(((block. size* machine) - 1)1
right :- ght.boundary

otherwise
SEQ

left : array(((blocksize* machine) -1)1
right :-array((block. size *(machine + 1))
heat.flow(Ieft. right, sector)
send -data(machi ne, sector, out)
advance(event. count)

WHILE active
INT node:
SEQ

data ? node -- synchronise or stop
IF

node >. 0 -- fiter code for negative numbers
IF

stopsignal
SKIP

otherwise
SEQ

data ? left; right
-- get synchronization data
heat.flow(Ieft, right, sector)
send -data(mach ine, sector, out)
advance (event.count)

otherwise
SEQ

87

-- system messages
IF

node - stop tokenSEQ
SOut I stop token
stop signal - F AL SE

do not send any more data
node = shut down token

SEQ
OUt shut down token ;huL down
SctONe - FALSE

otherwse
SKIP

88

Ip

r N
!.

' %[%%~% %~.

PROC 10 node(VAL INT machine,
CHAN OF ANY from.kb, extin, exiout, toscreen)

-Display the node data structure at each consistent data point to
*external monitor

[500JINT on chip-space

CHAN OF ANY intin, int out, data, to update
CHAN OF ANY other data, my data
VAListoptoken IS -I (INT)
VAL shut-down token IS -2 (INT)
VAL time token IS -3 (INT)
VAL otherwise IS TRUE
VAL node no IS 4
VAL block size IS 100
INT iteration
(nodie noeblock soze]INT array -- node data structure

S fromn kb 7 iteration
to screen Iiteration
PRI PAR

10 fifter MUX(machine. ext in, mnt out, mnt in, ext out, to screen)
PAR

1O update(machine. int in data)
calculate (machine, data. it out)

89

PROC IO.flter.MUX(VAL INT machine, -- node
CHAN OF ANY ext.in, int.in, -- in

Intout, ext.out, to.display) -- out

VAL max.message.load IS 1
CHAN OF ANY other.data, my.data:
[max.message.load+I]CHAN OF ANY extension:
PAR

buffer(ext.in, other.data)
buffer(int.in, my.data)
IO.mix(other.data, my.data, ext.out, int.out, to.display)

PROC IO.mix(CHAN OF ANY ext.in, int.in,
ext.out, int.out, to.display)

TIMER dock • -- timer for message circuit
INT Stan, stop, message.no:
INT node, event.count
[block.ksIzeJINT sector
BOOL active
SEQ

-- initialize
evnt.count :- 0
active :- TRUE
message.no :- 0
WHILE active

PRI ALT

(message.no < max.message.load) & int.in ? node
-- internal input from calculation

SEQ
IF

node >= 0
SEQ

int.in ? sector ; event.count -I
PAR -- send the update to next node

ext.out I node ; sector; event.cc, it
int.out I node ; sector; event.count
to.display I node ; sector; event.countmessage.no :=message.no + 1

clock ? start

9
90"'

otherwise -- calc.in node < 0
F -- check if the stop token and flush the system

node - stop-token
PAR
ext.out I stop.token --dispatches stoptoken
to.display I stop.token

node - shut.down.token
SEQ

to.display I shut.down.token
active *- FALSE

-- shut down last of PROC's

ext.in ? node -- external input from previous node

IF
node <> machine -- includes the stop.tokens

node >. 0
SEQ

ext.in ? sector ; event.count
PAR
ext.out I node ; sector ; event.count
int.out I node ; sector ; event.(:unt
to.display I node ; sector ; event.count
IF

node - stop.token
PAR

ext.out I shut.down.token
to.display I stop.token
- the stop.token has traveled the full ring

node - shut.down.token
SEQ

to.display I time.token ; (stop - start)
intout I shut.down.token

- shut down token has shut down
-all but the 10 node

otherwise
SKIP

node -machine

SEQ
ext.in ? sector ; event.count
clock ? stop -- stop loop message timing
message.no messageno - 1

91

PROC lO.update(VAL INT machine, CHAN OF ANY in, data)

VAL INT initial.value IS 0
INT start.point, count
[block-size]INT sector : -node responsibility
[node-no]lNT event.count :-iteration record
INT node -- which machine
BOOL active, stop.set
SEQ

SEQ i - 0OFOR block.sjze
sectorfi] :- -machine

SEQ k - 0 FOR (node. no'block. size)
array[kJ :. initial.value

active :. TRUE
stop.set :. FALSE
WHILE active

SEQ
in ? node
IF

node >= 0
SEQ

in ? sector ;event.countlnode)
start.point := node * block-size
wrlte.data(start. point, sector, array)
-- Stop conditional section
IF

IF - 0 FOR node. no-1
(event.countfiJ <. iteration) OR stop.set

SKIP
otherwise

SEQ TU

data I stop.token
IF

((node = ((machine +(node. no- 1))\node. no))
AND (NOT stopset))

VAL leff.boundary IS 10000 (INT):*e
VAL night.boundary IS 0 (INT):
INT left, right:
IF

machine -0
SEQ

left :=lett.boundary

92

right :. array[block size + 1]
machine - (node.no - 1)

SEQ
left "= array[((block.size machine) - 1)
right " right.boundary

otherwise
SEQ

left :- arrayf((block.size* machine) -1)]
right :- array(block-size (machine+l))]

data I node; left; right
otherwise

SKIP
otherwise - node < 0

IF
node = stop.token

data I stop.token
node - shut.down.token

SEQ
data ! shut.down.token
active :. FALSE

otherwise
SKIP

93

-a

PROC Ring.Monitor(CHAN OF ANY keyboard, screen)

CHAN OF ANY to.B003, from.B003 :
PLACE to.B003 AT2 - link 2 out
PLACE trom.BO03 AT6 - link 2 in

PROC monitor(CHAN OF ANY from.kb, to.monitor, to.screen,

VAL stop.token IS -1 (INT)
VAL shut.down.token IS -2 (INT)
VAL time.token IS -3 (INT)
VAL otherwise IS TRUE
VAL node.no IS 4
VAL block.size IS 100
VAL max.iteration IS 1000
VAL Isbel IS 'Virtual Shared Data Structure Test Harness"
VAL shut.down IS "System Shut Down"
VAL message.line IS 20
INT node, system.count
[block.sze]INT block • -

[block.size * node.no]INT array:
[node.no]INT event.count
BOOL active
TIMER clock
INT start. stop, start.point, granularity
-- terminal driver constants
VAL tt.go.to IS 5 (BYTE):
VAL tt.out.string IS 8 (BYTE):
VAL tt.beep IS 13 (BYTE):
VAL tt.terminate IS 15 (BYTE):
VAL tt.initialise IS 17 (BYTE):
VAL t.out.byte IS 18 (BYTE): I
VAL tt.out.int IS 19 (BYTE):

94

,I

PROC write.int(CHAN OF ANY to.screen,
VAL INT number, field)

-- algorithm from Gerraint Jones

VAL tt.out.byte IS 18 (BYTE):
INT value, spaces, width:
SEQ
IF

number >= 0
-, SEQ

spaces :=-1
width := 1

number < 0
SEQ

spaces =1
width := 2

WHILE (number / spaces) <= (-10) -- calculate the width
SEQ

spaces := spaces * 10
width := width + 1

WHILE width < field -- pad spaces
SEQ

to.screen 1 tt.out.byte;'
width := width + 1

IF -- place a minus sign if negative
number < 0

SEQ
to.screen ! tt.out.byte; '-'

otherwise
SKIP

WHILE spaces <> 0 -- display numbers
SEQ

to.screen I tt.out.byte; BYTE((INT '0') -
spaces := spaces / 10

95

117 N M9 DESIGN IMPUEENTRTION Wt EYALUTION OF A VIRTUOL 2/2
SHFIED MEMORY SYSTEM IN R PULTI-TRNNSPUTER NETUOAK(U)
NRYAL POSTOMRAATE SCHOOL MONTEREY CA S J HART DEC 9?

UNLSIF L S I I /IEDF/ 2/ L

I EEEE...EE

111111-111-6

~~ W~ 'W - W "W w w -w -~ V

VA %

PROC clear.Iine(CHAN OF ANY to.screen)

VAL tt.clear.eol IS 9 (BYTE):
SEQ

to.screen I tt.clear.eol

PROC go.to(CHAN OF ANY to.screen, VAL INT X,Y)

VAL tt.go.to IS BYTE 5:
SEQ

to.screen I tt.go.to; X; Y

PROC write.s(CHAN OF ANY to.screen, VAL OBYTE s)

VAL tt.out.string IS88 (BYTE):
SEQ

to.screen I tt.out.string; SIZE s
to.screen I s

PROC advance(INT event.counter)

SEQ
event.counter :=event.counter + 1

96

PROC collect.data(CHAN OF ANY to. monitor,
to-data.structure)

[node.no+1]CHAN OF ANY teed.pipe:
PAR

INT node, event.count, etapsed.time
[blocksize]INT sector
SEQ

to.monitor ? node
IF

node < 0
SEQ

IF
node = time.token

SEQ
to.monftor ? elapsed.time
feed.pipe[0] I node; elapsed.time

otherwise
feed.pipe[0] I node

otherwise
SEQ

to.monitor ? sector; event.count
feed.pipe[0] I node; sector; event.count

PAR = 0 FOR node.no
INT node, event.count, elapsed.time
[blocksize]INT sector
SEQ

feed.pipe[i] ? node
IF

node < 0
IF

node = time.token
SEQ

feed.pipe[i] ? elapsed.time
feed.pipe[i+1] I node; elapsed.time

otherwise
feed.pipe[i+1J I node

otherwise -- node >= 0
SEQ

feed.pipe[i] ? sector ; event.count
feed.pipe[i+1J I node ; sector; event.count

INT node, event.count, elapsed.time:

97

[blocksize]INT sector
SEQ

feed-pipe[nodo.no] ? node
IF

node < 0
IF

node - time.token
SEQ

feed.pipe[node.no] ? elapsed.time
to.data.structure I node; elapsed.ti me

otherwise
to.data.structure I node

otherwise - node < 0
SEQ

feed. pipe[node. no] ? sector ; event.count
to-data.stnicture I node ;sector ; event.count

IL

all

98 1

PROC update.memory(CHAN OF ANY in, to.screen, DlINT array,
[node.no]INT event.count)

-place sector in the virtual array according to the node
-whence it came

VAL INT inftial.value IS 0
INT start.point, count, ticks:
[block.sizeJINT sector :- node responsibility
INT node, elapsed.time :-- which machine
SEQ

SEQ 1- 0 FOR block.size
sectorqi] :. -1

active :. TRUE
In ? node
IF

node < 0
IF

node = shut.down.token
SEQ

go.to(to.screen, 28, 20)
write.s(to.scre en, "Shut. Down.Token Received")
active := FALSE -- process stops

node = stop.token
SEQ

go.to(to.screen, 30, 22)
wite.s(to.screen, "Stop.Token Dispatched")
clock ? stop -- stop the system timer

node = time.token
SEQ

in ? elapsed.time
go.to(to.screen, 28, 3)
wnte.i nt(to. screen, elapsed.time, 8)

otherwise
SKIP

otherwise
SEQ

in ? sector ; event.count[nodel
start.point := node * block.size
[array FROM start.point FOR block.size Isector

SEQ
__ initialize data
active :TRUE

99

systemn.count :- 0
SEQ I - 0 FOR node.no'block.size

array[i] :- -10
SEQ I - 0 FOR node.no

event.count[i] :- 0

- handshake with network
from.monitor I max.iterations -- start the process in the network
to.monitor ? granularity -- get the networks granularity
clock ? start - start the system timer

go.to(screen, 40 - ((SIZE label)/2)) 1)
wnite.s(to.screen, label)
go.to~to.screen, 1, 4)
write.s~to.screen, iterations # -3

write.int(to.screen, iteration, 8)
go.to(screen, 1, 5)
wrte.s(to.screen, "Granularity a->
write.int(to.screen, granularity, 8)
WHILE active
SEQ

CHAN OF ANY to.data.structure:
PRI PAR

collect.dataoo (to.monftor, to.data.structure)
update. me mory(to.data. structure, to-screen, array,

go.to(to.screen, 1 ,message. line)
clear. Ii ne(to.screen)
go.to(to.screen, (40 - ((SIZE shut.down)/2)), message. line)
write.s(to.screen, shut.down)
-- display system elapsed time
wrte.s(to.screen, **C*N Elapsed Time is==)
write.int(to. screen, stop - start, 8)

SEQ
monitor(keyboard, from.1B003, screen, to.1B003)
lNT ch :
keyboard ? ch

100

LIST OF REFERENCES

[At871 Atkin, P. Performance Maximization. INMOS Technical
Note Number 17, March 1987, Bristol, United Kingdom.

[Be85] Bekir, Evin. Implementation of a Serial Delay Insertion
Loop Communication for a Real Time Multitransputer
System. M.S. Thesis, Naval Postgraduate School,
Monterey, California, June 1985.

[Br87] Bryant. G. R. PASCAL Source Code for Transputer Instruc-
tion Set Disassembler.

[Ga86] Garret, D. R. A Software System Implememtation Guide
and System Prototyping Facility for the MCORTEX
Executive on the Real Time Cluster, M.S. Thesis, Naval
Postgraduate School, Monterey, California, December
1986.

[GIMi871 Gimarc, C. E., and Milutinovic, V. M. "A Survey of RISC
Processors and Computers of the Mid 1980's." IEEE
Computer, vol. 20, no. 9, pp. 59-69, September 1987.

[Hil Hill, G. Transputer Networks using the IMS B003. INMOS
Technical Note Number 13, undated, Bristol, United
Kingdom.

[Ho79 Hoare, C. A. R. *Comunicating Sequential Processes."
Communications of the ACM, vol. 21, no. 8, pp. 666-677.
August 1978.

[In87a] Transputer Reference Manual. INMOS Ltd.. January 1987,

Bristol, United Kingdom.

[In87b] T414 Preliminary Data Sheet. INMOS Ltd.. 1987,

Bristol, United Kingdom.

[In87c] T800 Preliminary Data Sheet. INMOS Ltd., 1987.

Bristol, United Kingdom.

0.

101

'I

[In87d] The Transputer Instruction Set-A Compiler Writers Guide.
INMOS Ltd., February 1987, Bristol, United Kingdom.

[In87e INMOS Databook '87. INMOS Ltd., Bristol, United
Kingdom.

[Ko83] Kodres, U. R "Processing Efficiency of a Class of Multi-
computer Systems," International Journal of Mini and
Micro-computers, vol. 5, no. 2, pp. 28-33, 1983.

[Ma87] Discussion with Philip Mattos, Applications Engineer,
INMOS Ltd., October 1987.

[MaSh87a] May, D., and Shepherd, R. Communicating Process
Computers. INMOS Technical Note Number 2, February
1987, Bristol, United Kingdom.

[MaSh87b] May, D., and Shepherd, R., The Transputer
Implementation of OCCAM. INMOS Technical Note
Number 21, February 1987, Bristol. United Kingdom.

[Pal Packer, J. Exploiting Concurrency: A Ray Tracing
Example. INMOS Technical Note Number 7, undated,
Bristol, United Kindom.

[Po85] Pountain R. "Turbocharging MandelBrot." B YTE
Magazine. vol. 10, no. 9, pp. 359-366, September 1986.

[Po87] Poole, M. OCCAM Program Development Using the IMS
D701 Transputer Development System. INMOS Technical
Note Number 16, January 1987, Bristol, United Kingdom.

[PoMa87] Pountain, R., and May, D. A Tutorial Introduction to
OCCAM Including Language Definition. INMOS Ltd., March
1987, Bristol, United Kingdom.

[ReKa79] Reed, D. P., and Kanodia, R. K. "Synchronization with
Eventcounts and Sequencers." Communications of the
ACM, vol. 22, no. 2, pp. 115-123, February 1979.

[ShWA87] Shatz, S. M., and Wang, J. P. "Introduction to Software
Engineering." IEEE Computer, vol. 10, no. 9, pp. 23-31,
October 1987.

[Va87] Vanni, Filho J. Test and Evaluation of the Transputer in a
Multitransputer Configuration. M.S. Thesis, Naval
Postgraduate School, Monterey, California, June 1987.

102

XQ

[We8O Weitzman, C. Distributed Micro/Minlcomuter Systems.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.

[Wi87a] Wilson, P. An Introduction to Transputers. INMOS Ltd.,
draft, 1.0, Colorado Springs, Colorado, USA, September
1987.

[WI87b] Discussion with Peter Wilson, Strategic Applications Engi-
neer, INMOS Ltd., Colorado Springs, Colorado, USA,
November 1987.

103

"'" "" ' ' - "' ' " 1' -" "" "" • .
w

" " " " " " " , u .l" " " "' "r ,
-

" "J.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria. VA 22304-6145

2. Library. Code 0142 2 '
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

4. Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Major Richard A. Adams, USAF, Code 52Ad 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 "

'U

6. Daniel Green, Code 20F 1
Naval Surface Weapons Center
Dahlgren, VA 22449

7. Jerry Gaston, Code N24 1
Naval Surface Weapons Center
Dahlgren, VA 22449

8. Captain J. Hood, USN 1
PMS 400B5
Naval Sea Systems Command
Washington, DC 20362

104

N

9. RCA AEGIS Repository
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, NJ 08057

10. Library (Code E33-05)
Naval Surface Weapons Center
Dahlgren, VA 22449

11. Dr.M.J. Gralia
Applied Physics Laboratory
Johns Hopkins Road
Laurel, MD 20702

12. Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

13. Director Naval Weapons Design
Department Of Defence (Navy)
CP 1-6-18
Campbell Park Offices
Russell, ACT 2600
AUSTRALIA

14. Australian Defence Force Academy
Duntroon, ACT 2600
AUSTRALIA

15. Dr. W.G.P. Robertson
Director, WSRL
GPO BOX 2151
Adelaide, South Australia 5001
AUSTRALIA

16. Mr Neil Mitchel 1
INMOS Corporation
2620 Augustine Drive, Suite 180
Santa Clara, CA 95054

17. Steve Burns
INMOS CORPORATION
P.O. Box 16000
Colarado Springs, CO 80935-1600

105

18. Lieutenant Commander J. Vanni Filho, 1
Brazilian Navy
c/o Brazilian Naval Commislon (DACM)
4706 Wisconsin Avenue, N.W.
Washington, DC 20016

19. Lieutenant Commander S. J. Hart, 3
Royal Australian Navy
Combat Data Systems Centre
84 Maryborough Street
Fyshwick, ACT 2610
AUSTRALIA

20. Dr. R. J. Dyne 1
Attachd (Defence Science)
Embassy of Australia
1601 Massachusets Avenue
Washington DC 20016

21. Mr. E. Carrapezza. Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

22. AEGIS Modelling Laboratory, Code 52 3
Department of Computer Science
Naval Postgraduate School
Monterey. CA 93943

106

ILfs

